

AUTONOMOUSLY RETRACTABLE ENDOSCOPE HOLDER

FOR OTOLOGIC AND ASSOCIATED PROCEDURES

by

Can Kocabalkanli

A thesis submitted to Johns Hopkins University in conformity with the requirements for

the degree of Master of Science and Engineering

Baltimore, Maryland

May 2020

© 2020 Can Kocabalkanli

All rights reserved

ii

Abstract

For years, endoscopy has been an essential method for providing surgeons improved visualization in

difficult areas to access. With recent developments in endoscopic technology, narrower endoscopes

have opened new possibilities in assisting surgeons in different procedures. Operations in narrow

spaces such as the ear canal are particularly of interest, as smaller endoscopes can significantly

reduce the invasiveness of the surgical procedure and improve the field of vision of the surgeon.

However, using the endoscope safely inside such delicate parts of the body requires it to be safely

held, and safely retracted if the patient moves their head.

To make the most out of endoscopic assistance while preventing any collision inside the ear canal

during surgery, an automatically retracting endoscope holder has been proposed. Such a system can

make the surgery easier and more efficient by allowing the surgeon to operate bimanually and

improve patient safety by autonomously retracting if the patient’s head moves towards the endoscope

in a way that can harm delicate structures down the ear canal. I have developed and implemented

such a retraction mechanism with two alternative danger assessment pipelines in this thesis and

evaluated the system to ensure it demonstrates the speed, responsiveness, and robustness that the

surgical scenario demands. This prototype therefore explores and confirms the feasibility and

potential of an automatically retracting endoscope holder, and acts as the first step towards a

commercial design that can be widely implemented in operating rooms to make otologic and related

procedures easier and safer.

Readers:

Russell H. Taylor, PhD

Francis Creighton, MD

iii

Acknowledgements

I thank my advisors Russell Taylor and Pete Creighton for guiding me through this project.

I would also like to thank Anton Deguet for all his extensive help, and Seena Vafee and Anna

Goodridge for their work on the preliminary and next generation hardware implementations,

respectively. I thank the Louis B. Thalheimer Fund for Translational Research for funding this

research endeavor.

I would finally like to thank my parents and my brother for their never-ending love and support.

Thank you for inspiring me to work on helpful things that have the potential to change people’s lives

for the better.

iv

Contents

Abstract ... ii

Acknowledgements .. iii

Contents ... iv

List of Figures .. vi

1 Introduction .. 1

1.1 Thesis Statement ... 1

1.2 Clinical Background on Ear Canal Endoscopy [1] ... 1

1.3 Problem Statement & Proposed Solution ... 2

1.4 Objective of Proposed Solution & Research .. 3

2 Methods ... 4

2.1 Assessment of Danger through the Electromagnetic Tracking System .. 5

2.2 Assessment of Movement and Danger through Endoscope Video ... 11

2.2.1 Challenges Unique to a Vision-Based System .. 11

2.2.2 Using Optical Flow .. 12

2.2.3 Finding a Focus of Expansion ... 16

2.2.4 Tool Rejection and Improved Robustness ... 19

3 Implementation .. 20

3.1 Hardware Implementation .. 20

3.1.1 Retracting Mechanism ... 22

3.1.2 System Components .. 22

3.2 Software Implementation for Electromagnetic Tracking.. 23

v

3.3 Software Implementation for Endoscope Vision .. 27

4 Evaluation & Results ... 31

4.1 Data Collection and Evaluation Methods via rosbag ... 31

4.2 Retractor Velocity Characterization ... 31

4.2.1 Retractor Velocity Evaluation Procedure .. 31

4.2.2 Retractor Velocity Results ... 31

4.3 System Latency and Response Time .. 33

4.3.1 Response Time Evaluation Procedure ... 33

4.3.2 EM Response Time Results ... 33

4.3.3 Vision System Evaluation and Cadaver Experiments ... 35

4.4 Hardware Latency ... 36

5 Improvements and Next Steps ... 37

5.1 Hardware Improvements .. 37

5.2 Testing and Improving the Robustness of the Vision System .. 38

5.2.1 Testing for Robustness and Latency .. 38

5.2.2 Vision System Improvements .. 38

6 Conclusions .. 40

7 References .. 41

8 Appendices .. 44

Appendix A: Helper Functions for EM and Vision Retraction Software Pipelines 44

Appendix B: Scripts for Data Reading and Experimental Evaluation .. 47

9 Biography .. 49

vi

List of Figures

Figure 1: Figure 1: Use of endoscope during ear canal surgery for better imaging (top), and image

 samples taken with operating microscope (left) endoscope (right)…………………………... 2

Figure 2: Visualization of the surgical problem……………………………………………………… 3

Figure 3: Schematic of surgical scenario with auto-retraction system representation……………….. 3

Figure 4: Flowchart representing the high-level basic function of the proposed system…………….. 4

Figure 5: Aurora tracking system components……………………………………………………….. 5

Figure 6: Kinematic configuration of retracting system……………………………………………... 6

Figure 7: Pivot calibration visualization: closed-loop kinematics for different endoscope poses…… 7

Figure 8: Axis calibration setup side view (top) and data collection procedure……………………... 8

Figure 9: Tracker positions when endoscope is spun around the axis with calculated endoscope axis

 direction………………………………………………………………………………………. 9

Figure 10: Surgical workflow with EM system…………………………………………………….. 11

Figure 11: Optical flow of tracked points in the ear canal over time……………………………….. 15

Figure 12: The focus of expansion (FOE) of flow vectors in purely Z-direction motion, and as seen

 for a real-life case of a robot approaching a bush…………………………………………... 16

Figure 13: Optical flow create by relative motion between camera and objects………………….... 17

Figure 14: Geometry of optical flow vectors and their intersection………………………………... 17

Figure 15: Surgical workflow for computer vision-based retraction pipeline…………………….... 19

Figure 16: Current implementation of auto-retracting endoscope holder with endoscope and camera

 mounted…………………………………………………………………………………....... 21

vii

Figure 17: CAD model of retracting mechanism components…………………………………….... 21

Figure 18: Diagram of circuit to control retracting mechanism…………………………………….. 23

Figure 19: Block diagram of EM retraction system components………………………………….... 24

Figure 20: Pseudocode for EM tracking and retraction……………………………………………... 25

Figure 21: Block diagram of vision-based retraction system components………………………….. 28

Figure 22: Pseudocode for Vision tracking and retraction………………………………………….. 28

Figure 23: Relative distance, velocity, and acceleration profiles for the velocity characterization

 experiment, with 9 trials…………………………….………………………………………. 32

Figure 24: Relative distance profiles for latency experiment with 9 trials…………………………. 34

Figure 25: Experimental setup (left) and phase difference observed on the oscilloscope (right)…... 37

Figure 26: Next Iteration of the Retracting Mechanism…………………………………………….. 38

1

1 Introduction

1.1 Thesis Statement

During transcanal ear surgery, a system to hold the endoscope can make the surgery easier and safer

by allowing a surgeon to operate bimanually and ensuring safety by retracting the endoscope if the

patient has unintentional head motion to avoid trauma to the tympanic membrane and ossicles.

1.2 Clinical Background on Ear Canal Endoscopy [1]

While performing surgery in the ear canal, an operating microscope has been traditionally used to

gain visual access to the middle ear, mastoid, and inner ear. This relies on line of sight and given the

small aperture of the ear canal often requires the drilling of the mastoid bone to improve visualization

and access. With the development of smaller and higher definition, ear surgeons can now access

these areas far less invasively using an endoscope without the need for drilling the mastoid.

Endoscopes also allow for a wider field of view than a microscope, and angles endoscopes allow the

taking of previously unattainable images of pathology. Considering these advantages, endoscopic ear

surgery is a rapidly developing field in otology. However, a major disadvantage of this approach is

the need to hold the endoscope. This forces the surgeon to operate one handed, while the other hand

holds the scope. This makes many technical maneuvers difficult to complete and can increase the

time and risk of surgery. An alternative is to use an assistant just to hold the endoscope, or more

commonly, to use a stationary endoscope holder.

2

Figure 1: Use of endoscope during ear canal surgery for better imaging (top),

and image samples taken with operating microscope (left) endoscope (right) [1]

1.3 Problem Statement & Proposed Solution

The endoscope holder or a robotic arm can be helpful for holding the endoscope tool allowing the

surgeon to use both their hands while operating. However, if this holder is stationary the movement

of the patient’s head towards the endoscope can cause collision inside the ear canal and become

dangerous as the endoscope is placed very close (about 2 cm away) to critical structures. Even under

anesthesia, many patients have been observed to move their heads in ways that can be harmful since

patients cannot be paralyzed for ear procedures [1]. Hence, by using a system that automatically

retracts the endoscope when necessary, the surgeon can be allowed to use both their hands during

operation; making surgery easier for them and much safer for the patient [2]. Although the focus of

this project are ear canal surgeries, such a system can be generalized into other endoscopic or

laparoscopic procedures, for example during sinus surgery and colonoscopy.

