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Abstract

Complex humanitarian emergencies are characterized by increases in mortality,
mass migration, and collapse of infrastructure. Demographic estimation on under-5
mortality in these settings is generally conducted using household surveys. Indirect
methods of estimation, collected using summary birth histories, have clear
advantages over complete birth histories, as they are faster and require less training
to implement. It is unclear, however, how well the analytic techniques developed
for summary birth histories perform when mortality patterns fluctuate. Using the
Socsim simulation program, one baseline and four emergency scenarios were
developed and each was simulated 100 times. Two methods of indirect estimation
for child mortality - the Brass methodology and the IHME methodology - and the
direct method of under-5 mortality estimation were applied to assess how quickly
each method was able to detect rapid changes in mortality, how well the method
was able to estimate the underlying level of mortality, and for how long after the
crisis period ended the method was affected by the increase in mortality. In general,
none of the indirect methods performed well. The Brass method, though able to
detect abrupt changes in mortality is inadequate because of its reliance on a
reference period. The IHME methods, though able to estimate mortality for the
survey year, were generally not able to accurately estimate the level of mortality
change in situations with extreme changes. In situations of fluctuating mortality, all
indirect methods smoothed fluctuations, eliminating the ability to estimate excess
deaths due to conflict. Although more time-consuming, if under-5 mortality is of

primary interest, complete birth histories and direct estimation should be used.
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Chapter 1: Introduction

Chapter 1: Introduction

Despite this attempt at bureaucratic accountability, however, the
figures for what happened in the Congo are not satisfactory. Stephen
records that ‘between 12 and 32 million’ died there. He has underlined
the word ‘between’ heavily. He has also noted the twentieth century
deaths of 800,000 Armenians, 6 million Jews, about 3 million in
Bangladesh, some 20 million in the labour camps of the Soviet Union, 2
million in Vietnam, and between 1 and 3 million in Cambodia |[...] The
words 'between’, ‘about’ and ‘some’ are all underlined in red ink. |[...]
‘Between 12 and 32 million killed’ is a phrase that cannot exist. [...]
What kind of history, what kind of mathematics is this, what has
happened to those spare tens of millions? Unnumbered, unburied, will
they haunt the earth forever, will they ever find a resting place? Do they
not jostle us, do they not stifle us, are we not kept awake at nights by
their squeaks and gibbering batlike cries?

- Margaret Drabble (1991) (1)

In the twentieth century, great progress was made in improving health on the global
scale. Estimates of life expectancy improved, on average, by one-sixth to a quarter
of a year, each year; for the past 160 years, female life expectancy has improved an
average of three months each year while male life expectancy has improved by
approximately two months per year (2). Although estimates of child mortality prior
to the mid-twentieth century are difficult to obtain, reductions since 1950 have been
rapid; since 1950, under-5 mortality is estimated to have declined from 214 deaths
per 1,000 live births to 59 deaths per 1,000 live births (3). In tandem with these
improvements came improvements in demographic estimation. Methods for
estimating life expectancy, maternal mortality, child mortality and other
demographic indicators were developed and/or refined, benefitting from
advancements in survey design and implementation, computer technology, and

mathematics. The development of super-computing and the ability to store massive
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amounts of data allow researchers to study demographic processes at a speed and

scale previously impossible.

The progress of the twentieth century was not uniform, however. From the Lost
Generation arising from World War I to the Holocaust and the Great Leap Forward,
from the Rwandan genocide to the ongoing conflicts in Afghanistan and the
Democratic Republic of Congo, the twentieth century, and now the twenty-first,
were defined as much by conflict, genocide, and famine as by progress. And while
demographic methods have improved in many fields, demographic estimation in
emergencies continues to lag (4,5). Destruction of records, mass migrations, and
unstable conditions challenge researchers in the development of reliable estimates
of mortality, while political and economic pressures may lead to estimates that are
over- or underestimated for strategic gain (6). Often estimates that arise from
countries affected by humanitarian emergencies are deemed too unreliable to
include in global estimates of mortality, leaving the accuracy of global estimates in

question and leaving deaths resulting from complex emergencies unaccounted for

(.

Problem Statement

In recent years, there has been greater effort to improve our ability to estimate the
impact of war and other humanitarian emergencies and research in conflict
demography has grown (5). A critical gap that has been identified is the inability to

estimate mortality for sub-groups within a population, such as under-5 mortality; in
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general, estimates from humanitarian emergencies are generated only as crude
death rates, occasionally disaggregated by sex (4). Given the disruptions in
mortality patterns as a result of conflict or famine, the underlying age and sex-
specific distribution of a population will change and extrapolating crude death rates
to estimate under-5 mortality rates or excess deaths to children or other age groups
is difficult and unreliable (4). Gaining a better understanding of the impact of war
on sub-populations, particularly under-5 mortality, is critical so that relief services
can be improved, health systems can better meet the needs of populations, and post-

emergency reconstruction can provide resources where they are needed most.

How best to generate estimates of under-5 mortality in complex humanitarian
emergencies, what questions to ask and analytic techniques to use, is the subject of
this dissertation. The majority of mortality data in emergencies is collected via
household surveys. There are several techniques that can be used to estimate
under-5 mortality with surveys, and while comparisons of these methods have been
conducted using data from non-emergency settings, no comparisons have been
conducted to specifically test which method will generate the least biased numbers
in an emergency. This dissertation uses data from hundreds of simulated datasets,
designed to simulate four humanitarian emergencies, to test two methods of
indirect estimation, the Brass method and the IHME methods, against the direct

method of estimation.

Specifically, this dissertation will explore the following questions:
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1) How fluctuations in mortality affect the Brass indirect estimation technique:
How quickly will the Brass method detect an increase in mortality and how
accurate is that estimate? How long after a crisis period has ended will the
Brass method be affected by an increase in mortality?

2) How fluctuations in mortality affect the IHME indirect estimation techniques:
How quickly will the IHME methods detect an increase in mortality and how
accurate is that estimate? How long after a crisis period has ended will the
IHME method be affected by an increase in mortality?

3) Is one of these methods more suitable to use to estimate under-5 mortality

during and after a complex humanitarian emergency?

By exploring which methods are best able to capture abrupt changes in mortality in
a rapid fashion, how well those methods capture the true extent of mortality change,
and how long those methods are affected by past increase in mortality, it may be
possible to identify the best way to measure under-5 mortality in emergency
settings. Identifying the best methods and subsequently, the best survey questions
and analytic techniques to use, serves multiple purposes. First, it alleviates some of
the ethical concerns of conducting research in fragile settings; research conducted
using unreliable methodology places people in danger for no real purpose.
Improving our understanding of which methodologies are reliable in these settings
and the best way to implement them does not ease all ethical considerations arising
from conducting research, but at least researchers can better weigh the risks and

benefits of conducting research. Improving our ability to estimate under-5
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mortality in emergency settings can lead to better relief and humanitarian response
outcomes, particularly if estimates can be generated quickly. Knowing the burden
of mortality on children can aid in the allocation of resources, channeling limited
resources to those most in need. More reliable estimates of mortality in
emergencies also lead to more reliable estimates of mortality on a national and
global scale. As countries continue to pursue the Millennium Development Goals,
reliable estimates of mortality arising from the most fragile environments can
contribute to policy changes and health system development to improve child
health. Finally, we can eliminate such phrases as “between 12 and 32 million killed”,
gaining a better understanding of the true costs of war and famine on nations and

people.



Chapter 2: Background and Review

Chapter 2: Background and Review

In 2000, the United Nations set the ambitious Millennium Development Goals to
improve health, education, environment, and wealth throughout the world by 2015.
Millennium Development Goal 4 aims for a two-thirds reduction in the under-5
mortality rate, or the probability of child dying between birth and age 5, from 1990
levels. As 2015 approaches there has been increasing demand for timely and
accurate estimates of under-5 mortality. Aside from the Millennium Development
Goals, the under-5 mortality rate is also used in the development of life expectancy
at birth and other summary indicators of mortality (8). Errors made when
estimating under-5 mortality may then be compounded when used in other
summary mortality measures; thus it is critical to obtain accurate measures of child

mortality.

Two groups that have attempted to estimate childhood mortality trends over the
past decades, the United Nations Inter-agency Group for Child Mortality Estimation
(UN-IGME) and the Institute for Health Metrics and Evaluation at the University of
Washington (IHME), have produced reports that largely agree at the global level.
Child mortality is decreasing; UN-IGME estimated in 2010 that the number of under-
5 deaths worldwide declined from 12 million in 1990 to 7.6 million in 2010, an
annual rate of decline of 2.2% per year (9). IHME estimated 7.2 million deaths

occurring in 2010 and confirmed the same average rate of decline of 2.2% (10). The
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groups differ, however, on the extent and rate of the decline at the country level.
Among those countries that both groups analyzed, in 2010, 20% differed by more
than ten deaths per 1,000 live births and had relative differences greater than 10%
(7). For 13% of the countries, the UN-IGME estimates were 30% or higher than the
IHME estimates, while in 8% of the countries, the IHME estimates were 30% or
higher than the UN-IGME estimates (7). While the estimates of the total number of
deaths that occurred in 2010 was not statistically significantly different, at the
country level there are significant differences in the level, total number, and rate of

decline in child mortality.

The disparities between the two groups are the result of two reasons; the datasets
that were included in analysis and the analytic method used. Alkema and colleagues
found that a large percentage of the differences between the two groups was a
result of using different datasets. UN-IGME included more datasets of arguably
lower quality to increase the sample size and precision of estimates while IHME
discarded datasets they felt were of highly questionable quality (9,10). The use of
different analytic techniques also contributed to the inconsistencies between the
groups, although, on average, the differences were not as large. The average
difference over all years due to differences in data was 6 deaths per 1,000 births
while the average difference due to estimation methods was close to 0. However,
the use of differing estimation methods did occasionally result in significant
differences; for example, the UN-IGME estimate for Pakistan was lower than the

IHME estimate by 20 deaths per 1,000 live births (7).
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Some of the largest discrepancies were found in countries that had experienced
conflict or civil unrest, such as Afghanistan, Angola, and Somalia, and countries with
high HIV prevalence (7). IHME discarded datasets that they felt were highly
questionable, a large percentage of which were from countries affected by unrest
(10). UN-IGME on the other hand, adjusted their estimates for such countries with
expert-based input and external information such as health services coverage (9).
The adjustments made were therefore largely subjective, but likely more accurate

than results obtained from discarding such data completely (7).

The fact that countries affected by conflict have large inconsistencies in estimates of
under-5 mortality underscores a critical problem; countries that have the greatest
need to understand the burden of mortality often have the least ability to do so. The
destruction of data collection systems and mass migrations associated with
humanitarian emergencies make quality data collection and analysis extremely
difficult. The challenges of demographic estimation are important to overcome,
however. In addition to affecting global estimates and our understanding of
progress towards the Millennium Development Goals, estimating the burden of
mortality associated with humanitarian emergencies is important in its own right.
With a better understanding of the human costs of conflict and civil unrest,
humanitarian agencies can deliver better services, policy makers can better
understand the economic and social impacts of war, and the international

community can better decide what actions, if any, should be taken to prevent future
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crises. For example, the publication of surveys from the Democratic Republic of
Congo, estimating 3.8 million excess deaths since 1998, resulted in a doubling of
humanitarian aid (11). Equally important is to prevent the manipulation of
mortality figures for political and economic gain. Both humanitarian agencies and
political figures can benefit from artificially inflated or reduced mortality and
morbidity numbers in an emergency. While the best efforts to collect and analyze
unbiased data do not guarantee that they will be published or used appropriately,
the continued efforts to document the effects of war can perhaps deter such
manipulation over time. Understanding the best way to measure mortality in
emergencies is a critical need and one that should be pursued, not in spite of, but

because of, its inherent difficulties.

Demography and Complex Emergencies

The term complex humanitarian emergency describes a particular type of disaster.
Keely (2001) defines it as

a situation in which a large civilian population is affected by a combination of
civil or international war, or a gross attempt to restructure the state or
society (such as a genocide), leading to large-scale population displacement
with accompanying deterioration of living conditions (such as food, potable
water, shelter, and sanitation) creating the potential for a significant increase
in mortality [emphasis added] typically during some limited period of time,
but sometimes lasting much longer. (pg. 1).

Due to the difficulties in estimating population trends during a complex emergency,

which will be discussed in more detail shortly, there is little agreement amongst
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demographers on the demographic impact of conflict. It is understood that
mortality rates are affected by complex emergencies, but how mortality in complex
emergencies is measured is inconsistent (5,12). When calculating deaths due to
war, investigators may count only violent deaths(13), overall death rates (14), or
estimate excess deaths, the number of deaths that would not have occurred if the
conflict had been avoided (15). Which of these estimates is used can lead to
differing conclusions about the overall impact of conflict on a population (12). Even
when the same measure is used, different survey methodologies, the point in the
conflict when estimates are taken, and the choice of analytic techniques can lead to
vastly different findings. For example, among five surveys conducted in Iraq
between March 1, 2004 and August 31, 2007, estimates of deaths due to violence
varied from 26,000 to 1,033,000 (12). These estimates are crude estimates, only
counts, and are not disaggregated by any indicators, such as age or sex, yet
understanding the distributions of death across age and sex is critically important to

frame humanitarian response.

When attempts are made to estimate mortality by age group, even when age groups
are as crude as under- and over-5, discrepancies between surveys may become even
larger. Estimates of child mortality in the DRC made by the International Rescue
Committee were almost twice as high those found by the Demographic and Health
Survey (DHS), but there is no consensus on which estimate is accurate (12).
Understanding the age distribution of mortality in an emergency is critically

important, however. Children in developing countries are vulnerable to mortality

10
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under normal circumstances, but even more so during emergencies (16). If a large
portion of the population is under-5 and subject to extremely adverse
circumstances, there may appear to be a rapid rise in the crude death rate. The
opposite may also be true, however; if children make up a large proportion of the
population in the initial stage of a complex emergency but die in excess relative to
other ages, the remaining population may appear to have lower mortality over time
(4). If so, heavy losses of a vulnerable population early in a crisis, followed by
humanitarian assistance, can result in mortality levels amongst survivors that are
lower than pre-emergency situations. Without a nuanced understanding of age
patterns, this information could be used for political gain, for example, by claiming
that the impact of a conflict is lower than otherwise assumed or used to inflate the

impact of humanitarian assistance (4,17).

Despite consensus that high quality demographic estimation is important in times of
complex emergencies, many estimates of mortality are generated without a critical
examination of whether traditional demographic methods are appropriate to apply
(11). That is, much of demographic estimation depends on core assumptions of
mortality, fertility, and migration patterns that are unlikely to hold true during an
emergency. Methods are often applied that do not account for these disruptions (5)
and little work has been done to test how methodological limitations, particularly in
the under-5 age group, are impacted by complex humanitarian emergencies
(7,18,19). Additionally, while different survey and analytic methods exist to

measure under-5 mortality, no comparisons have been conducted to see specifically
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which methods best estimate mortality levels in crisis. Finally, there is the question
of how well these methods perform after an emergency has ended, once mortality
has returned to approximately baseline levels. Although mortality levels may return
to baseline, or slightly elevated levels, relatively quickly, the increase in mortality
seen during the crisis period may continue to affect the ability of indirect methods
to accurately quantify mortality over time. Much of research is done in post-
emergency settings, when the danger to program and research teams is lower and,
thus, an understanding of the effect of increases in mortality on indirect estimation

techniques after crises has ended, is also important.

These are the question that I will explore through the use of microsimulation.
Specifically, I will examine:

1) How fluctuations in mortality affect the Brass indirect estimation technique:
How quickly will the Brass method detect an increase in mortality and how
accurate is that estimate? How long after a crisis period has ended will the
Brass method be affected by an increase in mortality?

2) How fluctuations in mortality affect the IHME indirect estimation techniques:
How quickly will the IHME methods detect an increase in mortality and how
accurate is that estimate? How long after a crisis period has ended will the
IHME method be affected by an increase in mortality?

3) Is one of these methods more suitable to use to estimate under-5 mortality

during and after a complex humanitarian emergency?
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In this chapter, I will first provide a brief discussion of under-5 mortality estimation
techniques in general, data sources, direct versus indirect estimation, and a
background on the Brass and IHME methods. I will then discuss how mortality
patterns in humanitarian emergencies may affect these estimation techniques and
discuss the mortality patterns of four humanitarian emergencies that took place
during the late twentieth century. Finally, I will provide some background on
microsimulation and how it has been used to answer similar questions in
demography before providing a detailed explanation of the simulations and analytic

techniques in the methods chapter.

Under-5 Mortality Estimation

Data Sources

Vital Registration

Vital registration systems, which attempt to document all births and deaths in a
population as they occur, are the preferred method of collecting information on
child mortality because they are able to generate timely estimates and cover entire
populations, thus eliminating sampling variance. While vital registration systems
are preferred, they are generally expensive and require considerable infrastructure
and oversight. As such, the majority of countries worldwide do not have well-

functioning or comprehensive vital registration systems. The UN estimates that
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only 60% of the 230 countries and regions worldwide register at least 90% of births
occurring in their borders and only 47% of countries have at least 90% coverage of
deaths (20). In total numbers, it was estimated that almost one-third of the 135
million births and over two-thirds of the approximately 57 million deaths
worldwide were unregistered and unrecorded in 2010 (21). In many countries,
therefore, generating estimates of crude mortality, let alone under-5 mortality,
cannot be done through the use of vital registration systems. As a result, cross-
sectional population based surveys have become the primary source of data in

countries without well-functioning vital registration systems.

Surveys

Household surveys generally employ one of two methods to retrospectively
estimate under-5 mortality; a complete birth history (occasionally complete
pregnancy history) and a summary birth history. A complete birth history gathers
the date of birth and, if applicable, age at death or date of death, for every live birth
reported by a female respondent. A complete pregnancy history additionally
includes pregnancies that do not end in live birth, including abortion and stillbirth.
A summary birth history does not gather specific information for each birth, but
instead gathers aggregate data on the total number of live births that a woman has
experienced, how many of these children are still alive and how many have died.
For analysis of the summary birth history, additional information regarding
mother’s age or time since first marriage is also needed as a proxy for children’s

approximate age.
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There are advantages and disadvantages to each method. Advantages of a full birth
history include relying on fewer assumptions regarding past mortality and fertility
patterns, the ability to calculate rates for a specific time period instead of a time
period based on proxy measures, and because the exact time to death can be
calculated, it is possible to calculate both a mortality rate and a probability of dying
by a certain age. Mortality rates are an estimate of the risk of an event (in this case
death) occurring in a population of known size and over a given time period, while
probabilities express the likelihood of experiencing an event by a certain age or time
periods amongst all who are at risk of the event. Both are valuable, but only a
complete birth history allows for the estimation of both indicators. However, due to
the detailed nature of the questions, complete birth histories require extensive
training and supervision during fieldwork, increasing the cost and time of survey
rounds. Additionally, complete birth histories rely on a woman’s ability to
accurately recall dates of birth and age at death for each live born child. Hill
identifies an almost universal tendency for women to report age at death for
children in exact numbers or convenient fractions of years, such as 12 months or 5
years, which can result in fluctuations in numbers of deaths around these arbitrary

milestones (22).

The summary birth history addresses many of the disadvantages of the complete
birth history. It is fast, requires less training and supervision in the field, and does
not require accuracy in reporting multiple dates and ages, other than a woman'’s

own age or years of marriage. However, it cannot differentiate between neonatal,
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infant and child deaths, nor can it accurately estimate recent trends in child
mortality, such as within the last three years. Rather, the summary birth history
generally estimates the probability of child dying before their fifth birthday for a
year approximately 5-7 years previous to the survey. Finally, summary birth
histories rely on more assumptions than a complete birth history, namely constant
or linearly declining fertility and mortality. The assumptions for estimating under-5
mortality vary based on the mathematical method used to derive the estimates, and
both the assumptions and the mathematical methods will be discussed in more

detail below.

Analytic Methods

Analytic methods for estimating under-5, infant and neonatal mortality are
relatively straightforward for complete birth histories, generally referred to as
direct estimates. When using direct estimation, no assumptions need to be made
regarding the underlying mortality and fertility patterns of the population. The only
assumption required is that women are able to accurately report on the birth dates
and ages of death of their children. This assumption is important when
transforming mortality rates into probabilities (discussed in more detail in the
methods chapter), but in general, the complete birth history can be completed with

relatively few assumptions made by the researcher.

The analysis of summary birth histories, or indirect estimation, is more complicated.

Several analytic methods have been developed, each with its own assumptions and
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mathematical foundations. This dissertation will focus on two methods, the Brass
method and a set of methods developed by IHME, which I will call the IHME
methods. The mathematical foundations of the methods will be discussed in greater
detail in the methodology section but a brief discussion of the history and

assumptions underlying each method is warranted here.

Brass

William Brass pioneered indirect estimation techniques for estimating child
mortality using the summary birth history; in fact, the questions that make up the
summary birth history are often referred to as the Brass questions. The Brass
methodology is based on the idea that under-5 mortality can be estimated by
analyzing the proportion of children ever born who have died. Births to groups of
women, classified either by age or time since marriage, follow a distribution over
time. The proportion of children ever born to a cohort of women then depends on
the length of exposure to dying (time since birth) and the mortality risk itself. A
higher proportion of children will die in a high mortality context; similarly, a higher
proportion of children will likely have died among older mothers relative to young
mothers because they will have had a longer exposure time. This proportion will
also vary based on the underlying fertility distribution; societies with young
childbearing relative to societies with older childbearing may appear to have a
higher proportion of children dead as a result of exposure time. After adjusting for
the distribution of births in time (the underlying fertility patterns of the population),
it is possible to convert the proportion of children who have died to the probability

of dying by age 5, the under-5 mortality rate.
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To calculate the probability of dying by exact age 5 using the Brass method, the
following information is needed:
1. Number of children ever born, classified by sex and by five-year age
group of mother
2. The number of children surviving (or the number dead), classified by
sex and by five-year age group of women
3. The total number of women (irrespective of marital status), classified
by five-year age group. All women, not just ever-married women,

must be included.

While the Brass method is the most widely used indirect method to estimate under-
5 mortality, there are several limitations to the method. The first is that Brass
methodology generally estimates under-5 mortality for a time period between 5 and
7 years prior to the survey. This is because information is discarded for women age
15-24, although these are the women most likely to have children in the recent past
and thus contribute to recent under-5 mortality changes. Information is discarded
because generally estimates of child mortality for these women are inflated. Women
under 25 are more likely to have children who died in the recent past for a
combination of two reasons: the first, they are simply more likely to have children
under the age of five relative to older women and younger children, particularly
infants are at a higher risk of dying than older children (23,24). Secondly, mothers

under the age of 25, and particularly those under the age of 20, are more likely to be
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socioeconomically disadvantaged relative to women who have children of the same
age but who began childbearing at older ages. The elevated risk of mortality
amongst young mothers has been demonstrated in multiple studies (24,25) . For
these reasons, under-5 estimates for younger mothers are biased upwards, inflating
estimates for recent history (26). The reliance on estimates from 3 to 6 years prior
to a survey can be a challenge for program monitoring and evaluation and to track
recent changes and progress towards goals such as the Millennium Development

Goals.

