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Abstract

Nowadays, there is an increasing amount of digital information constantly

generated from every aspect of our life and data that we work with grow in

both size and variety. Fortunately, most of the data have sparse structures.

Compressive sensing offers us an efficient framework to not only collect data

but also to process and analyze them in a timely fashion. Various compressive

sensing tasks eventually boil down to the sparse signal recovery problem in

an under-determined linear system. To better address the challenges of “big”

data using compressive sensing, we focus on developing powerful sparse signal

recovery approaches and providing theoretical analysis of their optimalities and

convergences in this dissertation.

Specifically, we bring together insights from information theory and proba-

bilistic graphical models to tackle the sparse signal recovery problem from the

following two perspectives:

• Sparsity-regularization approach: we propose the Shannon entropy func-

tion and Rényi entropy function constructed from the sparse signal, and

prove that minimizing them does promote sparsity in the recovered signal.

Experiments on simulated and real data show that the two proposed en-

tropy function minimization methods outperform state-of-the-art lp-norm

minimization and l1-norm minimization methods.
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• Probabilistic approach: we propose the generalized approximate message

passing with built-in parameter estimation (PE-GAMP) framework, present

its empirical convergence analysis and give detailed formulations to obtain

the MMSE and MAP estimations of the sparse signal. Experiments on

simulated and real data show that the proposed PE-GAMP is more robust,

much simpler and has a wider applicability compared to the popular

Expectation Maximization based parameter estimation method.
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Chapter 1

Introduction

Technology advancement in data acquisition and sharing over the past decade

has made it possible to collect vast amount of data from every aspect of modern

society. Let it be the information passed across the Internet, the medical/health

records gathered from wearable devices, or some specialized data collected in the

lab, never before in history has data become so readily available and abundant.

Yet this is both a blessing and a curse given the fact that the tools to process and

analyze those vast amount of data are often in shortage, and the challenges we

face nowadays eventually boil down to answering the following two questions:

• How to sample/acquire the data in a fast and efficient way?

• How to analyze the data so that we can make the best use of it?

Fortunately, a lot of the data have approximately sparse forms in the sense that

they can be concisely represented by a few elements of a certain basis. Take one

of the most common data, images, for example, at first glance, an image is a

2-dimensional or 3-dimensional dense matrix and it’s hard to believe it could be

sparse. However, if we inspect it in the wavelet domain, its wavelet coefficient

vector is sparse: the “magnitudes” of its entries are mostly close to 0, as is shown

in Figure 1.1, and the image can be reconstructed fairly well using just those
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(a) (b) (c)

Figure 1.1: (a) The original image “Green Wheat Field with Cypress” by Van Gogh; (b)

The magnitudes of the largest 20% wavelet coefficients from the red channel are between

16 ∼ 1938, the green and blue channels are similar; (c)The reconstructed image based on

the largest 20% wavelet coefficients, with PSNR=32.98 dB.

large-magnitude coefficients.

For the data that have sparse structures, compressive sensing [1, 2] could

provide answers for both questions. First of all, compressive sensing recovers

the sparse structure of the data at a sampling rate much lower than the Nyquist

rate, and thus enjoys much popularity in applications where a high sampling

rate is expensive or impractical. For example, applying it to magnetic resonance

imaging (MRI) could greatly reduce the scan time one needs to stay in the

machine by acquiring much fewer samples [3, 4], which not only lowers the

costs but also makes the whole process more comfortable for the patient. Besides,

it plays an important role in designing and implementation of high-speed analog-

to-digital converters (ADC) nowadays: reduced sampling rate makes acquiring

higher frequency signals possible within the current capabilities of ADC device

[5–7].

Secondly, compressive sensing also presents a novel perspective to analyze

the data via its recovered sparse structure. Take the classification task for ex-

ample, based on the observation that data samples can be better approximated
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through a sparse linear combinations of other samples in the same class com-

pared to those from a different class, sparse representation based classification

(SRC) has been shown to produce robust and accurate classification results in

applications such as face recognition [8–10], hyperspectral image classification

[11, 12], etc. Additionally, by enforcing the presence of sparse structure in the

data, we can perform post-processing operations such as denoising, matrix

completion, etc. on the data.

In this dissertation, we focus on developing powerful sparse signal recovery

approaches in compressive sensing and providing theoretical analysis of their op-

timalities and convergences. In the effort to promote sparseness in the recovered

signals, we bring together insights from information theory and probabilistic

graphical models to tackle the recovery problem. Eventually we would like to

provide feasible and sound solutions to address the challenges imposed by the

explosion of data.

1.1 Sparse signal recovery

Compressive sensing revolves around the sparse signal recovery problem, which

lays the foundation for applications such as dictionary learning, SRC, low rank

matrix recovery, etc. A signal s ∈ RN is considered to be “sparse” if it satisfies

either of the following two conditions:

• s contains only a few nonzero coefficients.

• s can be represented through a linear combination of a few components

from some proper basis.

In real life, signals that have mostly small coefficients and only a few relatively

large coefficients also fall into the category of “sparse” signals. Here the small

4



or large coefficient is defined with regards to the magnitude of said coefficient.

Specifically, let V = [v1, v2, · · · , vN] denote a basis that spans the vector space

where the signal s is sparse:

s = V x = ∑N
i=1 vixi , (1.1)

where x ∈ RN contains mostly zero coefficients. Specifically, the sparsity level S

of x is defined to be the number of non-zero coefficients in x, i.e. the l0 norm. We

call x an S-sparse signal if ∥x∥0 ≤ S.

In the context of this dissertation, the linear sampling/measurement of the

signal s is accomplished by left-multiplying s with a M× N sampling matrix

U. Let w ∈ RM denote the noise, we have the following measurement vector

y ∈ RM:

z = Us = UV x = Ax (1.2)

y = z + w , (1.3)

where z ∈ RM is the noiseless measurement vector; A = UV is commonly

known as the M × N sensing matrix, A is usually chosen by us and already

known.

In compressive sensing, we try to recover the sparse signal x from lim-

ited measurements y where M ≪ N. Here, (1.2)-(1.3) then describe a under-

determined linear system. Since the sensing matrix A contains more columns

than rows, there are more than one solutions that would satisfy ∥y− Ax∥2
2 ≤ ϵ,

where ϵ ≥ 0 is the upper bound on the noise contribution. This makes the

recovery of x an ill-posed problem.
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1.1.1 Sparsity-regularization approach

Since the signal of interest itself is sparse, one naive, or perhaps the most straight-

forward, way to decide on a solution is to follow the well known Occam’s razor

and choose the sparsest (simplest) one:

P0(x) : minx ∥x∥0 subject to ∥y− Ax∥2
2 ≤ ϵ . (1.4)

P0(x) is a nonconvex NP-hard problem whose solution requires an intractable

combinatorial search [13]. In practice, two alternative approaches are usually

employed to solve P0(x):

• Greedy search under the constrain ∥x∥0 ≤ S.

• Relaxation of the l0 norm ∥x∥0.

The greedy search approach leads to various matching pursuit methods [14–17].

While the relaxation approach leads to minimizing different objective functions

that promote sparsity in the solution [18–21].

Here we focus on studying the “relaxation” approach that tries to solve the

following unconstrained recovery problem:

Pg(x) : minx ∥y− Ax∥2
2 + λg(x) , (1.5)

where λ > 0 is the parameter that balances the trade-off between the data fidelity

term ∥y− Ax∥2
2 and the sparsity-regularization objective g(x). A proper g(x) is

crucial to the success of the sparse signal recovery task: it should favor sparse

solutions and make sure the problem Pg(x) can be solved efficiently in the mean

time.
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𝑀 ×𝑁

𝑝(𝑥𝑗; 𝝀)
𝒙 ∈ ℝ𝑁 𝒛 ∈ ℝ𝑀

𝒚 ∈ ℝ𝑀

Separable
Input channel

Linear transformation
matrix

Separable
Output channel

Figure 1.2: A probabilistic view of the sparse signal recovery task [22]: The signal x

is estimated given the output vector y, the channel transition probability functions

p(xj; λ), p(yi; θ|zi) and the transformation matrix A. {λ, θ} denote the parameters of

the probability models and are usually unknown.

1.1.2 Probabilistic approach

If we assume each entry xj of the signal x is independently and identically

distributed according to some distribution p(xj; λ). The under-determined linear

system given in (1.2,1.3) can also be described using the probability model shown

in Fig. 1.2. For the sparse signal recovery task, p(xj; λ) should reflect the “sparse”

attribute of x. Popular choices include Laplace distribution, Bernoulli-Gaussian

mixture distribution, etc.

Under the Bayesian setting, we can use the approximate message passing

(AMP) algorithm to compute either the maximum a posterior (MAP) or min-

imum mean square error (MMSE) estimate of the signal x. Specifically, AMP

uses approximated loopy belief propagation [22–24] to perform probabilistic

inferences on the signal. The parameters of the probability model {λ, θ} are

usually unknown and need to be decided for the AMP algorithms. [25, 26] use

the Expectation Maximization (EM) algorithm [27] to estimate the parameters.

However, it is not widely applicable due to its high complexity, and thus can

only handle simple distributions. Since real data come in all shapes and sizes,

it is thus important to explore new approaches that can be easily adapted to a

wide variety of distributions.
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1.2 Dissertation goal and contributions

In this dissertation, we aim to tackle the sparse recovery problem using the afore-

mentioned sparsity-regularization and probabilistic approaches, design efficient

algorithms that scale to large datasets with ease, and provide detailed theoretical

analyses of the proposed approaches. Specifically, the main contributions of the

dissertation include:

• We propose the nonconvex “entropy function” of x as a new sparsity-

regularization objective, and prove that minimizing it can produce sparser

solutions than the popular convex l1 norm-minimization approach.

• We design efficient iterative algorithm to recover the signal x by minimiz-

ing the proposed entropy function, and show that it outperforms both the

convex l1 norm-minimization and the nonconvex lp norm-minimization

approaches on simulated and real data.

• We adapt the proposed entropy function minimization approach to other

compressive sensing applications, such as the low-rank matrix completion,

robust Principle Component Analysis, etc.

• We propose a generalized approximate message passing framework with

built-in parameter estimation (PE-GAMP), and provide detailed approx-

imate loopy belief propagation procedures to perform joint probabilistic

inferences on the signal and the parameters,

• We conduct the state evolution analysis on the proposed PE-GAMP, and

prove its empirical convergence behavior in the large system limit under

certain conditions.
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• We provide detail formulations of the PE-GAMP for several input and out

channel distributions, and show that it not only has a wider applicability

but also is more robust than EM based parameter estimation approach

when the measurements are limited.

1.3 Outline of the dissertation

This dissertation consists four parts. Part I introduces compressive sensing as

a solution to address the challenges raised by the data explosion nowadays:

Chapter 1 briefly explains the two approaches we employ in this dissertation to

tackle the sparse signal recovery problem. Chapter 2 gives a survey of related

work and provides necessary background to set up the work in subsequent

chapters.

Part II explores the sparsity-regularization approach: Chapter 3 proposes the

entropy functions hp(x), hp,α(x) constructed from the signal x and investigates

its property. Chapter 4 describes the iterative algorithm to recover the sparse

signal by minimizing the entropy functions, and compares it with other sparsity-

regularization objectives on simulated and real datasets. Chapter 5 applies the

entropy function minimization approach to the robust principal component

analysis.

Part III studies the probabilistic approach: Chapter 6 presents the proposed

PE-GAMP framework and its approximate loopy belief propagation realizations.

Chapter 7 conducts the state evolution analysis of the PE-GAMP and proves its

empirical convergence behavior in the large system limit under certain condi-

tions. Chapter 8 provides parameter estimation formulations of several input

and output channels, followed by experiments comparing the PE-GAMP with

the EM based parameter estimation approach.
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Part IV concludes this dissertation with discussions and future work.
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Chapter 2

The quest for sparsity

The success of signal recovery from the under-determined linear system in

(1.2,1.3) relies on 1) the sparse attribute of the input signal and 2) the incoherence

property of the sensing matrix. In order to enforce sparse prior information on

the recovered solution, the sparsity-regularization approach directly searches

for the sparsest solution that minimizes the objective function, while the prob-

abilistic approach imposes a sparse prior distribution on the input signal. In

this chapter, we explain the reasons behind the quest for sparsity in compressive

sensing and pay tribute to the pioneering works in this field.

2.1 Restricted isometry property

Restricted isometry property [28, 29] is the key to understanding why sparsity

matters, it is defined with respect to the sensing matrix A.

Definition 1. A matrix A satisfies the restricted isometry property (RIP) of order S if

there exists a smallest bound 0 < δS < 1 such that

(1− δS)∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1 + δS)∥x∥2
2 , (2.1)

holds for all S-sparse signal x: ∥x∥0 ≤ S.
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[29] uses the l1 norm of x as the relaxed sparsity regularizer and solves the

following problem to get the recovered signal x̂l1 :

P1(x) : minx ∥x∥1 subject to ∥y− Ax∥2
2 ≤ ϵ . (2.2)

2.1.1 Noiseless recovery

The l1 and l2 error of the recovered signal x̂l1 is bounded according to the

following theorem by [29]:

Theorem 1. (Noiseless recovery). If A satisfies the RIP of order 2S with δ2S <
√

2− 1,

then x̂l1 obeys:

∥x̂l1 − x∥1 ≤ C0∥x− x̃S∥1 (2.3)

∥x̂l1 − x∥2 ≤ C0S−
1
2∥x− x̃S∥1 . (2.4)

for some small constant C0 given in [29]. In particular, if x is S-sparse, the recovery is

exact.

Here, x̃S denote the approximation of x by keeping only the S largest entries

in magnitude. If δ2S < 1, the problem P0(x) in (1.4) has a unique S-sparse

solution. We can then see that the solutions of P1(x) and P0(x) are actually the

same when δ2S <
√

2− 1. This means the sparsest solution is indeed the true

solution when x is S-sparse and A satisfies the corresponding RIP.

2.1.2 Noisy recovery

The l2 error of x̂l1 is also bounded as stated in the following theorem [29]:

Theorem 2. (Noisy recovery). If A satisfies the RIP of order 2S with δ2S <
√

2− 1,

12



then x̂l1 obeys:

∥x̂l1 − x∥2 ≤ C0S−
1
2∥x− x̃S∥1 + C1ϵ (2.5)

, for some small constants C0, C1 given in [29].

In this case, we can still recovery the signal robustly if it is S-sparse and A

satisfies RIP with δ2S <
√

2− 1.

2.2 Incoherent matrix

Verifying the RIP property of the sensing matrix A is NP-hard in general [30]. In

practice we can check the coherence of A instead [31, 32].

Definition 2. The coherence µ(A) of a matrix A ∈ RM×N, M < N is the largest

absolute inner product between any two normalized columns ai and aj of A.

µ(A) = max
1≤i ̸=j≤N

| < ai, aj > | . (2.6)

In fact, a matrix with low coherence is what makes RIP hold, as is given by

the following theorem:

Theorem 3. If A has coherence µ(A), then A satisfies RIP of order S with δS =

S · µ(A), ∀S < 1
µ(A)

This does make sense intuitively. Since we want to get as much information

about the sparse signal x as possible out of the measurement y, we would prefer

a matrix A whose columns are diverse and has low correlation with one another,

i.e. an incoherent matrix.

If M ≥ N, a matrix A with orthonormal columns has the lowest coherence

µ(A) = 0. In compressive sensing, however, M is much smaller than N: M≪ N,

13



(a) (b)

Figure 2.1: The 2D level plots: (a) the convex ∥x∥1; (b) the nonconvex ∥x∥0.5
0.5

and various approaches has been proposed to design efficient sensing matrix

with low coherence [33–36]. In general, the presence of randomness in A is

essential to constructing a working sensing matrix. As we shall see later, the

state evolution analysis of the approximate message passing algorithms in the

probabilistic approaches relies on the assumption that entries of A are i.i.d.

according to N(0, 1
M ).

2.3 Relaxation of the l0 norm

Various sparsity regularizers have been proposed as the relaxations of the l0 norm

[18–21]. Most popular among them are the convex l1 norm and the nonconvex

lp norm to the p-th power:

• l1 norm: ∥x∥1 = ∑i |xi|.

• lp norm to the p-th power: ∥x∥p
p = ∑i |xi|p, 0 < p < 1.

The 2D level plots of the above two objectives are shown in Fig. 2.1. There exist
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numerous efficient iterative algorithms to find the minimizing solutions to the l1

norm-minimization problem in (2.2) [37–40]. The minimization of the ∥x∥p
p can

be done by following the reweighted-l1 strategy [19–21].

2.4 Input and out channel distributions

The generative probabilistic model in Fig. 1.2 assumes the signal x and the

measurement y both have i.i.d. entries: xj ∼ p(xj; θ); yi ∼ p(yi; θ|zi). The sparse

attribute of the signal x is reflected by the prior distribution p(xj; θ). Specifically,

we will consider the following input channel distributions in this dissertation:

1. Bernoulli-Gaussian mixture (BGm) Input Channel: The sparse signal

x ∈ RN can be modeled as a mixture of Bernoulli and Gaussian mixture

distributions:

p(xj; λ) = (1− λ1)δ(xj)

+ λ1

C

∑
c=1

λc+1 · N (xj; λc+2, λc+3) ,
(2.7)

where xj ∈ R; δ(·) is Dirac delta function; λ1 ∈ [0, 1] is the sparsity rate; for

the c-th Gaussian mixture, λc+1 ∈ [0, 1] is the mixture weight, λc+2 ∈ R is

the nonzero coefficient mean and λc+3 ∈ (0, ∞) is the nonzero coefficient

variance; all the mixture weights should sum to 1: ∑C
c=1 λ3c−1 = 1.

2. Bernoulli-Exponential mixture (BEm) Input Channel: Nonnegative sparse

signal x ∈ RN can be modeled as a mixture of Bernoulli and Exponential

mixture distributions:

p(xj; λ) = (1− λ1)δ(xj)

+ λ1

C

∑
c=1

λc+1 · λc+2 exp
(
−λc+2xj

)
,

(2.8)
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where xj ∈ [0, ∞); λ1 ∈ [0, 1] is the sparsity rate; for the c-th Exponential

mixture, λc+1 ∈ [0, 1] is the mixture weight and λc+2 ∈ (0, ∞); all the

mixture weights should sum to 1: ∑C
c=1 λ2c = 1.

3. Laplace Input Channel: The sparse signal x ∈ RN follows the following

Laplace distribution:

p(xj; λ) =
λ1

2
exp

(
−λ1|xj|

)
, (2.9)

where xj ∈ R; λ1 ∈ (0, ∞).

The probabilistic approach is closely related to the sparsity-regularization ap-

proaches. For instance, the solution of P1(x) in (2.2) is essentially the MAP

estimation of x under the Laplace input channel and the following additive

white Gaussian noise (AWGN) output channel:

• Additive White Gaussian Noise (AWGN) Output Channel: The noise

w ∈ RM is assumed to be white Gaussian noise:

p(wi; θ) = N (wi; 0, θ1) , (2.10)

where wi ∈ R is the noise; θ1 ∈ (0, ∞) is its variance.

The posterior distribution p(xj|y) can then obtained using the message passing

algorithms [22–24]. We can then recover the sparse signal x as follows:

• MMSE estimate: x̂j =
∫

xj p(xj; λ, θ|y) dxj

• MAP estimate: x̂j = maxxj p(xj; λ, θ|y)

The parameters {λ, θ} are usually unknown in practice, and need to be estimated.