3

Figure 2: Visualization of the surgical problem [1]

1.4 Objective of Proposed Solution & Research

To develop and test a reliable system integrated with a commercial surgical endoscope that:

1) Detects if the patient’s head is moving.

2) Assesses whether the movement is dangerous, filtering unharmful movement such as that

caused by the surgeon operating.

3) Swiftly retracts the endoscope when detected movement is deemed dangerous for the

patient.

It is also desired but not necessary that the system should not require additional equipment, simply

using the images captured by the endoscope to assess movement and determine whether it is

dangerous.

Figure 3: Schematic of Surgical Scenario with Auto-Retraction System Representation [2]

Head Tracker

Endoscope &

Tracker

4

Figure 4: Flowchart representing the high-level basic function of the proposed system

This research implements two alternative sensing methods to address Objectives (1) and (2) as

explored under Methods and implements a mechanism to resolve Objective (3) as detailed in

Implementation.

2 Methods

There are two alternative methods used in this thesis to detect and assess the movement of the

patient’s head: One involves the use of an external tracking system in the form of the Northern

Digital Instruments (NDI) Electromagnetic Tracking (EM) System to track the position of the

endoscope relative to the patient’s head, and the other relies on the real-time processing and analysis

of the endoscope video to infer the relative movement of the ear canal with respect to the endoscope.

The first one is beneficial in its ease of implementation and the second is highly preferred for its

elegance and minimal disturbance to the surgical workflow.

5

2.1 Assessment of Danger through the Electromagnetic Tracking System

The ultimate goal of this project is to accurately detect head motion with no additional equipment to

the endoscope itself through the means of computer vision using video taken by the endoscope.

However, a system using the external electromagnetic trackers has proven to be a robust and quick

method to safely retract the endoscope and therefore has been developed first as a backup option in

case the results from the vision system were not sufficient to satisfy the thesis objectives in the given

timeframe.

Figure 5: Aurora tracking system components [3]

The NDI system seen in Figure 5 can reliably provide the 3D Cartesian position and orientations of

its trackers relative to the system’s base coordinates granted that they are above the system’s field

plate. Empirically, the NDI system has been observed to be capable of providing such data every

0.02 s, or at a rate of 50 Hz with precision of 0.1 mm.1 The developed system uses the position

information from the trackers (or fiducials) to calculate the trackers’ relative positions. In the

operating room, one fiducial is meant to be rigidly attached to the patient’s head (for example onto

their forehead) while the other is attached rigidly to the endoscope through an endoscope holder part.

This results in a kinematic configuration that can be seen in Figure 6.

1 Trackers don’t always provide data at 50 Hz, at times this rate is observed to be 25 Hz. The precision mentioned

here is the last significant figure recorded and displayed by the NDI GUI.

6

Figure 6: Kinematic Configuration of Retracting System

The blue lines in Figure 6 represent the poses of the head and endoscope trackers with respect to the

stationary field plate, which can be represented by SE(3) homogeneous transformation matrices

𝐹𝑒𝑛𝑑𝑜 and 𝐹ℎ𝑒𝑎𝑑 respectively. If the transformation between the endoscope tracker and the endoscope

tip, 𝐹𝑡𝑖𝑝
𝑒𝑛𝑑𝑜 ,can be calculated, we can write the relative position of the endoscope tip with respect to

the head tracker as:

𝐹𝑡𝑖𝑝
head = 𝐹head

−1 𝐹𝑒𝑛𝑑𝑜𝐹𝑡𝑖𝑝
𝑒𝑛𝑑𝑜 (1)

A standard pivot and axis calibration method can be followed to calculate the transformation 𝐹𝑡𝑖𝑝
𝑒𝑛𝑑𝑜

once the tracker and endoscope are rigidly attached together. The pivot calibration procedure is

visualized in Figure 7, and consists of placing the tip of the endoscope in a small dimple in order to

fix the tip’s position with respect to a reference frame, and rotating the endoscope into different poses

without displacing the tip from the dimple. The reference frame is rigidly attached to the body

containing the pivot dimple.

7

Figure 7: Pivot calibration visualization: closed-loop kinematics for different endoscope poses

The closed-loop kinematics for each endoscope pose can be written as the following for the position

of the pivot dimple and endoscope tip:

𝑅𝑖𝑝𝑡𝑖𝑝 + 𝑝𝑖 = 𝑝𝑝𝑖𝑣𝑜𝑡 (2)

Where Ri is the rotation between the reference tracker and endoscope tracker, ptip is the position of

the endoscope tip with respect to the endoscope tracker, and ppivot is the position of the pivot dimple

with respect to the reference tracker. We can rearrange Equation (2) as:

𝑅𝑖𝑝𝑡𝑖𝑝 = 𝑝𝑝𝑖𝑣𝑜𝑡 − 𝑝𝑖 (3)

𝑅𝑖𝑝𝑡𝑖𝑝 − 𝐼3𝑥3𝑝𝑝𝑖𝑣𝑜𝑡 = −𝑝𝑖 (4)

Where I3x3 is the identity matrix signifying no rotation. If one calculates and records the

transformation between the reference and endoscope trackers for at least two poses, we have a

system of equations that we can express as the following:

[
⋮ ⋮
𝑅𝑖 −𝐼
⋮ ⋮

] [
𝑝𝑡𝑖𝑝

𝑝𝑝𝑖𝑣𝑜𝑡
] ≅ [

⋮
−𝑝𝑖

⋮
] (5)

From which solving for ptip and ppivot becomes a least squares problem. One way of acquiring the

solution is to perform a Singular Value Decomposition on the matrix defined as:

8

𝐴 = [
⋮ ⋮
𝑅𝑖 −𝐼
⋮ ⋮

] = 𝑈 [
𝑆

0(𝑚−𝑛)×𝑛
] 𝑉𝑇 , 𝐴 ∈ ℝ𝑛×6, 𝑈 ∈ ℝ𝑛×𝑛, 𝑆 ∈ ℝ6×6, 𝑉 ∈ ℝ6×6 (6)

Let 𝑥 = [
𝑝𝑡𝑖𝑝

𝑝𝑝𝑖𝑣𝑜𝑡
] , 𝑝 = [

⋮
−𝑝𝑖

⋮
] . Then, we can express the problem as 𝐴𝑥 = 𝑈𝑆𝑉𝑇𝑥 = 𝑝 (7) and solve:

𝑥 = 𝑉𝑇−1
𝑆−1𝑈−1𝑝 (8)

Since V is an orthogonal matrix,

𝑝𝑡𝑖𝑝
𝑒𝑛𝑑𝑜 = 𝑥 = 𝑉𝑆−1𝑈−1𝑝 (9)

Figure 8: Axis calibration setup side view (top) and data collection procedure (bottom)

This process allows us to know the position of the tool tip with respect to the tool tracker but does

not provide information on the direction the endoscope is pointing toward. The directionality of the

endoscope can prove to be a useful piece of information in classifying the patient’s head motion as

dangerous or not, as acceleration in in the direction of the endoscope axis would be the most

dangerous to critical ear structures. Hence, we would like to know the direction of this axis, and can

calculate it by performing axis calibration

9

A standard axis calibration procedure consists of placing the endoscope with the tracker in a groove

and rotating it so that the tracker moves in a circle as visualized in Figure 8. If the end position is

secured, the tracker will move only in a single plane which is easier to operate with. The position

data from the tracker can be processed so that the center of the circle is the origin, and then a plane

can be fitted to this data. The vector that starts from the origin and is orthogonal to the plane will then

be the axis direction that the endoscope is pointing towards, daxis. The code and functions used to

process the data and fit the plane can be seen in Appendix B, and the circle that the tracker moved in

and the axis calculated by this code can be seen in Figure 9.