A second concern is that Brass methods do not generate estimates of uncertainty.
The methodology does not estimate standard error or uncertainly bounds, like those
that can be estimated from complete birth histories. Without uncertainly bounds it
is difficult to know if differences between estimates over time are true differences
or the result of randomness in the estimate due to sampling. This problem is
particularly salient when attempting to make estimates amongst smaller
populations such as those being serviced by program interventions or at sub-
national levels, as small sample sizes may be more prone to random fluctuations in

the estimate relative to larger samples (26).

Finally, the Brass method makes several assumptions. The first is that the age
pattern of child mortality follows an a priori established pattern, generally that of
the Coale-Demeny West level life table, and that mortality has been declining

linearly in the recent past (22,27). Secondly, the method assumes that fertility has
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been roughly constant over time (22). The Brass methodology utilizes two set of
multiplying factors, discussed in more detail in the methods chapter, to estimate the
probability of dying by age five and these multiplying factors have been derived
based on simulations of mortality and fertility decline. The multiplying factors have
been tested and modified several times since the development of the Brass
technique and various corrections have been applied to adjust for changing fertility,
but the factors still depend on these assumptions (18,27-29). In general, violations
regarding changing fertility patterns can be corrected for, particularly if data are
available from sequential surveys, which can be used to estimate true cohort

fertility patterns (22).

Violations in the underlying mortality patterns are of greater concern for this
dissertation (30). Hill (1991) argues that violations in the assumption of changing
mortality will tend to be smoothed out over time and that in general, violations in
the constant mortality assumption will have little impact on estimates. Silva (2012),
however, found that these violations can have substantial impacts on the accuracy of

estimates, a subject which we will return to shortly.

IHME

In 2010, Rajaratnam and colleagues at the Institute for Health Metrics (IHME)
developed a set of analytic methods to address some of the shortcomings of the
Brass methodology. Specifically, their methods are intended to estimate under-5

mortality rates for periods closer in time than 3-6 years and to provide uncertainty
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intervals around estimates to improve the ability to detect statistically significant
changes in mortality over time. The group developed four methods, the Maternal
Age Cohort-Derived Method (MAC), Time since First Birth Cohort-Derived Method
(TFBC), Maternal Age Period-Derived Method (MAP), and the Time since First Birth
Period-Derived Method (TFBP) and created a summary measure from the four

methods using a weighted combination of the methods.

The methods are considerably more complex than the Brass methodology, involving
extensive smoothing of past trends and the incorporation of data from neighboring
countries to fill in gaps (26). Data from neighboring countries is used in the
development of multiplying factors, similar to those used in the Brass method.
Some have questioned the appropriateness of these assumptions, as the multiplying
factors rely exclusively on the models developed by the authors and have not been
extensively tested and verified by other researchers (31). The introduction of
multiplying factors that are reliant on the history of neighboring countries has the
potential to introduce new biases; if the history of fertility and mortality decline
between countries are not similar, as is likely to be the case if a country has
undergone a humanitarian crisis, the multiplying factors may not be appropriate to
use. The introduction of inappropriate multiplying factors may then lead to an
under- or over-estimate of mortality. However, the authors do not provide any
alternatives and the assumption must be made that across regions, countries

undergo similar fertility and mortality declines.
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Secondly, the IHME methods utilize statistical techniques to smooth fluctuations in
data over time. This smoothing can lead to significant biases if there have been
dramatic changes in mortality, such as those that are present in a complex
emergency (26). Finally, the Maternal Age Period-Derived method is able to
estimate child mortality within one year of the survey when using information from
women age 15-17, within two years of the survey using data from women age 18-
19, and within three years from women age 20-21. However, in many countries, age
heaping, wherein women are more likely to report their ages in increments of 5 or
10, is a possible issue. If women age 18-19 differentially report their ages as 20, and
these women'’s children also have a differential risk for mortality, then this will
affect the accuracy of estimates that are closest in time to the survey, and the most

useful to estimate under-5 mortality during a crisis.

Comparison and Consistency of Estimates

The majority of previous studies that focused on the consistency of direct and
indirect estimation techniques, primarily the Brass method, utilized surveys from
the World Fertility Surveys of the 1970s and 1980s and from early waves of the DHS
program (18). These often reported differences between the direct and indirect
estimates which were attributed to violations in the underlying assumptions of
constantly or linearly declining mortality and fertility (18,32,33). Recently, Silva

used 132 surveys in 49 countries, and after considerable adjustment for changes in
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fertility patterns, estimates derived from the Brass method were generally
consistent with estimates derived from complete birth histories. Silva notes that
those countries with the greatest inconsistencies between direct and indirect
estimates were countries that had experienced either political or economic
upheaval or that had a stalled health transition, such as Niger, where mortality
began to fall in the 1960s and 1970s but has since stalled. Interestingly, in those
countries where there is only a “short period of excess mortality”, the findings are
generally consistent between direct and indirect, although neither a “short” period

nor the level of excess mortality is defined (pg. 8).

In order to validate their methods, IHME tested the estimates they derived using
summary birth histories with the estimates from complete birth history data. They
then compared the standard Brass method to the direct results and estimated the
relative error of each method using 166 DHS from 69 countries. According to IHME,
on average, their methods were 43.7% closer to the direct estimates than the Brass
methods (95% CI, 41.2-45.2). When restricted to the five years prior to the survey,
the time period in which the Brass method is weakest, the IHME methodology was
closer to the direct estimate method than the Brass method by 53.5% (95% CI 51.3-
55.2) (26). As with the Brass method, the largest errors occurred in countries that
experienced “dramatic” mortality fluctuations, but they do not specify how large the
errors are or discuss in which countries these errors occurred. Nor do they provide
a discussion of the change in the level of mortality that is associated with a dramatic

mortality fluctuation.
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Before continuing to a discussion on the additional challenges of demographic
estimation in complex humanitarian emergencies, it is briefly worth noting other
indirect methods for estimating child mortality than the two discussed above. The
first method is to include questions regarding births and survivorship within the
previous 12 months. This method is both simple to ask and simple to calculate and
can be used to calculate the Infant Mortality Rate (IMR) for the year prior to the
survey. However, in order to extrapolate this data to an under-5 mortality rate,
more information on the underlying age pattern of mortality and changes in
patterns of infant and child mortality over the recent past must be available (22).
Most importantly, this method has been shown to substantially underestimate child

mortality (22).

A similar method that has been proposed is to ascertain the survival of a previous
birth amongst women who are either about to or have just delivered a child. This
methodology estimates mortality for a fairly recent time period, within two years,
but the same limitations as above apply. No information regarding the age pattern
of child mortality is obtained, nor are trends in under-5 mortality over time.
Selection bias also plays a larger role in this method than in others, as this
information is generally gathered only from women who are giving birth in a health
facility. Children of these mothers are likely to be at lower risk in general for death
than children of mothers who do not deliver in health facilities. In countries where

a large proportion of women do not give birth in health facilities, this method then
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has the potential to greatly underestimate both infant and child mortality (22).
When applied in household surveys rather than at health facilities, it was shown

that the method performed worse than the Brass methodology (22).

Finally, the truncated birth history has been proposed. Similar to the complete birth
history, dates of birth and age at death are obtained, but the time period for
inclusion is generally truncated to some years prior to the survey, generally five.
With this method, a better sense of the age pattern of early child mortality can be
gathered than through using either Brass or IHME, although the age pattern of
mortality can only be observed up to the truncation date and not further. While
some surveys that used the truncated birth history found relatively little difference
between its results and those of the complete birth history, others have found a
tendency for child deaths to be heaped immediately prior to the deadline for
truncation, leading to an undercount of child deaths and underestimate of child

mortality (22).

Estimation in Complex Humanitarian Emergencies

Above, I described the most common methods to estimate under-5 mortality,
including the advantages and disadvantages of each method, and the assumptions
that underlie two of the most common analytic methods. Both methods are weakest
in countries where there has been large-scale economic and/or political collapse,
leading to excess mortality. Despite the weaknesses of each method in estimating

mortality during or after an emergency, the unique conditions of these crises often
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dictate the use of such methods. In the event of large-scale population displacement
and the collapse of civil infrastructure, vital registration systems are not likely to
exist during humanitarian emergencies. Information on mortality and other

demographic indicators is generally therefore collected by survey.

Challenges that may be present regardless of the emergency, such as difficulty in
accessing certain populations and mistrust of survey organizations, may be
exacerbated, while additional challenges such as danger to surveyors or other staff
members may exist (34,35). Mortality risks will most likely vary across region and
sub-group and some groups, which may have faced the most distress and highest
mortality, may be deemed too difficult to survey. Surveyors may be restricted to a
few areas of easier access or be limited to only refugee populations, which are likely
generate biased estimates of mortality risks (36). Finally, with elevated mortality,
the selection effect of mortality may be significant. For overall mortality estimation,
at least one person in the family or an immediate relative must be alive at the time
of the survey to be a respondent. In the event that the probabilities of survival of
family members are correlated223, such as in genocides, this will introduce bias. If
an entire family, parents and children, die during a complex emergency, the deaths
of children will not be recorded. Under non-emergency circumstances, such
clustering will likely have only a small effect, but when mortality is politically or
ethnically motivated, such clustering has the potential for a larger effect (36). In the

case of under-5 mortality, this potential for selection bias will impact estimates if
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children of mothers who die have a different risk of death than children whose

mothers do not die.

Despite these shortcomings, the sample survey is often the only method to gather
information that can be utilized to generate timely estimates during or immediately
after a crisis. It is critical therefore to gain a better understanding of the best way to
measure mortality using sample surveys, through improving selection, survey
design, and analysis. Some issues, such as the inherent risk of selection bias, cannot
be easily addressed and must be handled based on the specific emergency and the
understanding and knowledge of the investigators. However, what questions to
include in a survey, and what analytic techniques are best suited for each situation

can be explored further, as this dissertation will do.

Mortality in Complex Humanitarian Emergencies

We can better understand the unique challenges that complex emergencies present
for under-5 mortality estimation with a discussion of how mortality patterns are
affected by conflict or other emergencies. Before answering the question of which
method is best suited to measuring under-5 mortality during complex humanitarian
emergencies, we will therefore briefly discuss the pattern of mortality in complex
emergencies in general and in four specific emergencies. Before doing so, a brief
clarification on mortality rates in emergencies is necessary. During crises, mortality
rates are often reported as the daily Crude Mortality Rates (CMR) and measured as

the number of deaths per 10,000 people per day. This differs from the standard
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reporting of annual Crude Death Rates measured as the number of deaths per 1,000
people per year. To convert between the two, the CDR is multiplied by 36.5 to

obtain the CMR.

First, there is no one pattern that applies to every humanitarian emergency. Each
complex humanitarian emergency is different, motivated by different political, social
and economic forces, that result in a unique situation. However, some
generalizations may be made (4,37). Figure 1 below depicts how mortality rates

typically change over time in an emergency situation (37).
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Figure 1: Model of mortality change in a forced migration situation. Source: Reed et al, 1998,
Figure 2
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During Phase 1, the beginning of the crisis, mortality rates may increase but remain
only slightly above baseline. During Phase 2, when distress is greatest, mortality
increases sharply and may begin to decrease again when many of the most
vulnerable people in the population, generally the very young and very old, have
died. Once humanitarian assistance arrives, in Phase 3, the mortality rate will begin
to slowly decline and finally during Phase 4, may return to baseline and in some

cases, may drop below baseline.

The levels of mortality, both at baseline and during the crisis, may fluctuate widely

between different crises and within a crisis; however, the pattern of an inverted U
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can generally describe emergencies. Additionally, the length of time for each phase
also varies, from one to two months in the case of the Rwandan genocide to the
much longer famines experienced in Somalia and North Korea. For displaced
persons, the time surrounding migration and arrival are often the period of highest
mortality. For example, in 1992, Mozambican refugees who were in Chambuta
camp, Zimbabwe for less than one month had a CMR of 8 per 10,000 per day, four
times higher than those who had been in the camp for one to three months and 16
times higher than baseline (4). However, over time, as mortality rates stabilize,
refugees or internally displaced persons living in camps may have lower mortality
than the stable, non-migrating population. Comparing male and female age-specific
mortality rates from Cambodian refugee camps in Thailand that had been extant for
ten years to the non-displaced population mortality estimates, Keely showed that
for both sexes and almost all ages, mortality risk was lower amongst refugees than
for the corresponding non-displaced population (4). The only age group that did
not see improvements in mortality was infants; for male infants, the relative risk of
dying was 80% greater amongst refugees than males in the stable population while
for females, the relative risk of death was 20% greater. Reductions in mortality are
not likely to be seen in much of a population affected by a humanitarian emergency,
but, for those in camps with increased access to humanitarian assistance such as
health services, food, and improved water and sanitation facilities, over time
mortality may decline to levels below the levels of the population of origin.
However, it should be emphasized that these declines may take years, or even

decades to achieve.
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While there may not be consistency in the levels of mortality or the duration of time
during which mortality is raised across complex humanitarian emergencies, what is
consistent is disruption. Mortality may rise sharply and decline quickly, it may
slowly rise and fall, it may fluctuate over time, but it is unlikely to remain constant.
These fluctuations are what motivate this dissertation, as we aim to test how
disruptions in the decline of mortality affect two different methods to estimate

under-5 mortality.

To do this, I have simulated four different populations that are based loosely on the
patterns of mortality seen in four humanitarian emergencies that took place in the
latter half of the twentieth century: the Rwandan Genocide of 1994, the Cambodian
Genocide of 1975-1979, the North Korean Famine of 1994-1998, and the ongoing
conflict in Afghanistan. While the simulations do not replicate either the exact
histories of the complex emergencies or the overall level of mortality, each of the
complex emergencies displayed a unique mortality pattern that motivates the
simulation. I will briefly summarize a simplified history of each conflict and the
mortality patterns that were seen before introducing the specifications of the

simulations in the methodology chapter below.
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Four Humanitarian Emergencies

Rwanda

The Rwandan Genocide was the worst genocide in modern times. Over the course
of six weeks, beginning April 6, 1994, 500,000 to 1 million people were Killed in an
explosion of ethnic violence between the majority Hutu and minority Tutsi.
Following years of political and ethnic tension and the assassination of the Hutu
president, the country erupted into widespread violence, with Hutu citizens being
encouraged by the government to eliminate all Tutsi citizens. Hutus that were
moderate or sympathetic to the Tutsis were also killed. Over a three-month period
approximately 20% of the population, primarily Tutsis, died (14). Mass migration
also took place with as many as 1.75 million people fleeing either genocide,
retribution Kkillings, or punishment (38). The majority of refugees fled into

Tanzania, Burundi, and Zaire (now Democratic Republic of Congo).

Within five days, July 14 to 18, 1994, between 500,000 and 850,000 people arrived
in Goma, Zaire, bordering Rwanda. Initially, mortality rates were extremely high
following back-to-back cholera and dysentery outbreaks, in addition to sub-
standard environmental conditions (14). Legros and colleagues estimated that
between 6 to 10 percent of refugees who arrived in Goma between July 14 and July
18 died within a month of their arrival (14). Daily crude mortality rates were
estimated to be as high as 41.3 deaths per 10,000 people per day. In comparison,
daily CMRs amongst Somali refugees in Kenya were 7.3 deaths per 10,000 people

per day in 1992 and daily CMRs amongst Iraqi refugees in Turkey were estimated at
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4.6 (4,39), underscoring the extremely high mortality that was witnessed during
this time. These are amongst the highest CMRs estimated in complex humanitarian
emergencies outside of Rwanda. However, these extremely elevated daily CMRs
lasted for less than a month. By the end of August, CMRs were estimated at 3.0

deaths per 10,000 people per day (14).

Estimates for the total number dead from the genocide range between 500,000 and
1,000,000 people, a difference of 500,000 people or 10% of the country. Much of
the discrepancy is explained by whether or not deaths attributable to the genocide
include only violent deaths or if they also include deaths due to forced migration
and resettlement, such as those due to cholera and dysentery. The exact number of
deaths will never be known, but the pattern of mortality is well documented. In the
case of the Rwandan genocide, the mortality pattern was one of extremely elevated
mortality across all ages and sexes that occurred within a very short time period

(between six to ten weeks) and then dropped precipitously.

Cambodia

The mass Kkillings that took place in Cambodia during the 1970s were similar in
scope to Rwanda but took place over a much more prolonged timeline. The decade
began with the Communist Part of Kampuchea’s (CPK) armed opposition to prince
Norodom Sihanouk. After Sihanouk’s ousting and replacement by his Prime
Minister, Lon Nol, Sihanouk allied with North Vietnam and the CPK to challenge the

government and win back power. In response, the government targeted the half
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million Vietnamese living in Cambodia, Kkilling thousands and prompting the mass
exodus of 300,000 Viethamese in 1970 (36). Over the next four years, the
Cambodian government continued to wage war with Sihanouk and the CPK.
Between 1970 and 1975, it is estimated that 300,000 people died as a result of the
civil war, although Sihanouk claimed that 700,000 Cambodians were Killed under
the Lon Nol government (36,40). The CPK, now referred to as the Democratic
Kampuchea (DK) and under the leadership of Pol Pot, took the capitol Phnom Penh

in April 1975, beginning the Khmer Rouge era.

The first act of the DK was to relocate approximately two million urban refugees
from Phnom Penh into rural areas. The relocation, in combination with food
shortages, malaria, and exhaustion led to a dramatic mortality increase among the
most vulnerable, young children and the elderly, culminating in a famine in 1979
(36). At the same time, political and ethnically motivated killings became the norm.
According to Heuveline, “executions could punish any minor violations of the Khmer
Rouges’ orders, as well as internal dissension within the party ranks”. Although
there has been disagreement about the extent of mortality, studies have estimated
between 1.3 and 2 million excess deaths between 1975 and 1979, or 21 to 24
percent of the population dying as a direct result of the Khmer Rouge (36,41,42).
As many as 1.1 million deaths were due to violence and executions, more than half
of all deaths during this time period (41). Famine, too, played a major role in

mortality, accounting for about 35% of all reported deaths (43).
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The different causes of death had specific age patterns of mortality. Famine and
“natural” causes of death had traditional age patterns, with the highest rates
occurring amongst the very young and very old. Under-5 deaths due to famine were
three times more common than deaths due to violence or natural causes between
1975-1979 (43). Conversely, deaths due to violence demonstrate an age pattern
that is the inverse of the traditional J-shaped curve, with a peak in mortality during
young adulthood. Male violent mortality exceeded female violent mortality in
young adulthood, peaking amongst those in their mid-20s (36). By older ages
however, female and male deaths due to violence were equivalent. Though deaths
due to violence among children under five were lower than for other ages,
Heuveline estimated that males between the ages of 0-4 had a greater than 20%
chance of dying due to violence between 1970 and 1979 while females had
approximately a 15% chance of dying due to violence (36). Neuport and Prum
estimated that 40% of the excess deaths that took place during the Khmer Rouge
regime were to children below age 15 (42). The combination of famine and violence
resulted in a cohort of children born during the 1970’s whose mortality between
ages one and five made up a substantial component of under-5 mortality. For
children born after the 1970s, most of the mortality was concentrated during the

first year of life, which is expected under normal mortality scenarios (11).

The overall pattern of mortality seen in Cambodia during 1975 to 1979 was thus

one of elevated mortality over an extended period of time. Additionally, due to the

age pattern of mortality associated with both famine and violence, there was a
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flattening in the ]-shaped curve as children older than one and young adults

experienced much higher mortality than in normal circumstances.

North Korea

In July 1994, the leader of North Korea, Kim Il Sung, died, passing power of the
impoverished nation to his son, Kim Jong Il. Beginning in 1995, the country, already
economically unstable since the break-up of the Soviet Union and experiencing food
shortfalls since 1991, was hit by a series of natural disasters. In the summer of
1995, severe flooding damaged 400,000 hectares of land, displaced 500,000 people
and led to a 30% loss in the 6.5 million tons of grain needed to feed the nation (45).
At the same time, the Chinese cut back food shipments, further reducing food
availability. In the following year, floods again hit the country, affecting the primary
farming regions and further reducing the grain output. In the summer of 1997,
North Korea was hit not by floods, but by drought. By late July, water levels were 10
to 20 percent below normal and the regions most severely affected by drought were
those that had been affected by floods, resulting in a third straight year of crop
losses (45). As a result of three successive years of severe food shortages, the
government decreed food rations declined from a pre-crisis level of 700g per person
per day to about 100g by 1997 (46). Despite the presence of the World Food
Programme, there was evidence of mass famine beginning in 1995 and ending in
1998, but due to North Korea's insulation, it was impossible to know the extent of

the famine.
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North Korea is one of the most politically, economically, and socially isolated
countries in the world. As a result, much of its demographic profile, including the
magnitude and impact of the famine that occurred in the mid-1990s remains a
mystery. Widely divergent numbers have been suggested, from a low of 220,000
deaths to a high of 3.5 million (45). The government of North Korea released
estimates in March 1999 of a CDR in 1995 of 6.5 deaths per 1,000 people and in
1998 of 9.3 deaths per 1,000 people. Goodkind projected that if these rates were
correct, than approximately 236,000 famine related deaths occurred in the four-
year period. However, these CDRs are almost certainly too low (45-47). Robinson
and colleagues estimated a CDR that rose from 22.1 deaths per 1,000 people in 1995
to 51.8 in 1996 before declining to 27 per 1,000 in 1998 (46). In addition, they
reported that the excess mortality, though higher amongst the very young and very
old, was also elevated for older children and adults; nearly two-thirds of the deaths
occurred to people between the ages of 20 and 59 (47). These rates would result in
approximately 2.6 million famine related deaths, which would constitute over 10%
of the 1993 population (45). In contrast, Goodkind estimated that there were
between 600,000 and 1 million famine related deaths in North Korea in the four-

year period.

The true extent of mortality that occurred due to the famine is not likely to be
revealed without North Korea’s cooperation. While the exact levels of mortality are
speculative, the mortality pattern is well understood, with a slow increase in

mortality from 1991 to 1994 and then a sharper increase from 1995 to 1998. The
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mortality levels were much higher in these years relative to a non-famine year, but
they do not approach the levels of mortality in Rwanda or Cambodia. Consistent
with these emergencies, excess mortality was highest amongst the very young and
very old, but older children and younger adults also faced an elevated risk of

mortality.

