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Abstract 

CD8+ cytotoxic T lymphocytes (CTLs) are critical for the elimination of virally- 

infected cells, and defects in CTL responses can lead to primary immunodeficiencies 

and secondary lymphoproliferative syndromes. One such defect is caused by 

mutations in the gene encoding Inducible T cell Kinase (ITK), a kinase that serves as 

an amplifier of T cell receptor (TCR) signaling. Patients with mutations in ITK 

develop lymphoproliferative disease associated with susceptibility to viral infections. 

We found CTLs from ITK-deficient mice exhibit impaired killing of multiple different 

targets, indicating that ITK-deficiency leads to global defects in cytolysis. Treating 

WT CTLs with an ITK-specific inhibitor during cytolysis assays could reproduce 

impaired killing, suggesting that these defects were not necessarily due to altered T 

cell development or CTL differentiation. To further evaluate this killing defect, we 

examined the discrete steps involved in CTL activity, including TCR-triggered 

adherence to cells, immunological synapse formation, centrosome polarization, and 

degranulation inducing cytolysis in targets. Although early events following TCR-

mediated target cell engagement, such as actin ring formation and polarization, were 

intact in ITK-deficient CTLs, we found defects in degranulation, suggesting ITK may 

play an unappreciated role in the final stages of killing. Nonetheless, prolonged 

culture of ITK-deficient CTLs in IL-2 could rescue defects in degranulation, similar to 

observations in NK cells from certain primary immunodeficiencies in which 

cytotoxicity is enhanced in culture after IL-2 stimulation. Together these experiments 

provide clues to novel roles for ITK and TCR signaling in regulating late stages of 

cytolysis, and further insight into the defects that may account for the susceptibility to 
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viral infections observed in patients with mutations in ITK and TCR signaling 

components. 

In parallel work, we also examined the role of actin in regulating degranulation 

in normal CTLs. While previous work showed a reduction in actin density at the 

synapse prior to secretion of lytic granules, we found that cortical actin recovers 

concomitant with the termination of secretion. Disruption of this actin network via 

treatment with an actin depolymerization agent resulted in a resumed degranulation, 

suggesting that actin acts as a reversible barrier to prevent lytic granule exocytosis. 

Furthermore, we provide evidence that degranulation is required to reestablish the 

actin barrier. Our results suggest that actin is both regulated by, and regulates, 

degranulation in CTLs. Experiments further revealed a correlation between the 

recovery of actin and phosphatidylinositol 4,5-biphosphate (PIP2) at the synapse, 

suggesting that the distribution of phosphatidylinositols in the membrane represent a 

potential mechanism through which CTLs regulate the density of cortical actin during 

cytolysis. Our work provides insight into actin-related mechanisms regulating 

secretion in CTLs, which may preserve serial killing capacity during immune 

responses. 
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Chapter 1: Introduction 
 

1.1 Historical perspective 

The concept of immunity, or the resistance to a particular condition due to a 

special status, dates back to 5th century BCE when the Greek historian, Thucydides, 

described a plague that killed one third of the Athenian population in a single 

summer. Although he attributed the cause of the disease, now known to be typhoid 

fever, to the “will of the Gods,” remarkably, he noted that individuals who had 

contracted the disease and survived became exempt from recurrence of plague. 

Although attempts to intentionally induce immunity were reported for centuries, even 

before Edward Jenner used variolation to protect individuals from smallpox, it was 

not until the 1860’s that Louis Pasteur serendipitously discovered that immunity 

could be acquired after exposure to attenuated bacterial cultures. This discovery 

was followed by the development of a vaccine against cholera in chickens, and the 

rationale that made immunology a science was born.  

By the turn of the 19th century, a number of paradigms that laid the 

groundwork for the field of immunology were established. These included Emil von 

Behring and Shibasaburo Kitasato’s discovery that transferring serum with “anti-toxic 

activity” from animals immune to tetanus provided protection to recipients of that 

serum, and Ilya Metchnikoff’s description of phagocytosis, the pioneering study of 

cellular immunology.  
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1.2 The specificity of immune responses and their effectors 

 Host responses against invading pathogens are basic physiological reactions 

of most living organisms. Even prokaryotes protect themselves by use of restriction 

enzymes and clustered regularly interspaced palindromic repeats (CRISPRs) to 

degrade unfamiliar viruses [1]. Not surprisingly, the immune systems of humans and 

other mammals are significantly more complex, comprised of a network of organs, 

tissue, cells, and their associated molecules that have evolved in close contact with 

both benign and pathogenic organisms and environmental factors. This co-evolution 

has produced a system composed of two primary branches – the innate and 

adaptive arms, each with their own humoral and cellular components. Through 

extensive communication with one another, the innate and adaptive arms mount 

appropriate and effective immune responses to combat pathogen invasion and 

tumor growth and development.  

