
MULTI-OMIC DATA PROVIDE A MORE COMPLETE UNDERSTANDING OF THE 

AUTISTIC BRAIN 

 

 

 

by 

Shannon E. Ellis 

 

 

 

 

A dissertation submitted to Johns Hopkins University in conformity with the requirements 

for the degree of Doctor of Philosophy 

 

 

 

 

 

Baltimore, Maryland 

March, 2016 

 

 

 

 

 

 

© 2016 Shannon E. Ellis 

All Rights Reserved  



ii 
 

ABSTRACT 

Autism is a complex neurodevelopmental disorder characterized by persistent social deficits 

and restricted or repetitive patterns of behavior. Despite an established genetic basis of the 

disorder, efforts to elucidate the genetic underpinnings of the disorder and our 

understanding of its etiology remains incomplete. As such, we set out to study the effects 

downstream of genetic variation by studying alterations in both gene expression and DNA 

methylation (DNAm) in post-mortem brain samples collected from individuals affected with 

autism and controls. This work highlights that even when there is no primary genetic lesion 

detected, the autistic brain shows a characteristic pattern of upregulation at M2-activation 

state microglia genes, a state potentially driven by Type I interferon responses. Additionally, 

by combining transcriptomic data across autism and two related neuropsychiatric disorders, 

schizophrenia and bipolar disorder, we have garnered a better understanding of the 

relationship between these disorders, where genes differentially expressed in autism are 

concordantly differentially expressed in schizophrenia, but not in bipolar disorder. Finally, as 

gene expression is regulated, at least in part, by DNAm, we have characterized DNAm at 

cytosines across the genome and have detected hypermethylation at cytosines outside the 

commonly-studied CpG context, suggesting that autistic brains have slight increases at many 

CpH sites (where H=A,T, or C) throughout their genome. These sites are enriched in repetitive 

regions of the genome and regions containing human-specific CpGs, offering an insight into 

how this hypermethylation may be functioning mechanistically.  Taken together, by studying 

the downstream effects of genetic variation, at the levels of DNAm and gene expression, we 

have moved toward a more complete understanding of the autistic brain.  

Advisor:  Dan E. Arking, Ph.D. 

Reader: Jeff Leek, Ph.D. 
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CHAPTER 1: Introduction 

1.1 The Genetic basis of autism  
Autism is a complex neurodevelopmental disorder that develops in early childhood, 

continues throughout one’s life, and is characterized by persistent social deficits and 

restricted or repetitive patterns of behavior1. In addition to this characteristic set of core 

symptoms, affected individuals often also display a subset of associated neurological and 

physical symptoms including, but not limited to, alterations in mood, language ability, 

sleep habits, and gastrointestinal function2,3. Taken together, affected individuals display 

an incredibly heterogeneous phenotype with approximately one in 68 individuals in the 

United States receiving an autism diagnosis4.  However, despite its incredibly 

heterogeneous nature, the genetic basis of the disorder has been definitively established. 

Historically, family and twin studies established the heritable nature of the disorder5,6 with 

more recent large cohort studies definitively establishing that more than half of the liability in 

autism can be attributed to genetic causes 7. 

Specifically, the past decade has made a number of seminal discoveries about the genetic 

architecture of autism. SNP genotyping arrays have established an excess of inherited and de 

novo CNVs in cases relative to controls8–10. Further, exome sequencing analysis of simplex 

families has identified a number of rare de novo mutations found more frequently in affected 

individuals relative to controls and have estimated that there are 1,000 genes involved in 

autism11–16. On the other hand, genome wide association studies (GWAS) have yet to identify 

replicable common variants associated with autism17. However, it is important to keep in 

mind that these analyses remain underpowered. Given the recent findings in schizophrenia18, 

in which 108 disease-associated loci were identified once suitable sample sizes were 

obtained to detect the small effect sizes of variants playing a role in schizophrenia, it is 

reasonable to infer that autism, a related disorder with overlapping genetic hits19, will follow 

a similar path. Thus, common variants robustly associated with the autism will likely be 

identified as suitable sample sizes are obtained. Nevertheless, while yet incomplete, research 

has begun to identify genetic variation that plays a role in autism. 
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1.2 Gene expression in autism 
As we have begun to understand genetic variation, it has become increasingly clear that DNA 

mutations are only the beginning. Understanding the downstream effects of genetic 

mutations is another important piece of the puzzle. Thus, as we’ve begun to catalog 

mutations at the level of DNA, we’ve simultaneously started to get a handle on what is 

altered at the level of gene expression.  

This is particularly important because while the individual genes affected in autism may be 

numerous, there is a growing body of evidence supporting the fact that these alterations 

converge on a limited number of biological pathways including alterations in cortical 

development, synapse function, transcription and translation, chromatin modification, and 

microglial activation20–25. Ultimately, these findings suggest that, from a treatment 

standpoint, despite variable genetic causes, there may be a limited number of pathways that 

need to be targeted to begin to treat affected individuals24. And, thus, by understanding gene 

expression data as a whole we can obtain a more complete understanding of autism and how 

to approach treatment moving forward. 

Early attempts to study the autistic transcriptome focused on assessing gene expression 

in lymphoblastoid cell lines or whole blood26–30. However, given the core 

neurodevelopment phenotypes associated with autism, there is little doubt that direct 

assessment of gene expression in brains is critical. Initial work to study gene expression 

within the primary affected tissue in autism, the brain, utilized gene expression 

microarrays to determine which genes and pathways are altered in affected individuals 

20. This work began to provide insight into the autistic brain as it identified two modules – 

or groups of co-expressed genes – that demonstrate altered gene expression profiles in 

the brains of affected individuals. Their findings suggest alterations in neuronal, immune 

genes, and glial markers are driving the differences detected.  With these findings in 

hand, we carried out RNA-Sequencing, which enables digital transcriptome profiling at 

unprecedented resolution, in 104 post-mortem brains samples obtained across three 

cortical brain regions (BA10, BA19, and BA44/45) from individuals with autism and age- 
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and sex- matched controls to identify individual genes and biological pathways that are 

differentially expressed in the brains of individuals with autism. 

In generating these data, it became increasingly clear that there was no well-defined path 

to move from raw data obtained from the prepared sequencing libraries to biological 

insights. While a few analysis pipelines for RNA-Sequencing data had been published, the 

uniqueness of each experiment did not lend itself to a single pipeline being adequately 

applicable across experiments. Therefore, to address this, we developed a method to 

utilize known relationships between an individual’s genotype and his or her expression 

levels at a nearby gene – known as eQTLs, or expression quantitative trait loci – as gold 

standards to help make decisions during data analysis. This method assists analysts as 

they make decisions during analytical steps involving quality control, expression 

estimation, and statistical modeling of the data to ultimately provide confidence in the 

analyses carried out. This method was used to help identify transcriptomic differences 

that exist in the autistic brain relative to controls.  

1.3 Methylation in autism 
In addition to understanding gene expression alterations that exist in the autistic brain, 

understanding DNA methylation (DNAm), which directly regulates gene expression, is 

important for a number of reasons. First, prenatal life is a critical time for both DNAm and 

brain development31, making DNAm an epigenetic mark of interest in autism. Further, 

imprinting errors, which are mechanistically driven by alterations in DNA methylation 

patterns,  have been sufficient to cause neurodevelopmental problems, such as in the 

case of Angelman Syndrome 32.  Additionally, mutations in epigenetic effectors can result 

in human neurodevelopmental disorders, such as is the case in Fragile X Syndrome and 

Rett Syndrome33,34. Taken together, these data support investigating the role of altered 

DNAm in autism. 

As such, researchers set out to investigate the role for alterations in CpG DNAm in brains 

from individuals with autism spectrum disorder (ASD), reporting a handful of regions 

demonstrating altered methylation in individuals with ASD relative to controls. These 

initial studies, however, were carried out on a limited number of samples and utilized 
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methylation array technology at a limited number of sites 35,36. Given the limited sample 

size and number of cytosines tested, we decided to carry out reduced representation 

bisulfite sequencing (RRBS) on the same post-mortem cortical brain samples from which 

we had previously acquired transcriptome data. RRBS data enabled us to characterize 

DNAm alterations occurring at cytosine-rich regions throughout the genome within both 

the classically-studied CpG context as well as the CpH (H=A, C, or T) context.  

Differences in methylation levels between affected individuals and controls could then be 

detected across the genome, at each single site, and within regions of the genome. 

Portions of the genome demonstrating altered methylation levels within the autistic 

brain were then assigned to functional regions of the genome to suggest how altered 

methylation may be functioning within affected individuals. 

1.4 The benefits of a multi-omics approach 
The advantages to obtaining multiple levels of data from the same individual samples are 

manifold. First, sample acquisition is subject to human error with sample mix up an 

unavoidable risk. By obtaining genetic and expression information from the same 

individuals we were able to ensure the samples were derived from the same individuals 

across the various levels of data, thus ensuring our confidence in all results from 

subsequent analyses. 

Further, while each level of data (genotyping, gene expression, and methylation) is 

interesting on its own, there is also a relationship between each level of data collected, 

enhancing the utility and information that can be garnered to ultimately move us toward 

a more complete understanding of the autistic brain. Specifically, genotype not only 

affects expression levels and methylation at expression quantitative trait loci (eQTLs) and 

methylation quantitative trait loci (meQTLs), respectively, but there is also a well-

established relationship between increased methylation at a gene’s promoter and 

decreased expression at that gene. Given these established relationships, more 

information can be gained by combining information across all analyses carried out to 

ultimately better understand genes and pathways playing a role in the autistic brain.  
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CHAPTER 2: RNA-Seq Optimization with eQTL Gold Standards 

2.1 Introduction 
The advent of RNA-Seq37 and dramatic decrease in next-generation sequencing costs have 

led to numerous RNA-Seq studies in recent years. This revolutionary technique has enabled 

digital transcriptome profiling at unprecedented resolution that avoids many of the 

limitations inherent to the analog nature of microarray technolog38,39. However, despite 

numerous publications and the fact that RNA-Seq studies have supplanted microarrays as the 

gold standard for transcriptome analysis, it is not without its own inherent limitations.  

Early concerns regarding library preparation, sequencing error, read mapping, and gene 

expression quantification have been resolved by a number of studies; however, there is no 

standardized approach for quality control and data adjustment of RNA-Seq data after the 

generation of gene expression estimates. Without an appropriate approach to data analysis, 

reproducibility of these studies remains limited40. Further, the unique designs of sequencing 

studies suggest that a single black box approach is unlikely to be uniformly optimal across all 

experiments. Thus, we propose an approach to address data cleaning, normalization, and 

adjustment in RNA-Seq data analysis (Figure 2.1). This pipeline is informed by best practices 

that we and others have developed for genome-wide association studies (GWAS) 41,42, which 

also suffered from similar sources of error prior to the development of optimized methods.  

We demonstrate the applicability of our approach in 64 autism-affected and control brain 

samples. Specifically, our outlier detection method is based on utilizing the RNA-Seq gene 

expression estimates as well as DNA and RNA genotypes obtained from the same individual. 

Further, expression quantitative trait loci (eQTLs) are biologically meaningful loci at which 

gene expression is modified by genotype. Accordingly, we utilize replication of cis-eQTL data 

from two recently published brain studies43,44 as a means to assess the integrity of 

sequencing data and appropriateness of data handling procedures. We replicate the findings 

from this eQTL analysis in an independently-generated RNA-Seq data set of 162 blood 

samples from the Genotype-Tissue Expression (GTEx) project45. Within the context of eQTL 

replication, we particularly highlight the need to identify and remove outlier samples in RNA-
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Seq experiments and further corroborate the need to account for unknown sources of 

variation in high-throughput data46. While a number of publications have presented methods 

by which one can analyze RNA-Seq data (many of which are reviewed in47) and account for 

unknown covariates48–51, the steps we present herein ultimately provide a straightforward 

approach that allows for more accurate approximation of gene expression values that can be 

confidently used in downstream disease-based comparisons. 

 

Figure 2.1 Data analysis pipeline for analysis of RNA-Seq data.  
Blue boxes are data analyses carried out on RNA. Purple indicates DNA. 
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2.2 Methods 

2.2.1 Sample information 

Brain. Post-mortem brain samples were acquired through the Autism Tissue Program 

(http://www.atpportal.org), with samples originating from two different sites: the Harvard 

Brain Tissue Resource center and the NICHD Brain and Tissue Bank at the University of 

Maryland. Cortical tissue corresponding to Brodmann Area 19 (BA19) was sequenced in 40 

controls and 25 autism-affected cases. Among this set of brains, the average age at time of 

death is similar between cases and controls (22.2 and 21.3 years, respectively), and there is 

no significant difference in cause of death between the two groups.  One sample had fewer 

than 20,000 sequenced reads (average across all other samples was 109M reads) and was 

excluded. The resultant 64 samples were included for study.  This study was approved by the 

IRB of The Johns Hopkins Hospital and conducted in accordance with institutional guidelines. 

Blood. Sample data were acquired from the NHGRI GTEx project (phs000424.v3.p1)45. Whole 

blood RNA-Seq and genotyping data were available for 162 samples. This data set comprised 

of 103 males and 59 females with an average age of 49.7 years.  

2.2.2 Genotyping 

Brain. Each sample was genotyped at ~900,000 SNPs using the Affymetrix 6.0 array calling 

genotypes using the Birdsuite software package52. High quality genotyping was completed for 

all samples with an average call rate of 99.63% [range: 97.91 to 99.91]. 

Blood. The GTEx project used the Illumina Omni5 array for direct sample genotyping and 

subsequently imputed with IMPUTE253 using the 1000 Genome phase 1 release reference 

panel.   

2.2.3 RNA-Sequencing 

Brain. RNA-Seq libraries were prepared from 50 μg of total RNA from postmortem brain 

obtaining a fraction of purified polyadenylated (polyA) mRNA after two rounds of 

hybridization with oligo(dT) dynabeads. Standard quality control measures were employed 

using “no template controls”, “no ligase controls”, and “no adapter controls” in RNA-Seq 

library preparation. These samples did not demonstrate detectable product by PCR prior to 

sequencing. This process was followed by random fragmentation to avoid bias at the 3’ end 

of the transcript. First-strand cDNA synthesis was performed using random primers (Illumina) 

http://www.atpportal.org/
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and SuperScriptII Reverse-Transcriptase (Invitrogen) followed by second strand cDNA 

synthesis using RNaseH and DNA Pol I (Illumina). Illumina adaptors were ligated to the 

purified, end-repaired and 3' adenylated cDNA and performed 200 bp size-selection of the 

final product by gel-excision, following the Illumina-recommended protocol. The 200 bp 

cDNA template molecules were amplified with the adaptor attached by PCR to create the 

final library. Each library was sequenced on a single lane of the Illumina's Hiseq 2000 to 

produce 100 base pair (bp) single-end reads.  

Blood. RNA-Seq read count data was obtained from the GTEx project, which used a TruSeq 

library preparation protocol on poly-A selected mRNA to obtain 72 base paired-end 

sequencing from the Illumina Hiseq 2000.  

2.2.4 Mapping 

Brain. The number of total reads per lane varied from 26M to 202M, with a mean of 109M. 

We used in-house Python scripts to map the sequence reads to the genome (hg19) using 

Bowtie54 followed by TopHat55. To improve mapping, reads were trimmed to remove 

stretches of terminal A’s or T’s (N=3-12) that occurred as a result of the polyA pulldown step. 

In addition, we removed contaminating adaptor sequences using a Python script, cutadapt 

(v0.09). Only uniquely mapped reads with a maximum of 3 mismatches were used to 

calculate gene expression values. Aligned reads were sorted, indexed and compressed into 

the BAM format for easy storage and usage in downstream analysis. The number of total 

mapped reads per lane varied from 2.7M to 84.2M, with a mean of 35M for the 57 samples 

used in the final analysis. The RNA-Seq reads were mapped to approximately 44,611 Ensembl 

genes (average 70% reads mapping per sample). For all analyses (save the case where we 

analyzed CDS only), we summarized these reads to all exons of genes based on the 

coordinates on the hg19/GRCh37 gene annotations provided from Ensembl using the python 

script HTSeq-count (intersection strict). For the CDS only analysis, HTSeq-count (intersection 

strict) was again used; however, we excluded reads that mapped to coordinates within the 5’ 

and 3’ UTRs for summarization. In both cases, regardless of quantification method, we then 

assessed summarized values on a gene-by-gene basis, removing samples whose gene 

expression values were more than three SD from the mean expression at each gene. After 

sample outlier removal, the final gene expression data set was pared down to include the 
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20,717 genes whose log2 gene expression estimates summed across all 57 samples totaled at 

least 100.  

Blood. Mapping was carried out by the GTEx consortium45. Our data analysis of these data 

began with the mapped read count values. 

2.2.5 Normalization 

Subsequent to mapping, the gene count data was normalized to minimize biases due to 

gene-length, GC content, and sequencing depths. CQN normalization procedure was carried 

out with the recommended default setting. EDASeq normalization was completed using the 

full-quantile, within-lane GC-content normalization procedure as recommended56. 

2.2.6 Data decomposition 

 Data decomposition was performed on the log2 scale for those genes with at least ten gene-

level counts across all samples. PCA was performed using the procedure implemented in the 

R function 'prcomp'. SVA was performed on the matrix of the expression counts, after 

controlling for case-control status, age, sex and site using the ‘sva’ function implemented in 

the R package ‘sva’. ISVs were generated while protecting for case-control status using 

'isvaFn' function in the ‘isva’ package in R. We applied the unsupervised Bayesian factor 

analysis method implemented in Probabilistic estimation of expression residuals (PEER) on 

the count gene expression data49,57. PEER yields residual expression factors that can be used 

in for downstream analysis. 

2.2.7 Variant calling 

Variant Calling was completed using two different genotyping methods: SAMtools v0.1.1258 

and the Genome Analysis Toolkit v1.0 (GATK)59. SAMtools genotype calls were made for each 

sample individually using the recommended settings 

(http://samtools.sourceforge.net/mpileup.shtml); however, we excluded indels from these 

analyses and filtering was done in-house. Multi-sample GATK calls were made according to 

the suggested Unified Genotyper generic command line 

(http://www.broadinstitute.org/gatk/). The default settings were used except in the cases of 

standard minimum Phred-scaled confidence, which was increased to 60 to increase output of 

confident calls, and downsampling coverage, which was set to 250. We extracted genotypes 

from each method from the output files and assigned rsIDs (dbSNP build 132) using in-house 

http://samtools.sourceforge.net/mpileup.shtml
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scripts, keeping genotypes for which there were greater than twenty reads in downstream 

analyses. Genotypes both concordant across the two variant calling methods and present on 

the Affymetrix Genome-Wide Array 6.0 were used for downstream analyses.   

2.2.8 Simulated sample mixing experiment 

SNPs present on the Affymetrix Genome-Wide Array 6.0 that were called concordantly by 

both SAMtools and GATK were used in these analyses. The genome function in PLINK (v1.07) 

60 was used for pair-wise comparisons to verify that, based on pair-wise IBS distance values 

(DST), the closest sample match for each RNA sample came from its corresponding DNA 

sample. Samples with low pair-wise concordance (IBS DST <0.89) were assessed further, 

computing each sample’s Discordance Ratio (DR). A sample’s DR can be calculated by taking 

the number of SNPs called homozygous at the DNA level but heterozygous at the RNA level 

divided by the total number of heterozygous RNA calls. Utilizing this metric, we simulated 

contamination at the RNA-Seq level by choosing eighteen high-confidence BAM files (DR<0.1) 

at random. The Picard (http://picard.sourceforge.net, v1.64) command DownsampleSam was 

then used to randomly sample a subset or reads from these BAM files. We combined RNA-

Seq reads from these 18 samples in controlled ratios [10:90, 20:80, 30:70, 40:60, and 50:50] 

using samtools’ 58 merge command. After controlled mixing of sequencing reads, we carried 

out variant calling and comparison back to DNA genotypes on these mixed samples as 

described above. The DR for each intentionally contaminated sample was calculated and 

compared the three samples in question to our intentionally contaminated subset to 

determine the level of sample contamination present in the three samples in question.  

2.2.9 Assembling lists of previously identified eQTLs 

Brain. We manually curated a list of brain SNPs and their associated genes from two recent 

publications43,44. These lists were generated from Table S644 and Tables S4 &S643 in the 

previous publications and included SNPs from the previous publications that had a proxy SNP 

on the Affymetrix Array 6.0 (r2>0.90) as determined in SNAP with 1000G CEU as a reference 

population (http://www.broadinstitute.org/mpg/snap). Additionally, we retained eQTLs 

whose associated SNPs passed default filtering in PLINK, thus keeping SNPs with <10% 

missing and SNPs with a minor allele frequency > 0.01. We removed eQTLs whose associated 

genes were not present in our RNA-Seq data as well as duplicate SNP:gene pairs across the 

http://picard.sourceforge.net/
http://www.broadinstitute.org/mpg/snap
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studies (defined as SNP:gene pairs with SNPs w/ r2>0.8). Combining the lists from the two 

publications and performing the aforementioned filtering, resulted in a list of 909 eQTLs for 

study. 

Blood. To test for known eQTLs in blood, we generated a list of 538 cis-eQTLs initially 

identified from a lymphoblastoid cell line61. From this data set we started with those cis-

eQTLs with a q-value<0.01 in the previously published meta-analysis. Known eQTLs for which 

the genotyped SNP was present in the imputed GTEx genotype data and the gene was 

present in the GTEx RNA-Seq expression data were included. This resulted in 538 eQTLs for 

study. 

2.2.10 Covariate inclusion in eQTL analyses 

Covariates included in each analysis varied but included a subset or combination of known, 

unknown, and technical artifacts. The known covariates included were age, sex, and either 

sample collection site (Harvard or Maryland) in the brain data set or cohort (organ donor, 

postmortem, or surgical) in the blood data set. We utilized four data decomposition methods 

– independent surrogate variable analysis (ISVA), surrogate variable analysis (SVA), principal 

component analysis (PCA) and PEER49,57 – to account for unknown covariates. We included 

percent coding bases, percent intronic bases, percent mRNA bases, median 3’ bias, percent 

UTR bases, and AT dropout as the technical sequencing artifacts in our analyses. [See Picard 

documentation for further explanation of these artifacts, http://picard.sourceforge.net.]  

2.2.11 Detecting inflation in each data set 

To assess inflation of p-values, a genome-wide cis-eQTL analysis was carried out for each 

condition in the R package ‘MatrixEQTL’ (v1.6.1)62. eQTLs were detected by looking for cis-

associations among all directly-genotyped SNPs and genome-wide RNA-Seq gene expression 

data. cis-associations were defined as SNP-gene associations in which the tested SNP was 

localized within 1Mb of either the 5’ or the 3’ end of the gene. From the p-value distribution 

of these analyses, the genome-wide inflation factor in each data (Tables 2.2 & 2.3) set was 

determined using the R package ‘GenABEL’63.  

2.2.12 Replication of previously identified eQTLs 

We utilized the curated list of 909 brain eQTLs and 538 LCL eQTLs to detect eQTLs in our 

brain and blood data sets, respectively. MatrixEQTL (v1.6.1)62 was used to test for cis-

http://picard.sourceforge.net/
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associations between the previously-reported SNP genotypes (or proxy SNPs) and 

corresponding gene expression estimates from the RNA-Seq data. cis-associations were 

defined as above. In each analysis, p-values were adjusted for inflation64 using the inflation 

factor estimated from the genome-wide cis-eQTL analysis (Table 2.2 and 2.3). P-values from 

this analysis were used to obtain q-values using the R package ‘qvalue’65 keeping lambda 

constant at 0.50. Finally, as used previously66, in order to assess eQTL replication, the π1 

statistic was calculated from the inflation-adjusted p-values using the ‘qvalue' package. π1, an 

estimate of the proportion of replicating eQTLs, is defined as 1-π0, where π0 is the proportion 

of true null associations.  These three statistics (p-value, q-value, and π1) were used to assess 

the need for and success of each quality control step.  

2.2.13 Differential gene expression analyses 

A linear regression framework was utilized to identify differential gene expression between 

36 controls and 21 cases with site, age, sex and ISVs as covariates.  

2.2.14 Availability of supporting data 

Genotyping and RNA-Sequencing data have been submitted to the NIH’s National Database 

for Autism Research (NDARCOL0002034). Additional scripts developed for these analyses are 

available on the Arking lab website (www.arkinglab.org). 

2.3 Results 

2.3.1 Data normalization in RNA-Seq 

Brain RNA-Seq data were generated from post-mortem cortical samples collected from 

Brodmann Area 19 (BA19) in 39 control and 25 autism-affected cases (Table 2.1).  After 

estimating gene expression from the sequencing reads, two methods for data normalization 

were assessed: Exploratory Data Analysis and Normalization for RNA-Seq (EDASeq) 56 and 

Conditional Quantile Normalization (CQN) 67. The normalized gene expression values from 

each algorithm demonstrated method-specific biases. Examining p-values from our covariate 

adjusted case-control analysis, we note that normalization by CQN leads to a marked 

increase in the test statistics for shorter and low GC content genes(gene length<1000 bp, GC 

content < 35%), a problem not observed with EDASeq (Figure 2.2). On the other hand, genes 

with both lower gene expression estimates and the assignment of zero values by EDASeq led 

to an increase in outliers on a per-gene basis in our eQTL analyses (Figure 2.3A), whereas 

http://www.arkinglab.org/
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CQN did a better job handling these genes (Figure 2.3B). Further comparison by eQTL 

replication to assess the biologic reproducibility (discussed below) of these two normalization 

methods was performed with CQN slightly outperforming EDASeq (Figure 2.4). While one 

unified approach that directly addresses the limitations of each approach more effectively 

would improve results, we selected CQN for downstream analyses due to its slight 

improvement in eQTL replication. Nonetheless, we recommend that, until the presented 

issues are directly addressed, both methods be considered as part of an analysis pipeline. 
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Figure 2.2: Comparing normalization methods. 
 (A) Scatterplot of case-control analysis (–log10) p-values from EDASeq (x-axis) vs CQN (y-axis). Genes with lengths less than 1000 
base pairs are highlighted in red. (B) Scatterplot of case-control analysis (–log10) p-values from EDASeq (x-axis) vs CQN (y-axis), with 
genes with GC content < 35% are highlighted in red.  

B A 
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B A 

Figure 2.3: Sample outliers identified and removed on a gene-by-gene basis improves robustness of differential gene expression 
analyses. 
(A) EDASeq gene expression values are plotted. CPED1, a false positive, demonstrates a case where the presence of an outlier sample 
skews the differential gene expression analysis between cases and controls. Prior to outlier removal, the p-value for this gene was 

1.04x10
-5

; however, by removing the outlier sample, this gene is no longer differentially expressed between cases and controls. On the 
other hand, THEMIS shows the opposite trend in which the comparison demonstrates a more significant difference between cases and 
controls (p-value from 0.58 to 0.0003) after outliers are removed.  (B)  Differential gene expression p-values before and after per-gene 
outlier removal in EDASeq and CQN. CPED1 and THEMIS summarize the data presented above in both EDASeq and CQN. In the CQN 
data, RIC8B and CHPF are comparable to THEMIS and CPED in the EDASeq analyses; however, the difference in p-value before and after 
per-gene outlier removal is less, due to CQN’s better handling of outlier samples. 