Afghanistan

Beginning with the Soviet invasion in 1979, Afghanistan has been almost continually
beset by conflict. From December 1979 to February 1989, US-backed Mujahideen
engaged in fighting with the Soviet occupation, resulting in as many as 1.8 million
deaths and 7.5 million refugees (48). Following the end of the Soviet occupation,
Mujahideen groups and local militias began waging war with each other to fill the
power vacuum that formed with the ousting of the communist regime. The Taliban
secured control of Kabul city in 1996, after intense shelling and rocket attacks,
instituting strict sharia laws and dismantling health and education systems (49).
The Taliban was toppled in 2001, by the US-led coalition, however, fighting
continued with escalating international involvement. As a result of almost
continuous fighting, the destruction of infrastructure, and the restrictive policies of
the Taliban, Afghanistan had some of the worst health indicators in the world at the
turn of the century, including the highest maternal mortality ratio in the world, and

amongst the highest infant and under-5 mortality rates (50).
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The Karzai Administration, which came to power in 2001, has focused on
reconstruction of the health system with assistance from the US, Canada, the
European Union, and India (49). Reconstruction efforts have led to an improvement
in many regions of the country and reductions in maternal, infant, and child
mortality (49). However, progress has been slow and in those areas that remain
under Taliban control, it is impossible to know the health status of the population
with any certainty. Most surveys do not cover areas that are very unstable, leaving
demographers to guess at mortality levels based on areas where conflict is lower
and health systems are more stable or from refugees from the area (49,51), both of

which are likely to lead to biased estimates.

The mortality pattern in Afghanistan during the past thirty years cannot be as easily
estimated or visualized as those in the previous examples. Given the dearth of
reliable statistics, the variability in duration, intensity, and location of conflict, and
the geographic and social heterogeneity of the population, it is impossible to know
what the true underlying pattern of mortality is at the national level. However,
given the cyclical nature of the complex emergencies, mortality has likely fluctuated,
rising during the Soviet invasion and declining once the invasion had ended, rising
again with ongoing conflicts between mujahedeen and Taliban, declining as
reconstruction efforts took hold, and potentially increasing again as security has

continued to decline in recent years (49,50,52,53).
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Table 1 below shows a selection of excess mortality estimates that have been
proposed by different organizations or authors for the four humanitarian
emergencies described above. Within each emergency, there is wide enough

variability to render the true extent of mortality unknown.

Table 1: Estimates of excess deaths for four humanitarian emergencies

Country Agency/Author Estimates
Rwanda Human Rights Watch (54) 500,000
Hansch, 2001 750,000
Official Rwandan government estimate (55) 1,000,000 +
Cambodia Vickery, 1984 740,000
Kiernan, 1996 1,500,000
Heuveline, 1998 1,170,000 -
3,420,000

North Korea  Official North Korean government estimate (56) 220,000
Robinson, 2001 450,000
Good Friends Center for Peace, Human Rights, 3,500,000
and Refugees (56)

Afghanistan Hansch, 2001 200,000 -
2,000,000

Each of the humanitarian emergencies described had a unique political, economic,
and cultural history that impacted the intensity and duration of the particular
emergency, resulting in a distinct pattern of mortality. Sadly, there are many other
examples of humanitarian emergencies that could be modeled and extensive
demographic work that has been done to estimate the impact of these emergencies
on human life. [ chose these emergencies because each represents a distinct
mortality pattern and there is some understanding, limited though it may be, of the

extent of mortality and the associated age patterns, with the possible exception of
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Afghanistan. Afghanistan, however, has been in a state of tumult for over thirty
years. There is great interest and debate regarding the quality of demographic
estimates that have arisen in recent years (53,57) and a better understanding of the
effect that lingering conflict has on estimation merits an examination of such

mortality patterns.

Demography and simulation

If it is possible to obtain mortality estimates in emergencies, why simulate them?
Precluding the examination of the effect that disruptions in mortality patterns have
on indirect estimation techniques is the fact that there are no publicly available
surveys conducted during or immediately after a humanitarian emergency that
include both a complete and summary birth history. While several DHS surveys
have been conducted in countries where there is regional civil conflict, during the
height of conflict these regions are generally avoided for security considerations
(e.g. Northern Uganda in 2000, southern Afghanistan in 2010, and Balochistan,
Pakistan in 2012). Even if a dataset did exist, the mortality pattern of that
emergency would follow a distinct pattern and would not allow for exploration of
what effect different mortality patterns have on estimation techniques. Finally, any
surveys conducted during times of emergency may be host to a range of potential

selection and information biases, as has been discussed.

Simulation solves these problems by generating complete data that is free of any

other potential bias. Generating multiple simulations based on the same parameters
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allows for estimating variation across the Brass indirect estimates, which is not
otherwise possible. By simulating datasets that mimic mortality fluctuations, we
can isolate the effect that a disruption in the mortality pattern will have on
estimation, rather than biases that may be due to selection bias or incomplete data,
and can estimate how closely indirect estimates model the “true” mortality

estimated using a complete birth history.

Simulations have been used extensively in demography and related fields, such as
epidemiology and economics, in order to model what effect changes in individual,
population, and social factors have on outcomes like disease progression,
population structure, and economic growth. Broadly, there are two kinds of
simulations, macrosimulations and microsimulations, with additional variants of
each. In macrosimulation, the unit of analysis is the population as a whole, or
aggregated groups within those populations such as males and females, rather than
the individual (58). In macrosimulation, the question of interest is generally how
changes at the population level, such as declining fertility rates or increases in
contraceptive prevalence, affect other population level factors, such as population
growth rates or GDP. Population projection models such as SPECTRUM are

examples of macrosimulations.

In contrast, microsimulations are concerned with the trajectories of simulated

individuals. Life histories for individuals within a population are simulated using

mathematical algorithms. The researcher inputs probabilities for events of interest
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(for example, marriage and childbirth) and random draws within the program
determine whether and when a specific event will occur. Microsimulation thus
produces individual level data that can be analyzed using standard statistical
techniques or aggregated to the population level for examination of population-level
outcomes (58). Ultimately, the purpose of this dissertation is to model the
population-level estimates of under-5 mortality, but to do so, it is necessary to

aggregate individual data. Microsimulation is therefore the method of choice.

Microsimulation has been used in the past to model demographic processes and test
methodology. Garenne used simulation to compare estimates of maternal mortality
generated from indirect methodology to those generated from direct methods (59).
He found that the indirect methods had much greater variability across simulations
than did the direct methods and called into question their use as an estimation
technique for maternal mortality. Fernando used simulated data to test the Feeney
method of infant mortality estimation, quantifying the impact of biases that resulted
due to differences in the age pattern of mortality (60). Dwyer-Lindgren and
colleagues used simulation to compare indirect estimates of child mortality to direct
estimates using successively smaller sample sizes. In addition, they explored how
the error and bias varied by the underlying true level of mortality in the population
(61). In recent years, there has not been extensive use of simulation testing in the
field of indirect under-5 mortality estimation because of the relatively large number
of surveys that include complete birth histories. However, the ability to quickly

generate multiple datasets that are otherwise free of error allows for the unique
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opportunity to isolate specific biases of interest and test its overall effect on

estimation.
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Chapter 3: Methods

In order to compare the results of the Brass and IHME methods of under-5 mortality
estimation to the results of the direct estimates across multiple scenarios, it was
first necessary to generate the populations themselves. To create the populations, I
used a simulation program called Socsim, which utilizes birth, death, and marriage
probabilities to generate individual life histories of thousands of simulated
individuals. [ will describe in brief the simulation program before discussing in
more detail the demographic rates that were used. Finally, [ will discuss each of the

methodologies and how they were applied to these simulated populations.

Simulation Models

Five separate scenarios were simulated, a baseline simulation of constantly
declining mortality and fertility and four scenarios with fluctuations in mortality,
each with a separate mortality pattern. Each scenario, with its unique mortality

parameters, was run 100 times, generating a total of 500 simulated populations.

The simulations were built using the microsimulation program Socsim, developed
by University of California, Berkeley (62). Socsim uses population-level mortality,
fertility, and marriage probabilities to generate life histories of individuals. These
demographic parameters, inputted by the researcher, are applied over a simulation

segment, a period of simulated time defined by the use of the single set of
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parameters (63). Within each simulation segment, Socsim schedules an event
(marriage, birth, or death) for each simulated individual “alive” during the segment.
To schedule the event, a random wait time for each event that a person is at risk of
having is generated, based on the age-specific probabilities of birth, marriage, and
death. Socsim creates a list of all events scheduled for the simulation segment.
When the list of scheduled events is completed, Socsim begins executing each event
in one-month intervals, drawing a random selection from within the list to begin
executing the events. Once one event is executed, Socsim will schedule the next
event for the person, in addition to any new events that would arise as a result (for
example, a birth to a woman would give rise to a new schedule of events for the
person born). When all events for a month have been executed, the simulation will
continue into the next month. While the probabilities that are inputted as
parameters govern the overall likelihood that an event will happen for any one
individual person, the random waiting times and event executions means that each
simulation will have a unique distribution of the number of events in time. This

distribution allows us to model variation across simulations.

As Socsim operates by scheduling events in one-month intervals, all vital events
(births, deaths, and marriage) are inputted as monthly probabilities. For these
simulations, mortality, fertility, and marriage probabilities were applied for 12-
month durations, meaning each simulation segment is one year. There are two
exceptions to the one-year simulation segment; 1) the first simulation segment,

which is run of 4200 months to generate a stable population and 2) when the
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parameters that define the humanitarian emergencies are applied. Each
humanitarian emergency scenario had a unique set of monthly mortality
probabilities that define the crisis period, applied over a differing amount of time,

discussed in more detail below.

A simplified graphic is supplied below (Figure 2) demonstrating the relationship of
months and simulation segments. In Segment 1, which runs for approximately 24
months, one set of probabilities is supplied. Once a new set of probabilities is
introduced, a new segment is started, each segment running for approximately 12
months. The exception to this is the crisis period of each humanitarian emergency,
where the simulation segments are based on the length of the emergency. In the
graphic below, the crisis probabilities are applied for six months in Segment 5,
before declining in Segment 6. In the simulations I have run, Segment 1 runs for

4200 months instead of 24 months to create a stable population.
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Figure 2: Simplified graphic of Socsim progression constructing simulation segments over
time
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In total, five scenarios were simulated 100 times each. The same fertility and
marriage probabilities were used in each scenario (discussed further below and
supplied in Appendix I and II, but the mortality probabilities differed widely across
each scenario An explanation of how the probabilities of mortality, fertility, and

marriage were derived for each scenario follows below.
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Mortality

Each simulation begins with the same baseline level of mortality applied for 350
years (4200 months) and maintains the same rate of decline over a 40-year period,
with age-specific probabilities of death taken from Coale-Demeny West model life
tables, with different increases in mortality programmed in each humanitarian
emergency (64). Before discussing what the exact levels of mortality are in each
scenario, I will first explain how the monthly probabilities were derived from the

annualized probabilities given in the West model life tables.

In the model life tables, for the first year of life, probabilities of death are given
separately, reflecting the much higher risk of dying within the first year of life
relative to later years. Probabilities of death are then given in five-year increments
(with the exception of the four year probability of dying between age one and exact
age five among those who survive to age one.) Five-year probabilities for death

were first transformed into rates using

Equation 1

r=[-In(1-q)]/t

where r is the mortality rate, g is the probability of dying in the one, four, or five

year interval, and t is the time interval (65).
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The rates were then transformed into monthly probabilities using the equation:

Equation 2

g=1—eCm

in which t is the inverse of the number of months in the interval (65).

Baseline

Sex-specific mortality probabilities were extracted from life tables with life
expectancies ranging from 40 years to 55 years. Life expectancy increased by one-
quarter of a year per each 12 month simulation segment, reflecting the global rate of
change in life expectancy estimated by Oeppen and Vaupel (2). While the levels of
life expectancy may seem low, they simulate a society of a similar mortality profile
to the four countries previously described (39,42,46,49). Although there is
considerable variation within and across country-level estimates of life expectancy,
estimates for Rwanda, Cambodia, Korea, and Afghanistan, indicate that each of the
countries had relatively high mortality at the time of their emergencies (Table 2).
Notably, North Korea had higher life expectancy than the other countries prior to its
famine, although the reliability of these estimates is questionable given the dearth of

information regarding North Korea (46).
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Table 2: Life expectancy estimates in selected countries and year

Country Agency/Author Year Female Male
Rwanda United Nations World Population 1990- 4.8 1.4
Prospects 2012 1995 ' '
United Nations World Population 1985-
Prospects 2012 1990 47.5 44.0
Keely, 2001 1992 45.5 45.5
Cambodia United Nations World Population 1960- 43.2 48.4
Prospects 2012 1965 ' '
Keely, 2001 1990 49.5 49.5
Heuveline, 1998 1960 53 51
North Korea United Nations World Population 1995- 67.4 59.3
Prospects 2012 2000 ' '
United Nations World Population 1990-
Prospects 2012 1995 £z I3
Robinson, 2001 1991 73 66
Afghanistan United Nations World Population 2000- 57.0 54.7
Prospects 2012 2005 ' '

Humanitarian Emergencies

All of the humanitarian emergency probabilities were applied after 423 years of

simulations, when life expectancy reached 46. Following each emergency period,

mortality probabilities corresponding to a life expectancy of 45, slightly below

baseline, were applied for one year to simulate a recovery period and then mortality

and fertility dropped at the same pace as in the original baseline simulation.

Scenario 1

For the first scenario, loosely based on the Rwandan genocide, ratios were obtained

using the age- and sex-specific mortality rates estimated during July 17-August 5,

1994 in Katale Camp, Zaire (16). These rates correspond to a time some weeks after
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the height of the genocide and thus do not include the spike that is associated with
violent deaths; however, the death rates are extremely high and drop suddenly,

following the general pattern of mortality seen in Rwanda.

Reflecting the difficulty in obtaining age- and sex-specific estimates in emergency
settings, the mortality rates are non-sex specific and have little age gradation. The
rates in Table 3 were transformed into annualized mortality rates and then
compared to the sex-specific mortality rates corresponding to a life expectancy of
45.5, the estimated life expectancy in Rwanda prior to the genocide given by Keely

and colleagues (4).

Table 3: Age-specific death rates of Rwandan refugees in Katale Camp, Zaire, 1994 (per 10,000
per day). Source: Davis, 1996.

Age Group ASDR
<5 7.8
5-15 29
15-45 3.4
=45 17.7

The ratios of the emergency to pre-emergency monthly mortality probabilities
derived from the rates given in Table 3 were then applied to the sex-specific
monthly mortality probabilities extracted from the Coale-Demeny model life table

for a life expectancy of 46. The age and sex-specific ratios are shown in Table 6 and
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Table 7 (below). The elevated probabilities were applied for two months,
generating what Humanitarian Emergency 1 (HE 1). Given that the ratios are
extremely elevated, they were compared to those estimated by Keely and colleagues
for validation (4). While they are not exactly the same for each age group, the level

is similar across all ages.

Scenario 2
The second scenario is motivated by the Cambodian genocide, which had lower
mortality rates than Rwanda, but the time in which elevated mortality persisted was

much longer.

Table 4: Age-specific death rates Cambodia (per 1, 000 per year). Source: Slewinski, 1995.

Age group ASDR
0-10 233
10-20 22.0
20-30 33.1
30-40 36.1
40-50 36.5
50-60 42.0
60+ 40.0

Several studies have estimated the total number of deaths due to the Khmer Rouge
and attempted to decompose many of these deaths into deaths due to violence,

famine, or other causes, but few of the papers provided any age-specific death rates.
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Only Slewinski in 1995 estimated age-specific mortality rates (as cited in 40). These
rates were transformed into probabilities and compared to the sex-specific
mortality probabilities corresponding to female life expectancy of 53 and male life
expectancy of 51, which were estimated by Heuveline as the approximate life
expectancy of the population in 1962, prior to the Khmer Rouge (42). The ratios of
emergency to pre-emergency mortality probabilities, substantially lower than those
in Rwanda and shown in Table 6 and Table 7 below, were then applied to the
monthly probabilities for five years, to generate the simulation we will call

Humanitarian Emergency 2 (HE 2).

Scenario 3

Table 5: Emergency age-specific death rates; North Korea (per 1,000 per year). Source: Robinson, 1999.

Age Male Female
Interval ASDRs ASDRs Ratios for Humanitarian Emergency 3 (HE

0-4 23.5 37.3 )

3) were taken from Robinson and
5-9 24.2 11.9
10-14 12.5 8.3 colleagues work (2001). The author
15-19 4.8 1.9
20-24 3.7 44 calculated age and sex-specific baseline and
25-29 8.7 a4 emergency mortality rates. Baseline was
30-34 24.9 11.9
35-39 34.9 18.4 defined as the mortality present in 1993
40-44 32.9 24.7 .

and the emergency mortality rates are an
45-49 49.6 25.6
50-54 66.7 3238 average of the three-year mortality rates
55-59 82.3 42.0
60-64 134.2 23.9 estimated for 1995-1998. The rates of each
65+ 1916 1282 were transformed into probabilities and

the ratios applied.
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The ratios are somewhat higher than the Cambodia ratios, particularly in the age
groups 5-14 and 30-44, but are still lower than the ratios estimated for the Rwandan
genocide. The exception to this is the ratio for age 0-1, which is higher than the
estimated ratio from HE 1. The HE 3 ratios are applied over a course of three years
to replicate a long-term emergency with high mortality. It should be noted that the
ratios that are derived are quite high, but they are also derived from a population

that had initially lower mortality than the other three scenarios.

Scenario 4

Of all of the humanitarian emergencies described, the emergency that has unfolded
in Afghanistan over the past forty years is the most difficult to model. Due to the
extreme difficulty of conducting surveys in Afghanistan, there are very few, if any,
reliable mortality estimates and none that model mortality over time. Thus,
Humanitarian Emergency 4 (HE 4), though it is built to model intermittent violence,
is not based on data from Afghanistan. Rather, HE 4 uses the same ratio of
emergency to baseline mortality derived for the HE 2 model, applied at five-year
intervals over the course of twenty years. The data from this scenario was chosen
because it demonstrates elevated mortality with the highest proportional increases
occurring in young adulthood, those ages most affected by violence. This does not,
nor is it meant to, realistically model the experience of Afghanistan. It does,
however, model a pattern of mortality that fluctuates over time, establishing a non-

constant mortality rate, simulating the effect of long-term mortality disruption.
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Table 6 and Table 7 show the sex-specific ratios of the probability of dying in an
emergency mortality setting compared to baseline mortality in each of the four
scenarios described. At older ages, the mortality ratio was often less than 1 because
estimates from these emergencies tended to aggregate all mortality over 60 into one
rate, masking the difference in mortality between age groups such as 60-65 and 90+.
As it is unlikely that mortality at older ages would improve during a complex

emergency, whenever the ratio dropped below 1, it was replaced with 1.0.
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Table 6: Ratio of emergency to pre-emergency mortality probabilities in four humanitarian
emergencies (Females)

Emergency and Duration

HE 1 HE 2 HE 3 HE4

Age Two months Five Years Three Years Intermittent
0-1 4.75 1.54 7.3 1.54
1-4 30.55 1.54 7.3 1.54
5-9 123.64 6.46 23.7 6.46
10-14 157.66 7.87 414 7.87
15-19 135.96 5.52 48 5.52
20-24 107.06 6.38 7.4 6.38
25-29 95.31 5.64 6.2 5.64
30-34 83.89 5.42 17.0 5.42
35-39 75.22 4.82 26.2 4.82
40-44 67.67 494 22.4 494
45-49 156.20 417 16.0 417
50-54 117.4 2.97 12.6 2.97
55-59 88.22 2.18 8.7 2.18
60-64 58.87 1.12 7.3 1.12
65-69 40.94 1.00 29 1.00
70-74 26.52 1.00 1.00 1.00
75-79 17.27 1.00 1.00 1.00
80-84 11.34 1.00 1.00 1.00
85-89 7.79 1.00 1.00 1.00
90+ 1.00 1.00 1.00 1.00
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Table 7: Ratio of emergency to pre-emergency mortality probabilities in four humanitarian
emergencies (Males)

Emergency and Duration
HE 1 HE 2 HE 3 HE4
Duration Two months Five Years Three years Intermittent

0-1 4.56 1.65 4.2 1.65
1-4 35.98 1.65 4.2 1.65
5-9 145.89 6.88 34.6 6.88
10-14 200.47 8.86 31.3 8.86
15-19 162.72 5.93 7.9 5.93
20-24 113.55 6.23 4.6 6.23
25-29 103.73 5.74 7.9 5.74
30-34 90.62 5.49 19.2 5.49
35-39 75.55 4.54 23.3 4.54
40-44 60.71 417 12.2 417
45-49 129.48 3.27 12.4 3.27
50-54 96.75 2.30 9.8 2.30
55-59 72.41 1.67 5.7 1.67
60-64 50.43 1.00 43 1.00
65-69 35.33 1.00 2.5 1.00
70-74 2391 1.00 1.00 1.00
75-79 15.73 1.00 1.00 1.00
80-84 10.54 1.00 1.00 1.00
85-89 7.15 1.00 1.00 1.00
90+ 1.00 1.00 1.00 1.00
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Figure 3 graphically depicts the mortality patterns that are modeled by each
simulation. The figure is not drawn to the scale of the ratios or to the exact timeline
but is meant to provide a visual representation of what each scenario’s mortality

pattern might look like.

Figure 3: Mortality patterns of four simulated humanitarian emergencies
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While the mortality patterns change in each scenario, fertility and marriage
probabilities are unchanged across the five scenarios. There is conflicting evidence
regarding the impact of humanitarian emergencies on fertility and very little
research has been done regarding its impact on marriage. Hill and colleagues found
that, with the exception of famine, there is limited evidence that emergencies and
displacement affect fertility and even in famine, fertility rates are not affected
substantially in the long-term (66). A review of the literature on the effect of war
and conflict on reproductive health found that fertility increased in some
populations affected by war and decreased in others (67). Very little work has been
done to estimate the impact of conflict on nuptiality rates (68,69). Given the dearth
of information on fertility and nuptiality patterns in times of conflict, and in order to
isolate the effect of changes only in mortality patterns, fertility and marital

probabilities were kept consistent across all simulations.

Fertility

In Socsim, fertility is the only event that is programmed using monthly rates instead
of monthly probabilities. Annual age-specific fertility rates were derived using
model fertility schedules developed by Schmertmann (70) and transformed into
monthly rates. The age-specific rates were derived from graphical parameters

based on the age of first birth, peak age of childbearing, and overall TFR.