Figure 9: Tracker positions when endoscope is spun around the axis,

and the calculated endoscope axis direction

10

Once both pivot and axis calibration is done, both the position and the direction vector of the

endoscope tip is known with respect to the head tracker and tracker base coordinates:

𝑝𝑡𝑖𝑝
head = 𝐹head

−1 𝐹𝑒𝑛𝑑𝑜𝑝𝑡𝑖𝑝
𝑒𝑛𝑑𝑜 (10)

𝑑𝑎𝑥𝑖𝑠
𝑏𝑎𝑠𝑒 = 𝐹𝑒𝑛𝑑𝑜𝑑𝑎𝑥𝑖𝑠 (11)

This allows us to examine the velocity and acceleration of the head tracker in the direction of the

endoscope axis in isolation as the projection of the velocity of acceleration on the axis direction

vector:

𝑣𝑎𝑥𝑖𝑠 = (𝑣ℎ𝑒𝑎𝑑 ∙ 𝑑𝑎𝑥𝑖𝑠)𝑑𝑎𝑥𝑖𝑠 (12)

In addition to 𝑝𝑡𝑖𝑝
head, the relative movement between critical patient anatomy and the endoscope tip

can also be observed. At the time the surgeon sets up the endoscope in the desired position, the target

anatomy with respect to the endoscope tracker is defined as:

𝑝𝑡𝑎𝑟𝑔,0
𝑒𝑛𝑑𝑜 = 𝑝𝑡𝑖𝑝

𝑒𝑛𝑑𝑜 + 𝛿𝑑𝑎𝑥𝑖𝑠 (13)

Since the endoscope tip position relative to the head tracker is known, the location of the target

anatomy with respect to the head tracker can be expressed as:

𝑝𝑡𝑎𝑟𝑔
ℎ𝑒𝑎𝑑 = 𝐹head,i

−1 𝐹𝑒𝑛𝑑𝑜𝑝𝑡𝑎𝑟𝑔
𝑒𝑛𝑑𝑜 = 𝐹head,i

−1 𝐹𝑒𝑛𝑑𝑜(𝑝𝑡𝑖𝑝,𝑖
𝑒𝑛𝑑𝑜 + 𝛿𝑑𝑎𝑥𝑖𝑠) (14)

Although the parameter 𝛿 is not known, since 𝑝𝑡𝑎𝑟𝑔,𝑖
ℎ𝑒𝑎𝑑 is a constant transformation, the relative

displacement between the target and tip can be calculated with respect to the initial target position at

setup as:

𝑝𝑡𝑎𝑟𝑔
ℎ𝑒𝑎𝑑 = 𝐹head,0

−1 𝐹𝑒𝑛𝑑𝑜𝑝𝑡𝑎𝑟𝑔,0
𝑒𝑛𝑑𝑜 = 𝐹head,i

−1 𝐹𝑒𝑛𝑑𝑜𝑝𝑡𝑎𝑟𝑔,𝑖
𝑒𝑛𝑑𝑜 (15)

𝑝𝑡𝑎𝑟𝑔,𝑖
𝑒𝑛𝑑𝑜 = 𝐹ℎ𝑒𝑎𝑑,𝑖𝐹head,0

−1 𝑝𝑡𝑎𝑟𝑔,0
𝑒𝑛𝑑𝑜 (16)

11

𝒑𝒅𝒊𝒔𝒑 = 𝑝𝑡𝑎𝑟𝑔,0
𝑒𝑛𝑑𝑜 − 𝑝𝑡𝑎𝑟𝑔,𝑖

𝑒𝑛𝑑𝑜 = (𝐼 − 𝐹ℎ𝑒𝑎𝑑,𝑖𝐹head,0
−1)𝑝𝑡𝑎𝑟𝑔,0

𝑒𝑛𝑑𝑜 (17)

The relative displacement and velocity of the endoscope tip, as well as the magnitudes of the velocity

and acceleration in the direction of the axis can be used as metrics to decide whether the endoscope

should be retracted or not. For example, once the distance is observed to fall short of a threshold set

by the surgeon and the movement is observed to be in the direction of the endoscope, the endoscope

is retracted. The surgical workflow for this system can be seen in Figure 10.

Figure 10: Surgical Workflow with EM System

In this system, the surgeon input (orange) consists of latching the retractor, starting software, and

pressing a key on their computer to set distance when endoscope is in desired position. Tracker

positions are communicated, and the relative distances, velocities, and accelerations are calculated in

real-time by the software, which retracts the endoscope tip once the trigger conditions in the form of

relative distance, velocity, or acceleration are met.

2.2 Assessment of Movement and Danger through Endoscope Video

2.2.1 Challenges Unique to a Vision-Based System

The use of endoscope video as the input for determining head (thus ear) motion is highly preferred,

as this approach requires no additional hardware or external systems – just the endoscope hardware

that is already being used, and a computer with the necessary software environment suffice to

implement this approach.

12

A challenge our system faces is the fact that endoscopes used in ear canal surgery and other narrow-

workspace surgeries are most often mono-endoscopes. The lack of a stereo camera means that the

depth of objects within the image cannot be directly determined as commonly done by most vision

systems. However, there still are several ways to use mono endoscope videos to infer the movement

of the head towards the endoscope. One such way the author briefly experimented with was the

detection and tracking of landmarks found in the ear canal and their apparent sizes in the frame.

However, this approach was quickly abandoned for a few reasons, most important of which being the

lack of one consistent landmark throughout the surgical procedure during which the endoscope is

expected to be readjusted as the procedure moves further down the ear canal, and also as landmarks

drastically change appearance with the introduction of blood and get even harder to track when

surgical operating tools introduced into the frame obstruct them. The need for multiple different

landmarks throughout the surgery would also require the system to be trained on a set of landmark

images to automatically detect them without any human input. I therefore decided to steer away from

the detection or tracking of specific objects and proposes a simpler and much more universally

applicable way to make use of the endoscope video input.

2.2.2 Using Optical Flow

Optical flow involves the estimation of the apparent movement of each individual pixel between

consecutive frames [4] and can be described as the set of trajectories pixels appear to move in over

some number of frames. Since the endoscope is rigidly held by the holder and does not move without

a retraction command, this apparent movement of pixels can be used to infer the relative movement

of the patient’s ear canal with respect to the stationary endoscope camera, without resorting to any

object tracking. Without the need to detect and define a set landmarks unique to the ear canal, a

robust optical flow based motion estimator becomes an attractive option as it could be used

13

universally not only throughout the entirety of the ear canal surgery, but could also be easily

generalized to other uses such as sinus or gastrointestinal procedures.

Using optical flow comes with the assumption that pixel intensities do not change drastically

between frames, and that neighboring pixels move similarly. The assumption of constant intensity

can be expressed by [5]:

𝐼(𝑥, 𝑦, 𝑡) ≈ 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) (18)

Where 𝛿𝑥 and 𝛿𝑦 represents the displacement of the pixel (or group of pixels) over time 𝛿𝑡. The

Taylor Series expansion of this expression yields [5]:

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡) +
𝛿𝐼

𝛿𝑥
∙
𝑑𝑥

𝑑𝑡
+

𝛿𝐼

𝛿𝑦
∙
𝑑𝑦

𝑑𝑡
+ 𝛿𝑡

𝛿𝐼

𝛿𝑡
+ 𝑂2 (19)

Where O2 is the second and higher order partial derivatives, assumed to be negligible. With this

assumption, subtracting intensity term 𝐼(𝑥, 𝑦, 𝑡) from both sides and dividing by 𝛿𝑡 gives us the

optical flow equation:

𝛿𝐼

𝛿𝑥
∙
𝑑𝑥

𝑑𝑡
+

𝛿𝐼

𝛿𝑦
∙
𝑑𝑦

𝑑𝑡
+

𝛿𝐼

𝛿𝑡
= 0 (20)

Or, defining the spatial intensity gradient ∇𝐼 = (
𝛿𝐼

𝛿𝑥
,
𝛿𝐼

𝛿𝑦
) and the optical flow vector as 𝒗 = (

𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
):

∇𝐼 ∙ 𝒗 +
𝛿𝐼

𝛿𝑡
= 0 (21)

This expression, although both ∇𝐼 and
𝛿𝐼

𝛿𝑡
 are known, results in a system of two equations and two

unknowns:
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
. Several methods have therefore been developed to solve for 𝒗, and one such

method is the Lucas-Kanade flow method [6].

14

Lucas-Kanade Optical Flow

Assuming that the displacement of a pixel between two frames is small and that neighboring pixels

will have about the same displacement, the Lucas-Kanade method looks at the motion of a block

consisting of the neighboring pixels centered around the pixel one wants to track. Thus, the n points

in this block are assumed to have the same motion hence same unknown optical flow 𝒗 with known

∇𝐼 and
𝛿𝐼

𝛿𝑡
. This results in a system of n equations with two unknowns:

𝛿𝐼(𝑝1)

𝛿𝑥
∙
𝑑𝑥

𝑑𝑡
+

𝛿𝐼(𝑝1)

𝛿𝑦
∙
𝑑𝑦

𝑑𝑡
= −

𝛿𝐼(𝑝1)

𝛿𝑡

𝛿𝐼(𝑝2)

𝛿𝑥
∙
𝑑𝑥

𝑑𝑡
+

𝛿𝐼(𝑝2)

𝛿𝑦
∙
𝑑𝑦

𝑑𝑡
= −

𝛿𝐼(𝑝2)

𝛿𝑡
 (22)

⋮

𝛿𝐼(𝑝𝑛)

𝛿𝑥
∙
𝑑𝑥

𝑑𝑡
+

𝛿𝐼(𝑝𝑛)

𝛿𝑦
∙
𝑑𝑦

𝑑𝑡
= −

𝛿𝐼(𝑝𝑛)

𝛿𝑡

Where 𝑝1, 𝑝2, … , 𝑝𝑛 are the pixels in the neighborhood, and
𝛿𝐼(𝑝𝑖)

𝛿𝑥
,
𝛿𝐼(𝑝𝑖)

𝛿𝑦
,
𝛿𝐼(𝑝𝑖)

𝛿𝑡
 are the intensity partial

derivatives from Equation (14). A least squares solution can be fitted to this system to solve for 𝒗:

