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Abstract 

Characterizing the subtle divergence of the metastatic lesions from the primary tumor is 

critical to understanding organ-specific adaptations that regulate further disease 

progression as well as the development of targeted chemotherapy treatment options. 

Though genomic assays have provided insights into the aberrant expression of a few 

biomarkers, dissecting metastatic cancers based on objective molecular markers still 

remains challenging. I show that the exquisite specificity of Raman microspectroscopy in 

detecting molecular phenotypes can be harnessed to investigate and differentially identify 

engineered metastatic breast cancer cellular models in a label-free manner. A Raman 

microscope is used to acquire spectra from unique organ-specific human metastatic breast 

cancer cell lines that were established from the outgrowth of metastatic breast cancer 

cells from explant cultures of each organ. By correlating the Raman spectra with the 

pathology, I architected partial least squares-discriminant analysis and support vector 

machine-derived decision algorithms that exhibit significant power in segmenting 

between the established cell lines in the brain, lung, liver, spine and breast. Using the 

acquired chemical profiles, I show the robustness of the method to spurious correlations 

and ascertain the informative spectral bands that hint at organ-specific biomarkers as 

opposed to the presence of a single universal marker. These findings underscore the 

significance of tissue-specific microenvironments, especially the lipid phenotype in 

promoting adaptations in metastatic cancer cells and highlight the potential of Raman 

spectroscopy for further evaluation of targeted chemotherapeutic approaches in these 

cellular model systems. 
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Introduction 

Breast cancer is the most common malignant neoplasm and is the second leading 

cause of cancer-related death among women in the United States, exceeded only by lung 

cancer [1]. Recent advances in the understanding of breast cancer progression, increased 

mammographic screening and the development of novel therapeutic modalities have 

positively impacted mortality rates with the American Cancer Society recently reporting 

a 5-year survival rate near 99% for local breast cancer [2]. However, the 5-year survival 

for metastatic breast cancer that involves distant organs drops to a dismal 24% [2]. Our 

understanding of metastatic breast cancer is still rudimentary, resulting in our limited 

ability to accurately predict and monitor the condition. Critically, obtaining safe 

chemotherapeutic regimen strategies that ablate metastatic lesions is an unmet clinical 

need with the current practice of systemic administration of cytotoxic chemotherapy 

having very limited effect on survival, which results in numerous adverse side-effects and 

no cures [3].  

When considering solutions to this problem an important factor is the divergence of 

the metastatic cancer cells growing in an organ outside of the breast from the primary 

breast tumor. This is evident as cancer cell populations are characteristically 

heterogeneous displaying various degrees of genomic instability as well as dynamic 

adaptations to survive fluctuating microenvironmental conditions. The organ-specificity 

of the metastatic spread needs to be a critical consideration, as clinical treatment decision 

options for distant metastatic breast cancer have historically relied, in part, on an 

evaluation of a few select biomarkers found during assessment of the primary tumor [4]. 

In fact, recent evidence from retrospective and prospective clinical trials indicates that 
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matched primary breast tumor and metastatic lesion biopsy samples often exhibit 

divergent expression of markers such as ER and HER-2 [5]. To explain these findings, 

researchers have hypothesized that metastasis organotropism emerges through acquisition 

of distinct sets of organ-specific metastasis genes in metastatic variants that are best 

adapted to different target organ microenvironments through Darwinian selection. 

Consequently, only those cancer cells that become imbued with traits that favor survival 

in each organ will thrive and impair organ function [6]. Due to varying from a same 

primary cell line, it is very difficult to discern various organ-specific metastatic lesions to 

the prescribed therapeutic regimen. Accordingly, the organ-specificity of the metastatic 

spread needs critical reconsideration, as historically clinical treatment decision options 

for distant metastatic breast cancer have relied, in part, on an evaluation of a few select 

biomarkers found during assessment of the primary tumor, such as ER and Her-2. This 

strategy although beneficial to some extent, is also a likely contributing factor to the 

diminished response rates for survival from metastatic disease as metastatic lesions might 

present with altered biomarker signatures than the corresponding primary tumor [4, 7].  

In addition, the present bank of molecular profiles of matched primary and metastatic 

breast tumors do not facilitate patient specific smart therapeutic alternatives. 

Dissecting metastatic cancers based on objective molecular markers still remains 

challenging. Indeed, many clinical studies have correlated alterations in expression of 

individual genes with breast cancer disease outcome with contradictory results [8].  Here, 

I propose a fundamentally different approach towards identification of metastatic cancer 

cells and selection of relevant molecules involved in the metastatic spread. Harnessing 

the exquisite specificity of Raman microspectroscopy in detecting molecular phenotypes 
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in cells and tissue, I aimed to obtain rapid and label-free profiling of newly generated 

isogenic metastatic human breast cancer cellular models. Given its lack of sample 

preparation requirements and ability to provide quantitative biochemical analyses in near 

real-time conditions, Raman spectroscopy provides a powerful tool for live cell analysis. 