The initial population was simulated to have a total fertility rate of 6.85, with an age

of first birth at 12 and a peak of childbearing at 23. After the 350 years of initial
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simulation, fertility rates declined gradually until reaching a low of 5.6 at the end of
the simulation. After the initial 350 years, the age of first birth increases over time
to 14 and peak childbearing increases to age 24. With the exception of North Korea
prior to the 1995 famine, all countries had fertility of approximately this level prior
to their emergencies (Table 8) (3). This level of fertility, though high, is therefore
realistic for the situation. The exception to this is the case of North Korea, which has
lower estimated fertility than the other countries in the pre-emergency era.
However, these estimates are difficult to corroborate due to the insular nature of the

government.

Table 8: Total fertility rate for four pre-emergency settings. Source: UN World Population
Prospects, 2012

Rwanda Cambodia North Korea Afghanistan

1990-1995 1960-1965 1990-1995 2000-2005

TFR 6.55 6.95 2.25 7.4

Nuptiality

As marriage involves two different people, scheduling marital events in Socsim is
slightly more complicated than scheduling either births or deaths. Socsim can
utilize either sex- and age- specific nuptiality rates or calculate the probability of the
event based on the distribution of spousal age differences. There is generally very

little information on age-specific nuptiality rates. While model mortality and
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fertility schedules have been developed and validated, much less work has been
done to model nuptiality. Therefore, in these simulations, I used information on the

distribution of age differences between spouses.

The distribution of age differences is modeled by specifying four parameters; the
ideal age difference between bride and groom, the maximum and minimum age
differences allowed, the marriage slope ratio, and the percent married by a certain
age. The ideal age difference is the preferred difference in ages, with the
assumption that the groom is older. For the purposes of Socsim, it is expressed in
months. Unlike fertility and mortality, there are few population estimates of what
the ideal age difference is and whether it has changed over time. Given that men
tend to marry later than women and generally choose younger brides (71), I have

set the ideal age difference at 60 months.

The marriage slope ratio compares the rate of decline of a marriage probability for
men compared to the marriage probability for women as they deviate from the ideal
age difference. Socsim seeks to select marriages that are as close as possible to the
ideal age difference between the spouses (here 5 years, with the groom older than
the bride). As the age difference between the bride and groom increases, the
probability of a match between two potential spouses decreases. Alternatively, if
the bride is older than the groom, the probability of a match decreases. A match
wherein the bride is older than the groom will have a lower probability of being

scheduled than a match where the groom is older than the bride. The rate at which
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these probabilities change is 7:1; that is, a marriage between a groom that is seven
years older than the bride is as likely to be scheduled as a marriage where the bride
is one year older than the groom. A marriage where the groom is 14 years older
than the bride is as likely to be scheduled as a marriage where the bride is two years
older than the groom. This means that in general, marriages in which the wife is
older than the husband are uncommon, which is generally supported by the
literature (71).

The maximum and minimum age differences establish a range, beyond which no
marriages are allowed. For these simulations, I have created a maximum age
difference of 240 months and a minimum age difference of -180 months. That is, no
marriages are allowed in which the man is more than 20 years older than the
woman or when the woman is more than 15 years older than the man. Finally, it is
necessary to specify by what age a certain proportion of the population is married to
generate basic rates. For females, marriage can begin as early as 12, though it is
unlikely, and by age 25, 75% of females are married. For males, marriage can begin
as early as 18 and by age 28, 75% of males are married. While these numbers are
somewhat arbitrary, the percent married by age and the singulate mean age at
marriage presented in Table 9 below confirm that they are plausible numbers for

the simulation.
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Table 9: Singulate mean age at marriage and percent ever married by age for four countries.
Source: UN World Marriage Data, 2012.

Rwanda Cambodia North Korea Afghanistan

1995 1962 2008 2010
Females
Singulate Mean
Age at Marriage 233 213 25.5 21.5
% ever-married . 8.4 199 o
age 20-24 : : . .
% ever-married
age 25-29 81.8 90.7 75.4 90
Males
Singulate Mean
Age at Marriage 248 Dk 29 25.3
% ever-married
age 20-24 28.4 34.2 1.1 NA
% ever-married . ;
age 25-29 65.6 79. 33.2 88.0

There is an obvious difference between the percent married at certain ages between
North Korea and the other countries. It is difficult to know the veracity of North
Korean marriage data, given the insular nature of the country. Similarly low
percentages of women and men married by age 20-24 and 25-29 were seen in South
Korea in 1995 (16.7 and 3.7, and 70.4 and 35.6, respectively), lending credence to
these numbers (72). Remarriage rates after divorce and widowhood are twice as
high for males as females in the simulation. This is a somewhat arbitrary decision as
there is very little information available on remarriage rates for males and females
in the developing world. The majority of estimates have been generated using data
from the developed world, finding that men are more likely than women to remarry

after either divorce or death of a spouse (71,73)
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Migration

Migration is not specified in this simulation. This is, of course, an inaccurate
assumption to make during a complex emergency, as it is established that large-
scale migration is a defining feature of a complex emergency. However, there were
several reasons that I decided not to address migration in this simulation. First,
there is very little information available on migration rates by age in complex
emergencies and even less information on reintegration after the emergency has
ended. While it is possible to model some general mortality patterns based on
historical scenarios, it is much less clear what the migration patterns of these
scenarios are. Secondly, when estimating under-5 mortality, migration would only
affect the estimates if there were differential mortality between those who remain
in the population and those who migrate. While it is likely that this differential
mortality does exist in the majority of emergencies, it is not always clear in which
direction this difference will exist. For example, refugees may have very high
mortality in the beginning phases of migration but as humanitarian assistance
improves, they may over time achieve lower mortality than the non-migrant
population (4). This was the case amongst Cambodian refugees displaced to
Thailand during the Cambodian genocide, where, other than at the youngest ages,
mortality was lower for both male and female refugees than amongst the non-
displaced (36). On the other hand, those who stay behind in an emergency may be
those who are the poorest of the poor, generally the most vulnerable to mortality,
and unable to flee in an emergency (4). The differential mortality that may exist

between those who stay and those who leave is difficult to predict and therefore, the
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effect that it may have on estimating under-5 mortality in an emergency is not
possible. Finally, my aim is to isolate the effect of mortality disturbances on
estimation. Adding in the mass migration that may occur in these emergencies
would add complexity and potentially obscure the effect of mortality versus

migration.

Analysis

Socsim provides the month of birth and month of death for each person in the
simulated population. To calculate annual under-5 mortality rates, months were
grouped into twelve-month intervals. The first 4200 months (350 years) were
discarded in the analysis as this time simulation segment was intended only to

generate a large population structure.

Direct

The first step was calculating the annual period under-5 mortality rate utilizing the
birth and death dates of each individual. Individuals began accumulating person-
time at birth and stopped accumulating time either at death or when they reach age
5. Cohort under-5 mortality was not calculated because the majority of surveys

collect cross-sectional data and calculate period, rather than cohort, rates.

Annual under-5 mortality rates were calculated using the equation
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Equation 3

r=djt

where d is the number of deaths to children under age 5 in a year over the person-

time, t, accumulated by children under-5 in that year.

[t is important to note that the term under-5 mortality rate as it is applied in the
literature is in fact a probability. Thus, the under-5 mortality rate calculated here, a
true rate, was transformed into a probability using

Equation 4

_ n- nMx
nfhe = (1 + (?’l— nlx )) ) nMx

where x is exact age x, n is the number of years in the interval (in this case one), .My
is the mortality rate, and ,ax is the mean number of years lived in the interval for
persons dying in the interval of x to x +n.

Annual under-5 rates and probabilities were calculated for every year and every

simulation.

Brass
To calculate the probability of dying by exact age 5 using the Brass method, the
following information is needed:

1. Number of children ever born, classified by sex and by five-year age

group of mother
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2. The number of children surviving (or the number dead), classified by
sex and by five-year age group of women

3. The total number of women (irrespective of marital status), classified
by five-year age group. All women, not just ever-married women,

must be included.

[t is not necessary to collect sex-specific information for points 1 and 2 above unless
it is the intention of the researcher to estimate sex-specific under-5 mortality rates.

In this paper, only under-5 mortality rates for both sexes combined are presented.

It is also possible to use time since first marriage instead of age of the mother,
however age is generally preferred. Age is be preferable due to inaccuracies in
reporting age at marriage or in the event that marriages are frequently dissolved or
interrupted (74). As Socsim does not generate dates of marriage, it is not possible to
estimate time since first marriage or the corresponding under-5 mortality rate using

this technique.

Computational Procedure
In general, the probability of dying between birth and exact age x can be expressed

as

Equation 5

q(x) = k(DD(1)
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where q(x) is the probability of dying by exact x, D(i) is the proportion dead among
children ever born to women in five-year age groups i, and k(i) is a multiplier

adjusting for the underlying fertility distribution.

The multiplicative factors, k(i), that are used to adjust for the fertility distribution
are based on regression equations that were fitted based on simulated data. The
most commonly used variants of the multiplicative factors are from Sullivan or
Trussell. The values of k(i) have been extensively analyzed and tested over time
(27,28) and generally the Trussell multipliers are used. For consistency, I will also

use the Trussell variant.

The steps for calculating under-5 mortality are outlined below (74).

Step 1: calculation of average parity per woman.

First average parity per woman among women of age i, P(i), is calculated. P(i) is
defined as the average number of children ever born, CEB(i), among all women of
age i, FP(i), regardless of marital status. P(i) is calculated for the three youngest age
groups. Average parity P(1) refers to age group 15-19, P(2) to age group 20-24, and

P(3) to age 25-29.
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Equation 6

P(i) = CEB(i)/FP(i)

Step 2: calculation of proportion of children dead for each age group of mother.
The proportion of children, D(i), that have died among women of age group i, is the

ratio of reported children dead relative to reported children ever born

Equation 7

D(i) = CD(i)/CEB(i)

where CD(i) is the number of children dead reported by women of age group i and

CEB(i) is the same as defined in Equation 6 above.

Step 3: Calculation of multipliers

The values of k(i), the multiplicative factors that adjust for the underlying fertility
distribution, are estimated using coefficients derived by Trussell and applied in
Equation 8. The coefficients to apply when using the West model life table are
provided in

Table 10 below.

Equation 8

k(D) = a(@) + b(D)(P(1)/P(2)) + c(D(P(2)/P(3))
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Table 10: Coefficients for estimation of child mortality multipliers, Trussell variant. Source:
UN Manual X, 1982.

Age Mortality
group of Index ratio a(i) b(i) c(i)
women q(x)/D(i)
15-19 1 q(1)/D(1) 1.1415 -2.7070 0.7663
20-24 2 q(2)/D(2) 1.2563 -0.5381 -0.2637
25-29 3 q(3)/D(3) 1.1851 0.0633 -0.4177
30-34 4 q(5)/D(4) 1.1720 0.2341 -0.4272
35-39 5 q(10)/D(5) 1.1865 0.3080 -0.4452
40-44 6 q(15)/D(6) 1.1746 0.3314 -0.4537
45-49 7 q(20)/D(7) 1.1639 0.3190 -0.4435

Step 4: Calculation of probability of dying and surviving
Estimates of q(x), the probability of dying by exact age x, are obtained per Equation
5. The probability of surviving from birth to age x, [(x), is obtained by subtracting

the probability of dying from 1.

Equation 9

I(x) = 1.0 — q(x)

where x is age. Per

Table 10 above, we can see that q(5) is directly obtained using the information from
women age 30-34. However, as noted previously, this estimate does not apply to
the time of the survey but to a reference period that remains to be calculated in Step

5.
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Step 5: Calculation of reference period

Similar to the Trussell multipliers, t(x), the reference period derived for each age-

specific q(x), can be estimated by applying previously derived coefficients to

Equation 10. The coefficients in Table 11 were derived from simulations wherein

mortality remained constant or declined in a predictable manner.

Equation 10

t(x) = a(@) + b(DOPD)/P(2)) + c(D)(P(2)/P(3))

Table 11: Coefficients for estimation of the reference period, t(x). Source:

UN Manual X, 1983.

Age Mortality ratio
Index a(i) b(i) c(i)

group q(x)/D(i)

15-19 1 q(1)/D(1) 1.1415 -2.7070 0.7663
20-24 2 q(2)/D(2) 1.2563 -0.5381 -0.2637
25-29 3 q(3)/D(3) 1.1851 0.0633 -0.4177
30-34 4 q(5)/D(4) 1.1720 0.2341 -0.4272
35-39 5 q(10)/D(5) 1.1865 0.3080 -0.4452
40-44 6 q(15)/D(6) 1.1746 0.3314 -0.4537
45-49 7 q(20)/D(7) 1.1639 0.3190 -0.4435

In general, the coefficients used to estimate the reference period are those derived

by Feeney (30). They are adapted from the original Brass coefficients to allow for
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the effects of changing mortality over time. However, they were developed with an
assumption of linearly declining mortality and thus may be biased if this assumption

is not met.

IHME
As shown above, when applying indirect estimation techniques, it is not sufficient to
estimate only under-5 mortality, it is also necessary to estimate the point in time to
which the estimates refer. [HME developed two alternatives to the Brass
methodology to estimate both under-5 mortality and the period in time to which the
estimates pertain; the cohort-derived and period-derived measures. Each of the
measures can be estimated by using either the mother’s age or the time since her
first birth. The same information used for Brass is needed:

1. Age of the mother or time since first birth

2. Total number of children ever born

3. Total number of children that have survived

Cohort Derived Methods

When using either the Maternal Age Cohort Method (MAC) or the Time since First

Birth Cohort-derived Method (TFBC), the only information needed is either the age

or the time since first birth (to categorize women into appropriate cohorts) and the
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information from the summary birth history (number of children born and number

of children who have died).

Step 1: Estimate the reference period
The equations can be adapted to either the age of the mother or the time since first
birth. For simplicity, the explanations and notation in equations will refer to age

only, but are the same for the time since first birth method.

The first equation, which estimates the reference time or time period to which the

mortality rates apply, is

Equation 11

. CD;
reftime; = Po; + Pui CEB, + B2iCEB;ji + PBsi

P(15-19)
P(20-24)

P(20-24)
P(25-29); UK

+ Bai
where i is the age group of the woman, P(i) is the average number of children ever
born per woman in the specified age group, CD:is the total number of children born
who have died for age group i, and CEB: is the total children ever born. This method
can be applied to multiple countries, j, or rounds of data, k, which the notation above
indicates. For the purpose of this dissertation however, these notations are
irrelevant. The coefficients for Equation 11 estimated by IHME using both age and

time since first birth are presented in Table 12 and Table 13 below .
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Table 12: Coefficients to estimate reference time using Maternal Age Cohort - Derived Method,
IHME. Source: Tran and Rajaratnam, 2013

Age Group B, B; B> B3 By

15-19 0.94 0.00 0.19 0.75 0.54
20-24 2.53 0.00 0.28 0.89 0.62
25-29 430 0.00 0.10 0.29 2.84
30-34 7.27 0.00 -0.31 0.58 4.69
35-39 11.43 0.00 -0.47 1.50 444
40-44 15.49 0.00 -0.55 3.03 3.97
45-49 19.90 0.00 -0.55 6.08 091

Table 13: Coefficients to estimate reference time using Time Since First Birth Cohort-Derived
Method, IHME. Source: Tran and Rajaratnam, 2013.

Age Group B, B; B> B3 B4
0-4 1.37 0.00 0.03 0.60 0.49
5-9 2.36 0.00 -0.11 0.56 3.81
10-14 -0.06 0.00 0.04 3.69 8.65
15-19 1.80 0.00 -0.08 2.09 12.86
20-24 -1.17 0.00 0.02 4.65 18.86
25-29 5.28 0.00 -0.16 -0.91 19.95
30-34 9.56 0.00 -0.22 -17.01 31.70
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Step 2: Estimate sqo

The IHME method differentiates itself from the traditional Brass method by directly

estimating sqo for each age group (or cohort of mothers). The logit of 5q0, estimated

using Equation 12, is back transformed to estimate 5q0 for each group of women, i,

in country, j, and survey round, k using Equation 13.

Equation 12

10git(5q0,;jk) =

CD;; P(15-19)

P(20-24)

Boi + Us; + Bu;logit ( F) + BuCEBijic + Baipoma)

jk
ijk

Equation 13

x

invlogit =
invlogit = 7——

where x equals logit 5q0ijx.
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The IHME model allows for estimated country-specific variation by introducing the

random intercept, Uy.

IHME during initial development of the model. As my data are simulated and do not
represent the experience of any one country, no random intercepts are used in this
analysis. The coefficients developed by IHME for estimating sqo are shown in Table

14 and Table 15 below.

Table 14: Coefficients to estimate 5q0 using Maternal Age Cohort-Derived Method, IHME.

Source: Tran and Rajaratnam, 2013

The values for this random intercept were estimated by

Age Group B, B; B> B3 By

15-19 -0.70 0.56 2.57 -3.92 -0.30
20-24 0.13 0.89 0.21 -0.01 -1.11
25-29 0.02 0.99 0.05 0.07 -0.29
30-34 -0.10 0.97 0.02 0.00 0.00
35-39 -0.09 0.97 0.01 0.22 -0.23
40-44 -0.24 1.00 0.02 0.16 -0.06
45-49 0.04 1.02 0.00 0.86 -0.80
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Table 15: Coefficients to estimate 5q0 using Time Since First Birth Cohort-Derived Method,
IHME. Source: Tran and Rajaratnam, 2013.

Age Group B, B4 B> B3 B4

0-4 0.86 0.86 -0.14 -1.75 0.25
5-9 0.05 0.97 -0.01 -0.81 0.59
10-14 0.31 0.99 -0.02 -0.54 0.08
15-19 0.36 0.96 -0.01 -1.37 0.43
20-24 -0.18 0.98 0.01 -1.39 0.93
25-29 0.81 1.00 -0.03 -2.52 0.73
30-34 2.09 0.81 -0.07 -4.00 -0.02

Period-Derived Methods

As with the Brass method, the cohort method described above uses responses from
the youngest mothers to estimate mortality in the recent (<5 years) past, which
introduces the potential for bias. Additionally, the cohort-derived methods generate
reference times that are in the distant past for older mothers; the average reference

time for women age 45-49 is 18.1 years prior to the survey (26).

To address these issues, IHME developed the period-derived methods, which
estimate a period-based CD/CEB ratio for each year prior to the survey and that can
be applied to either age or time since first birth. The CD/CEB ratios are derived
from distributions of child birth dates and death dates for different groups of
mothers, stratified by region, age and number of children born and dead. These

distributions were generated by IHME and rely on pooling regional data (Asia, Latin
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America and the Caribbean, North Africa/Middle East, sub-Saharan Africa
South/East, and sub-Saharan Africa North/Central) to estimate regional
distributions of births and deaths to women of age i. The distributions are used to
estimate the expected number of children who were ever born and died in every
year prior to the survey (up to 25 years before) for mothers of each particular age,
region, and parity and to generate the expected CD/CEB ratio for that year. This

ratio is then applied using Equation 14 to estimate logit (sqo)

Equation 14

CD,:
logit(Sthjk) =B+ U + Bilogit 213 S Etjk
CEB,j

where t is the time before the survey, j is the country-specific estimate, and k is the
survey year, in the event that multiple rounds of data exist within a given country.
The CD/CEB ratio and the coefficients vary by year and by country and are
estimated by IHME. No random effects were applied in this dissertation. As itis not
possible to apply the models without selecting a region, I chose sub-Saharan Africa
South/East, as the high fertility patterns simulated in the model persist in many

countries in this region (3).

Combined Method
The Combined Method averages the estimates of the cohort- and period-defined

IHME methods through a process of inverse weighting. Each of the cohort-defined

79



Chapter 3: Methods

methods produces seven estimates of 5q0 (one for each age category) while each of
the period-defined methods produces 25 estimates of 5q0, one for each year prior to
the survey year. Each estimate produced by the cohort-method is then given a
weight of 1/7 and each estimate from the period defined method is given a weight of
1/25 in order to weight each method equally. The estimates for the youngest age
group using the Maternal Age Cohort (MAC) method are dropped per IHME advice
because of the generally small number of women in the category, leading to noisy
estimates. The combined method then smoothes the estimates to account for non-
linear trends over time (for example, over the 25 year period) using Loess
regressions. Using the recommendation provided by IHME, the a, or bandwidth,
parameter was set at .5, and weighted using the inverse weights just described. The
Combined Estimates were then generated using data from all four of the IHME
methods and using only the maternal age methods (MAC and MAP) methods. This
was done to examine the increased accuracy, if any, gained by incorporating time

since first birth information with maternal age information.

The Loess smoother can also be applied to data from each individual method, rather
than a combination of methods, to show the trend that each method predicts. For
example, for each year of survey data, the MAC method will generate seven separate
5q0s, each with a reference period. Using these 5q0s, the Loess smoother can
approximate what the trend in child mortality has been over time based solely on
the MAC method. This process can be done for all methods and can incorporate data

from only survey year or from multiple survey years. For each of the methods, I
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created an individual smoothed estimate using data from all survey years and using
data only from specific years to see how trends changed when data from only year

were available (Years 0, 1, 5, 10, and 20).

Comparison of Estimates

In total, 500 simulations were run over a time frame of 60 to 80 years each
(excluding the original 350 years of simulation and depending on the length of the
humanitarian emergency). Thus a pattern of mortality prior to the emergency,
during, and after the emergency could be established. For consistency across all
scenarios, data are presented showing Year 0 as the year in which the humanitarian
emergency started and estimates are provided for a forty year time period, 13 years

pre-emergency and 26 years post-emergency.

Within each simulated year and within each simulation, six estimates of under-5
mortality were made: direct, Brass, Maternal Age Cohort (MAC), Time since First
Birth Cohort (TFBC), Maternal Age Period (MAP), and Time since First Birth Period
(TFBP). In addition, the Combined estimates, both all methods combined and
MAC/MAP only, were run using data from all years and run using data from single
survey years. Thus in total, there were upwards of 160,000 individual under-5

estimates calculated, across all years, scenarios, and simulations.

While the simulations were programmed with specified levels of infant and child

mortality, the element of random selection in Socsim ensures that each simulation
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has a slightly different mortality profile and thus a slightly different under-5
mortality rate. There is not therefore an underlying true estimate of under-5
mortality being tested across each simulation, although the average of the directly
estimated 5q0s within a year is a very close approximation to the programmed
parameters. Thus to compare how well each method estimates the true under-5
mortality rate within a year and a simulation, the estimate derived from the direct
method is taken as the gold standard and compared to the estimates derived from

the indirect estimates within the same year and simulation.

[ used three metrics to assess how well estimates from each indirect method
compared to the values from the direct method. The first is the average absolute
error; within a specific survey year, the absolute differences of each simulation-
specific direct estimate and indirect method estimate (Brass, MAC, MAP, TFBC,
TFBP, and two Combined estimates) were totaled and divided by the total number

of simulations (Equation 15).