A B 
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Figure 2.4: eQTL replication in brain data. 

Normalization by EDASeq (red bars) demonstrates that sample outlier removal improves eQTL replication and that whole gene 
annotation provides improved gene expression estimation than coding sequence (CDS) only. CQN normalization (green bars) provides 
slightly improved eQTL replication over EDASeq normalization and demonstrates the necessity of covariate inclusion in eQTL 
replication, particularly highlighting the necessity of accounting for unknown covariates. Per-gene outlier removal (blue bars) does not 
hamper our ability to detect cis-eQTLs. 
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2.3.2 Identifying outliers in RNA-Seq data 

In large sequencing studies, specific samples, for technical or biological reasons, can be 

recognized as outliers and should be removed from the study68. To identify outlier samples, 

whose global gene expression pattern is not explained by known covariates, we used 

Principal Component Analysis (PCA), investigating the first six principal components, which 

together explain ~60% of the variance in the brain data. Samples greater than three standard 

deviations (SD) from the mean in any of the first six principal components were deemed 

outliers and removed from analysis (N=4 or 6.3% of all samples) (Figure 2.5).  

After sample-based outlier removal described above, it was apparent that, on a gene-by-

gene basis, there were samples whose expression estimates differed greatly from the rest of 

the samples for that particular gene (Figure 2.3). Using a cut-off of three SD from the mean, 

20.2% [7,027/34,738] of genes tested for differential expression between cases and controls 

had at least one sample flagged as an outlier for gene expression level. As these sample 

outliers are gene-specific, they suggest a clear artefactual origin, as opposed to a problem 

with the sample as a whole. Comparing the 50 most significantly differentially expressed 

genes between cases and controls before and after outlier removal, the lists differ at 60% 

[30/50] of the genes present, demonstrating that inaccurate results would be reported if 

gene-by gene outliers were not removed. To further ensure that this was indeed biologically 

sound, we assessed the validity of this approach using our eQTL analysis (discussed below). 

After flagging outlier samples for removal in the brain data set, we obtained genotypes from 

both DNA and RNA. As a check on our data, we verified sample identity by comparing each 

RNA-Seq sample against all DNA samples. Pair-wise Identity by State (IBS) distances (DSTs) 

were calculated in PLINK with the expectation that DNA and RNA genotypes generated from 

the same individual should have a DST value approaching 1.0. In all samples, DNA genotypes 

best matched their corresponding RNA genotypes with a DST>0.83, indicating that our DNA 

and RNA samples were, in fact, from the same individual. 

Despite correct identification of sample identity by IBS, three samples had borderline DST 

values (DSTs=0.83-0.89), warranting further investigation. These samples demonstrated an 

unexpected genotyping comparison profile such that all three showed an increased number 

of genotype calls deemed homozygous by DNA genotyping but called heterozygous at the 
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RNA level. As DNA genotyping by Affymetrix array has proven to be extremely accurate69, an 

excess of sites where the DNA genotype indicates homozygosity but heterozygous calls are 

present at the RNA level indicates possible contamination. We quantify these occurrences in 

each sample using a metric we refer to as the Discordance Ratio (DR). For the majority of our 

samples, for which there is no suspected contamination, the DR approaches zero, with a 

value less than 0.2 indicating RNA-Seq data of sufficient quality for further analysis. The three 

samples in question had elevated DRs (0.32, 0.41, and 0.47), suggestive of sample cross-

contamination (Figure 2.6). 

To address the possibility of contamination, we conducted a mixing experiment where we 

combined high quality RNA-Seq samples (identified as having a DR<0.1) in controlled ratios. 

We carried out variant calling on these intentionally contaminated samples as had been 

previously carried out in the RNA-Seq data and calculated the DR for each. This ratio was 

then compared between the RNA-Seq samples in question and those from which mixing had 

been simulated. This comparison suggests that, for the three sample libraries in question, 

370% of the RNA-Seq reads originated from a different sample (Figure 2.7). As reads from a 

foreign sample would lead to inaccurate gene expression estimates, we removed these 

samples from downstream analysis, resulting in a final data set of 57 samples, comprising 21 

controls and 36 cases. 
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Figure 2.5: PCA identifies sample outliers. 
The first six principle components (PCs) were assessed. Those samples whose gene expression profiles placed them greater than three 
standard deviations (sd) away from the mean of any of the first six PCs were identified (red) as sample outliers and removed from 
downstream analyses. 
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Figure 2.6: Using discordance ratio (DR) to assess quality of RNA.Seq data 

Densityplot of RNA-Seq samples’ discordance ratios (DR). A sample’s DR can be calculated by taking the number of SNPs called 
homozygous at the DNA level but heterozygous at the RNA level divided by the total number of heterozygous RNA calls. 
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2.3.3 Reported brain eQTLs are reproducible in RNA-Seq data 

Previously, surrogate measures of RNA quality (e.g., pH, post-mortem intervals, RIN values, 

etc.) have been used in an attempt to predict biologic validity, but none has been uniformly 

successful. Using published sets of brain eQTLs– regulatory genomic loci at which gene 

expression levels in the brain differ by genotype – we looked to recapitulate a number of the 

previously reported brain eQTLs in our gene expression data. We postulated that if we could 

replicate these eQTLs in our data, this would indicate that the use of post-mortem brain 

tissue may be representative of physiological conditions. We used a list of 909 cis-eQTLs 

generated from two recent studies that detected brain eQTLs in multiple disease populations 

across a number of brain regions 43,44. Despite a smaller sample size and only one brain 

region under interrogation, we replicate 26.1% [237/909] of the tested associations 

(inflation-adjusted p<0.05) when age, sex, site and principal components are included as 

covariates (Figure 2.4, Figure 2.8 & Table 2.2). 
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Figure 2.7: Simulated contamination of RNA-Seq reads.  

Sample contamination was simulated by mixing RNA-Seq reads from two different samples in controlled ratios. These intentionally 
contaminated samples’ RNA genotypes were then compared back to the DNA genotypes from which they were mixed. Specifically, a 
Purity Percentage of ‘10’ indicates that 10% of the reads in that RNA genotype file were sampled from the DNA sample to which it was 
compared.  
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Figure 2.8: Replication of previously-reported eQTLs. 

A representative set of three eQTLs are shown. Despite a smaller sample size and data from only one brain region, 26.1% of the 
previously published eQTLs are replicated in our combined dataset at p<0.05.  
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2.3.4 Monitoring eQTL replication to gauge quality control measures 

We posit that if we are appropriately handling our data, known brain eQTLs should 

demonstrate improved association after each data correction step as well as an overall 

increase in the number of previously reported eQTLs that replicate. We have measured the 

ability to replicate known cis-eQTLs associations using three metrics: (1) the percentage of 

known eQTLs that replicate at p<0.05 after adjusting for genome-wide inflation (See 

Methods) (2) π1, a statistic that estimates of the proportion of significant tests 65, and (3) the 

percentage of known eQTLs that replicate at q<0.05. When taken together, these three 

metrics offer a profile of the validity of each data handling step. 

As part of the initial quality control, seven of the 64 samples (11% of total) were flagged as 

PCA outliers or contaminated samples, and removed. To assess the effect of sample removal, 

we compared eQTL replication in three data sets: (1) prior to outlier removal (N=64), (2) after 

dropping PC outliers (N=60), and (3) after dropping likely contaminated samples (N=57). 

Sample Outlier removal allows for the detection of 7.4% more known eQTLs p<0.05 and 3.5% 

more eQTLs q<0.05. Similarly, π1estimates a dramatic increase in the proportion of 

replicating eQTLs from 0.00 to 0.209. These data indicate the necessity of removing suspect 

samples in these data (Figure 2.4 & Table 2.2).  

We further utilized eQTL replication to determine the most appropriate model for gene 

annotation. There is evidence that suggests expression levels estimated from RNA-Seq data 

at the coding sequence (CDS) alone correspond better with qRT-PCR measurements than 

RNA-Seq estimates that include both the CDS and its untranslated regions (UTRs). However, 

recent RNA-Seq analyses have generally included gene annotation from the whole gene – 

that is the CDS and its UTRs – under the argument that gene annotation gains accuracy upon 

UTR inclusion 70. To address this discrepancy in the literature, we compared these two gene 

annotation approaches by eQTL replication. The whole gene annotation clearly replicates 

known eQTLs better than the CDS alone (Figure 2.4 & Table 2.2) detecting 5% more known 

eQTLs at p<0.05 and 1.9% more at q<0.05. Replication, as measured by π1 demonstrates an 

increase in this test statistic as well (0.114 in CDS, 0.209 in whole gene annotation). This 

improvement in eQTL detection offers support for the use of UTR inclusion in gene 

annotation in these data. 
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Similarly, eQTL replication was used to compare normalization methods. We note that when 

considering the overall number of known eQTLs detected, CQN replicates 2.7% more eQTLs 

(p<0.05) than does EDASeq (Figure 2.4 & Table 2.2), further supporting its use in analyzing 

gene expression in this data set. 

Disease-based comparisons are frequently adjusted for known covariates (age, sex, etc.). 

However, comparative studies are also frequently plagued by unknown covariates, or 

confounders within the data that are not easily attributable to any recorded measurement 

46,68. These unknown covariates can be approximated through various data decomposition 

methods. We initially considered using PCA to accomplish this goal but observed that the first 

PC was correlated with both collection site (see Methods) and disease status, which often 

occurs whenever different sites have different fractions of cases and controls. As this could 

be a likely issue in many case-control study, limiting the utility of PCs in downstream 

analyses, we also considered Surrogate Variable Analysis (SVA)50 and Independent Surrogate 

Variable Analysis (ISVA) 51, as these approaches allow for disease status to be protected 

during their generation. Lastly, we also considered utilizing PEER49,57 to account for unknown 

covariates, as this method has been used and performed well in previous eQTL analyses 66. In 

eQTL replication analyses, performance was comparable with ISVs, SVs, PEER and PCs 

detecting 25.1, 26.2, 26.9 and 26.1 percent of the previously reported eQTLs, respectively 

(p<0.05) (Table 2.2). Ultimately, however, to address the case-control confounding issue, we 

had to decide between ISV and SV usage. To do so, we tested both methods by assessing Q-Q 

Plots generated for disease-based comparisons. As the inclusion of SVs, but not ISVs, 

demonstrated inflated p-values in these analyses (Figure 2.9), we decided to move forward 

with ISVs to account for unknown covariates. 

Finally, regarding covariate inclusion, we note that certain metrics for technical artifacts of 

sequencing (percent coding bases, percent intronic bases, percent mRNA bases, median 3’ 

bias, percent UTR bases, and AT dropout) were correlated with specific ISVs (Table 2.4), 

suggesting that the unknown covariates detected by ISVA may simply be accounting for 

known technical artifacts of sequencing. We tested this possibility and demonstrate that, 

while including technical artifacts as covariates does improve eQTL detection over known 

covariates alone (2.4% increase at p<0.05, increase in π1 from 0.217 to 0.308), both PCs and 
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ISVs perform even better, demonstrating a 5.9% and 4.9% increase at p<0.05, respectively, 

when compared to no covariate inclusion (Figure 2.4 & Table 2.2). These data ultimately 

support the inclusion of covariates, as captured by data decomposition methods, in 

downstream analyses suggesting that such methods are either (a) accounting for unknown 

covariates beyond technical sequencing artifacts or (b) appropriately weighting the effects of 

the technical artifacts amongst the ISVs/PCs generated. 

As noted above, sample outliers were also identified on a per-gene basis and removed from 

analysis. To ensure that removing these outliers was biologically sound and that these 

outliers did not represent true measures of differential expression, we tested data sets 

where sample outliers were removed at each gene using our eQTL replication approach. 

While per gene outlier removal did not demonstrate a marked increase or decrease in eQTLs 

detected (Figure 2.4 & Table 2.2), the presence of outlier samples leads to a lack of 

robustness in the case-control analysis where single samples dramatically skewed the results 

(Figure 2.4).  As per-gene outlier removal helped to stabilize the case-control analyses and did 

not hinder our ability to detect known eQTLs, we support its inclusion in RNA-Seq data 

analysis. 

2.3.5 Independent RNA-Seq data set supports use of eQTL gold standards 

To bolster the results of our brain RNA-Seq data set, we set out to replicate the main findings 

of our initial analysis in an independent RNA-Seq data set generated from a distinct tissue 

source. To do this, we used 162 blood samples from the GTEx project45, for whom we had 

DNA genotypes as well as raw count data from RNA-Seq. In these data, four samples (2.5% of 

total) were identified as PC Outliers, using the same criteria as was used in the brain data. 

Sample outlier removal led to a slight decrease in the number of eQTLs detected (29.6% 

versus 28.3% at p<0.05); however, there was an increase in π1 (0.374 to 0.387 after outlier 

removal) (Figure 2.10 & Table 2.3). Normalizing using CQN again led to an overall increase in 

eQTLs detected (3.5% increase at p<0.05) (Figure 2.10 & Table 2.3). In assessing covariate 

addition, a pattern similar to what was seen in the brain data was observed. While known 

covariates (age, sex, and cohort) in the brain data did not improve the eQTL detection, there 

was a similar improvement seen upon the addition of PCs to account for unknown covariates 

(9.3% increase when compared to the use of no covariates) (Figure 2.10 & Table 2.3). Again, 
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per gene outlier removal does not hamper the ability to detect known eQTLs (Figure 2.10 & 

Table 2.3). 

   

Figure 2.9: QQ Plots for Data Decomposition Methods. 

The deviation from the expected in this QQ-Plot demonstrates inflation in these data, 

with SVA (red) demonstrating the most significant overinflation among the three methods 

of data decomposition. This finding supported using ISVs over SVs in our analyses. 
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Figure 2.10: eQTL replication in blood data. 

Colors correspond to the comparable analyses carried out in the brain data (Figure 2). Again, these data show that CQN (green bars) 
slightly improves eQTL detection over EDASeq (red bars) and that a considerable increase in eQTL detection is seen when unknown 
covariates are considered in the analysis. 
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 2.4 Discussion 
Just as it took more than ten years for the field to reach a consensus on the analysis of 

microarray data, RNA-Seq analysis has been undergoing a similar struggle since the first RNA-

Seq publication. Since then, accurate library preparation, appropriate mapping of short 

sequencing reads, and correct estimation of gene expression values have been the primary 

focus. While many of the original experimental and data analysis hurdles have been 

addressed, a framework in which one can assess the quality control and data adjustment 

measures taken after obtaining accurate gene expression estimates was lacking. For 

experiments with RNA-Seq data, DNA genotypes and a list of tissue-appropriate eQTLs, we 

demonstrate that our approach can be easily employed to generate a clean set of expression 

estimates for downstream analyses (Figure 2.1). Specifically, we propose using the ability to 

replicate eQTLs as a biologically meaningful check on the integrity of the data and to help 

ensure that the data is being handled appropriately at each quality control and data 

adjustment step. 

We demonstrate that upon generating normalized gene expression estimates, PCA can be 

utilized to identify global gene expression sample outliers and that DNA and RNA genotypes 

can be employed to verify sample identity and check for sample contamination. Using the 

replication of known eQTLs, we also demonstrate the importance of including both known 

and unknown covariates in downstream analyses.  This result is consistent with expectation 

68, illustrating the utility of eQTL replication as a simple approach to assess data handling 

measures and offering credence to its usage in additional comparisons. This eQTL replication 

approach was further employed to demonstrate that ISVs are not simply explaining known 

technical artifacts of next-generation sequencing, that gene annotation best replicates 

known biology when UTRs are included in gene annotation, and that we do not overtly lose 

power to detect known eQTLs when reducing the sample size by removing suspect samples.   

Of the data cleaning steps employed, we highlight the importance of removing individuals on 

a per-gene basis, as this is not a standard quality control step.  Indeed, either due to low 

coverage (leading to zero counts) or undetected PCR duplication (leading to an 

overabundance of counts), a sample may exhibit gene expression values vastly different than 

the rest of the samples, and as a result, should be removed from analysis at that particular 
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gene prior to ISV/PC generation. We note that this process is more important when using 

EDASeq than when CQN is used for normalization, as quantile normalization produces fewer 

outlier values. In the brain data set, when EDASeq was employed, 42.5% of genes had at least 

one sample flagged as an outlier (Figure 2.3A), whereas the nature of quantile normalization 

produced outliers in only 20.2% of genes tested. Nevertheless, with both methods, the 

differential gene expression analysis becomes more robust upon the removal of individual 

samples present in the data skewing the results (Figure 2.3B). While these sample-specific 

outlier genes could certainly reflect an insertion-deletion event or reflect another genetic 

variation in these individual samples, our goal is to maximize one’s ability to find eQTLs and 

assess overall data handling measures, and as such, these individuals should be removed 

from analysis. Given that our ability to detect eQTLs is not hampered and that differential 

gene expression analysis demonstrates improved robustness upon per-gene outlier removal, 

we argue that this novel outlier identification approach be incorporated in future RNA-Seq 

expression studies. 

The utilization of two distinct RNA-Seq data sets – one generated from brain (N=64) and 

another independently-generated from blood (N=162) – helps to demonstrate the main 

findings of this work. In both brain and blood data sets, eQTL replication was improved with 

the use of CQN for data normalization and further improved upon the addition of PCs as 

covariates. Further, in both data sets, removing per-gene outliers did not hamper the ability 

to detect known eQTLs. However, there are data handling measures imposed on the data 

that were more important in the brain data set than in the blood data set, likely reflecting the 

fact that the brain data was plagued by a smaller sample size and that the sequencing data 

was generally of overall lower quality due to degradation of the starting material. Reflecting 

the sample size difference, overall replication was higher across the board in the blood data 

set. Further, the degraded nature of the starting brain RNA-Seq material was reflected in the 

need for extensive processing of the sequencing reads due to poor library quality. 

Accordingly, sample outlier removal proved essential in the brain data set, but did not make a 

huge difference in the blood data. While the blood data set was less sensitive to the presence 

of outliers, this work demonstrates that despite the use of a degraded starting product, 

biologically meaningful data was still generated from the brain data and that careful data 
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analysis can augment the information garnered from a limited data set. These distinctions 

between the two independent data sets furthers the point that each RNA-Seq experiment is 

unique and carries its own limitations, but eQTL replication can be used to guide one’s 

analysis pipeline.  

Finally, it is important to note that our eQTL approach was more helpful in some comparisons 

than others. While this approach can greatly help to guide one’s analysis, there will be cases 

where the choice is not so obvious and further steps will need to be taken to assess one’s 

data processing. For example, when comparing the three data decomposition methods (PCA, 

SVA, and ISVA) (Tables 2.2 & 2.3), the answer was unclear, as all methods do a similar job 

accounting for the unknown covariates. Thus, the choice between the methods was based on 

additional criteria with PCs being excluded due to confounding within the first PC between 

sample collection site and disease status and SVs due to their overinflated p-values in 

differential gene expression analysis (Figure 2.9). Additionally, we note that there are several 

caveats to the use of data decomposition methods. First, when dealing with small sample 

sizes, including a large number of covariates can lead to overfitting of the data.  Second, data 

decomposition to account for unknown covariates will minimize the ability to detect global 

differences in gene expression, which may be correlated with one or more of the 

eigenvectors (e.g. comparisons across tissues would by necessity not incorporate PCs). In 

addition to this approach not being applicable for all comparisons, we note that RNA-Seq 

remains an imperfect measure of gene expression. Technical and analytical limitations 

remain. Cell type heterogeneity and the need for cDNA generation currently result in 

unavoidable biases in data generation. While single cell RNA-Seq and direct RNA sequencing 

methods will address these issues, any improvement that further reduces bias in library 

construction will lead to more accurate gene estimate values, allowing for further protocol 

improvement. Additionally, improvements in mapping algorithms, normalization procedures, 

and gene estimate quantification will also aid in reproducibility.  

2.5 Conclusion 
In recent years, RNA-Sequencing (RNA-Seq) experiments have moved the forefront of the 

transcriptomics field to become the gold standard approach for the study of genome-wide 

gene expression. While this period has led to protocols that aim to optimize library 
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preparation and computational methods that aid in improved mapping and accurate gene 

expression estimation, a method to assess downstream data handling approaches was 

lacking. Here, we offer a framework that utilizes DNA genotypes and RNA-Seq data along 

with previously published eQTLs to assess possible sample contamination and assess the 

biological validity of each data analysis step to ultimately enable confident downstream 

analyses. 
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2.6 Tables 
Table 2.1: Sample Information. 

FID  Diagnosis   Sex  Age (y)  Total Mapped Reads  
Reason Removed from 

RNA-Seq Analysis?  
AN16641 Autism M 9          21,584,033    
AN00493 Autism M 27            4,475,274    
AN00764 Autism M 20          14,019,291    
AN08792 Autism M 30            8,226,165  Sample Contamination 
AN08873 Autism M 5          16,702,649  Sample Contamination 
AN19511 Autism M 8          15,225,859    
AN01570 Autism F 18          29,208,145    
AN09730 Autism M 22          28,008,384  Sample Contamination 
AN17777 Autism F 49          27,039,497    
AN12457 Autism F 29          36,768,708    
AN11989 Autism M 30          34,359,536    
AN13872 Autism F 5          35,951,442    
AN17678 Autism M 11          14,071,311    
AN04682 Autism M 15            3,687,486    
AN03632 Autism F 49          44,055,322    
AN09714 Autism M 60          42,351,515    
AN10606 Control M 56          30,737,028  PC Outlier 
AN16665 Control M 36          19,701,091    
AN01357 Control M 42          11,514,063    
AN17425 Control M 16          46,259,333    
AN14368 Control M 22            2,691,397    
AN15566 Control F 32          14,500,662    
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AN13295 Control M 56          39,663,314    
UMB797 Autism M 9          28,573,237    

UMB1349 Autism M 5          24,697,811    
UMB1638 Autism F 20          15,048,023    
UMB4231 Autism M 8          28,320,026    
UMB4721 Autism M 8            8,185,563    
UMB4999 Autism M 20          31,898,006    
AN16641 Autism M 9          21,584,033    
AN00493 Autism M 27            4,475,274    
AN00764 Autism M 20          14,019,291    
AN08792 Autism M 30            8,226,165  Sample Contamination 
AN08873 Autism M 5          16,702,649  Sample Contamination 
AN19511 Autism M 8          15,225,859    
AN01570 Autism F 18          29,208,145    
AN09730 Autism M 22          28,008,384  Sample Contamination 
AN17777 Autism F 49          27,039,497    
AN12457 Autism F 29          36,768,708    
AN11989 Autism M 30          34,359,536    
AN13872 Autism F 5          35,951,442    
AN17678 Autism M 11          14,071,311    
AN04682 Autism M 15            3,687,486    
AN03632 Autism F 49          44,055,322    
AN09714 Autism M 60          42,351,515    
AN10606 Control M 56          30,737,028  PC Outlier 
AN16665 Control M 36          19,701,091    
AN01357 Control M 42          11,514,063    
AN17425 Control M 16          46,259,333    
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AN14368 Control M 22            2,691,397    
AN15566 Control F 32          14,500,662    
AN13295 Control M 56          39,663,314    
UMB797 Autism M 9          28,573,237    

UMB1349 Autism M 5          24,697,811    
UMB1638 Autism F 20          15,048,023    
UMB4231 Autism M 8          28,320,026    
UMB4721 Autism M 8            8,185,563    
UMB4999 Autism M 20          31,898,006    
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Table 2.2: Summary of eQTL replication analyses carried out in brain samples. 

EDASeq 

64 

WG 

No  
  

no covariates 

10.2% 0.000 1.0% 1.412 

60 10.7% 0.062 1.4% 1.462 

57 

17.5% 0.209 3.5% 0.988 

CDS 12.1% 0.114 1.7% 1.137 

CQN 
  

WG 

20.2% 0.217 4.6% 0.968 
known 

covariates 
(age.sex.site) 

19.6% 0.241 5.7% 0.966 

Technical 
Artifacts 

22.6% 0.308 7.8% 0.946 

PCs 26.1% 0.316 10.8% 0.981 

ISVs 25.1% 0.327 10.1% 0.965 

SVs 26.2% 0.290 9.9% 0.960 

PEER 26.9% 0.321 10.0% 0.955 

Yes 

PCs 26.1% 0.316 10.1% 0.972 

ISVs 25.7% 0.303 10.3% 0.952 

PEER 25.7% 0.279 11.5% 0.968 
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Table 2.3: Summary of eQTL replication carried out in GTEx blood samples. 

Normalization 
Method 

Sample 
Size (N) 

Gene 
Annotation 

Per Gene 
Outliers 

Removed? 
Covariates 

% detected 
p<0.05* 

π
1
* % detected 

q<0.05* 
Inflation 

factor (λ)* 

EDASeq 
162 

WG 

No  

no covariates 

29.6% 0.374 17.8% 1.182 

158 

28.3% 0.387 16.9% 1.188 

CQN 

31.8% 0.435 21.9% 1.192 

known 
covariates 

(age.sex.cohort) 
30.3% 0.416 19.1% 1.305 

PCs 
41.1% 0.550 29.7% 1.297 

Yes 
40.5% 0.550 29.9% 1.268 

PEER 41.1% 0.550 32.3% 1.269 
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Table 2.4: Technical Artifacts are correlated with Independent Surrogate Variables.  

Coefficients greater than 0.45 are bold for emphasis. 

Technical 
Artifact 

Correlation Coefficient (r) 
ISV1 ISV2 ISV3 ISV4 ISV5 ISV6 ISV7 ISV8 

percent 
coding 
bases  

0.34 -0.28 0.41 0.78 -0.36 -0.54 -0.51 0.5 

percent 
intronic 

bases 
-0.03 0.38 -0.55 -0.66 0.61 0.59 0.23 -0.56 

percent 
mRNA 
bases 

0.41 -0.25 0.45 0.48 -0.61 -0.63 -0.22 0.46 

median 3’ 
bias 

-0.19 0.18 -0.25 -0.79 0.09 0.31 0.57 -0.32 

percent 
UTR bases 

0.19 0 0.15 -0.34 -0.48 -0.24 0.39 0.02 

AT 
dropout 

0.64 -0.14 0.05 0.19 -0.03 -0.26 -0.74 0.18 
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CHAPTER 3: Transcriptome Analysis Reveals Deregulation of Innate 

Immune Response Genes and Neuronal Activity-Dependent Genes 

in Autism 

3.1 Introduction 
Recent studies to elucidate the molecular basis of autism have largely focused on genetic 

approaches, including both genome-wide association studies17 and whole-exome 

sequencing11–14, to identify both inherited and de novo variation contributing to autism.  A 

major mode of action for genetic variation is through altered gene expression, so direct 

analysis of gene expression in a disease-relevant tissue is a complementary approach to 

genetic studies. Despite the extreme genetic heterogeneity observed in autism, it is possible 

that common downstream mechanisms may be altered20. Thus, there has been an effort to 

use transcriptomics to identify and dissect molecular pathways that may be altered in ASD.  

Given low tissue sample availability in autism research, efforts have focused on assessing 

gene expression in lymphoblastoid cell lines or whole blood26–30. However, given the core 

neurodevelopment phenotypes associated with autism, there is little doubt that direct 

assessment of gene expression in brains may be critical.  Indeed, Voineagu et. al recently 

utilized co-expressed gene networks from RNA-Sequencing (RNA-Seq) carried out in 19 

autism brains and 17 controls to identify a set of co-expressed neuronal genes enriched for 

known autism susceptibility genes as well as a set of co-expressed genes enriched for both 

immune genes and glial markers20. 