While this spectroscopic technique has been recently used to distinguish between 

malignant, normal, and benign breast tissues, by us and others [9-12], the potential for 

using these spectral markers as new routes to recognition of metastatic cell types that are 

isogenic to the primary tumor, has been surprisingly underappreciated.  

In this study, a Raman microscope is used to record spectra from unique organ-

specific human metastatic breast cancer cell lines, which were established from the 

outgrowth of metastatic breast cancer cells from explant cultures of brain, liver, lung, and 

spine as well as the primary orthotopic xenograft site, i.e., mammary fat pad (MFP) 

tumors (Fig. 1).  
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Figure 1 Schematic illustration of the Raman spectroscopy measurements of organ-
specific metastatic breast cancer cell lines. The pathways and distant metastases sites to 
which the primary tumor cells (orange) migrate are shown here. The breast cancer cells 
that adapt and thrive in the brain microenvironment are shown in yellow. Similarly, the 
metastatic cellular deposits in the lung, liver and spine are represented in pink, green and 
red. A Raman microspectroscope is used to record spectra from these organ-specific 
breast tumor cell lines that are established from the outgrowth of metastatic breast cancer 
cells from explant cultures of each organ. 

I used Raman spectroscopic measurements reveal the presence of subtle, but 

consistent, spectral differences of the cell lines. Using multivariate chemometric methods, 

I show that these spectral changes emanating from the variations of specific biochemical 

attributes at each metastatic site can be utilized to architect decision algorithms with high 

diagnostic power. Specifically, I report that partial least squares discriminant analysis 

(PLS-DA)-based decision algorithm can offer an average correct classification rate of  

~95% in discerning between the signatures of metastatic cell lines grown out of brain, 
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lung, liver, spine, and MFP. Furthermore, I identify the presence of spectrally informative 

features that bring to light putative unique biomarkers for each site probably as a result of 

the intricate tumor-stroma interactions at the target organ. Importantly, these findings 

underscore the relevance of Raman spectral information in characterizing isogenic 

metastatic lesions at different sites in terms of inherent biochemical determinants and that 

this can be accomplished in a non-destructive manner without staining or requiring a 

priori knowledge of the molecular transformations.  
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Materials and methods 

Mice   

All animal handling procedures were performed in accordance with protocols 

approved by the Johns Hopkins University Institutional Animal Care and Use Committee 

and conformed to the Guide for the Care and Use of Laboratory Animals published by 

the NIH. Non-Diabetic severe combined immunodefcient (NOD-SCID) female mice, 

ages 6 to 8 weeks, were used throughout these studies. At the end of the experiments, 

mice were sacrificed by administering an overdose of anesthetic 

[saline:ketamine:acepromazine (2:1:1)] followed by cervical dislocation.   

Cell Culture and Treatments   

All MDA-MB-231-tdTomato (231-tdT) culturing was done in standard humidified 

incubators at 37o C and 5% CO2. Primary tumors were initiated by injection of 2x106 

231-tdT cells into the second thoracic mammary fat pad of 5 female NOD-SCID mice. 

After 13 - 15 weeks of growth when primary tumors were on average 1200 cm3 the mice 

were sacrificed and primary tumor, brain, liver, lungs and spine, were immediately 

excised, dissected away from fat and muscle, placed into sterile PBS on ice. Pieces of 

primary tumor, heavily diseased lungs and small portion of liver with a macroscopic 

metastatic lesion were then immediately minced in 100 mm cell culture dishes containing 

10 ml of medium within a sterile hood. All other organs/bones were inspected using 

fluorescence microscopy for any signs of metastatic burden, which was easily discerned 

as bright tdT red fluorescence. Areas of fluorescence along with adjacent tissue were cut 

away and placed into cell culture plates in sterile medium.     
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All organ/bone tissue explants were initially cultured in RPMI-10% FBS 

supplemented with antibiotics (100 I.U./ml penicillin, 100 μg/ml streptomycin, 100 μg/ml 

ampicillin, and 100 μg/ml kanamycin) and, as necessary, Fungizone. The latter was often 

used during culturing cells out of spine as these pieces of bone were large, tended to float, 

i.e, became collagen rafts, and thus somewhat exposed at the medium to air surface, 

which promoted fungal growth. Medium was refreshed every 2-3 days and after two 

weeks of culture the medium was changed to RPMI-10% FBS supplemented with 

pen/strep. During routine passages the medium/floating cells was first collected and the 

adherent colonies were then lifted of the plates by room temperature incubations in 

HANKS-5 mM EDTA solution for 2–5 min with shaking and tapping by hand. Lifted 

cells were pooled with the collected medium/cells, centrifuged 200xg at 21o C for 10 

mins, and the supernatant (medium-EDTA) discarded. Cell pellets were then suspended 

in fresh medium and plated at the desired densities. It took at least 24 hours and often 48 

hours (generally during recovery from -80o C storage) for the larger percentage of 

adherent cells to settle and start to grow. 