Equation 15

n Indirect __ ,Direct
i=1|‘hj 4dij

n

where q is the estimate of 5qo, i is the simulation number, j is the survey year, and n

is the number of simulations.
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Secondly, the mean of these differences, both within a specific year and across years,
assesses whether the specified indirect method, on average across the simulations,

over or underestimates the direct estimate (Equation 16).

Equation 16
n Indirect Direct
i=14qij — q;j

n

Finally, the distribution of the differences was examined to assess how much

variation there was in the differences across the simulations in a given survey year.

Although this was done across each year, for simplicity, the majority of the metrics

are presented only for Year 0, Year 1 (one year since onset of the humanitarian

emergency), Year 5, Year 6, Year 10, and Year 20.

83



Chapter 4: Results

Chapter 4: Results

As multiple models were tested in several scenarios and across hundreds of
simulations, there are many ways in which this chapter could be organized. In order
to focus the results and subsequent discussion, results will be presented in the

following manner:

Section 1: First, results from the “baseline” scenario in which there is no disruption
in declining mortality are presented. [ will first discuss how each of the methods -
Brass, the Cohort-Derived methods, the Period-Derived methods, and the Combined
methods - compare to the direct estimate of mortality and then show comparisons

of the methods in an “ideal” scenario.

Section 2: Based on the results of Section 1, selected methods will be presented to
demonstrate how well they perform across humanitarian emergency, focusing
specifically on Brass, MAP, MAC and the MAC/MAP combined method. The time
since first birth-derived methods will not be discussed in detail as they generally

perform poorly across all scenarios, as will be demonstrated in Section 1.
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Clarifications

[ refer to under-5 mortality and 5q0 interchangeably in this dissertation; for
readability in tables, the probability is multiplied by 1,000 to reflect the number of

children who will die before their fifth birthday out of every 1,000 children under 5.

Additionally, [ will refer to two different time points in this chapter, the survey year
and the reference year. Each simulation is run for over 40 continuous years and
thus generates data and point estimates for every year. When I refer to the survey
year, I am referring to the year in which the data were generated. All direct
estimates are made with data from 12 months prior to the survey period. All
indirect estimates, however, have some reference period and a corresponding
reference year. Thus, each indirect estimation method will generate an estimate for
a specific reference year using data from a specific survey year. When making
comparisons, the estimate for the reference year will be compared to the direct
estimate for that same reference year. For example, data from survey year 15 will
generate a direct estimate for survey year 15 and a Brass estimate for a reference
period of approximately 6 years prior. The Brass estimate, estimating 5q0 in Year 9,

will be compared to the direct estimate for Year 9 to gauge accuracy.

Finally, for each simulation, 100 different datasets were generated. Each direct and
indirect estimate for a specific year is the average across all of these simulations. In

some cases, such as overall reference period and overall deviations between the

85



Chapter 4: Results
direct method and the indirect estimate, averages across each simulation are then

averaged over the forty-year simulation period, for simple comparison purposes.

Baseline Comparisons

[ first examined how Brass and each IHME estimate compare to direct estimate in a
simulation that mimics a population experiencing linearly declining mortality and
fertility. This simulation presents a baseline for understanding how each method
compares in an normal situation before examining how each method performs in a

complex emergency.

Brass

Figure 3 shows the average of the estimated 5q0s generated by the Brass method
and the average generated by the direct method for each year across a forty-year
simulation period. Note that the x-axis begins at the year -13; this is due to the fact
that Year 0 denotes the starting point of the humanitarian emergencies in the four
emergency simulations and the scale of the x-axis represents time in relation to Year
0. Having applied this to the figures derived from the humanitarian emergency
scenarios, for consistency, the figures for the baseline scenario are presented in the

same fashion.
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Across the forty-year simulation period, the 5q0 declines from an average of .244
across the 100 simulations to an average of .152; the Brass estimates decline from
.244 to .156 over the same period. Across the time period, when the Brass estimate
for the reference year is compared to the direct estimate in that reference year, the
estimates are very close (Figure 4a), although across all years, the average of the
Brass estimates is slightly elevated. There is no significant difference between the
accuracy of the Brass estimate at higher, versus lower, levels of mortality. For
comparison, I have also included a graph that demonstrates the difference between
the direct estimate and the Brass estimate if the Brass estimate is applied to the
survey year rather than the reference year (Figure 4b). When misapplied in this
way, the under-5 mortality rate is consistently over-estimated in a non-crisis
setting. Although this is not standard practice, I have shown this result here to
facilitate a comparison to the crisis settings when the adjustment from the survey

year to the reference year becomes problematic.
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Figure 4: Average across 100 simulations for 5q0 estimates derived from direct and Brass
methodology by year - baseline scenario
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Table 16 below summarizes the average deviation of the Brass estimates from the
direct estimates across the 40-year simulation period. It also includes the average
reference period derived for the Brass estimates using all data across the forty-year
simulation period and the average difference and average absolute difference

between the direct and indirect methods across the simulation period.
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Table 16: Average of direct and Brass estimates (deaths per 1,000 live births) and deviations
across all simulations and years - baseline scenario

Average across 40 years

Direct 197
Brass 200
Mean reference period 6.15

Mean difference
(Indirect-direct)

Mean absolute difference 7

On average, across all simulations and years, the Brass method overestimates the
direct estimate by 3 deaths per 1,000 live births, slightly over 10% of the average
direct estimate. The mean absolute difference of 7 deaths per 1,000 live births
indicates that the Brass method both over- and underestimated mortality across the

simulations.

In terms of absolute differences, Figure 5 below shows the distribution of the
difference between the simulation-specific direct estimate and the simulation-
specific Brass estimate across the 40-year simulation period. In only 95 out of the
4,000 estimates, the absolute difference was greater than or equal to 10% of the
direct estimate, which on average is 19 of the 197 deaths per 1,000 live births. More
concretely, in 2% of all simulations, the absolute difference between the direct

estimate and the Brass estimate was greater than or equal to 20 deaths per 1,000
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live births and in 25% of the simulations, the absolute difference was greater than

or equal to 10 deaths per 1,000 live births.

Figure 5: Distribution of differences between the simulation-specific direct and Brass
estimates across all simulations and year - baseline scenario
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As the methodology for the Cohort-Derived methods (MAC and TFCB) is the same, |

have combined the results in this section to better demonstrate the differences that
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arise when using maternal age information versus time since first birth to define

cohorts of women.

The MAC and TFBC methods estimate a separate 5q0 for each age group or time
since first birth group (TFBC group). In comparison, the Brass method estimates
5q0 using data only from the age group 30-34, estimating 1q0, 2q0, 3q0 using data
from the younger age groups and 10q0, 15q0, and 20q0 using data from the older
age groups. Thus from any one survey, the MAC or TFBC method will supply seven
separate 5q0 estimates and seven separate reference periods, while the Brass
method will supply one 5q0 estimate and a corresponding reference period. The
MAC and TFBC estimates, therefore, generate separate probabilities of dying for
women of each age or TFBC group and do not generate one population-level
estimate. The point estimates for the reference years can be compared to the direct
estimates, as [ do below, or the methods can be smoothed using the Loess Smoother.
Table 17 below summarizes the average reference period and the average mean
difference between the direct estimate and the method-specific estimate using data

from all simulations and years.

The MAC method point estimates are generally a better approximation of the direct

estimate than the TFBC estimates. The exceptions to this are for the two youngest
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age groups and most recent TFBC groups!. In these groups, the MAC method
underestimates the direct method, while the TFBC method overestimates the
method by a similar amount. While the MAC method point estimates are on average
an underestimate of the direct method in the reference year, the estimates for age
group 30-34, 35-39 and 40-44 are all close to the direct estimate over time, with
their average means differing from the mean direct estimate by between 5% and
less than 1% of the direct estimate (Table 17). The lowest mean difference is found
for the age group 40-44, which differs from the overall mean estimate by .2%.
However, these estimates refer to time periods that are on average 15 years prior to

the year of the survey (Table 17).

The TFBC method overestimates under-5 mortality, particularly amongst women
who had their first birth 25-29 and 30-34 years ago; on average and across the time
interval, the TFBC overestimates the direct estimates by 106% and 196%,
respectively (Table 17). Estimates from younger women appear to be more reliable,
particularly among women who gave birth 5-9 years prior to the survey. With a
reference period of 3.4 years, the estimates are much closer in time to the survey

year than the most accurate estimates generated by the MAC method. Even so, the

1 When referring to “most recent” TFBC groups, I am referring to the cohort of women who had their
first birth either 0-4 years prior to the survey or 5-9 years prior. Conceptually, most recent TFBC
group is equivalent to youngest age group and least recent TFBC group is equivalent to oldest age
group.
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total mean of the TFBC estimate for group 5-9 differs from the total mean direct

estimate by approximately 10%.

Table 17: Mean reference period and differences (deaths per 1,000 live births) comparing
direct and MAC and TFBC method estimates by age group and time since first birth group

across all years and simulations - baseline scenario

MAC Method TFBC Method
Time
Mean % of ) Mean % of
Mean . Since Mean )
Age  Reference . Direct . Reference . Direct
} Difference ] First ) Difference )
Period Estimate ) Period Estimate
Birth
15-19 1.3 -97 49.3 0-4 1.6 80 40.7
20-24 3.12 -46 229 5-9 3.4 20 10.2
25-29 5.8 -19 9.7 10-14 3.4 50 25.4
30-34 8.4 -6 3.0 15-19 6.0 100 50.8
35-39 11.8 4 2 20-24 5.8 90 45.7
40-44 15.3 -2 d 25-29 11.1 210 106.3
45-49 18.7 13 6.6 30-34 17.7 380 196.3

Figure 6 (below) shows the estimates of 5q0 for each group in the corresponding

reference year and the corresponding direct estimate of 5q0 for that year. Each

figure also has the smoothed method-specific Loess line generated using data from

all survey years. In keeping with IHME recommendations, the age group 15-19 was

dropped when generating the Loess line for the MAC method.
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Figure 6: Average point estimates across 100 simulations using MAC and TFBC methods and
average of the Loess smoothed estimates - baseline scenario
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To show a distribution of differences for each simulation across each year is difficult
for the MAC and TFBC methods as single point estimates are not generated but
trends across time. It is possible to isolate the mean of the predicted value for a
specific year however, so [ have shown the mean of the predicted value estimated by
the smoothed MAC method and the smoothed TFBC method for a single year. In this

case, the mean estimates for the predicted value for Year 0 generated from the
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smoothed MAC and smoothed TFBC are compared to the direct estimate for Year 0
(Figure 7 below). In the majority of simulations, the estimate predicted by the
smoothed MAC method for Year 0 underestimates the direct estimate; however the
average difference is -.012, or 12 deaths per 1,000 live births. This is less than 10%
of the direct estimate. The Time since First Birth Cohort derived method does not
perform as well, consistently overestimating the direct estimate by a significant
degree. This is due to the extremely overestimated 5q0s estimated for the cohorts
that had their first births over 25 years ago. On average, the TFBC method
overestimates the direct value in Year 0 by .132, or 132 deaths per 1,000 live births,

almost double the direct estimate of .197.
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Figure 7: Distribution of differences between direct estimates and smoothed MAC method (a) and smoothed TFBC method (b)
across 100 simulations in year 0 - baseline scenario
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Data from every year were used in the Loess procedure that generated the
smoothed estimates in Figure 6. The inclusion of data from every year leads to
consistent decline until approximately year 10, when fewer data points are available
and the methods show dramatic declines as a result of a dependence on the lower
estimates derived from younger cohorts/ more recent first births. When the Loess
smoother incorporates less data, as is done in Figure 8, the trend in child mortality
is less stable. In this case, only data from Year 0 is used to generate the MAC and
TFBC point estimates which are then smoothed with the weighted Loess. While the
smoothed MAC method does a reasonable job of estimating mortality eight to fifteen
years previous (as we would expect from Table 17), it underestimates mortality in
the five years previous to the survey. Contrastingly, the TFBC method shows a rapid
decline in mortality over time from levels that are significantly above baseline and
an increase in mortality in the three years previous to the survey. Using data from
Year 0, the TFBC method estimates a decline in mortality from .623 to .285 over
approximately 15 years and then an increase to .290; however the true decline,

estimated from the direct method is a decline from .253 to .214.
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Figure 8: Average across 100 simulations of 5q0 estimates derived from direct and Loess
smoothed MAC (a) and TFBC (b) using data from Year O - baseline scenario
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For each survey year, the MAP and TFBP methods each generate 25 separate 5q0
estimates and a corresponding reference year (in intervals of 1 year beginning .5
years prior to the survey year). In the interest of clarity, I have not shown the point
estimates for every reference year in Figure 9 (below); instead, I have shown only
the estimates for the three most recent reference periods derived using the period-
derived methods of .5, 1.5, and 2.5 years. This is because the purported advantage

to these methods is their ability to produce recent estimates of under-5 mortality
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and it is of particular interest to know how well these recent estimates approximate
the direct estimate. [ have also shown the smoothed Loess trend for the MAP and

the TBFP utilizing all point estimates derived from data for every survey year.

When using data from all years, both of the smoothed estimates produce trends that
are close to the direct estimate, although slightly elevated. When the weighted
Loess reaches Year 20, and there are fewer data points available, the estimates are
skewed downwards as a result of the consistent underestimation of mortality in the

reference year of .5 years prior to the survey.

Figure 9: Average across 100 simulations of 5q0 estimates derived from direct and Loess
smoothed MAP (a) and TFBP (b) using data from all years - baseline scenario
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As with the cohort-derived methods, when data from only one year is used in the
Loess Smoother there is less accuracy in the trend lines over time. Figure 10
(below) shows the trend in child mortality predicted by each period-derived
method when only data from Year 0 are used. The TFBP method underestimates
mortality in the two years prior to the survey and overestimates it in the years prior
to that, while the smoothed MAP method generates a close prediction for the most

distant and most recent time periods and overestimates mortality in the interim.

Figure 10: Average across 100 simulations of 5q0 estimates derived from direct and Loess
smoothed MAP (a) and TFBP (b) using data from Year 0 - baseline scenario
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Table 18 shows the average difference between the method specific point estimates
derived for each reference year and the corresponding direct estimate for that year,
using data only from Year 0. It also shows the predicted mortality estimate for the
reference year that is generated using the Loess smoother. Years in which the
methods produce estimates that differ by more than 10 deaths per 1,000 live births

are highlighted below?.

Although the point estimates for the MAP method show a mean difference of less
than .001 from the direct estimate in Year 0, there is variation across the
simulations for both the MAP and TFBP methods, shown in Figure 11 (below).
Looking at only the most recent reference periods of .5 and 1.5 years prior to Year 0,
there are no simulations in which the direct estimate differs from the MAP estimate
by more than 10%. There are 68 simulations (out of 100) in which the TFBP
method differs by more than 10% of the direct estimate when using a reference
period of .5, but no simulations that differ by more than 10% when using a reference

year of 1.5, at year 0.

2 This level was chosen based on the comparison of UN-IGME and IHME estimates
developed by Alkema and You (2012).
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Table 18: Mean differences of direct estimates from MAP and TFBP unsmoothed and MAP and
TFBP Loess-smoothed estimates (deaths per 1,000 live births) for specified reference years
using Year 0 data - baseline scenario

MAP - MAP - TFBP - TFBP -
Year Period  Loess Period Loess
n=100 n=100 n=100 n=100
-24 -9 -6 0 1
-23 0 7 8
-22 3 11 11
-21 4 20 13
-20 15 6 26 15
-19 -8 8 -2 16
-18 10 7 18 15
-17 11 8 15 15
-16 11 11 22 17
-15 14 12 20 19
-14 11 13 16 18
-13 8 13 10 17
-12 21 16 26 18
-11 14 16 12 18
-10 24 18 30 20
-9 14 18 9 18
-8 15 20 18 19
-7 23 21 17 19
-6 22 18 25 14
-5 17 14 4 10
-4 5 10 5 4
-3 3 -7 -1
-2 1 -6 -6
-1 -2 -7 -13
0 0 -4 -25 -22
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Figure 11: Distribution of differences between simulation-specific direct method and MAP and
TFBP method for reference period of .5 and 1.5 years before Year 0 - baseline scenario
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Figure 12 (below) shows the estimates when all methods are combined and when
only the MAC/MAP methods are combined using data from all years are used; in
Figure 12 (a) estimates from the MAC, TFBC, MAP, and TFBP methods are combined
and in 12 (b), only MAC and MAP are used. The TFBC and TFBP methods, each
independently higher than the direct estimates, lead to an overestimate across all

years relative to the direct estimate when used in the combined method. However,
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when only the MAP and MAC methods are used, the combined method generate
estimates close to those of the direct estimate, until approximately 15 years prior to

the end of the simulation.

Figure 12: Average estimates across 100 simulations using weighted Loess Smoother; all
methods combined and maternal age methods only - baseline scenario
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The MAC/MAP Combination above incorporates data from every survey year
throughout the 40-year interval, using a total of 1280 points for smoothing per
simulation (32 points for each survey year and 40 survey years). The average of the

MAC/MAP Combination across the 100 simulations when only 32 estimation points
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from Year O are used is shown below in Figure 13. When there is no disruption in
linear mortality decline, the method consistently underestimates at reference points
approximately one to five years prior to the survey, and overestimates prior to this
point. The MAC/MAP combination closely estimates the direct estimate at the
survey year, however (Table 19). Although not shown here, the pattern above was
consistent across the five survey years of 0, 1, 5, 10, and 20. Across the years
examined, when the direct estimate of the reference year was compared to the
Combined MAC/MAP estimate, the difference was greater than 10% of the direct

estimate only in three of the 100 simulations in survey year 20.
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Figure 13: Average estimates across 100 simulations comparing direct and MAC/MAP
Combination method using only data from Year 0 - baseline scenario
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Table 19 below shows the average difference of the direct estimate from the yearly
estimates generated from both versions of the combined methods (using all four
methods and only the two maternal age methods) using data from Year 0. In almost
every year, the combination of all methods differs from the average direct estimate
by over 10 deaths per 1,000 live births, while the MAC/MAP method differs by more
than 10 deaths in 6 out of 25 years (shaded numbers in Table 19, below).
Importantly, for the most recent reference period, .5 years, before the survey, the
MAC/MAP combined estimate differs by only 4 deaths per 1,000 live births from the

direct estimate.
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Table 19: Mean difference (per 1,000 live births) of direct estimates from All Methods
Combined and MAC/MAP combined for reference years using data from Year 0 - baseline
scenario

Year All methods MAC/MAP
Combined Combined
-24 -26 -8
-23 -4 0
-22 16 4
-21 35 7
-20 53 10
-19 69 11
-18 81 10
-17 87 9
-16 84 9
-15 56 8
-14 27 7
-13 26 7
-12 36 9
-11 55 8
-10 53 9
-9 47 6
-8 40 6
-7 30 6
-6 35 0
-5 34 -12
-4 25 -19
-3 22 -21
-2 20 -18
-1 16 -12
0 14 -4

Table 20 compares the average estimates derived for Year 0 by each method, the
direct, Brass, the unsmoothed MAC, TFBC, MAP, TFBP, and the smoothed MAC,
TFBC, MAP, TFBP and the two smoothed, combined methods. It also includes the
average reference period between Year 0 and the year in which the survey was
conducted; for example, the estimate of child mortality for Year 0 would be derived

from a survey conducted approximately six years later. The unsmoothed MAC and

108



Chapter 4: Results

TFBC methods do not generate one point estimate for Year 0 so the age group of 25-
29, which has a comparable reference period to the Brass estimate (5.8 versus 6.2),
and the time since first birth cohort group of 15-19 (reference period of 6.0) are

shown below.

The unsmoothed MAP method, on average, gives the closest estimate to the direct
method, differing by less than .001, and derives the estimate for the same year as
the survey. The Brass method overestimates the direct estimate by, on average, 3
deaths per 1,000 live births, using data from Year 6 to estimate mortality in Year 0.
Finally, the combination of the MAC/MAP method underestimates the direct method
by an average of 4 deaths per 1,000 live births using data from Year 0. The
smoothed cohort methods show consistent underestimation when using the MAC
method and overestimation using the TFBC method, and both use data derived from
surveys after Year 0. In the case of the MAC method, Year 0 estimates can first be
derived using data 3.5 years after Year 0, while in the case of the TFBC method, Year
0 estimates can be derived using data from 1.5 years after Year 0. The method that
combined all four methods performs better than either of the individual cohort
methods or the TFBP method, does not perform as well as the combination of only

the MAC and MAP methods.
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Table 20: Comparison of averages across 100 simulations of estimates derived from all methods using data from Year 0 - baseline scenario

Unsmoothed Smoothed Combined
Direct Brass MAC TFBC MAP TFBP MAC TFBC MAP TFBP All l\lildii’/
Estimate
212 215 192 314 213 .188 166 291 .209 .191 227 .209
Reference Period
- 6.2 5.8 6.0 0 0 3.5 1.5 0 0 0 0
Mean difference
Indirect-Direct - .003 -.020 .102 <.001 -.025 -.054 .079 -.004 -.022 .014 -.004

Mean absolute
difference - .007 .020 102 .001 .025 .054 .079 .006 .022 .015 .007
Indirect-Direct
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Based on the above table, only the estimates derived from the MAC, the unsmoothed
MAP estimates, the smoothed MAC/MAP methods, and the Brass estimates will be
further explored in the context of humanitarian emergencies. However, because the
MAC method consistently underestimates mortality in years recent to the survey
and provides reliable estimates only after approximately 15 years, it will not be
shown in Table 21 below, which summarizes the estimates that are derived using
data from survey years Year 0, Year 1, Year 5, Year 10, and Year 20. The table
compares the direct estimate for the survey year and the estimates for child
mortality that are derived using data from that year and the corresponding

reference period.