EM based parameter estimation has been proposed in [25, 26] for the BGm input
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channel and AWGN output channel. However, its high complexity greatly limits

its applicability for complex distributions.
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Part II

Sparsity-regularization approach

18



Chapter 3

Sparsity-regularization entropy
function

In this chapter we construct the nonconvex entropy function from the sparse

signal x and use it as the sparsity regularizer. Specifically, two types of entropy

functions are proposed: the Shannon entropy function hp(x) and the Rényi

entropy function hp,α(x). We show that minimizing them does favor sparse

solutions and could improve upon the solutions from the l1-norm minimization

approach.

3.1 Introduction to entropy

We first introduce the entropy concepts in information theory [41, 42]. Both the

Shannon entropy and Rényi entropy are defined with respect to the probability

distribution p(V) of some random variable V . Here we give the following

definitions in terms of discrete probability distribution1:

1For continuous distributions, the sum ∑ in (3.1,3.2) should be replaced with integration
∫

.
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Figure 3.1: Rényi entropy defined on {p1, 1 − p1} with different choices of α.

• Shannon entropy2:

H(V) = −
|V|
∑
i=1

p(vi) log p(vi) . (3.1)

H(V) is strictly concave with respect to the probability distribution PV =

{p(v1), · · · , p(v|V|)}.

• Rényi entropy:

Hα(V) =
1

1 − α
log

( |V|
∑
i=1

p(vi)
α

)
, (3.2)

where α ≥ 0 and α �= 1. When α ∈ (0, 1), Hα(V) is strictly concave with

respect to PV [43]; when α ∈ (1, ∞), Hα(V) is strictly Schur concave with

respect to PV [44].

We should make it clear that Shannon entropy H(V) is not a special case of

the Rényi entropy, but the limiting value of the Rényi entropy Hα(V) as α → 1

[45]. Hence we need to discuss them respectively in this dissertation. Take the

the simple probability distribution P = {p1, 1 − p1} for example, the Shannon

2The “log” in this dissertation is by default natural logarithm, i.e. base e
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entropy and the Rényi entropy defined on {p1, 1− p1} with different choices of

α are shown in Fig. 3.1 adapted from [46].

3.2 Entropy function of the sparse signal

3.2.1 Shannon entropy function

Entropy measures uncertainty about the random variable V . The lower the

entropy is, the more predictable the variable V is, which corresponds to a more

skewed distribution p(V). The idea of a skewed distribution could translate

naturally to the idea of a sparse distribution based on the fact that only a few

probability values of P are significant. In other words, the entropy is also an

indication how skewed/sparse the distribution P is. This observation motivates

us to investigate the possibility of using it as a new sparsity regularizer in the

dissertation.

Specifically, the Shannon entropy function hp(x) of the sparse signal x is

defined as follows:

hp(x) = −
N

∑
i=1

|xi|p

∥x∥p
p

log
|xi|p

∥x∥p
p

, (3.3)

where p > 0. Here we essentially construct the following discrete probability

distribution P out of x and then compute the Shannon entropy defined on P :

P :=

{
|x1|p

∥x∥p
p

,
|x2|p

∥x∥p
p

, · · · ,
|xN |p

∥x∥p
p

}
. (3.4)

hp(x) is the nonconvex “Shannon entropy function” of x, it should not be con-

fused with the “Shannon entropy” of x in (3.1): H(x) = −
∫

x p(x) log p(x) dx.

The 2D level plot of hp(x) with p = 0.5 is shown in Fig. 3.2. We can see that the

local minimums occur on the two axises in this case.
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Figure 3.2: Entropy function hp(x) with p = 1 in the 2-dimensional space.

The sparse signal recovery problem in (1.5) based on the nonconvex Shannon

entropy function (SEF) minimization then becomes:

Php(x) : minx ∥y− Ax∥2
2 + λhp(x) , (3.5)

where λ > 0.

3.2.2 Rényi entropy function

Using the discrete probability distribution P in (3.4), we define the Rényi entropy

function of the sparse signal x as follows:

hp,α(x) =
1

1− α
log

( |V|
∑
i=1

(
|xi|p

∥x∥p
p

)α)
, (3.6)

where p > 0, α ≥ 0 and α ̸= 1. Again, this should not be confused with the

Rényi entropy of x in (3.2). The sparse signal recovery problem in (1.5) based on

the nonconvex Rényi entropy function (REF) minimization then becomes:

Php,α(x) : minx ∥y− Ax∥2
2 + λhp,α(x) , (3.7)
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where λ > 0.

❖ Discussion: In previous sections we proposed the entropy functions hp(x),

hp,α(x) constructed from x as sparsity regularizers. However, they are not the

entropy of the sparse signal x. Its computation requires knowledge of the

distribution p(x) of x. In practice, we usually assume the entries of x are i.i.d

distributed according to some parameterized distribution p(x|λ). The estimated

parameters λ̂ can be obtained following the probabilistic approach presented

in Part III. The entropy of the signal H(x),Hα(x) can then be computed as in

(3.1,3.2) using p(x|λ̂).

3.3 Sparsity promotion analysis

We next show that hp(x) and hp,α(x) are sparsity regularizers in the following

sense: minimizing them in an orthant O of the Euclidean space RN leads us to

solutions on the boundary of said orthant, i.e. sparser solutions.

❑ Noiseless recovery: In this case we are minimizing hp(x) or hp,α(x) subject

to the constrain y = Ax. We first show that there is a one to one mapping

in each orthant between x = [x1, · · · , xN]
T and ẍ = [ẍ1, · · · , ẍN ]

T, where ẍi =

sign(xi) · |xi|p
∥x∥p

p
. This will be done in two steps: Lemma 1 and Lemma 2.

Lemma 1. If x is the solution to y = Ax, y ̸= 0, then there is a one to one mapping in

each orthant between x and x̃ = x
∥x∥p

.

Proof. We just need to prove x←→ x̃:

• It is easy to verify that x→ x̃.
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Figure 3.3: The one-to-one mapping: x ←→ x̃ ←→ ẍ when p = 0.5.

• Suppose there are two solutions of y = Ax: x(1), x(2) in the same orthant,

and they are both mapped to x̃. We then have:

x(1)
‖x(1)‖p

= x̃ =
x(2)

‖x(2)‖p
(3.8)

y
‖x(1)‖p

=
Ax(1)
‖x(1)‖p

= Ax̃ =
Ax(2)
‖x(2)‖p

=
y

‖x(2)‖p
, (3.9)

which tells us y
‖x(1)‖p

= y
‖x(2)‖p

. Since y �= 0, we have ‖x(1)‖p = ‖x(2)‖p.

Using (3.8), we get x(1) = x(2). Hence x ← x̃.

Lemma 2. There is a one to one mapping in each orthant between x̃ and ẍ

Proof. We just need to prove x̃ ←→ ẍ:

• We can rewrite ẍ in terms of x̃: ẍ = sign(x̃) · |x̃|p. Hence x̃ → ẍ.

• Suppose there are two points x̃(1), x̃(2) in the same orthant mapped to the
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same ẍ. We then have:

sign(x̃(1)) · |x̃(1)|p = ẍ = sign(x̃(2)) · |x̃(2)|p , (3.10)

which tells us |x̃(1)| = |x̃(2)|. Since sign(x̃(1)) = sign(x̃(2)), we get x̃(1) =

x̃(2). Hence x̃← ẍ.

Combining Lemma 1 and Lemma 2, we have x ←→ ẍ, as is shown in Fig.

3.3. Let X = {x1, x2, · · · } be the solutions of y = Ax in one of the orthants O.

Specifically, X = X1 ∪ X2 and X1 ∩ X2 = ∅, where X1 contains solutions on the

boundary of the orthant O and X2 contains the rest solutions that are not on

the boundary. The solution x is then mapped to ẍ one by one, producing the

corresponding mapped sets Ẍ1, Ẍ2. We can verify that the solutions in X1 are

sparser than those in X2, and we have the following Lemma 3:

Lemma 3. For every solution x ∈ X2, there is a solution x∗ ∈ X1 on the boundary of

the orthant O such that hp(x∗) < hp(x) and hp,α(x∗) < hp,α(x).

Proof. By definition we have:

hp(x) = g(ẍ) = −∑N
i=1 |ẍi| log |ẍi| (3.11)

hp,α(x) = gα(ẍ) =
1

1− α
log
(

∑N
i=1 |ẍi|α

)
. (3.12)

We first study the local minimums on the plane ∥ẍ∥1 = 1. g(ẍ) is strictly

concave with respect to ẍ, and the local minimums of g(ẍ) are on the boundary of

the orthantO. Hence for every ẍ ∈ Ẍ2, there is a ẍ∗ ∈ Ẍ1 such that g(ẍ∗) < g(ẍ).

When α ∈ (0, 1), gα(ẍ) is strictly concave with respect to ẍ, the local minimums

of g(ẍ) are on the boundary of the orthant O. When α ∈ (1, ∞), gα(ẍ) is strictly
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Schur concave, since the boundary of the orthant Omajorizes the ẍ inside O, the

local minimums of g(ẍ) are also on the boundary of O. Hence for every ẍ ∈ Ẍ2,

there also exists a ẍ∗ ∈ Ẍ1 such that gα(ẍ∗) < gα(ẍ) for α ∈ (0, 1) ∪ (1, ∞).

There is a one to one mapping in O between x and ẍ: x ←→ ẍ. Since

hp(x) = g(ẍ) and hp,α(x) = gα(ẍ), for every x ∈ X2, there is a x∗ ∈ X1 such that

hp(x∗) < hp(x) and hp,α(x∗) < hp,α(x).

From Lemma 3 we can see that minimizing hp(x) or hp,α(x) in the orthant O

will lead us to the sparser solutions in X1.

❑ Noisy recovery: We can show similarly that minimizing hp(x) or hp,α(x) sub-

ject to the constrain ∥y− Ax∥2
2 ≤ ϵ in an orthant O of the Euclidean space ∈ RN

also produces sparse solutions. First, we have the following Lemma 4:

Lemma 4. Let X ϵ = {x1, x2, · · · } are the nonzero solutions satisfying the constrain

∥y − Ax∥2
2 ≤ ϵ, y ̸= 0 such that: ∀xi ̸= xj, xi = τxj for some τ > 0. Pick

any xi ∈ X ϵ, there is a one to one mapping in each orthant between the set X ϵ and

x̃i =
xi
∥xi∥p

.

Proof. We need to prove Xϵ ←→ x̃i

• ∀xj ∈ X ϵ\xi, we have x̃i =
xi
∥xi∥p

=
τxj
∥τxj∥p

=
xj
∥xj∥p

= x̃j. It is easy to verify

that xj → x̃j = x̃i. Hence X ϵ → x̃i.

• Suppose that there are two setsX ϵ
(1),X

ϵ
(2) in the same orthant being mapped

to the same x̃i. Let x1 ∈ X ϵ
(1) and x2 ∈ X ϵ

(2), we have:

x1

∥x1∥p
= x̃1 = x̃i = x̃2 =

x2

∥x2∥p
. (3.13)

We then have x1 =
∥x1∥p
∥x2∥p

x2, which means that x1, x2 belongs to the same

set, i.e. X ϵ
(1) = X

ϵ
(2). Hence X ← x̃i.
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Chapter 4

Sparse signal recovery via entropy
function minimization

In this chapter we propose the algorithms to perform the sparse signal recov-

ery tasks in (3.5,3.7). Specifically, the proximal regularization [47, 48] of the

data fidelity term f (x) = ∥y− Ax∥2
2 and the first order approximations of the

entropy functions hp(x), hp,α(x) are minimized in alternation iteratively until

convergence. Experiments on both simulated and real data show the proposed

entropy function minimization approach outperforms the state-of-the-art l1

norm-minimization and the lp norm-minimization approaches.

4.1 Entropy function minimization

The proposed entropy functions hp(x), hp,α(x) are nonconvex, a good initial-

ization is needed to ensure good performance. Here we will use the solution

from l1 norm-minimization as the initialization to our proposed algorithm. The

sparsity-promotion analysis in section 3.3 shows that we are able to obtain sparse

solutions by minimizing the entropy functions. In order to solve the problems in

(3.5,3.7), the following two steps are repeated in alternation until convergence.

1. In the first step, the data fidelity term f (x) = ∥y− Ax∥2
2 is approximated:
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For the (t + 1)-th iteration to solve the problems Php(x) and Php,α(x), we

use its quadratic approximation, a.k.a. proximal regularization [47], at the

previous t-th iteration’s solution x̂(t) as is done in [38]:

f (x) = ∥y− Ax∥2
2

≤ f (x̂(t)) +
⟨

x− x̂(t),∇ f (x̂(t))
⟩
+

κ

2

x− x̂(t)
2

2

= f (x̂(t))− 1
2κ

∇ f (x̂(t))
2

2
+

κ

2

x−
(

x̂(t) − 1
κ
∇ f (x̂(t))

)2

2

= o(x̂(t)) +
κ

2

x−
(

x̂(t) − 1
κ
∇ f (x̂(t))

)2

2
,

(4.1)

where o(x̂(t)) is a relative constant depending on the previous solution x̂(t),

∇ f (x̂(t)) = 2(ATAx̂(t) − ATy), κ is the Lipschitz constant of the gradient

∇ f [49]. The smallest value κ can take is twice the largest eigenvalue of

ATA to ensure that f (x) is bounded by the proximal regularization. The

problems in (3.5, 3.7) then becomes:

P(1)
hp

(x) : min
x

κ

2

x−
(

x̂(t) − 1
κ
∇ f (x̂(t))

)2

2
+ λhp(x) (4.2)

P(1)
hp,α

(x) : min
x

κ

2

x−
(

x̂(t) − 1
κ
∇ f (x̂(t))

)2

2
+ λhp,α(x) . (4.3)

2. In then second step, the problems P(1)
hp

(x) and P(1)
hp,α

(x) are iteratively solved:

In the “inner” (r + 1)-th iteration to solve P(1)
hp

(x) and P(1)
hp,α

(x), hp(x),

hp,α(x) are approximated with their first order approximations with respect

to |x̂(t+1,r)| from the previous r-th iteration:

hp(x) ≈ hp(x̂(t+1,r)) +
⟨
|x| − |x̂(t+1,r)|,∇hp(x̂(t+1,r))

⟩
(4.4)

hp,α(x) ≈ hp,α(x̂(t+1,r)) +
⟨
|x| − |x̂(t+1,r)|,∇hp,α(x̂(t+1,r))

⟩
. (4.5)
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The first order derivatives ∇hp(x), ∇hp,α(x) with respect to |xi| are as

follows:

∂hp(x)
∂|xi|

= − p|xi|(p−1) log |xi|p

∥x∥p
p

+
p|xi|(p−1) ∑l |xl|p log |xl|p

∥x∥2p
p

(4.6)

∂hp,α(x)
∂|xi|

=
1

1− α
· 1

∑N
l=1

(
|xl |
∥x∥p

)pα ·
pα

∥x∥p+pα
p

[
|xi|pα−1∥x∥p

p − |xi|p−1∥x∥pα
pα

]
.

(4.7)

Since log 0 is−∞, when computing∇h̄p(|x̂(t+1,r)
i |), we add a small positive

value ϵ = 1e−12 to |x̂(t+1,r)
i | in case |x̂(t+1,r)

i | = 0. Ignoring the relative

constant terms in (4.4,4.5) that depend on x̂(r), the problems P(1)
hp

(x) and

P(1)
hp,α

(x) then become:

P(2)
hp

(x) : min
x

κ

2

x−
(

x̂(t) − 1
κ
∇ f (x̂(t))

)2

2
+ λ

⟨
|x|,∇hp(x̂(t+1,r))

⟩
(4.8)

P(2)
hp,α

(x) : min
x

κ

2

x−
(

x̂(t) − 1
κ
∇ f (x̂(t))

)2

2
+ λ

⟨
|x|,∇hp,α(x̂(t+1,r))

⟩
.

(4.9)

P(2)
hp

(x) and P(2)
hp,α

(x) are simple reweighted l1 norm-minimization problems

that can be converted to a series of independent one-dimensional problems.

The solutions x̂(t+1,r+1)
i to the above problems can be obtained using the

iterative shrinkage thresholding algorithm (ISTA):

x̂(t+1,r+1)
i = T λ

κ∇hp(|x̂(t+1,r)
i |)

(
x̂(t)i −

1
κ
∇ f (x̂(t)i )

)
(4.10)

x̂(t+1,r+1)
i = T λ

κ∇hp,α(|x̂(t+1,r)
i |)

(
x̂(t)i −

1
κ
∇ f (x̂(t)i )

)
, (4.11)

where Tτ(·) is the soft thresholding function, a.k.a. shrinkage operator,
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defined as follows:

Tτ(x) =
{

0
(|x| − τ) · sign(x)

if |x| ≤ τ

if |x| > τ .
(4.12)

The detailed derivation of (4.10,4.11) can be found in section 4.1.1. ISTA usually

converges slowly in practice, [38] proposes a fast iterative shrinkage thresholding

algorithm (FISTA) to address this issue. Here we choose the FISTA and propose

the Algorithm 1 to compute the recovered signal x̂. The Lipschitz constant κ

can be viewed as a suitable step size to ensure the upper bound on f (x) in (4.1).

When κ is unknown or difficult to compute, we can use the backtracking strategy

proposed in [38] to find it.

Naturally, choosing a proper λ is the key to the success of sparse signal

recovery. For noiseless signals, we will use the fixed-point continuation (FPC)

method [50] to solve a series of problems: Starting with a relatively large λ0, FPC

decreases λ(t+1) = ρλ(t) in the (t + 1)-th iteration until λ(t+1) is close to 0 and

initializes P(1)
hp

(x), P(1)
hp,α

(x) with the previous solution x̂(t) obtained with λ(t). To

ensure the best performance, ρ is chosen to be 0.9 ≤ ρ < 1. For noisy signals,

usually a fixed λ performs better and is thus preferred. The optimal λ can be

tuned on some development set.
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Algorithm 1 Sparse signal recovery via entropy function minimization

Require: {y, A}, λ, κ, {p, α}
1: Initialize {x̂(t), t = 0} by solving (P1) in (2.2), c0 = 1;
2: for t = {0, 1, · · · } do
3: Compute x̂(t) − 1

κ∇ f (x̂(t)) in (4.1);
4: Initialize {x̂(t+1,r), r = 0} with x̂(t);
5: for r = {0, 1, · · · } do
6: Compute ∇hp(x) or ∇hp,α(x) in (4.6, 4.7);

7: Obtain x̂(t+1,r+1) by solving P(2)
hp

(x) or P(2)
hp,α

(x) in (4.10, 4.11);

8: if x̂(t+1,r+1) reaches convergence or the objective functions in (4.2, 4.3)
increase then

9: x̂(t+1) = x̂(t+1,r+1);
10: break;
11: end if
12: end for
13: ct+1 =

1+
√

1+4c2
t

2 ;

14: x̂(t+1) = x̂(t+1) +
(

ct−1
ct+1

)
(x̂(t+1) − x̂(t));

15: if x̂(t+1) reaches convergence then
16: x̂ = x̂(t+1);
17: break;
18: end if
19: end for
20: Return Output x̂;
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4.1.1 Generalized iterative shrinkage thresholding

Conventional iterative shrinkage thresholding method solves a convex problem

and requires the threshold to be positive. However, the derivatives ∇hp(x̂(t+1,r)

and ∇hp,α(x̂(t+1,r) in (4.8,4.9) could be negative. Here we show that the optimal

solution can still be obtained using the soft shrinkage operator given in (4.12),

yet with a completely different derivation process.