Growth Rate   

Growth curves (Fig. 2) were generated by seeding 24 well plates with 105 cells per 

well and harvesting quadruplicates of these wells every 24 hours through to the 144 hours 

end-point. Live cell counts were obtained with a TC10 Automatic Cell Counter (Bio-Rad) 

in the presence of Trypan Blue. Despite being isogenic, these cell lines exhibit important 

growth distinctions that support my hypothesis that each metastatic site imbues metastatic 

tumors with unique specific molecular attributes that differ from site-to-site. 
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Figure 2 Growth curves used to estimate growth rates as doubling times during log-
phase growth. Qualitatively, the growth curves of lung and brain cell lines have a similar 
shape and appear not to have reached a stationary phase of growth. Correspondingly, 
primary tumor, liver, and spine cell line growth curves exhibited similar S-shapes that 
end in stationary phases of growth. 

Motility Assay   

Standard motility assays were done in 24 well Transwell® plates (Costar) with 8.0 

µm membrane inserts. Cells were seeded onto duplicate wells at a density of 2000 

cells/well. Three separate experiments were done using RPMI-5% FBS medium in the 

lower chamber while the inserts with cells contained RPMI-0.2% FBS medium. At the 

end of the 2 week culturing time, colony numbers at the bottom surface of membranes 

were counted using the inherent red fluorescence of tdT as a “stain” with a fluorescence 

microscope (Nikon Eclipse TS100) and 4x objective.  For each experiment two fields of 

view were counted from each well. 
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Optical Microscopy   

Phase contrast and fluorescence microscopy was done on a Nikon ECLIPSE TS 100 

microscope (Nikon Instruments, Inc.) equipped with a Photometrics CoolSnap ES digital 

camera (Roper Scientific), and FITC and Texas Red filter cubes.  The fluorescence light 

source was an X-Cite 120 Fluorescence Illumination System (Photonic Solutions, Inc.).  

Images were collected with NIS-Elements F3.2 software and processed with ImageJ. 

Raman Microspectroscopy  

The custom-built Raman microscope used in this work was previously reported [13, 

14]. A 785 nm Ti: Sapphire laser (3900S, Spectra-Physics), pumped by a frequency-

doubled solid-state laser (Millennia 5sJ, Spectra-Physics), was used as the excitation 

source for the inverted microscope (Fig. 3).  

 

Figure 3 High-throughput Raman microspectroscopy system. The system 
incorporates confocal Raman, confocal reflectance (not shown here) and bright field 
imaging modalities for visualization and characterization of unstained live cells. LPF: 
Long Pass Filter; DM: Dichroic Mirror.  
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The laser was focused onto the specimen using a 1.2 NA water immersion objective 

lens (UPLSAPO60XWIR 60X, Olympus) that also functioned to collect the 

backscattered signal. The collected signal was then recorded using a TE-cooled, deep 

depletion CCD (1340/400-EB, Princeton Instruments) following dispersion through an 

imaging spectrograph (HoloSpec f/1.8i, Kaiser Optical Systems). Additionally, bright 

field and phase contrast microscopy was performed for visualization and registration with 

the Raman measurements. Instead of interrogating single cells at the subcellular level, the 

ultimate goal of the current study is to characterize biochemical variances at the ensemble 

cellular level, and thus a collection of cells in pellets were investigated using point 

spectroscopic measurements. After replacing culture medium with PBS, cell pellets were 

formed by centrifugation and placed on top of the quartz coverslip for Raman 

measurement. 100 (10 × 10) spectra were collected from 90µm × 90µm area in each 

pellet with axial resolution of 25 µm. Raman spectra were recorded by vertical binning 

before averaging of 10 successive frames, each with an acquisition time of 0.3 sec, for a 

total collection time of 3 sec. Wavelength calibration was performed prior to spectral 

acquisition by acquiring spectra from 4-acetamidophenol, a Raman scatterer with well-

characterized peak positions. The 600-1800 cm-1 fingerprint region was used for the 

ensuing analysis (spectral resolution of 8 cm-1). Cosmic ray removal was also 

implemented before the spectra were subjected to multivariate statistical analysis in 

MATLAB (Mathworks Inc.).  