 Innate immune mechanisms rely primarily on the recognition of certain 

pathogen or danger-associated molecular patterns, and include physical barriers 

such as the skin and mucosa. Innate immunity comprises a wide range of humoral 

and cell-mediated defenses including phagocytes and natural killer (NK) cells, other 

hematopoietic cells from the myeloid lineage, and humoral components such as 

interferons, antimicrobial peptides, lysozymes, and complement. Together, 

components of the innate arm provide a rapid, general immune response that 

represents the first line of defense against invading pathogens. 

 Unlike the innate arm that controls pathogens through pattern recognition, the 

adaptive immune response has evolved to recognize a variety of individual antigens, 
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providing specificity and importantly, long-term memory in response to pathogen 

invasion. Key players during an adaptive immune response include B lymphocytes, 

which make up the humoral component of the adaptive arm via the production of 

immunoglobulins, and T lymphocytes, which provide cell-mediated immunity. T 

lymphocytes can be further divided into cells that express either the CD4 or the CD8 

receptor on their surface. CD4+ T lymphocytes function mostly as T helper (TH) cells, 

while CD8+ T cells function primarily as cytotoxic T lymphocytes (CTLs). CD4+ cells 

have an important role in orchestrating the adaptive immune response through cross 

talk with B lymphocytes and the production of cytokines that influence a wide variety 

of immune and non-immune cells both locally and systemically. In contrast, CD8+ T 

lymphocytes acquire cytolytic function and are primarily responsible for the 

elimination of cells infected with intracellular pathogens and tumorigenic cells 

through direct cell:cell interactions, in addition to cytokine production. Although a 

successful outcome to pathogen invasion usually requires a fully integrated 

response that includes optimal responses from B cells, TH cells, and CTLs, this 

thesis will primarily focus on the mechanisms important for proper CTL effector 

function and the defects that are associated with genetic disorders that affect the 

functionality of this lymphocyte subset.  

 

1.3 T lymphocytes 

The T cell receptor complex 
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Antigen receptors are the means through which T lymphocytes recognize 

antigen on the surface of neighboring cells. Surface antigens generally take the form 

of short peptides derived from proteins being degraded through normal processes in 

a cell, intracellular pathogens replicating within the cell, or pathogens that have been 

internalized from extracellular space. However, no matter where a peptide is derived 

from, a T cell primarily recognizes antigen through the interaction of its T cell 

receptor (TCR) and that peptide in the context of specialized glycoproteins called 

Major Histocompatibility Complex (MHC) molecules. There are two classes of MHC 

molecules: class I (MHCI) and class II (MHCII), which differ in their structure as well 

as their expression pattern in tissues. The TCR of CD8+ cells sees antigen in the 

context of MHCI, which is expressed on virtually all nucleated cells in the body. This 

TCR:MHCI interaction allows CD8+ T lymphocytes that have acquired cytolytic 

activity to probe the surface of any MHCI-expressing cell, allowing cytolysis of virally 

infected or tumorigenic targets. 

The polypeptide chains of αβ TCRs each consist of an extracellular amino-

terminal variable region that together make up the single antigen-binding site, a 

constant region, and stalk segments that contain a cysteine residue through which a 

disulfide bond forms to link the two chains together. Unlike its extracellular domain, 

the cytoplasmic tails of the TCR are quite short, each chain consisting of only five 

amino acids. Even early on, this suggested to researchers that the α and β chains 

were not sufficient to mediate signaling in T cells on their own and that additional 

components were required. Additional evidence for this came when cells transfected 

with cDNA encoding the α and β chains did not display heterodimers at the surface 
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[2], implying that additional molecules were needed for trafficking as well. It wasn’t 

until the 1990s that these components began to be better characterized; the 

transmembrane molecules we now know as the CD3 complex and the ζ chain. The 

CD3 complex consists the CD3γ, CD3δ, and two CD3ε chains (reviewed in [3, 4]). 