Take P(2)
hp

(x) for example, let τ
(t+1,r)
i = 2λ

κ ∇hp(|x̂(t+1,r)
i |), x̃(t)i = x̂(t)i −

1
κ∇ f (x̂(t)i ), we have the following problem for xi:

min
xi

xi − x̃(t)i

2

2
+ τ

(t+1,r)
i |xi| . (4.13)

When τ
(t+1,r)
i ≥ 0, (4.13) is a convex problem. Its solution is given by

applying the shrinkage operator given in (4.12) on x̃(t)i with the threshold τ
(t+1,r)
i

2 .

When τ
(t+1,r)
i < 0, (4.13) is a not necessarily a convex problem. Luckily this is a

simple one dimensional problem, its global optimal solution can be still found

as follows:

1. When x̃(t)i <
τ
(t+1,r)
i

2 :

For xi ≥ 0, we have:

min
xi

(
xi +

τ
(t+1,r)
i − 2x̃(t)i

2

)2

−

(
τ
(t+1,r)
i − 2x̃(t)i

)2

4
+ (x̃(t)i )2 . (4.14)

Since τ
(t+1,r)
i − 2x̃(t)i > 0, the xi that minimizes (4.14) is 0.

For xi < 0, we have:

min
xi

(
xi +

−τ
(t+1,r)
i − 2x̃(t)i

2

)2

−

(
τ
(t+1,r)
i + 2x̃(t)i

)2

4
+ (x̃(t)i )2 . (4.15)

Since −τ
(t+1,r)
i − 2x̃(t)i > 0, the xi that minimizes (4.15) is τ

(t+1,r)
i +2x̃(t)i

2 .
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(4.13) is continuous at the point xi = 0. Hence the global minimum of (4.13)

is obtained by xi =
τ
(t+1,r)
i +2x̃(t)i

2 .

2. When x̃(t)i ≥
−τ

(t+1,r)
i
2 :

For xi ≥ 0, we have (4.14). Since τ
(t+1,r)
i − 2x̃(t)i < 0, the xi that minimizes

(4.14) is −τ
(t+1,r)
i +2x̃(t)i

2 .

For xi < 0, we have (4.15). Since−τ
(t+1,r)
i − 2x̃(t)i < 0, the xi that minimizes

(4.15) is 0.

(4.13) is continuous at the point xi = 0. Hence the global minimum of (4.13)

is obtained by xi =
−τ

(t+1,r)
i +2x̃(t)i

2 .

3. When 0 > x̃(t)i ≥
τ
(t+1,r)
i

2 :

For xi ≥ 0, we have (4.14). Since τ
(t+1,r)
i − 2x̃(t)i < 0, the xi that minimizes

(4.14) is −τ
(t+1,r)
i +2x̃(t)i

2 .

For xi < 0, we have (4.15). Since−τ
(t+1,r)
i − 2x̃(t)i > 0, the xi that minimizes

(4.15) is τ
(t+1,r)
i +2x̃(t)i

2 .

It’s easy to verify that the minimum of (4.15) is smaller than the minimum

of (4.14). Hence the global minimum of (4.13) is obtained by τ
(t+1,r)
i +2x̃(t)i

2 .

4. When 0 ≤ x̃(t)i <
−τ

(t+1,r)
i
2 :

For xi ≥ 0, we have (4.14). Since τ
(t+1,r)
i − 2x̃(t)i < 0, the xi that minimizes

(4.14) is −τ
(t+1,r)
i +2x̃(t)i

2 .

For xi < 0, we have (4.15). Since−τ
(t+1,r)
i − 2x̃(t)i > 0, the xi that minimizes

(4.15) is τ
(t+1,r)
i +2x̃(t)i

2 .

It’s easy to verify that the minimum of (4.15) is larger than the minimum of

(4.14). Hence the global minimum of (4.13) is obtained by −τ
(t+1,r)
i +2x̃(t)i

2 .
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Combining the above 4 different scenarios, we have the following results:

1. When x̃(t)i ≥ 0, the solution to (4.13) is x̃(t)i −
τ
(t+1,r)
i

2 .

2. When x̃(t)i < 0, the solution to (4.13) is x̃(t)i +
τ
(t+1,r)
i

2 .

This is exactly the shrinkage operator given in (4.12) on x̃(t)i with the threshold
τ
(t+1,r)
i

2 .

4.2 Experimental results

We compare the proposed Shannon entropy function (SEF) minimization and

Rényi entropy function (REF) minimization approaches with the state-of-the-

art l1 norm (L1) minimization and lp norm (Lp) minimization approaches on

simulated and real datasets.

4.2.1 Simulated sparse signal recovery

For the noiseless sparse signal recovery experiments, we fix N = 1000 and

vary the sampling ratio σ = M
N ∈ [0.05, 0.1, 0.15, · · · , 0.95] and the sparsity

ratio ρ = S
M ∈ [0.05, 0.1, 0.15, · · · , 0.95], where S is the sparsity of the signal,

i.e. the number of nonzero coefficients. For each combination of σ and ρ, we

randomly generate 100 pairs of {x, A}: A is a M× N random Gaussian matrix

with normalized and centralized rows; the nonzero entries of the sparse signal

x ∈ RN are i.i.d. generated according to the Gaussian distribution N (0, 1).

Given the measurement vector y = Ax and the sensing matrix A, we try to

recover the signal x. If ϵ = ∥x− x̂∥2/∥x∥2 < 10−3, the recovery is considered to

be a success. The parameters are selected to obtain best performance for each

method: for the SEF minimization approach, p = 1.1; for the REF minimization

approach, p = 1.1, α = 1.1; for the Lp minimization approach, p = 0.5. FPC
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Ffigure4.1:(a)Thephasetransfitfioncurves(PTC)ofdfifferentsparsfityregularfizatfion

approachesfinthenofiselesscase;(b)Thesfignal-to-nofise-ratfio(SNR)oftherecovered

sfignal̂xusfingdfifferentsparsfityregularfizatfionapproachesfinthenofisycase.

method[50]fisusedtoapproachtheoptfimalλ=0.Basedonthe100trfials,we

computethesuccessrecoveryrateforeachcombfinatfionofσandρandplotthe

PTCsfinFfig.4.1(a).

ThePTCfisthecontourthatcorrespondstothe0.5successratefinthedomafin

(σ,ρ)∈(0,1)2,fitdfivfidesthedomafinfintoa“success”phase(lowerrfight)anda

“fafilure”phase(upperleft). WecanseethattheproposedSEFmfinfimfizatfionand

REFmfinfimfizatfionapproachesgenerallyperformequallywell,andtheyboth

performbetterthantheL1andLpmfinfimfizatfionapproaches.

Wenexttrytorecoverthesparsesfignalxfromanofisymeasurementvectory.

Specfifically,wefixS=100,N=1000andfincreasethenumberofmeasurement

M.y∈RMfisgeneratedasfollows:

Nofisymeasurements: y=Ax+νw, (4.16)
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(a) (b) (c) (d)

Figure 4.2: The real images used in the recovery experiments: (a) Barbara; (b) Boat; (c)

Lena; (d) Peppers.

where ν > 0 controls the amount of noise added to y, the entries of w are i.i.d

GaussianN (0, 1). We choose ν = 0.1, this creates a measurement y with signal to

noises ratio (SNR) around 20 dB. We randomly generate 100 triples of {x, A, w}.

The average SNRs of the recovered signals x̂ are shown in Fig. 4.1(b). We can see

that the proposed SEF/REF minimization approaches and the Lp minimization

approach perform better than the L1 minimization approach. When σ < 0.5),

the SEF and REF minimization approaches outperform the Lp minimization

approach.

4.2.2 Real image recovery

Real images are considered to be approximately sparse under some proper basis,

such as the DCT basis, wavelet basis, etc. Here we compare the recovery per-

formances of the aforementioned sparsity regularization approaches based on

varying noiseless and noisy measurements of the 4 real images in Fig. 4.2: Bar-

bara, Boat, Lena, Peppers. Specifically, in order to reveal the sparse coefficients x

of the real images s, we use the sparsity averaging method by [51] to construct

an over-complete wavelet basis by concatenating Db1-Db4 [52] as follows:

V =
1
2
× [V Db1 V Db2 V Db3 V Db4] . (4.17)
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It is easy to verify that s = V x, and x = VTs. The sampling matrix U is

constructed using the structurally random matrix approach by [35]:

U = DFR , (4.18)

where R is a uniform random permutation matrix that scrambles the signal’s

sample locations globally while a diagonal matrix of Bernoulli random variables

flips the signal’s sample signs locally, F is an orthonormal DCT matrix that

computes fast transforms, D is a sub-sampling matrix that randomly selects a

subset of the rows of the matrix FR.

The noiseless measurements y of the image s are obtained as follows:

Noiseless measurements: y = DFRV x = UV x = Us . (4.19)

The noisy measurements y are obtained as follows:

Noisy measurements: y = Us + νw . (4.20)

The entries of the noise w are generated using i.i.d. Gaussian distribution

N (0, 1), ν is chosen to be 0.02 so that the SNR of the measurement vector y is

around 30 dB.

Take the SEF minimization for example, we have the following recovery

problem:

min
s

∥y−Us∥2
2 + λ hp(VTs) . (4.21)

Since the recovery problem is with respect to x, we need to modified Algorithm

1: we also use the proximal regularization of the data fidelity term ∥y−Us∥2
2,
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the optimization problem in the (t + 1)-th iteration then becomes:

min
s

κ

2

s−
(

ŝ(t) − 1
κ
· 2UT(Uŝ(t) − y)

)2

2
+ λ h(VTs) , (4.22)

where κ = 2 for the chosen U in (4.18). In the (r + 1)-th iteration to minimize

(4.22), let Q(t+1,r) be a diagonal matrix whose diagonal entries are the partial

derivative of hp(VTs) with respect to
⏐⏐VTs

⏐⏐ at the solution ŝ(t+1,r), the optimiza-

tion problem is as follows:

s−
(

ŝ(t) −UT(Uŝ(t) − y)
)2

2
+ λQ(t+1,r)

⏐⏐⏐VTs
⏐⏐⏐ . (4.23)

(4.23) can be efficiently solved using the alternating split bregman shrinkage

algorithm by [53].

Since the real images are only approximately sparse, both the noiseless and

noisy recovery experiments are done using a fixed λ. The parameters are tuned

to obtain best performance for each approach. For the L1 minimization approach,

λ = 0.1; for the SEF minimization approach, p = 1, λ = 5000; for the REF min-

imization approach, p = 0.9, α = 1.1, λ = 10000; for the Lp minimization

approach, p = 0.8, λ = 0.01. The peak signal to noise ratios (PSNR) of the

noiseless and noisy recovery experiments are shown in Fig. 4.3 and 4.4 respec-

tively. We can see that the proposed SEF and REF entropy function minimization

approaches perform equally well, and they give the best performances in terms

of PSNR (dB).

Take the “Lena” image for example, we show the recovered images from

noiseless and noisy measurements when the sampling rate σ = 0.2 in Figure 4.5

and Figure 4.6 respectively. We can see that the images recovered by the proposed

SEF and REF minimization methods are cleaner and smoother compared to the

other two methods.
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Ffigure4.3:Thepeak-sfignal-to-nofise-ratfio(PSNR)oftherecoveredfimagesfrom“nofise-

less”measurementsusfingdfifferentsparsfityregularfizatfionapproaches.(a)Barbara;(b)

Boat;(c)Lena;(d)Peppers.
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Ffigure4.4:Thepeak-sfignal-to-nofise-ratfio(PSNR)oftherecoveredfimagesfrom“nofisy”

measurementsusfingdfifferentsparsfityregularfizatfionapproaches.(a)Barbara;(b)Boat;

(c)Lena;(d)Peppers.
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(a) (b)

(c) (d)

Figure 4.5: The recovered “Lena” image from noiseless measurements using differ-

ent approaches with a sampling rate of 0.2: a) l1 norm PSNR=27.81 dB; (b) lp norm

PSNR=29.63 dB; (c) Shannon entropy function hp(x) PSNR=30.79; (d) Rényi entropy

function hp,α(x) PSNR=30.75 dB.
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(a) (b)

(c) (d)

Figure 4.6: The recovered “Lena” image from noisy measurements using different ap-

proaches with a sampling rate of 0.2: a) l1 norm PSNR=27.58 dB; (b) lp norm PSNR=29.21

dB; (c) Shannon entropy function hp(x) PSNR=30.19; (d) Rényi entropy function hp,α(x)

PSNR=30.15 dB.
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Chapter 5

RPCA via entropy function
minimization

In this chapter we apply the propose entropy function minimization approach

to recover a low rank matrix L corrupted by some sparse noise matrix E. In this

case the singular values σ of the low rank matrix L and the noise E are both

sparse, and we will recover L by minimizing the two entropy functions defined

respectively on σ and E.

5.1 Introduction to RPCA

Principal component analysis (PCA) enjoys much popularity as the tool to

analyze high-dimensional data that lie in a much lower-dimensional linear

subspace, i.e. the data is of low-rank. It does so by searching for the subspace

that maximizes the variances of said data, however, this procedure would fail

when the noise is large enough such that the accurate estimation of the variance

is impossible. In the case that the noise is sparsely distributed, it has been shown

in [54, 55] that under rather broad conditions, the low rank matrix L can be

efficiently and accurately recovered from the corrupted observation D = L + E
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by solving the following constrained l1 norm minimization problem:

min
L,E

∥L∥∗ + λ∥E∥1 subject to D = L + E , (5.1)

where ∥L∥∗ = |σ|1 is the nuclear norm of L, λ > 0. L can also be obtained by

solving the unconstrained problem:

min
L,E

∥D− L− E∥2
F + µ∥L∥∗ + µλ∥E∥1 , (5.2)

where {µ, λ} > 0, ∥ · ∥F is the Frobenius norm of a matrix. Various methods

can be used to solve the recovery problem [56–60]. The recovered L is rid of the

sparse noise, which makes the PCA on L more robust. This approach is thus

called robust principal component analysis (RPCA).

5.2 Entropy function minimization

Here we give the formulations of RPCA via entropy function minimization.

Specifically, the following recovery problems need to be solved:

Php(L, E) : min
L,E

∥D− L− E∥2
F + µ · hp(σ) + µλ · hp(E) (5.3)

Php,α(L, E) : min
L,E

∥D− L− E∥2
F + µ · hp,α(σ) + µλ · hp,α(E) . (5.4)

Searching for the minimizing L, E together is often quite difficult. In practice,

we just keep one of them fixed while searching for the other. As is done in

section 4.1, we also use the proximal regularization of the data fidelity term

f (L, E) = ∥D − L− E∥2
F due to its efficiency and adaptability, and search for

L, E iteratively until convergence.

• Low rank matrix recovery: In the (t + 1)-th iteration, the proximal regu-

larization of f (L, Ê(t)
) at the solution L̂(t) from the previous t-th iteration
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is as follows:

f (L, Ê(t)
) = ∥D− L− Ê(t)∥2

F

≤ o(L̂(t), Ê(t)
) +

κL

2

L− L̃
(t)
2

F
,

(5.5)

where κL ≥ 2 is the Lipschitz constant, L̃
(t)

= L̂(t) − 2
κL

(
L̂(t)

+ Ê(t) − D
)

.

Ignoring the constant term o(L̂(t), Ê(t)
), the first step of the low rank matrix

recovery problems are then:

P(1)
hp

(L) : min
L

κL

2
∥L− L̃

(t)∥2
F + µ · hp(σ) (5.6)

P(1)
hp,α

(L) : min
L

κL

2
∥L− L̃

(t)∥2
F + µ · hp,α(σ) . (5.7)

In the second step of the recovery problems, the entropy functions hp(σ),

hp,α(σ) are approximated using their first-order approximation as before

and iteratively minimized until convergence. For the (r + 1)-th iteration to

solve (5.6,5.7), we have:

P(2)
hp

(L) : min
L

κL

2
∥L− L̃

(t)∥2
F + µ ·

⟨
σ,∇hp(σ̂

(t+1,r))
⟩

(5.8)

P(2)
hp,α

(L) : min
L

κL

2
∥L− L̃

(t)∥2
F + µ ·

⟨
σ,∇hp,α(σ̂

(t+1,r))
⟩

, (5.9)

where σ̂(t+1,r) are the singular values of the low rank matrix L̂(t+1,r) in the

previous r-th iteration. Suppose the singular value decomposition (SVD)

of the matrix L̃
(t)

is as follows:

L̃
(t)

= Ũ
(t) · S̃(t) · Ṽ (t)T

, (5.10)

where S is a diagonal matrix whose diagonal entries are the singular values

σ̃(t) of L̃
(t)

. The solutions to problems like (5.8,5.9) are known to have the
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close forms [58]:

L̂(t+1,r+1)
= Ũ

(t) · Ŝ(t+1,r+1) · Ṽ (t)T

, (5.11)

where Ŝ(t+1,r+1) is a diagonal matrix whose entries σ̂(t+1,r+1) are obtained

using the following thresholding operator in (4.12) on σ̃(t):

σ̂
(t+1,r+1)
i = T

µ∇hp

(
σ̂
(t+1,r)
i

)
κL

(σ̃
(t)
i ) (5.12)

σ̂
(t+1,r+1)
i = T

µ∇hp,α

(
σ̂
(t+1,r)
i

)
κL

(σ̃
(t)
i ) . (5.13)

In [57], κL is chosen to be 4, which is larger than the smallest Lipschitz

constant. To maintain consistency, in this dissertation we also set κL = 4.

• Sparse matrix recovery: In the (t + 1)-th iteration, the proximal regular-

ization of f (L̂(t), E) at the solution Ê(t) from the previous t-th iteration is

as follows:

f (L̂(t), E) = ∥D− L̂(t) − E∥2
F

≤ o(L̂(t), Ê(t)
) +

κE

2

E− Ẽ
(t)
2

F
,

(5.14)

where κE ≥ 2 is the Lipschitz constant, and Ẽ
(t)

= Ê(t)− 2
κE

(
L̂(t)

+ Ê(t) − D
)

.

Ignoring the constant term o(L̂(t), Ê(t)
), the first step of the low rank matrix

recovery problems are then:

P(1)
hp

(E) : min
E

κE

2
∥E− Ẽ

(t)∥2
F + µλ · hp(E) (5.15)

P(1)
hp,α

(E) : min
E

κE

2
∥E− Ẽ

(t)∥2
F + µλ · hp,α(E) . (5.16)

In the second step of the recovery problems, the entropy functions hp(E),
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hp,α(E) are approximated using their first-order approximation and it-

eratively minimized until convergence as is done in section 4.1. In the

(r + 1)-th iteration to solve (5.15,5.16), we have:

P(2)
hp

(E) : min
E

κE

2
∥E− Ẽ

(t)∥2
F + µλ ·

⟨
E,∇hp(Ê(t+1,r)

)
⟩

(5.17)

P(2)
hp,α

(E) : min
E

κE

2
∥E− Ẽ

(t)∥2
F + µλ ·

⟨
E,∇hp,α(Ê(t+1,r)

)
⟩

, (5.18)

where Ê(t+1,r) are the sparse error matrix in the previous r-th iteration. The

entries of Ê(t+1,r+1) are obtained using the following thresholding operator

on Ẽ
(t)

:

Ê(t+1,r+1)
ij = T

µλ∇hp

(
Ê(t+1,r)

ij

)
κE

(Ẽ(t)
ij ) (5.19)

Ê(t+1,r+1)
ij = T

µλ∇hp,α

(
Ê(t+1,r)

ij

)
κE

(Ẽ(t)
ij ) . (5.20)

In practice, the parameter λ is usually chosen to be fixed, while the parameter

µ starts with a relatively large value and is reduced by a rate η < 1 after each

iteration. Using FISTA [38] to speed up the convergence, we summarize the

proposed approach in Algorithm 2.