Multivariate Statistical Analysis  

While Raman microspectroscopy provides a promising tool, in principle, to non-

invasively probe biological specimen with high specificity, its intrinsic weak signals 
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(especially in relation to conventional fluorescence imaging) and spectral complexity 

provides a substantive challenge in univariate or ratiometric quantitation of the sample 

constituents. Hence, to arrive at biochemical variances in isogenic cellular sublines, 

multivariate statistical analysis was performed on the acquired Raman spectra. By 

exploiting the full spectral information, as opposed to focusing on a single peak, 

multivariate techniques provide a robust route in extracting information both amenable 

and hidden from human examination.  

In this study, the Raman spectra were first subjected to principal component analysis 

(PCA). PCA is a widely used exploratory data analysis technique and employs dimension 

reduction to amplify the subtle differences in the recorded spectral profiles [15]. 

Operating without any a priori knowledge of the samples, PCA seeks to determine an 

alternate set of linearly uncorrelated coordinates, i.e. principal components (PC), such 

that the maximum variance in the spectral data can be explained by using only a few PCs. 

In particular, I employed PC scores to reveal the clustering behavior – or the lack thereof 

– between the metastatic breast cancer cell sublines, and the coefficient loadings to 

uncover the critical diagnostic variables/regions in the spectra associated with the 

underlying differences in the spectral data.  

Additionally, to develop decision algorithms for predicting the cell type (class 

membership) of the spectra, partial least squares-discriminant analysis (PLS-DA) and 

support vector machines (SVM) were used. The former employs PLS analysis for noise 

reduction and variable selection and determines the maximal separation between each 

class by fitting a unique global model to the entire dataset. The number of loading vectors 

incorporated in the decision algorithm is determined by the leave-one-out cross validation 
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procedure (LOOCV) [16]. Similar to PLS-DA in its supervised nature, SVM is rooted in 

statistical learning theory and structural risk minimization concepts and designs 

separating boundaries between classes by solving a constrained quadratic optimization 

problem. I used a radial basis function (RBF) with a Gaussian envelope to enable the 

separation of classes in a higher dimensional space and the optimization and kernel 

parameters were determined based on an automated grid search algorithm. Two different 

classification methods were used to confirm the validity of the results and to minimize 

the possibility of spurious correlations that may plague an “overfitted” decision algorithm. 

The output of the PLS-DA and SVM-derived decision algorithms was validated against 

the known class labels, i.e. the specific line of the metastatic breast cancer cellular model 

system. The performance of the algorithms was evaluated by determining the sensitivity 

and specificity using a LOOCV protocol. Similar approaches to classification of Raman 

spectroscopic data have been described elsewhere in the literature [17, 18]. 
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Results 

In order to facilitate the tracking of metastatic progression in live mice, triple negative 

MDA-MB-213 human breast cancer cells were engineered to be a cell line which stably 

express a red fluorescence protein (231-tdT). Thus, due to the inherent very bright 

fluorescence of 231-tdT cells, this mouse model provides facile ex vivo fluorescence 

microscopic identification of metastatic lesions within any organ of choice. As shown in 

Fig. 4, although the organ explants are resolved as only amorphous material (bright field 

images in Fig. 4) without visually discernable metastatic lesions, the red fluorescence 

revealed the presence of the cancer.  

 

Figure 4 Fluorescence images of metastatic 231-tdT lesions in fresh organ samples.  

Fluorescence images of brain, liver, lung, and spine tissues immediately after dissection. 
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Raman Spectroscopic Differentiation of Organ-specific Metastatic Isogenic Breast 

Cancer Cell Lines.  

The mean Raman spectra of raw data with ±1 standard deviations (SD) of the 

metastatic isogenic breast cancer cell lines corresponding to the primary tumor from the 

orthotopic MFP site, brain, liver, lung, and spine are shown in Fig. 5 (the spectra are 

normalized and offset for visualization purposes). The latter four sites are representative 

of the common clinically observed breast cancer metastatic destinations [19].  
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Figure 5 Representative Raman spectra of organ-specific metastatic breast cancer 
cell lines. Spectra are acquired from the brain (blue), breast (red), liver (green), lung 
(cyan) and spine (black) cell lines. The solid profile depicts the mean spectrum of each 
sample group and the shadow represents ±1 standard deviation. Spectra are normalized 
and offset for visualization.   
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Distinctive Raman peaks located at around 852, 937, 1005, 1090, 1265, 1305, 1334, 

1452 and 1657 cm-1 are seen for all the cell lines with lower intensity features observable 

at 782, 878 and 1067 cm-1, respectively. In agreement with previous reports [20], the 

features seen here can primarily be attributed to the different vibrational modes of 

proteins (852, 878, 937, 1005, 1265, 1305, 1335, 1452 and 1657 cm-1), lipids (1305 and 

1452 cm-1) and nucleic acids (782, 1067, 1090 and 1335 cm-1). Though the spectra 

grossly appear to have similar profiles, careful inspection reveals subtle but discernible 

and reproducible shape differences, especially on removal of the fluorescence 

background [21]. I reasoned that while the subtle differences in the spectral dataset and 

small variations within the profiles of each cell line impede the possibility of 

differentiation using single-feature analysis, multivariate classification methods could 

enable recognition and segmentation of the cell pathology provided the between-class 

distinctions are reproducible and surpass within-class differences.  