For example, in Year 0, the direct estimate is .212. Using data from Year 0, the Brass
method estimates 5q0 of .230 for a reference period 6.27 years prior to the survey.
In that year, the direct estimate was estimated to be .226. The Brass method then
overestimated the corresponding direct estimate by 4 deaths per 1,000 live births
and the average of the absolute differences was .007 or 7 deaths per 1,000 live
births. When there are no disruptions in mortality, each of the methods performs
well, with a maximum difference from the direct estimate of 6 deaths per 1,000 live
births (unsmoothed MAP estimate). Both the MAP estimate and the MAC/MAP
estimate are able to predict mortality within .5 years of the survey year while the
Brass estimate is able to accurately predict mortality, but only for time periods 5-6

years prior to the survey.
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For each of the five years, Table 21 also summarizes the number of simulations in
which the Brass estimate and the direct estimate differ by 10% and 20% of the
direct estimate for the reference year. In the case of linearly declining mortality,
differences were greater than 10% a maximum of 5 times. In no simulation across

the five time periods, did the estimates differ by more than 20%.
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Table 21: Comparison of direct and selected indirect methods for five time points (n=100) - baseline scenario

Time Point and Estimate

Year 0 Year 1 Year 5 Year 10 20
Direct Estimate: .212 | Direct Estimate: .210 Direct Estimate:.201 | Direct Estimate: .190 Direct Estimate:.167
MAP- MAC MAP - MAC MAP- MAC MAP - MAC MAP - MAC

Measure Brass  pefs MAPf Brass  pefs MAP/ Brass  pef s MAPf Brass  pefs MAP’! Brass  pefs MAP/
Reference -6 0 0 -5 1 1 -1 5 5 0 6 6 4 10 10
Year
Direct 5q0 -
Reference 226 212 212 224 210 210 214 201 201 204 .190 .290 182 167 167
Year
Indirect 5q0 -
Reference 230 212 .209 228 211 207 218 202 .199 .205 192 .189 .186 173 170
Year
Average of
differences 004 000 -004| .004 001 -003 | .004 002 -001| .001 .002 -001 | .004 .006 .004
Indirect-
Direct
Average of
absolute 007 006 006 .008 .005 .006 .008 .005 006 007 .005 .005 007 .007 .006
differences
% where
differences

3 0 0 4 0 0 1 0 0 1 0 0 5 0 3
greater than
10%
% where
differences

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

greater than
20%
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Humanitarian Emergencies 1-4

There are three aspects to determining how well a method performs in
humanitarian emergency that will be explored here; 1) how quickly an increase
mortality can be detected by the method, and similarly how long after an emergen
begins must the researcher wait to obtain estimates for the crisis period; 2) hc
well the method actually predicts the level of mortality in an emergency and final
3) how long after a crisis period ends will estimates from a method be biased

previous increases in mortality.

Four mortality patterns were simulated for the humanitarian emergencies: a hi
but short spike in mortality characterizes Humanitarian Emergency 1 (HE 1), am:
increase in mortality over a five-year period is simulated in HE 2, high probabiliti
over a period of 3 years are applied in HE 3, and HE 4 is modeled by inducing o

year spikes in mortality, followed by five years of decline, over a period of 18 year:

Based on the comparisons of methods in the baseline scenario, particularly t
distribution of the differences between the direct and the method specific estimat
I have chosen to show here only the comparisons of Brass, MAC, MAP, and t
combined MAC/MAP methods. Although the MAC method did not perform as w
as either the Brass or MAP method in the baseline scenario, because it is used in t
combined MAC/MAP estimator, the preferred method of analysis according

[HME, I will show how well it performs in the Humanitarian Emergency scenarios.

114



Chapter 4: Results

Brass

Figure 14 and Figure 15 (below) depict the patterns of mortality in each emergency
scenario. Due to the differences in scale between HE 1/HE 3 and HE 2/HE 4, [ show
the patterns separately initially, allowing for a better understanding of the patterns
seen when mortality increases are less extreme. In Figure 14, HE 1 and HE 3 are
shown on a scale of 0 to .8. This is equivalent to an 80% probability of a child dying
by their fifth birthday. This is an extremely high level of mortality and cannot really
exist for extended periods of time, however these scenarios are shown here to
demonstrate the ability of each method to estimate extreme shifts in mortality.
Although HE 1 and HE 3 had similar mortality parameters programmed initially, the
mortality increase in HE 1 appears lower that in HE 3. This is a result of the
increased probability for death being applied for only a two-month period in HE 1
but 5q0 being estimated over an annual period, masking the extreme level of

mortality that might be expected.

In all of the scenarios, when Brass estimates are adjusted to the reference year, the
increase in mortality appears to have occurred between five and ten years before
the actual increase in mortality and the estimates during the crisis are considerably
less than the actual estimate. While the abrupt increase in mortality in HE 1 and HE
3 are partially captured by the Brass method, the equally abrupt return to lower
mortality is not. Rather, the Brass method shows a slow decline in child mortality

over a ten-year period in the case of HE 1 and a twenty-year period in HE 3.
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Figure 14: Average across 100 simulations of 5q0 estimates derived from Brass and direct
methods in Humanitarian Emergency situations 1 and 3
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In HE 2, which has elevated mortality for five years, the Brass estimator shows a

more gradual increase and decrease in under-5 mortality than actually occurs

(Figure 15).

fluctuations over time.

Finally, in HE 4, the method is not able to differentiate between

Rather, the Brass method predicts an almost constant

mortality level across the fifteen years of crisis, remaining slightly elevated prior to

the crisis and very close to the direct estimates after the crisis.
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Figure 15: Average across 100 simulations for 5q0 estimates derived from Brass and direct
methods in Humanitarian Emergencies 2 and 4
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If the data are not centered to the reference year, the increase in mortality is

generally closer in time to the true crisis period (Figure 16). For example, in HE 1

above, when the data was appropriately centered to the reference year, the increase

in mortality estimates started approximately seven years prior to the crisis period.

When the data is not centered, the increase in mortality begins during the crisis

period. However, when this is done, the method consistently overestimates

mortality in the subsequent non-crisis period.
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Figure 16: Average across 100 simulations for 5q0 estimates derived by direct and Brass methods for four humanitarian emergency
scenarios - not adjusted to reference year
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Table 22 below summarizes the comparison of the Brass estimates to the direct
estimate for the four humanitarian emergency scenarios using data from Year 0 and
the estimates that are derived for Year 0, using data from Year 6. When data are
used from the first year of the crisis period, the Brass method overestimates
mortality in the reference period. This overestimate is strongest when mortality
spiked and drops in a short time period (HE 1). When mortality is increased for a
longer duration, the increase in mortality estimated by Brass is more gradual (as
seen in Figure 14, above and Table 22, below). When estimating mortality that took
place in approximately Year 0, using data from Year 6, the methods all
underestimate the true amount, except in the case of Humanitarian Emergency 2. In

this case, only 9 simulations differed by more than 10% of the direct estimate.

Table 22: Average of 100 simulations comparing direct and Brass estimate for Year 0 and Year
6 in four humanitarian emergency scenarios

Year of ‘Survey’ and HE model

Year 0 Data Year 6 Data
Measure HE 1 HE 2 HE 3 HE 4 HE 1 HE 2 HE 3 HE 4
Reference Period 6.29 6.48 6.52 6.48 6.21 6.21 6.48 6.32
Direct 5q0 - 226 224 225 227 556 251 701 254
Reference Year
Indirect 5q0 - 314 233 284 232 272 250 455 229
Reference Year
Average of
differences Indirect- .088 .009 .061 .005 -.284 -.001 -.245 -.024
Direct
Absolute value of 081 .008 003 006 276 01 125 02
differences
% where
differences greater 100 17 100 20 100 5 100 48
than 10%
% where
differences greater 100 5 57 0 100 0 100 3
than 20%
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Finally to see how long the Brass method is affected by disruptions in mortality,
Table 23 (below) summarizes the survey year in each humanitarian emergency in
which 90% of the average Brass estimates differed by less than 10% from the direct
estimate for the corresponding reference year and the corresponding reference

period for that time.

Table 23: Survey year and reference period in which 90% of simulations differ by less than
10% from direct estimate

HE 1 HE 2 HE 3 HE 4
Survey Year 13 16 15 18
Reference Period 6.42 6.51 6.24 6.41

MAC, MAP, and Combined

Figure 17 and Figure 18 show estimates derived from the MAC methods over the
40-year time interval for each scenario. Figure 17 summarizes the MAC results for
HE 1 and HE 2, and Figure 18 does the same for HE 2 and HE 4, showing the average

point estimates for each age group across the 100 simulations for each year.

Before smoothing, the MAC method captures an abrupt uptick in mortality in HE 1
and HE 3 but centers the increase prior to the emergency, similar to the Brass
method. The sharp increase in mortality is captured best by the age groups 15-19
and 20-24, which center the increase approximately one and three years prior to the
emergencies, respectively. The levels estimated from these two age groups largely
underestimate the direct estimate, however. In HE 2, the youngest age groups

capture some increase in mortality, but the fluctuations are largely lost in the older
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age groups. When the MAC methods are used in HE 4, there is very little fluctuation

in the estimates, missing the sharp increases over time.

Figure 17: Average across 100 simulations of MAC 5q0 estimates and direct estimates in two
high mortality emergency scenarios
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Figure 18: Average across 100 simulations of MAC 5q0 estimates and direct estimates in two
low mortality humanitarian emergencies
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Figure 19 and Figure 20 (below) show the corresponding MAP estimates derived
from each scenario. The MAP methods, particularly for the reference periods of .5
and 1.5 years prior to the survey, capture the increases in mortality across each of
the humanitarian emergencies, but the estimates in HE 1 and HE 3 are significantly
below the direct estimates during the crisis period. In HE 1, the MAP method
returns to baseline levels by year 10, but in the HE 3 scenario, continues to
overestimate the direct estimates through the end of the evaluation period. For HE

2 and HE 4, the MAP method overestimates the mortality rate at the end of the crisis

122



Chapter 4: Results

period and continues to slightly overestimate 5q0 through the end of the simulation

period, although the values are not as variable as the other scenarios (Table 26 -

Table 29, below).

Figure 19: Average across 100 simulations of estimates for three reference period derived
using MAP methodology and average direct estimates in two high mortality humanitarian

emergency scenarios
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Figure 20: Average across 100 simulations of estimates for three reference periods derived
using MAP methodology and average direct estimates in two low mortality humanitarian
emergency scenarios
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Table 24 below shows the point estimates for a reference period of .5 years using
data from Year 0, the crisis period, and Year -1, the year prior. In HE 1, when the
increase in mortality is sudden and for a short duration, in the year prior to the
emergency, the mean MAP estimate differs from the mean direct estimate by less
than 1 death per 1,000 live births. The difference is greater for HE 3 (.017), but is
still less than the differences for HE 2 and HE 4. When mortality increases suddenly
in Year 0, the MAP estimate does capture some of the increase in HE 1 and HE 3,

increasing by .081 and .076, respectively, but it does not capture the true extent of
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the increase (.342 and .485, respectively). When the mortality increase is of a
longer duration, such as in HE 2 and HE 4, the MAP estimate overestimates
mortality in the year prior to the crisis period, by 19 deaths per 1,000 live births and
20 deaths per 1,000 live births respectively, and does not show an appreciable
increase in mortality in the following year, increasing by only 4 deaths per 1,000 live

births in both scenarios.

Table 24: Average of 100 simulations comparing direct and MAP estimates (reference year .5)
for Year -1 and Year 0 across four humanitarian emergency scenarios

Year -1 Year 0

HE 1 HE 2 HE 3 HE 4 HE 1 HE 2 HE 3 HE 4
Direct 590 214 214 216 213 556 251 701 254
Indirect 5q0 215 233 232 232 296 237 308 236
Average of
differences Indirect- | <.001 .019 017 .020 -.260 -.015 -.392 -.019
Direct
Absolute value of <001  .019 017 021 261 017 389 013
differences
% where
differences greater 0 45 37 45 100 23 100 28
than 10%
% where
differences greater 0 4 0 8 100 0 100 0
than 20%

As with the baseline scenario, the estimates from the MAC and MAP methods were
smoothed using the Loess smoother to show the trend predicted by the IHME
method, rather than the specific point estimates. In Figure 21 below the smoothed
MAC and MAP estimates and the smoothed combined estimates are shown along

with the direct estimate3.

3 Point of clarification. For each individual survey year, the IHME methods will predict a trend after
smoothing by the Loess. Thus the Loess smoother when applied to all data effectively combines all of
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When the MAC and MAP methods are smoothed using the Loess smoother, the
fluctuations in mortality that are captured by the non-smoothed point estimates are
almost entirely eliminated. Particularly problematic is the scenario in HE 4, where
none of the methods show fluctuating mortality, instead showing constant or slowly

declining mortality over time.

the smoothed data trends over time. However, the direct estimate generates only one point estimate
for child mortality. While it may appear that the direct method is smoothed, it is actually the
connection of the individual annual averages over time.
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Figure 21: Comparison of direct, ,smoothed MAC, smoothed MAP, and smoothed MAC/MAP combined across four humanitarian emergencies
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Error! Reference source not found. below summarizes how well the smoothed
IHME estimates predict the mortality levels and the timeliness of the estimates in
the four emergencies. All of the methods are able to predict a peak in mortality
within five years of the crisis period for HE 3, although all methods underestimate
the peak in mortality by almost 50%. Only the smoothed MAC method is able to
detect any increase in mortality over the simulation period, predicting an increase
in mortality at Year -7. The smoothed MAP and smoothed MAC/MAP method do not
show any increase in mortality over the time period for HE 1. In HE 2 and HE 4, the
increase in mortality is completely obscured by the smoothing for all methods, with

none of the variants predicting an increase in mortality over the simulation period.

Table 25: Comparison of peak mortality year and level derived from direct method, smoothed
MAC, smooth MAP, and MAC/MAP combined

Peak Mortality Peak Mortality
Year Estimate

Direct Method
HE 1 0 556
HE 2 4 556
HE 3 il 721
HE 4 12 .255
MAC Smoothed
HE 1 -7 263
HE 2 -13 242
HE 3 -2 390
HE 4 -13 230
MAP Smoothed
HE 1 -13 287
HE 2 -13 271
HE 3 -3 384
HE 4 -13 .259
MAC/MAP Smoothed
HE 1 -13 273
HE 2 -13 .258
HE 3 -3 .387
HE 4 -13 .245

Figure 21 show the patterns that arise when data from every year are included in

the Loess smoother. However, it is more likely that data from only one or two
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survey rounds would be available to a researcher. Thus, Figure 22 - Figure 25 show
how well the smoothed methods predict mortality when only one year of data is
used. The data that re used in the figures below are from Year 0, Year 1, Year 5 and
Year 10 and demonstrate both how well smoothed estimates predict the point
estimate for the given year and the trend over time as mortality declines from crisis

levels.

Beginning with HE 1 (Figure 22) when the analysis is restricted to data from only
one year, the MAC, MAP, and MAC/MAP Combined overestimate the under-5
mortality rate trend. At both Year 0 and Year 1, the estimates for the survey year
and the predicted trend prior to the crisis period are elevated, however, they do not
reflect the sharp increase of the emergency itself. By Year 5, the estimates for the
survey year derived from the MAP and the MAC/MAP combined methods slightly
overestimate the direct estimate and by Year 10 are comparable to the direct
estimate. The trend of child mortality in the past, however, is consistently
overestimated. After the crisis period, the MAC method consistently underestimates
5q0 up to five years prior to the survey and overestimates 5q0 in the more distant

past.

In HE 2 (Figure 23), the MAC estimate consistently underestimates mortality for the
survey year and approximately five years previously. In Year 0, when mortality has
not been raised for a long period of time, the trend that is predicted by the MAC

method differs from the direct estimate on average by less than 10% for all survey
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years prior to Year -5. However, after Year 0, when the increase in mortality
remains sustained, the predicted MAC trend is elevated above the direct estimates.
This pattern is repeated in the MAP and MAC/MAP. While the estimate for the
survey year predicted by the MAC methods is always an underestimate, in Year 5,
the estimates predicted by both the MAP and the MAC/MAP combined method (.251
and .252, respectively) are an overestimate of the direct estimate (.210). In Year
10, 10 years after the crisis period, both methods continue to predict estimates
above the direct estimate of .208, both by approximately 18 deaths per 1,000 live

births.

The large and sustained increase in mortality seen in HE 3 leads to significant
overestimates in the trends predicted by all of the methods when data from only
one year is used, except during the crisis period itself (Figure 24). The smoothing of
the estimates masks most of the increase in mortality during the crisis period itself
and leads to consistent overestimation over time. As with the other methods, the
MAC method, when smoothed, is unreliable close to the survey period. While the
MAP and MAC/MAP Combined method return to baseline levels by Year 10 in the
HE 1 scenario, the levels remain too high even 10 years after the crisis in HE 3. By
Year 10, when the direct method estimates mortality at .206, the smoothed MAP and

MAC/MAP estimates are .302.

The increase in mortality in HE 2 and HE 4 in Year 0 is the same, and this is reflected

in the similarity of patterns of the MAC, MAP, and MAC/MAP Combined method
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derived from Year 0 in both scenarios (Figure 23 and Figure 25). The levels
estimated using the smoothed MAP in Year O for HE 2 and HE 4 are .227 and .226,
respectively, while the levels estimated using MAC/MAP Combined is .226 for both
scenarios. When mortality remains elevated, such as in HE 2, the methods continue
to underestimate mortality. In Year 1, 32% of the MAC/MAP estimates differ by
more than 10% from the direct estimate. However, if mortality decreases, such as in
HE 4, the smoothed MAP estimate differs by only 6 deaths per 1,000 live births and
only 12% of the MAC/MAP estimates differ by 10% or more. However, the
smoothed methods are not able to capture fluctuation. When mortality increases
again in Year 6, 50% of the smoothed MAP method and 52% of the smoothed

combined estimates differ by more than 10% from the direct estimate.
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Figure 22: Comparison of direct, smoothed MAC, smoothed MAP, and MAC/MAP combined using data from specified survey year only -
Humanitarian Emergency 1
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Figure 23: Comparison of direct, smoothed MAC, smoothed MAP, and MAC/MAP combined using data from specified survey year only -
Humanitarian Emergency 2
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Figure 24: Comparison of direct, smoothed MAC, smoothed MAP, and MAC/MAP combined using data from specified survey year only -
Humanitarian Emergency 3
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Figure 25: Comparison of direct, smoothed MAC, smoothed MAP, and MAC/MAP combined methods using data from specified survey year
only - Humanitarian Emergency 4
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After smoothing, the MAP and the MAC/MAP combined methods generate very
similar estimates. However, when the MAP method is left unsmoothed it is better
able to capture fluctuations in mortality, as we have already seen. To compare the
better performing methods, the estimates from the Brass methodology, the
unsmoothed MAP method with a reference period of .5 years, and the smoothed
MAC/MAP combined methods are shown in Table 26 - Table 29 below. For each
humanitarian emergency, estimates from six different years are derived using the
Brass method, the unsmoothed MAP method, and the MAC/MAP combined method
and compared. In each table, the direct estimate for the survey year is given, in
addition to the indirect estimate derived from that survey year, the reference
period, and the differences between the corresponding reference year and the

estimate.

In addition to the years specified in the baseline scenario (Table 21), I have included
Year 6. I have done this in order to illustrate the ability (or inability) of the Brass
method to estimate the 5q0 of the crisis period after approximately six years (the
average reference period for the Brass estimates) has passed. Although by Year 6,
the mortality rate has returned to baseline in scenarios HE 1, HE 2, and HE 3, it is of
interest to compare the estimates for the crisis period and the estimates derived

from the Brass method for that time period.

In HE 1 (shown in Table 26 below), both the MAP and MAC/MAP Combined

methods estimate 5q0 for the survey year and both predict numbers that are
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significantly lower than the actual mortality rate. One hundred percent of the
simulations differ by more than 20% from the direct estimate. Although it would
appear that the Brass estimate has a much lower relative error, this is because the
Brass estimator generated is for a period of 6.3 years prior. In a year when child
mortality approaches .556, the Brass method generates a point estimate of .314 for
six years prior. When data from Year 6 is used, the Brass estimate is .272, less than
half of the true mortality level in Year 0. Approximately ten years after the crisis
period, the Brass method overestimates mortality, with 64% of the simulations
differing by more than 10% from the direct estimate and all of these differences
positive. On average, the simulations overestimate mortality by 25 deaths per 1,000
live births. By Year 20, the Brass method predicts a 5q0 of .194, an overestimate of
approximately 4 deaths per 1,000 live births in the corresponding reference year
and only 2 simulations differ by more than 10% from the direct estimate. Both the
MAP and MAC/MAP continue to overestimate mortality to a greater extent than the
Brass method as late as Year 20; in Year 20, the unsmoothed MAP method
overestimates by approximately 10 deaths per 1,000 live births and the smoothed
MAC/MAP overestimates by approximately 7 deaths, and 16% and 12% of

simulations differ by more than 10% of the direct estimate in this year, respectively.

For the second humanitarian emergency scenario (Table 27), when the crisis period
begins, the direct estimate is .251. The Brass method predicts a 5q0 of .233 for a
period 6.48 years prior to the survey, in which the direct method estimates a

mortality level of approximately .224. When data from Year 6 is used, the Brass
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estimate predicts mortality for Year 0 of .250, an underestimate of only 1 death per
1,000 live births. In Year 0, the unsmoothed MAP method predicts a 5q0 of .237 and
in approximately one-quarter of the simulations (23%), the difference between the
direct estimate and the MAP estimate is greater than 10%. The combined method
predicts a 5q0 of .226 for the year and slightly more than half (51%) of the
MAC/MAP combined estimates differ by more than 10% from the simulation
specific direct estimate. The MAC/MAP combined method underestimates mortality
by 25 deaths per 1,000 live births in the first year of the crisis, while the MAP
method underestimates by approximately 15 deaths per 1,000 live births. In Year 5,
when mortality has started to decline, the Brass method continues to overestimate
mortality prior to the crisis period, with 90% of simulations overestimating
mortality by more than 10% of the direct estimate. The mean of the absolute
differences and the mean difference are both .039, indicating that all deviations are
positive and that on average, the Brass method overestimate mortality by 39 deaths
per 1,000 live births. By Year 20, all of the estimates generated by the indirect
methods overestimate the direct estimate. While the Brass method on average
overestimates the direct estimate by 2 deaths per 1,000 live births 16% of the
simulations differ by more than 10% and 5% of the simulations differ by more than
20%. In the same survey year, 43% of the unsmoothed MAP estimates and 22% of

the smoothed MAC/MAP estimates differ by more than 10% of the direct estimate.

The pattern seen in HE 3 is similar to, though more drastic than, the pattern seen in

HE 1, and is shown in Table 28 below. The Brass method overestimates mortality in
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the time period prior to the crisis period, and underestimates during the crisis
period by approximately 246 deaths per 1,000 live births. In every year, except
Year 20, every Brass estimate differs by more than 10% from the direct estimate,
always overestimating the direct estimate, except when estimating crisis mortality.
Only in Year 20 is there a change in this pattern, when 25% of the estimates differ
by more than 10%. In every year, all of the MAP estimates and the MAC/MAP
estimates differ by more than 20% from the direct estimate, except for two out of
100 and four out of 100 simulations, respectively in Year 20. As with the Brass
method, both the IHME methods underestimate mortality in the crisis period and
overestimate mortality in the non-crisis years. Even 20 years after the crisis began,
the MAP and MAC/MAP combined methods significantly overestimate mortality, by

77 deaths per 1,000 live births and 70 deaths per 1,000 live births, respectively.