𝐴 =

[

𝛿𝑥𝐼(𝑝1) 𝛿𝑦𝐼(𝑝1)

𝛿𝑥𝐼(𝑝2) 𝛿𝑦𝐼(𝑝2)

⋮ ⋮
𝛿𝑥𝐼(𝑝𝑛) 𝛿𝑦𝐼(𝑝𝑛)]

, 𝒗 = [
𝑑𝑥

𝑑𝑡

𝑑𝑦

𝑑𝑡
]
𝑇

, 𝒃 = [

−𝛿𝑡𝐼(𝑝1)

−𝛿𝑡𝐼(𝑝2)
⋮

−𝛿𝑡𝐼(𝑝𝑛)

] (23)

𝐴𝒗 = 𝑏 → 𝐴𝑇𝐴𝒗 = 𝐴𝑇𝒃 (24)

𝒗 = (𝐴𝑇𝐴)−1𝐴𝑇𝒃 (25)

15

Choosing Points to Track

An important factor affecting the success of tracking are the choice of points to track. Shi and

Tomasi have shown that corners generally make for good points to track [7]. Consider the

neighborhood of image discussed before being shifted by 𝒗 = (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
). The change in intensity of

the neighborhood is then given by [8]:

𝐸 (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
) = ∑𝑤(𝑥, 𝑦) [𝐼 (𝑥 +

𝑑𝑥

𝑑𝑡
, 𝑦 +

𝑑𝑦

𝑑𝑡
) − 𝐼(𝑥, 𝑦)]

𝑥,𝑦

2

 (26)

Where 𝑤(𝑥, 𝑦) is a window function assigning weights to the pixels in the neighborhood. Corners,

since they are at the boundaries of different groups of pixels with similar intensity, maximize this

function, particularly the second term. Like in Equations (12)-(13), the Taylor series expansion of

𝐼 (𝑥 +
𝑑𝑥

𝑑𝑡
, 𝑦 +

𝑑𝑦

𝑑𝑡
) results in the approximation:

𝐸 (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
) ≈ ∑𝑤(𝑥, 𝑦) [

𝛿𝐼

𝛿𝑥
∙
𝑑𝑥

𝑑𝑡
−

𝛿𝐼

𝛿𝑦
∙
𝑑𝑦

𝑑𝑡
]

𝑥,𝑦

2

 (27)

Which can eb rewritten in a matrix form using A and AT from Equations (17)-(18):

𝐵 = 𝑤(𝑥, 𝑦)𝐴𝑇𝐴 (28)

𝐸 (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
) ≈ 𝒗𝑇𝐵𝒗 (29)

The Shi-Tomasi algorithm looks at the eigenvalues 𝜆1, 𝜆2 of matrix B and uses a scoring function of

𝑅 = min (𝜆1, 𝜆2) to determine what pixels in the image are corners. We calculate the Lucas-Kanade

optical flow for the corners with high R scores and use it to calculate a focus of expansion for the

image that is used to assess motion towards the endoscope tip. The chosen points and their visualized

optical flow trajectories for a sample ear-canal endoscopy video [9] can be seen in Figure 12.

16

Figure 11: Optical flow of tracked points in the ear canal over time2

2.2.3 Finding a Focus of Expansion

The focus of expansion (or contraction) is defined as the point on the image plane from which the

optical flow trajectories diverge from (or converge to). This divergence, visualized in Figure 12 A, is

caused by the motion of either the camera or the image frame moving towards the other and getting

closer as seen in Figure 13 C. Therefore, if there is any relative motion in the Z-direction, the

direction perpendicular to the image plane, there is assumed to be a focus of expansion. This is useful

for our system as we are primarily interested in motion that is in the direction of the endoscope axis,

the Z-direction, since this has the greatest potential to damage the patient’s ear. If the motion is

purely translational in the directions parallel to the image plane (or rotational in these axes) as seen in

Figure 13 A,B,D,E, a focus of expansion would not be defined, making the FOE a useful indicator to

isolate motion primarily in the Z-direction. Thus for the cases where there is movement in the Z-

direction, we can calculate the focus of expansion as the intersection of the optical flow vectors of

the pixels that belong to the image background as seen in Figure 12 B, which would be the ear canal

in our case.

2 Unprocessed video from [9]

17

Figure 12 A: The focus of expansion (FOE) of flow vectors in purely Z-direction motion (left), and 12

B: as seen for a real-life case of a robot approaching a bush (right) [10]

Figure 13 A,B,C,D,E,F: Optical flow created by relative motion between camera and objects [11]

The intersection of two lines directed alongside the optical flow vectors can be calculated

geometrically. Let a and b denote two optical flow vectors between the tracked pixels in Frame 0 and

Frame 1, a0, a1 and b0, b1 denoting the pixels’ locations, respectively as seen in Figure 14.

Figure 14: Geometry of (Optical Flow) Vectors and their Intersection

18

If a and b are not parallel or collinear, their intersection can be represented as:

𝑭𝑶𝑬 = 𝐚𝟎 + 𝒂𝑡1 = 𝐛𝟎 + 𝒃𝑡2 (30)

Where t1 and t2 are scalar coefficients. Meanwhile, let p denote the vector from b0 to a0, 𝒑 = 𝐚𝟎 − 𝐛𝟎.

As seen in Figure 14, 𝒑, 𝒂𝑡1, 𝒃𝑡2 form a triangle and therefore 𝒑 = 𝒃𝑡2 − 𝒂𝑡1. This provides us with

a system of equations using the x and y-components of vectors a and b and allows us to solve for the

coefficients t1 and t2 and calculate the focus of expansion using Equation (25):

𝐴𝒕 = [
𝑎𝑥 𝑏𝑥

𝑎𝑦 𝑏𝑦
] ∙ [

t1
t2

] = 𝒑 (31)

𝒕 = 𝐴−1𝒑 (32)

While estimating the focus of expansion in practical cases which are not purely translational in the Z-

axis, multiple intersections will be present for the optical flow vectors. We can take the centroid of

these intersections points to calculate the most likely focus of expansion and can further make use of

a weighted centroid to disregard outliers and noise [12].

The presence of a FOE calculated this way is the main trigger condition upon which the retractor is

activated. More precisely, if a FOE exists, and the total magnitude of optical flow vectors, ftotal,

exceeds a threshold f max, the retractor is activated. This approach assumes small lateral movement in

the frame plane, as large movement in these directions would mean that overall flow magnitude

cannot be accurately corresponded to movement perpendicular to the frame. In my implementation,

this threshold was set and tuned empirically after running the pipeline on several endoscopy videos.

However, to make this a reliable and robust trigger fit to be used in surgical scenarios, the optical

flow magnitude and real-world velocity must be corresponded. One way of calculating this

correspondence is to move either the endoscope or the observed object in a known velocity at a

known distance (ideally about 1.5-2.0 cm to mimic the surgical scenario), and fit a polynomial

19

relationship between observed optical flow magnitude and real world velocity. This study has been

outside the scope of my work so far, as I initially focused on EM system development and lost access

to the endoscopy equipment and a realistic test setup due to reasons discussed under Sections 2.2.4

and 4.2.3.Hence, the current state of the vision pipeline to detect motion can be summarized as the

following individual steps and contribute to the surgical workflow as seen in Figure 15.

1. Select points to track with Shi-Tomasi Corner Detector

2. Calculate Lucas-Kanade optical flow

3. *Check if points are still “good” to track. If lost in next frame, back to (1)

4. Calculate focus of expansion/contraction

5. Find magnitude of flow vectors

6. *If FOE exists and flow magnitude is above threshold, retract

Figure 15: Surgical Workflow for Computer Vision-Based Retraction Pipeline

2.2.4 Tool Rejection and Improved Robustness

One of the greatest challenges to the optical flow and FOE based approach is the movement of tools

within the frame. Although this was not observed to be the case in preliminary tests, a tool moving

towards the endoscope has great potential to trigger the retraction system. A simple improvement

meant to address and prevent this issue was to filter the points on the tool while choosing the points

to track. We can paint the tool a unique color and exclude pixels in a color range from our possible

candidates so that points on the tool are not chosen to be tracked if the tool is present in the frame.

Painting the tool would also reduce the probability of the system mistaking a point on the tool for a

pixel it was tracking due to the different intensity and appearance of tool pixels once they are

painted. Good choices of color would be green and cyan contrasting the primarily red, pink, and

20

white ear canal features. Matte paint would also be preferred to reduce the reflection of light, making

it harder to mistake pixels on the tool with white pixels elsewhere in the frame. A basic filter function

eliminating green pixels from our point selection has been implemented, but it has not been tested

due to the COVID-19 lockdown preventing laboratory access and experimentation.

Similarly, considering the total movement of the head over time in the form of an integral controller

could help protect the patient against slow but consistent movement that the FOE and flow

magnitude-based trigger might not prevent. This idea was briefly experimented with, yielding many

false positives, and was left out of the current implementation when the pandemic lockdown

prevented further experimentation to improve its robustness.