5.3 Experimental results

For the experiments on the recovery of the low rank matrix L corrupted by sparse

noise E, the M×M matrix L is generated as a product of two independent M×R

matrices whose entries follow independently identically distributed Gaussian

distribution N (0, 1); the nonzero entries of M×M matrix E are independently

identically generated following the uniform distribution in the range [−500, 500]

and their positions are chosen randomly as well. We then have the corrupted
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Algorithm 2 RPCA via entropy function minimization

Require: D, {µ, λ, η}, {κL, κE}, {p, α}
1: Initialize {L̂(t), Ê(t), t = 0} and c0 = 1;
2: for t = {0, 1, · · · } do

3: Compute L̃
(t)

, Ẽ
(t)

in (5.5, 5.14);
4: Initialize {σ̂(t+1,r), r = 0} with σ̂(t);
5: for r = {0, 1, · · · } do
6: Obtain σ̂(t+1,r+1) by solving P(2)

hp
(L) or P(2)

hp,α
(L) in (5.8, 5.9);

7: if σ̂(t+1,r+1) reaches convergence or the objective functions in (5.6, 5.9)
increase then

8: σ̂(t+1) = σ̂(t+1,r+1);
9: break;

10: end if
11: end for
12: Initialize {Ê(t+1,r)r = 0} with Ê(t) respectively;
13: for r = {0, 1, · · · } do
14: Obtain Ê(t+1,r+1) by solving P(2)

hp
(E) or P(2)

hp,α
(E) in (5.17, 5.18);

15: if Ê(t+1,r+1) reaches convergence or the objective functions in (5.15, 5.16)
increase then

16: Ê(t+1)
= Ê(t+1,r+1);

17: break;
18: end if
19: end for
20: ct+1 =

1+
√

1+4c2
t

2 ;

21: L̂(t+1)
= L̂(t+1)

+
(

ct−1
ct+1

)
(L̂(t+1) − L̂(t)

);

22: Ê(t+1)
= Ê(t+1)

+
(

ct−1
ct+1

)
(Ê(t+1) − Ê(t)

);
23: Reduce the value of µ: µ = ηµ;

24: if L̂(t+1), Ê(t+1) reach convergence then
25: L̂ = L̂(t+1), Ê = Ê(t+1);
26: break;
27: end if
28: end for
29: Return Output L̂, Ê;
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Part III

Probabilistic approach
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Chapter 6

GAMP with built-in parameter
estimation

In this chapter we propose the generalized approximate message passing (GAMP)

framework with built-in parameter estimation and give its approximate loopy

belief propagation realizations. Specifically, the parameters {θ, λ} are treated

as unknown random variables following some simple prior distributions. and

estimated jointly with the signal x.

6.1 Prior work

Following the probabilistic interpretation of the under-determined linear system

(1.2,1.3) in Fig. 1.2, the entries of x and w are assumed to be i.i.d distributed

according to some distributions p(xj; λ), p(wi; θ) respectively. Probabilistic

inferences can then be performed on the corresponding factor graph to recover

x using Gaussian/quadratic approximations of loopy belief propagation, a.k.a.

message passing [24]. Based on different inference tasks, loopy BP has the

following two variants:

• Sum-product message passing for the MMSE estimation of x: The “marginal”

posterior distributions {p(xj; λ|y), p(wi; θ|y)} can be obtained.
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• Max-sum message passing for the MAP estimation of x: The x̃, w̃ that

maximize the “joint” posterior distribution p(x̃, w̃; λ, θ|y) can be obtained.

In [23, 61, 62] the approximate message passing (AMP) algorithm based on

a quadratic approximation of max-sum message passing is proposed, it has

low complexity and can be used to find solutions of the l1 norm minimization

problem Pl1(x) accurately.

Various methods based on the AMP framework have been proposed over the

years [22, 63, 64]. In this dissertation we focus on the generalized version of the

AMP algorithm (GAMP) by [22]. Compared with other AMP algorithms, GAMP

can work with essentially arbitrary input and output channel distributions, and

approximate both the sum-product and max-sum message passings using only

scalar estimations and linear transforms. The parameters {λ, θ} in the input

and output channels are usually unknown, and need to be decided for the

AMP/GAMP algorithm.

In [25, 26, 65, 66], Expectation Maximization (EM) [27] algorithm is used

to perform parameter estimation for the GAMP. They treat x as the hidden

variable and tries to find the parameters that maximize the likelihood p(y; λ, θ).

However, EM based parameter estimation is not widely applicable, it has high

complexity and can only be used with sum-product message passing.

6.2 Message passings in PE-GAMP

The factor graph of the proposed GAMP framework with built-in parameter

estimation (PE-GAMP) that treats the parameters as random variables is shown

in Fig. 6.1. Inference tasks performed on the factor graph rely on the “messages”

passed among connected nodes of the graph. Here we adopt the same notations
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θ1

θK
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Φ2

ΦM
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Figure 6.1: The factor graph for the proposed PE-GAMP. “■” represents the factor node,

and “⃝” represents the variable node. Here, λ = {λ1, · · · , λL} and θ = {θ1, · · · , θK}

are the parameters whereas x = [x1, · · · , xN ]
T is the sparse signal.

used by [22]. Take the messages being passed between the factor node Φm

and the variable node xn for example, ∆Φm→xn is the message from Φm to xn,

and ∆Φm←xn is the message from xn to Φm. Both ∆Φm→xn and ∆Φm←xn can be

viewed as functions of xn. In the following section 6.2.1 and 6.2.2, we give

the messages being passed on the generalized factor graph in log domain for

the sum-product message passing algorithm and the max-sum message passing

algorithm respectively.

6.2.1 Sum-product message passing

Sum-product message passing is used to compute the marginal distributions

of the random variables in the graph: p(x|y), p(λ|y), p(θ|y). In the following,

we first present the sum-product message updates equations in the (t + 1)-th
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iteration.

∆(t+1)
Φm→xn

= const + log
∫

x\xn,θ

[
Φm (ym, x, θ)

× exp
(

∑j ̸=n ∆(t)
Φm←xj

+ ∑v ∆(t)
Φm←θv

)] (6.1a)

∆(t+1)
Φm←xn

= const + ∆(t+1)
Ωn→xn

+ ∑i ̸=m ∆(t+1)
Φi→xn

(6.1b)

∆(t+1)
Ωn→xn

= const + log
∫

λ
Ωn(xn, λ) · exp

(
∑u ∆(t)

Ωn←λu

)
(6.1c)

∆(t+1)
Ωn←xn

= const + ∑i ∆(t+1)
Φi→xn

, (6.1d)

where x\xn denotes the sequence obtained by removing xn from x, Φm(ym, x, θ) =

p(ym|x, θ) and Ωn(xn, λ) = p(xn|λ). Similarly, we can write the message up-

dates involving the variable nodes λl, θk as follows:

∆(t+1)
Ωn→λl

= const + log
∫

xn,λ\λl

[
Ωn(xn, λ)

× exp
(

∆(t+1)
Ωn←xn

+ ∑u ̸=l ∆(t)
Ωn←λu

)] (6.2a)

∆(t+1)
Ωn←λl

= const + ∑j ̸=n ∆(t+1)
Ωj→λl

+ log p(λl) (6.2b)

∆(t+1)
Φm→θk

= const + log
∫

θ\θk,x

[
Φm (ym, x, θ)

× exp
(

∑j ∆(t)
Φm←xj

+ ∑v ̸=k ∆(t)
Φm←θv

)] (6.2c)

∆(t+1)
Φm←θk

= const + ∑i ̸=m ∆(t+1)
Φi→θk

+ log p(θk) , (6.2d)

where p(λl), p(θk) are the pre-specified priors of the parameters. Let Γ(xn),

Γ(λl), Γ(θk) denote the factor nodes in the neighborhood of the variable nodes
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xn, λl, θk respectively, we have the following posterior marginals:

p(xn|y) ∝ exp ∆(t+1)
xn = exp

(
∆(t+1)

Ωn→xn
+ ∑Φm∈Γ(xn) ∆(t+1)

Φm→xn

)
(6.3a)

p(λl|y) ∝ exp ∆(t+1)
λl

= exp
(

log p(λl) + ∑Ωn∈Γ(λl)
∆(t+1)

Ωn→λl

)
(6.3b)

p(θk|y) ∝ exp ∆(t+1)
θk

= exp
(

log p(θk) + ∑Φm∈Γ(θk)
∆(t+1)

Φm→θk

)
. (6.3c)

Using p(xn|y), the MMSE estimate of x can then be computed:

x̂n = E [xn|y] =
∫

xn
xn p(xn|y) . (6.4)

6.2.2 Max-sum message passing

Max-sum message passing is used to compute the “joint” MAP estimates of the

random variables in the graph:

(x̂, λ̂, θ̂) = arg max
x,λ,θ

p(x, λ, θ|y) . (6.5)

For the max-sum message passing, the message updates from the variable nodes

to the factor nodes are the same as the aforementioned sum-product message

updates, i.e. (6.6b, 6.6d, 6.7b, 6.7d). We only need to change the message updates

from the factor nodes to the variable nodes by replacing
∫

with max. Specifically,

we have the following message updates between the variable node xn and the
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factor nodes Φm, Ωn in the (t + 1)-th iteration:

∆(t+1)
Φm→xn

= const + max
x\xn,θ

[
log Φm (ym, x, θ)

+∑j ̸=n ∆(t)
Φm←xj

+ ∑v ∆(t)
Φm←θv

] (6.6a)

∆(t+1)
Φm←xn

= const + ∆(t+1)
Ωn→xn

+ ∑i ̸=m ∆(t+1)
Φi→xn

(6.6b)

∆(t+1)
Ωn→xn

= const + max
λ

[
log Ωn(xn, λ) + ∑u ∆(t)

Ωn←λu

]
(6.6c)

∆(t+1)
Ωn←xn

= const + ∑i ∆(t+1)
Φi→xn

. (6.6d)

The message updates involving the variable nodes λl, θk are then:

∆(t+1)
Ωn→λl

= const + max
xn,λ\λl

[
log Ωn(xn, λ)

+∆(t+1)
Ωn←xn

+ ∑u ̸=l ∆(t)
Ωn←λu

] (6.7a)

∆(t+1)
Ωn←λl

= const + ∑j ̸=n ∆(t+1)
Ωj→λl

+ log p(λl) (6.7b)

∆(t+1)
Φm→θk

= const + max
θ\θk,x

[
log Φm (ym, x, θ)

+∑j ∆(t)
Φm←xj

+ ∑v ̸=k ∆(t)
Φm←θv

] (6.7c)

∆(t+1)
Φm←θk

= const + ∑i ̸=m ∆(t+1)
Φi→θk

+ log p(θk) . (6.7d)

57



Similarly, we have the following posterior distributions that are different from

those in (6.3):

p(xn, x̂(t+1)\x̂(t+1)
n , λ̂

(t+1)
, θ̂

(t+1)|y) ∝ exp ∆(t+1)
xn

= exp
(

∆(t+1)
Ωn→xn

+ ∑Φm∈Γ(xn) ∆(t+1)
Φm→xn

) (6.8a)

p(x̂(t+1), λl, λ̂
(t+1)\λ̂(t+1)

l |y) ∝ exp ∆(t+1)
λl

= exp
(

log p(λl) + ∑Ωn∈Γ(λl)
∆(t+1)

Ωn→λl

) (6.8b)

p(x̂(t+1), θk, θ̂
(t+1)\θ̂(t+1)

k |y) ∝ exp ∆(t+1)
θk

= exp
(

log p(θk) + ∑Φm∈Γ(θk)
∆(t+1)

Φm→θk

)
,

(6.8c)

where x̂, λ̂, θ̂ are the maximizing values computed from (6.6a,6.6c,6.7a,6.7c)

accordingly. The “joint” MAP estimates of the signal x and the parameters λ, θ

are then:

x̂n = arg max
xn

p(xn, x̂(t+1)\x̂(t+1)
n , λ̂

(t+1)
, θ̂

(t+1)|y) (6.9a)

λ̂l = arg max
λl

p(x̂(t+1), λl, λ̂
(t+1)\λ̂(t+1)

l |y) (6.9b)

θ̂k = arg max
θk

p(x̂(t+1), θk, θ̂
(t+1)\θ̂(t+1)

k |y) . (6.9c)

6.2.3 The PE-GAMP algorithm

The priors p(λl), p(θk) on the parameters are usually chosen to be some simple

distributions. If we do not have any knowledge on how λ, θ are distributed, we

can fairly assume a uniform prior and treat p(λl), p(θk) as constants. Since λl, θk

are treated as random variables in the PE-GAMP framework, they will be jointly

estimated along with the signal x in the message-updating process.
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❑ Sum-product message passing: Take λl for example, in the PE-GAMP, we

propose to approximate the underlying distribution p(t+1)
Ωn←λl

(λl|y) ∝ exp(∆(t+1)
Ωn←λl

)

using Dirac delta function:

p(t+1)
Ωn←λl

(λl|y) ≈ δ
(

λl − λ̂
(t+1)
Ωn←λl

)
, (6.10)

where δ(·) is the Dirac delta function, λ̂
(t+1)
Ωn←λl

can be computed using either the

MAP or MMSE estimation:

MAP estimation of λl: λ̂
(t+1)
Ωn←λl

:= arg max
λl

∆(t+1)
Ωn←λl

(6.11a)

MMSE estimation of λl: λ̂
(t+1)
Ωn←λl

:= E[λl|∆
(t+1)
Ωn←λl

] , (6.11b)

where E[λl|∆
(t+1)
Ωn←λl

] is the mean of the distribution 1
C exp(∆(t+1)

Ωn←λl
), C is a nor-

malizing constant.

The formulations for the rest parameters can be derived similarly. The reason

behind the choice of Dirac delta approximation of p(t+1)
Ωn←λl

(λl|y) is its simplicity,

it amounts to the scalar MAP or MMSE estimation of λl from the posterior

distribution p(t+1)
Ωn←λl

(λl|y). Other approximations often make it quite difficult to

compute the message ∆(t+1)
Ωn→λl

in (6.2a) due to the lack of closed-form solutions.
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The updated messages from the factor nodes to the variable nodes are then:

∆(t+1)
Φm→xn

= const + log
∫

x\xn

[
Φm

(
ym, x, θ̂

(t)
Φm

)
× exp

(
∑j ̸=n ∆(t)

Φm←xj

)] (6.12a)

∆(t+1)
Ωn→xn

= const + log Ωn(xn, λ̂
(t)
Ωn) (6.12b)

∆(t+1)
Ωn→λl

= const + log
∫

xn

[
Ωn

(
xn, λl, λ̂

(t)
Ωn\λ̂

(t)
Ωn←λl

)
× exp

(
∆(t+1)

Ωn←xn

)] (6.12c)

∆(t+1)
Φm→θk

= const + log
∫

x

[
Φm

(
ym, x, θk, θ̂

(t)
Φm
\θ̂(t)Φm←θk

)
× exp

(
∑j ∆(t)

Φm←xj

)]
,

(6.12d)

where λ̂
(t)
Ωn , θ̂

(t)
Φm

are scalar estimates from the previous t-th iteration at nodes Ωn

and Φm respectively.

λ̂
(t)
Ωn =

{
λ̂
(t)
Ωn←λu

⏐⏐⏐ u = 1, · · · , L
}

(6.13a)

θ̂
(t)
Φm

=
{

θ̂
(t)
Φm←θv

⏐⏐⏐ v = 1, · · · , K
}

. (6.13b)

❑ Max-sum message passing: Take λl for example, a straightforward way to

solve the problems in (6.6c, 6.7a) is to iteratively maximize each variable in

{xn, λ\λl} while keeping the rest fixed until convergence. However, it is ineffi-

cient and quite unnecessary. In practice one iteration would suffice. Hence we

propose to use the following solutions as the approximate maximizing parame-

ters:

λ̂
(t+1)
Ωn←λl

= arg max
λl

log Ωn

(
x̂(t)n , λl, λ̂

(t)
Ωn\λ̂

(t)
Ωn←λl

)
+ ∆(t)

Ωn←λl
. (6.14)
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The updated messages from the factor nodes to the variable nodes can be ob-

tained by replacing “
∫

” in (6.12) with “max” like before.

For the rest of the paper, parameter estimation operations like those in (6.11,

6.14) will be abbreviated by the two functions fΩn←λl(·), fΦm←θk(·).

λ̂
(t+1)
Ωn←λl

= fΩn←λl(·) and θ̂
(t+1)
Φm←θk

= fΦm←θk(·) . (6.15)

They are different from the input and output channels estimation functions

gin(·), gout(·) defined in [22].

The proposed GAMP algorithm with built-in parameter estimation (PE-

GAMP) can be summarized in Algorithm 3, where qΦ ∈ RM, rΩ ∈ RN can

be viewed as some new random variables created inside the original GAMP

framework [22], and τ
q
Φ ∈ RM, τs

Φ ∈ RM, τr
Ω ∈ RN are their corresponding

variances. As is done in [22], further simplification will be made by replacing the

variance vectors with scalars when performing asymptotic analysis of Algorithm

3:

τ
q
Φ, τr

Ω
Replace
====⇒ τ

q
Φ, τr

Ω . (6.16)

For the sum-product message passing, PE-GAMP naturally produces MMSE

estimation of x in (6.20a). After the convergence is reached, we can also compute

the MAP estimation of x using p(xn|y): x̂n = arg maxxn p(xn|y). For the max-

sum message passing, PE-GAMP naturally produces the “joint” MAP estimation

of x in (6.20a). However, there isn’t any meaningful MMSE estimation of x in

this case.
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Algorithm 3 The PE-GAMP algorithm

Require: The matrix A ∈ RM×N; the observation y ∈ RM; the input and
output channels estimation functions gin(·), gout(·); the parameter estimation
functions fΩn(·), fΦm(·).

1: Set s(−1) = 0 and initialize x̂(0), τx
Ω(0), λ̂

(0)
Ωn , θ̂

(0)
Φm

.
2: for t = {0, 1, · · · } do
3: Output channel linear update: For each m = 1, · · · , M

τ
q
Φm

(t) = ∑n |Amn|2τx
Ωn

(t) (6.17a)

q(t)Φm
= ∑n Amn x̂(t)n − τ

q
Φm

(t)s(t−1)
m (6.17b)

ẑ(t)m = ∑n Amn x̂(t)n . (6.17c)

4: Output channel nonlinear update: For each m = 1, · · · , M

s(t)Φm
= gout

(
t, q(t)Φm

, τ
q
Φm

(t), ym, θ̂
(t)
Φm

)
(6.18a)

τs
Φm

(t) = − ∂

∂q
gout

(
t, q(t)Φm

, τ
q
Φm

(t), ym, θ̂
(t)
Φm

)
. (6.18b)

5: Input channel linear update: For each n = 1, · · · , N

τr
Ωn

(t) =
[
∑m |Amn|2τs

Φm
(t)
]−1

(6.19a)

r(t)Ωn
= x(t)n + τr

Ωn
(t)∑m Amns(t)m . (6.19b)

6: Input nonlinear update: For each n = 1, · · · , N

x̂(t+1)
n = gin

(
t, r(t)Ωn

, τr
Ωn

(t), λ̂
(t)
Ωn

)
(6.20a)

τx
Ωn

(t + 1) = τr
Ωn

(t)
∂

∂r
gin

(
t, r(t)Ωn

, τr
Ωn

(t), λ̂
(t)
Ωn

)
. (6.20b)
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Algorithm 3 The PE-GAMP algorithm (continued)

7: Sum-product message passing parameters update: For each k = 1, · · · , K
and l = 1, · · · , L.