In the current study, we present results from the largest RNA sequencing of autism brains 

effort to date that allows for new insights into the etiology of autism. We find clear 

differences in the transcriptome between control and ASD cortical brains. Using co-

expression network analysis, we demonstrate that autism brains are specifically enriched for 

“activated” M2 microglial and “immune response” genes. Remarkably, the M2 microglial 

module is strongly negatively correlated with one of two differentially expressed neuronal 

modules, highlighting the interplay between innate immunity and neuronal activity in the 

etiology of ASD.  



40 
 

3.2 Methods 

3.2.1 Brain tissue samples 

Brain tissue: Frozen brain samples were acquired through the Autism Tissue Program 

(http://www.atpportal.org), with samples originating from two different sites: the Harvard 

Brain Tissue Resource center and the NICHD Brain and Tissue Bank at the University of 

Maryland. Tissue was obtained post-mortem and written informed consent was obtained 

from next-of-kin or a legal guardian. This work was approved by the IRB of The Johns Hopkins 

Hospital and University of Alabama at Birmingham and was conducted in accordance with 

institutional guidelines. The brain samples were dissected to obtain the cerebral cortex 

Brodmann area (BA) 19, anterior prefrontal cortex (BA10) and a part of the frontal cortex 

(BA44). Multiple cortical tissues corresponding to BA19, BA10 and BA44, were sequenced in 

62, 14, and 28 samples, respectively, resulting in a total of 57 (40 unique individuals) control 

and 47 (32 unique individuals) autism samples. The average age at time of death of the 40 

control and 32 autism individuals was similar (cases median age = 20 yrs, controls median age 

= 17 yrs), and there was no significant difference in cause of death between the two groups. 

Table 3.1 contains the details of the corresponding subject phenotypes and additional 

characteristics. 

3.2.2 RNA library preparation and RNA sequencing  

RNA-Seq libraries were prepared from 50 μg of total RNA from postmortem brain tissue 

extracted with Trizol reagent according to manufacturer’s protocol (Invitrogen). The TruSeq 

RNAseq kit (Illumina) was used with minor modifications as follows. Total RNA pools were 

subjected to two rounds of hybridization and elution with oligo(dT) dynabeads (Invitrogen) to 

obtain purified polyadenylated (polyA) RNA. After mRNA selection, samples were randomly 

fragmented to minimize bias at the 3’ end of the transcript. First-strand cDNA synthesis was 

performed using random primers (Illumina) and SuperScriptII Reverse-Transcriptase 

(Invitrogen) followed by second strand cDNA synthesis using RNaseH and DNA polymerase I 

(Illumina). Illumina supplied adaptors (TruSeq kit) were ligated to the purified, end-repaired 

and 3' adenylated cDNA, and we performed manual 200 bp size-selection of the final product 

by gel-excision. The 200 bp cDNA template molecules were then amplified by PCR to create 

the final library. Quality control measures during library amplification included PCR from 

reactions with no template, from libraries made with no ligase (hence no adaptors), and 
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finally from libraries with no adaptor oligonucleotides included in the ligase reaction. In these 

cases, the library failed to amplify, thereby ensuring specificity of the expected product for 

each run. Each library was evaluated for uniformity on a 2100 Bioanalyzer (Agilent) prior to 

sequencing on a single lane of Illumina's HiSeq 2000 to produce 100 base pair (bp) single-end 

reads. Each sequencing run included samples randomized by sex, collection site, and case-

control status. 

3.2.3 Mapping and gene summarization of data from RNA-Seq  

The sequenced reads for each sample were obtained as fastq files for 110 samples. To 

improve mapping, reads were trimmed to remove stretches of terminal A’s or T’s (N=3-12) 

and contaminating adaptor sequences using a Python script, cutadapt (v1.2.1)71. The 

sequenced reads were mapped using Tophat255,72. Only uniquely mapped reads with a 

maximum of 3 mismatches were used to estimate gene counts. The RNA-Seq reads were 

mapped to a set of sequences derived from the Genome Reference Consortium Human build 

37 (GRCh37) assembly, recommended by the 1000 Genomes Project73. Gene expression 

estimates were made for approximately 48,260 of the total 62,069 reported Ensembl gene 

annotations (GRCh37 or Human release 70), recommended by Kim et al.72, using the python 

script ‘HTSeq-count’ (model type - intersection strict, http://www-

huber.embl.de/users/anders/HTSeq/)74.  

3.2.4 Normalization of gene estimates 

Subsequent to mapping, the gene count data was normalized for within and between lane 

biases (e.g. GC content) and sequencing depth by methods implemented in Conditional 

Quantile Normalization  (CQN)67 and Exploratory Data Analysis and Normalization for RNA-

Seq (EDASeq)56, using the default settings for each method. We present the EDASeq-

normalized data, and for a detailed discussion about the differences between EDASeq and 

CQN, see Ellis et al.75. 

We assessed summarized values on a per-gene basis, removing gene estimates for samples 

whose gene expression values were more than three standard deviations (SD) from the mean 

expression of each gene (per-gene outlier), as these outliers are artefactual in origin75.  

3.2.5 Quality assessment 

Picard (http://picard.sourceforge.net, v1.87) command-line tools ‘CollectRnaSeqMetrics’ and 

‘CollectGcBiasMetrics’ were used to provide RNA-Seq summary statistics. Six samples with 
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low gene coverage (> 20% of the 48,260 genes had zero coverage) were dropped from all 

downstream analyses, resulting in 104 samples. In addition, to detect global sample outliers 

due to technical or biological reasons, we used principal component analysis (PCA) and 

identified a subset of 2,582 genes with at least 10 reads per sample using the 'prcomp' 

function in the stats package in R (http://www.R-project.org/). All 104 samples were within 

three SD of the mean of the first six principal components, which together explained ~55% of 

the variance75.  

3.2.6 Single gene differential expression analysis  

After normalization and outlier removal, independent surrogate variables (ISVs)51 were 

generated on a subset of 2,500 genes with at least 10 read coverage in each sample. Data 

decomposition was performed on the log2 scale for the 2,500 genes. ISVs were generated 

while protecting for case-control status using the ‘isvaFn’ function in the ‘isva’ package in R. 

Differential gene analysis was performed using a subset of 13,262 genes that had at least 3 

reads per sample across 90% of the samples.  

 A linear mixed regression framework was utilized to identify differential gene expression 

between 57 controls and 47 cases. To remove unwanted sources of variation while 

protecting differences due to the primary variable of interest (case-control status), site of 

sample collection, age, sex, brain region and ISVs were included as fixed effects. . 

Additionally, the model included a random intercept term to account for the correlation of 

gene expression estimated from multiple brain regions obtained from the same individual.  

Permutation testing was used to estimate the threshold for transcriptome-wide significant 

differential expression (EDASeq, 400 permutations, P = 4.76 x 17). We reiterate that the 

samples were obtained from two collection sites, and to estimate the threshold for 

transcriptome-wide significant differential expression, we permutated the case-control status 

within each site, maintaining the same phenotype for multiple samples (i.e. brain regions) 

derived from a single individual.   

We assessed the possibility of confounding in the expression of the two differentially 

expressed genes by investigating the expression stratified by sample collection site (Figure 

3.1a,d). The sequencing coverage of MAL was calculated across the 4 exons and for 21 exons 

for C11orf30 using ‘coverageBed’ from bedtools76 (Figure 3.1b,e). We also investigated for 

the expression of MAL and C11orf30 during development and across different brain regions 
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from Brainspan (http://hbatlas.org/pages/hbtd). 
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Figure 3.1: Transcriptome-wide top hits. 
(a,d) Expression levels of MAL (a) and C11orf30 (d) in controls (grey) and cases (red) stratified by collection site demonstrate that the 
association with autism is consistent across collections sites. (b,e) A continuous plot with the coverage on a scale of 0-1 in all the 57 
controls (grey) and 47 cases (red) across the 4 exons for MAL (b) and 21 exons for C11orf 30 (e). (c,f) Expression of MAL (c) and 
C11orf30 (f) through human brain development from post-conception week (PCW) 4 to 82 years (age on the x-axis and log2 expression 

of the gene across the different regions of the brain on the y-axis). The expression of MAL increases after birth in all brain regions, 
whereas C11orf30 decreases after birth in all brain regions other than the amygdala (data from brainspan, http://www.brainspan.org).  
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3.2.7 Single exon differential expression analysis  

Exon-level estimates were obtained using the ‘count.py’ script from DEXSeq77 for each of the 

104 samples. Exons with more than three reads across 90 percent of all samples were 

included for analysis. These 21,310 exons were modeled utilizing a linear mixed regression 

framework to identify differential exon usage between the 57 controls and 47 cases. Site of 

sample collection, age, sex, brain region and ISVs (generated from the single gene-level 

analysis) were included as covariates to account for unknown confounding factors as fixed 

effects. Additionally, the model included a random intercept term to account for the 

correlation of gene expression estimated from multiple brain regions obtained from the 

same individual.  

3.2.8 Single gene - Gene Ontology and pathway enrichment analysis 

To determine a common functional relationship among the top differentially expressed genes 

we tested for the enrichment of biological processes using Gene Ontology annotations 

(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz). The number of genes differentially 

expressed at P < 0.05, P < 0.01, P < 0.001 and P < 0.0001 were 1,964, 749, 185 and 50 

respectively. For each P value cutoff, we generated 2,000 random gene sets of equal size 

(e.g. 1,964 for P < 0.05) and performed the same enrichment analysis as on the original 

dataset. Minimum P values for each enrichment analysis were stored. The 0.05 family-wise 

error rate (FWER) was then calculated to estimate false positives by setting the 100th (out of 

2,000) best P value as the threshold for a true discovery.  

We also used an alternate method for pathway enrichment analysis for the identification of 

common functional categories represented by GO and curated gene sets. The pathways 

include all the pathways in GO and curated gene sets, which can be downloaded from 

MsigDB (http://www.broadinstitute.org/gsea/msigdb/collections.jsp#C1). The P value of each 

gene was determined from a linear mixed model. We then mapped these P values to non-

negative z-scores(z_i), where Pr(z>{z-score_{gene}}) = { P value_{gene}}/2.0 (Equation 1), 

assuming the P values were two-tailed. Then for each pathway, we calculated the P value for 

a one-sided t-test of z_i in the pathway ≥. z_i not in the pathway. We refer to this as the 

“pathway enrichment test”. 

To account for false positives, we first generated 100 sets of balanced permutations, where 

for each permutation, the permuted case and control groups contain equal number of case 

http://www.broadinstitute.org/gsea/msigdb/collections.jsp#C1
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and control samples from the original data set. Then, for each permuted dataset, we did the 

same gene set enrichment test as we did with the original data and stored the P values for 

each pathway in each permuted dataset. We then extract the best P value for each 

permutation, ranked them, and set the 5th best P value as the threshold for a true discovery. 

This gives us a 0.05 FWER.  

We also tested whether the genes associated with the risk of autism and intellectual 

disability (ID) were differentially expressed.  Gene lists are in Table 3.2, and details on the 

gene lists are provided below. The enrichment of the gene sets categories in the differentially 

expressed genes was tested based on the hypergeometric distribution model. Four lists of 

differentially expressed genes at P values < 0.001, < 0.005, < 0.01 and < 0.05, with 185, 494, 

749 and 1,964 genes, respectively, were generated. The percentage of genes in each gene-

set and P value corresponding to FWER = 0.05 are tabulated in Table 3.3. We performed the 

“pathway enrichment test” using Equation 1 that does not rely upon defining a differentially 

expressed set of genes, broadly looking for differential expression (without a P value cut-off) 

among genetically associated genes (Table 3.4). We obtained the P values at FWER < 0.05 

(100 permutations) as described above.  

3.2.9 Artifact corrected dataset 

For the single gene differential expression analysis we used the ISVs to correct for both 

technical and biological confounders in the expression data. For the differential co-

expression analysis, we identified various sequencing artifacts, computed by Picard 

command-line tools, which were largely confounding the expression data on the EDASeq-

normalized genes (Table 3.5). The correlations between the various sequencing artifacts are 

provided in Table 3.6.  We used a multivariate linear regression model to correct the gene 

expression estimates of sequencing artifacts (SA), collection site (CS), sex (S), age (A), and 

brain region (BR), yielding an artifact corrected (AC) dataset. The sequencing artifacts used in 

the model were ‘percent coding bases’, ‘percent utr bases’, ‘percent intronic bases’, ‘percent 

intergenic bases’, ‘median CV coverage’, ‘median 5’ to 3’ bias’, ‘aligned reads’ and ‘AT 

dropout’. The correction formula was (Equation 2) as follows assuming we are correcting for 

only two sequencing artifacts: 

𝐴𝐶 = 𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 − (𝛽𝑆𝐴1 ∗ (𝑆𝐴1 − 𝑚𝑒𝑎𝑛(𝑆𝐴1))) −  (𝛽𝑆𝐴2 ∗ (𝑆𝐴2 −
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𝑚𝑒𝑎𝑛(𝑆𝐴2))) − (𝛽𝐴 ∗ (𝐴 − 𝑚𝑒𝑎𝑛𝐴))) − (𝛽𝐶𝑆 ∗ 𝐶𝑆) − (𝛽𝑆 ∗ 𝑆) − (𝛽𝐵𝑅19 ∗ 𝐵𝑅19) −

 (𝛽𝐵𝑅10 ∗ 𝐵𝑅10) − (𝛽𝐵𝑅44 ∗ 𝐵𝑅44)                                               

 Equation 2 

3.2.10 Combined co-expression analysis  

We investigated the entire AC dataset to obtain gene sets or modules that were differentially 

co-expressed between autism cases and control brains using weighted gene correlation 

network analysis (WGCNA)78.  We used WGCNA’s “signed” co-expression measure to 

construct the interconnected gene modules to track the sign of the co-expression 

information78. Pearson's correlations were calculated between 13,443 genes in the 104 

samples. The WGCNA method transforms the correlation values to an adjacency matrix using 

a power function. This power function is selected based on a fit to scale-free topology, and a 

threshold of 9 (scale-free R2 of 0.7) was chosen in this study. This power function weights the 

network by transforming the pair-wise correlation values and computing pairwise topological 

overlap (TO) between genes78. TO is a measure of connection strength between genes. 

Genes with high TO are clustered into co-expression modules. Each group of interconnected 

genes is co-expressed and the module is represented by the module eigengene (the first 

principal component of the module, ME). The connectivity of every gene in every module is 

represented by correlation to the ME, kME.  In this study, this intramodule strength (kME) 

was ≥ 0.45 for all the modules. 

Once the co-expression modules were created, they were numerically labeled by module 

size, with mod1 denoting the largest module. The co-expression analysis on 13,443 genes 

from the AC data identified 12 modules, with each module being represented by its first 

principal component or eigengene (e.g ME1) for each sample. We tested the association of 

each eigengene with case-control status using a univariate linear mixed regression model, 

with a random intercept term to account for the correlation among multiple samples derived 

from the same individual. No additional variables are included in the analysis, since the 

modules were constructed using the AC data (described above). The multiple test correction 

threshold using the Bonferroni method was 4.0 x 13.  The permutation threshold, P < 2.0 x 13, 

was determined by permuting case-control labels (n = 100 permutations) for the eigengene 



48 
 

values and re-running the regression analysis. The 5th lowest P value was deemed as the 

study-wide empirical threshold for P < 0.05.  

Most of the 13,443 genes were clustered into mutually exclusive co-expressing modules. 

However, 5,075 genes were assigned into the predefined mod0, which is reserved for non-

module genes.  The Pearson’s correlation between modules is shown in Table 3.7, and the 

robustness of correlations was assessed using bootstrap with replacement analysis.  

3.2.11 Stratified co-expression analysis  

We investigated the global similarity in transcriptome organization in the autism case and 

control brains by constructing signed networks for the autism case and control brains 

separately (power function threshold of 9). The construction of the signed networks 

separately for cases and controls identified 18 modules for each. We utilized the module 

preservation statistic Zsummary79, described in the ‘modulePreservation’ R function 

implemented in WGCNA, to assess the overlap in network modules obtained from the autism 

case and control brain datasets. The Zsummary statistic takes into account the overlap in 

module membership, the density (mean connectivity) and connectivity (sum of connections) 

patterns of modules. We adopted the recommended significance thresholds: Zsummary < 2 

implies no evidence for module preservation, 2 > Zsummary < 10 implies weak to moderate 

evidence, and Zsummary > 10 implies strong evidence for module preservation. Using the 

recommended thresholds, we clearly observe that all 18 modules are conserved between the 

case and control brains (Zsummary > 2, Table 3.8).  

3.2.12 Gene Ontology analysis 

We functionally annotated the 12 modules with Gene Ontology (GO) terms. The enrichment 

of the GO terms in each of the 12 modules was evaluated based on the hypergeometric test.  

In order to account for false positives, twelve random modules of the same size were 

generated 2,000 times, the hypergeometic test was carried out, and the 0.05 FWER was 

calculated. We have tabulated the GO Term enrichment for each module at FWER = 0.05 in 

Tables 3.9-3.19.  

3.2.13 Gene list enrichment analysis 

To help provide insight into the interpretation of the gene expression data we compiled gene 

sets that have been either implicated in ASD14  or have been designated as markers for 

specific cell types80–82. The main lists in this study are provided in Table 3.2, along with 
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sources for each list (gene lists are available at www.arkinglab.org/resources). We present 

the enrichment of each module, with significance calculated based on the hypergeometric 

model and implemented in the GeneMerge software package83. To account for false 

positives, the 0.05 FWER was calculated as described above. The enrichment analysis with 

each module’s P value corresponding to FWER = 0.05 are tabulated in Table 3.20.  

3.2.14 Compilation of genetic association genes 

 As previously discussed with the single gene analysis, the genes associated with autism and 

intellectual disability were taken from numerous sources presented in Table 3.2. The genetic 

association is presented as independent but not mutually exclusive lists: 1) 155 genes (ASD 

SFARI 2012) was compiled by Parikshak et. al. and is a manually curated set of candidate 

genes implicated by common variant association, candidate gene studies, genes within ASD-

associated CNV, and, to a lesser extent, syndromic forms of ASD. This list from the Simons 

Foundation Autism Research Initiative Autism (SFARI) AutDB was restricted to genes with 

strong genetic evidence by also filtering by the category S (syndromic) and evidence levels 1-

4 (1 = high confidence, 4 = minimal evidence). The ASD SFARI 2012 list excludes any exome 

sequencing-implicated RDNV genes; 2) 235 genes (ASD SFARI 2014) from the SFARI AutDB 

database84 (accessed July, 2014). The list was restricted to genes with strong genetic 

evidence by filtering by the category S (syndromic) and evidence levels 1-4 (1 = high 

confidence, 4 = minimal evidence).; 3) 197 genes (ASD SFARI 2014 CV) are a subset of the ASD 

SFARI 2014 after removing the 896 genes with rare de novo variant from the 4 whole-exome 

sequencing publications11,12,14,15 ; 4) Pinto et al. 85 compiled a list of 124 genes (ASD [Pinto]) 

that have been implicated in ASD and was updated from a list provided by Betancur in 

201186. All of the 124 genes have also been implicated in ID. Only autosomal (AD) or X-linked 

(XL) genes were included. The genes and loci were included only if there was independent 

evidence from other studies46; 5) 896 rare de novo variants (RDNV) associated with autism 

were compiled by Parikshak et al. from four whole exome sequencing publications 11,12,14,15. 

6) Steinberg et al.87 compiled a list of genes disrupted by de novo nonsense, frameshift, or 

splice-site point mutations in autism probands that were obtained from Iossifov et al.14 (59 

genes; referred to as “I-exomes”) and three other recent studies by Sanders et al.12, O’Roak 

et al.11, and Neale et al.15 (65 genes combined from all three; referred to as “SON-exomes”); 

7) A list of genes disrupted by breakpoints of balanced chromosomal abnormalities (BCAs) 
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observed in individuals with ASD was obtained from Talkowski et al.88 (32 genes; referred to 

as “T-BCAs”). 

3.2.15 Other gene list compilations  

Voineagu et al. identified two co-expression gene modules that were dysregulated in 

postmortem ASD brains, asdM12 (a neuronal module, enriched for ASD associated genes) 

and asdM16 (enriched with astrocyte, activated microglial markers, with functional 

annotation immune response, but no enrichment for ASD associated genes)20.  

Fragile X mental retardation protein (FMRP) and its interacting partners (FMRP interacting), 

implicated with translational regulation of synaptic proteins89 and shown to be enriched with 

diverse class of ASD variants90. Additionally, Steinberg et al.87 demonstrated that the 832 

FMRP interacting partners, particularly in two modules (represented as FMRP 1 and FMRP 2), 

exhibit differential temporal expression: genes in FMRP 1 tend to be specifically upregulated 

during fetal development, whereas genes in FMRP 2 were generally upregulated in 

adolescence and adulthood. Numerous cell type markers were tested, as presented in Table 

3.2 and Table 3.20. Finally, Uddin et al. identified 3,955 exons mapping to 1,744 genes with 

high expression in the brain and a low burden of rare mutations, and designate these as 

‘brain-critical exons’91. 

3.3 Results 

3.3.1 Sample Summary 

Transcriptomes from 104 human brain cortical tissue samples were resolved using next 

generation RNA sequencing technology at single gene resolution and through co-expressing 

gene clusters or modules. Multiple cortical tissues corresponding to Brodmann Area 19 

(BA19), Brodmann Area 10 (BA10) and Brodmann Area 44 (BA44) were sequenced in 62, 14, 

and 28 samples, respectively, resulting in a total of 57 (40 unique individuals) control and 47 

(32 unique individuals) autism samples (Table 3.1  and see75).  

3.3.2 Differential Gene Expression Analysis 

Differential gene expression was estimated between the 57 controls and 47 cases, with 

sample collection site, age, sex, brain region and independent surrogate variables (ISVs) as 

fixed effects in a linear mixed regression model. In total, 13,262 genes with at least 3 reads 

per sample across 90% of the samples were tested, and two transcriptome-wide significant 

differentially expressed genes associated with autism were identified (Figure 3.2a).  
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The most significant differentially expressed gene was Myelin And Lymphocyte Protein (MAL) 

(P = 2.16 x 17), (Figure 3.2b and Figure 3.1a-c). MAL, along with other myelination genes, has 

previously been reported to show altered expression in patients with psychiatric disorders92. 

The second differentially expressed gene was C11orf30 (EMSY) (P = 3.29 ×17), (Figure 3.1c 

and Figure 3.2d-f). This gene has been implicated in chromatin modification, DNA repair, and 

transcriptional regulation, and previous GWASs have linked C11orf30 to inflammatory and 

malignant diseases93,94.  We also performed analyses at the exon level, testing 21,310 exons 

for differential exon expression; however, no differences could be identified in autism cases 

and controls after correction for multiple testing. 

Next we asked whether the top differentially expressed genes from the single gene analysis 

shared common pathways or functional categories. We tested for the enrichment of 

biological processes using Gene Ontology (GO) annotations and MsigDB curated gene sets. 

No gene-set enrichment with family-wise error rate (FWER) ≤ 0.05 was observed (Tables 

3.21-3.24).  

For common genetic variation, altered gene expression is a major mode of action95,96. We 

therefore tested whether genes previously associated with autism through genetic analyses 

are enriched for altered gene expression.  To identify genes underlying susceptibility to 

autism, we utilized a list of expertly curated genes developed by the Simons Foundation for 

Autism Research (SFARI)84. In addition to the SFARI list of genes, we also integrated genes 

associated with rare de novo variation (RDNV) and genes involved in intellectual disability (ID) 

compiled from four published whole-exome sequencing studies11,12,14,15 and review articles21 

(Table 3.2). Overall, we find comparable expression of these genes in autism and control 

brain tissue (Table 3.3 and Table 3.4). While these gene lists are not comprehensive and only 

reflect the current understanding of the genetic basis of autism, the lack of enrichment for 

genes known to harbor genetic signal for autism in altered gene expression suggests the 

potential for non-overlapping mechanisms between genetic and transcriptomic determinants 

of autism.  However, we do find modest enrichment for a broader set of genes containing 

‘brain-critical exons’, which have high gene expression in brain and low rare burden of rare 

mutations, and have been proposed to represent autism candidate genes91 (Table 3.3).   
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Figure 3.2: Single-gene expression analysis identifies two transcriptome-wide significantly differentially expressed genes between autism 
brains and control brains.  
(a) Manhattan plot for 13,262 expressed genes. The threshold for transcriptome-wide significance was calculated based on 400 
permutations (P < 4.76 x 10-7) and is indicated by the dotted gray line. (b, c) Boxplot of gene expression in 57 controls (gray) and 47 
cases (red), indicating a 1.2-fold increase for MAL, and a 0.6-fold decrease for C11orf30 in cases relative to controls. 
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Figure 3.3: Weighted gene correlation network analysis (WGCNA) identifies 12 co-expression modules.  
(a) Dendogram of 12 co-expressed modules, with major cell type/function enrichment noted (Table 3.20 and Tables 3.9-3.19). 
mod12 was not significantly enriched for any cell type or GO terms. (b) Disease association of each module, represented by each 
module’s first principal component (eigengene). Three co-expression modules are associated with autism with nominal significance 
(black), with mod5 significant after multi-test correction (P < 9.64 x 10-4) (Table 3.25).  A positive (+) sign indicates upregulated gene 
expression in autism cases. (c-f) Enrichment analysis for gene lists compiled from the literature (Table 3.2 and Table 3.20). (c) 
Individual dysregulated co-expression modules in autism brains are captured by multiple co-expression modules in the current 
study, allowing for refinement of the signal associated with autism. (d) Genes with known common and rare de novo variants 
associated with autism are enriched only for mod2, which does not show differential expression. (e) FMRP targets are enriched in 
neuronal co-expression modules. (f) FMRP targets were split into fetal and adult/adolescent expression patterns, and are captured 
by different co-expression modules. Red, P < 0.05; grey, P > 0.05.  
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3.3.3 Pathway and Functional Enrichment Analyses 

In addition to the single gene analyses, we applied weighted gene correlation network 

analysis93 (WGCNA) to identify discrete gene modules based on co-expression between 

genes. Considerable overlap was observed in the modules constructed separately from cases 

and controls, indicating that overall organization of transcript co-expression is conserved 

between autism and control brains.  Therefore, we applied WGCNA to construct networks 

derived from the entire dataset of 104 samples, adjusted for sequencing artifacts, age, sex, 

collection site, and brain region, identifying 12 co-expressed modules. We tested the 

association of each module, represented by its corresponding first principal component or 

module eigengene (ME), with case-control status using a linear mixed regression framework 

(Table 3.25 and Figure 3.3b). Three of the twelve modules were differentially co-expressed (P 

< 0.005), with mod5 (P = 9.64 x 14) exceeding the multi-test correction threshold (Ppermutated < 

0.002, PBonferroni < 0.004) (Figure 3.4a,b). Mod5 comprised 759 genes (Figure 3.3a) with 

enrichment for M2-microglial cell states (Phypergeometric = 1.22 x 139) (Table 3.20 and Figure 3.4c) 

and the GO term ‘Type I Interferon pathway’ (Phypergeometric = 1.19 x 120) (Table 3.13 and Figure 

3.4d). Type I Interferon responses in the brain are classically attributed to viral infections that 

can produce M1 activation states in microglia97. Accordingly, mod5 also shows enrichment 

for GO terms “defense response to virus” (Phypergeometric = 6.83 x 117) and “cytokine-mediated 

signaling pathway” (Phypergeometric = 6.31 x 116) (Table 3.13). In opposition to M1 activated 

microglia, M2 responses are responsible for mediating anti-inflammatory remediation 

responses to damage caused by viral infections. M2 microglial cells also secrete BDNF, 

increase the production of neural progenitor cells (NPC), and promote myelination98–100. 