3 Implementation

This section details the auto-retracting endoscope holder prototype in terms of the hardware that

performs the retraction and the software implementation of the tracking and vision methods. Files

containing the code and designs here can be reached

3.1 Hardware Implementation

The endoscope-holder, trigger latch, and electronic hardware described here are shared by the

implementations of both methods. In addition, the electromagnetic implementation features the NDI

Aurora V2 (2011) [3] electromagnetic tracking system, with fiducials mounted on the endoscope

holder (as seen in Figure 16) and the patient. In both cases a Karl Storz Image 1 H3 22220150-3 HD

camera, 222010 20 Image 1 Hub and 20133120 Xenon 300 light source (Karl Storz Endoskope,

Tuttlingen, Germany) [13] was used as the equipment used in the operating room by the surgeons,

and for the vision system the endoscope is also serially connected to the computer running the vision

software in the form of S-Video.

21

Figure 16: Current Implementation of auto-retracting endoscope holder with

endoscope and camera mounted

Figure 17: CAD model of retracting mechanism components

Latch

Rail & Bearing

Carriage

Motor

EM Tracker

Nest

Springs

Endoscope

Holder

22

3.1.1 Retracting Mechanism

The latest retracting mechanism features the endoscope holder put on a bearing rail which grants it

one degree of freedom. To reach a very high linear travel speed during retraction, two springs with

spring constants k = 1235 N/m [14] have been put on this rail to push against the endoscope holder to

actuate the mechanism. The springs are manually compressed by 9.5 mm until the holder stop, and

are kept compressed by the torque output of a DC motor and gearbox, which when retracting rotates

out of the springs’ way, allowing them to push the endoscope (and attached tracker) away with the

stored potential energy. This design means that the system will automatically retract when there is a

power outage regarding the motor, providing a safer failure mode. With two springs of spring

constants of k = 1235 N/m and a compression x of 9.5 mm, the springs push against the endoscope

holder with a force of F = 2kx = 23.465 N while latched.

3.1.2 System Components

The EM system uses the NDI Aurora electromagnetic tracking system with two trackers, which are

connected to the NDI Sensor Interface Unit (SIU). The SIU can serially communicate with the user

computer via USB. Meanwhile, the Storz endoscope system is connected to the user computer via S-

Video using a Hauppauge Live2 frame grabber (Hauppauge Digital, Hauppauge, NY). An overview

of how different system hardware and software components come together for both the EM and

vision-based system can be seen under Sections 3.2 and 3.3.

An H-Bridge circuit with a TI-l293d and an Arduino UNO microcontroller has been used in this

prototype to actuate the motor to latch and release the endoscope holder as seen in Figure 18. The

circuit powers the motor while the endoscope holder is latched on and reverses the voltage direction

of the motor when desired to make the latch rotate the other way and get out of the springs’ way.

This way, springs can push the endoscope back as quickly as possible without having to push against

the inertia of the motor. Arduino UNO was chosen to be the controller for this circuit since it can be

23

serially communicated with easily in a MATLAB or Python script and allowed for easy and quick

changes to the circuit. As further explained under 3.2 Software Implementation, the Arduino is

directly controlled in the EM MATLAB script using the MATLAB Arduino Support Package, and in

the vision script using the a serial communication protocol.

Figure 18: Diagram of circuit to control retracting mechanism

3.2 Software Implementation for Electromagnetic Tracking

For this iteration of the auto-retracting endoscope, a pair or NDI Aurora electromagnetic (EM)

position trackers are used. Although this introduces some unwanted novelty to the surgical procedure

in the form of having to set up and operate with the electromagnetic tracking system components, it

is simpler to implement and is a robust and reliable method for triggering the retraction. An external

GUI interface is used to start communicating with the trackers, and the EM tracking pipeline is

launched once communication is established, tracking the head and endoscope position throughout

the surgery and retracting when necessary. A block diagram showing how the different system

components work together for the EM implementation is presented in Figure 19.

24

Figure 19: Block diagram of EM Retraction system components3

To communicate with the tracking device, the sawNDITracker package [15] is used alongside the

Computer-Integrated Surgical Systems and Technology Surgical Assistant Workstation (cisst-saw)

libraries [16] developed in the Johns Hopkins Laboratory for Computational Sensing and Robotics.

The sawNDITracker package can be ran with the Robot Operating System (ROS, Open Robotics

Foundation Inc.) to create a ROS Node to communicate with the EM trackers, publishing data from

the sensors into different ROS Topics including the Cartesian position and orientations of the

different trackers with respect to the tracker system base. Once such a Node is created, one can

subscribe to the relevant ROS Topics to extract and use relevant information in their program. In our

case, the MATLAB ROS Toolbox can be used to read and work with real time position data from the

3 Arrows represent flow of information

25

EM trackers both for actual tracking and for evaluation experimental data to evaluate the

performance of both systems as described under Section 4.1. The pseudocode for the implementation

of this method is presented below in Figure 20, and the specific helper functions in this

implementation are provided in Appendix A. The pipeline requires the MATLAB ROS Toolbox and

Arduino Hardware Support Packages (Mathworks, Natick), as well as the sawNDITracker and

CISST-SAW libraries to be installed on the device prior to running the system.

EM Pipeline Pseudocode

Required MATLAB Toolboxes: ROS Toolbox, Arduino Hardware Support Package

% Connect MATLAB to ROS Master and subscribe to the two EM tracker topics

rosinit;

sub1 = rossubscriber('/ndi_tracker_ID_1/position_cartesian_current');

sub2 = rossubscriber('/ndi_tracker_ID_2/position_cartesian_current');

% Create Arduino object to connect to Arduino board. Turn on the latch

a = arduino;

writeDigitalPin(a, 'D3', 1);

writeDigitalPin(a, 'D7', 0);

% Initiate and pre-allocate variables

% Start main loop

n = 1;

while time < time_end

 if n == 1

 disp('Press a Key When Distance Set')

 pause;

 end

Figure 20: Pseudocode for EM Tracking and Retraction

26

 % Extract positions of trackers from rosnode

 msg1 = receive(sub1);

 msg2 = receive(sub2);

 pos1 = msg1.Pose.Position;

 pos2 = msg2.Pose.Position;

 % Calculate position of the endoscope tip based on previous

 % calibration and distance between tip and head tracker

 pos_tip, axis = tip_Kinematics(pos1);

 diff_inst = pos_tip – pos2;

 dist = norm(diff_inst);

 % If it is the first measurement (when the surgeon sets desired

 % distance), set threshold as desired distance plus some tolerance

 if n == 1

 pos1_0 = pos1; pos2_0 = pos2; pos_tip_0 = pos_tip;

 diff_0 = diff_inst; threshold = dist – tolerance;

 % If it isn’t the first measurement, calculate velocities, including

 % head velocity in the direction of the endoscopeaxis

 elseif n > 1

 v1 = (pos1(n)-pos1(n-1))./(t(n)-t(n-1));

 v2 = (pos2(n)-pos2(n-1))./(t(n)-t(n-1));

 v2_axis = dot(v2, axis)*axis;

 end

 % After the first two measurements, calculate acceleration, including

 % head acceleration in the direction of the endoscope axis

 if n > 2

 a1 = (v1(n)-v1(n-1))./(t(n)-t(n-1));

 a2 = (v2(n)-v2(n-1))./(t(n)-t(n-1));

 a2_axis = dot(a2, axis)*axis;

 end

Figure 20 (continued): Pseudocode for EM Tracking and Retraction

27

 % If distance between tip and head tracker are below threshold or if

 % the head velocity or acceleration is dangerously high, retract by

 % changing motor direction to unlatch mechanism.

 if dist <= threshold || (a2_axis >= max_a || v2_axis >= max_v)

 writeDigitalPin(a, 'D3', 0);

 writeDigitalPin(a, 'D7', 1);

 % Record useful information like time, velocities, and distance at

 % the time of trigger

 t_end = t;

 v_end = [v1 v2];

 diff_end = norm(diff_inst(1:3,1));

 end

end

Figure 20 (continued): Pseudocode for EM Tracking and Retraction

3.3 Software Implementation for Endoscope Vision

The endoscope vision pipeline processes real-time mono-endoscope video, and decides on whether

the retractor should be triggered to signal the Arduino microprocessor to execute retraction as

described in Section 2.2 Assessment of Movement and Danger through Endoscope Video. The

pipeline makes use of several external Python libraries and packages, most notably OpenCV 2 [17]

for video processing, Rospy for communicating via ROS, Pyfirmata [18] to communicate with

Arduino via serial, and GScam [19] and CVBridge [20] to process video from ROS into more

convenient images for OpenCV. It also uses a ROS launch file based on those from the Johns

Hopkins da Vinci Research Kit [21]. Specific helper functions and classes used in this

implementation can be found under Appendix A. The system components for vision-based retraction

are presented in Figure 21. The pseudocode is presented in Figure 22.