In HE 4 (Table 29), in the years in which crisis parameters are applied, Year 1 and
Year 6, the MAP method has the smallest mean differences relative to the direct
method and the smallest absolute value of these differences for estimates for that
year. Using data from Year 0, the Brass estimates have lower absolute differences
then the MAP method, but this refers to the reference year and estimate of Year -6.
When using data from Year 6, referring to Year 0, the differences between the Brass
method and the direct method are larger than those generated from the MAP
method. In years when mortality is declining, the absolute differences of the MAP
and MAC/MAP methods are comparable, but the MAC/MAP Combined method has

fewer simulations in which the estimates differ by more than 10% from the direct
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estimate. Although mortality fluctuates by approximately 40 deaths per 1,000 live
births over the crisis period, the Brass estimates differ by no more than 5 deaths per
1,000 live births, the unsmoothed MAP estimates by no more than 7 deaths per
1,000 live births, and the smoothed MAC/MAP methods by no more than 7 deaths

per 1,000 live births.
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Table 26: Comparison of direct and selected indirect estimates (Brass, unsmoothed MAP (reference period .5), MAC/MAP smoothed
combined) for six time points - Humanitarian Emergency 1

Survey Year, Estimate, and Method

Survey Year 0
Direct Estimate:
.556

Survey Year 1
Direct Estimate: .219

Survey Year 5
Direct Estimate: .210

Survey Year 6
Direct Estimate: .207

Survey Year 10
Direct Estimate: .197

Survey Year 20
Direct Estimate: .175

Measure

Bras MAP -
s Ref .5

MAC/
MAP

MAP -
Ref .5

Brass MAC/

MAP

MAP -
Ref .5

Brass MAC/

MAP

MAP -
Ref .5

Brass MAC/

MAP

MAP -
Ref .5

MAC/
MAP

Brass

MAP -
Ref .5

MAC/
MAP

Brass

Reference
Year

Direct 5q0 in
Reference
Year

Mean 5q0 -
Reference
Year

Average of
Differences
Indirect-
Direct

Average of
absolute
differences

Differences
greater than
10%

Differences
greater than
20%

-6 0 0

226 .556 .556

314 .296 .286

.088 -260 -270

.088 261 270

100 100 100

100 100 100

-5 1 1

224 219 .219

307 284 273

.083 .065 .054

.083 .065 .054

100 100 100

100 100 85

-1 5 5

214 210 .210

279 .248 .240

.065 .038 030

.065 .038 030
100 97 88

96 32 8

0 6 6

556 207 .207

272 .240 234

-.284 .033 027

.284 .033 027
100 96 79

100 19 4

4 10 10

.204 197 197

.236 217 .215

.025 .020 .018

.025 .020 .018

64 50 39

14 20 20

.190 175 175

194 .185 .182

004 .010 .007

.006 .010 .008
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Table 27: Comparison of direct and selected indirect estimates (Brass, unsmoothed MAP (reference period .5), MAC/MAP smoothed
combined) for six time points - Humanitarian Emergency 2

Survey Year, Estimate, and Method

Survey Year 0 Survey Year 1 Survey Year 5 Survey Year 6 Survey Year 10 Survey Year 20
Direct Estimate: .251 Direct Estimate: .254 Direct Estimate: .222 Direct Estimate:.218 Direct Estimate:.208 Direct Estimate: .188
Measure Bras MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/
S Ref.b MAP Ref.b MAP Ref.b MAP Ref.b MAP Ref.b MAP Ref.b MAP
Reference -6 0 0 -5 1 1 | 5 5 0 6 6 4 10 10 14 20 20
Year
Direct 5q0 in
Reference 224 251 251 224 .254 254 214 222 222 251 .218 .218 .236 .208 .208 .204 .188 .188
Year
Mean 5q0 -
Reference 232 . 237 226 .239 .245 235 252 .264 .252 .249 .259 247 .235 .237 226 .203 .205 197
Year
Average of
P;;‘;gi‘:es 009 -015 -025 | .015 -009 -019 | 039 041 029 | -001 041  .029 | -021 030 018 | .002 .017  .009
Direct
Average of
absolute .013 .017 .026 .019 .014 .021 .039 041 .029 .012 .041 .029 .023 .030 .019 .011 .018 .010
differences
Differences
greater than 17 23 51 25 32 32 90 93 70 9 91 69 46 73 45 16 43 22
10%
Differences
greater than 5 0 1 8 0 0 44 42 14 0 41 15 0 25 6 5 12 4
20%
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Table 28: Comparison of direct and selected indirect estimates (Brass, unsmoothed MAP (reference period .5), MAC/MAP smoothed
combined) for six time points - Humanitarian Emergency 3

Survey Year, Estimate, and Method

Survey Year 0
Direct Estimate:

Survey Year 1
Direct Estimate:.721

Survey Year 5
Direct Estimate: .216

Survey Year 6
Direct Estimate: .216

Survey Year 10
Direct Estimate: .206

Survey Year 20
Direct Estimate: .181

701
Measure Bras MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/
s Ref5 MAP Ref5 MAP Ref5 MAP Ref5 MAP Ref5 MAP Ref5 MAP
Reference -6 0 0 5 1 1 1 5 5 0 6 6 4 10 10 14 20 20
Year
Direct 5q0 in
Reference 225 701 701 | 222 721 721 | 215 201 216 | 701 216 216 | 218 206 206 | .195 .181  .181
Year
Mean 5q0 -
Reference 284 308 292 | 381 418 390 | 472 422 380 | 455 393 354 | 372 323 302 | 200 257 251
Year
Average of
ﬂ;ﬁi‘;‘zces 061 -392 -409 | 163 -303 -332 | 256 206 .164 | -245 178 138 | .153 117 096 | .004 077  .070
Direct
Average of
absolute 061 392 409 | 163 303 332 | 256 206 164 | 245 178 138 | .153 117 096 | .015 077  .070
differences
%
Differences | ;00 100 100 | 100 100 100 | 100 100 100 | 100 100 100 | 100 100 100 | 25 100 100
greater than
10%
%
LT 72 57 100 100 | 100 100 100 | 100 100 100 | 100 100 100 | 100 100 100 0 98 96

greater than
20%
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Table 29: Comparison of direct and selected indirect estimates (Brass, unsmoothed MAP (reference period .5), MAC/MAP smoothed
combined) for six time points - Humanitarian Emergency 4

Survey Year, Estimate, and Method

Survey Year 0
Direct Estimate:

Survey Year 1
Direct Estimate: .223

Survey Year 5
Direct Estimate: .212

Survey Year 6
Direct Estimate: .253

Survey Year 10
Direct Estimate: .213

Survey Year 20
Direct Estimate: .205

254
Measure Bras MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/ | Brass MAP- MAC/

s Ref5 MAP Ref5 MAP Ref5 MAP Ref5 MAP Ref5 MAP Ref5 MAP
[EiEErEe 3 0 0 -5 1 1 1 5 5 0 6 6 4 10 10 14 20 20
Year
Direct 5q0 in
Reference 227 254 .254 | 221 223 .223 | 213 212 .212 | 254 253 253 | 216 213 .213 | 218 205 .205
Year
Mean 5q0 -
Reference 232 .236 226 | 234 .240 229 | 228 .233 222 | 229 .237 226 | 228 .233 223 | 220 223 213
Year
Average of
ﬂ;ﬁi‘;‘zces 005 -019 -028 | 014 -017 006 | 015 021 .010 | -024 -016 -027 | .012 .020 .010 | .002 .019 .008
Direct
Average of
absolute 013 020 029 | 017 018 012 | 016 021 013 | .025 018 027 | 015 021 014 | 014 019 .013
differences
%
Differences 20 28 58 34 39 12 32 53 21 48 17 52 28 50 21 19 44 23
greater than
10%
%
LT 72 0 0 2 2 5 2 1 9 2 3 0 1 1 8 5 2 8 2

greater than
20%
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Chapter 5: Discussion

This dissertation explores the ability of indirect estimation techniques to accurately
measure under-5 mortality in countries that have been affected by a humanitarian
emergency. While the findings confirm some of what is already known regarding
the Brass and IHME methodologies, this is the first paper to comprehensively
compare how these two methods perform in situations with fluctuating mortality,
looking not only on how well indirect estimation techniques measure mortality in
an emergency, but also how long after an emergency indirect estimates may be

affected by disruptions in mortality.

Table 30 below summarizes qualitatively how well each method performs in both

the baseline and overall humanitarian emergency scenarios.
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Table 30: Qualitative summary of findings by method

Method Summary

Brass Baseline - Slight overestimation of mortality (average of 3 deaths
per 1,000 live births) with an average reference period of 6.12 years

HE - Detects abrupt changes in mortality but estimates increases in
mortality prior to the survey period, extreme levels are not
captured, and declines are smoothed over time leading to
overestimation in post-conflict periods

MAC Baseline - Underestimation of mortality for youngest age groups
and recent time periods. Generally accurate for age groups 25 and
above and corresponding reference periods

HE - Age group 20-24 detects increases in mortality and centers the
increases two to three years prior to the crisis. Levels are
underestimated. Smoothing leads to overall increases and of
mortality and decline in estimates for the crisis period.

TFBC Baseline - Overestimation of mortality at all levels.
HE -Not shown
MAP Baseline - Smoothed MAP estimates overestimate mortality

between 5-10 years previous to survey but point estimates for .5
and 1.5 years are generally accurate

HE - Reference periods of .5 and 1.5 years detect abrupt change in
mortality but the level estimated for extreme changes is too low.
Point estimates are elevated after emergency generating
overestimates of mortality. When smoothed, estimates are too high
as a result of the crisis period and fluctuations are masked

TFBP Baseline - Underestimates mortality for most recent time periods
and overestimates mortality five years and more previous to survey.
HE - Not shown

All- Baseline - Overestimates due to inclusion of time since first birth
methods estimates
combined HE - Not shown

MAC/MAP | Baseline - Estimates for survey year are accurate, but mortality is
combined underestimated one to six years previous to survey.

HE - Smoothed estimates mask fluctuations and are elevated in non-
crisis periods as a result of mortality increases in crisis period.

Beginning with the baseline simulations, the findings are discussed in more detail

below.
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Baseline

Referring to the Brass method, my findings confirm those of Silva (2012) and others;
the Brass method performs comparably to direct estimation techniques in situations
in which there are gradual mortality and fertility declines. Using simulated data
with no reporting bias, that is, knowing exactly the age of the mother and the
number of children born and dead, the Brass method was able to estimate child
mortality within 10% of the direct method in 97.2% of the simulated annual
estimates. The average reference period of 6.12 years throughout the simulation
period, however, underscores a primary limitation of the Brass method even in a
situation with ideal data and demographic conditions. Having estimates of mortality
five to seven years previous to the survey year is not an efficient way to measure
program or policy impact and makes it difficult to keep track of progress in
improving child health. This limitation effectively excludes the Brass method as a
method of estimation in an emergency if the purpose is to measure rapid changes in

mortality associated with the emergency.

The IHME methodology, which includes four separate methods to measure under-5
mortality and two combined methods, had mixed success. The Maternal Age Cohort
Method (MAC) predicts seven separate 5q0s and their corresponding reference
periods from each round of survey data, one for each 5-year age group. On average,
the 5q0s that are predicted for the two youngest age groups, 15-19 and 20-24, were
significantly lower than the direct estimate for the corresponding reference year

(50% and 24% lower, respectively). As these age groups also have the most recent
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reference years, and are thus the best groups to estimate recent changes in
mortality, this is a significant limitation to using the MAC method alone if attempting
to estimate recent changes in mortality. While in this dissertation, the estimates
from the youngest age groups were consistent underestimates, [IHME notes that the
MAC method was more likely to overestimate than underestimate mortality in their
original development of the method (26). The coefficients were developed from a
multitude of datasets, including more recent datasets from countries in which
childbearing and mortality have decreased (26). It may be that the coefficients that
were developed, based largely from countries that have undergone a fertility
decline, are not appropriate to use in scenarios such as these simulations, with
persistent high fertility and mortality. The MAC method however, is consistent with
direct estimates when restricting the estimates to the older age groups. The average
differences over the simulation period were -10%, -3%, and -.1% of the direct
estimate for age groups 25-29, 30-34, and 35-39, however the reference periods
(5.7, 8.4, and 11.8) are even longer than for the Brass methodology, so these are not

an improvement over the Brass method.

The Time Since First Birth Cohort method (TFBC) was marginally better than the
MAC method at estimating recent under-5 mortality, but 5q0 was still overestimated
by more than 10% on average. When estimating under-5 mortality amongst women
who gave birth ten or more years before the survey, the TFBC method consistently
and significantly overestimates child mortality. As with the MAC method, this may

be a limitation of the method in situations of high and early childbearing during the
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simulation period. When applied to a population where fertility remains high, this

method should not be applied.

Both the Maternal Age Period (MAP) method and the Time Since First Birth Period
(TFBP) method performed better than their respective cohort-derived methods.
Each of the period based measures generates 25 different estimates and 25 different
reference periods, from .5 to 24.5 years before the survey. Of particular interest are
the estimates for the reference periods of .5 and 1.5 years. If either of these
methods is able to accurately predict under-5 mortality for a recent period of time,
this is preferable for use relative to the Brass method. Across the 40-year
simulation period, the mean MAP estimate for the reference period of .5 years was
.199. On average, the mean MAP estimate thus overestimated the direct method by
2 deaths per 1,000 live births or 1% of the average direct estimate, comparable to
the Brass overestimate of 3 deaths per 1,000 live births. Similarly the average
estimates derived for a reference period of 1.5 years was .195, a total difference of

less than 1% below the 5 direct estimate.

The TFBP, while it performed better than the TFBC method, was not as accurate as
the MAP method. The TFBP underestimated the direct estimate by an average of
11% and 3% for the reference periods of .5 and 1.5 years, respectively, but when
combined with the estimates from the more distant past, led to a systematic
overestimation of mortality. The overestimation of both of the time since first birth

methods indicates that the coefficients developed by IHME for estimating child
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mortality based on time since first birth need further refinement. This may be
because the simulated populations seen here have high and early childbearing,
which may be different than the datasets used to develop the time since first birth
coefficients. An additional consideration is that many datasets that collect summary
birth histories do not have information on time since first birth. IHME
acknowledges that there were many fewer datasets available when the coefficients
were derived for this method and the lack of data possibly led to estimates with less
accuracy. An additional explanation for some of the biases present in the period-
derived methods is the reliance on using country specific and regional patterns of
childbearing to predict the coefficients for estimating 5q0. Both of the period-
derived methods use patterns of CD/CEB that are derived from hundreds of country
specific datasets (26) and the predicted log 5q0s that are derived depend on the
regional and country specific CD/CEB that were derived in the original creation of
the method. In these simulations, when the data do not originate from any one
country or region, the application of these methods may not be appropriate. This
underscores a limitation of the IHME methods relative to the Brass methodology;
the Brass method can be applied to any dataset regardless of region once the
decision is made regarding the underlying age pattern of mortality and the
corresponding life table is chosen. The IHME methods, however, depend on region-
and country-specific estimates. The IHME period-derived methods can potentially
better predict under-5 mortality than the Brass methodology if the correct country
and region is chosen, but when the data do not conform to expected region and

country specific patterns, the IHME methods are probably less accurate.
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One of the strengths of the IHME methods, as argued by the authors, is the ability to
combine any of the four methods using a weighted Loess smoother (26). If each
method performs relatively well in relation to the direct estimate, this is a potential
advantage over the Brass methodology as there are more data points that can be
used to derive changes in under-5 mortality over time. When the methods do not
perform well however, as we see with both of the time since first birth methods, the
combined estimate is also biased. In this dissertation, when the true underlying
under-5 mortality is known, it was easy to make the decision to eliminate the time
since first birth methods from the smoothing procedure as they obviously inflated
the estimates. In reality, however researchers will not be able to make this decision
with as much confidence. If the maternal age and time since first birth estimates are

very different, then the use of the maternal age methods is preferable.

Based on the systematic overestimation of child mortality from both time since first
birth methods in the baseline scenario, only the results of the MAC and the MAP
methods and the combined MAC/MAP estimate for the humanitarian emergency
scenarios were presented. In general, the MAC/MAP combined method
underestimated under-5 mortality in the five years previous to the survey. This is
due to the fact that the weighted Loess is generated by inverse weighting each data
point by the number of points generated by the method. That is, when the methods
are combined, each MAP method is weighted to 1/25t of the estimate and each MAC

is weighted to 1/7% of the estimate. Thus, the systematic underestimation of the 20-
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24 year age group pulls the estimates for recent years down. However, because the
most recent estimates, those within three years of the survey year, are based only

on the MAP estimates, the most recent estimates are not as biased downward.

Since the MAP method is the primary driver of the MAC/MAP combined method for
reference periods less than three years, the two methods generate very similar
estimates in the baseline simulation. For example, using data from only Year 0 in
which the mean direct estimate is .212, the unsmoothed estimate of the MAP
method for a reference period .5 years before the survey is .212 and both the
smoothed estimate of the MAP method and the MAC/MAP combined method are
.209. Thus, if a researcher has only one year of survey information, s/he should be
hesitant about drawing conclusions regarding recent changes in under-5 mortality
using only the combined method. A thorough examination of the point estimates for
both the MAC and MAP estimates and a comparison of the smoothed estimates for
MAC and MAP separately should be explored before deciding if the methods should

be combined.

Humanitarian Emergencies

In a situation with ideal data, that is, no age-misreporting, no interviewer bias, no
missing data and constantly declining mortality and fertility, the Brass method and
the IHME MAC and MAP methods performed well. However, once mortality was no

longer linearly declining, the methods became less reliable. The tendency for each
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of the methods to smooth mortality patterns over time led to consistent
overestimation in the time period before mortality increased, underestimation

during the crisis period, and overestimation after mortality declined.

In situations in which mortality increased very rapidly and reached high levels (HE
1 and HE 3), the abrupt shift is captured by the Brass method, although it is both
misplaced in time (on average, between six and seven years prior to the crisis) and
lower than the actual level. In Year O for HE 1 and HE 3, the level of under-5
mortality estimated using the direct method is .556 and .701. When estimates for
Year 0 are derived with the Brass method, using data from Year 6, the estimates are
272 (48.9% of the direct estimate) and .455, (64.9% of the direct estimate) a
difference of 284 deaths and 246 deaths per 1,000 live births, respectively. These
are substantially different numbers that would greatly mislead researchers on the
extent of mortality experienced by children under 5 in a humanitarian emergency.
The Brass method then overestimates mortality (more than 10% of the simulations
differ by more than 10% of the direct estimate) until Year 13 and Year 15, in
scenarios HE 1 and HE 3, respectively. Keeping in mind the average reference
period of approximately 6 years using the Brass estimator, this means that it could
take almost 20 years after an emergency with an extreme spike in mortality before

the Brass method of estimation could be used to reliably estimate child mortality.

Even when the mortality shifts are not as drastic, such as in HE 2 and HE 4, the Brass

method returned inflated estimates of mortality for the years prior to the survey. In
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HE 2, five years prior to Year 0, the average Brass estimate overestimated mortality
by 15 deaths per 1,000 live births (6.7% higher than the direct estimate of 224
deaths per 1000 live births) and, in the year prior to the Year 0, by 37 deaths per
1,000 live births (17.4% higher than the direct estimate of 214 deaths per 1000 live
births). At the end of the crisis period, the Brass method underestimated mortality
by 25 deaths per 1,000 live births (9.6% lower than the direct estimate of 258
deaths per 1000 live births). Although this difference is less than 10% of the direct
estimate, it is still over twice that of the 10 deaths per 1,000 live births that Alkema
and colleagues (2012) flagged as a problematic difference when comparing UN
IGME and IHME estimates of child mortality. Even in these situations of lower
mortality increase, it is not until Year 16 and Year 18 for HE 2 and HE 4,
respectively, that 90% of the Brass estimates are within 10% of the direct estimate.
In these cases, this is approximately ten years after the crisis period ends and four
years after the crisis period ends. Thus, researchers who are attempting to estimate
child mortality in places affected by even moderate increases in child mortality may
generate biased estimates up to ten years after mortality has returned to baseline

levels.

Perhaps the most difficult scenario to interpret is HE 4, where moderately increased
mortality levels fluctuate over time. In this case, the Brass method smoothed out
almost all variation across the crisis period, showing stagnant under-5 mortality
rates. At each spike in mortality, the average estimates across the simulations

underestimated mortality by between 24 and 34 deaths per 1,000 live births
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(between 9.5% and 13.5% lower than the direct estimate), while overestimating
mortality during periods of lower mortality by approximately 10.7 deaths per 1,000
live births (an average overestimate of 5.0% of the direct estimate). While these
levels are not extreme, approximately half (48%) of the simulations generated Brass
estimates that differed by more than 10% from the direct estimate during the peak
periods of mortality. Once the crisis period was over, the Brass method was better
able to estimate mortality, however, its inability to show fluctuations during the
crisis period underscores its limitations as a method for under-5 estimation during
times when mortality is not stable. If the purpose of the research is to estimate
excess mortality during periods of crisis or estimate changes in mortality patterns

as a result of a humanitarian emergency, the Brass method should not be used.

The results of the Brass method when applied to situations of mortality shifts thus
lead to three conclusions;

First, the Brass method is not suitable for research done during or immediately after
the crisis period of an emergency, because estimates of crisis mortality will be both
underestimated and removed in time, overestimating the true mortality of the past
years, underestimating the mortality of the crisis period, and obscuring the extent of
mortality shifts. While the Brass method was not able to correctly estimate the level
of mortality increase when extreme shifts in mortality occurred, it was able to detect
that the shifts did occur and generate estimates that reflected an abrupt increase in
mortality between two years, rather than a gradual increase over several years.

When the estimates generated from years in a crisis period are not centered to the
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reference year, they are thus able to detect that an abrupt shift in mortality does
occur in the crisis period. This is particularly true if the shift in mortality is very
abrupt and short-lived, such as the Rwandan genocide. When this is done however,
estimates before and after the crisis period are biased, which limits the utility of not-

adjusting the Brass estimates during a period of crisis.

Secondly, researchers conducting surveys in places where there have been extreme
increases in mortality in the recent past should be aware that even after mortality
has stabilized, estimates may be subject to bias for an extended period of time. This
is particularly an issue if using the Brass methodology, since researchers must also
address the reference period. If increases in mortality continue to affect the Brass
method for up to ten years post-crisis, it is only data gathered fifteen years or more
post-crisis that may be free of this bias. Finally, in situations where there are
continuous fluctuations in mortality across time, the Brass method will largely
smooth out these fluctuations over time. If the purpose of the research is to gather
the average mortality of an extended crisis period, the Brass method may be
suitable, but if the purpose is to examine the pattern of mortality fluctuations in
crises or estimate excess deaths during specific time periods, the Brass method is

unsuitable.