All three of the CD3 proteins have an extracellular immunoglobulin-like domain, and 

an intracellular domain with a single immunoreceptor tyrosine-based activation motif 

(ITAM) consisting two tyrosines with conserved spacing and charges. The δ chain 

on the other hand, has a short extracellular region and three ITAMs on its 

intracellular domain; all are critical for TCR signal propagation. In its mature form, 

the TCR complex consists of the antigen-binding αβ TCR heterodimer associated 

with four signaling chains; the α chain with a CD3ε:CD3δ heterodimer and the β 

chain with a CD3ε:CD3γ heterodimer. Assembly of the TCR complex occurs in the 

endoplasmic reticulum, thus ensuring that receptors that are expressed on the 

surface of cells are fully functional signaling complexes (reviewed in [5]). 

 

T cell receptor signal transduction  

When a TCR is engaged by peptide-MHC (pMHC), a signaling cascade 

begins with the phosphorylation of ITAMs in the cytoplasmic tail of the CD3:ζ 

complex. Phosphorylation of these tyrosine motifs is primarily mediated by the Src 

family kinase LCK that is constitutively associated with the CD4 and CD8 co-

receptors, and is activated in response to TCR engagement. Phosphorylation of the 

multiple ITAMs in the CD3:ζ complex by LCK generates a binding site for ζ chain-
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associated protein (ZAP-70) through its two Src homology-2 (SH2) phosphotyrosine-

binding domains. Once recruited to the CD3:ζ complex, ZAP-70 is phosphorylated 

and activated, allowing it in turn to phosphorylate conserved tyrosines on two 

important scaffold proteins: linker of activated T cells (LAT), and SH2 domain-

containing leukocyte phosphoprotein of 76kDa (SLP-76). Formation of the LAT:SLP-

76 complex following TCR engagement is the critical first step during T cell 

activation. These two proteins form a complex with a number of additional SH2 

domain-containing proteins that propagate downstream signaling. LAT binds 

phospholipase Cγ1 (PLCγ1), GRB2, and the GRB2-related adaptor (GADS) which 

links it to SLP-76. SLP-76 also contains tyrosine residues that promote recruitment 

and activation of the guanine nucleotide exchange factor (GEF) VAV1, the adaptor 

protein NCK, and the Tec family tyrosine kinase, Inducible T cell kinase (ITK).  

 One of the most important proximal steps in TCR signaling is the recruitment 

and full activation of PLCγ1 to the TCR complex at the plasma membrane. 

Recruitment of PLCγ1 is facilitated by both protein:protein interactions with the 

LAT:SLP-76 complex, and the binding of its Pleckstrin homology (PH) domain to 

phosphatidylinositol 3,4,5-triphosphate (PIP3), a product of the phosphorylation of 

phosphatidylinositol 4,5-biphosphate (PIP2) by phosphoinositide 3-kinase (PI3K). 

PLCγ1 activity is critical for T cell function because it cleaves PIP2 to generate two 

major second messengers during TCR signaling: inositol triphosphate (IP3) and 

diacylglycerol (DAG). Both products of PLCγ1 activity influence short-term 

cytoskeletal and long-term transcriptional changes in the cell through the initiation of 

calcium flux and the nucleation of downstream signaling.  
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Full activation of PLCγ1 requires phosphorylation by ITK, whose role in CD8+ 

T cell function will be the focus of chapter 2 in this thesis. ITK is recruited to the 

plasma membrane both via interactions of its PH domain with phospholipids, 

including PIP3 [6], and interactions with the LAT:SLP-76 complex via its SH2 and 

SH3 domains (reviewed in [7, 8]). ITK is activated by protein interactions with SLP-

76 and phosphorylation on its activation loop by LCK. Once activated, ITK 

phosphorylates Y783 on PLCγ1 to fully activate its primary substrate [9, 10]. 

However, it is essential to note that despite the importance of PLCγ1 activation by 

ITK during TCR triggering, the absence of ITK does not completely abrogate TCR 

signaling or Ca2+ flux. Instead, ITK-deficiency leads to impaired downstream 

signaling resulting in altered development and differentiation of the T cell lineages 

[11-13]. For that reason, ITK is thought of as an amplifier, or modulator, of TCR 

signaling (reviewed in [14]). The redundant mechanisms in place for PLCγ1 

activation are not fully understood, but may involve other kinases such as LCK, ZAP-

70, or the Tec family member Resting Lymphocyte Kinase (RLK), as evidenced by 

more significant defects in T cell activation in Itk-/-Rlk--/- mice when compared with 

ITK single knockouts (reviewed in [7]). Because of the graded nature of these 

signaling defects, mice deficient in Tec family kinases have been used as a model 

for understanding suboptimal signaling through the TCR. 