28

Figure 21: Block diagram of vision-based retraction system components

Vision Pipeline Pseudocode

import numpy as np

import cv2

import math

import roslib

import rospy

import pyfirmata

from sensor_msgs.msg import Image

from cv_bridge import CvBridge, CvBridgeError

from time import sleep

Establish communication with microcontroller and activate latch

Give the surgeon 10 seconds to put the latch in place

board = latchOn()

sleep(10)

Figure 22: Pseudocode for Vision Tracking and Retraction

29

Initiate image converter object and rosnode to receive video via ros[22]

ic = image_Converter()

rospy.init_node('camera', anonymous=True)

Assign first frame of video received to imageconverter object

frame0 = np.asarray(ic.cv_image)

#Define parameters for Shi-Tomasi corners, Lucas-Kanade optical flow

st_params, lk_params

Find points in the first frame of video to track

old_grey, points0 = find_Corners(frame0, st_params)

Start loop to track detected points

while(run):

 # Assign the next frame in the video to image converter,

 # convert to gray image

 frame = np.asarray(ic.cv_image)

 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # Calculate optical flow between points in this frame and previous

 # frame

 points1, error = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray,

 points0, **lk_params)

 # Make sure at least some of the points0 from the previous frame

 # are still found in the current frame, pick new points if none of

 # them are, and calculate optical flow based on these new points

 if points1 is None:

 old_gray, p0 = findCorners(old_frame, feature_params)

 frame = np.asarray(ic.cv_image)

 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 points1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray,

 points0, None, **lk_params)

Figure 22 (continued): Pseudocode for Vision Tracking and Retraction

30

 # Calculate Optical Flow Vectors and their Magnitudes

 V = points1-points0

 avgMag, magnitudesV = flowMagnitude(V)

 # Calculate Focus of Expansion/Contraction

 foe = findIntersection(V, points0, maxCorners)

 # Draw point trajectories on video

 # Check trigger condition and retract if FOE exists and optical

 # flow magnitude is greater than set threshold, then don’t run

 # another loop

 # The threshold in this implementation has been empirically determined

 # as the value that best separated sudden, large movements from slow,

 # steady ones in the video samples.

 if ((np.linalg.norm(foe) > 1) and (avgMag > magThresh)):

 latchOff(board)

 run = 0

 # Update previous frame and its points to be the current frame and

 # it’s points

 old_gray = frame_gray.copy()

 p0 = good_new.reshape(-1,1,2)

Close program interface windows, release captured vide

cv2.destroyAllWindows()

cap.release()

Figure 22 (continued): Pseudocode for EM Tracking and Retraction

31

4 Evaluation & Results

4.1 Data Collection and Evaluation Methods via rosbag

Since ROS has been used as the communication tool between our different system components, it’s

rosbag package has been used to collect and save experimental data throughout different evaluation

procedures. To process necessary information from any saved rosbag, a complementary MATLAB

script was developed and is presented under Appendix B. It extracts the relevant data, from the

relevant ROS Topics of Cartesian position, calculates the relative velocity and acceleration between

the tracker for every timestamped position reading and plots them. The script can process multiple

rosbags to plot the different trials and their averages in a single plot for easier visual and statistical

analysis. These plots can be seen in Figure 23 and 24.

4.2 Retractor Velocity Characterization

4.2.1 Retractor Velocity Evaluation Procedure

The NDI tracking software is initiated. The head tracker is kept stationary in place, and a rosbag

recording is initiated. Then the retractor is latched in place, and is actuated via human input rather

than the actual retraction condition to examine the retracting mechanism in isolation from the

movement tracking and detection components. The cartesian position of both trackers is extracted

from the rosbag, and a plot of the relative distance between the trackers is obtained as seen in Figure

23. The slopes of this plot between time instances (or distance travelled over the time period) is

calculated as the velocity of the endoscope tracker.

4.2.2 Retractor Velocity Results

The distance between the stationary head tracker and moving endoscope tracker throughout the

retraction process is visualized in Figure 23 for 9 trials. The average of these nine trajectories (seen

as the black line) yields a retraction of 9.5 mm over 20 at an average initial velocity of 48.9 cm/s and

32

acceleration of 238/5 cm/s2. The distance, velocity, and acceleration plots reveal that the distance

changes with a consistent slope and profile for each trial, and the initial velocity and acceleration are

never below 40 cm/s and 200m/s2 respectively.

Figure 23: Relative Distance, Velocity, and Acceleration Profiles for the Velocity Characterization

Experiment, with 9 trials

33

4.3 System Latency and Response Time

This test’s objective is to simulate the surgical scenario by moving the head tracker towards the

endoscope tracker after a threshold distance is set by the user. There is a predetermined buffer (of 2

mm in this set of experiments), and the time difference between the first measurement of distance

closer than the threshold and the first measurement where the distance starts to increase again is

defined as the latency of the entire system. In other words, this overall system latency refers to the

time between the entry of the head tracker in the threshold and the time the endoscope starts

retracting. The system latency of the tracking-based system has been evaluated following the

procedure below.

4.3.1 Response Time Evaluation Procedure

To characterize the system’s overall latency, the tracking code is started, and the user sets a threshold

distance. The head tracker is manually moved and brought closer to the endoscope tracker, which

triggers the retraction. The positions of the trackers throughout the experiment are recorded via

rosbag. The response time is evaluated as the amount of time passed after the head tracker moves

past the threshold and when the relative distance starts increasing again in the relative distance plot.

The threshold for these experiments was set to be 2mm.

4.3.2 EM Response Time Results

Figure 24 shows the relative distance between the trackers. The results in this graph are normalized

around zero centimeters, i.e. they are zeroed around the distance set by the user since each distance

set by the user was slightly different. The average of nine trials is seen as the line in black, and

reveals a latency time of 120 ms for the tested system. It is important to note that the system

evaluated in this experiment simply reacted with retraction when the head tracker was observed to be

too close. By simply changing the trigger condition to take into account the current head tracker

34

velocity and acceleration to predict when it is expected to go beyond the threshold, this latency can

be improved further with ease.

Figure 24: Relative Distance Profiles for Latency Experiment with 9 trials

Since the tracker was moved by hand, the movement speed was not controlled in these experiments,

and effects how much overshoot past the threshold is observed before retraction begins. As seen in

Figure 24 in the worst case moving more than 1.7 cm past the desired distance for a with

instantaneous initial velocity of 90 cm/s and instantaneous initial acceleration of 50 m/s2. However, a

previous study by Creighton et. al has shown that the head motion of a patient under anesthesia was

observed to be no more than 0.75 m/s2 [1]. Hence the worst cases tested and observed in these trials

involve acceleration far above the scope of the surgical problem. For the slower cases in this set of

trials, with acceleration rates around 20 m/ s2, the offshoot observed was about 0.3 cm, which is less

than the 1.0-1.5 cm buffer zone the surgeon is expected to place between the endoscope tip and any

structure in the ear canal. A cadaver experiment where the head tracker is placed on the cadaver’s

head and the head is moved around at speeds and manners closer to the live surgical scenario can

yield the true amount of offshoot that one would expect to see in the operating room. However, I

35

have not been able to perform further experiments using a cadaver or inquiring about slower head

velocities due to the loss of laboratory access amidst the COVID-19 pandemic.

4.3.3 Vision System Evaluation and Cadaver Experiments

The latency and robustness of the vision system were meant to be evaluated, however due to the loss

of access to the necessary equipment due to the COVID-19 pandemic, an extensive evaluation could

not be performed in time. The procedure for evaluating latency would be the same as that of the EM

system, the trackers would be left on the system to log the relative positions of the endoscope and

object representing the patient’s head. The system however would be run through the vision-based

pipeline and retract upon the visual detection of the object approaching the endoscope.

In addition to evaluating latency, the robustness of both the EM and vision systems was to be

evaluated in a set of cadaver experiments. The system would be setup and placed as it was intended

to be during surgery, and the cadaver head would be manually moved to replicate the patient’s head

movement. The success rate of the retraction system would be determined by the rate of successful

retractions where there would be no contact or collision inside the ear canal, where failures could be

identified from the endoscope video (by for example the frame turning dark due to collision) and the

surgeon’s external observations. Although both systems require this cadaveric experiment, it is

particularly important for the vision system as simulating the surgical scenario from a vision

perspective has not been possible in the lab while the relative movement of the EM trackers are

expected to simulate the surgical case similarly enough. More difficult cases such as a tool moving

within the endoscope video can also be assessed by such a study.

36

4.4 Hardware Latency

In the early implementations of the system when we evaluated the overall system latency, it was

observed to be much higher than expected from the software components. This led to the initiative to

separately investigate and identify the mechanical hardware latency as the bottleneck causing much

of the delay observed. A separate evaluation procedure has therefore been developed and outlined

here to address the mechanical latency of the system, defined as the reversal of the motor current and

the actual release of the endoscope holder.