Based on the consistent overestimation of the time since first birth methods in the

baseline simulation, only maternal age derived methods were considered. Although

these methods perform well in the baseline simulations, they were not able to
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successfully capture fluctuations in mortality. The MAC method, when not
smoothed, was able to pick up the abrupt increase in mortality simulated in HE 1
and HE 3, particularly in the younger age groups, but the baseline levels were
underestimated to such an extent that the abrupt increase in under-5 mortality
estimates was still a significant underestimate. Additionally, the estimates were still
removed in time from the onset of the crisis. For example, in HE 1, the MAC method
for age group 15-19 increased from .104 two years before the crisis to .136 the year
before the crisis. The abrupt increase in mortality was a result of the spike in
mortality generated by the crisis but was estimated both a year prior to the crisis
and underestimated 5q0 by 420 deaths per 1,000 live births from the true crisis
mortality (an underestimation of 75.6%). For age group 20-24, the spike in
mortality was estimated approximately three years prior to the survey, when
mortality increased from .168 to .239. The difference in the mortality levels
estimated by the direct method between the pre-crisis and crisis year was
approximately 342 deaths per 1,000 live births; the difference estimated by the MAC
method is only 71 deaths per 1,000 live births, 21% of the difference estimated by
the direct method. Unfortunately, none of the other age groups showed an
appreciable effect of the crisis on estimated mortality levels. In situations where
child mortality abruptly and significantly increases, the MAC methods seemed
unable to accurately capture the fluctuation, either in the scope of the mortality

change or at the appropriate moment in time.
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With an increase in mortality that is more moderate, the MAC method is still
unsatisfactory. Although data from the youngest age groups do pick up a slight
increase in mortality, the overall levels are too low and while the older age groups
are better able to estimate non-crisis mortality, they show very little fluctuation
during the crisis period. When mortality fluctuates over short periods of time, the
MAC method shows almost no variation in any the age groups, and would lead one
to conclude that mortality has remained stable across the time period. In all, the
MAC method alone does not provide satisfactory estimates of mortality in situations

when mortality is not declining linearly.

The MAP method, whose primary advantage is that it provides timely estimates of
under-5 mortality, also does not capture extreme fluctuations in mortality well. In
HE 1 and HE 3, in Year 0, the MAP estimates for a reference period of .5 years do
demonstrate an abrupt increase in mortality. In HE 1, in the year before the crisis,
under-5 mortality is estimated at .215 and during the crisis year increases to .296
(53.2% of the direct estimate of .556 for Year 0). While this is an increase of 81
deaths per 1,000 live births, it is an underestimate of the true change in mortality of
approximately 76.3%. In HE 3, the MAP method underestimates the true change in
mortality by 84.5% and underestimates the direct estimate for Year 0 by 56.1%.
With increasing time in an emergency, the MAP method improves; in HE 3, after two
years, the difference between the direct and the MAP method estimate is 223 deaths
per 1,000 live births, an underestimate of approximately 31.0% of the direct

estimate of 720 deaths per 1,000 live births. Once the emergency period is over, the
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MAP method overestimates mortality; again in HE 3, almost 30 years post-
emergency, mortality estimates are overestimated by 45 deaths per 1,000 live
births, 26.5% higher than the direct estimate of .169 in the final year of the
simulation. Even a moderate increases in mortality continues to affect the MAP
method for a short reference period of .5 years, as shown in scenario HE 2. Twenty-
five years after the crisis period ends, the MAP estimate continues to overestimate
mortality by 17 deaths per 1,000 live births, overestimating the direct estimate by
approximately 9.8%. Relative to both the Brass and MAC methods, the MAP method
better captures the shorter, sharp fluctuations in mortality seen in HE 4, however,
again it continues to overestimate mortality once it has started to decline. During
the peak mortality spikes, when mortality reaches .254, .253, and .255 according to
the direct method, the MAP method estimates .236, .236, and .235. In comparison,
the Brass method generated estimates of .229, .229, and .221 for the same years.
The MAP method overestimates mortality in the years between the mortality
increases; the years prior to the second and the third mortality spikes, Year 5 and
Year 11, the MAP method overestimates the direct estimate of .212 by 9.7% and the
direct estimate of .210 by 9.8%, respectively. This is equivalent to approximately 21
deaths per 1,000 live births in each case. Estimates for the reference period of .5
continue to remain elevated after the crisis period is over; approximately 15 years
after the final spike, mortality is overestimated by 18 deaths per 1,000 live births, or

9.3%.
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Here we see both the strengths and limitations of the MAP method. If increases in
mortality are relatively moderate and persist for an extended period of time, the
MAP method may be an accurate estimator during the crisis period. The method
loses its strength, however, when mortality begins to decline and it consistently
overestimates mortality for years after. This is of concern for researchers who may
be conducting under-5 mortality work after a crisis has ended. Even if mortality has
consistently declined or been stable for several years, the MAP estimator may
overestimate child mortality, at least in the very recent past, thus mitigating its
greatest attraction of being able to estimate mortality change within a short

reference period from the survey.

While the point estimates that are derived for reference periods less than a year are
able to capture sharp fluctuations in mortality, the IHME methods are actually
designed to show trends in under-5 mortality over time using the weighted Loess.
Unfortunately, when the methods are smoothed according to [HME
recommendations, the smoothed MAC, smoothed MAP, and smoothed MAC/MAP
combination perform poorly. Even more than the Brass method, the IHME methods
both mask fluctuations in mortality and bias estimates either upwards or
downwards, depending on the point of the humanitarian emergency. When data
from every year is incorporated into the smoothed estimates, the IHME methods
show an almost constant decline in mortality over time. Even in the most extreme
mortality scenario, when the 5q0 reaches .721 the maximum smoothed IHME

estimate is .387, 53.7% of the direct estimate, and is centered three years before the
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crisis period. With less extreme increases, the smoothed IHME estimates show
almost no fluctuation over time. This is also the case when data from only one year
are used to estimate mortality. In these instances, when using data generated
during or immediately after the crisis period, the IHME smoothed estimates show
constant and elevated mortality previous to the crisis period. Although using the
smoothed estimates does seem to improve the accuracy of the IHME methods in the
post-survey period, if there have been any fluctuations in mortality, they will not be
captured and overall mortality will likely be overestimated. In an emergency or
post-emergency setting, these methods will not improve accuracy over the Brass

methodology.

In sum, neither of the indirect methods, or their variants, performed sufficiently well
to recommend their use to measure under-5 mortality in an emergency setting. All
methods lead to an overestimate of mortality in the period immediately prior to the
onset of a crisis and underestimate mortality during the crisis period, masking the
true extent of crises on child mortality. Additionally, indirect methods are likely to
overestimate child mortality once mortality rates have declined. When mortality
fluctuates over the crisis, none of the methods provide reliable estimates during the

crisis period.

These results come from the use of simulation data. In scenarios where data are less

than ideal, which this dissertation did not test, it is likely that the indirect estimation

methods will have greater variability and be even less reliable. Therefore, if the
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purpose of a research study is to estimate under-5 mortality in a crisis or to
estimate excess mortality due to a crisis, indirect methods cannot be used reliably.
To truly understand the impact of a crisis on child mortality, the only method that

can produce even somewhat reliable estimates is the direct method.

Limitations and Strengths

With all studies there are limitations. Perhaps the greatest limitation of this
dissertation is also its greatest strength, that is, the data are not real. These are
simulated populations, which allow for the elimination of all other potential sources
of interviewer, sampling, and respondent bias, but the lessons learned here are not
based on real data and the particular challenges that arise from data collection in
the field. Thus, while it is possible to examine in more detail the result of
disruptions in mortality without needing to disaggregate the effect of other
violations in assumptions, limitations arise regarding the generalizability of these
findings. Along these lines, the simulations themselves, while based in part on
historical precedence, do not model any one emergency and at least one simulation,
HE 3, with extremely high mortality lasting for an extended period of time, is
(hopefully) unlikely to occur. While these exact emergencies are unlikely to occur,
however, the patterns themselves are have historical precedent, which lends
credence to the chosen parameters. It may be beneficial to model additional
patterns, with more gradual mortality increases and decreases, to see if indirect

methods are more appropriate when mortality changes are not so abrupt.
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Unfortunately, there is a limit to the number of permutations that can be tested by

any one researcher, but this does justify further research on the subject.

Additionally, in these simulations, fertility, marriage, and migration were held
constant across scenarios to isolate the effect of mortality fluctuations. In reality,
these are important demographic events that are impacted by humanitarian
emergencies. Changes in fertility that may occur as a result of these emergencies
will impact the ability of the indirect estimates to accurately predict child mortality.
Migration, though it may or may not increase the risk of mortality, will certainly lead
to underestimates of excess mortality if emigrating populations are not properly
sampled or accounted for. These are important limitations when considering how
to properly measure mortality in emergency settings. However, I would argue that,
in fact, the effect of humanitarian emergencies on these demographic processes
further justifies the need to use complete birth histories if under-5 mortality is truly
of interest. Given the inability of indirect methods to accurately capture mortality
changes when these are held constant, the additional biases that may arise as a

result of changing fertility further justifies using the complete birth history.

From a more technical perspective, one limitation, already briefly discussed, is the
country and region specific patterns used by IHME. I used the region-specific
estimates for sub-Saharan Africa, as it remains, in general, a high-fertility, high-
mortality setting similar to the simulations programmed here. However, the IHME

coefficients were generated for specific countries and in the absence of using data
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specifically from the countries used in the original development of the multipliers,
these estimates may be biased. Future research estimating the impact of these
coefficients on the mortality estimates could be undertaken. This, however, is a
limitation of the method itself as much as a limitation of this dissertation. While one
limitation of the Brass method is the reliance on choosing an underlying life table to
derive probabilities and coefficients, so too is the IHME methodology limited by the
decision to use country specific estimates. If the underlying mortality pattern
differs from either the chosen life table or the chosen country, biases will be

introduced.

Despite these limitations, there are several strengths to this dissertation. It employs
an innovative use of simulations to model mortality patterns that are difficult to
estimate in reality. Situations in which these morality patterns are likely to be seen
are generally associated with poor quality data and data are often either discarded
or changed based on expert opinion (4,7). As mentioned above, the use of
simulations allows for the creation of ideal data, limiting the potential of other
biases to distort the effect of interest. Additionally, simulation allows for the
creation of hundreds of datasets with random fluctuations so that conclusions can
be drawn without concern that they are drawn from data that may be random
outliers. While it was not possible to realistically model a humanitarian emergency,
the patterns of mortality seen here were based on historical precedence, using
ratios of emergency to pre-emergency mortality to inform the creation of different

scenarios.
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Implications

Implications for Policy

Generating accurate estimates of the impact of humanitarian emergencies on
populations is important. Decisions regarding humanitarian assistance, allotment of
resources, and funding for post-conflict reconstruction efforts are often - although
by no means always - made with an understanding of mortality and morbidity
patterns. When estimates of mortality and morbidity are released, there may be
significant political backlash, from all sides. A UN report estimating excess mortality
in Internally Displaced Persons (IDP) camps in Northern Uganda generated intense
debate over the reliability and validity of the estimates (6,75). Humanitarian
organizations were accused of inflating numbers to receive additional funding, while
government officials called for a re-estimation of the number in an attempt to limit
political backlash (6). Reports that maternal and child health have significantly
improved in Afghanistan since the involvement of the US-led coalition and collapse
of the Taliban received considerable media attention, while simultaneously
generating debate among scholars regarding the plausibility of the improvements
(49,53,57,76,77). Such debate is not rare and whether mortality data are used to
advocate for or against aid, engagement, or assistance, the accuracy of the estimates
is important. The veracity of mortality data depends on what methods are used for

data collection and analysis and it is imperative that researchers use the
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appropriate methods to estimate the impact of humanitarian emergencies on

populations.

Implications for Research

While this dissertation is able to demonstrate the shortcomings of two extant
methods to estimate child mortality in humanitarian emergencies and recommend
the use of complete birth histories in periods of crisis, this is not an ideal solution.
The complete birth history is not without its limitations, as previously described.
The additional training of interviewers, time in the field, and significant possibility
for respondent biases are real concerns. A question raised by this dissertation is
whether the Brass methodology can be used to estimate fluctuations in mortality if
the estimates are not shifted to the reference year, but instead are used as estimates
for the survey year. While the estimates themselves are too low, it merits further
investigation whether a re-estimation of the coefficients may yield higher estimates.
If summary birth histories can be used with an adaptation to the Brass

methodology, this could prove beneficial for fieldwork.

Finally, this research could be expanded to include research on indirect adult
mortality estimation. Much of adult mortality is generated through sibling histories,
which rely on similar assumptions of fertility and mortality patterns. The same

questions explored here, regarding how fluctuations in mortality affect indirect

166



Chapter 5: Discussion

estimates, can be explored with the same simulation program to gain a better

understanding of potential biases that may arise in these methods.

Ethical Implications

There continues to be a debate in the research community on the ethical
implications of conducting research in humanitarian emergencies. How does one
balance the safety and wellbeing of the survey team against the need to understand
the impact of the crisis on the affected community? One argument that is made is to
limit the scope and questions that are asked, both to limit the strain on respondents
and to decrease time spent in a potentially dangerous situation for the surveyor
(78,79). This concern may encourage researchers to use the summary birth history
in preference over the complete birth history as it limits the time spent in the field
for the research team. [ would argue, based on what I have shown in this
dissertation, that until sufficient analytic methods exist, the use of the summary
birth history is no more ethical to use than the complete birth history. While the use
of the summary birth history may be faster, if the properties of the analytic methods
lead to systematic over and underestimation, it makes the estimates highly
questionable and, thus, the risk taken by the data collector will be of little
substantive benefit. If the estimation of child mortality is truly of concern to the
research team, the complete birth history should be prioritized. Extensive training
for interviewers in order limit respondent and interviewer bias should be
undertaken and security considerations must be balanced with the need to gain a

comprehensive understanding of the impact of the humanitarian emergency.
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Conclusions

To the advanced demographer, this dissertation may confirm what was already
known regarding indirect estimation of child mortality, but beyond the field of
formal demography, this lesson does not seem to be widely promulgated. The
literature on demographic measurement in complex emergencies tends to focus
either on generating estimates of excess mortality in specific emergencies
(43,80,81), on guidance to improve sampling techniques and survey
implementation (6,82,83), or on the ethical implications of conducting research in
humanitarian emergencies (79). There is little guidance on which questions to
include in a survey or the appropriate analytic methods to use in order to generate
accurate estimates. This dissertation was an attempt to fill that void; to identify
which methods if any, will successfully estimate child mortality in an emergency,
and if a summary birth history must be done, what indirect method may serve the

researcher best.

It is no small challenge to conduct surveys in an emergency or post-emergency
setting. There are a host of challenges that can threaten not just the quality and
integrity of the research process, but the very safety and lives of the research team.
It is still imperative, however, to quantify the human costs of war and the challenge
to improve estimation methods falls on the demographic community. We should no
longer accept that “between 12 and 32 million people” may die in an emergency;

rather, we must strive as a research community to develop accurate estimates of the
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demographic consequences of war, with the purpose of improving assistance to

populations in need.
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Appendix I - Socsim Fertility Parameters

Age-specific fertility rates are derived using Schmertmann’s graphic parameters (70).
Inputs necessary to derive the age-specific rates are the total TFR, the minimum age at
marriage (alpha), age at peak child bearing, and the age between peak child bearing and

age 50 when fertility reaches half of peak fertility (H).

Table 31: Parameters to derive age-specific fertility rates from Schmertmann's graphically intuitive
parameters model (70)

Parameters
TFR alpha Peak H
7.06 12 23 39
6.85 12 23 39
6.60 12 23 38
6.12 12 23 38
5.94 12 23 36
5.99 13 23 36
5.84 13 24 36
5.59 13 24 35
5.42 13 24 35
5.34 13 24 35
5.25 13 24 35
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Appendix Il - Socsim Nuptiality Parameters

Parameters necessary for input into Socsim nuptiality file. All other parameters are default

parameters in Socsim.

Table 32: Input parameters for Socsim nuptiality simulations

Parameters Value
Ideal age difference (groom-bride) (months) 60
Maximum age difference (groom-bride)
240
(months)
Maximum age difference (bride-groom)
180
(months)
Marriage rates (female) 75% married between age 12-25
25% married between age 26-45
Marriage rates (male) 75% married between age 18-25
25% married between age 26-45
Marriage slope ratio 7
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Family Planning/ HIV Integration Intern

* Researched and wrote series of briefs summarizing USAID family planning and HIV programs,
focusing on current FP and HIV integrated programs, identifying best practices, and identifying
integration opportunities

Emory University Kigali, Rwanda
Rwanda Zambia HIV Research Group Aug 2008 - Aug 2009
CVCT/ Data Intern

* Implement family planning and HIV integration program in CVCT site including organizing
trainings, advertisements, and quality assurance procedures
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* Provide monthly reports to CDC, IAVI, and Rwandan MOH regarding uptake of services and
surveillance data

* Create, edit, and perform quality control and assurance of source documents and Case Report
Forms

CARE Atlanta, Georgia

CARE - CDC Health Initiative Program Associate Sep 2007 - Aug 2008

* Research and write best-practices document of HIV&AIDS referral networks among CARE
sponsored projects in Sub-Saharan Africa, Asia, and Latin America

* Coordinate program while replacement director was hired

* Assemble, edit, and submit portfolio proposals to CDC for multi-million dollar grant

United National Population Fund (UNFPA) Gulu, Uganda
Primary Researcher May 2007 - Aug 2007

* Awarded funding to research quality of family planning programs available to Internally
Displaced Persons in IDP camps in Northern Uganda culminating in award winning thesis and
presentation at PAA conference

* Conducted key informant interviews and focus group discussions with IDP community members,
health care workers, and district and national level health care officials

* Analyzed qualitative data and presented findings to district and national level implementing
partners of UNFPA

* Participated in regional planning meetings attended by UN affiliates and implementing partners
PROFESSIONAL ACTIVITIES

Society Membership

* Population Association of America (PAA)

* International Union for the Scientific Study of Population (IUSSP)
* Delta Omega Honor Society

Consultatations

Stanton-Hill Research Sept 2012 - Dec 2013

* Data analysis and manuscript development comparing adolescent and under-5 mortality in a
complete sample of available DHS surveys

* Statistical analysis for Lancet Commisioned report “Global Health 2035: a world converging
within a generation”, December 3, 2013

EDITORIAL ACTIVITIES

Peer Review Activities

* Reviewer for special issue of International Journal of Gynecology and Obstetrics “Family
Planning: Selected Research Papers form the Second International Conference on Family

Planning, Dakar, Senegal, November 2011".

* Reviewer for Global Public Health

HONORS AND AWARDS
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Caroline Cochran Scholarship Fund in Population and Reproductive Health for outstanding student
in population studies (2011 and 2012)

Edward ] Dehne Award in Population Studies for outstanding student in population studies (2011
and 2013)

Best Thesis in Global Heath Department, Rollins School of Public Health - May 2008
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PUBLICATIONS

Peer Review

Canudas-Romo, V., Liy, L, Zimmerman, L., Ahmed, S., Tsui, A. (2014). “Potential Gains in
Reproductive-Aged Life Expectancy by Eliminating Maternal Mortality: A Demographic Bonus of
Achieving MDG 5” PLoS ONE 9(2): e86694. doi:10.1371 /journal.pone.0086694

Hill, K, Zimmerman, L., Jamison, D. (2014) “Mortality Among Older Children and Younger
Adolescents in Low- and Middle-Income Countries” (Submitted, In Review)

Reports

Robinson, C., Zimmerman, L., Checchi, F. (2013) “Internal and External Displacement among
Populations of Southern and Central Somalia Affected by Severe Food Insecurity and Famine during
2010-2012" FEWS-NET, Washington DC. (Accepted, awaiting dissemination)

Bartlett, L., LeFevre, A, Becker, S., Koblinsky, M., Rosen, H., Winch, P., Zimmerman, L., et al. (2013)
“Reproductive Age Mortality Survey II: Maternal Mortality in Afghanistan”. USAID, Washington DC.
(Accepted, awaiting dissemination)

PRACTICE ACTIVITIES

Media and Communication
Johns Hopkins Health Newsfeed “Mobile Health” - December 19, 2013
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CURRICULUM VITAE
Linnea A. Zimmerman, MPH
Part II

TEACHING
Guest Lecturer
* Dr. Canudas-Romo Life Tables course. “Introduction to R Statistical Package™. January 31,2013
» Johns Hopkins Global Health Strategies for Stability Course. “Burden of Disease in LMIC;
demographic and epidemiological patterns”. August 13,2012

Teaching Assistant

Johns Hopkins University Oct2011-Present

* Led discussion groups, graded assignments and advised students for graduate level courses.
Led labs on using large data sets from DHS, UN, WHO and Census. Population Dynamics and
Public Health, Applications of Population Data for Policy & Practice, Maternal & Neonatal
Mortality in Low-and Middle-Income Countries, Family Planning Programs and Policies, and
Clinical Aspects of Reproductive Health courses

Emory University Jan 2008 - May 2008

* Teach 2 classes per week of 10-15 graduate students each for International Strategies and
Proposal Development classes each

* Prepare lab content on the development of grant proposals and on data programming and
complex survey analysis, logframes, and budget

ACADEMIC SERVICE
* Departmental Admissions Committee - Spring 2013

PRESENTATIONS

Scientific Meetings

¢ Zimmerman, L., Koffi, A., Ahmed, S. “Family Size and Educational Attainment in Three sub-
Saharan African Countries”. Session presentation at International Conference on Family
Planning November 13,2013

* Zimmerman, L., Canudas-Romo, V_, Tsui, A., “Age-Specific Maternal Mortality Ratios”. Session
presentation at Population Association of America 2012 Annual Meeting May 3, 2012

Posters

* Amin, R., Zimmerman, L. “Microcredit Drift in Depth of Outreach to the Poor in Rural
Bangladesh™. Poster Presentation at Population Association of America 2013 Annual Meeting April
11, 2012. Presenter

* Zimmerman, L, Robinson, W.C., Packer, C. “Reproductive Health in Post-Emergency Refugee
Camps". Poster Presentation at Population Association of America 2011 Annual Meeting April 1,
2011. Presenter

* Zimmerman, L., Haussamen, L., Stephenson, R. “Quality of Reproductive Health Care in War-
Affected Northern Uganda”. Poster Presentation at Population Association of America 2008
Annual Meeting, April 17, 2008. Presenter
ADDITIONAL INFORMATION
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emergency health, indirect estimation, under-5 mortality, mobile technology,
population dynamics, monitoring and evaluation
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