λ̂
(t+1)
Ωn←λl

= fΩn←λl

(
t, r(t)Ω , τr

Ω(t), λl, λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

)
(6.21a)

θ̂
(t+1)
Φm←θk

= fΦm←θk

(
t, q(t)

Φ , y, τ
q
Φ(t), θk, θ̂

(t)
Φm
\θ̂(t)Φm←θk

)
. (6.21b)

8: Max-sum message passing parameters update: For each k = 1, · · · , K and
l = 1, · · · , L.

λ̂
(t+1)
Ωn←λl

= fΩn←λl

(
t, x̂(t)n , r(t)Ω , τr

Ω(t), λl, λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

)
(6.22a)

θ̂
(t+1)
Φm←θk

= fΦm←θk

(
t, ẑ(t), q(t)

Φ , y, τ
q
Φ(t), θk, θ̂

(t)
Φm
\θ̂(t)Φm←θk

)
. (6.22b)

9: if x̂(t+1) reaches convergence then
10: x̂ = x̂(t+1);
11: break;
12: end if
13: end for
14: Return Output x̂;
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6.3 Sum-product PE-GAMP

Approximate message passing uses quadratic/Gaussian approximations of the

messages from the variable nodes to the factor nodes to perform loopy belief

propagation. To maintain consistency with [22], we use the same notations for

the quadratic approximations of messages involving x. Specifically, ∆(t)
xn , ∆(t)

Φm←xn

in the t-th iteration can be used to construct the following distributions about xn:

p(xn|y) ∝ exp(∆(t)
xn ) (6.23a)

p(t)Φm←xn
(xn|y) ∝ exp(∆(t)

Φm←xn
) . (6.23b)

We then have the following expectations and variances definitions:

x̂(t)n := E[xn|∆(t)
xn ] (6.24a)

τx
Ωn

(t) := var[xn|∆(t)
xn ] (6.24b)

x̂(t)Φm←xn
:= E[xn|∆(t)

Φm←xn
] (6.24c)

τx
Φm←xn

(t) := var[xn|∆(t)
Φm←xn

] . (6.24d)

If the entries amn of the sensing matrix A is small, τx
Ωn

(t) ≈ τx
Φm←xn

(t). The

message ∆(t)
Φm←xn

in the t-th iteration will be approximated quadratically:

∆(t)
Φm←xn

≈ const− 1
2τx

Φm←xn
(t)

(
xn − x̂(t)Φm←xn

)2

≈ const− 1
2τx

Ωn
(t)

(
xn − x̂(t)Φm←xn

)2
,

(6.25)
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which makes the approximation of p(t)Φm←xn
(xn|y) a Gaussian distribution. Simi-

larly we have the following approximations for x involving the node Ωn:

x̂(t)Ωn←xn
:= E[xn|∆(t)

Ωn←xn
] (6.26a)

τx
Ωn←xn

(t) := var[xn|∆(t)
Ωn←xn

] (6.26b)

∆(t)
Ωn←xn

≈ const− 1
2τx

Ωn←xn
(t)

(
xn − x̂(t)Ωn←xn

)2
. (6.26c)

In the proposed PE-GAMP, we use Dirac delta approximation of the messages

involving the parameters λ, θ. Specifically, the parameters are estimated using

MAP or MMSE estimations:

1. MAP estimation:

λ̂
(t)
Ωn←λl

:= arg max
λl

∆(t)
Ωn←λl

(6.27a)

θ̂
(t)
Φm←θk

:= arg max
θk

∆(t)
Φm←θk

. (6.27b)

2. MMSE estimation:

λ̂
(t)
Ωn←λl

:= E[λl|∆
(t)
Ωn←λl

] (6.28a)

θ̂
(t)
Φm←θk

:= E[θk|∆
(t)
Φm←θk

] . (6.28b)

The corresponding messages involving the parameters λ, θ in the (t)-th iteration

can then be approximated as follows:

exp
(

∆(t)
Ωn←λl

)
≈ δ

(
λl − λ̂

(t)
Ωn←λl

)
(6.29a)

exp
(

∆(t)
Φm←θk

)
≈ δ

(
θk − θ̂

(t)
Φm←θk

)
. (6.29b)
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Using approximated messages from the variable node to factor node in (6.29),

∆(t+1)
Φm→xn

can then be computed:

∆(t+1)
Φm→xn

= const + log
∫

x\xn
Φm

(
ym, x, θ̂

(t)
Φm

)
· exp

(
∑j ̸=n ∆(t)

Φm←xj

)
. (6.30)

Direct integration with respect to x\xn in (6.30) is quite difficult. If we go back to

the original belief propagation, we can see that the message ∆(t+1)
Φm→xn

essentially

performs the following computation:

log p(ym, xn) = log
∫

x\xn,θ
p(ym, x, θ)

= log
∫

x\xn,θ
p(ym|x, θ)p(x)p(θ) .

(6.31)

Let z′m = zm − amnxn = ∑j ̸=n amjxj, log p(ym, xn) can also be written as:

log p(ym, xn) = log
∫

z′m,θ
p(ym, xn, z′m, θ)

= log
∫

z′m,θ
p(ym|xn, z′m, θ)p(z′m)p(θ) .

(6.32)

Translating (6.32) back to the message gives us:

∆(t+1)
Φm→xn

= const + log
∫

z′m

⎡⎣Φ
(

ym, xn, z′m, θ̂
(t)
Φm

)

× exp

⎛⎝− 1

2
(

τ
q
Φm

(t)− a2
mnτx

Ωn
(t)
)

×
(

z′m −
(

q(t)Φm
− amn x̂(t)Φm←xn

))2

⎞⎠⎤⎦ ,

(6.33)
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where τ
q
Φm

(t), q(t)Φm
are as follows:

τ
q
Φm

(t) = ∑
j

a2
mjτ

x
Ωj
(t) (6.34a)

q(t)Φm
= ∑

j
amj x̂

(t)
Φm←xj

. (6.34b)

If amn is small, a2
mnτx

Ωn
(t) can be neglected. Since the integration of z′m is from

−∞ to ∞, we replace z′m with zm = z′m + amnxn. (6.33) then becomes:

∆(t+1)
Φm→xn

= const + log
∫

zm

[
Φ
(

ym, zm, θ̂
(t)
Φm

)
×

exp

(
−1

2τ
q
Φm

(t)

(
zm −

(
q(t)Φm

+ amn

(
xn − x̂(t)Φm←xn

)))2
)]

.

(6.35)

6.3.1 Review on sum-product GAMP update

For completeness, we include the GAMP update from [22] to compute ∆(t+1)
Φm→xn

,

∆(t+1)
Φm←xn

. The following function H (q, τq, y, θ) is defined:

H (q, τq, y, θ) = log
∫

z
Φ(y, z, θ) · exp

(
− 1

2τq (z− q)2
)

. (6.36)

∆(t+1)
Φm→xn

in (6.35) can then be written as:

∆(t+1)
Φm→xn

= const + H
(

q(t)Φm
+ amn

(
xn − x̂(t)Φm←xn

)
, τ

q
Φm

(t), ym, θ̂
(t)
Φm

)
. (6.37)

Next, we try to approximate the message ∆(t+1)
Φm→xn

up to second order Taylor

series at q(t)Φm
. We define the following:

gout(q, τq, y, θ) :=
∂

∂q
H (q, τq, y, θ) . (6.38)
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Let s(t)Φm
, τs

Φm
(t) be the first and second order of H(·) at q(t)Φm

:

s(t)Φm
= gout

(
t, q(t)Φm

, τ
q
Φm

(t), ym, θ̂
(t)
Φm

)
(6.39)

τs
Φm

(t) = − ∂

∂q
gout

(
t, q(t)Φm

, τ
q
Φm

(t), ym, θ̂
(t)
Φm

)
. (6.40)

∆(t+1)
Φm→xn

can then be approximated by:

∆(t+1)
Φm→xn

≈ const + s(t)Φm
amn

(
xn − x̂(t)Φm←xn

)
−

τs
Φm

(t)
2

a2
mn

(
xn − x̂(t)Φm←xn

)2
.

(6.41)

∆(t+1)
Φm←xn

will then be computed as is done in [22]:

∆(t+1)
Φm←xn

≈ const + ∆(t+1)
Ωn→xn

− 1
2τr

Φm←xn
(t)

(
r(t)Φm←xn

− xn

)2
(6.42a)

τr
Φm←xn

(t) =

(
∑

i ̸=m
a2

inτs
Φi
(t)

)−1

(6.42b)

r(t)Φm←xn
= x̂(t)Φm←xn

+ τr
Φm←xn

(t) ∑
i ̸=m

s(t)Φi
ain . (6.42c)

(6.42b, 6.42c) are approximated:

τr
Φm←xn

(t) ≈ τr
Ωn

(t) =

(
∑

i
a2

inτs
Φi
(t)

)−1

(6.43a)

r(t)Φm←xn
≈
(

x̂(t)Φm
+ τr

Ωn
(t)∑

i
s(t)Φi

ain

)
− τr

Ωn
(t)amns(t)Φm

= r(t)Ωn
− τr

Ωn
(t)amns(t)Φm

.

(6.43b)
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The following definition is also made in [22]:

gin

(
r(t)Ωn

, τr
Ωn

(t), λ̂
(t)
Ωn

)
:=

∫
xn

xn exp
(

∆(t)
Ωn→xn

− 1
2τr

Ωn (t)

(
r(t)Ωn
− xn

)2
)

∫
xn

exp
(

∆(t)
Ωn→xn

− 1
2τr

Ωn (t)

(
r(t)Ωn
− xn

)2
) . (6.44)

x̂(t+1)
Φm←xn

, x̂(t+1)
n , q(t+1)

Φm
are then [22]:

x̂(t+1)
Φm←xn

= gin

(
r(t)Φm←xn

, τr
Φm←xn

(t), λ̂
(t)
Ωn

)
(6.45a)

x̂(t+1)
n = gin

(
r(t)Ωn

, τr
Ωn

(t), λ̂
(t)
Ωn

)
(6.45b)

q(t+1)
Φm

≈∑
j

amj x̂
(t+1)
j − τ

q
Φm

(t)s(t)Φm
. (6.45c)

6.3.2 Sum-product parameter update

Similarly we can compute the rest messages from the factor nodes to variable

nodes in the proposed PE-GAMP using Dirac delta approximation of the mes-

sages involving the parameters:

∆(t+1)
Ωn→xn

= const + log Ωn

(
xn, λ̂

(t)
Ωn

)
(6.46a)

∆(t+1)
Ωn→λl

= const + log
∫

xn

[
Ωn

(
xn, λl, λ̂

(t)
Ωn\λ̂

(t)
Ωn←λl

)

× exp

(
− 1

2τx
Ωn←xn

(t + 1)

(
xn − x̂(t+1)

Ωn←xn

)2
)] (6.46b)

∆(t+1)
Φm→θk

= const + log
∫

zm

[
Φ
(

ym, zm, θk, θ̂
(t)
Φm
\θ̂(t)Φm←θk

)

× exp

(
− 1

2τ
q
Φm

(t)

(
zm − q(t)Φm

)2
)]

.

(6.46c)
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We next compute (6.26) in the (t+ 1)-th iteration. Using (6.41) we can get ∆(t+1)
Ωn←xn

in (6.26c) first:

∆(t+1)
Ωn←xn

≈ − 1
2τr

Ωn
(t)

(
xn − r(t)Ωn

)2
. (6.47)

(6.26a,6.26b) in the (t + 1)-th iteration are then:

x̂(t+1)
Ωn←xn

= r(t)Ωn
, τx

Ωn←xn
(t + 1) = τr

Ωn
(t) . (6.48)

The parameters λ̂
(t+1)
Ωn , θ̂

(t+1)
Φm

in the (t + 1)-th iteration can then be computed

using (6.27) or (6.28).

6.4 Max-sum PE-GAMP

The approximated max-sum message passing also uses quadratic approximation

of the messages. It is in many ways similar to the sum-product message passing

presented previously in section 6.3. A few differences in do exists though.

Specifically, the definitions in (6.24) are changed into:

x̂(t)n := arg max
xn

∆(t)
xn (6.49a)

τx
Ωn

(t) := −
(

∂2∆(t)
xn

∂x2
n

⏐⏐⏐
xn=x̂(t)n

)−1

(6.49b)

x̂(t)Φm←xn
:= arg max

xn
∆(t)

Φm←xn
(6.49c)

τx
Φm←xn

(t) := −

⎛⎝∂2∆(t)
Φm←xn

∂x2
n

⏐⏐⏐⏐xn=x̂(t)Φm←xn

⎞⎠−1

. (6.49d)
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In the proposed PE-GAMP, the parameters are computed as follows:

λ̂
(t)
Ωn←λl

= arg max
λl

log Ωn

(
x̂(t−1)

n , λl, λ̂
(t−1)
Ωn \λ̂

(t−1)
Ωn←λl

)
+ ∆(t−1)

Ωn←λl
(6.50a)

θ̂
(t)
Φm←θk

= arg max
θk

log Φm

(
ym, x̂(t−1), θk, θ̂

(t−1)
Φm
\θ̂(t−1)

Φm←θk

)
+ ∆(t−1)

Φm←θk
. (6.50b)

6.4.1 Review on max-sum GAMP update

The definitions of H(q, τq, y, θ) and the input function gin(·) are also different

from sum-product message passing. [22] has the following definitions:

H(q, τq, y) = max
z

[
log Φ(y, z, θ)− 1

2τq (z− q)2
]

(6.51)

gout

(
r(t)Ωn

, τr
Ωn

(t), λ̂
(t)
Ωn

)
= arg max

xn

[
∆(t)

Ωn→xn
− 1

2τr
Ωn

(t)

(
r(t)Ωn
− xn

)2
]

. (6.52)

The message ∆(t+1)
Φm→xn

is also different from (6.35) in section 6.3. In [22], it is given

as follows:

∆(t+1)
Φm→xn

≈ max
zm

[
log Φ

(
zm, ym, λ̂

(t)
Ωn

)

− 1
2τ

q
Φm

(t)

(
zm −

(
q(t)Φm

+ amn

(
xn − x̂(t)Φm←xn

)))2
]

.

(6.53)
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6.4.2 Max-sum parameter update

The messages in (6.46) are also updated:

∆(t+1)
Ωn→xn

= log Ωn(xn, λ̂
(t)
Ωn) (6.54a)

∆(t+1)
Ωn→λl

= max
xn

[
log Ωn

(
xn, λl, λ̂

(t)
Ωn\λ̂

(t)
Ωn←λl

)

− 1
2τr

Ωn
(t)

(
xn − r(t)Ωn

)2
] (6.54b)

∆(t+1)
Φm→θk

= max
zm

[
log Φ

(
ym, zm, θkθ̂

(t)
Φm
\θ̂(t)Φm←θk

)

− 1
2τ

q
Φm

(t)

(
zm − q(t)Φm

)2
]

.

(6.54c)

The parameters λ̂
(t+1)
Ωn , θ̂

(t+1)
Φm

in the (t + 1)-th iteration can then be computed

using (6.50).
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Chapter 7

Empirical convergence analysis of
the PE-GAMP

In this chapter we study the empirical convergence behavior of various variables

introduced in the proposed PE-GAMP algorithm through its state evolution

analysis in the large system limit as N → ∞. The following analysis is built upon

prior work in [22, 62, 66]. We show that the estimated parameters {λ̂Ωn , θ̂Φm}

eventually converge to the scalars {λΩn , θΦm} in (7.18), and the entries of the

estimated signal x̂ are able to achieve the empirical convergence defined in

Definition 4.

7.1 Review on the state evolution analysis of
the GAMP

We first introduce the definitions as well as assumptions used in the state evo-

lution (SE) analysis [22] that studies the empirical convergence behavior of the

variables in the large system limit. It is a minor modification of the work from

[62].

Definition 3. A function g(·) : Rr → Rs is pseudo-Lipschitz of order k > 1, if there
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exists an L > 0 such that ∀x, y ∈ Rr,

∥g(x)− g(y)∥ ≤ L(1 + ∥x∥k−1 + ∥y∥k−1)∥x− y∥ . (7.1)

Definition 4. Suppose {v[N] ∈ RslN , N = 1, 2, · · · } is a sequence of vectors, and

each v[N] contains lN blocks of vector components {v[N]
i ∈ Rs, i = 1, · · · , lN}. The

components of v[N] empirically converges with bounded moments of order k to

a random vector v ∈ Rs as N → ∞ if: For all pseudo-Lipschitz continuous functions

g(·) of order k,

lim
N→∞

1
lN

lN

∑
i=1

g
(

v[N]
i

)
= E [g(v)] < ∞ . (7.2)

When the nature of convergence is clear, it can be simply written as follows:

lim
N→∞

v[N]
i

PL(k)
= v . (7.3)

Based on the above pseudo-Lipschitz continuity and empirical convergence

definitions, GAMP also makes the following assumptions about the estimation

of x ∈ RN [22, 62].

Assumption 1. The GAMP solves a series of estimation problems indexed by the input

signal dimension N:

a) The output dimension M is deterministic and scales linearly with the input

dimension N: limN→∞
N
M = β for some β > 0.

b) The matrix A ∈ RM×N has i.i.d Gaussian entries Aij ∼ N (0, 1
M ).

c) The components of initial condition x̂(0), τx
Ω(0) and the input signal x empirically
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converge with bounded moments of order 2k− 2 as follows:

lim
N→∞

(x̂(0)n , xn)
PL(2k− 2)

= (X̂ (0),X ) (7.4a)

lim
N→∞

τx
Ωn

(0) = τx
Ω(0) . (7.4b)

d) The output vector y ∈ RM depends on the transform output z = Ax ∈ RM and

the noise vector w ∈ RM through some function g(·). For ∀m = 1, · · · , M,

ym = g(zm, wm) . (7.5)

wm empirically converges with bounded moments of order 2k− 2 to some random

variableW ∈ R with distribution p(w). The conditional distribution of Y given

Z is given by p(y|z).

e) The channel estimation functions gin(·), gout(·) and their partial derivatives with

respect to r, q, z exist almost everywhere and are pseudo-Lipschitz continuous of

order k.