The activation of PLCγ1 by ITK leads to PIP2 hydrolysis, which generates 

DAG and IP3, two of the major secondary messengers in TCR signaling. IP3 binds 

IP3 receptors (IP3R) on the plasma membrane of the endoplasmic reticulum (ER) 

and perhaps other intracellular organelles, which induces Ca2+ release from ER  
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Figure 1.3.1: T cell receptor signal transduction. T cell receptor (TCR) engagement by 
peptide:MHC leads to the phosphorylation of ITAMs in the cytoplasmic tails of CD3 and ζ chains by 
LCK. ZAP-70-mediated phosphorylation of LAT leads to the assembly of a signaling complex that 
includes proteins such as SLP-76, PI3K, and PLCγ1, among others. PI3K phosphorylates PIP2 to 
generate PIP3, which acts as a docking site for PH-domain containing proteins. PLCγ1 is fully 
activated following phosphorylation by ITK, and cleaves PIP2 to generate DAG and IP3. DAG 
activates RASGRP and members of the PKC family, which go on to activate MAPKs that directly 
affect transcription. IP3 triggers Ca2+ release from ER stores, increasing cytosolic calcium 
concentration. VAV1 recruitment to the LAT:SLP-76 complex activates CDC42, which enhances 
WASP activity through its interaction with NCK. Activation of WASP results to recruitment of ARP2/3, 
leading to actin polymerization controlling adhesion, polarization, and cell motility. Reproduced from 
[7]. 
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stores into the cytoplasm. Stromal interaction molecules 1 and 2 (STIM1 and STIM2) 

act as Ca2+ sensors in the ER via their N-terminal EF hand motifs located in the ER 

lumen. Ca2+ efflux from the ER causes STIM proteins to aggregate in the 

membrane; this oligomerization in turn triggers sustained store-operated Ca2+ entry 

(SOCE) at the plasma membrane through the calcium release activated channel 

(CRAC), ORAI1. As a result, the tightly regulated nanomolar-range Ca2+ 

concentration in resting T cells can reach micromolar levels following TCR triggering. 

This elevated intracellular Ca2+ activates several Ca2+-dependent signaling proteins 

and their target transcription factors. These include calmodulin and the phosphatase 

calcineurin, and its major target transcription factor, nuclear factor of activated T 

cells (NFAT), as well as calmodulin-dependent kinase (CaMK) and its target, cyclic-

AMP-responsive element binding protein (CREB) (reviewed in [15]).  

Production of DAG at the membrane recruits members of the protein kinase C 

(PKC) family, such as PKCθ, and Ras guanyl-releasing protein 1 (RASGRP1) via a 

DAG-binding domain. PKCθ goes on to induce a signaling cascade leading to 

nuclear translocation of the transcription factor, nuclear factor κB (NF-κB). 

RASGRP1 recruitment by DAG also in turn activates the small GTPase, RAS. 

Activation of RAS triggers the mitogen activated kinase (MAPK) cascade, a series of 

serine/threonine kinases that act directly on a number of transcription factors. 

Together, TCR-triggered DAG production and Ca2+ flux play pivotal roles in T 

cell proliferation, differentiation, and effector function. Evidence for this comes from 

the ability of the pharmacological agents phorbol 12-myristate 13-acetate (PMA), a 

DAG mimic, and the calcium ionophore, ionomycin, to rescue downstream defects 
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resulting from suboptimal PLCγ1 signaling [16, 17]. As described, these integrated 

pathways (among others) can work at the transcriptional level to affect the long-term 

behavior or even overall identity of a T lymphocyte, but Ca2+ flux and DAG 

production can also have short-term consequences. These include the regulation of 

lymphocyte polarization, cytoskeletal reorganization, and degranulation, the specific 

role in CTLs of which will both be discussed in the following chapters.  

 

IL-2 signaling  

Although signaling in the context of antigenic responsiveness through the 

TCR has been extensively studied in T lymphocytes, work in the last decade has 

greatly expanded our understanding of how T cell activation can be modulated by 

environmental cues as well. One such example of this is through cytokine receptor 

signaling. Cytokines are proteins secreted in response to extracellular stimuli. They 

can act on the cell that produces them, neighboring cells, or even mediate distance 

effects through transport in blood or lymph, and can have profound effects on gene 

expression for both development and activation. Although the many different details 

of cytokine signaling are beyond the scope of this thesis, signaling downstream of 

the cytokine interleukin-2 (IL-2) in particular is worth briefly mentioning because of its 

influence on the differentiation, overall function, and homeostasis in virtually all T cell 

subsets. 