To examine the tumor cell lines and ascertain the differential biochemical 

characteristics that define each cell line, I employed principal component analysis (PCA) 

to transform the dimensions of the acquired spectral profiles into an alternate set of 

linearly uncorrelated variables (i.e. principal components, PC), along which the variation 

in the data is maximal (Fig. 6).  
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Figure 6 Principal components loadings and scores plot for the Raman 
measurements from all the cell lines. (A) & (B) show the loadings for principal 
component (PC) 1 and 2, respectively. The prominent peaks in each case are highlighted 
by asterisks, including features at 1005 cm-1, 1452 cm-1 and 1657 cm-1. (C) & (D) 
provides an illustration of the scores from the cell lines corresponding to PC1, PC2 and 
PC3. Percentages in the score plots represent the variance accounted for by each PC. Blue: 
brain, Red: breast, Green: liver, Cyan: lung, Black: spine. 

This dimensional reduction step is critical to enabling sample exploration via visual 

assessment of similarities and differences between samples and, ultimately, in identifying 

the smallest possible subset of discriminatory features necessary to build a robust 

decision algorithm. PC1 and PC2 scores accounted for approximately 67% and 12% of 

the total variance in the dataset. I observe that PC1 prominently features the Raman 

scattering peaks of 1005 cm-1 (ν s(C-C) symmetric ring breathing of phenylalanine), 1452 

cm-1 (ν (C-N) in-plane vibration) and 1657 cm-1 (ν (C=O) of amide I of proteins) (Fig. 

6A). As such, the PC1 loading consists of features that collectively indicate its 

representation of the protein spectral profile. Significantly, the PC2 profile exhibits a 

negatively directed phenylalanine feature with positively directed in-plane vibration 

features common to both proteins and lipids (Fig. 6B). Monitoring a subset of these 
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spectral markers provides important clues to defining the metastatic cancer cell lines in 

molecular terms, i.e., by correlating the differential molecular expression to the organ-

specificity of the cell line. I postulate that the PC2 loading provides a measure of the lipid 

content and that the lipid and protein cell content are inversely correlated, based on the 

juxtaposition of the negatively directed phenylalanine feature (a common marker for 

proteins) with the positively directed feature at 1452 cm-1 (common to both lipids and 

proteins). This has direct implications for the corresponding PC scores plot (Fig. 6C & D). 

The scores plots reveal substantive (though not perfect) clustering of the metastatic cell 

lines using only three variables. The spread over a larger area of the PC scores axes 

indicates the possible presence of more heterogeneity in the lung and liver cell lines 

particularly in relation to the brain and primary tumor cell lines. Importantly, based on 

my hypothesis, I interpret that the primary tumor and brain cell lines have the lowest lipid 

content (i.e., PC2 score). In contrast, the spine, liver and lung cell lines exhibit higher 

levels of lipid concentrations and clear separation from the other cell lines. Prior reports 

of the organ-specific pattern of breast tumor metastasis in which the bone (60%), lung 

(34%) and liver (20%) are the organs most commonly affected lend support to my PCA-

based discrimination of these three cell lines [22-25]. My observation also hints at an 

underlying relationship between exacerbated lipogenesis, metastatic potential and organ-

specificity of breast cancer cells.  

To quantify the segmentation capability using the spectroscopic measurements, I 

developed decision algorithms based on partial least squares discriminant analysis (PLS-

DA) and support vector machines (SVM). The number of loading vectors (LV) used in 

the PLS-DA model was determined based on the minimal misclassification rate in a 
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leave-one-out cross-validation protocol while ensuring that the spectra to LV ratio was 

greater than 5 to avoid problems of data sparseness. Subsequently, the dataset was split 

into training (70% of the spectra) and test (30%) sets to estimate the classification 

accuracy. This entire operation: re-splitting, training of the decision algorithm, and 

prediction, was performed 1000 times to obtain outcomes with well-defined statistical 

confidence (Table 1). The overall classification accuracy obtained for the PLS-DA-

derived decision algorithm was found to be 96.8% with the classification accuracy for 

each cell line being in excess of 93%. The SVM-derived decision algorithm also provides 

similar levels of classification performance (Table 2) affirming that the richness of the 

spectral data is the principal driver for the prediction performance.  