To measure the phase difference between the actuation of the motor and the start of the retracting

motion, an evaluation circuit was designed and implemented as seen in Figure 25 A with two

channels of an oscilloscope being connected across the motor input pins and across the evaluation

circuit respectively. The evaluation circuit featured metal flaps that were attached to the contact

points between the stop and endoscope holder, and a parallel resistor. This way, when the endoscope

holder was latched, there would be zero voltage difference across channel one and a 5 V difference

as soon as the endoscope holder started retracting and lost contact. The phase difference between

channel one and channel two of the oscilloscope would therefore be the latency between trigger and

the actual retraction. This resulted in a plot presented in Figure 25 B, indicating a hardware latency of

about 50 ms. Although the sliding mechanism has been changed in the latest implementation and

now uses a faster and more robust linear bearing, the system latency is still observed to be no less

than 120 ms as discussed in Section 4.2.2. During the experiments, the primary reason behind this

latency was observed to be the speed at which the latch moves out of the endoscope’s way.

37

Figure 25 A: Experimental Setup (left) and 25 B: Phase difference

observed on the oscilloscope (right)

5 Improvements and Next Steps

The next steps to improve the auto-retracting endoscopy system will involve design and

manufacturing improvements regarding the hardware and increasing robustness for the vision

system. Further tests with more trials regarding the robustness of both pipelines would also be a

significant step towards the commercialization of this product.

5.1 Hardware Improvements

The time it takes for the latch to move completely out of the way of the endoscope holder is

identified as the most significant bottleneck of the current system through observation. In response to

this, a new retraction mechanism featuring a different latch has been designed by Anna Goodridge as

seen in Figure 26. This latch also prevents the endoscope from potentially sliding back down after

retraction, which introduces another layer of safety. The design incorporates other improvements

such as housing for the electronics and a safe and ergonomic way of manually latching the

mechanism at the start of the procedure.

38

Figure 26: Next Iteration of the Retracting Mechanism [23]

5.2 Testing and Improving the Robustness of the Vision System

5.2.1 Testing for Robustness and Latency

Early tests regarding vision robustness have been conducted, but not extensively. The system must be

evaluated over many cases, particularly more difficult situations where there is a tool moving in the

video frame. A cadaveric test as outlined in Section 4.3.3 would be an essential next step in the

evaluation and further development of both the vision and EM systems.

Besides robustness, the latency of the vision system should be evaluated in a similar manner to the

evaluation of the EM system, as discussed in Section 4.3.3. Although hardware is observed to be the

bottleneck causing increased latency and early assessments show that the pipeline responds quickly

to incoming objects, the pipeline and overall system latencies must be quantified.

5.2.2 Vision System Improvements

After testing the success rate of the vision system, several improvements can help improve it. The

tool rejection method described in Section 2.2.4 can be integrated into the current system, tested, and

improved upon. Alternative distance detection methods can also be employed in addition to or in

39

place of the FOE approach. One such method was detecting the blurring of the perceived image due

to the object moving in and out of focus [24]. One can quantify blur by computing a Fast Fourier

Transform of the image and investigate the distribution of low and high frequencies. In general, the

scarcity of high frequencies would indicate a high amount of blur, and quantifying change in

frequencies from frame to frame can be used to identify the movement of the patient’s head towards

the endoscope.

There are also several threshold variables that the current FOE oriented system uses to decide

whether it should retract or not, particularly regarding the choice of points to track, and the

magnitude of optical flow, which I empirically determined to fit the sample videos and experiments I

performed. After thorough tests on a cadaver ear, these thresholds can be optimized to yield the best

retracting performance resulting in the smallest number of retractions avoiding false positives and the

smallest number of collisions. Determining the threshold for optical flow magnitude is particularly

essential to successfully implementing the vision method in a surgically viable system. This requires

the vision system to be calibrated in order to relate flow magnitude to actual movement speed. One

way to perform calibration on the system might be to move the frame or the endoscope by a known

velocity and fit a polynomial to map it to an observed optical flow magnitude.Finally, the trigger

condition can be improved by taking the total movement of the head over time into account like an

integral controller as discussed in Section 2.2.3. When I experimented with this idea and observed

that it led too many false positives, however refining the integral controller further would be a

promising idea since it would caution the system against small yet consistent motion towards the

endoscope.

40

6 Conclusions

An autonomously retracting endoscope holder has been implemented to safely hold the endoscope

during otologic and related surgical procedures, and two alternative danger assessment methods have

been explored in the context of otologic and similar narrow-space surgical procedures. The system

monitors the patient’s head movement with electromagnetic tracking or endoscope vision, decides

whether it is likely to cause collision inside the canal, and swiftly retracts the endoscope if this is the

case. To do so, the electromagnetic tracking pipeline uses the kinematic relationship between the

electromagnetic fiducials and endoscope tip to assess their relative positions, isolating and

quantifying the head movement in the direction the endoscope is pointing at. Meanwhile, the

computer vision pipeline calculates the optical flow and focus of expansion of the mono-endoscope

video to quantify the relative motion of the head in the same direction. A mechatronic retraction

mechanism using springs and a motor-latch system was prototyped and used with the

electromagnetic tracking pipeline to test and confirm that the system can robustly and swiftly detect

collision and retract with enough speed to satisfy the demands of the surgical scenario. Although

cadaveric studies were also planned to more thoroughly test the system with both pipelines, and to

better simulate a variety of surgical cases for the vision system to evaluate and improve its

performance, these steps were postponed for the moment due to the COVID-19 pandemic.

Regardless, the prototyped system has successfully explored and confirmed the feasibility and

potential of an automatically retracting endoscope holder. It’s implementation of specific danger

assessment methods and software and retraction hardware ts as the first step towards a commercial

design that can be widely implemented in operating rooms to make otologic and related procedures

easier and safer.

41

7 References

[1]: P. Creighton, Personal communication.

[2] Patent R. H. Taylor and F. X. Creighton, "Safety feature for use with robotically manipulated

endoscopes and other tools in otolaryngology and neurosurgery", International Patent Application

WO 2020/28747 A1; filed 2 August 2018; published 6 February 2020

[3]: Northern Digital Instruments, “Aurora”. [Online] Available:

https://www.ndigital.com/medical/products/aurora/. [Accessed 22-Apr-2020].

[4]: R. Szeliski, "Optical Flow," in Computer Vision: Algorithms and Applications, London,

Springer, 2011, pp. 360

[5]: S. S. Beauchemin and J. L. Barron, “The computation of optical flow”, ACM Computing

Surveys, vol. 27, no. 3, 1995, pp. 433–466

[6]: B. Lucas and T. Kanade, " An iterative image registration technique with an application to stereo

vision," in Proceesings of 7th International Conference on Artificial Intelligence, Vancouver, 1981,

pp. 674-679

[7]: J. Shi and C. Tomasi, "Good features to track," 1994 Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, Seattle, 1994, pp. 593-600.

[8]: C. Harris and M. Stephens, "A Combined Corner and Edge Detector," Alvey Vision Conference,

vol. 15, no. 50, 1988, pp. 147-151.

[9]: I.R. Tavárez Rodríguez, “Timpanoplastia endoscópica por Iván Tavárez Rodríguez

Otorrinolaringología”, YouTube, 11 May 2014, [Online]. Available:

https://www.youtube.com/watch?v=rYwGBl9NSek [Acc. 24-Apr-2020].

https://www.youtube.com/watch?v=rYwGBl9NSek

42

[10]: C. McCarthy, R.E. Mahoney, N. Barnes, "A Robust Docking Strategy for a Mobile Robot using

Flow Field Divergence," 2006 IEEE/RSJ International Conference on Intelligent Robots and

Systems, Beijing, 2006, pp. 5564-5569.

[11]: Nitsche, M. “Appearance-based teach and repeat navigation method for unmanned aerial

vehicles”, PhD Thesis, 2016, pp. 40.

[12]: P. Gil-Jiménez and H. Gómez-Moreno, "Estimating the focus of expansion in a video sequence

using the trajectories of interest points," Image and Vision Computing, vol. 50, no. June 2016, pp. 14-

26.

[13]: Karl Storz Endoskope “Cameras, light sources and documentation,” [Online]. Available:

https://www.karlstorz.com/us/en/telepresence.htm [Acc. 3-May-2020].

[14]: McMaster-Carr, “Compression Spring 1.25’’ Long, 0.18’’ OD, 0.132’’ ID,” [Online].

Available: https://www.mcmaster.com/9657K326?fbclid=IwAR3Hqp9YFZstRxAPSvbWc5aGB

IpfnxoWCur5jcXfMIxULKF4nYuplUvjNkQ [Acc. 3-May-2020].

[15]: A. Deguet, A. Uneri, et. al. “sawNDITracker”, [Online]. Available: https://github.com/jhu-

saw/sawNDITracker [Acc. 3-May-2020].

[16]: A. Deguet, Z. Chen, S. Leonard, P. Kazanzides, M. Balicki, P. Chalasani, “cisst-saw,” [Online].

Available: https://github.com/jhu-cisst/cisst-saw [Acc. 3-May-2020].