These data provide support for a mechanistic connection for viral-infection hypotheses101 for 

autism with neural over-growth hypotheses102 through the novel identification of 

exaggerated M2 activation states in autism brain tissue.         
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Figure 3.4: Gene co-expression module mod5 is associated with autism.  
(a) The module eigengene (ME) of mod5 is upregulated in autism cases (red) compared to controls (black). (b) Heatmap of mod5 
co-expression for 759 genes, stratified by disease status, showing greater co-expression between cases (bottom left) compared to 
controls (upper right). (c) mod5 is significantly enriched for genes associated with M2-microglial cell states (Table 3.20).  (d) mod5 is 
significantly enriched for GO terms related to immune response (Table 3.13). 
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Voineagu et al. previously reported a co-expression module dysregulated in autism brains, 

termed asdM16, enriched in astrocytes and microglia-expressed genes20. To better 

understand the functional implications of asdM16 in autism, we looked for asdM16 signal 

enrichment amongst the modules generated utilizing our substantially larger data set (Table 

3.20 and Figure 3.3b). Two modules—mod5 (Phypergeometric = 9.3 x 159, described above) and 

mod7 (Phypergeometric = 1.45 x 189)—were enriched for asdM16 signal. However, mod7 is not 

differentially expressed with respect to autism (Table 3.25 and Figure 3.3b) and accounts for 

the astrocyte markers (Phypergeometric = 1.65 x 175) (Table 3.20), while mod5 is differentially 

expressed (P = 9.64 x 14). By substantially increasing the sample size and number of genes 

evaluated, we are able to accurately pinpoint the relevant signal from the previously-

reported asdM16 module as coming from M2-state microglial cells and immunogenic 

responses (type I interferon responses) (Table 3.13 and Figure 3.4d), and not from astrocytes. 

To our knowledge, M2 activation state responses have not previously been attributed to the 

pathogenesis of autism.   

We also identified three distinct modules (mod1, mod2, and mod6) (Figure 3.5b-d) enriched 

for neuronal markers that contain genes with the shared GO term, ‘synaptic transmission’, all 

of which showed enrichment for an additional co-expression module reported to be 

dysregulated in autism, asdM12 (Tables 3.9, 3.10, 3.14, 3.20 and Figure 3.3c). Two of the 

three modules—mod1, down-regulated in autism, and mod6, up-regulated in autism—were 

nominally differentially co-expressed between the autism and control brain samples (P < 

0.005) (Table 3.25 and Figure 3.3b). mod1 contains synaptic transmission genes enriched in 

GABA-related ion channel activity, whereas mod6 contains genes enriched in peptide and 

hormone signaling (Figure 3.6).  

Previous studies have identified an enrichment of genetic association signals in genes 

selectively expressed in neurons20,85,91,103. Here, we find that mod2 was enriched for both 

common (Phypergeometric = 2.49 x 106) and rare classes of autism genetic variants (Phypergeometric = 

4.29 x 14) but comparably expressed between cases and controls (Table 3.20, Table 3.25, and 

Figure 3.3d). That neuronal genes genetically associated with autism do not appear to have 

altered expression (mod2), coupled with the observation that neuronal genes without 

genetic signal do appear to be differentially expressed (mod1 and mod6), suggests that 

autism-associated differentially expressed genes are separable from genetic determinants of 
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autism. Corroborating this idea, a recent study of gene networks in coronary artery disease 

has shown that genes at the center of the networks, referred to as ‘key drivers’, were largely 

not GWAS signal genes, suggesting that key regulatory genes may not harbor common 

inherited variation due to natural selection104. 

Direct evidence for the role of Fragile X mental retardation protein (FMRP) in autism has 

been provided by Darnell et al. These authors reported that many of the protein interacting 

partners of FMRP harbor autism-spectrum disease (ASD)-associated common variants89.  

Similarly, Iossifov and colleagues reported an enrichment of ASD RDNVs in FMRP targets14.  

We therefore investigated whether FMRP targets were enriched in any of the co-expression 

modules detected in autism brain tissue. We report a 20% enrichment of FMRP targets in 

one of the differentially co-expressed neuronal modules, mod1 (Phypergeometric = 1.80 x 110), 

and the non-differentially co-expressed neuronal module, mod2, which showed a 

substantially stronger enrichment of 39% of FMRP targets (Phypergeometric = 7.38 x 1110) (Table 

3.20 and Figure 3.3e).  

Recently, Steinberg et al. organized the FMRP target genes into distinct temporally expressed 

subpopulations affected by different classes of genetic variation associated with ASD87. Based 

on this classification, we found that mod1 was enriched for FMRP targets expressed in the 

synapse during adolescence and adulthood (Phypergeometric = 4.66 x 14), while mod2 was 

enriched for the FMRP targets in the modules that were expressed during fetal development 

(Phypergeometric = 3.32 x 14) (Table 3.20 and Figure 3.3f). Thus, we again find evidence that the 

genetic signal is stronger in the non-differentially expressed module (mod2), with a 2-fold 

enrichment for FMRP targets compared to the differentially expressed mod6, while no 

enrichment was observed for mod1.  Incorporating the temporal data leads to a hypothesis 

that one important mechanism of action at the neuronal level is that primary mutations may 

occur in genes important in fetal development (captured by mod2), and altered expression of 

those genes would not be captured in the current study, where the youngest individual was 2 

years of age. These mutations may lead to developmental changes reflected in adolescent 

and adult expressed genes showing differential expression between cases and controls 

(mod1 and mod6).  



58 
 

 

 
Figure 3.5: Visualization of the (a) mod5, (b) mod1, (c) mod2, and (d) mod6 modules.  
The top 150 connections for each module are represented as nodes. Genes with the highest correlation with the module eigengene 
value are represented by large node sizes.  
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Figure 3.6: ‘Synaptic Transmission’ GO genes in mod1, mod2 and mod6.  
(a) Categorical assignments of genes within the ‘Synaptic Transmission’ GO term of mod1, mod2 and mod6. (b) Enrichment of ion 
channel activity (GABA-related) in mod1. (c) Enrichment of synaptic and glutamate receptor signaling in mod2. (d) Enrichment in 
peptide and hormone signaling in mod6. mod1 is down-regulated in autism, mod2 and mod6 are upregulated in autism (Table 3.25 
and Fig. 3.3).     



60 
 

3.4 Conclusions 
In this study we provide transcriptomic evidence for type-I interferon and M2-activation state 

abnormalities in autism that may lead to a variety of pathologic and phenotypic 

consequences. We further note that there is a strong negative correlation between two 

differentially co-expressed modules, mod5 (activated M2-state microglia genes) and mod1 

(synaptic transmission genes) (r = -0.92, Table 3.7). Recently, microglia have been identified 

as cells capable of restoring neural function in the ASD-model MECP2 knockout mice 105. We 

observe, for the first time, that M2-activation state microglia genes, in particular, are altered 

in autism, potentially driven by type I interferon responses. This process may drive changes in 

NPC proliferation and connectivity with resultant altered activity-dependent neural 

expression profiles in post-natal development 106,107. The linkage of this pathway to autism 

may lead to more accurate and predictive models of idiopathic disease that might contribute 

to the identification of effective therapeutic approaches.    
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3.5 Tables 
Table 3.1: Sample information 

Brain 
Number 

Old 
Brain 

Bank ID 

Sample 
Code 

Site Diagnosis Sex Age Ethnicity PMI 
(hrs) 

Sample 
Excluded 

1 B-4925 AN16641 Harvard Autism Male 9 W 27   

2 B-5000 AN00493 Harvard Autism Male 27 W 8.3   

3 B-5144 AN00764 Harvard Autism Male 20 W 23.7   

4 B-5173 AN08792 Harvard Autism Male 30 W 20.3   

6 B-5505 AN01227 Harvard Autism Male 82 W 24.67   

7 B-5562 AN14613 Harvard Autism Male 39 W 22.75   

8 B-5569 AN08873 Harvard Autism Male 5 W 25.5   

9 B-5666 AN19511 Harvard Autism Male 8 W 22.2   

11 B-6184 AN01570 Harvard Autism Female 18 W 6.75   

12 B-6294 AN17138 Harvard 15qdup Male 16 A NA YES 

13 B-6337 AN09730 Harvard Autism Male 22 W 25   

14 B-6399 AN03345 Harvard Autism Male 2 W 4   

15 B-6469 AN17777 Harvard Autism Female 49 NA 16.33   

16 B-6640 AN12457 Harvard Autism Female 29 W 17.83   

17 B-6677 AN11989 Harvard Autism Male 30 W 16.06   

19 B-6756 AN07591 Harvard Seizures Male 16 NA 22 YES 

21 B-6856 AN14829 Harvard 15qdup Female 26 NA 28.67 YES 

22 B-6994 AN08166 Harvard Autism Male 28 NA 43.25   

23 B-7002 AN13872 Harvard Autism Female 5 NA 33   

24 B-7014 AN09402 Harvard 15qdup Male 11 W 10.5 YES 

25 B-7078 AN17678 Harvard Autism Male 11 W NA   

26 B-7079 AN04682 Harvard Autism Male 15 NA 23.23   

27 B-7085 AN03632 Harvard Autism Female 49 NA 21.08   
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28 B-7090 AN09714 Harvard Autism Male 60 NA 26.5   

29 B-7109 AN17254 Harvard Autism Male 51 NA 22.16   

30 B-4756 AN10606 Harvard control Male 56 NA 23 YES 

31 B-4786 AN16665 Harvard control Male 36 W 20   

32 B-4981 AN01357 Harvard control Male 42 W 18.33   

33 B-5386 AN02583 Harvard control Male 68 NA 16.58   

34 B-5813 AN01410 Harvard control Male 41 NA 27.17   

35 B-6004 AN15240 Harvard control Female 36 NA 18.08   

36 B-6076 AN08677 Harvard control Male 38 NA 25.47   

37 B-6078 AN07176 Harvard control Male 21 NA 29.91   

38 B-6207 AN17425 Harvard control Male 16 NA 26.16   

39 B-6221 AN14368 Harvard control Male 22 NA 24.2   

40 B-6316 AN15566 Harvard control Female 32 NA 28.92   

41 B-6860 AN13295 Harvard control Male 56 NA 22.12   

42 797 UMB797 Maryland Autism Male 9 W 13   

43 1182 UMB1182 Maryland Autism Female 9 AA 24 YES 

44 1349 UMB1349 Maryland Autism Male 5 W 39   

45 1638 UMB1638 Maryland Autism Female 20 W 50   

46 4231 UMB4231 Maryland Autism Male 8 AA 12   

47 4721 UMB4721 Maryland Autism Male 8 AA 16   

48 4849 UMB4849 Maryland Autism Male 7 AA 20   

49 4899 UMB4899 Maryland Autism Male 14 W 9 YES 

50 4999 UMB4999 Maryland Autism Male 20 W 14   

51 4671 UMB4671 Maryland Autism Female 4 AA 13   

52 451 UMB451 Maryland control Male 4 W 15   

53 497 UMB497 Maryland control Male 12 W 16   

54 662 UMB662 Maryland control Female 12 W 18 YES 

55 1185 UMB1185 Maryland control Male 4 W 17   

56 1377 UMB1377 Maryland control Female 5 W 20   
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57 1500 UMB1500 Maryland control Male 6 W 18   

58 1674 UMB1674 Maryland control Male NA NA NA   

60 4670 UMB4670 Maryland control Male 4 W 17   

61 4898 UMB4898 Maryland control Male 7 W 12   

62 1323 UMB1323 Maryland control Male 16 W 25   

63 1409 UMB1409 Maryland control Male 18 W 6   

64 1429 UMB1429 Maryland control Male 18 W 9   

65 1465 UMB1465 Maryland control Male 17 W 4   

66 1322 UMB1322 Maryland control Male 16 W 25   

67 1541 UMB1541 Maryland control Female 20 W 19   

68 1543 UMB1543 Maryland control Male 17 W 22   

69 1571 UMB1571 Maryland control Female 18 W 8   

70 1584 UMB1584 Maryland control Female 18 W 15   

71 1712 UMB1712 Maryland control Male 20 W 8   

72 1790 UMB1790 Maryland control Male 13 W 18   

73 1796 UMB1796 Maryland control Male 16 W 16   

74 1823 UMB1823 Maryland control Male 15 W 18   

75 1841 UMB1841 Maryland control Male 19 W 14   

76 1843 UMB1843 Maryland control Female 15 W 9   

77 1862 UMB1862 Maryland control Male 20 W 6 YES 

78 1908 UMB1908 Maryland control Male 13 W 13   

79 1944 UMB1944 Maryland control Female 16 W 20   

80 4590 UMB4590 Maryland control Male 20 W 19   

81 4591 UMB4591 Maryland control Female 16 W 14   

82 4669 UMB4669 Maryland control Male 16 W 16   

83 4724 UMB4724 Maryland control Female 16 W 15 YES 

84 4727 UMB4727 Maryland control Male 20 W 5   

85 4728 UMB4728 Maryland control Male 17 W 23   

86 AN01093 AN01093 Harvard Autism Male 56 NA 19   
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87 AN03935 AN03935 Harvard 15qdup Male 20 NA 28 YES 

88 AN06420 AN06420 Harvard Autism Male 39 NA 14   

89 AN16115 AN16115 Harvard Autism Female 11 NA 13   
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Table 3.2: Gene Lists 

Gene 
categories 

Source Description 

Neuronal 
Markers 

Cahoy et al.80 Supplementary Table 6 in Cahoy et al.80 

Oligodendro
cyte 

Markers 

Cahoy et al.80 Supplementary Table 5 in Cahoy et al.80 

Astrocyte 
Markers 

Cahoy et al.80 Supplementary Table 4 in Cahoy et al.80 

Type 1 
Microglial 
Markers 

userListEnrichment 
function in WGCNA93 

userListEnrichment is a pre-defined or user-defined collections of brain- and blood-related lists 
curated from the literature part of the WGCNA package. This specific list of cell class genes was 
compiled by Miller et al., 201081  

Type 2 
Microglial 
Markers 

userListEnrichment 
function in WGCNA93 

userListEnrichment is a pre-defined or user-defined collections of brain- and blood-related lists 
curated from the literature part of the WGCNA package. This specific list of cell class genes was 
compiled by Miller et al., 201081 

Ischemia 
Markers 

Nagata et al.90   

Synaptic 
Proteins 

Bayes et al.5 PMID: 21170055 

Postsynaptic 
Density 
(PSD) 

Bayes et al. PMID: 21170055 

ASD SFARI 
2012 

Parikshak et al.21 manually curated list of genes with strong genetic evidence (SFARI category S and evidence levels 
1-4); includes genes harboring CNVs associated with autism, genes implicated by candidate gene 
studies, and syndromic autism genes, excludes RDNV genes 

ASD SFARI 
2014 

(https://gene.sfari.org
/autdb/)84 

  

ASD SFARI (https://gene.sfari.org subset of ASD SFARI 2012 after removing genes with RDNVs 
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2014 CV /autdb)84 

ASD (Pinto) Pinto et al85 (Table 
S6a) 

genes implicated in both ASD and ID  

Rare de 
novo 

Parikshak et al.21 RDNVs associated with autism 

I-exomes Steinberg et al.87 genes disrupted by de novo, nonsense, frameshift, or splice-site point mutations in autism 
probands 

SON-exomes Steinberg et al. 87 genes disrupted by de novo, nonsense, frameshift, or splice-site point mutations in autism 
probands 

AGP Steinberg et al. 87 rare deletion CNVs in 561 autism probands with "strict ASD" 

San Steinberg et al. 87 rare deletion CNVs in 1124 autism probands with "strict ASD" 

asdM12 Voineagu at al.20 a neuronal module, enriched for ASD-associated genes 

asdM16 Voineagu at al. 20 astrocyte and activated microglial maker module, with functional annotation immune response 
but no enrichment for ASD-associated genes 

FMRP 
interacting 

Parikshak et al. 21 original source of this list is Darnell et al.12 

FMRP 1 Steinberg et al. 87 a module upregulated during fetal development obtained after clustering 832 FMRP targets in 
human brain transcriptome (Brainspan) 

FMRP 2 Steinberg et al. 87 a module upregulated during adolescence and adulthood obtained after clustering 832 FMRP 
targets in human brain transcriptome (Brainspan) 

ID 2009 Parikshak et al. 21 intellectual disability genes  

ID (Pinto) Pinto et al85 (Table 
S6c) 

genes implicated in ID, but not yet in ASD 

Brain Critical Uddin et al.91 1,744 genes containing exons with high brain expression and low burden of rare mutations 

T-BCAs Steinberg et al. 87 genes with breakpoints of balanced  abnormalities 
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Table 3.3: Enrichment analysis of 1964, 749, 494 , 185 genes differentially expressed at P < 0.05, P < 0.01, P < 0.005, P < 0.001 , respectively.  

P value and Ratio (number of genes in Study group/Number of genes transcriptome-wide, in parentheses) for each gene set. 
 

Differentially 
expressed genes 

(P value threshold for 
FWER =0.05) 

Number 
of Genes 

ASD 
SFARI 
2012 

ASD 
SFARI 
2014 

ASD 
SFARI   

2014 CV 

ASD      
(Pinto) 

Rare de 
novo 

I-exomes 
SON-

exomes 
AGP San ID 2009 

ID 
(Pinto) 

Brain 
Critical 

T-
BCAs 

Genes differentially 
expressed at P < 0.05 

(1.65e-04) 

1,964 
0.63 

(0.16) 
0.56 

(0.14) 
0.47 

(0.15) 
0.17 

(0.18) 
0.56 

(0.14) 
0.54 

(0.16) 
NA 

0.51 
(0.16) 

0.49 
(0.15) 

0.30 
(0.15) 

0.95 
(0.11) 

0.06 
(0.16) 

NA 

Genes differentially 
expressed at P < 0.01 

(5.94e-04) 

749 
0.10 

(0.08) 
0.13 

(0.07) 
0.06 

(0.09) 
0.32 

(0.06) 
0.46 

(0.05) 
NA NA NA 

0.84 
(0.03) 

0.71 
(0.05) 

0.99 
(0.02) 

1.00E-
03 

(0.07) 
NA 

Genes differentially 
expressed at P < 
0.005 (4.40e-04) 

494 
0.24 

(0.05) 
0.12 

(0.05) 
0.09 

(0.06) 
0.25 

(0.05) 
0.43 

(0.04) 
NA NA NA 

0.64 
(0.03) 

0.60 
(0.03) 

0.99 
(0.009) 

3.00E-
04 

(0.05) 
NA 

Genes differentially 
expressed at P < 
0.001 (3.87e-04) 

185 
0.47 

(0.01) 
0.71 

(0.01) 
0.60 

(0.013) 
0.48 

(0.01) 
0.98 

(0.006) 
NA NA NA NA 

0.75 
(0.01) 

NA 
3.70E-

03 
(0.02) 

NA 

NA indicates that modules contain one or fewer genes in the category being tested. 
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Table 3.4: Gene Set enrichment analysis to evaluate expression at the level of genetically associated genes.  
Reported P values calculated by a one-sided t-test for z in each gene set ≥ z score not in the gene set. The single gene expression P were 
mapped to Z score using equation 1 (see Methods). At FWER < 0.05, P value threshold after 100 permutations was 0.005.   
 

Gene Sets P value 

ASD SFARI 2012 0.68 

ASD SFARI 2014 0.89 

ASD SFARI 2014 CV 0.84 

ASD (Pinto) 0.83 

Rare de novo 0.73 

I-exomes 0.98 

SON-exomes 0.73 

AGP 0.57 

San 0.25 

ID 2009 0.36 

ID (Pinto) 0.01 

Brain Critical 0.99 

T-BCAs 0.63 
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Table 3.5: Correlation (r, spearman correlation) of the ISV with sequencing artifacts.  
Highlighted cells have r +/- > 0.6. 

ISVs 

% 
CODING 
BASES  

% 
UTR 

BASES  

% 
INTRONIC 

BASES  

% 
INTERGENIC 

BASES  

% 
mRNA 
BASES  

% 
USABLE 
BASES  

MEDIAN 
CV 

COVERAGE 

MEDIAN 
5' BIAS 

MEDIAN 
3' BIAS 

MEDIAN 
5' TO 3' 

BIAS 

ALIGNED 
READS 

AT 
DROPOUT 

GC 
DROPOUT 

ISV1 -0.36 -0.01 0.36 0.09 -0.23 -0.23 0.34 -0.38 0.27 -0.38 -0.02 -0.12 -0.02 

ISV2 -0.54 -0.27 0.65 0.21 -0.47 -0.47 0.65 -0.58 0.37 -0.52 -0.26 -0.06 0.17 

ISV3 0.09 0.02 0.02 -0.06 0.06 0.06 0.01 0.09 -0.11 0.11 0.03 -0.07 -0.04 

ISV4 0.49 0.05 -0.48 -0.32 0.46 0.46 -0.28 0.39 -0.37 0.41 0.03 0.17 -0.01 

ISV5 -0.57 0.26 0.33 0.6 -0.62 -0.62 -0.04 -0.33 0.44 -0.4 0.32 -0.76 -0.1 

ISV6 0.51 0 -0.46 -0.51 0.58 0.58 -0.17 0.32 -0.34 0.35 -0.04 0.32 0.11 

ISV7 -0.53 -0.1 0.66 0.14 -0.38 -0.38 0.34 -0.54 0.56 -0.59 -0.1 -0.07 0.08 

ISV8 0.38 -0.69 0.15 -0.35 0.16 0.16 0.32 0.26 -0.55 0.4 -0.62 0.69 -0.02 

ISV9 -0.72 0.06 0.5 0.14 -0.35 -0.35 0.61 -0.85 0.81 -0.89 -0.02 -0.16 0.38 

ISV10 0.15 0.51 -0.22 0.27 -0.07 -0.07 -0.51 0.29 -0.21 0.26 0.49 -0.28 -0.39 

ISV11 -0.4 -0.01 0.36 0.4 -0.46 -0.46 0.1 -0.3 0.26 -0.31 0.03 -0.36 -0.13 
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Table 3.6: Correlation (r, spearman correlation) between the sequencing artifacts metrics.  
The cells highlighted have an r +/- > 0.80. 

 

% CODING 
BASES  

% UTR 
BASES  

% INTRONIC 
BASES  

% INTERGENIC 
BASES  

% 
mRNA 
BASES  

% USABLE 
BASES  

MEDIAN CV 
COVERAGE 

MEDIAN 5' 
BIAS 

MEDIAN 3' 
BIAS 

MEDIAN 5' 
TO 3' BIAS 

ALIGNED 
READS 

AT DROPOUT GC DROPOUT 

% CODING BASES  1 -0.11 -0.64 -0.67 0.83 0.83 -0.36 0.78 -0.88 0.88 -0.2 0.63 -0.18 

% UTR BASES  -0.11 1 -0.12 -0.45 0.39 0.39 0.33 -0.44 0.4 -0.45 0.01 0.14 0.41 

% INTRONIC 
BASES  -0.64 -0.12 1 0.3 -0.64 -0.64 0.49 -0.51 0.54 -0.56 -0.16 -0.21 0.03 

% INTERGENIC 
BASES  -0.67 -0.45 0.3 1 -0.89 -0.89 -0.17 -0.24 0.41 -0.34 0.4 -0.8 -0.25 

% mRNA BASES  0.83 0.39 -0.64 -0.89 1 1 -0.12 0.45 -0.55 0.54 -0.21 0.66 0.11 

% USABLE BASES  0.83 0.39 -0.64 -0.89 1 1 -0.12 0.45 -0.55 0.54 -0.21 0.66 0.11 

MEDIAN CV 
COVERAGE -0.36 0.33 0.49 -0.17 -0.12 -0.12 1 -0.66 0.29 -0.52 -0.51 0.29 0.48 

MEDIAN 5' BIAS 0.78 -0.44 -0.51 -0.24 0.45 0.45 -0.66 1 -0.74 0.94 0.04 0.27 -0.43 

MEDIAN 3' BIAS -0.88 0.4 0.54 0.41 -0.55 -0.55 0.29 -0.74 1 -0.91 0.26 -0.54 0.25 

MEDIAN 5' TO 3' 
BIAS 0.88 -0.45 -0.56 -0.34 0.54 0.54 -0.52 0.94 -0.91 1 -0.11 0.41 -0.35 

ALIGNED READS -0.2 0.01 -0.16 0.4 -0.21 -0.21 -0.51 0.04 0.26 -0.11 1 -0.58 -0.05 

AT DROPOUT 0.63 0.14 -0.21 -0.8 0.66 0.66 0.29 0.27 -0.54 0.41 -0.58 1 0.16 

GC DROPOUT -0.18 0.41 0.03 -0.25 0.11 0.11 0.48 -0.43 0.25 -0.35 -0.05 0.16 1 
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Table 3.7: Correlation between the 12 module eigengenes (ME) in the network 

 

 

 

ME12 ME6 ME2 ME1 ME9 ME8 ME10 ME4 ME3 ME7 ME5 ME11

ME12 1.00 0.10 0.36 0.17 -0.19 -0.11 -0.19 -0.46 -0.04 -0.24 -0.14 -0.12

ME6 0.10 1.00 0.59 0.60 -0.11 0.57 0.54 -0.27 -0.82 -0.42 -0.47 -0.25

ME2 0.36 0.59 1.00 0.71 -0.61 -0.11 -0.10 -0.85 -0.30 -0.50 -0.65 -0.43

ME1 0.17 0.60 0.71 1.00 -0.23 0.26 0.37 -0.49 -0.41 -0.66 -0.92 -0.62

ME9 -0.19 -0.11 -0.61 -0.23 1.00 0.71 0.19 0.49 -0.01 0.21 0.25 0.08

ME8 -0.11 0.57 -0.11 0.26 0.71 1.00 0.54 0.21 -0.60 -0.15 -0.15 -0.15

ME10 -0.19 0.54 -0.10 0.37 0.19 0.54 1.00 0.50 -0.67 -0.21 -0.28 -0.15

ME4 -0.46 -0.27 -0.85 -0.49 0.49 0.21 0.50 1.00 0.00 0.39 0.49 0.37

ME3 -0.04 -0.82 -0.30 -0.41 -0.01 -0.60 -0.67 0.00 1.00 0.28 0.22 0.04

ME7 -0.24 -0.42 -0.50 -0.66 0.21 -0.15 -0.21 0.39 0.28 1.00 0.66 0.27

ME5 -0.14 -0.47 -0.65 -0.92 0.25 -0.15 -0.28 0.49 0.22 0.66 1.00 0.72

ME11 -0.12 -0.25 -0.43 -0.62 0.08 -0.15 -0.15 0.37 0.04 0.27 0.72 1.00
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Table 3.8: Association of co-expression modules with disease status 

Module Module Size Zsummary 

mod7 584 25.0 

mod2 1000 34.4 

mod3 1000 27.3 

mod13 248 4.6 

mod5 622 25.9 

mod11 339 9.9 

mod0 121 6.2 

mod14 140 4.4 

mod15 99 5.9 

mod9 420 13.4 

mod16 233 15.1 

mod8 432 10.2 

mod10 374 19.2 

mod6 602 21.8 

mod17 260 13.9 

mod12 312 13.5 

mod1 1000 30.5 

mod4 1000 19.2 
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Table 3.9: mod1 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 4.80e-05 

GMRG Term Description 
P value 

(hypergeometric 
test) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0007268 synaptic transmission 3.74E-19 0.32 

GO:0008076 voltage-gated potassium channel complex 2.05E-12 0.57 

GO:0030054 cell junction 8.83E-12 0.26 

GO:0030672 synaptic vesicle membrane 1.05E-10 0.55 

GO:0045211 postsynaptic membrane 1.13E-09 0.31 

GO:0030426 growth cone 3.96E-09 0.37 

GO:0005251 delayed rectifier potassium channel activity 9.38E-09 0.63 

GO:0005249 voltage-gated potassium channel activity 8.68E-08 0.56 

GO:0006813 potassium ion transport 1.91E-07 0.40 

GO:0050796 regulation of insulin secretion 2.53E-07 0.38 

GO:0061202 clathrin-sculpted gamma-aminobutyric acid transport vesicle 
membrane 

3.03E-06 0.88 

GO:0071805 potassium ion transmembrane transport 5.36E-06 0.48 

GO:0001975 response to amphetamine 6.67E-06 0.59 

GO:0030425 dendrite 1.13E-05 0.23 

GO:0005886 plasma membrane 1.20E-05 0.15 

GO:0008021 synaptic vesicle 2.60E-05 0.30 

GO:0005516 calmodulin binding 3.79E-05 0.25 
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Table 3.10: mod2 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 6.37e-05. 