Table 1 Classification outcomes in prospective prediction for the PLSDA-derived 

decision algorithm 

Average correct classification rate: 96.8% 

Reference Diagnosis Correct Classification Misclassification 

Brain 98.0 % 2.0 % 

Primary Tumor 99.3 % 0.7 % 

Liver 97.4 % 2.6 % 

Lung 93.3 % 6.7 % 

Spine 96.1 % 3.9 % 
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Table 2 Classification outcomes in prospective prediction for the SVM-derived 

decision algorithm 

Average correct classification rate: 97.6% 

Reference 

diagnosis 

Correct classification rate Misclassification rate 

Brain 99.6 % 0.4 % 

Primary Tumor 98.9 % 1.1 % 

Liver 94.3 % 5.7 % 

Lung 97.3 % 2.7 % 

Spine 98.1 % 1.9 % 

 

Additionally, to ensure the robustness of these findings, I implemented a negative 

control study. In this case, the labels (primary tumor, brain, liver, lung and spine) were 

assigned in a randomized order, regardless of their actual identity. Using the acquired 

spectra in conjunction with these control labels, I re-derived the PLS-DA and SVM 

decision algorithms and used them in the same analysis protocol as detailed previously. 

In this situation, a low correct classification rate for each cell line was obtained with the 

average rate of correct classification below 20% (approximately the random chance of 

predicting correctly 1 class out of a total of 5 classes). This underscores the robustness of 

the spectroscopic measurements to confounding variables and chance correlations. 

Additionally, the derived decision algorithms should not be impacted by systematic 

temporal correlations since the reported experiments were conducted over several days in 

a randomized manner. Taken together, these results demonstrate that Raman 
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spectroscopy offers a reliable tool for discriminating these isogenic metastatic breast 

cancer cell lines on the basis of distinct organ-of-origin driven biochemical adaptations.    
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Discussion 

My findings provide strong evidence that Raman spectroscopic signatures can be 

used to investigate molecular differences between breast cancer cells from diverse 

metastatic sites by probing the biochemical phenotypic variances. While the Raman 

spectra provided a label-free, quantitative measure of the specimen’s molecular 

composition, the stochastically varying intracellular compositions and complex spatial 

distributions of the molecules precluded single feature evaluation. Thus, I used 

multivariate statistical analysis to yield decision algorithms that are robust with respect to 

stochastic variance and offer real-time segmentation capabilities. These algorithms 

exploit subtle differences in the vibrational signatures of the molecular markers that are 

reflective of the multiple and complex interactions between metastatic cells and host 

homeostatic mechanisms. 

To clarify the segmentation capability, I sought further specificity biochemical 

differences in cellular model system. I performed difference analysis across the 

normalized spectra obtained from pairwise comparisons of cell lines to demarcate the 

informative regions with the goal of identifying biomarkers, which would be either 

universal or characteristic to the specific pair of cell lines. Fig, 7 shows the comparison 

between primary tumor and liver cell lines. Fig. 7A black spectrum represents the liver 

cell lines data and red spectrum shown in Fig. 7B is the data from primary tumor. Fig. 7C 

is the differences between primary tumor and liver cell lines, only the relative differences’ 

absolute values larger than 0.01 can be counted as a considerable variation from primary 

tumor. The potential components assignments for each variation are listed in Table 3. 
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Figure 7 Liver Raman spectrum and primary tumor Raman spectrum comparison. 
(A) & (B) show the average liver cell lines spectrum and average primary tumor 
spectrum. (C) is the differences between liver and primary tumor on Raman spectra. The 
considerable variants comparing with primary tumor are marked in (C). 
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Table 3 Differences between Breast (primary) and Liver whose absolute values 

exceed criterion 

No. Range Exact Raman 

shift 

Component assignment Comparison with 

primary 

1* 603-689 cm-1 621 cm-1 C-C twist in phenylalanine negative 

1* 645 cm-1 C-C twist in tyrosine 

1* 671 cm-1 C-S stretching in cysteine 

2 840-854 cm-1 854 cm-1 Ring breathing in tyrosine/C-C 

stretching in proline, 

polysaccharides 

positive 

3 998-1009 cm-1 1006 cm-1 Symmetric ring breathing mode 

of phenylalanine 

positive 

4 1130-1233 cm-1 1129 cm-1 Skeletal C-C stretching in lipids negative 

5* 1160 cm-1 C-C/C-N stretching in protein 

5* 1180 cm-1 Cytosine/guanine/adenine 

6* 1220 cm-1 Amide III: β-sheet 

6* 1258-1268 cm-1 1258 cm-1 Amide III: β-

sheet/adenine/cytosine, CH2 in-

plane deformation (lipids) 

positive 

7 1294-1330 cm-1 1308 cm-1 CH2 deformation in 

lipids/adenine/cytosine 

positive 

8 1429-1470 cm-1 1452 cm-1 CH2 deformation in lipids, fatty positive 
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acids 