 IL-2 is produced and secreted by T cells, activated dendritic cells, and B cells. 

The cytokine signals through a trimeric receptor composed of the common cytokine 
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γc chain, the IL-2Rβ (CD122), and the IL2Rα (CD25) subunit. IL-2 signaling induces 

transcription of a variety of target genes, including its own high-affinity receptor 

subunit, CD25, through the Janus kinase (JAK) and signal transducer and activator 

of transcription (STAT) (specifically JAK3 and STAT5), PI3K/AKT, and the MAPK 

pathways (reviewed in [18] and [18]). Many studies have shown the particular 

importance of IL-2 for the generation of effective CD8+ T cell responses. For 

example, the expansion of CD8+ T cells in Il2-/- mice in response to acute viral 

infection is approximately three-fold lower than in WT controls, leading to impaired 

viral clearance by CTLs [19]. Additionally, persistent PI3K and STAT5 signaling 

through the IL-2R are required for the expression of perforin, granzyme B, and 

interferon γ (IFNγ) during the generation of CTLs [20]. Collectively, these data 

indicate that in addition to the TCR, the strength and duration of IL-2 signaling can 

modulate primary expansion in response to antigen stimulation and the generation of 

CTL effectors. While exactly how and where IL-2 signaling pathways converge with 

the TCR downstream of engagement is still under intense investigation, a recent 

elegant study demonstrated that the PI3K and AKT have an important role in 

integrating antigen and cytokine responses in CD8+ T lymphocytes [21]. Further 

work on how IL-2 can modulate TCR signaling and T lymphocyte function will not 

only help us better understand the mechanisms required for an effective immune 

response, but may also have clinical implications. 
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1.4 CD8+ T lymphocyte differentiation into CTLs 

In order to become effector CTLs with the capacity to kill targets in a granule-

mediated fashion, naïve CD8+ T cells must be activated through their TCR in 

conjunction with co-stimulatory signals and IL-2, a process that can take up to six 

days in culture, although it occurs more rapidly in vivo. The combination of receptor-

specific stimulation and co-stimulation induces rapid clonal cell division and protein 

synthesis to generate a population of activated antigen-specific CD8+ T cells, CTLs, 

which express cytotoxic proteins such as perforin and the serine-proteases known 

as granzymes that upon secretion are capable of inducing death in target cells.  

The energy demands of activation of naïve CD8+ T cells require the 

upregulation of nutrient and amino acid transporters and the transcription of genes 

important for protein and lipid synthesis. One key regulator of genes important for 

metabolic programming is mammalian target of Rapamycin (mTOR), a 

serine/threonine kinase located on lysosomal membranes. MTOR is activated by the 

PI3K/AKT axis and nutrient cues, and integrates signals from the environment to 

promote survival and differentiation in T cells. Phosphorylation of S6 kinase (S6K) by 

mTOR leads to increased protein synthesis and activates both MYC and hypoxia 

inducible factor 1α (HIF1α), which in turn promote expression of genes involved in 

glucose uptake and glycolysis (reviewed in [22]). In CD8+ T cells, activated mTOR 

and HIF1α are required for the expression of perforin and granzymes during 

differentiation, while not affecting the expression of FasL and IFNγ [23]. Thus in 

addition to activation downstream of the TCR and IL-2, co-stimulatory molecule–

mediated activation of mTOR also controls a diverse transcriptional program that 
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regulates both the metabolic reprogramming required for clonal expansion, and the 

expression of specific effectors during CD8+ T cell differentiation.  

In addition to TCR-induced NFκB and NFAT activation that help promote 

survival and differentiation of CD8+ T cells, TCR:MHC interactions in conjunction 

with cytokine signaling also affect the induction of the transcription factors T-BET 

and Eomesodermin (EOMES) [24, 25]. These factors modulate genes important for 

IFNγ production [26] and the expression of perforin and granzymes in CTLs [27-29]. 

Thus, TCR and cytokine signaling work in concert to activate transcription factors 

during the generation of CTLs that express the cytolytic proteins critical for their 

effector function. 