GMRG Term Description P value 
(hypergeometric 

test) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0030054 cell junction 4.14E-15 0.25 

GO:0005886 plasma membrane 5.90E-14 0.15 

GO:0007268 synaptic transmission 3.49E-12 0.24 

GO:0045211 postsynaptic membrane 4.74E-12 0.30 

GO:0016021 integral component of membrane 1.02E-10 0.14 

GO:0007411 axon guidance 3.25E-09 0.22 

GO:0030425 dendrite 3.45E-08 0.23 

GO:0043197 dendritic spine 8.76E-08 0.33 

GO:0034220 ion transmembrane transport 3.15E-07 0.27 

GO:0007156 homophilic cell adhesion 1.36E-06 0.31 

GO:0000139 Golgi membrane 1.78E-06 0.18 

GO:0030424 axon 1.96E-06 0.23 

GO:0043005 neuron projection 2.15E-06 0.24 

GO:0048813 dendrite morphogenesis 2.39E-06 0.43 

GO:0035235 ionotropic glutamate receptor signaling pathway 2.56E-06 0.50 

GO:0043025 neuronal cell body 2.60E-06 0.21 

GO:0045202 synapse 4.47E-06 0.24 

GO:0004674 protein serine/threonine kinase activity 6.04E-06 0.19 

GO:0014069 postsynaptic density 9.15E-06 0.26 

GO:0042734 presynaptic membrane 2.57E-05 0.33 

GO:0035249 synaptic transmission, glutamatergic 3.43E-05 0.38 

GO:0070509 calcium ion import 3.75E-05 0.47 
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GO:0007155 cell adhesion 3.80E-05 0.18 

GO:0007626 locomotory behavior 5.28E-05 0.30 

GO:0006112 energy reserve metabolic process 5.33E-05 0.26 

GO:0032320 positive regulation of Ras GTPase activity 6.35E-05 0.50 
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Table 3.11: mod3 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 4.70e-05. 

GMRG Term Description P value 
(hypergeometric) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0016021 integral component of membrane 1.38E-09 0.11 

GO:0005886 plasma membrane 3.13E-09 0.12 

GO:0070062 extracellular vesicular exosome 2.38E-07 0.12 

GO:0042552 myelination 5.62E-06 0.36 

GO:0009986 cell surface 8.67E-06 0.17 

GO:0005887 integral component of plasma membrane 1.72E-05 0.13 

GO:0006897 endocytosis 1.88E-05 0.22 

GO:0016324 apical plasma membrane 3.17E-05 0.20 

GO:0019911 structural constituent of myelin sheath 4.36E-05 1.00 

GO:0042246 tissue regeneration 4.52E-05 0.60 
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Table 3.12: mod4 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 4.69e-05. 

GMRG Term Description 
P value 

(hypergeometric) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0006414 translational elongation 2.65E-78 0.85 

GO:0019083 viral transcription 7.74E-77 0.89 

GO:0006415 translational termination 2.64E-74 0.85 

GO:0003735 structural constituent of ribosome 1.09E-69 0.60 

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 1.20E-67 0.71 

GO:0006413 translational initiation 1.38E-65 0.66 

GO:0019058 viral life cycle 2.50E-62 0.65 

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated 
decay 

9.44E-60 0.64 

GO:0005840 ribosome 1.47E-53 0.55 

GO:0016070 RNA metabolic process 1.19E-51 0.39 

GO:0016071 mRNA metabolic process 1.63E-49 0.40 

GO:0022625 cytosolic large ribosomal subunit 2.72E-42 0.82 

GO:0010467 gene expression 2.78E-35 0.20 

GO:0016032 viral process 3.95E-35 0.23 

GO:0044267 cellular protein metabolic process 7.89E-35 0.24 

GO:0022627 cytosolic small ribosomal subunit 2.19E-34 0.89 

GO:0044822 poly(A) RNA binding 3.45E-23 0.14 

GO:0022904 respiratory electron transport chain 8.22E-21 0.41 

GO:0015935 small ribosomal subunit 3.78E-20 0.77 

GO:0005739 mitochondrion 9.88E-15 0.12 
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GO:0044237 cellular metabolic process 1.53E-14 0.28 

GO:0005829 cytosol 2.11E-14 0.10 

GO:0003723 RNA binding 3.94E-13 0.16 

GO:0005743 mitochondrial inner membrane 1.61E-12 0.18 

GO:0005747 mitochondrial respiratory chain complex I 1.49E-09 0.39 

GO:0004129 cytochrome-c oxidase activity 6.10E-09 0.52 

GO:0008137 NADH dehydrogenase (ubiquinone) activity 6.66E-09 0.39 

GO:0005689 U12-type spliceosomal complex 2.09E-08 0.48 

GO:0070062 extracellular vesicular exosome 2.77E-08 0.10 

GO:0000398 mRNA splicing, via spliceosome 2.79E-08 0.18 

GO:0002479 antigen processing and presentation of exogenous peptide antigen via 
MHC class I, TAP-dependent 

5.34E-08 0.28 

GO:0005687 U4 snRNP 8.17E-08 0.78 

GO:0006120 mitochondrial electron transport, NADH to ubiquinone 9.63E-08 0.35 

GO:0042590 antigen processing and presentation of exogenous peptide antigen via 
MHC class I 

1.16E-07 0.27 

GO:0019843 rRNA binding 2.88E-07 0.43 

GO:0051436 negative regulation of ubiquitin-protein ligase activity involved in 
mitotic cell cycle 

9.38E-07 0.26 

GO:0005759 mitochondrial matrix 1.36E-06 0.15 

GO:0042274 ribosomal small subunit biogenesis 1.54E-06 0.58 

GO:0042273 ribosomal large subunit biogenesis 1.54E-06 0.58 

GO:0000502 proteasome complex 1.64E-06 0.26 

GO:0030529 ribonucleoprotein complex 1.91E-06 0.19 

GO:0006521 regulation of cellular amino acid metabolic process 2.19E-06 0.28 

GO:0051437 positive regulation of ubiquitin-protein ligase activity involved in 
mitotic cell cycle 

2.35E-06 0.24 

GO:0051439 regulation of ubiquitin-protein ligase activity involved in mitotic cell 2.92E-06 0.24 
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cycle 

GO:0002474 antigen processing and presentation of peptide antigen via MHC class I 3.48E-06 0.21 

GO:0071013 catalytic step 2 spliceosome 3.48E-06 0.21 

GO:0000028 ribosomal small subunit assembly 4.15E-06 0.83 

GO:0031145 anaphase-promoting complex-dependent proteasomal ubiquitin-
dependent protein catabolic process 

4.43E-06 0.23 

GO:0042776 mitochondrial ATP synthesis coupled proton transport 5.99E-06 0.50 

GO:0005685 U1 snRNP 5.99E-06 0.50 

GO:0006364 rRNA processing 6.26E-06 0.20 

GO:0034709 methylosome 7.32E-06 0.60 

GO:1902600 hydrogen ion transmembrane transport 9.85E-06 0.40 

GO:0006977 DNA damage response, signal transduction by p53 class mediator 
resulting in cell cycle arrest 

9.85E-06 0.23 

GO:0034719 SMN-Sm protein complex 1.07E-05 0.47 

GO:0005762 mitochondrial large ribosomal subunit 1.07E-05 0.47 

GO:0044281 small molecule metabolic process 1.40E-05 0.09 

GO:0005753 mitochondrial proton-transporting ATP synthase complex 4.50E-05 0.38 
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Table 3.13: mod5 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 5.81e-05. 

GMRG Term Description 
P value 

(hypergeometric) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0060337 type I interferon signaling pathway 2.58E-22 0.66 

GO:0051607 defense response to virus 6.83E-17 0.37 

GO:0070062 extracellular vesicular exosome 4.70E-16 0.12 

GO:0019221 cytokine-mediated signaling pathway 6.31E-16 0.27 

GO:0009615 response to virus 3.54E-15 0.38 

GO:0045071 negative regulation of viral genome replication 7.43E-15 0.67 

GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB signaling 9.93E-08 0.21 

GO:0060333 interferon-gamma-mediated signaling pathway 1.64E-07 0.36 

GO:0042470 melanosome 1.75E-07 0.23 

GO:0034341 response to interferon-gamma 5.81E-07 0.53 

GO:0031012 extracellular matrix 1.46E-06 0.20 

GO:0045087 innate immune response 3.22E-06 0.12 

GO:0035456 response to interferon-beta 3.83E-06 0.83 

GO:0034097 response to cytokine 5.28E-06 0.30 

GO:0030198 extracellular matrix organization 6.26E-06 0.15 

GO:0005789 endoplasmic reticulum membrane 8.00E-06 0.11 

GO:0005783 endoplasmic reticulum 1.08E-05 0.11 

GO:0034340 response to type I interferon 1.15E-05 1.00 

GO:0006955 immune response 1.60E-05 0.17 

GO:0043066 negative regulation of apoptotic process 1.65E-05 0.12 

GO:0005764 lysosome 1.66E-05 0.15 
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GO:0005576 extracellular region 1.97E-05 0.10 

GO:0005829 cytosol 3.09E-05 0.77 

GO:0004859 phospholipase inhibitor activity 3.24E-05 0.62 

GO:0019060 intracellular transport of viral protein in host cell 5.50E-05 0.08 
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Table 3.14: mod6 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 4.15e-05 

GMRG Term Description 
P value 

(hypergeometric) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0007268 synaptic transmission 6.37E-05 0.11 
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Table 3.15: mod7 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 4.55e-05. 

GMRG Term Description 
P value 

(hypergeometric) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0044281 small molecule metabolic process 2.00E-10 0.09 

GO:0005615 extracellular space 2.46E-08 0.11 

GO:0030198 extracellular matrix organization 5.50E-08 0.15 

GO:0005576 extracellular region 1.11E-07 0.10 

GO:0071276 cellular response to cadmium ion 1.15E-07 0.64 

GO:0031012 extracellular matrix 1.54E-07 0.19 

GO:0005886 plasma membrane 2.38E-07 0.07 

GO:0007601 visual perception 3.40E-07 0.20 

GO:0008201 heparin binding 5.80E-07 0.21 

GO:0030165 PDZ domain binding 1.22E-06 0.20 

GO:0016491 oxidoreductase activity 1.39E-06 0.16 

GO:0035019 somatic stem cell maintenance 2.64E-06 0.32 

GO:0034641 cellular nitrogen compound metabolic process 5.15E-06 0.14 

GO:0006635 fatty acid beta-oxidation 6.81E-06 0.29 

GO:0001523 retinoid metabolic process 7.09E-06 0.33 

GO:0005759 mitochondrial matrix 7.54E-06 0.12 

GO:0071294 cellular response to zinc ion 2.14E-05 0.56 

GO:0070371 ERK1 and ERK2 cascade 2.14E-05 0.56 

GO:0044255 cellular lipid metabolic process 2.32E-05 0.14 

GO:0005578 proteinaceous extracellular matrix 2.87E-05 0.16 

GO:0017134 fibroblast growth factor binding 3.16E-05 0.40 
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GO:0007603 phototransduction, visible light 3.28E-05 0.24 

GO:0005887 integral component of plasma membrane 3.38E-05 0.09 

GO:0043235 receptor complex 3.67E-05 0.17 

GO:0070062 extracellular vesicular exosome 3.97E-05 0.07 
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Table 3.16: mod8 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 4.83e-05 

GMRG Term Description 
P value 

(hypergeometric) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0044822 poly(A) RNA binding 9.22E-12 0.08 

GO:0005730 nucleolus 2.79E-08 0.06 

GO:0006364 rRNA processing 1.52E-05 0.14 

 

Table 3.17: mod9 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 2.74e-05 

GMRG Term Description 
P value 

(hypergeometric) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0044822 poly(A) RNA binding 1.01E-16 0.08 

GO:0005730 nucleolus 1.90E-14 0.06 

GO:0005634 nucleus 8.44E-09 0.04 

GO:0008380 RNA splicing 1.41E-07 0.10 

GO:0006351 transcription, DNA-templated 8.78E-07 0.05 

GO:0003682 chromatin binding 1.22E-05 0.08 

GO:0006397 mRNA processing 1.44E-05 0.10 

GO:0035845 photoreceptor cell outer segment organization 2.34E-05 1.00 
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Table 3.18: mod10 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 4.17e-05 

GMRG Term Description 
P value 

(hypergeometric) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0005739 mitochondrion 3.64E-12 0.05 

GO:0005743 mitochondrial inner membrane 1.71E-11 0.10 

GO:0022904 respiratory electron transport chain 9.29E-10 0.17 

GO:0005747 mitochondrial respiratory chain complex I 2.90E-09 0.26 

GO:0044237 cellular metabolic process 2.76E-08 0.12 

GO:0008137 NADH dehydrogenase (ubiquinone) activity 3.01E-08 0.25 

GO:0006120 mitochondrial electron transport, NADH to ubiquinone 3.90E-08 0.24 

GO:0015450 P-P-bond-hydrolysis-driven protein transmembrane transporter 
activity 

2.42E-06 0.67 

GO:0006626 protein targeting to mitochondrion 2.94E-06 0.18 

GO:0005744 mitochondrial inner membrane presequence translocase complex 1.10E-05 0.50 
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Table 3.19: mod11 and enrichment of Gene Ontology categories with FWER < 0.05.  
The P value threshold after 2000 permutations was 3.59e-05 

GMRG Term Description 
P value 

(hypergeometric) 

Ratio (number of genes 
in Study group/Number 
of genes transcriptome-

wide) 

GO:0005886 plasma membrane 1.08E-15 0.04 

GO:0045087 innate immune response 1.91E-15 0.09 

GO:0006954 inflammatory response 2.59E-13 0.15 

GO:0006955 immune response 1.21E-12 0.17 

GO:0005576 extracellular region 1.49E-10 0.06 

GO:0007165 signal transduction 6.22E-09 0.05 

GO:0007596 blood coagulation 8.09E-09 0.08 

GO:0009897 external side of plasma membrane 1.29E-08 0.16 

GO:0030168 platelet activation 4.02E-08 0.11 

GO:0050776 regulation of immune response 4.92E-08 0.27 

GO:0007159 leukocyte cell-cell adhesion 9.83E-08 0.43 

GO:0070022 transforming growth factor beta receptor homodimeric complex 1.13E-07 1.00 

GO:0070062 extracellular vesicular exosome 1.72E-07 0.04 

GO:0005615 extracellular space 1.74E-07 0.06 

GO:0004896 cytokine receptor activity 2.43E-07 0.56 

GO:0007229 integrin-mediated signaling pathway 3.30E-07 0.18 

GO:0072562 blood microparticle 1.70E-06 0.17 

GO:0006956 complement activation 2.34E-06 0.38 

GO:0030593 neutrophil chemotaxis 2.87E-06 0.26 

GO:0006958 complement activation, classical pathway 3.58E-06 0.36 

GO:0002576 platelet degranulation 5.17E-06 0.15 
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GO:0050900 leukocyte migration 5.86E-06 0.13 

GO:0002283 neutrophil activation involved in immune response 6.20E-06 1.00 

GO:0090197 positive regulation of chemokine secretion 6.20E-06 1.00 

GO:0050853 B cell receptor signaling pathway 7.58E-06 0.31 

GO:0004872 receptor activity 9.93E-06 0.09 

GO:0043011 myeloid dendritic cell differentiation 1.32E-05 0.44 

GO:0002224 toll-like receptor signaling pathway 2.13E-05 0.11 

GO:0019864 IgG binding 2.45E-05 0.75 

GO:0042803 protein homodimerization activity 2.59E-05 0.05 

GO:0060333 interferon-gamma-mediated signaling pathway 2.70E-05 0.18 

GO:0030670 phagocytic vesicle membrane 3.23E-05 0.18 

GO:0030890 positive regulation of B cell proliferation 3.28E-05 0.24 
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Table 3.20: Modules and the enrichment of gene sets.  
All P values in red are FWER < 0.05, determined after 2000 permutations 

Modules  
(P value threshold for 

FWER =0.05) 

mod5 
(1.79E-03) 

mod11 
(2.03E-03) 

mod7 
(1.75E-03) 

mod3 
(2.01E-03) 

mod2 
(1.70E-03) 

mod6 
(1.63E-03) 

mod1 
(2.13E-03) 

mod9 
(2.05-03) 

mod8 
(2.21E-03) 

mod10 
(1.89E-03) 

mod4 
(1.79E-03) 

mod12 
(2.28E-03) 

Module Size 759 238 597 1059 1319 667 1646 385 465 280 824 129 

Autism 
Association 

(univariate lme) 
9.64E-04 5.84E-02 1.08E-01 7.61E-02 8.72E-01 6.39E-03 8.29E-03 2.55E-01 3.64E-02 6.47E-01 7.64E-01 1.43E-01 

Neuronal 
Markers 

NA NA NA 9.90E-01 5.22E-10 5.40E-07 1.89E-34 NA 9.70E-01 NA NA NA 

Oligodendrocyte 
Markers 

6.85E-01 NA NA 5.38E-42 9.64E-01 NA 1.00E+00 NA NA NA NA NA 

Astrocyte 
Markers 

4.02E-01 NA 1.65E-75 9.33E-01 NA 9.80E-01 NA NA 9.20E-01 NA 9.90E-01 NA 

Type 1 
Microglial 
Markers 

1.73E-05 3.38E-84 NA NA NA NA NA NA NA NA 8.70E-01 NA 

Type 2 
Microglial 
Markers 

1.22E-39 3.39E-04 6.30E-01 9.54E-01 NA NA NA NA NA NA 9.20E-01 NA 

Ischemia 
Markers 

1.08E-01 NA NA NA NA NA 4.54E-01 NA NA NA NA NA 
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Synaptic 
Proteins 

7.62E-01 NA 5.10E-01 7.67E-01 7.50E-06 7.40E-01 2.95E-08 NA 2.45E-01 NA 8.70E-01 NA 

Postsynaptic 
Density (PSD) 

9.90E-01 9.98E-01 8.00E-01 8.08E-01 1.19E-26 1.00E-03 2.67E-15 9.90E-01 5.80E-01 9.03E-01 7.00E-02 9.90E-01 

ASD SFARI 2012 8.00E-01 NA 6.11E-01 8.37E-01 4.08E-04 1.10E-02 1.69E-01 6.40E-01 3.60E-01 4.15E-01 9.70E-01 NA 

ASD SFARI 2014 7.62E-01 8.64E-01 5.37E-01 9.10E-01 2.49E-06 2.00E-02 2.01E-01 9.45E-01 1.10E-01 9.00E-01 9.90E-01 NA 

ASD SFARI 2014 
CV 

7.62E-01 NA 6.71E-01 6.59E-01 1.26E-04 1.00E-02 1.93E-01 7.98E-01 1.35E-01 8.00E-01 9.70E-01 NA 

ASD (Pinto) 9.60E-01 NA 7.80E-01 3.44E-01 1.84E-04 6.80E-01 8.60E-01 1.17E-01 2.00E-03 4.20E-01 9.10E-01 NA 

Rare de novo 9.00E-01 2.21E-01 8.46E-01 6.21E-02 4.29E-04 6.10E-01 1.24E-01 5.00E-02 9.08E-01 9.99E-01 9.90E-01 NA 

I-exomes NA NA NA 2.80E-01 3.82E-01 NA 4.88E-01 NA NA NA NA NA 

SON-exomes NA NA NA NA 3.49E-02 NA NA NA NA NA NA NA 

AGP NA NA NA NA 6.61E-04 3.70E-01 1.05E-02 NA 5.00E-02 NA NA NA 
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San NA NA NA 2.10E-01 8.05E-07 3.40E-01 1.26E-02 NA 6.10E-01 NA NA NA 

asdM12 NA 4.63E-03 NA NA 1.74E-10 1.10E-03 
3.01E-

102 
NA 5.98E-01 9.00E-01 NA 4.70E-01 

asdM16 9.38E-59 NA 1.45E-89 8.62E-01 NA NA NA 9.90E-01 NA NA 7.00E-03 NA 

FMRP 
interacting 

9.90E-01 1.00E+00 1.00E+00 2.18E-01 
7.38E-

110 
3.10E-01 1.80E-10 9.70E-01 2.00E-02 NA NA 9.64E-01 

FMRP 1 5.99E-01 NA NA 7.77E-01 3.32E-04 NA 9.34E-01 2.55E-01 3.20E-01 NA NA NA 

FMRP 2 NA NA NA NA 5.33E-02 NA 4.66E-04 NA NA NA NA NA 

ID 2009 2.10E-01 9.69E-01 3.18E-01 3.59E-02 1.08E-02 7.50E-01 9.75E-01 5.60E-01 7.60E-01 5.16E-01 5.10E-01 5.58E-01 

ID      (Pinto) 2.20E-01 9.19E-01 6.90E-01 2.66E-01 1.25E-01 9.20E-01 4.77E-01 3.06E-01 3.50E-01 8.33E-01 9.90E-01 4.20E-01 

Brain Critical 9.90E-01 NA 9.90E-01 7.40E-01 3.56E-50 7.37E-04 4.33E-39 3.10E-01 3.90E-01 9.90E-01 9.90E-01 NA 

T-BCAs NA NA NA NA NA NA NA NA 2.00E-02 NA NA NA 

NA indicates that modules contain one or fewer genes in the category being tested. 
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Table 3.21: Enrichment analysis of 749 genes differentially expressed at P < 0.01.  
Top 15 Gene Ontology terms with P value (hypergeometric test) < 0.05. The P value threshold after 2000 permutations was 2.76e-05. No 

functional annotations exceeded a FWER < 0.05 

GMRG Term Description 
P value 

(hypergeometric 
test) 

GO:0035456 response to interferon-beta 1.38E-04 

GO:1990247 N6-methyladenosine-containing RNA binding 1.79E-04 

GO:0035455 response to interferon-alpha 1.01E-03 

GO:0033690 positive regulation of osteoblast proliferation 1.65E-03 

GO:0046597 negative regulation of viral entry into host cell 1.65E-03 

GO:0055088 lipid homeostasis 2.42E-03 

GO:1901214 regulation of neuron death 3.15E-03 

GO:2000505 regulation of energy homeostasis 3.15E-03 

GO:0008061 chitin binding 3.19E-03 

GO:0009440 cyanate catabolic process 3.19E-03 

GO:0010868 negative regulation of triglyceride biosynthetic process 3.19E-03 

GO:0021740 principal sensory nucleus of trigeminal nerve development 3.19E-03 

GO:0021978 telencephalon regionalization 3.19E-03 

GO:0035873 lactate transmembrane transport 3.19E-03 

GO:0060221 retinal rod cell differentiation 3.19E-03 
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Table 3.22: Enrichment analysis of 1964 genes differentially expressed at P < 0.05.  
Reporting top 15 Gene Ontology Terms with P value (hypergeometric test) < 0.05. The P value threshold after 2000 permutations was 

4.25e-05. No functional annotations exceeded a FWER < 0.05 

GMRG Term Description 
P value 

(hypergeometric 
test) 

GO:1901214 regulation of neuron death 3.74E-04 

GO:0005246 calcium channel regulator activity 5.55E-04 

GO:0008021 synaptic vesicle 1.15E-03 

GO:0005267 potassium channel activity 1.83E-03 

GO:0021772 olfactory bulb development 2.04E-03 

GO:0032389 MutLalpha complex 2.12E-03 

GO:0071204 histone pre-mRNA 3'end processing complex 2.12E-03 

GO:0035435 phosphate ion transmembrane transport 2.12E-03 

GO:0060666 dichotomous subdivision of terminal units involved in salivary gland branching 2.12E-03 

GO:0048539 bone marrow development 3.25E-03 

GO:0051224 negative regulation of protein transport 3.25E-03 

GO:1990247 N6-methyladenosine-containing RNA binding 3.25E-03 

GO:0045600 positive regulation of fat cell differentiation 3.85E-03 

GO:0008543 fibroblast growth factor receptor signaling pathway 5.09E-03 

GO:0035455 response to interferon-alpha 5.31E-03 
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Table 3.23: Enrichment analysis of 185 genes differentially expressed at P < 0.001.  
Top 15 Gene Ontology terms with P value (hypergeometric test) < 0.05. The P value threshold after 2000 permutations was 3.42e-05. No 

functional annotations exceeded a FWER < 0.05 

GMRG Term Description 
P value 

(hypergeometric 
test) 

GO:1990247 N6-methyladenosine-containing RNA binding 5.88E-04 

GO:0017091 AU-rich element binding 7.11E-04 

GO:0086006 voltage-gated sodium channel activity involved in cardiac muscle cell action 
potential 

1.16E-03 

GO:0060371 regulation of atrial cardiac muscle cell membrane depolarization 1.16E-03 

GO:0046872 metal ion binding 1.41E-03 

GO:0086002 cardiac muscle cell action potential involved in contraction 2.86E-03 

GO:2000009 negative regulation of protein localization to cell surface 2.86E-03 

GO:0086012 membrane depolarization during cardiac muscle cell action potential 2.86E-03 

GO:0031301 integral component of organelle membrane 2.86E-03 

GO:0007399 nervous system development 3.67E-03 

GO:0003730 mRNA 3'-UTR binding 3.97E-03 

GO:0030166 proteoglycan biosynthetic process 5.24E-03 

GO:0031588 AMP-activated protein kinase complex 5.24E-03 

GO:0072358 cardiovascular system development 5.24E-03 

GO:0001518 voltage-gated sodium channel complex 6.67E-03 
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Table 3.24: Enrichment analysis of 50 genes differentially expressed at P < 0.0001.  
Top 15 Gene Ontology terms with P value (hypergeometric test) < 0.05. The P value threshold after 2000 permutations was 4.51e-05. No 

functional annotations exceeded a FWER < 0.05 

GMRG Term Description 
P value 

(hypergeometric 
test) 

GO:0043101 purine-containing compound salvage 9.34E-04 

GO:0007409 axonogenesis 2.07E-03 

GO:0006144 purine nucleobase metabolic process 5.89E-03 

GO:0005070 SH3/SH2 adaptor activity 6.68E-03 

GO:0009967 positive regulation of signal transduction 7.52E-03 

GO:0030154 cell differentiation 8.13E-03 

GO:0035725 sodium ion transmembrane transport 9.33E-03 

GO:0007399 nervous system development 9.55E-03 

GO:0045444 fat cell differentiation 9.81E-03 

GO:0046872 metal ion binding 9.82E-03 

GO:0009790 embryo development 2.23E-02 

GO:0055086 nucleobase-containing small molecule metabolic process 2.51E-02 

GO:0006811 ion transport 4.68E-02 

GO:0005874 microtubule 5.13E-02 

GO:0014069 postsynaptic density 5.45E-02 
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Table 3.25: Association of co-expression modules with disease status 

Modules Module 
Size 

P value 

mod5 759 9.64E-04 

mod11 238 5.84E-02 

mod7 597 1.08E-01 

mod3 1059 7.61E-02 

mod2 1319 8.72E-01 

mod6 667 6.39E-03 

mod1 1646 8.29E-03 

mod9 385 2.55E-01 

mod8 465 3.64E-02 

mod10 280 6.47E-01 

mod4 824 7.64E-01 

mod12 129 1.43E-01 
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CHAPTER 4: Transcriptome Analysis of Cortical Tissue Reveals 

Shared Sets of Down-Regulated Genes in Autism and Schizophrenia 

4.1 Introduction 
The aggregation of psychiatric conditions and symptoms in families has long been 

recognized19,108–111 with more recent genetic analyses suggesting overlap between a number 

of disorders19,112–115. Recent studies considering SNP-based genetic correlation  

demonstrated marked correlation between schizophrenia (SCZ) and bipolar disorder (BPD) 

and to a lesser extent between SCZ and autism spectrum disorder (ASD)19, suggesting shared 

genetic etiologies. However, due to limited brain tissue availability, there have been fewer 

studies at the level of gene expression. We and others hypothesize that gene expression 

studies may begin to unravel how genetic correlations may functionally overlap in 

neuropsychiatric disorders.  