The SE equations of the GAMP describe the limiting behavior of the following

scalar random variables and scalar variances as N → ∞:

ψin := {(xn, x̂(t+1)
n , r(t)Ωn

), n = 1, · · · , N} (7.6a)

ψout := {(zm, ẑ(t)m , ym, q(t)Φm
), m = 1, · · · , M} (7.6b)

ψτ := (τ
q
Φ, τr

Ω) . (7.6c)

[22] showed that (7.6a-7.6b) empirically converge with bounded moments of
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order k to the following random vectors:

lim
N→∞

ψin
PL(k)
= ψin := (X , X̂ (t+1),R(t)

Ω ) (7.7a)

lim
N→∞

ψout
PL(k)
= ψout := (Z , Ẑ (t),Y ,Q(t)

Φ ) , (7.7b)

whereR(t)
Ω ,Z ,Q(t)

Φ are as follows for some computed αr ∈ R, ξr ∈ R, Kq ∈ R2×2:

R(t)
Ω = αrX + V , V ∼ N (0, ξr) (7.8a)

(Z ,Q(t)
Φ ) ∼ N (0, Kq) . (7.8b)

Additionally, for ψτ, the following convergence holds:

lim
N→∞

ψτ = ψτ := (τ
q
Φ, τr

Ω) . (7.9)

In [66], the adaptive-GAMP is proposed to perform state evolution analysis

of the EM based parameter estimation methods. Specifically, the following

Assumption 2 can be established on the estimation problem:

Assumption 2. The adaptive-GAMP with parameter estimation solves a series of

estimation problem indexed by the input signal dimension N:

a) Assumptions 1(a) to 1(d) with k = 2.

b) Assumption 5(b).

c) For every t, the estimation (adaptation) function fλ(t, r(t)Ω , τr
Ω(t)) can be con-

sidered as a function of r(t)Ω that satisfies the weak pseudo-Lipschitz continuity

property: If the sequence of vector r(t)Ω indexed by N empirically converges with

bounded moments of order k = 2 and the sequence of scalars τr
Ω(t) converge as
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follows:

lim
N→∞

r(t)Ω
PL(k)
= R(t)

Ω , lim
M→∞

τr
Ω(t) = τr

Ω(t) . (7.10)

Then,

lim
N→∞

fλ(t, r(t)Ω , τr
Ω(t)) = fλ(t,R

(t)
Ω , τr

Ω(t)) . (7.11)

Similarly fθ(t, q(t)
Φ , y, τ

q
Φ(t)) also satisfies the weak pseudo-Lipschitz continuity

property.

Theorem 4 is then given to describe the limiting behavior of the scalar vari-

ables in the adaptive-GAMP algorithm [66].

Theorem 4. Consider the adaptive-GAMP with scalar variances under the Assumption

2. ∀t, the components of the following sets of scalars empirically converges with bounded

moments of order k = 2:

lim
N→∞

ψin
PL(k)
= ψin, lim

N→∞
ψout

PL(k)
= ψout (7.12a)

lim
N→∞

ψτ = ψτ (7.12b)

lim
N→∞

θ̂
(t+1)

= θ
(t+1), lim

N→∞
λ̂
(t+1)

= λ
(t+1)

. (7.12c)

7.2 The state evolution analysis of the PE-GAMP

The SE equations of the proposed PE-GAMP are given in Algorithm 4. In

addition to (7.6a-7.6c), the state evolution (SE) analysis of PE-GAMP will study

the limiting behavior of λ̂
(t+1)
Ωn , θ̂

(t+1)
Φm

for each n = 1, · · · , N and m = 1, · · · , M.

Eventually we would like to show that they empirically converge to the
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Algorithm 4 The PE-GAMP state evolution

Require: The matrix A ∈ RM×N; the observation y ∈ RM; the input and
output channels estimation functions gin(·), gout(·); the parameter estimation
functions fθk(·), fλl(·).

1: Initialize τx
Ω(0), θ

(0), λ
(0)

and set

Kx(0) = cov
(
X , X̂ (0)

)
. (7.13)

2: for t = {0, 1, · · · } do
3: Output channel update:

τ
q
Φ(t) = βτx

Ω(t), Kq(t) = βKx(t) (7.14a)

τr
Ω(t) = −E−1

[
∂

∂q
gout

(
t,Q(t)

Φ , τ
q
Φ(t),Y , θ

(t)
Φm

)]
(7.14b)

ξr(t) = (τr
Ω(t))

2
E
[

gout

(
t,Q(t)

Φ , τ
q
Φ(t),Y , θ

(t)
Φm

)]
(7.14c)

αr(t) = τr
Ω(t)E

[
∂

∂z
gout

(
t,Q(t)

Φ , τ
q
Φ(t), g(Z ,W), θ

(t)
Φm

)]
, (7.14d)

where the expectations are over the random variables Z ,Q(t)
Φ ,W ,Y .

4: Input channel update:

X̂ (t+1) = gin

(
t,R(t)

Ω , τr
Ω(t), λ

(t)
Ωn

)
(7.15a)

τx
Ω(t + 1) = τr

Ω(t)E
[

∂

∂r
gin

(
t,R(t)

Ω , τr
Ω(t), λ

(t)
Ωn

)]
(7.15b)

Kx(t + 1) = cov
(
X , X̂ (t+1)

)
, (7.15c)

where the expectation is over the random variables X ,R(t)
Ω .
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Algorithm 4 The PE-GAMP state evolution (continued)

5: Sum-product message passing parameters update: For each k = 1, · · · , K
and l = 1, · · · , L

λ
(t+1)
Ωn←λl

= fΩn←λl

(
t,R(t)

Ω , τr
Ω(t), λl, λ

(t)
Ωn
\λ(t)

Ωn←λl

)
(7.16a)

θ
(t+1)
Φm←θk

= fΦm←θk

(
t,Q(t)

Φ ,Y , τ
q
Φ(t), θk, θ

(t)
Φm
\θ(t)Φm←θk

)
. (7.16b)

6: Max-sum message passing parameters update: For each k = 1, · · · , K and
l = 1, · · · , L

λ
(t+1)
Ωn←λl

= fΩn←λl

(
t, X̂ (t),R(t)

Ω , τr
Ω(t), λl, λ

(t)
Ωn
\λ(t)

Ωn←λl

)
(7.17a)

θ
(t+1)
Φm←θk

= fΦm←θk

(
t, Ẑ (t),Q(t)

Φ ,Y , τ
q
Φ(t), θk, θ

(t)
Φm
\θ(t)Φm←θk

)
. (7.17b)

7: if X̂ (t+1) reaches convergence then
8: X̂ = X̂ (t+1);
9: break;
10: end if
11: end for
12: Return Output X̂ ;
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following random vectors for fixed t as N → ∞:

λ
(t+1)
Ωn

=
{

λ
(t+1)
Ωn←λl

⏐⏐⏐ l = 1, · · · , L
}

(7.18a)

θ
(t+1)
Φm

=
{

θ
(t+1)
Φm←θk

⏐⏐⏐ k = 1, · · · , K
}

. (7.18b)

To simplify notations, we assume the following for the sum-product message

passing:

h
Ωj
Ωn←λl

(·) = ∆(t)
Ωj→λl

+
1

N − 1
log p(λl) (7.19a)

hΦi
Φm←θk

(·) = ∆(t)
Φi→θk

+
1

M− 1
log p(θk) . (7.19b)

For max-sum message passing, we assume:

h
Ωj
Ωn←λl

(·) = ∆(t)
Ωj→λl

+
1

N − 1

(
log p(λl) + log Ωn

(
x̂(t)n , λl, λ̂

(t)
Ωn\λ̂

(t)
Ωn←λl

)) (7.20a)

hΦi
Φm←θk

(·) = ∆(t)
Φi→θk

+
1

M− 1

(
log p(θk) + log Φm

(
ym, x̂(t), θk, θ̂

(t)
Φm
\θ̂(t)Φm←θk

))
.

(7.20b)

Since the parameter estimation of the max-sum message passing and the MAP

parameter estimation of the sum-product message passing basically have the same

form given in (7.21), their state evolution analysis can be derived similarly. For

the sake of conciseness, we will only give the empirical convergence proofs for

the MAP and MMSE parameter estimations of the sum-product message passing.
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7.2.1 MAP parameter estimation state evolution

We can also write the estimation functions as follows:

λ̂
(t+1)
Ωn←λl

= arg max
λl

1
N − 1 ∑j ̸=n h

Ωj
Ωn←λl

(·) (7.21a)

θ̂
(t+1)
Φm←θk

= arg max
θk

1
M− 1 ∑i ̸=m hΦi

Φm←θk
(·) . (7.21b)

In the large system limit N → ∞, the state evolution equations (7.16) of the

parameters update step in sum-product message passing can then be written as:

λ
(t+1)
Ωn←λl

= fΩn←λl(·)

= arg max
λl
E
[

h
Ωj
Ωn←λl

(
t,R(t)

Ω , τr
Ω(t), λl, λ

(t)
Ωn
\λ(t)

Ωn←λl

)] (7.22a)

θ
(t+1)
Φm←θk

= fΦm←θk(·)

= arg max
θk
E
[

hΦi
Φm←θk

(
t,Q(t)

Φ ,Y , τ
q
Φ(t), θk, θ

(t)
Φm
\θ(t)Φm←θk

)]
,

(7.22b)

where the expectations are over the random variablesR(t)
Ω and

{
Q(t)

Φ ,Y
}

respec-

tively.

Our proof of the convergence of the scalars in (6.13,7.6) will make use of the

Theorem 4 from [66]. First, we give the following adapted assumptions for the

MAP parameter estimation.

Assumption 3. The priors on the parameters: {p(λ), λ ∈ Uλ}, {p(θ), θ ∈ Uθ} and

the parameter estimation functions should satisfy:

a) The priors p(λ) < ∞ , p(θ) < ∞ are bounded, and the sets Uλ,Uθ are compact.

b) For the sum-product message passing, the following estimations are well-defined,
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unique.

λ∗Ωn←λl
=

arg max
λl∈Uλ

E
[

h
Ωj
Ωn←λl

(t,R(t)
Ω , τr

Ω(t), λl, λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

)
] (7.23a)

θ∗Φm←θk
=

arg max
θk∈Uθ

E
[

hΦi
Φm←θk

(t,Q(t)
Φ ,Y , τ

q
Φ(t), θk, θ̂

(t)
Φm
\θ̂(t)Φm←θk

)
]

,
(7.23b)

where the expectations are with respect toR(t)
Ω and

{
Q(t)

Φ ,Y
}

.

c) h
Ωj
Ωn←λl

(·) is pseudo-Lipschitz continuous of order 2 in rΩn , it is also continuous in

λl uniformly over rΩn in the following sense: For every ϵ > 0, τ̃r
Ω, λ̃ ∈ Uλ, there

exists an open neighborhood ρ(τ̃r
Ω, λ̃) of (τ̃r

Ω, λ̃ ∈ Uλ), such that ∀(τr
Ω, λ) ∈

ρ(τ̃r
Ω, λ̃) and all r,

⏐⏐⏐hΩj
Ωn←λl

(t, rΩn , τr
Ω, λ)− h

Ωj
Ωn←λl

(t, rΩn , τ̃r
Ω, λ̃)

⏐⏐⏐ < ϵ . (7.24)

d) hΦi
Φm←θk

(·) is pseudo-Lipschitz continuous of order 2 in (qΦm , ym), it is also

continuous in θk uniformly over qΦm and ym.

7.2.2 MMSE parameter estimation state evolution

For the MMSE parameter estimation, the estimation functions can be written as

follows:

λ̂
(t+1)
Ωn←λl

=
∫

λl

λl
exp( 1

N−1 ∑j ̸=n h
Ωj
Ωn←λl

(·))∫
λl

exp( 1
N−1 ∑j ̸=n h

Ωj
Ωn←λl

(·))
(7.25a)

θ̂
(t+1)
Φm←θk

=
∫

θk

θk
exp( 1

M−1 ∑i ̸=m hΦi
Φm←θk

(·))∫
θk

exp( 1
M−1 ∑i ̸=m hΦi

Φm←θk
(·))

. (7.25b)
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The state evolution equations (7.16) of the parameters update step in Algorithm

4 can then be written as:

λ
(t+1)
Ωn←λl

= fΩn←λl(·) =
∫

λl

λl

exp(E
[

h
Ωj
Ωn←λl

(·)
]
)∫

λl
exp(E

[
h

Ωj
Ωn←λl

(·)
]
)

(7.26a)

θ
(t+1)
Φm←θk

= fΦm←θk(·) =
∫

θk

θk

exp(E
[

hΦi
Φm←θk

(·)
]
)∫

θk
exp(E

[
hΦi

Φm←θk
(·)
]
)

, (7.26b)

where the expectations are over the random variables R(t)
Ω and

{
Q(t)

Φ ,Y
}

. To

prove the convergence, we assume the following adapted assumptions for MMSE

parameter estimation.

Assumption 4. The priors on the parameters: {p(λ), λ ∈ Uλ}, {p(θ), θ ∈ Uθ} and

the parameter estimation functions should satisfy:

a) Assumption 3(a).

b) Assumption 3(c).

c) Assumption 3(d).

7.3 Empirical convergence analysis

We next give the following Lemma 5 about the estimation functions fΩn←λl(·),

fΦm←θk(·) for the proposed PE-GAMP:

Lemma 5. Under Assumption 3 for MAP parameter estimation and Assumption 4 for

MMSE parameter estimation, the estimation functions

fΩn←λl

(
t, r(t)Ω , τr

Ω(t), λl, λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

)
can be considered as a function of r(t)Ω that

satisfies the weak pseudo-Lipschitz continuity property: If the sequence of vector r(t)Ω

indexed by N empirically converges with bounded moments of order k = 2 and the
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sequence of scalers τr
Ω(t), λ̂

(t)
Ωn\λ̂

(t)
Ωn←λl

also converge as follows:

lim
N→∞

r(t)Ω
PL(k)
= R(t)

Ω (7.27a)

lim
N→∞

τr
Ω(t) = τr

Ω(t) (7.27b)

lim
N→∞

λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

= λ
(t)
Ωn
\λ(t)

Ωn←λl
. (7.27c)

Then,

lim
N→∞

fΩn←λl

(
t, r(t)Ω , τr

Ω(t), λl, λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

)
= fΩn←λl

(
t,R(t)

Ω , τr
Ω(t), λl, λ

(t)
Ωn
\λ(t)

Ωn←λl

)
.

(7.28)

Similarly, fΦm←θk

(
t, q(t)

Φ , y, τ
q
Φ(t), θk, θ̂

(t)
Φm
\θ̂(t)Φm←θk

)
also satisfies the weak pseudo-

Lipschitz continuity property.

Proof. Here we give the proof for fΩn←λl(·), the proof for fΦm←θk(·) can be

derived similarly.

1. MAP Parameter Estimation: The proof of the continuity of fΩn←λl(·),

fΦm←θk(·) is adapted from the work in [66]. In the t-th iteration, the follow-

ing estimation indexed by signal dimensionality N can be computed:

λ̂
(t+1)
Ωn←λl

[N] = fΩn←λl

(
t, r(t)Ω , τr

Ω(t), λl, λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

)
. (7.29)

We then have a sequence {λ̂(t+1)
Ωn←λl

[N]} indexed by N = 2, 3, · · · . Since

λ̂
(t+1)
Ωn←λl

[N] ∈ Uλ and Uλ is compact, it suffices to show that any sequence

{λ̂(t+1)
Ωn←λl

[N]} converges to the same limiting point λ∗l shown in (7.23a).
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According to (7.21a), we have:

∑
j ̸=n

h
Ωj
Ωn←λl

(t, r(t)Ωn
, τr

Ω(t), λ̂
(t+1)
Ωn←λl

[N], λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

)

≥ ∑
j ̸=n

h
Ωj
Ωn←λl

(t, r(t)Ωn
, τr

Ω(t), λ∗l , λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

) .

(7.30)

Suppose that λ̂
(t+1)
Ωn←λl

[N] converges to some point λ̂
(t+1)
Ωn←λl

: λ̂
(t+1)
Ωn←λl

[N] →

λ̂
(t+1)
Ωn←λl

as N → ∞. With (7.27a) and the continuity condition of the open

neighborhood ρ(τ̃r
Ω, λ̃) in Assumption 3(c), we have:

∑
j ̸=n

h
Ωj
Ωn←λl

(t, r(t)Ωn
, τr

Ω(t), λ̂
(t+1)
Ωn←λl

[N], λ
(t)
Ωn
\λ(t)

Ωn←λl
)

≥ ∑
j ̸=n

h
Ωj
Ωn←λl

(t, r(t)Ωn
, τr

Ω(t), λ∗l , λ
(t)
Ωn
\λ(t)

Ωn←λl
) .

(7.31)

Since h
Ωj
Ωn←λl

(·) is pseudo-Lipschitz continuous in r(t)Ωn
, the left-hand side

of (7.31) can be rewritten as follows as N → ∞:

1
N − 1 ∑

j ̸=n
h

Ωj
Ωn←λl

(t, r(t)Ωn
, τr

Ω(t), λ̂
(t+1)
Ωn←λl

[N], λ
(t)
Ωn
\λ(t)

Ωn←λl
)

= E

[
∑
j ̸=n

h
Ωj
Ωn←λl

(t,R(t)
Ω , τr

Ω(t), λ̂
(t+1)
Ωn←λl

[N], λ
(t)
Ωn
\λ(t)

Ωn←λl
)

]
.

(7.32)

The right-hand side of (7.31) can be rewritten similarly. Equation (7.31)

then becomes:

E
[

h
Ωj
Ωn←λl

(t,R(t)
Ω , τr

Ω(t), λ̂
(t+1)
Ωn←λl

[N], λ
(t)
Ωn
\λ(t)

Ωn←λl
)
]

≥ E
[

h
Ωj
Ωn←λl

(t,R(t)
Ω , τr

Ω(t), λ∗l , λ
(t)
Ωn
\λ(t)

Ωn←λl
)
]

.

(7.33)

Assumption 3(b) states that λ∗l is the unique maxima of the right-hand side,
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we then have:

lim
N→∞

λ̂
(t+1)
Ωn←λl

[N] = λ∗l , (7.34)

which proves (7.28).

2. MMSE Parameter Estimation: Using the compactness of the sets Uλ in

Assumption 4(a) and the continuity condition of the open neighborhood

ρ(τ̃r
Ω, λ̃) in Assumption 4(b), we have the following:

lim
N→∞

1
N − 1 ∑

j ̸=n
h

Ωj
Ωn←λl

(t, r(t)Ωn
, τr

Ω(t), λl, λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

)

=
1

N − 1 ∑
j ̸=n

h
Ωj
Ωn←λl

(t, r(t)Ωn
, τr

Ω(t), λl, λ
(t)
Ωn
\λ(t)

Ωn←λl
) .

(7.35)

Since h
Ωj
Ωn←λl

is pseudo-Lipschitz continuous in r(t)Ωn
, we also have:

lim
N→∞

1
N − 1 ∑

j ̸=n
h

Ωj
Ωn←λl

(t, r(t)Ωn
, τr

Ω(t), λl, λ
(t)
Ωn
\λ(t)

Ωn←λl
)

= E
[

h
Ωj
Ωn←λl

(t,R(t)
Ω , τr

Ω(t), λl, λ
(t)
Ωn
\λ(t)

Ωn←λl
)
]

.

(7.36)

Combining (7.35) and (7.36), we then have:

lim
N→∞

1
N − 1 ∑

j ̸=n
h

Ωj
Ωn←λl

(t, r(t)Ωn
, τr

Ω(t), λl, λ̂
(t)
Ωn\λ̂

(t)
Ωn←λl

)

= E
[

h
Ωj
Ωn←λl

(t,R(t)
Ω , τr

Ω(t), λl, λ
(t)
Ωn
\λ(t)

Ωn←λl
)
]

.