9 1488-1598 cm-1 1582 cm-1 Adenine/guanine, Amide II, 

tryptophane 

negative 

10 1643-1677 cm-1 1661 cm-1 Amide I: α-helix positive 

 

Fig. 8, 9 & 10 are the comparisons between primary tumor and spine, or lung, or 

brain. All of them follow the same protocol of comparison of primary tumor and liver. 

Among of them, brain cell lines show the smallest variants. Table 4, 5 & 6 are the 

components assignments corresponding to comparisons of spine, lung and brain.  



26 

 

 

Figure 8 Spine Raman spectrum and primary tumor Raman spectrum comparison. 
(A) & (B) show the average spine cell lines spectrum and average primary tumor 
spectrum. (C) is the differences between spine and primary tumor on Raman spectra. The 
considerable variants comparing with primary tumor are marked in (C). 
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Table 4 Differences between Breast (primary) and Spine whose absolute values 

exceed criterion 

No. Range  Exact Raman 

shift 

Component assignment Comparison with 

primary 

1 623 cm-1 623 cm-1 C-C twist in phenylalanine negative 

2 1006 cm-1 1006 cm-1 Phenylalanine NADH, Symmetric ring 

breathing mode of phenylalanine 

negative 

3 1136-1211cm-1 1160 cm-1 C-C/C-N stretching (proteins) positive 

4 1298-1350 cm-1 1335 cm-1 CH3/CH2 twisting or bending mode of 

lipids/collagens, CH2 deformation in 

lipids/adenine/cytosine 

negative 

5 1435-1472 cm-1 1442 cm-1 Fatty acids, CH2 (lipids and proteins), 

CH2 deformation in lipids 

negative 

6 1622 cm-1 1622 cm-1 Tryptophan positive 
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Figure 9 Lung Raman spectrum and primary tumor Raman spectrum comparison. 
(A) & (B) show the average lung cell lines spectrum and average primary tumor spectrum. 
(C) is the differences between lung and primary tumor on Raman spectra. The 
considerable variants comparing with primary tumor are marked in (C). 
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Table 5 Differences between Breast (primary) and Lung whose absolute values 

exceed criterion 

No. Range Exact Raman 

shift 

Component assignment Comparison 

with primary 

1* 512-733 cm-1 621 cm-1 C-C twist in phenylalanine negative 

1* 645 cm-1 C-C twist in tyrosine  

2 775-856 cm-1 788 cm-1 DNA: O-P-O backbone stretching 

/thymine/cytosine, proline 

positive 

3 833 cm-1 DNA: O-P-O backbone stretching/out of 

plane ring breathing in tyrosine, 

polysaccharides 

4 1000-1006 cm-1 1006 cm-1 Symmetric ring breathing mode of 

phenylalanine 

positive 

5* 1026-1089 cm-1 1036 cm-1 C-H in plane bending mode of 

phenylalanine, proline 

positive 

5* 1071 cm-1 Skeletal C-C stretch in lipids 

6 1311-1361 cm-1 1340 cm-1 Polynucleotide chain (DNA bases), 

CH3CH2 wagging collagen, nucleic acid 

negative 

7 1623 cm-1 1623 cm-1 Tryptophan positive 
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Figure 10 Brain Raman spectrum and primary tumor Raman spectrum comparison. 

(A) & (B) show the average brain cell lines spectrum and average primary tumor 

spectrum. (C) is the differences between brain and primary tumor on Raman spectra. The 

considerable variants comparing with primary tumor are marked in (C). 
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Table 6 Differences between Breast (primary) and Brain whose absolute values 

exceed criterion 

No. Range Exact Raman 

shift 

Component assignment Comparison 

with primary 

1 625 cm-1 625 cm-1 C-C twist in phenylalanine negative 

2 645 cm-1 645 cm-1 C-C twist in tyrosine negative 

3 931 cm-1 931 cm-1 C-C skeletal stretching in protein, 

proline ring/glucose/lactic acid 

positive 

4 1002-1008 cm-1 1006 cm-1 Symmetric ring breathing mode of 

phenylalanine 

positive 

5 1658 cm-1 1658 cm-1 Amide I: α-helix, Amide I, Lipid positive 

 

Scan through these considerable variants regions to find out common wavenumber 

ranges across all five organ-specific breast tumors, several common regions were pointed 

out. Using the primary tumor and liver cell lines as a representative case, I observed that 

the prominent features in the difference spectra, i.e., above noise level, are due to 

intensity differences at the 1305 and 1452 cm-1 peaks, both of which are common to 

lipids and proteins and a first derivative-like feature at 1005 cm-1 phenylalanine band. 