In a recent publication, Zhao et. al suggested that SCZ and BPD show concordant differential 

gene expression (R=0.28) and that the genes contributing to this overlap are enriched for 

genetic association signal in both SCZ and BPD while highlighting several biological pathways 

116. Two separate recent studies of gene expression in autism (AUT) have resolved gene 

expression changes related to altered synaptic and neuronal signaling as well as 

immunological differences in autism-affected  brains 20,117. In particular, a marked increase 

was observed in gene expression related to alternative activation of the innate immune 

system, or the M2 response in autism-affected brains, relative to controls117.  

Here we set out to analyze RNA sequencing (RNA-Seq) data in combination from AUT, SCZ 

and BPD to identify cross-disorder transcriptomic relationships.  We highlight the highly 

correlated nature of the SCZ and AUT transcriptomes, which together demonstrate a 

downregulation of genes involved in neurotransmission and synapse regulation across the 

two disorders. 

4.2 Methods 

4.2.1 Autism sample information  

RNA-Seq for 104 cortical brain tissue samples across three brain regions (BA10, BA19, 

BA44/45), comprising 57 samples from 40 control subjects and 47 samples from 32 autism 
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(AUT) subjects was previously carried out117. We note that, as in the initial publication of 

these data117, AUT samples harboring CNVs recurrent in autism spectrum disorder have not 

been included in these analyses. Details related to samples, sequencing, quality control, and 

informatics can be found in Gupta et. al117 and are summarized in Table 4.1.  

4.2.2 Schizophrenia and bipolar disorder sample information  

RNA-Seq data was obtained from the Stanley Medical Research Institute (SMRI, 

http://www.stanleyresearch.org/) consisting of eighty-two (31 SCZ, 25 BPD and 26 controls) 

anterior cingulate cortex (BA24) samples. Detailed sequencing information can be found in 

Zhao et. al116. Sample information for those included in this analysis can be found in Table 

4.2.  

4.2.3 RNA-Seq, alignment & quality control 

Sequencing, alignment, quality control and gene expression estimation for the AUT samples 

were carried out as previously described117. The reads from both the AUT and SMRI 

sequencing were subjected to a common analysis pipeline117 in which quality control of raw 

sequences included removing both polyA stretches and adaptor sequence contamination 

using a Python script, ‘cutadapt’ (v1.2.1)71. Sequences were then aligned to the Genome 

Reference Consortium Human build 37 (GRCh37/hg19) assembly using TopHat255,72 allowing 

for only uniquely aligned sequences with fewer than three mismatches to align.  

4.2.4 Gene expression estimation and normalization 

Gene count estimates were obtained for 62,069 Ensembl gene annotations (GRCh37/hg19) 

using HTSeq (http://www-huber.embl.de/users/anders/HTSeq/) under an intersection-strict 

model. Of these, 8,856 genes with at least 10 reads across 75 percent of the SMRI samples 

were then normalized for gene length and GC content using Conditional Quantile 

Normalization (CQN)67. In the AUT samples, the 13,262 genes previously included for analysis 

117 were normalized for gene length and GC content using CQN. Outliers were then removed 

from the CQN normalized gene expression estimates on a per-gene basis as described 

previously118. In either data set, any sample whose gene expression value was more than 2.7 

standard deviations (sd) from the mean of the gene expression was excluded from analysis at 

that particular gene prior to linear modeling.   
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4.2.5 Differential gene expression analysis (DGEA) 

Due to the unique experimental design in which multiple brain regions were sequenced from 

the same individual, AUT gene expression estimates were fit using a linear mixed effects 

model, with subject ID included as a random intercept term, and case-control status as the 

primary variable of interest. Age, sex, site of sample collection, brain region and twelve 

surrogate variables (SVs)50 were included as fixed effects in the model to account for known 

and unknown covariates. SVs function to remove batch effects and sources of noise in gene 

expression data by adjusting for unknown or unmodeled sources of variation and are 

therefore included for analysis50.  

SCZ and BPD RNA-Seq data were analyzed using standard linear regression with case-control 

status as the primary variable of interest. The known covariates to which we had access and 

that were included in the analysis by Zhao et. al116 (age, sex, cumulative antipsychotic use, 

brain pH, and postmortem interval (PMI)) were incorporated into the model here along with 

SVs to account for unknown sources of variation.  

Because the SCZ and BPD cases share controls, two separate differential gene expression 

analyses were performed. For the comparison to AUT, all cases (SCZ or BPD) and all controls 

from the SMRI dataset were included in the analysis. Alternatively, when SCZ and BPD were 

to be compared directly, we employed a strategy similar to how these data were handled 

previously, in which controls were divided randomly in half 116. One set of controls was then 

compared to the SCZ cases while the other set of controls was compared to the BPD cases. 

This procedure was carried out 100 times for each cross-disorder comparison and the Z-

scores (β/se) were recorded for each gene for each run. The median Z-score for each gene 

across these 100 runs was then used for analyses comparing SCZ to BPD. 

4.2.6 Null DGEA 

To obtain a null set of differential gene expression values, each of the analyses in the 

previous section was carried out modeling the data exactly as described above save for the 

permutation of case-control status. In AUT datasets, case-control status was randomized 

between samples from the same collection sites, as described previously117. To minimize the 

possibility of reporting false-positive findings, one-thousand null permutations were utilized 

to determine significance. 
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4.2.7 Calculating genes differentially expressed across disorders 

To determine which genes were differentially expressed across disorders, Z-scores were 

multiplied across each of the three disorder comparisons (ZSCZ* ZBPD, Z SCZ* ZAUT, ZBPD* ZAUT). 

Genes with large cross-disorder Z-scores were considered to be differentially expressed 

across disorders, with significance determined by permutation. For each cross-disorder 

comparison, the most extreme cross-disorder Z-score for each of these 1000 null 

permutations was recorded. Of these values, the cross-disorder cutoff for significance 

(defined at p<0.05) to determine which genes were differentially expressed across disorders 

was determined by taking the value for which only 5% of the null values were more extreme.  

To determine differentially and concordantly expressed genes (DCEGs) common to all three 

disorders, Z-scores were multiplied for the 2,895 genes with Z-scores in the same direction 

across all three disorders (ZAUT* ZSCZ* ZBPD). As SCZ and BPD are directly compared in the 

analysis, split-control generated Z-scores for SCZ and BPD were utilized to account for the 

shared control samples. To assess significance, the same analysis was carried out with 1000 

null permutations as described above.  

4.2.8 Calculating the correlation of DCEGs across phenotypes 

Pearson’s correlation coefficient (R) was calculated for the Z-scores from each disorder 

comparison (SCZ-AUT, SCZ-BPD, BPD-AUT) to assess the similarity of genes differentially 

expressed across disorders. To determine the significance of this correlation, Pearson’s 

correlation coefficient was calculated after testing each of the 1000 null permutations. 

4.2.9 Pathway analysis of DCEGs 

Pathway enrichment analysis was carried out on genes differentially expressed across 

disorders. GO gene sets were downloaded from MsigDB (1466 gene sets, 

http://www.broadinstitute.org/gsea/msigdb/collections.jsp#C5). For each gene and across all 

three disease comparisons, Z-scores were summed across disorders using Stouffer’s method 

119 and pathways were tested for enrichment. Cross-disorder Z-scores were calculated, such 

that:  

ZAUT-SCZ = (ZAUT + ZSCZ)/sqrt(k) 
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where k is the number of comparisons made (here, k=2). A one-sided t-test was used to 

compare Z-scores between genes in the pathway and genes not in the pathway. To assess 

significance for each pathway in each of the cross-disorder comparisons, the absolute value 

of cross-disorder Z-scores for those genes in the pathway were compared to the absolute 

value of cross-disorder Z-scores for those genes not in the pathway using a one-sided t-test 

under the alternative hypothesis that Z-scores in the pathway were enriched for significant Z-

scores relative to the genes not in the pathway. The 1,285 GO categories for which we had 

gene expression data for at least five genes in the pathway were included for analysis. 

Significance was determined empirically by permutation for each cross-disorder comparison 

(1.51x14 for AUT-SCZ, 1.72x14 for AUT-BPD, and 4.25x16 for SCZ-BPD). 

As a complementary approach, we utilized two open source programs for pathway analysis: 

WebGestalt (v2, http://bioinfo.vanderbilt.edu/webgestalt/) 120,121 to run a Gene Ontology 

(GO) analysis122,123 and DAVID124 (v6.7, https://david.ncifcrf.gov/) for functional pathway 

analysis. As the input for these approaches requires gene lists, we input genes that were 

differentially expressed (absolute value(Z-score) > 2.2) in both disorders of the comparison: 

1) SCZ-AUT (191 genes), 2) BPD-AUT (38 genes), and 3) SCZ-BPD (16 genes).  

GO analysis used a hypergeometric test for enrichment utilizing the Benjamini-Hochberg 

method 125 for multiple test correction. GO categories whose adjusted p-values < 0.001 were 

considered to be statistically significantly enriched. For DAVID, gene lists were uploaded and 

a ‘Functional Annotation Chart’ was generated using default settings. Functional categories 

whose Bonferroni-adjusted p-value<0.05 were reported as significant. 

To ensure that results from these analyses were not biased by the different number of genes 

input into the pathway analysis, we also carried out the GO and DAVID analyses described 

above with a fixed number of 191 genes from each cross-disorder comparison. 

4.2.10 Enrichment for genetic signal analysis 

GWAS results were downloaded from the Psychiatric Genetic Consortium (PGC, 

http://www.med.unc.edu/pgc/) for autism, bipolar disorder, and schizophrenia.  

Gene-based p-values were computed on the summary data for each disorder using FAST 

(v1.8) 126 for the 8,856 genes included in the cross disorder DGEA.  
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The following tests were conducted allowing for up to one million permutations: ‘logistic-

minsnp-gene-perm’ and ‘logistic-gwis-perm’. LD was calculated on the fly using LD computed 

from HapMap Phase 1 CEU imputation data. Default settings were used, aside from the 

following: the flank parameter (region on either side of the gene for investigation) was set to 

15kb, phenotype variance was estimated at 0.01, and a maf-cutoff of 0.01 was used. Sample 

sizes were estimated to be approximately 1.5x the number of cases used in each individual 

analysis. Accordingly, the sample sizes used as input were 10,000, 15,000 and 20,000 for 

AUT, BPD, and SCZ respectively. Downstream gene-based p-values were compiled such that 

the GWiS127 p-value was used for all genes assigned p-values not equal to one (signifying that 

no permutations were carried out in GWiS). Otherwise, the more permissive minSNP-P p-

value was assigned to the gene. The minSNP-P simply uses the best single SNP p-value within 

the gene, calculates a gene-based p-value by permutation test within each gene, and assigns 

that p-value to the gene127. 

 To test for enrichment of genetic signal, we first took suggestive genes (gene-based p<0.05) 

for each individual GWAS (SCZ, BPD, and AUT) and compared these to p-values from the 

DGEA. Data were plotted in a QQ-plot among 100 null permutations to look for enrichment 

relative to the null data. To ensure that this analysis was not a reflection of the gene-based p-

value restriction imposed on the data, a more permissive (p<0.1) and more restrictive 

(p<0.01) GWAS cutoff were used and the same enrichment analysis carried out. 

4.3 Results 

4.3.1 Sample summary 

Of the 105 samples in the SMRI array collection, 82 cortical brain samples (BA24) were 

sequenced and included for analysis (31 SCZ, 25 BPD, and 26 controls). To accompany these 

data, 104 AUT samples from three cortical brain regions (BA10, BA19, BA44/45) were 

included for analysis, composed of 57 control and 47 AUT samples. A summary of sample 

statistics are provided in Table 4.3 with detailed sample information in Tables 4.1 and 4.2 for 

AUT and SMRI data, respectively. Further sample information can be found in the original 

publications 116,117. 

4.3.2 Genes differentially expressed across SCZ, BPD, and AUT 

Nine genes were differentially expressed (p<0.05) in both SCZ and AUT. None were significant 

when comparing BPD to SCZ, and one gene reached significance in the AUT-BPD comparison 
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(Table 4.2). We note that the single gene differentially expressed between AUT-BPD, IQSEC3, 

is significant in both AUT-SCZ and AUT-BPD comparisons. The relatively large Z-scores in SCZ 

(Z=-3.59) and BPD (Z=-3.46) suggest this result is not simply driven by the altered gene 

expression in AUT alone.   

Differentially expressed genes (DEGs) across all three disorders were identified in a joint 

analysis of genes whose direction of effect was consistent across all three disorders 

(ZAUT*ZSCZ*ZBPD). Two genes, IQSEC3 (Z=-35.45, p=0.001) and COPS7A (Z=-22.52, p=0.017), are 

transcriptome-wide significant (p<0.05, absolute value (ZAUT*ZSCZ*ZBPD) > 19.56), indicating a 

common role for altered gene expression of these genes across all three neuropsychiatric 

disorders (Figure 4.1). We note that these two genes, IQSEC3 and COPS7A, are syntenic 

(12p13.33 and 12p13.31, respectively) with their expression being markedly correlated in 

both the SMRI and AUT data sets (R=0.41 and R=0.70, respectively) (Figure 4.2). 
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Figure 4.1: Differential Gene Expression Across AUT, SCZ, and BPD. A density plot for the cross three-disorder Z-scores 
(ZAUT*ZSCZ*ZBPD) are plotted in black with the cutoff for transcriptome-wide significance highlighted in red (p<0.05, determined 
empirically by permutation). The two genes that meet transcriptome wide significance are labeled. 



105 
 

   

  

 
 

Figure 4.2: Correlation of Genes Differentially Expressed Across All Three Disorders.  
The gene expression of IQSEC and COPS7A in (a) the SCZ and BPD data from the SMRI and (b) the AUT data are plotted. Pearson’s 
correlation coefficient (R) is in red. 
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4.3.3 Correlation in gene expression across SCZ, BPD, and AUT 

The transcriptomic relationship across disorders and correlation of test-statistics (Z-scores) 

was investigated. SCZ-AUT demonstrated the most significant correlation (R=0.298, p<0.001). 

SCZ-BPD also demonstrated a positive correlation (R=0.11). This level of correlation was 

neither significant (p=0.41) nor as high as previously reported (R=0.28)116. Similarly, the 

correlation between AUT and BPD was minimal and did not differ significantly from the null 

(R=0.06, p=0.25). (Figure 4.3 and Figure 4.4). 

To explore the discrepancy between the correlation reported here for SCZ and BPD and that 

previously reported, we carried out the same analysis without the inclusion of surrogate 

variables (SVs) in the model. The failure to include unknown covariates in the model led to a 

marked increase in the correlation between SCZ and BPD (R=0.50), suggesting that the 

previously reported correlation between these disorders may have been influenced by 

hidden structure in the data. (Figure 4.5).  

  

.  
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Figure 4.3: Correlation of Cross-Disorder Differential Gene Expression. 
Z-scores for each cross-disorder comparison ((a) AUT-SCZ (b) AUT-BPD (c) SCZ-BPD) are plotted. The best fit line is in red. Pearson’s 

Correlation Coefficient (R) is included on the graph, quantifying the level of correlation between the transcriptomes of each cross-

disorder comparison. 
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Figure 4.4: Assessing the significance for Correlations of Cross-Disorder Transcriptomic Similarity.  

For each cross-disorder comparison, density plots for the correlations of the 1000 null permutations are plotted in black. The cross-

disorder correlation derived from the data are plotted in red. (a) The correlation between AUT and SCZ is more extreme than the 

correlation in any of the 1000 null permutations (p<0.001). (b) The correlation between differential gene expression AUT and BPD is 

not significant relative to the null correlations (p=0.246). (c) The correlation between SCZ and BPD is similarly not significant (p=0.405). 
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Figure 4.5: Accounting for Unknown Covariates Affects Correlation. 
The correlation between differential gene expression in SCZ and BPD reported in this paper in which the linear model included SVs to 
account for unknown covariates (a) relative to an analysis in which these covariates were not included (b). The lack of SV inclusion in 
the linear model to detect differential gene expression leads to an artificially inflated correlation.  
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4.3.4 Pathway enrichment analyses of genes differentially expressed across disorders 

Combined pathway analysis utilizing lists of genes differentially expressed across disorders 

(absolute value(Z-score)>2.2 in both disorders) was carried out using both Gene Ontology 

(GO) enrichment and DAVID pathway analysis. For this analysis, 191 DEGs for AUT-SCZ, 38 for 

AUT-BPD, and 16 for SCZ-BPD met these criteria. DAVID pathway analysis highlighted the role 

of neuron projection development (pBonferroni=0.012) in those genes differentially expressed in 

both AUT and SCZ (Table 4.4). Similarly, when these genes were characterized by GO, there 

was a clear abundance of altered gene expression in neuronal and synapse-related GOs 

(Figure 4.6). Further, when these DEGsAUT-SCZ genes were split up into those either 

concordantly up- or down-regulated in both disorders, 106 genes differentially 

downregulated in both disorders were driving the GO enrichments, with no contribution 

from the 69 genes upregulated in both disorders. As for AUT-BPD comparisons, there were 

no enrichments detected for any gene ontologies and the only emergent DAVID pathway was 

genes related to phosphoproteins (pBonferroni=1.2x14) (Table 4.4). Similarly, no GO or DAVD 

pathways were found to be significant for DEGsSCZ-BPD. Substantially similar results were 

observed when the number of genes from each cross-disorder comparison input into the 

pathway analysis was fixed rather than imposing a Z-score cutoff (Table 4.5). Finally, we 

found that the number of cross-disorder discordant DEGs (upregulated in one disorder but 

downregulated in the other) differs across the three comparisons, such that there are fewer 

discordant cross-disorder DEGs (16/191, 8.4%) in the comparison between SCZ and AUT than 

in the comparison between AUT and BPD (76/191, 39.8%) or between SCZ and BPD (38/191, 

19.9%), further supporting the transcriptomic similarities between AUT and SCZ. 

Traditional pathway analysis requires a significance cutoff for the gene input for analysis. To 

avoid a potential bias by choosing an arbitrary cutoff, we used a Z-score based approach (see 

Methods) and identified gene enrichment of DCEGs common to all three disorder 

comparisons using the GO data from MSigDB. Three GO pathways – each of which indicated 

some enrichment for altered gene expression in transporter genes – were enriched for DEGs 

in both AUT and SCZ. No pathways were study-wide significant in the other two disorder 

comparisons.  
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Figure 4.6: GO Analysis of cross-disorder DEGsAUT-SCZ. 
Genes differentially expressed in both AUT and SCZ (absolute(Z-score) > 2.2) were analyzed for ontological enrichment of biological 
processes, developmental processes, and cellular component. Ontological categories with at least five genes and an adjusted p-value 
< 0.001 are highlighted in red. This tree highlights the role of nerve impulse transmission, synaptic transmission, and neurotransmitter 
transport in those genes differentially expressed in both AUT and SCZ. 
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4.3.5 Cross-disorder DEGs enrichment in association signals 

To test whether genes differentially expressed across disorders were enriched for genetic 

associations, we compared cross-disorder DGEA results to gene-level GWAS results. We first 

directly compared gene-based GWAS p-values (p<0.05) from each individual GWAS (AUT, 

SCZ, BPD) to p-values from the cross-disorder differential gene expression analysis (AUT-SCZ, 

AUT-BPD, SCZ-BPD). No comparison was identified that would suggest any enrichment in 

signal overlap with respect to the null (Figure 4.7). Three additional p-value cutoffs (p<0.1, 

p<0.01, p<1) demonstrated that neither these null findings nor the inflation seen are a 

function of the gene-based p-value cutoff imposed on the data (Figures 4.8, 4.9, and 4.10, 

Table 4.6). Likewise, there were no enrichments for cross-disorder DEGs seen in these 

analyses relative to the null. Finally, LOF variants have recently been reported in a number of 

AUT studies11,12,14–16,128; however, Gupta et. al demonstrated that these gene expression data 

are neither enriched for the findings from the exome studies nor for Structural Variants (SVs) 

117. Accordingly, these lists of variants have not been included in these analyses.  
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Figure 4.7: Enrichment of DEGs among GWAS signal. 
QQ plots assess enrichment of differential gene expression signal (red) among suggestive 
GWAS results (p<0.05). Data for 100 null permutations are plotted in gray. Each row 
corresponds to GWAS data from a separate disorder (AUT, BPD, SCZ from top to bottom) 
and each column a different cross-disorder comparison (AUT-SCZ, AUT-BPD, and SCZ-BPD 
from left to right). 
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Figure 4.8: Enrichment of DEGs among GWAS at a more permissive p-value cutoff (p<0.1). 
QQ plots assess enrichment of differential gene expression signal (red) among suggestive 
GWAS results (p<0.1). Data for 100 null permutations are plotted in gray. Each row 
corresponds to GWAS data from a separate disorder (AUT, BPD, SCZ from top to bottom) 
and each column a different cross-disorder comparison (AUT-SCZ, AUT-BPD, and SCZ-BPD 
from left to right). 

 

  



115 
 

 

Figure 4.9: Enrichment of DEGs among GWAS signal at a more stringent p-value cutoff 
(p<0.01). 
QQ plots assess enrichment of differential gene expression signal (red) among suggestive 
GWAS results (p<0.01). Data for 100 null permutations are plotted in gray. Each row 
corresponds to GWAS data from a separate disorder (AUT, BPD, SCZ from top to bottom) 
and each column a different cross-disorder comparison (AUT-SCZ, AUT-BPD, and SCZ-BPD 
from left to right). 
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Figure 4.10: Enrichment of DEGs among all genes (no gene based GWAS p-value cutoff 
imposed). 
QQ plots demonstrate that inflation of the test-statistic is present in the data regardless 
of gene-based p-value cut off. Data for 100 null permutations are plotted in gray. Each 
row corresponds to GWAS data from a separate disorder (AUT, BPD, SCZ from top to 
bottom) and each column a different cross-disorder comparison (AUT-SCZ, AUT-BPD, and 
SCZ-BPD from left to right). 
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4.4. Conclusions 

4.4.1 Results summary 

To our knowledge, this is the first study to combine next-generation sequencing gene 

expression analyses across AUT, SCZ, and BDP to assess the transcriptomic relationship and 

how gene expression relates to GWAS findings. We report that, at the transcriptome level, 

AUT and SCZ demonstrate a highly overlapping gene expression profile. The cross-disorder 

DEGs between AUT and SCZ highlight a shared relationship in synapse and projection 

formation, suggesting a role for neuronal development underlying the correlation. Further, 

despite the lack of global significant differential transcriptomic correlation between either 

BPD and SCZ or AUT and BPD, we highlight two genes, IQSEC3 and COPS7A, for their 

consistent downregulation across all three disorders and support further investigation into 

these specific genes’ expression and function to better understand their role in 

neuropsychiatric disorders.  Finally, we report that the genes differentially expressed across 

disorders were not enriched in genetic association signals for AUT, SCZ or BPD.  

4.4.2 Accounting for unknown covariates is critical in transcriptome analyses  

In large gene expression studies, variation that confounds results can be introduced at any 

step despite a tremendous amount of effort to standardize approaches 129–132. Fortunately, 

Surrogate Variable Analysis (SVA) can help to address this by accounting for unknown 

covariates within large genomic data sets50. Importantly, in these analyses, we demonstrate 

that failure to account for unknown sources of variation leads to an artificially inflated 

correlation between SCZ and BPD (R=0.50, Figure 4.5). The previously reported correlation 

between these two disorders (R=0.28) falls between the value reported herein as the 

correlation between SCZ and BPD (R=0.11, Figure 4.3 & and Figure 4.4) and the correlation 

reported when unknown covariates fail to be considered (R=0.50). The previously reported 

correlation between the transcriptomes of SCZ and BPD was likely artificially inflated due to 

these unknown covariates. We note that the remaining discrepancy between our analysis 

without SVs included in the linear model and that previously reported is likely due to the fact 

that our linear model did not include all covariates included in the previous analysis; 

however, as we did not have access to a number of the technical covariates for the SMRI 

samples (cDNA concentration, RNA integrity number, or batch number), we were unable to 

directly test this hypothesis. 
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4.4.3 Correlations in differential gene expression across disorders highlights similarities 

between AUT and SCZ  

After modeling the data for each individual-disorder comparison relative to their controls, 

the cross-disorder comparison demonstrated that SCZ and AUT share a similarly altered 

transcriptome (p<0.001), whereas AUT-BPD and SCZ-BPD (p=0.25 and p=0.41, respectively) 

do not show a significant correlation (Figure 4.3, Figure 4.4). We note that the lack of 

significant correlation between BDP-SCZ in our analysis is in conflict with a previous report 

116, and is likely due to our inclusion of SVs to account for unknown sources of variation, 

suggesting that the previously reported analysis of these data is overstated (see 

Supplemental Discussion). Further, while these data do not directly support transcriptomic 

overlap between SCZ and BPD, this is likely reflective of the shared control design of the 

experiment. This experimental design results in a smaller effective sample size and a study 

underpowered to assess overlap between these two disorders. Given the genetic relationship 

between these disorders (where SCZ-BPD > AUT-SCZ > AUT-BPD)19 , future work utilizing a 

larger sample for analysis may likely demonstrate a shared transcriptomic profile between 

SCZ and BPD; however, these data do not. 