(7.37)

Using the continuity property of the exponential function exp(·), as N →

∞ we can get:

exp( 1
N−1 ∑j ̸=n h

Ωj
Ωn←λl

(·))∫
λl

exp( 1
N−1 ∑j ̸=n h

Ωj
Ωn←λl

(·))
=

exp(E
[

h
Ωj
Ωn←λl

(·)
]
)∫

λl
exp(E

[
h

Ωj
Ωn←λl

(·)
]
)

. (7.38)

Since the set Uλ is compact and the mean of a probability distribution is
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unique, we have:

lim
N→∞

∫
λl

λl
exp( 1

N−1 ∑j ̸=n h
Ωj
Ωn←λl

(·))∫
λl

exp( 1
N−1 ∑j ̸=n h

Ωj
Ωn←λl

(·))
=

∫
λl

λl

exp(E
[

h
Ωj
Ωn←λl

(·)
]
)∫

λl
exp(E

[
h

Ωj
Ωn←λl

(·)
]
)

,

(7.39)

which proves (7.28).

Additionally, we make the following assumptions about the proposed PE-

GAMP algorithm.

Assumption 5. The PE-GAMP solves a series of estimation problems indexed by the

input signal dimension N:

a) Assumptions 1(a) to 1(d) with k = 2.

b) The scalar estimation function gin(t, rΩn , τr
Ω, λ) and its derivative

g′in(t, rΩn , τr
Ω, λ) with respect to rΩn are continuous in λ uniformly over rΩn :

For every ϵ > 0, t, τ̃r
Ω, λ̃ ∈ Uλ, there exists an open neighborhood ρ(τ̃r

Ω, λ̃) of

(τ̃r
Ω, λ̃ ∈ Uλ) such that ∀(τr

Ω, λ) ∈ ρ(τ̃r
Ω, λ̃) and r,

|gin(t, rΩn , τr
Ω, λ)− gin(t, rΩn , τ̃r

Ω, λ̃)| < ϵ (7.40a)

|g′in(t, rΩn , τr
Ω, λ)− g′in(t, rΩn , τ̃r

Ω, λ̃)| < ϵ . (7.40b)

In addition, gin(·), g′in(·) are pseudo-Lipschitz continuous in rΩn with a Lipschitz

constant that can be selected continuously in τr
Ω and λ.

gout(t, qΦm , τ
q
Φ, ym, θ), g′out(t, qΦm , τ

q
Φ, ym, θ) also satisfy analogous continuity

assumptions with respect to q, y, τ
q
Φ, θ.
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c) For each m = 1, · · · , M and n = 1, · · · , N, the components of the initial condi-

tion λ̂
(0)
Ωn , θ̂

(0)
Φm

converge as follows:

lim
N→∞

(λ̂
(0)
Ωn , θ̂

(0)
Φm

) = (λ
0
Ωn , θ

(0)
Φm

) . (7.41)

Specifically, Assumptions 5(a) and 5(b) are the same as those in [66]; As-

sumptions 5(c) is made for the proposed PE-GAMP. We then have the following

Corollary 1 using Theorem 4:

Corollary 1. Consider the proposed PE-GAMP with scalar variances under the As-

sumptions ⌈3,5⌋ for MAP parameter estimation and Assumptions ⌈4,5⌋ for MMSE

parameter estimation. Then for any fixed iteration number t: the scalar components of

(6.13,7.6) empirically converge with bounded moments of order k = 2 as follows:

lim
N→∞

ψin
PL(k)
= ψin, lim

N→∞
ψout

PL(k)
= ψout (7.42a)

lim
N→∞

ψτ = ψτ (7.42b)

lim
N→∞

θ̂
(t+1)
Φm

= θ
(t+1)
Φm

, lim
N→∞

λ̂
(t+1)
Ωn = λ

(t+1)
Ωn

. (7.42c)

Proof. We only need to show the empirical convergences of λ̂
(t+1)
Ωn , θ̂

(t+1)
Φm

. From

Assumption 3 we can get Lemma 5, which corresponds to Assumption 2(c).

Using Theorem 4, we have:

lim
N→∞

r(t)Ωn

PL(k)
= R(t)

Ω (7.43a)

lim
N→∞

(q(t)Φm
, ym)

PL(k)
= (Q(t)

Φ ,Y) (7.43b)

lim
N→∞

ψτ = ψτ . (7.43c)

The empirical convergences of the parameters can be proved using induction.

For t = 0, the convergences of λ̂
(0)
Ωn , θ̂

(0)
Φm

hold according to (7.41) in Assumption
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5(c). With (7.41, 7.43a), we can use Lemma 5 to obtain:

lim
N→∞

λ̂
(1)
Ωn = λ

(1)
Ωn

, lim
N→∞

θ̂
(1)
Φm

= θ
(1)
Φm

. (7.44)

The convergences of the rest scalars can be obtained directly using Theorem 4.

Hence the following holds for any t.

lim
N→∞

λ̂
(t+1)
Ωn = λ

(t+1)
Ωn

, lim
N→∞

θ̂
(t+1)
Φm

= θ
(t+1)
Φm

. (7.45)
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Chapter 8

Probabilistic sparse signal recovery
via PE-GAMP

In this chapter we present detailed PE-GAMP formulations of the following

three probabilistic sparse signal recovery models that assume the input and out

channel distributions given in section 2.4.

• Bernoulli-Gaussian mixture (BGm) input channel (2.7) “+” Additive white

Gaussian noise (AWGN) output channel (2.10).

• Bernoulli-Exponential mixture (BEm) input channel (2.8) “+” Additive white

Gaussian noise (AWGN) output channel (2.10).

• Laplace input channel (2.9) “+” Additive white Gaussian noise (AWGN) output

channel (2.10).

For experimental evaluation, we choose the PE-GAMP with MAP parame-

ter estimation and compare it with EM based parameter estimation approach

on both simulated and real datasets. Experiments show that the proposed

PE-GAMP not only has a wider applicability, but also is more robust and outper-

forms EM based approach in adversarial conditions.
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8.1 Max-sum message passing

We analyze the various channels as follows:

1. Bernoulli-Gaussian mixture Input Channel: BGm input channel is not

really suited for the max-sum message passing. If we compute (6.54b), the

maximizing xj would be 0, which makes both the parameter estimation

and signal recovery impossible.

2. Bernoulli-Exponential mixture Input Channel: BEx input channel is also

not suited for the max-sum message passing for the same reason as the

BGm input channel.

3. Laplace Input Channel: (6.54b) can be written as follows:

∆(t+1)
Ωj→λ1

= max
xj

⎡⎢⎣log λ1 − λ1
⏐⏐xj
⏐⏐−

(
xj − r(t)Ωj

)2

2τr
Ωj
(t)

⎤⎥⎦ . (8.1)

The maximizing xj is given by the soft-thresholding method:

x̃(t+1)
n =

(⏐⏐⏐r(t)Ωj

⏐⏐⏐− λ1τr
Ωj
(t)
)
+
· sign

(
r(t)Ωj

)
. (8.2)

If
⏐⏐⏐r(t)Ωj

⏐⏐⏐ > λ1τr
Ωj
(t), we have:

∆(t+1)
Ωj→λ1

= log λ1 − λ1

⏐⏐⏐r(t)Ωj

⏐⏐⏐+ 1
2

λ2
1τr

Ωj
(t) . (8.3)

If
⏐⏐⏐r(t)Ωj

⏐⏐⏐ ≤ λ1τr
Ωj
(t), we have:

∆(t+1)
Ωj→λ1

= log λ1 −
1

2τr
Ωj
(t)

(
r(t)Ωj

)2
. (8.4)

We can see from (8.3, 8.4) that the λ1 that maximizes (6.50a) is always ∞,

which makes the estimation of λ1 impossible.
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4. Additive White Gaussian Noise Output Channel: (6.54c) can be written

as follows:

∆(t+1)
Φi→θ1

= max
zi

[
−1

2
log θ1 −

1
2θ1

(yi − zi)
2

− 1
2τ

q
Φi
(t)

(
zi − q(t)Φi

)2
]

.

(8.5)

The maximizing zi is:

z̃m =
yiτ

q
Φi
(t) + q(t)Φi

θ1

θ1 + τ
q
Φi
(t)

. (8.6)

We then have:

∆(t+1)
Φi→θ1

= −1
2

log θ1 +

(
q(t)Φi

)2
θ1 + 2q(t)Φi

yiτ
q
Φi
(t)− y2

i τ
q
Φi
(t)

2τ
q
Φi
(t)
(

θ1 + τ
q
Φi
(t)
) .

(8.7)

We can see from (8.7) that the θ1 that maximizes (6.50b) is always 0, which

makes the estimation of θ1 impossible.

❖ Discussion: For the two models with BGm and BEm input channels, max-sum

message passing cannot produce any useful MAP estimation of x. In this case,

we can only use sum-product message passing to perform MMSE estimation of x.

For the model with Laplace input channel, although max-sum message pass-

ing can be used to obtain the MAP estimation of x, it cannot be used to compute

the MAP estimation of λ1, since the λ̂1 that maximizes (6.14) is always ∞ and the

maximizing θ̂1 is always 0. On the other hand, sum-product message passing can

be used to compute the MMSE estimation and MAP estimation of xn based on

p(xn|y), however they don’t have the best recovery performance. Here we pro-

pose to employ sum-product message passing to compute the “marginal” MAP
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estimates {λ̂1, θ̂1} using the marginal posterior distributions p(λ1|y), p(θ1|y), as

opposed to the MAP estimates in (6.50). {λ̂1, θ̂1} can then be used as the inputs

to max-sum message passing to obtain the MAP estimate of x. This essentially is

the Lasso mentioned at the beginning of this paper, except now that we have

provided a way to automatically estimate the parameters.

8.2 Sum-product message passing

In this case, the two recovery models mentioned earlier both rely on sum-product

message passing to perform parameter estimation. For the sum-product message

passing, “MMSE parameter estimation” is often quite difficult to compute, in

this paper we will focus on using the “MAP parameter estimation” approach to

estimate the parameters. Since we don’t have any knowledge about the priors of

λ, θ, we will fairly choose the uniform prior for each parameter.

The proposed PE-GAMP computes MAP estimations of the parameters in

the sum-product message passing as follows:

λ̂
(t+1)
Ωn←λl

= arg max
λl

h(t+1)
Ωn←λl

(·)

= arg max
λl

∑
j ̸=n

∆(t+1)
Ωj→λl

+ log p(λl)

(8.8a)

θ̂
(t+1)
Φm←θk

= arg max
θk

h(t+1)
Φm←θk

(·)

= arg max
θk

∑
i ̸=k

∆(t+1)
Φi→θk

+ log p(θk) .
(8.8b)

Specifically, we use the line search method given in the following Algorithm

5 to find λ̂
(t+1)
Ωn←λl

.
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Algorithm 5 MAP parameter estimation via line search method

Require: λ̂
(t)
Ωn←λl

,
∂h(t+1)

Ωn←λl
∂λl

, 0 < ζ < 1, η+ > 0, η− < 0

1: Set λ̂
(t+1)
Ωn←λl

(0) = λ̂
(t)
Ωn←λl

.
2: for i = 1, 2, · · · do

3: if
∂h(t+1)

Ωn←λl
∂λl

⏐⏐⏐⏐λl=λ̂
(t+1)
Ωn←λl

(i−1)
> 0 then

λ̂
(t+1)
Ωn←λl

= λ̂
(t+1)
Ωn←λl

(i− 1) + η+ . (8.9)

4: while h(t+1)
Ωn←λl

⏐⏐⏐⏐λ̂(t+1)
Ωn←λl

< h(t+1)
Ωn←λl

⏐⏐⏐⏐λ̂(t+1)
Ωn←λl

(i−1)
do

η+ = η+ · ζ (8.10a)

λ̂
(t+1)
Ωn←λl

= λ̂
(t+1)
Ωn←λl

(i− 1) + η+ . (8.10b)

5: end while

6: else if
∂h(t+1)

Ωn←λl
∂λl

⏐⏐⏐⏐λl=λ̂
(t+1)
Ωn←λl

(i−1)
< 0 then

λ̂
(t+1)
Ωn←λl

= λ̂
(t+1)
Ωn←λl

(i− 1) + η− . (8.11)

7: while h(t+1)
Ωn←λl

⏐⏐⏐⏐λ̂(t+1)
Ωn←λl

< h(t+1)
Ωn←λl

⏐⏐⏐⏐λ̂(t+1)
Ωn←λl

(i−1)
do

η− = η− ∗ ζ (8.12a)

λ̂
(t+1)
Ωn←λl

= λ̂
(t+1)
Ωn←λl

(i− 1) + η− . (8.12b)

8: end while
9: else

10: break;
11: end if
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Algorithm 5 MAP parameter estimation via line search method (continued)

12: Set λ̂
(t+1)
Ωn←λl

(i) = λ̂
(t+1)
Ωn←λl

13: if λ̂
(t+1)
Ωn←λl

(i) reaches convergence then
14: break;
15: end if
16: end for
17: Return Output λ̂

(t+1)
Ωn←λl

;

The maximizing θ̂
(t+1)
Φm←θk

can be found similarly. The line search method

requires computing the derivatives of h(t+1)
Ωn←λl

(·), h(t+1)
Φm←θk

(·) (8.8) with respect to

the parameters λl, θk.

h(t+1)
Ωn←λl

(·) = ∑
j ̸=n

∆(t+1)
Ωj→λl

+ log p(λl) (8.13a)

h(t+1)
Φm←θk

(·) = ∑
i ̸=m

∆(t+1)
Φi→θk

+ log p(θk) . (8.13b)

The derivatives of log p(λl), log p(θk)) depends on the chosen priors and are

easy to compute. Here we give the derivatives of ∆(t+1)
Ωj→λl

, ∆(t+1)
Φi→θk

with respect to

λl, θk in details.

1. Bernoulli-Gaussian mixture Input Channel: BGm distribution is given

in (2.7). We then have:

log
∫ ∞

−∞
Ωj(xj, λ) · exp

(
∆(t+1)

Ωj←xj

)
dxj

= log
∫

xj

p(xj|λ) exp

(
− 1

2τr
Ωj
(t)

(
xj − r(t)Ωj

))

= log

[
(1− λ1) · κ1 + λ1

C

∑
c=1

λc+1 · κ2(λc+2, λc+3)

]

= log

[
(1− λ1) · κ1 + λ1

C

∑
c=1

λc+1 · κ2(c)

]
,

(8.14)
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where κ1 doesn’t depend on λ; for the c-th Gaussian mixture, κ2(c) =

κ2(λc+2, λc+3) depends on λc+2, λc+3.

κ1 = exp

⎛⎜⎝−
(

r(t)Ωj

)2

2τr
Ωj
(t)

⎞⎟⎠ (8.15a)

κ2(c) =

√ τr
Ωj
(t)

λc+3 + τr
Ωj
(t)

exp

⎛⎜⎝−1
2

(
λc+2 − r(t)Ωj

)2(
λc+3 + τr

Ωj
(t)
)
⎞⎟⎠ . (8.15b)

Here, (8.14) is essentially (6.12c). Let κ3(λ) be as follows:

κ3(λ) =
λ1

(1− λ1) · κ1 + λ1 ∑C
c=1 λc+1 · κ2(c)

. (8.16)

Let λ\λl denote the parameter sequence generated by removing λl from λ.

Taking derivatives of (6.12c) with respect to λ1, λc+2, λc+3, we have:

∂∆(t+1)
Ωj→λ1

∂λ1
=

−κ1 + ∑C
c=1 λ̂

(t)
c+1 · κ2

(
λ̂
(t)
c+2, λ̂

(t)
c+3

)
(1− λ1) · κ1 + λ1 ∑C

c=1 λ̂
(t)
c+1 · κ2

(
λ̂
(t)
c+2, λ̂

(t)
c+3

) (8.17a)

∂∆(t+1)
Ωj→λc+2

∂λc+2
= κ3

(
λ̂
(t)\λ̂(t)

c+2, λc+2

)

×
−κ2

(
λc+2, λ̂

(t)
c+3

) (
λc+2 − r(t)Ωj

)
λ̂
(t)
c+2 + τr

Ωj
(t)

(8.17b)

∂∆(t+1)
Ωj→λc+3

∂λc+3
= −κ3

(
λ̂
(t)\λ̂(t)

c+3, λc+3

) κ2

(
λ̂
(t)
c+2, λc+3

)
2
(

λc+3 + τr
Ωj
(t)
)

×

⎛⎜⎝1−

(
λ̂
(t)
c+2 − r(t)Ωj

)2

λc+3 + τr
Ωj
(t)

⎞⎟⎠ ,

(8.17c)

where λ̂
(t)

are the estimated parameters in the previous t-th iteration.
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The updates for the weights λc+1 are more complicated, they need to

satisfy the nonnegative and sum-to-one constrains. Here we can rewrite

the weight λc+1 as follows :

λc+1 =
exp(ωc)

∑C
k=1 exp(ωk)

, (8.18)

where ωc ∈ R. We then can remove the constrains on λc+1 and maximize

∆(t+1)
Ωj→λc+1

with respect to ωc instead. The derivative is then:

∂∆(t+1)
Ωj→λc+1

∂ωc
=

∂∆(t+1)
Ωj→λc+1

∂λc+1
· ∂λc+1

∂ωc

=
λ̂
(t)
1

(1− λ̂
(t)
1 ) · κ1 + λ̂

(t)
1 ∑C

k=1 λk+1 · κ2

(
λ̂
(t)
k+2, λ̂

(t)
k+3

)

×
C

∑
k=1

κ2

(
λ̂
(t)
k+2, λ̂

(t)
k+3

) (
λk+1 · 1(k=c) − λk+1λc+1

)
,

(8.19)

where 1(k=c) = 1 if k = c and 1(k=c) = 0 if k ̸= c.

2. Bernoulli-Exponential mixture Input Channel: BEm distribution is given

in (2.8), we then have:

log
∫ ∞

0
Ωj(xj, λ) · exp

(
∆(t+1)

Ωj←xj

)
dxj

= log
∫

xj

p(xj|λ) exp

(
− 1

2τr
Ωj
(t)

(
xj − r(t)Ωj

))

= log

[
(1− λ1) · κ1 + λ1

C

∑
c=1

λc+1 · κ2(λc+2)

]

= log

[
(1− λ1) · κ1 + λ1

C

∑
c=1

λc+1 · κ2(c)

]
,

(8.20)

where κ1 is the same as (8.15a); for the c-th Exponential mixture, κ2(c)
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depends on λc+2.

κ2(c) = λc+2 ·

√
πτr

Ωj
(t)

2
· erfcx

⎛⎝−r(t)Ωj
− λc+2 · τr

Ωj
(t)√

2τr
Ωj
(t)

⎞⎠ , (8.21)

where erfcx(·) is the scaled complementary error function. Taking the

derivative w.r.t. λ1, λc+2, we have:

∂∆(t+1)
Ωj→λ1

∂λ1
=

−κ1 + ∑C
c=1 λ̂

(t)
c+1 · κ2

(
λ̂
(t)
c+2

)
(1− λ1) · κ1 + λ1 ∑C

c=1 λ̂
(t)
c+1 · κ2

(
λ̂
(t)
c+2

) (8.22a)

∂∆(t+1)
Ωj→λc+2

∂λc+2
= κ3

(
λ̂
(t)\λ̂(t)

c+2, λc+2

)
× λ̂

(t)
c+1

(
λc+2τr

Ωj
(t) +

(
r(t)Ωj
− λc+2τr

Ωj
(t)
)

κ2(c)
)

.