Unpaired two-sided Student's t-tests also reveal that Raman peak intensities in these 

regions are significantly different as also in the 1136-1211 cm-1 region. PCA 

classification on these two cell lines also highlights the importance of these regions (Fig. 

11A). Furthermore, the PC2 obtained here displays similarly directed features at both the 
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lipid markers (1305 and 1452 cm-1) and oppositely directed peaks at protein-only markers; 

e.g., 1005 cm-1.  

 

Figure 11 Identification of informative spectral regions via PCA data exploration of 
liver cell lines, spine cell lines and primary tumor. (A) and (B) are PCA outcomes of 
liver cell lines, primary tumor and spine cell lines, primary tumor, respectively. 
Illustration of the PC loadings corresponding to the spectral dataset acquired from 
primary breast cancer and liver metastasized tumor cell lines. The top and bottom panels 
show PC1 and PC2 loadings, respectively. The highlighted bars (yellow) represent the 
wavelength regions elucidated from the difference spectra and unpaired Student’s t-test 
as those with the most significant variability from the cell lines.  Evidently, these regions 
also include the critical features constituting the PC spectral profiles.  

The PCA analyses across other pairs of cell lines validate these findings from 

comparison of the primary and liver cell lines, for example, PCA of primary breast tumor 

and spine cell line is provided in Fig. 11B.  

Using only the selected regions (highlighted by the yellow bars of Fig. 11A & B), I 

developed a PLSDA-derived decision algorithm to reclassify all the cell lines that 

provided equally impressive prediction performance (Table 7) as that obtained using the 

full spectral analysis. In this case, only 9.6% of the spectral information was used 
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indicating that the model is based on the molecular-specific information elucidated from 

the cell lines. The feature selection process, thus, not only avoids the “curse of 

dimensionality” (and the possibility of creating spurious models) but also enables the 

development of a robust classifier that is based on a few, biologically relevant and 

interpretable discriminatory features [26].  

 

Table 7 Classification outcomes in prospective prediction for the PLSDA-derived 

decision algorithm using only the biomarker-specific wavelength bands 

Average correct classification rate: 91.3 % 

Reference diagnosis Correct  

Classification 

Misclassification 

Brain 91.7 % 8.3 % 

Primary Tumor 97.2 % 2.8 % 

Liver 91.1 % 8.9 % 

Lung 85.8 % 14.2 % 

Spine 90.6 % 9.4 % 

 

Based on these results, I infer that the lipid content of the metastatic cancer cells 

provides an indirect measure of a multitude of functions closely linked with the ability to 

specifically adapt to growth in a variety of tissue microenvironments. As such, this could 

aid in differentiating between an underlying genetic or metabolic signature of these cell 

lines that will potentially provide new probes for the identification of the phenotypes. The 

significance of the lipid content in my isogenic breast cancer cell lines is consistent with 
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emerging data from other laboratories that have; e.g., observed a correlation between 

activation of de novo lipogenesis and metastatic potential [27, 28, 29]. In particular, it has 

been shown that elements regulating the pathways for fatty acid synthesis, choline and 

ethanolamine phospholipid production, as well as cholesterol metabolism, can be closely 

linked to the metastatic potential. Thus, alterations in lipogenesis processes along with 

the types of lipids made and utilized could be part of the determinant adaptations that 

define the specificity metastatic growth in an organ.  

 

  



35 

 

Conclusion 

In the present study, I have demonstrated that the molecular characterization 

capability of Raman microspectroscopy, coupled with multivariate statistical analysis, 

offers a powerful label-free and nondestructive technique for discerning the organ-

specific phenotypes of the metastatic breast cancer cells. These important differences 

point at the fact that organs differ vastly with unique attributes of metabolism, 

developmental programs, microenvironments, and function resulting defined identities. 

My findings indicate that Raman microspectroscopy will not only provide significant 

information towards classification, diagnosis and prognosis of breast cancers but also aid 

in improving our understanding of mechanisms of breast cancer metastasis. In particular, 

the investigation of the lipid phenotype using Raman spectroscopic imaging may provide 

important clues in identification of critical organ-specific determinants controlling 

colonization and growth and addressing fundamental issues such as the fraction of cells 

with metastatic potential. Ultimately, I envision these studies will be the key to 

understanding why present therapies have a minimal impact on controlling metastatic 

disease and, thus, provide the basis for development of targeted chemotherapeutic 

approaches in patients with the goal of alleviating pain and prolonging life. 
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