Analyzing the pathways in which DEGs in both SCZ and AUT were involved, we found that the 

genes differentially expressed in AUT and SCZ were enriched for neuron projection 

development (p=0.012, Table 4.4). Additionally, there was a clear enrichment for genes 

involved in synaptic and neuronal processes. The other two non-significant cross-disorder 

comparisons (AUT-BPD and SCZ-BPD) failed to demonstrate any enrichment for biological 

process ontology, even when controlling for the number of cross-disorder DEGs, further 

supporting the conclusion that differential transcriptomic correlation is biologically relevant 

between SCZ and AUT but is not observed in the other two cross-disorder comparisons. 

When the DEGs across AUT and SCZ were broken down into those concordantly upregulated 

versus those concordantly downregulated, the enrichment in GO was only present in those 

genes concordantly downregulated, suggesting that these synaptic and neuronal alterations 

were a result of decreased brain expression in both disorders. 

Finally, in assessing which specific genes were differentially expressed across disorders, we 

identified IQSEC3 and COPS7A as differentially expressed in all three disorders (Table 4.7).  
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IQSEC3 (KIAA1110) is a protein coding gene that has been shown to be specifically expressed 

in human adult brain with particularly high levels in the human cortex133. IQSEC3 has been 

suggested to act as a guanine exchange factor for ARF1 in endocytosis133, and ARF1 critically 

regulates actin dynamics in neurons and synaptic strength and plasticity, potentially aligning 

with pathways previously implicated in AUT, SCZ and BPD. COPS7A is expressed broadly 

across tissues45, and encodes part of the COP9 signalosome, a multi-subunit protease with a 

role in regulating the ubiquitin-proteasome pathway134.  

4.4.4 Differences in genetic variation not explained by overlapping gene expression profiles  

We report no enrichment for significant cross-disorder DEGs among GWAS signal in 

any of the comparisons (Figure 4.7) relative to the null. These findings suggest either that 1) 

alterations at the genetic level do not largely manifest themselves in altered gene expression 

concordantly across these disorders, or 2) that primary genetic defects do not result in 

altered gene expression across disorders at the time points measured but could, perhaps, 

alter gene expression at other time points, such as during development, or 3) the effects of 

these genetic perturbations are small and that increased sample sizes will be required to 

detect these slight differences in cross-disorder altered gene expression. Regardless, large 

differences in gene expression across these disorders appear to be independent of known 

genetic variation in each of these disorders.   

There were a number of limitations associated with our observations. As the analyses 

combine data across two studies with notable design differences in each (shared controls in 

the SMRI data, multiple brain regions from the same individual in the AUT data, limited ability 

to detect lowly expressed genes, and comparison of different cortical brain regions), there 

was certainly variation unrelated to disease state introduced into the differential gene 

expression analyses. However, we have controlled for this to the best of our ability by 

accounting for unknown covariates in all analyses and by determining all levels of significance 

relative to null permutations. While we have controlled for the differences in experimental 

design in our analysis, we note that the reported overlap in AUT and SCZ was significant 

(p<0.001) despite the fact that different cortical brain regions were studied in the two data 

sets. Due to this limitation, we hypothesize that our observed correlation between AUT and 

SCZ may underestimate the true transcriptomic correlation and that the similarities may be 
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even more pronounced between AUT and SCZ had the same brain regions been studied.  

Similarly, sequencing depths in these data sets are lower than many RNA-Seq data sets 

currently being published. Thus, while lowly-expressed genes are not well-estimated here, 

their omission from analysis would only lead to false negatives – or genes missing from 

overlap. This does not detract for the findings, herein, but simply acknowledges that some 

genes may not be included in the analysis, herein.   Conversely, we acknowledge that our 

power to detect correlation between SCZ and BPD is limited due to the smaller effective 

sample size, a consequence of the shared control design of the experiment and that, given a 

larger sample size, transcriptomic correlation between these two disorders may likely 

become evident and reflective of the known genetic relationships19.  

With future studies employing larger sample sizes and more powerful characterizations, we 

will gain a better understanding of the transcriptomic relationships that are common and 

disparate among neuropsychiatric disorders. Besides providing context for how the altered 

genetic landscape of each disorder affects the brain, we hope that identification of common 

aspects underlying susceptibility might be novel targets to therapeutically address the 

underlying pathogenic mechanisms.  
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4.5 Tables 
Table 4.1: Autism sample information 

Sample 
Code 

Sample 
ID 

Dx Sex Age Site  
(Brain 
Bank) 

RIN PMI 
(hrs) 

Brain 
Region 

AN03345 s14 Autism M 2 Harvard 2.2 4 BA10 

AN12457 s16 Autism F 29 Harvard 3.7 17.83 BA10 

AN13872 s23 Autism F 5 Harvard 7 33 BA10 

UMB1571 s69 Control F 18 Maryland NA 8 BA10 

UMB1712 s71 Control M 20 Maryland 5.6 8 BA10 

UMB1790 s72 Control M 13 Maryland 6.4 18 BA10 

UMB1796 s73 Control M 16 Maryland 4.2 16 BA10 

UMB1823 s74 Control M 15 Maryland 1.7 18 BA10 

UMB1841 s75 Control M 19 Maryland 2.4 14 BA10 

UMB1944 s79 Control F 16 Maryland NA 20 BA10 

AN08873 s8 Autism M 5 Harvard 5.7 25.5 BA10 

UMB4728 s85 Control M 17 Maryland 6 23 BA10 

AN01093 s86 Autism M 56 Harvard 2.3 19 BA10 

AN06420 s88 Autism M 39 Harvard 6.5 14 BA10 

AN16641 s1 Autism M 9 Harvard 6.4 27 BA19 

AN01570 s11 Autism F 18 Harvard 6.7 6.75 BA19 

AN17777 s15 Autism F 49 Harvard 2.2 16.33 BA19 

AN12457 s16 Autism F 29 Harvard 3.7 17.83 BA19 

AN11989 s17 Autism M 30 Harvard 4.7 16.06 BA19 

AN00493 s2 Autism M 27 Harvard 3.2 8.3 BA19 

AN13872 s23 Autism F 5 Harvard 7 33 BA19 

AN17678 s25 Autism M 11 Harvard 2.7  NA  BA19 

AN04682 s26 Autism M 15 Harvard NA 23.23 BA19 

AN03632 s27 Autism F 49 Harvard 5.5 21.08 BA19 

AN09714 s28 Autism M 60 Harvard 5.2 26.5 BA19 

AN00764 s3 Autism M 20 Harvard NA 23.7 BA19 

AN16665 s31 Control M 36 Harvard 2.2 20 BA19 

AN01357 s32 Control M 42 Harvard 2.5 18.33 BA19 

AN02583 s33 Control M 68 Harvard 3.5 16.58 BA19 

AN01410 s34 Control M 41 Harvard 2.1 27.17 BA19 

AN15240 s35 Control F 36 Harvard 5.7 18.08 BA19 

AN08677 s36 Control M 38 Harvard 3.2 25.47 BA19 

AN07176 s37 Control M 21 Harvard 2.3 29.91 BA19 

AN17425 s38 Control M 16 Harvard 3 26.16 BA19 

AN14368 s39 Control M 22 Harvard 2.1 24.2 BA19 

AN15566 s40 Control F 32 Harvard 4.6 28.92 BA19 
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AN13295 s41 Control M 56 Harvard 6 22.12 BA19 

UMB797 s42 Autism M 9 Maryland 6.9 13 BA19 

UMB1349 s44 Autism M 5 Maryland 5.1 39 BA19 

UMB1638 s45 Autism F 20 Maryland 3.2 50 BA19 

UMB4231 s46 Autism M 8 Maryland 4.5 12 BA19 

UMB4721 s47 Autism M 8 Maryland 2.3 16 BA19 

UMB4999 s50 Autism M 20 Maryland 4.4 14 BA19 

UMB4671 s51 Autism F 4 Maryland 4.4 13 BA19 

UMB451 s52 Control M 4 Maryland 3 15 BA19 

UMB497 s53 Control M 12 Maryland 4.8 16 BA19 

UMB1185 s55 Control M 4 Maryland 2.6 17 BA19 

UMB1377 s56 Control F 5 Maryland 4 20 BA19 

UMB1674 s58 Control M 8 Maryland 5  NA  BA19 

AN01227 s6 Autism M 82 Harvard 5.2 24.67 BA19 

UMB4898 s61 Control M 7 Maryland 6.2 12 BA19 

UMB1323 s62 Control M 16 Maryland 6.1 25 BA19 

UMB1409 s63 Control M 18 Maryland 6.5 6 BA19 

UMB1429 s64 Control M 18 Maryland 5.2 9 BA19 

UMB1322 s66 Control M 16 Maryland 5.5 25 BA19 

UMB1541 s67 Control F 20 Maryland NA 19 BA19 

UMB1543 s68 Control M 17 Maryland 5.6 22 BA19 

UMB1571 s69 Control F 18 Maryland NA 8 BA19 

AN14613 s7 Autism M 39 Harvard 6.8 22.75 BA19 

UMB1584 s70 Control F 18 Maryland 5.5 15 BA19 

UMB1712 s71 Control M 20 Maryland 5.6 8 BA19 

UMB1790 s72 Control M 13 Maryland 6.4 18 BA19 

UMB1796 s73 Control M 16 Maryland 4.2 16 BA19 

UMB1823 s74 Control M 15 Maryland 1.7 18 BA19 

UMB1841 s75 Control M 19 Maryland 2.4 14 BA19 

UMB1843 s76 Control F 15 Maryland 2.6 9 BA19 

UMB1908 s78 Control M 13 Maryland NA 13 BA19 

UMB1944 s79 Control F 16 Maryland NA 20 BA19 

UMB4590 s80 Control M 20 Maryland 6.3 19 BA19 

UMB4591 s81 Control F 16 Maryland 6.3 14 BA19 

UMB4669 s82 Control M 16 Maryland 2.4 16 BA19 

UMB4727 s84 Control M 20 Maryland 6.4 5 BA19 

UMB4728 s85 Control M 17 Maryland 6 23 BA19 

AN06420 s88 Autism M 39 Harvard 6.5 14 BA19 

AN16115 s89 Autism F 11 Harvard NA 13 BA19 

AN19511 s9 Autism M 8 Harvard 5.8 22.2 BA19 

AN16641 s1 Autism M 9 Harvard 6.4 27 BA44/45 
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AN09730 s13 Autism M 22 Harvard 3 25 BA44/45 

AN03345 s14 Autism M 2 Harvard 2.2 4 BA44/45 

AN11989 s17 Autism M 30 Harvard 4.7 16.06 BA44/45 

AN08166 s22 Autism M 28 Harvard 6.7 43.25 BA44/45 

AN03632 s27 Autism F 49 Harvard 5.5 21.08 BA44/45 

AN09714 s28 Autism M 60 Harvard 5.2 26.5 BA44/45 

AN17254 s29 Autism M 51 Harvard 2.9 22.16 BA44/45 

AN00764 s3 Autism M 20 Harvard NA 23.7 BA44/45 

AN07176 s37 Control M 21 Harvard 2.3 29.91 BA44/45 

AN14368 s39 Control M 22 Harvard 2.1 24.2 BA44/45 

AN08792 s4 Autism M 30 Harvard 5.4 20.3 BA44/45 

UMB1349 s44 Autism M 5 Maryland 5.1 39 BA44/45 

UMB1638 s45 Autism F 20 Maryland 3.2 50 BA44/45 

UMB4721 s47 Autism M 8 Maryland 2.3 16 BA44/45 

UMB4849 s48 Autism M 7 Maryland 3.9 20 BA44/45 

UMB4999 s50 Autism M 20 Maryland 4.4 14 BA44/45 

UMB451 s52 Control M 4 Maryland 3 15 BA44/45 

UMB1185 s55 Control M 4 Maryland 2.6 17 BA44/45 

UMB1377 s56 Control F 5 Maryland 4 20 BA44/45 

UMB1674 s58 Control M 8 Maryland 5  NA  BA44/45 

UMB4670 s60 Control M 4 Maryland 5 17 BA44/45 

UMB1409 s63 Control M 18 Maryland 6.5 6 BA44/45 

UMB1429 s64 Control M 18 Maryland 5.2 9 BA44/45 

UMB1465 s65 Control M 17 Maryland 5.9 4 BA44/45 

UMB1841 s75 Control M 19 Maryland 2.4 14 BA44/45 

AN08873 s8 Autism M 5 Harvard 5.7 25.5 BA44/45 

AN19511 s9 Autism M 8 Harvard 5.8 22.2 BA44/45 

 

Table 4.2: Schizophrenia and bipolar disorder sample information 

Stanley 
ID 

Dx Sex Age PMI 
(hrs) 

Brain 
pH 

A1 Bipolar M 29 48 6.39 

A10 Schizophrenia M 40 34 6.18 

A100 Schizophrenia F 59 38 6.93 

A101 Schizophrenia M 52 16 6.52 

A102 Bipolar M 48 23 6.9 

A104 Control M 47 36 6.57 

A12 Schizophrenia M 19 28 6.73 

A14 Bipolar F 48 18 6.5 

A16 Bipolar M 42 32 6.65 

A17 Schizophrenia F 53 13 6.49 
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A18 Bipolar M 35 35 6.3 

A19 Control M 49 46 6.5 

A2 Bipolar M 29 60 6.7 

A20 Bipolar F 59 53 6.2 

A21 Bipolar M 54 44 6.5 

A22 Schizophrenia M 37 30 6.8 

A23 Bipolar F 35 17 6.1 

A24 Control M 53 9 6.4 

A25 Schizophrenia M 52 10 6.1 

A26 Schizophrenia M 24 15 6.2 

A27 Control M 37 13 6.5 

A29 Control M 51 31 6.7 

A3 Schizophrenia M 43 26 6.42 

A32 Bipolar F 42 49 6.65 

A33 Control F 38 33 6 

A34 Bipolar F 58 34 6.5 

A35 Control F 38 28 6.7 

A37 Schizophrenia M 39 80 6.6 

A38 Control M 59 47 6.8 

A39 Schizophrenia M 33 29 6.5 

A4 Bipolar M 45 28 6.35 

A40 Schizophrenia M 50 9 6.2 

A41 Schizophrenia M 43 18 6.3 

A42 Bipolar M 64 16 6.1 

A43 Control M 35 52 6.7 

A44 Schizophrenia F 32 36 6.8 

A45 Schizophrenia M 35 47 6.4 

A46 Bipolar M 59 84 6.65 

A47 Schizophrenia M 44 32 6.67 

A49 Control M 34 22 6.48 

A51 Control M 47 21 6.81 

A52 Control M 45 21 6.94 

A54 Control M 42 37 6.91 

A55 Schizophrenia M 47 13 6.3 

A57 Bipolar M 51 23 6.67 

A58 Bipolar F 63 32 6.97 

A6 Bipolar F 29 62 6.74 

A60 Control M 45 18 6.81 

A62 Bipolar F 56 26 6.58 

A63 Bipolar F 43 39 6.74 

A64 Bipolar M 35 22 6.58 
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A65 Control M 49 23 6.93 

A66 Schizophrenia M 45 35 6.66 

A67 Control M 32 24 7.03 

A68 Schizophrenia F 36 27 6.49 

A69 Bipolar F 50 62 6.51 

A7 Schizophrenia M 31 33 6.2 

A70 Control M 55 31 6.7 

A71 Control F 49 45 6.72 

A72 Bipolar F 49 38 6.39 

A73 Schizophrenia M 54 38 6.17 

A75 Schizophrenia F 54 42 6.65 

A78 Schizophrenia F 44 26 6.58 

A79 Control M 48 31 6.86 

A8 Bipolar M 44 19 6.74 

A81 Schizophrenia M 50 30 6.47 

A83 Control M 32 13 6.57 

A84 Control M 47 11 6.6 

A85 Schizophrenia M 38 35 6.69 

A86 Control M 46 31 6.67 

A87 Schizophrenia M 41 54 6.18 

A88 Schizophrenia M 43 65 6.67 

A89 Bipolar F 43 57 5.92 

A90 Control M 40 38 6.67 

A91 Control M 51 22 6.71 

A92 Schizophrenia M 42 26 6.19 

A93 Schizophrenia F 47 35 6.5 

A94 Schizophrenia M 42 19 6.48 

A95 Control M 31 11 6.13 

A97 Schizophrenia M 46 30 6.72 

A98 Bipolar M 56 23 6.07 

A99 Control F 39 58 6.46 
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Table 4.3: Sample Summary 

  

N 
Unique 

Individuals 

Mean 

Age 

(years) 

Sex 

        F M 

AUT 

CTL 57 40 20 12 33 

AUT 47 32 24 9 18 

TOTAL 104 72 22 21 51 

SMRI 

CTL 26 26 44 4 22 

BPD 25 25 47 12 13 

SCZ 31 31 42 7 24 

TOTAL 82 82 44 23 59 

Abbreviations: AUT, autism; BPD, bipolar disorder; SCZ, schizophrenia; CTL, control 

 

 

Table 4.4: DAVID Pathway Analysis for cross-disorder DEGs  

  TOTAL UP DOWN DISCORDANT 
DAVID 

Pathways 

AUT-

SCZ 
191 69 106 0 

neuron 

projection 

development 

(p=0.012) 

AUT-

BPD 
38 8 19 11 

phosphoprotein 

(p=1.2x14) 

SCZ-

BPD 
16 2 13 1 -- 

Abbreviations: AUT, autism; BPD, bipolar disorder; SCZ, schizophrenia 
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Table 4.5: DAVID Pathway Analysis for cross-disorder DEGs controlling for # of genes input 

 
controlling for # of genes 

 
TOTAL UP DOWN DISCORDANT 

DAVID Pathways 
(ALL) 

DAVID (UP) DAVID (DOWN) 

AUT-
SCZ 

191 69 106 16 
neuron projection 

development 
phosphoprotein 

transport, cytoplasm, 
syntaxin binding, SNARE 

binding 

AUT-
BPD 

191 45 67 76 

phosphoprotein, 
enzyme binding, 

cytosol, 
cytoplasm, 
acetylation 

NONE 

cytosol, synapse, 
phosphoprotein, GTPase 

regulator activity, 
nucleoside-triphosphate 

regulator activity, cell 
junction 

SCZ-
BPD 

191 55 98 38 -- NONE NONE 
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Table 4.6: Association Signal Enrichment Results across multiple Z-score cutoffs. 

GWAS 
Z-score 
cutoff 

      BACKGROUND (null)       

ZAUT*ZSCZ ZAUT*ZBPD ZSCZ*ZBPD ZAUT*ZSCZ ZAUT*ZBPD ZSCZ*ZBPD ZAUT*ZSCZ ZAUT*ZBPD ZSCZ*ZBPD 

AUT 

3 0 0 0 0 0 0 1 1 1 

2.7 1 0 0 3 0 0 0.775 1 1 

2.5 1 0 0 4 2 0 0.946 1 1 

2.2 8 0 0 15 0 0 0.357 1 1 

2 14 2 0 16 3 2 0.264 0.826 1 

BPD 

3 0 0 0 0 0 0 1 1 1 

2.7 7 1 0 4 1 0 0.111 0.46 1 

2.5 10 1 0 9 2 0 0.295 0.804 1 

2.2 23 2 1 20 6 4 0.17 0.891 0.81 

2 33 7 5 24 10 3 0.381 0.711 0.216 

SCZ 

3 4 1 0 5 1 0 0.35 0.442 1 

2.7 13 1 0 10 1 0 0.232 0.838 1 

2.5 26 4 1 20 3 1 0.082 0.613 0.679 

2.2 54 11 4 56 11 3 0.155 0.33 0.581 

2 89 22 11 73 24 10 0.079 0.368 0.226 
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Table 4.7: Genes significantly differentially expressed across disorders 

  

# Sig. 

Gene

s 

Cross-

Disorder 

Sig. 

Cutoff 

Ensembl Gene IDs 
Gene 

Name 
chr 

Zcross-

disorder 
ZAUT ZSCZ ZBPD 

AUT-SCZ 9 12.42 

ENSG00000106261 ZKSCAN1 7 15.24 4.08 3.74 0.68 

ENSG00000172005 MAL 2 14.66 5.24 2.80 1.20 

ENSG00000120645 IQSEC3 12 14.53 -4.04 -3.59 -3.46 

ENSG00000046653 GPM6B X 14.16 3.62 3.91 0.26 

ENSG00000167191 GPRC5B 16 13.85 3.72 3.72 0.78 

ENSG00000129521 EGLN3 14 13.62 4.76 2.86 0.13 

ENSG00000164068 RNF123 3 12.81 -3.46 -3.71 -0.99 

ENSG00000134780 DAGLA 11 12.54 -4.22 -2.98 -0.57 

ENSG00000183597 TANGO2 22 12.53 -3.83 -3.27 0.25 

AUT-BPD 1 12.29 ENSG00000120645  IQSEC3 12 14.00 -4.04 -3.59 -3.46 

SCZ-BPD 0 21.71 -- -- -- -- -- -- -- 

AUT-SCZ-BPD 2 19.56 
ENSG00000120645  IQSEC3 12 -35.45 -4.04 -2.95 -2.97 

ENSG00000111652 COPS7A 12 -22.52 -3.31 -3.14 -2.17 

Abbreviations: AUT, autism; BPD, bipolar disorder; SCZ, schizophrenia; Sig., significant; chr, chromosome; Z, Z-Score 
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CHAPTER 5: Exaggerated CpH Methylation in the Autism-Affected 

Brain 

5.1 Introduction 
Autism is a heritable neurodevelopmental disorder affecting one in 68 individuals in the 

United States135. Recent genetic studies have identified a handful of genes that contribute to 

autism136–140 and gene expression studies have begun to unravel how altered gene 

expression manifests within the autistic brain141,142; however, the majority of risk remains 

unexplained. In addition to genetic causes, epigenetic mechanisms have been proposed to 

play an important role in the development of the disorder. This hypothesis was initially 

supported by three lines of evidence. First, direct alterations in epigenetic pathways can 

dramatically alter early embryonic and neonatal neurodevelopment in the same critical 

periods as autism-associated changes in the brain 31 Second, mutations in indirect epigenetic 

effectors can result in autism-spectrum and related disorders, such as Rett syndrome143, 

Fragile X syndrome144, and Angelman syndrome145. Finally, deficiencies in DNA methylation 

(DNAm), historically studied in CpG islands in gene promoters as an indicator of 

transcriptional repression, have previously been implicated in autism146–148.  

Initial studies of methylation in autism were limited by the number of sites investigated, a 

lack of dynamic range in microarrays, the number of samples available for study, and the 

prioritization of DNA that was procured from cell lines and tissue other than the brain. To 

gain a more complete picture of altered DNAm in autism, we carried out Reduced 

Representation Bisulfite Sequencing (RRBS) in 71 post-mortem cortical brain samples (BA19) 

at single nucleotide resolution with a quantitative measurement of DNAm across CpG-dense 

regions of the genome149,150.  RRBS, in addition to querying methylation at more sites than 

the previously-used Infinium HumanMethylation450 array (Illumina)35,36, enables 

measurement of methylation at cytosines outside of the classically studied CpG context. 

While CpH methylation (mCH, where H=A,C, or T) is rare in most tissues, it accumulates in 

DNA in human and mouse brain postnatally, ultimately reaching levels similar to that of CpG 

methylation (mCG) in brain DNA 151–153. In contrast to mCG which remains largely unchanged 

during postnatal development, mCH accumulation correlates with synaptogenesis and 

increases especially during the first few years of life151,152, a time period of particular interest 
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in autism. Thus, we used post-mortem cortical brains samples to characterize CpG and CpH 

methylation in autism affected brain tissue and compared this to matched neurologically 

normal control brain tissue.  

5.2 Methods 

5.2.1 Samples 

Samples were acquired through the Autism Tissue Program (which has since joined with the 

Autism Brain Net, https://autismbrainnet.org/). Post-mortem, frozen brain samples from the 

cerebral cortex Brodmann area (BA) 19 were collected at two different brain banks: the 

Harvard Brain Tissue Resource Center and the NICHD Brain and Tissue Bank at the University 

of Maryland with written informed consent having been obtained from next-of-kin or a legal 

guardian. Work herein was both approved by the IRB of The Johns Hopkins Hospital and 

University of Alabama at Birmingham and conducted in accordance with institutional 

guidelines.  

5.2.2 RRBS library preparation 

Seventy-one samples were prepared for reduced representation bisulfite sequencing (RRBS). 

RRBS libraries were prepared using 100 ng of genomic DNA. gDNA was first digested with 

MspI making cuts exclusively at methylated cytosines. 3’ A-overhangs were created and filled 

in with Klenow Fragments. DNA was then purified using the Qiagen MinElute Kit. Methylated 

ilAdap PE adapters (Illumina) were ligated to purified gDNA. Fragment size selection (105-

185bp) was carried out by gel extraction on a 2.5% NuSieve GTG agarose gel (Lonza). DNA 

was purified using Qiaquick Gel extraction Kit eluting DNA in elution bugger pre-warmed to 

55 degrees Celsius. Bisulfite treatment was performed using the ZymoResearch EZ DNA 

Methylation Gold Kit following manufacturer’s instructions; however, we eluted with 20μl M-

Elution buffer. Bisulfite-treated DNA was cleaned up using EpiTect spin columns. Samples 

were PCR amplified (using the following primers: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T and  

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T; 

*=phosphorothioate bond) and size selection was carried out on a 3% Metaphor Agarose Gel 

to ensure that fragments of the correct size (175-275bp) were amplified. PCR product was 

cleaned up using the Qiagen minElute column, eluting with elution buffer warmed to 55 
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degrees Celsius.  Each sample (10nM) was sequenced in a single lane on the Illumina 

HiSeq2000 to produce 50bp single end reads.  

5.2.3 Alignment 

Adaptor sequences were removed and reads shorter than 20 bp were excluded using Trim 

Galore! (v0.2.8). Remaining reads were aligned using Bismark (v0.7.7)154, a methylation-

specific wrapper for Bowtie54 allowing for one mismatch and setting the seed substring 

length to 24. 

5.2.4 Methylation estimation 

Two separate analyses were carried out based on cytosine context; one for cytosines in the 

CpG context and a separate analysis for all other cytosines in the genome (CpH). Thus, 

samfiles for every sample and each of the two contexts were formatted for input into the R 

package ‘methylKit’155 (v0.9.5) using in-house scripts. Reads were filtered in methylKit based 

on read count discarding bases with coverage below 10X as well as those with coverage 

greater than the 99.9th percentile of coverage in each sample to remove reads suffering from 

PCR bias. Data were normalized based on median coverage and methylation percentage 

estimated using ‘normalizeCoverage’ and ‘percMethylation’, respectively within methylKit. 