(8.22b)

We write the mixture weights λc+1 in the same form as (8.18), and take the

derivative w.r.t. ωc:

∂∆(t+1)
Ωj→λc+1

∂ωc
=

∂∆(t+1)
Ωj→λc+1

∂λc+1
· ∂λc+1

∂ωc

=
λ̂
(t)
1

(1− λ̂
(t)
1 ) · κ1 + λ̂

(t)
1 ∑C

k=1 λk+1 · κ2

(
λ̂
(t)
k+2

)

×
C

∑
k=1

κ2

(
λ̂
(t)
k+2

) (
λk+1 · 1(k=c) − λk+1λc+1

)
.

(8.23)

3. Laplace Input Channel: Laplace distribution is given in (2.9). Similarly,
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we have:

log
∫ ∞

−∞
Ωj(xj, λ) · exp

(
∆(t+1)

Ωj←xj

)
dxj

= log
∫

xj

p(xj|y) · exp

⎛⎜⎝−
(

xj − r(t)Ωj

)2

2τr
Ωj
(t)

⎞⎟⎠
= log [λ1κ1 (κ2(λ1) + κ3(λ1))]− log 2 ,

(8.24)

where κ1 is the same as (8.15a), and κ2(λ1), κ3(λ1) depend on λ1. They can

be described as follows:

κ2(λ1) = λ1 ·

√
πτr

Ωj
(t)

2
· erfcx

⎛⎝−r(t)Ωj
− λ1 · τr

Ωj
(t)√

2τr
Ωj
(t)

⎞⎠ (8.25a)

κ3(λ1) = λ1 ·

√
πτr

Ωj
(t)

2
· erfcx

⎛⎝r(t)Ωj
+ λ1 · τr

Ωj
(t)√

2τr
Ωj
(t)

⎞⎠ . (8.25b)

Taking derivative of (6.12c) with respect to λ1, we have:

∂∆(t+1)
Ωj→λ1

∂λ1
=

1
λ1

+
κ4(λ1) + κ5(λ1)

κ2(λ1) + κ3(λ1)
, (8.26)

where κ4(λ1), κ5(λ1) depend on λ1. They can be expressed as:

κ4(λ1) = λ1τr
Ωj
(t) +

(
r(t)Ωj
− λ1τr

Ωj
(t)
)

κ2(λ1) (8.27a)

κ5(λ1) = −λ1τr
Ωj
(t) +

(
r(t)Ωj

+ λ1τr
Ωj
(t)
)

κ3(λ1) . (8.27b)

4. Additive White Gaussian Noise Output Channel: The white Gaussian
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distribution is shown in 2.10. We have the following:

log
∫ ∞

−∞
Φ(yi, zi, θ) exp

(
−1

2τ
q
Φi
(t)

(
zi − q(t)Φi

)2
)

dzm

=
1
2

log τ
q
Φi
(t)− 1

2
log
(

θ1 + τ
q
Φi
(t)
)

− 1
2

1(
θ1 + τ

q
Φi
(t)
) (yi − q(t)Φi

)2
.

(8.28)

Taking derivative of (6.12d) with respect to θ1, we have:

∂∆(t+1)
Φi→θ1

∂θ1
=

(
yi − q(t)Φi

)2

2
(

θ1 + τ
q
Φi
(t)
)2 −

1

2
(

θ1 + τ
q
Φi
(t)
) . (8.29)

8.2.1 Comparison with EM parameter estimation

Here we discuss the differences between the proposed PE-GAMP with MAP

parameter estimation and the EM-GAMP with EM parameter estimation [26,

65].

First of all, the EM parameter estimation is essentially maximum likelihood

estimation. EM [27] tries to find the parameters λ, θ that maximize the likelihood

p(y|λ), p(y|θ). While the proposed PE-GAMP with MAP parameter estimation

tries to maximize the following posterior distributions at nodes Ωn, Φm using

Bayes’ rule:

pΩn(λ|y) ∝ pΩn(y|λ)p(λ) (8.30a)

pΦm(θ|y) ∝ pΦm(y|θ)p(θ) . (8.30b)

Compared to EM estimation, the MAP estimation is able to draw information

from the priors p(λ), p(θ)) to guide the estimation process.
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Secondly, the two methods also differ in the way they compute the max-

imizing parameters. For the sake of simplification and a fair comparison,

we will assume the priors of the parameters p(λ), p(θ) to be uniform dis-

tributions. Specifically, EM treats x, w as hidden variables and maximizes

E[log p(x, w; λ, θ)|y, λ̂
(t)

, θ̂
(t)
] iteratively until convergence. Take the param-

eter λl for example, in the (t + 1)-th iteration the following expression will be

maximized under the GAMP framework [26]:

max
λl

∑
j

∫
p
(

xj|y, λ̂
(t)
l

)
log p(xj|λl) dxj

∝ ∑
j

∫
p
(

xj|λ̂
(t)
l

)
N
(

xj; r(t)Ωj
, τr

Ωj
(t)
)

log p(xj|λl) dxj ,

(8.31)

where λ̂
(t)
l is the estimated parameter in the previous t-th iteration. The closed-

form expression for Bernoulli-Gaussian mixture distribution can be found in [26].

However, (8.31) is quite difficult to evaluate for more complicated distributions,

which greatly limits its applicabilities. The proposed PE-GAMP with MAP

parameter estimation has a much simpler expression though:

max
λl

∑
j ̸=n

log
∫

p(xj|λl)N
(

xj; r(t)Ωj
, τr

Ωj
(t)
)

dxj . (8.32)

This enables us to consider more complex distributions with the proposed PE-

GAMP. For instance, in this dissertation we have included the formulations to

estimate the parameters for sparse signals with Laplace prior and Bernoulli-

Exponential mixture prior.
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8.3 Experimental results

8.3.1 Simulated sparse signal recovery

We first perform noiseless sparse signal recovery experiments and compare the

empirical phase transition curves (PTC) of PE-GAMP and EM-BGm-GAMP [26].

Besides, oracle experiments where the “true” parameters are known are also

performed. Specifically, we fix N = 1000 and vary the sampling ratio σ = M
N ∈

[0.05, 0.1, 0.15, · · · , 0.95] and the sparsity ratio ρ = S
M ∈ [0.05, 0.1, 0.15, · · · , 0.95],

where S is the sparsity of the signal, i.e. the number of nonzero coefficients. For

each combination of σ and ρ, we randomly generate 100 pairs of {x, A}: A is

a M× N random Gaussian matrix with normalized and centralized rows; the

nonzero entries of the sparse signal x ∈ RN are i.i.d. generated according to the

following two different distributions:

1. Gaussian distribution x ∼ N (0, 1).

2. Exponential distribution x ∼ exp(−x), x ≥ 0.

In other words, the sparse signals x follow Bernoulli-Gaussian (BG) and Bernoulli-

Exponential (BE) distributions respectively. Given the measurement vector

y = Ax and the sensing matrix A, we try to recover the signal x. If ϵ =

∥x− x̂∥2/∥x∥2 < 10−3, the recovery is considered to be a success. Based on the

100 trials, we compute the success recovery rate for each combination of σ and ρ

and plot the PTCs in Fig. 8.1.

The PTC is the contour that corresponds to the 0.5 success rate in the domain

(σ, ρ) ∈ (0, 1)2, it divides the domain into a “success” phase (lower right) and a

“failure” phase (upper left). For the BG sparse signals (Fig. 8.1(a)), the PE-BGm-

GAMP and EM-BGm-GAMP perform equally well and match the performance
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ρ
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Figure 8.1: The phase transition curves (PTC) of different GAMP methods in the noise-

less case. (a) Bernoulli-Gaussian (BG) sparse signal; (b) Bernoulli-Exponential (BE)

sparse signal.

of the oracle-GAMP. The BGm prior they assumed about the sparse signal is a

perfect match, which is much better than Laplace prior assumed by PE-Lasso-

GAMP.

For the BE sparse signals (Fig. 8.1(b)), the BEm prior assumed by PE-BEm-

GAMP is the perfect match. However, we can see that the PTC of PE-BGm-

GAMP is only slightly worse, the BGm prior is still a strong contestant in this

case. Although both PE-BGm-GAMP and EM-BGm-GAMP assume the BGm

prior, PE-BGm-GAMP is more robust and performs better than EM-BGm-GAMP

when the sampling rate is low. PE-BEm-GAMP is the only one that matches the

performance of the oracle-GAMP.

We next try to recover the sparse signal x from a noisy measurement vector y.

Specifically, we fix S = 100, N = 1000 and increase the number of measurement
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entGAMPmethodsfinthenofisycase.(a)Bernoullfi-Gaussfian(BG)sparsesfignal;(b)
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M.y∈RMfisgeneratedasfollows:

y=Ax+νw, (8.33)

whereν>0controlstheamountofnofiseaddedtoy,theentrfiesofwarefi.fi.d

GaussfianN(0,1). Wechooseν=0.05fortheBGsparsesfignalsandν=0.1for

theBEsparsesfignals.Thfiscreatesameasurementywfithsfignaltonofiesratfio

(SNR)around20dB.Werandomlygenerate100trfiplesof{x,A,w}.Theaverage

SNRsoftherecoveredsfignalŝxareshownfinFfig.8.2.

Inthenofisycase,theoracle-GAMPperformsthebestasexpectedsfincethe

“true”parametersareusedtorecoverthesparsesfignal,andtheGAMPmethods

usfingestfimatedparametersarenotbadefither.FortheBGsparsesfignals(Ffig.

8.2(a)),wecanseethatPE-BGm-GAMPperformsbetterthanEM-BGm-GAMP

whenthesamplfingratfiofissmall.SfinceBGmfisabettermatchthantheLaplace

prfior,bothPE-BGm-GAMPandEM-BGm-GAMPperformmuchbetterthan
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PE-Lasso-GAMP. For the BE sparse signals (Fig. 8.2(b)), the BEm prior is a

better match than the BGm prior. PE-BEm-GAMP is able to perform better than

PE-BGm-GAMP and EM-BGm-GAMP, especially when the sampling ratio is

small. Additionally, the solutions produced by PE-BEm-GAMP is guaranteed to

be non-negative, while those by PE-BGm-GAMP and EM-BGm-GAMP generally

contains negative coefficients. For applications that requires non-negative sparse

solutions, such as hyper-spectral unmixing [67], non-negative sparse coding for

image classification [68], etc, PE-BEm-GAMP offers a convenient way to solve

the parameter estimation problem.

8.3.2 Real image recovery

Real images are considered to be approximately sparse under some proper

basis, such as the DCT basis, wavelet basis, etc. Here we compare the recovery

performances of PE-BGm-GAMP, PE-Lasso-GAMP, and EM-BGm-GAMP based

on varying noiseless and noisy measurements of the 4 real images in Fig. 4.2

as before: Barbara, Boat, Lena, Peppers. The experimental setup is different

from the experiments in section 4.2.2: in order to ensure the convergence of the

algorithms, we use the Daubechies 6 (db6) wavelet [52] as the sparsifying basis

V and i.i.d. random Gaussian matrix U as the sampling matrix. The sensing

matrix A is then A = UV .

For the noisy recovery, the entries of the noise are generated using i.i.d.

Gaussian distribution N (0, 1), and then scaled to make sure the SNR of the

measurement vector y is around 30 dB. The peak-signal-to-noise-ratio (PSNR) of

the recovered images from noiseless and noisy measurements are shown in Fig.

8.3 and 8.4 respectively. We can see that both PE-BGm-GAMP and EM-BGm-

GAMP perform better than PE-Lasso-GAMP when the sampling ratio σ > 0.1.
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When σ is small, PE-BGm-GAMP and PE-Lasso-GAMP are more robust and

generally perform better than EM-BGm-GAMP.

The recovered “Lena” images under the sampling ratio 0.05 and 0.2 from

noiseless and noisy measurements are shown in Fig. 8.5-Fig. 8.8 respectively.
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Figure 8.3: The peak-signal-to-noise-ratio (PSNR) of the recovered images from “noise-

less” measurements using different GAMP methods. (a) Barbara; (b) Boat; (c) Lena; (d)

Peppers.
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Figure 8.4: The peak-signal-to-noise-ratio (PSNR) of the recovered images from “noisy”

measurements using different GAMP methods. (a) Barbara; (b) Boat; (c) Lena; (d)

Peppers.
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(a) (b) (c)

Figure 8.5: The recovered lena image using different approaches with a sampling rate

of 0.05 from noiseless measurements: a) EM-GAMP (BGm prior) 5.93 dB; (b) PE-GAMP

(Laplace prior) 16.36 dB; (c) PE-GAMP (BGm prior) 20.50 dB.

(a) (b) (c)

Figure 8.6: The recovered lena image using different approaches with a sampling rate

of 0.2 from noiseless measurements: a) EM-GAMP (BGm prior) 26.05 dB; (b) PE-GAMP

(Laplace prior) 24.39 dB; (c) PE-GAMP (BGm prior) 26.06 dB.
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(a) (b) (c)

Figure 8.7: The recovered lena image using different approaches with a sampling rate

of 0.05 from noisy measurements: a) EM-GAMP (BGm prior) 5.92 dB; (b) PE-GAMP

(Laplace prior) 16.17 dB; (c) PE-GAMP (BGm prior) 20.35 dB.

(a) (b) (c)

Figure 8.8: The recovered lena image using different approaches with a sampling rate

of 0.2 from noisy measurements: a) EM-GAMP (BGm prior) 25.55 dB; (b) PE-GAMP

(Laplace prior) 23.91 dB; (c) PE-GAMP (BGm prior) 25.55 dB.
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8.3.3 Non-negative sparse coding for image classification

The image classification task typically involves two steps: 1) extracting features,

and 2) training a classifier based on such features. In the first step, low-level

descriptors, such as SIFT [69], HOG [70], etc, are extracted from local image

patches, and then encoded to produce the high-level representations of the

images, usually a vector v ∈ RD. Here we use the popular Bag-of-Words (BoW)

model [71, 72] to encode the low level SIFT descriptors y ∈ RM. To do this, we

first need to assign each y to one or several “visual words” in some pre-trained

dictionary/codebook A. In [68], it is shown that this process can be formulated

as a sparse coding problem:

min
x
∥y− Ax∥2

2

subject to: x ≥ 0, x is sparse.

(8.34)

where x is the sparse code of y in the dictionary A. In [68], the sparsity constrain

on x is enforced with the l1 norm regularization, i.e. Lasso. Both PE-BGm-GAMP

and EM-BGm-GAMP can produce negative sparse codes, and are not suited

for the task. Here we can use the proposed PE-BEm-GAMP to solve the above

non-negative sparse coding problem.

Specifically, we perform image classification on the popular Caltech-101

dataset [73], which contains 9144 images belonging to 102 classes (101 object

classes and a background class). Following the suggestions of the original dataset

[73], we randomly select 30 samples per class for training and up to 50 samples

per class for testing. This process is randomly repeated 10 times and the average

classification accuracy is computed as the final result.

Each image is converted to gray-scale and resized to be no larger than

300× 300 pixels while preserving the aspect ratio. The normalized local SIFT
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Figure 8.9: Low-level SIFT features are densely sampled from local image patches.

descriptors y ∈ R128 ≥ 0 are extracted from 16× 16 image patches densely

sampled on the grid with a step size of 8 pixels [74], as is shown in Fig. 8.9.

We use k-means [75] to train a 128× 1024 normalized dictionary A. After the

non-negative sparse coding, each local image patch is converted to a sparse

vector x ∈ R1024 ≥ 0. For each image, those sparse vectors are then max-pooled

using a 3-level spatial pyramid matching [76] to produce a vector v ∈ R21504.

As is usually done, linear support vector machine (SVM) [77, 78] is used as the

classifier and the parameters of SVM are chosen using cross-validation. The

average classification accuracy across all classes is 60.22± 0.94%. The confusion

matrix of the classification results is shown in Fig. 8.10.
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Figure 8.10: The confusion matrix of the classification results on Caltech-101 dataset.
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Part IV

Conclusion and future work
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Chapter 9

Conclusion and future work

In this dissertation we choose compressive sensing as the tool to process/analyze

the large amounts of data generated nowadays, and focus on the sparse signal

recovery problem that provides the foundation for various compressive sensing

applications. Two major approaches, namely the sparsity-regularization approach

and the probabilistic approach, are considered and explored.

For the sparsity-regularization approach, we propose the Shannon entropy

function hp(x) and Rényi entropy function hp,α(x) of the sparse signal x as the

sparsity regularizers, and give efficient iterative algorithms to perform sparse

signal recovery by minimizing them. Experiments on simulated and real data

show the advantage the proposed Shannon entropy function minimization and

Rényi entropy function minimization approaches have over other state-of-the-art

approaches.

We have proved in section 3.3 that the two entropy functions promote sparse

solutions in the sense that minimizing them in an orthant of the Euclidean

sparse leads to solutions on the boundary of said orthant, i.e. sparser solutions.

Extensive experiments conducted in this dissertation not only confirm our proofs,

but also reveal the exciting observation that the two entropy functions promote

sparsity better than the popular l1-norm and lp-norm. This motivates us to
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explore theoretical guarantees of the advantage over other approaches in the

future by establishing error bounds on the recovered signal x̂ and providing

sufficient conditions under which the successful recovery is warranted.

For the probabilistic approach, we propose the generalized approximate

message passing with built-in parameter estimation (PE-GAMP) framework to

compute the MMSE or MAP estimation of the sparse signal x. By treating the

parameters {λ, θ} as unknown random variables, we can jointly estimate them

along with the signal that follows a variety of complex signal/noise distributions

such as the Laplace distribution, Bernoulli-Exponential mixture distribution, etc.

Experiments on simulated and real data show that the proposed PE-GAMP is

more robust, much simpler and has a wider applicability compared to the EM

based parameter estimation method.

In the large system limit as N → ∞, state evolution analysis of the PE-GAMP

shows the variables in (7.6,7.18) are able to achieve empirical convergence under

the assumptions made in Chapter 7. One notable assumption is that the entries

of the sensing matrix A should be i.i.d distributed according to the Gaussian

N (0, 1
M ). In section 8.3.3, the entries of the dictionary A used to perform non-

negative sparse coding for image classification violate this assumption, however,

the proposed PE-GAMP is still able to achieve convergence and recover the

sparse codes. This suggests that some of assumptions made in Chapter 7 could

be further relaxed. In order to explore and widen the applicability of the PE-

GAMP, we would like to further investigate its empirical convergence behavior

with more generalized sensing matrices in our future work.

In Chapter 6 we present the formulations to solve the sparse signal recovery

problem where A can be written explicitly in a closed form. In the future, we

would like to adapt the PE-GAMP framework to solve other more complicated
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compressive sensing problems that could not afford such a luxury, for instance,

the low-rank matrix completion and robust principal component analysis.

In section 8.3.3, we choose the k-means centroids as the dictionary to perform

nonnegative sparse coding for the image classification task. In the future we

would also like to study how to apply the proposed PE-GAMP to the efficient

training of an adaptive dictionary [79, 80], which could benefit popular compres-

sive sensing applications such as sparse coding, image denoising [81], sparse

representation classification [8].
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