[17]: Open Source Computer Vision Library, “OpenCV”, [Online]. Available: https://opencv.org/

[Acc. 5-May-2020].

[18]: T. de Bruijn, “Pyfirmata”, [Online]. Available:

https://pypi.org/project/pyFirmata/ [Acc. 3-May-2020].

https://www.karlstorz.com/us/en/telepresence.htm
https://www.mcmaster.com/9657K326?fbclid=IwAR3Hqp9YFZstRxAPSvbWc5aGBIpfnxoWCur5jcXfMIxULKF4nYuplUvjNkQ
https://www.mcmaster.com/9657K326?fbclid=IwAR3Hqp9YFZstRxAPSvbWc5aGBIpfnxoWCur5jcXfMIxULKF4nYuplUvjNkQ
https://github.com/jhu-saw/sawNDITracker
https://github.com/jhu-saw/sawNDITracker
https://github.com/jhu-cisst/cisst-saw
https://opencv.org/
https://pypi.org/project/pyFirmata/

43

[19]: J. Bohren, G. T. Jay, C. Crick, “gscam”, [Online]. Available:

https://github.com/ros-drivers/gscam [Acc. 3-May-2020].

[20]: P. Mihelich, J. Bowman, “CVBridge”, [Online]. Available:

https://github.com/ros-perception/vision_opencv [Acc. 3-May-2020].

[21]: A. Deguet, et al. “dvrk-ros” [Online]. Available: https://github.com/jhu-dvrk/dvrk-

ros/blob/devel/dvrk_robot/launch/gscam_hauppauge_live2.launch [Acc. 3-May-2020].

[22]: P. Mihelich, J. Bowman, “Converting between ROS images and OpenCV images (Python)”

[Online]. Available: http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImages

AndOpenCVImagesPython [Acc. 5-May-2020]

[23]: A. Goodridge, personal communication.

[24]: B. Vagvolgyi, personal communication.

https://github.com/ros-drivers/gscam
https://github.com/ros-perception/vision_opencv
https://github.com/jhu-dvrk/dvrk-ros/blob/devel/dvrk_robot/launch/gscam_hauppauge_live2.launch
https://github.com/jhu-dvrk/dvrk-ros/blob/devel/dvrk_robot/launch/gscam_hauppauge_live2.launch
http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAndOpenCVImagesPython
http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAndOpenCVImagesPython

44

8 Appendices

Appendix A: Helper Functions for EM and Vision Retraction Software Pipelines

Code files including main EM and Vision retraction pipelines and any associated helper functions are

available at: https://git.lcsr.jhu.edu/auto-retracting-endoscope-holder/thesis-can.git

EM Pipeline Function: tip_Kinematics

Required MATLAB Toolboxes: ROS Toolbox

function tip_Kinematics(T)

% Input homogeneous transformation matrix representing the pose of the %

endoscope tracker, T

% Outputs endoscope axis direction and tip position with respect to

% global frame

% Assign p_tip, endoscope center, and axis as calculated by pivot-axis

calibration

p_tip = [-0.0104; -0.0417; -0.1705];

axis = [-0.1075; -0.9937; 0.0319];

% Separate T into rotation and translation

Rot = trans(1:3,1:3);

pos = trans(1:3,4);

% Calculate tip position with respect to global frame

pos_tip = Rot*p_tip; + pos;

axis_global = Rot*axis + pos;

return pos_tip, axis_global

Vision Pipeline Function: latchOn

function latchOn():

Inputs – none

Outputs: board – board object used to communicate with

Arduino via pyfirmata

Create board object to connect to and identify its serial port

board = pyfirmata.Arduino('/dev/ttyACM0')

45

Activate relevant pints to turn the latch on

board.digital[3].write(1)

board.digital[7].write(0)

return board

Vision Pipeline: latchOff

function latchOn(board):

Inputs: board – Arduino board object to communicate with

Outputs – none

Activate relevant pints to turn the latch off

board.digital[3].write(0)

board.digital[7].write(1)

Vision Pipeline Function: find_Corners

function findCorners(frame, params):

Inputs: frame - the image to find points on and

params – parameters for Shi-Tomasi corner detection

Outputs: frame_gray – grayscale image

p0 – points to track

Convert image to grayscale

frame_gray = cv2.cvtColor(frame_gray, cv2.COLOR_BGR2GRAY)

Choose good points to track as points

p0 = cv2.goodFeaturesToTrack(old_gray, **params)

return frame_gray

Vision Pipeline Function: flow_magnitude

function flowMagnitude(V):

Input: V – an array of optical flow vectors

Outputs: avgMag – average optical flow magnitude in the frame

magnitudes – array of magnitudes corresponding to each vector

for vector in V:

 # Calculate Euclidean magnitude vectorMag and append to magnitudes

 # Filter very small vectors as noise

 if vectorMag > 0.01:

 # Count vectorMag towards the average avgMag

return magnitudes, avgMag

46

Vision Pipeline Function: findIntersection

function findIntersection(V, P0):

Input: V – an array of optical flow vectors

P0 – array of points tracked in previous frame (P0 + V gives point

locations in current frame)

Output: foe – calculated location of the focus of expansion as the centroid

of vector intersections

Calculate the intersection of each vector with every other

for v1 in V:

 for v2 in V:

 if (v1 is not v2):

 # Calculate matrix A as defined in Equation 31 and solve

 # for parameter t as described in Equation 32

 A = np.matrix([[a[0][0],b[0][0]],[a[0][1],b[0][1]]])

t = np.matmul(np.linalg.inv(A),np.transpose(P0[countB]

 P0[countA]))

Use parameter t to interpolate intersection point as in

Equation 32

Calculate foe: the centroid of all intersection points as the focus of

expansion

return foe

47

Appendix B: Scripts for Data Reading and Experimental Evaluation

Data Processing: Pivot Calibration

function pivotCal(T)

% Input: T – an array of homogeneous transformation matrices for the relative

% pose of the endoscope tracker

% Outputs: p_tip – position of endoscope tip wrt. endoscope tracker

% p_dimple – position of pivot wrt. Reference tracker

% Compile rotations and translations from each frame in the form presented in

% Equation 5 as R_I and p_j

% Perform Singular Value Decomposition on the compiled matrix R_I

[U,S,V] = svd(R_I);

% Solve for x in Equation 8

x = S\(U'*(-p_j));

% Calculate p_tip with Equation 9

ls_solution = V*x;

p_tip = ls_solution(1:3);

p_dimple = ls_solution(4:6);

return p_tip, p_dimple

Data Processing: Axis Calibration

Required MATLAB Toolboxes: Computer Vision Toolbox

function axiscal(T)

% Input: T – an array of homogeneous transformation matrices for the relative

% pose of the endoscope tracker

% Outputs: endo_axis – direction vector of the endoscope axis relative to

% endoscope tracker

% center – the center point of circle in Figure 9, which is the

% starting position of the endoscope axis

% Calculate geometric center of the circle in Figure 9 from tracker poses T,

% as the center point of the two points that are farthest apart in the

% circle. This is necessary as simply taking the position mean would not work

% due to a non-uniform point distribution

% Translate every point and store them in G, so that the center is the origin

48

% Fit Plane to cloud of tracker points using pcfitplane() from the MATLAB

% Computer Vision Toolbox.

[model, inlierIndices,outlierIndices] = pcfitplane(ptCloud, 1);

plane = select(ptCloud, inlierIndices);

% Calculate axis as the vector normal to the plane

axis = model.Normal;

return center, axis

Data Processing: Pivot-Axis Calibration from ROSbag files

Required MATLAB Toolboxes: ROS Toolbox, Computer Vision Toolbox

function pivot_axis_cal_rosbag()

% Based on data from pivot and axis calibration experiments saved in

% rosbags, calculates the endoscope tip position with respect to the

% endoscope tracker, and the direction of the endoscope axis

% Select either pivot or axis calibration bag saved in the workspace

% Select the topics of interest from bag (pose)

% Read ROS messages from the topics chosen

for n in data_points

% Calculate endoscope tracker pose with respect to

% reference tracker, T

If bag_chosen is pivot_bag

 % Calculate endoscope tip position

[p_tip, p_dimple] = pivotcal(T);

else if bag_chosen is axis_bag

 % Calculate endoscope axis direction and endoscope center position

[endo_axis, center] = axiscal(trans);

return p_tip, endo_axis;

49

9 Biography

Can Kocabalkanli was born in Istanbul, Turkey in 1997. He completed his undergraduate work

majoring in Mechanical Engineering and minoring in Robotics and Mathematics in Johns Hopkins

University, receiving his Bachelor of Science Degree in May 2019. He started working towards his

Master of Science and Engineering for Robotics during his senior year, and in Fall 2019 started

working with Prof. Russell Taylor and Dr. Francis “Pete” Creighton in the Computer Integrated

Interventional Systems Laboratory at Johns Hopkins on the development of an autonomously

retractable endoscope holder to assist in otologic and related surgical procedures.