5.2.5 Illumina 27K methylation array  

To independently verify methylation estimates from RRBS, CpG methylation was also 

analyzed in 71 cortical brain samples using the HumanMethylation27 BeadChip. These 

samples comprised 41 controls and 30 autism cases. Data were generated as described 

previously156. Normalized β–values were used for analysis. For comparison to RRBS data, 

mean methylation was quantified for the 1,249 CpGs that directly overlapping between the 

two platforms. Sites directly measured by both platforms had highly correlated measures of 

mean methylation (R2=0.92), offering confidence in the measurements acquired by RRBS 

(Figure 5.1).  
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Figure 5.1 Correlation between mean methylation measured by RRBS and array. 
The 1,249 CpGs directly measured by both RRBS and Illumina’s 27K methylation array 
demonstrate highly correlated mean methylation values across samples (R2=0.92). 

 5.2.6 Sample outlier removal 

Four samples were excluded from analysis upon initial diagnostics as their profiles indicated 

failed library preparation or failed sequencing. Two were removed due to the fact that nearly 

all (>99%) of their cytosines were methylated after alignment and methylation estimation. A 

third sample was removed because its CpG methylation percentage distribution was not 

bimodal. The fourth sample was removed because its read coverage distribution did not 

match the expected distribution. 

After identifying samples that failed library preparation and/or sequencing, remaining sample 

outliers were identified using surrogate variable analysis (SVA).50 Ten surrogate variables 

(SVs) were generated using methylation estimates from CpG sites with data across all 

samples (254,824 CpGs). Samples greater than four standard deviations away from the mean 

in any of the SVs generated were identified as sample outliers. This process was carried out 

iteratively, and after each round of sample outlier removal, the percentage of known brain 

meQTLs157,158 detected was quantified using a method previously developed for RNA-

R
2
=0.92 
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Sequencing data75 to guide data analysis. After each round of sample outlier removal, cis 

meQTLs (1Mb) were detected at SNPs and CpGs present in both the previously reported 

meQTL studies and the brain data using high quality genotype data described previously for 

these samples75. meQTLs were detected using MatrixEQTL159 with age, sex, site and SVs 

included as covariates, and the percentage of known meQTLs was recorded. This process 

enabled us to confidently move forward with 63 samples, including 29 autistic cases and 34 

controls, as this sample size maximized the percentage of known meQTLs detected, in all 

downstream analyses (Figure 5.2). 

Figure 5.2 Previously reported meQTLs after sample outlier removal. 
After removal of samples that failed sequencing, 63 samples remained for analysis. SVA 
was then utilized to identify sample outliers. After each round of outlier identification, 
the percentage of previously-reported meQTLs (y-axis) detected in the remaining 
samples (sample size indicated on the x-axis) was calculated. meQTL detection was 
maximized with 63 samples. These samples were included in downstream analyses. 

 

5.2.7 Single site differential methylation analysis 

Methylation outliers at each single site were defined as any sample greater than three 

standard deviations away from the mean methylation at that site and removed. Only variant 

sites were included for analysis, excluding the 25% least variable sites from analysis.  Single 

site differential methylation was then carried out on each site using the ‘lmFit’ function in the 
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‘limma’ R package160. For all cytosines, case-control status was regressed on methylation 

percentage with age, sex, site, and ten SVs included as covariates (‘full model’). Ten SVs were 

generated using methylation data from all variant sites with data across all samples utilizing 

the “irw” method and protecting case-control status. Additionally, as read coverage impacts 

our confidence in methylation estimates, the log10 of read coverage at each site was 

included as weights in the model.  

Statistical significance was determined by residual bootstrapping, again using ‘limma’. For 

each bootstrap, the full model (described above) was fit and residuals recorded. A null 

model, in which the variable of interest (here, case-control status) was excluded, was also fit. 

The residuals from the full model were resampled with replacement, randomizing the sample 

order.  ‘Pseudonull’ data were then generating adjusting the fits from the null model with the 

resampled residuals from the full model. These pseudonull methylation values were then 

substituted as the outcome variable into the full model, generating a null set of p-values. 

These p-values were collected for each of the 1,000 bootstraps to empirically determine 

study-wide significance.  

5.2.8 Global altered methylation analysis 

For each cytosine context, the proportion of sites hypermethylated (defined as mean 

methylation in cases greater than zero) was calculated at a number of different p-value 

cutoffs (1, 0.5, 0.05, 5x13, and 5x14). To assign significance, this proportion was then 

compared to the proportion of sites hypermethylated in each of the bootstraps.  

5.2.9 Lists of functional genomic categories 

Lists for twenty-four different functional genomic categories to test for enrichment of 

hypermethylated cytosines within the CpH context were downloaded from three different 

sources: (1) the UCSC Genome Browser (mRNA, transcription factor binding sites (tfbs), 

DNase I hypersensitive sites (dnase), enhancers, CTCF binding sites (CTCF), segmental 

duplications (segdups), repetitive regions (repeats), and histone marks (H3K4m1 , H3K4m2 , 

H3K4m3 , H3K9Ac , H3K9m3 , H3K27Ac , H3K27m3 , H3K36m3 , H3K79m2 , and  H4K20m1), 

(2) UCL Cancer Institute (beacons) , and (3) the ‘methylKit’ package155 (promoters, exons, 

introns, transcription start sites (TSS), CpG Islands (CGI), and CGI shores).  
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5.2.10 Functional enrichment testing 

To test for genomic enrichment of hypermethylated CpH sites in each genomic list and at 

each p-value cutoff from the differential methylation analysis (0.5, 0.1, 0.05, 0.01, 5x13, 1x13, 

and 5x14), a two-sided Fisher’s exact 2x2 test was carried out. For each list and at each 

differential methylation p-value cutoff, odds ratios and p-values for enrichment were 

recorded.  

5.2.11 Power calculation 

Power calculations were carried out using the “pwr.t2n.test” function from the ‘pwr’ package 

in R. This two-sided t-test of means for samples of different sizes (N=34 controls and 29 

cases) was carried out at the 0.05 significance level (Type I error probability).  

5.3 Results 
After the removal of sample outliers, 63 samples were included for analysis, comprising 29 

autism cases and 34 controls (Table 5.1). Methylation was estimated at cytosines with 

greater than 10 reads across at least 20 cases and 20 controls, yielding methylation estimates 

at 1.0M CpG and 3.3M CpH sites (Figure 5.3). No individual CpG or CpH sites were 

significantly differentially methylated after correction for multiple testing (Tables 5.2 and 5.3 

and Figure 5.4).  

In addition to testing for differential methylation at individual sites, where our power to 

detect differences is limited, we also measured global changes associated with hypo- or 

hypermethylation. Among sites demonstrating suggestive differential methylation (p<0.05), 

there is a consistent and statistically significant proportion of cytosines demonstrating 

increased methylation within the CpH (Figure 5.5b, p=0.02), but not the CpG (Figure 5.5a) 

context. Further, given the fact that more stringent p-value cut-offs for differentially 

methylated sites should enrich for true positives, we hypothesized that the global 

hypermethylation signal would increase in strength with increasingly stringent p-value  cut-

offs in the CpH methylations associated with global hypermethylation, but not with the CpG 

sites that do not show global differences. Indeed, as more stringent differential methylation 

p-value cutoffs were imposed, a greater skewing in the number of hypermethylated to 

hypomethylated sites were observed (Figure 5.5b and Figure 5.6b). This trend was not seen in 

the CpG sites as hypothesized (Figure 5.5a and Figure 5.6a). Taken together, these data 



137 
 

suggest that small increases (CpH sites with a differentially methylated p-value < 0.001 

demonstrate a median 1.8% increase in cases relative to controls) in methylation across 

many individual sites are found at cytosines outside of the classically studied CpG context in 

the autistic brain.    
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Figure 5.3 Summary of CpG and CpH sites. 
Mean methylation distribution, genomic context proportions, and CpG Island proportions in CpG (a-c) and CpH (d-f) sites included 
for analysis. 
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Figure 5.4 Single site differential methylation analysis. 
Manhattan plots and QQ plots present results from the single site differential methylation analysis at CpG (a-b) and CpH sites (c-d) 
tested. Green dotted line on manhattan plots (a,c) indicate study-wide significance as determined by residual boostrapping.   QQ plots 
(b,d) are colored by mean methylation value. 
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Figure 5.5 Proportion of hyper- and hypo- methylated sites in the CpG and CpH contexts.  
Proportion of sites (y-axis) across increasingly stringent differentially methylated p-value cutoffs (x-axis). The number of cytosines at 
each differentially methylated p-value cutoff are displayed in the tables (below).  (a) With approximately half of all sites demonstrating 
increased methylation (navy) and the other half decreased methylation (light blue), CpG sites behave as expected under the null. This 
pattern holds across increasingly stringent differential methylation p-value cut-offs demonstrating no global differences in 
methylation within the CpG context. (b) The proportion of cytosines demonstrating hypermethylation is not significantly different 
from the proportion demonstrating hypomethylation when looking at all CpH sites; however, with increasingly stringent differentially 
methylated p-value cutoffs, there is a significant proportion of hypermethylated CpH sites in the autistic brain. 
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Figure 5.6 Null distributions of hypermethylation in CpG and CpH contexts. 
Distributions plotted (solid curves) demonstrate expected proportion of hypermethylated sites under the null (as determined by 
residual boostrapping) at increasingly stringent p-value cutoffs from the differential methylation analysis (p<0.05 in red, p< 0.005 in 
green and p<0.0005 in blue) in the CpG (a) and CpH contexts (b). Dotted vertical lines indicate study-wide significance cutoffs. Solid 
vertical lines indicate signal in the data. Solid vertical lines to the right of its corresponding color dotted line indicates a study-wide 
significance (number of hypermethylated sites more extreme than expected under the null). 
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To better understand how altered mCH may be linked to the pathobiology of autism and 

aberrant neurodevelopment, we tested for enrichment of hypermethylated CpHs in various 

functional categories annotated across the genome. We used a Fisher’s exact test to detect 

enrichment of hypermethylated cytosines in 24 different functional categories of the genome 

at several thresholds produced in the differential methylation analysis. This analysis 

highlights a role for increased methylation at CpH sites within repetitive regions of the 

genome and in regions that contain non-polymorphic human-specific CpGs, termed 

beacons23 (Figure 5.7). This finding implicates increased methylation within autism brain 

tissue at cytosines outside of the canonical CpG di-nucleotide It is not clear whether 

increased CpH methylation in autism is causal, protective, or benign in the etiology of 

disease. Given that mCH is specifically enriched in both the human and mouse brain152, 

future studies can begin to probe the function of CpH methylation in successful and aberrant 

neurodevelopment.  

To maximize the number of samples that could be sequenced, this work employed RRBS 

rather than whole genome bisulfite sequencing (WGBS). As RRBS enriches for CpG rich 

regions of the genome, we are unable to estimate methylation for cytosines outside of CpG 

rich regions. As sequencing costs continue to decline, WGBS of all the available brain tissue 

specimens will become more feasible and will undoubtedly add further insight into the role 

of methylation and other epigenetic phenomenon in autism. Additionally, given the extreme 

rarity of samples, sample size is always a cause for concern in post-mortem brain studies. 

Here, we report findings from the largest number of samples studied to date. As such, we are 

80% powered to detect mean methylation differences greater than or equal 2.6% (Figure 

5.8); however, cytosines of smaller effect could have been missed in these analyses.  
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Figure 5.7 Functional genomic enrichment of hypermethylated CpH sites. 
Enrichment of hypermethylated CpH sites at increasingly stringent differential methylation analysis p-value cutoffs (x-axis) was tested 
in 24 functional genomic categories. Odds ratios are plotted in the heatmap.  
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Figure 5.8 Power calculation. 
Power calculation demonstrates that given our sample size, we are 80% powered to detect mean methylation differences between 
cases and controls greater than or equal to 2.6%. 
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5.4 Conclusions 
In summary, this is the first genome-wide characterization of mCH methylation in autism 

affected brains, and while we do not detect any differences in individual sites in either the 

CpG or the CpH context after accounting for multiple testing, we report that increased CpH 

methylation occurs throughout the genome in DNA from autism affected brain. These CpH 

sites are strongly associated with repetitive regions and beacons, offering a first glimpse into 

how the epigenome may be affected in autism.   
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5.5 Tables 
Table 5.1 Sample Information 

 age sex† site* 

Sample11 18 0 0 

Sample14 2 1 0 

Sample15 49 0 0 

Sample16 29 0 0 

Sample17 30 1 0 

Sample22 27 1 0 

Sample23 28 1 0 

Sample25 5 0 0 

Sample26 11 1 0 

Sample27 15 1 0 

Sample28 49 0 0 

Sample2 60 1 0 

Sample30 20 1 0 

Sample31 56 1 0 

Sample32 36 1 0 

Sample33 42 1 0 

Sample34 68 1 0 

Sample35 41 1 0 

Sample36 36 0 0 

Sample37 38 1 0 

Sample38 21 1 0 

Sample3 16 1 0 

Sample40 30 1 0 

Sample41 32 0 0 

Sample43 56 1 0 

Sample44 9 0 1 

Sample45 5 1 1 

Sample46 20 0 1 

Sample47 8 1 1 

Sample48 8 1 1 

Sample49 7 1 1 

Sample4 14 1 1 

Sample50 20 1 1 

Sample51 4 0 1 

Sample55 4 1 1 

Sample56 5 0 1 

Sample57 6 1 1 

Sample60 4 1 1 
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Sample63 18 1 1 

Sample64 18 1 1 

Sample66 16 1 1 

Sample67 20 0 1 

Sample68 17 1 1 

Sample70 39 1 0 

Sample71 18 0 1 

Sample72 20 1 1 

Sample73 13 1 1 

Sample74 16 1 1 

Sample75 15 1 1 

Sample76 19 1 1 

Sample78 15 0 1 

Sample79 13 1 1 

Sample7 16 0 1 

Sample80 5 1 0 

Sample81 20 1 1 

Sample82 16 0 1 

Sample84 16 1 1 

Sample85 20 1 1 

Sample86 17 1 1 

Sample88 56 1 0 

Sample89 39 1 0 

Sample8 11 0 0 

Sample9 8 1 0 
†Sex: 1=male, 0=female 
*Site: 0=Harvard, 1=University of Maryland 
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Table 5.2 Top 10 differentially methylated CpG sites 

chr start end 
Mean 
Methylation 

p-value 
Methylation 
Difference 

chr4 187079352 187079352 56.82 7.35E-07 -19.64 

chr2 162279930 162279930 16.10 1.37E-06 -7.46 

chr3 140823463 140823463 26.60 1.48E-06 -22.70 

chr7 31557285 31557285 67.86 4.02E-06 -15.08 

chr17 61781716 61781716 97.09 5.12E-06 6.30 

chr22 50326315 50326315 95.10 6.11E-06 10.95 

chr11 70851605 70851605 46.36 7.23E-06 -10.92 

chr14 100197629 100197629 60.54 8.50E-06 -17.94 

chr19 1395122 1395122 70.23 8.51E-06 18.20 

chr22 36159533 36159533 98.10 1.04E-05 3.60 

 
Table 5.3 Top 10 differentially methylated CpH sites 

chr start end 
Mean 
Methylation 

p-value 
Methylation 
Difference 

chr4 184827961 184827961 2.37 1.60E-06 -4.93 

chr17 11593366 11593366 8.32 2.52E-06 7.52 

chr3 52099473 52099473 0.56 3.36E-06 2.13 

chr1 12164559 12164559 2.42 3.40E-06 3.47 

chr14 75430313 75430313 12.57 3.76E-06 8.14 

chr8 144680079 144680079 0.87 5.33E-06 2.27 

chr12 109251714 109251714 2.33 7.92E-06 -6.47 

chr10 75532643 75532643 2.82 9.47E-06 -2.51 

chrX 153979280 153979280 1.17 1.01E-05 2.38 

chr15 75135664 75135664 1.70 1.04E-05 2.38 
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APPENDIX 1: Using the human brain to understand “omics” in 

autism 
 
Blog post for the Autism Science Foundation 
May 19, 2016 
 
Shannon E. Ellis 

Autism is a complex neurodevelopmental disorder with a definitively established genetic 

basis7.  However, complete understanding of the genetic etiology remains elusive. While the 

role for certain CNVs in autism has been definitively established8,9 and exome sequencing 

studies have begun to uncover rare de novo mutations that play a role in the disorder14–16,161–

163, we are far from identifying the names of the hundreds of genes likely contributing to the 

disorder.  

While naming the genes that play a role in autism is critical, it has become increasingly clear 

that changes in the DNA sequence are only a first step toward complete understanding. 

Additionally, scientists acknowledge that they must know what the genes do, not only what 

they are. Therefore, our lab has begun to get a handle on what is altered at the level of gene 

expression and DNA methylation within the primary affected tissue in autism – the brain.  

This is part of a larger field called “omics”:  meaning “genomics” (the study of DNA 

sequence), “transcriptomics” (the study of gene expression), “epigenomics” (the study of 

how genes are expressed, “proteomics” (how proteins are regulated by DNA expression) and 

“metabolomics” (the chemical processes of making and breaking down compounds).  Our 

study focused on transcriptomics and epigenomics. 

To understand the processes in the brains of people with autism, we had to study the brains 

of people with autism.  Therefore, we worked with the Autism BrainNet (formerly the Autism 

Tissue Program) to obtain brain samples and extract RNA.  We were interested in RNA 

because it is produced from DNA.  Using DNA as a template, RNA is formed as the first step in 

creating proteins.  The proteins are what carry out the function of the cell.  The number of 

copies of RNA is a reflection of the gene expression of the cell:  the more copies, the more 

gene expression. While differences in an individual’s DNA are undoubtedly of interest to the 

study of autism, it is also important to look for differences in gene expression and protein 

levels to fully understand the disorder. We used the RNA to look at the gene expression of 

about 14,000 genes. Additionally, in these same individuals, DNA samples were used to 

estimate methylation levels at cytosines across cytosine-rich regions of the genome.  

Last year, we published some results on the transcriptomic part.  When we looked at the 

gene expression, we identified three groups of genes that showed different patterns of 

expression between autism cases and controls.  The first two groups included genes that 

influence the way neurons work, how they interact with each other, and how they grow and 

communicate to form the human brain.  Interestingly, the genes that showed differences in 

gene expression were different genes than those identified in previous studies that, rather 
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than looking at gene expression differences, looked to identify DNA differences important to 

autism.    This demonstrates that genes that have differences in their DNA are different from 

those genes showing downstream differences at the level of gene expression. The third 

group was made up primarily of M2-microglia genes, suggesting in increased immune 

response in the brains of autistic individuals. We want to stipulate that this does not mean 

that alterations in the immune system of the brain cause autism. It could be that abnormal 

gene expression in the brain triggers an M2 microglia response.  Future work is required 

before we can determine if the increased immune response leads to or is a result of autism. 

Nevertheless, from a treatment standpoint, this work provides pathways that, despite 

variable genetic causes, can be targeted for treatment in affected individuals going forward. 

We moved this further to compare the gene expression overlap in the brains of people with 

autism with other neuropsychiatric disorders.  Previous studies have shown that there is an 

overlap in which genes have DNA differences across neuropsychiatric disorders. To establish 

if this overlap holds up at the level of the transcriptome, we compared gene expression 

differences across three disorders: autism, schizophrenia, and bipolar disorder.   While there 

was little overlap between autism and bipolar disorder, there was significant overlap 

between the expression patterns in genes in autism and schizophrenia brains11, with 

consistent decreased expression at neuronal and synaptic plasticity genes across these two 

disorders.  This work extended the known genetic overlap between neuropsychiatric 

disorders by establishing a relationship between alterations in gene expression found in both 

autism and schizophrenia. 

Finally, as gene expression is directly regulated by DNA methylation, we looked to determine 

if DNA methylation differences play a role in autism.   Methylation is a process where a 

methyl group attaches to a part of a DNA sequence and turns down the expression of that 

gene.  To look at DNA methylation, we looked at cytosines. Cytosines are places in our 

genome where these methyl groups normally attach.  Thus far, most work has studied CpG 

methylation. This refers to when a methyl group attaches to a cytosine (C) that is directly 

next to a guanine (G) nucleotide. This CpG context is where methylation most frequently 

occurs in the genome. However, methylation can occur at cytosines next to other DNA 

nucleotides (C, T, or A), and this is referred to as CpH methylation. As CpH methylation occurs 

at higher levels in the brain relative to other tissues, we did not want to limit our study to 

CpG sites alone, but rather wanted to look for differences in CpH methylation as well. We 

found increased levels of methylation at CpH, but not CpG, sites globally within the autistic 

brain. We are currently working on why there is this difference and why it is seen in autism, 

but as CpH methylation is largely specific to the human brain (as compared to blood or other 

cells), it is a particularly compelling finding.    

While we acknowledge we have not answered all the questions, we now have a better 

understanding of what is going on in the brain of individuals with autism.  In particular, in 

addition to further establishing a relationship between schizophrenia and autism, this work 

not only highlights a role for increased immune activation within affected individuals, 

providing a particular pathway to target when considering future therapies, but also, for the 
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first time, suggests a role for increased methylation at cytosines within the CpH context in 

the brains of autistic individuals.  
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APPENDIX 2: Analyses of gene activity can yield clues to roots of 

autism 

Viewpoint piece for Spectrum 

June 2016 

 

Shannon E. Ellis and Dan E. Arking, Ph.D. 

The number of genetic variants implicated in autism is large and growing, but it’s increasingly 

clear that identifying these variants is only the beginning of the quest to understand the 

biology of autism.  

Genes not only store information, they also serve as templates for RNA transcripts that then 

give rise to the proteins that function in a cell. So it is crucial that we understand which genes 

show differences in their RNA levels, too.    

This is particularly important because although autism may affect large numbers of genes, 

their functions appear to converge on only a few biological pathways. These include the 

development of the brain’s outer shell (cerebral cortex), the function of neuronal junctions 

(synapses), translation of the genetic code into protein, and the activation of brain immune 

cells called microglia1.  

Ultimately, these findings suggest that, despite multiple genetic causes, we may only need to 

target a few pathways to effectively treat people with autism. 

Because a major source of biological regulation occurs at the level of gene expression, 

studying patterns of expression can highlight the key pathways in specific tissues such as the 

brain. This may then point us toward new therapies. 

Deciphering data: 

‘Transcriptomic’ studies refer to those in which researchers quantify gene expression across 

all genes present in a tissue sample and identify differences between people with autism and 

controls. This analysis generally reveals values for 10,000 to 20,000 genes, a number too 

large for the human brain to make sense of on its own.  

Network analyses — software tools that identify biologically-relevant patterns from large 

datasets — are often the key to analyzing all these data.  

In one type of analysis, called weighted gene co-expression network analysis (WGCNA), 

researchers group genes into modules based on the similarity of their expression patterns2. 

They then interpret the functional role of genes within each module, often intuiting these 

roles by looking at the genes in aggregate.  

For example, in modules constructed from brain gene expression data, at least one module is 

likely to be enriched for genes expressed in neurons and another for genes in glia, cells that 

support neurons. These separate modules help to explain the cell types present in the tissue 
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studied. From there, researchers can look at whether the expression pattern in a given 

module differs significantly between people with autism and those without. 

Combining the functional information — for instance, what cell types are present and the 

function of genes in each module — with the expression patterns allows researchers to 

determine which pathways are altered in autism.  

 

Imperfect analyses 

Although network analyses help us make sense of large gene expression datasets, they have 

some limitations.  

First, the number of individuals available for study could prevent a researcher from 

constructing biologically meaningful networks and prohibit useful interpretation of the data.  

Second, because network analyses are designed to pick up subtle differences between 

groups, any systematic differences between cases and controls may lead researchers to 

incorrect conclusions.  

For example, if samples from individuals with autism contain different cell types than those in 

controls (perhaps due to sampling of slightly different regions of the brain), WGCNA would 

pick up this difference, and a naïve researcher could incorrectly claim to have found an 

association with autism.  

Accounting for such confounding factors is a key step for researchers to draw conclusions 

that can be trusted.  

What’s more, these analyses only decipher gene expression information. They are not 

designed to crunch data related to genetic variants, DNA modifications that affect gene 

expression, or information about the proteins themselves. Combining all of these datasets 

could provide an even more complete molecular understanding of autism. Groups are 

working on these multilevel analyses.  

Finally, network analyses do not provide information on causality. In contrast to DNA, which 

generally does not change over a lifetime, gene expression levels differ over time. Mutations 

in DNA are almost certainly primary and may cause the condition, but differences in gene 

expression, as detected by network analyses, may or may not lead to autism. They might be 

compensatory — that is, they result from having autism.  

Still, by pointing to pathways of interest, gene expression analyses can provide ideas for new 

treatments. 

Promising pathways: 

Given the potential for understanding gene expression using network analyses, it’s important 

to consider what we can expect from this approach. In the past five years, researchers have 
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published a number of studies looking at gene expression in postmortem brain samples3,4. 

This work has repeatedly highlighted differences in gene expression in the brains of 

individuals with autism in two main areas.  

One of these highlights a role for altered expression of genes that are active in neurons. 

Intriguingly, however, the genes that harbor mutations are different from the ones showing 

altered expression. The neuronal pathways involving genes whose expression is altered in 

autism represent a promising set of drug targets separate from the genetic variants 

individuals may harbor.  

The other reproducible pathway implicated by network analyses includes genes related to 

immune regulation. Many of the genes in this pathway tend to be active in a type of 

microglia that have an anti-inflammatory effect.  

This result suggests that an exaggerated anti-inflammatory response occurs in the autism 

brain. Researchers will need to pin down whether this finding is causal or compensatory.  

Network analyses with large sample sizes will undoubtedly improve our ability to identify 

which genes are driving these expression differences. They may also help us to detect genes 

whose expression differs only subtly in people with autism.  

Taken together, network analyses of gene expression have identified two biologically 

interesting and testable pathways that can be targeted in therapeutic studies, emphasizing 

the utility of these approaches. 
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2014, Summer Edward Pang, Undergraduate Student 

 Johns Hopkins University Center for Computational Biology 
Summer Program 

 Project: Determining mtDNA copy number from sequencing 
data using GTeX data 

2013, Summer James Miller, Undergraduate Student 

 Johns Hopkins University Center for Computational Biology 
Summer Program  

 Project: A new approach to visualizing DNA methylation data 
 

 

ORGANIZATIONAL ACTIVITIES 
 

Leadership Experience 
2013—present Institute of Genetic Medicine Human Genetics Graduate Student 

Representative 
2013—present Student Leader, Barton Childs Lecture Planning Committee 
2011—2015 Committee Leader, Human Genetics Graduate Program New Student 

Recruitment  
2014, Spring Assistant Women’s Lacrosse Coach, CCBC Essex 
2014, Spring Student Leader, McKusick Lecture Planning Committee 

 

Professional Societies 
 2010—present Member, The American Society of Human Genetics 
 

 

HONORS AND AWARDS 
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2006—2010 Presidential Scholarship (a full academic scholarship to King’s College, 
Wilkes-Barre, PA) 

2006—2010 Mendenhall-Tyson Scholarship  
2010   Paul D. Laurence Best in Science Award 
2010   Regina Award for Biology 
2010   S. Idris Ley Memorial Award for the Highest Academic Achievement 
2010   Josephine T. Moran Foreign Language Award 
2009   Paul D. Laurence Best in Science Award 
2009  American Society for Microbiology Student Travel Grant Award, 109th 

General Meeting 
2009   American Society for Microbiology Undergraduate Research Fellowship 
2008  National Science Foundation Undergraduate Research Fellowship 

 

 