 

1.5 Granule-dependent cytolysis by CTLs  

Although CTLs can produce cytokines with cytotoxic capacities and utilize 

death receptor-mediated pathways to trigger apoptosis in targets, the granule 

exocytosis model first proposed by Berke in 1975 has now been established as the 

major pathway of rapid cytolysis by CTLs. Many of the stages of target cytolysis by 

CTLs have been characterized through the study of rare mutations that cause 

inherited diseases by affecting cytotoxic function of lymphocytes (Table 1.5.1). 

Although a number of different phenotypic consequences of defective cytolysis are 

observed, common themes include an inability to clear viral infections, and fulminant 

infectious mononucleosis often driven by infection with Epstein-Barr virus (EBV) and 

other herpes virus family members. In addition, many of these mutations manifest in  
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Table 1.5.1: Primary immunodeficiencies affecting CTL function 
 

Genetic 
disorder Inheritance Gene Protein Function Stage of cytolysis 

affected 
FHL type 2 AR Prf Perforin pore-forming cytolysis of targets 

FHL type 3 AR Unc13d MUNC13-4 granule 
priming secretion 

FHL type 4 AR Stx11 Syntaxin 
11 granule fusion secretion 

FHL type 5 AR STXBP2 MUNC18-2 granule fusion secretion 

GS2 AR Rab27a RAB27A granule fusion secretion 

CHS AR Lyst LYST lysosomal 
trafficking granule biogenesis 

HPS2 AR Ap3b1 AP3B1 protein sorting polarization of granules 

ITK-
deficiency AR Itk ITK TCR signaling activation, secretion 

(granule fusion?) 

XLP X-linked SH2D1A SAP co-receptor 
signaling 

adhesion and 
immunological synapse 

formation 
CD27-

deficiency AR CD27 CD27 TNFR 
signaling T:B interactions 

XMEN X-linked MAGT1 Mg2+ 
transporter Mg2+ flux activation of T cells 

DOCK8- 
deficiency AR Dock8 DOCK8 

GEF, actin 
cytoskeletal 

rearrangement
s 

normal cytolytic activity, 
defective trafficking in 
tissue , immunological 

synapse formation 

Coronin1A-
deficiency AR Coro1A Coronin1A 

actin 
cytoskeletal 

rearrangement 

T cell trafficking, 
immunological synapse 

formation (NK cells) 

MST1-
deficiency AR Stk4 

serine-
threonine 
kinase 4 

activation and 
survival activation 

PI3K hyper-
activation AR p110δ PI3K co-receptor 

signaling 

elevated mTOR 
signaling, impaired 

centrosome polarization, 
survival 

LCK-
deficiency AR Lck LCK TCR signaling 

T cell development and 
activation, lytic granule 
convergence in CTLs 

(LCK OFF) 
ORAI1-

deficiency AR Orai1 ORAI1 Ca2+ flux normal thymic 
development, impaired 
cytokine/lytic granule STIM1/2-

deficiency AR Stim1, 
Stim2 

STIM1, 
STIM2 Ca2+ flux 
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Table 1.5.1: Primary immunodeficiencies affecting CTL function, continued 
 

Genetic 
disorder 

EBV Other recurrent 
infections Other clinical features Mouse 

model 

FHL type 2 + common viral 
infections, TB 

cytopenia, hepatosplenomegaly, lymphoma 
agammaglobulinemia, fever, HLH 

Prf1-/- 

FHL type 3 + Herpes, common 
viral infections jinx 

FHL type 4 + common viral 
infections Stx11-/- 

FHL type 5 + 

Herpes, 
calcivirus, 

adenovirus, 
rotavirus 

Stxbp1-/- 

GS2 + CMV, adenovirus hypopigmentation, hepatosplenomegaly, 
neuro impairment, HLH ashen 

CHS + 

recurrent 
sinopulmonary 
infections, skin 

infections 

hepatosplenomegaly, albinism, 
pancytopenia, leukemia, HLH beige 

HPS2 - 
respiratory tract 
infections, otitis 

media 
hearing loss, albinism pearl 

ITK-
deficiency 

+ 

CMV, BK 
polyoma, CMV, 
respiratory viral 

infections 

agammaglobulinemia, lymphomas Itk-/- 

XLP +  agammaglobulinemia, lymphomas, HLH SH2D1A-/- 
CD27-

deficiency 
+ None varied; memory B cell deficiency, malignant 

lymphoma, HLH CD27-/- 

XMEN + viral infections lymphomas none 

DOCK8- 
deficiency 

- 

HSV, HPV, MCV, 
VZ, salmonella 

enteritis, 
giardiasis 

hyper IgE, carcinoma, cardiac anomalies Dock8-/- 

Coronin1A-
deficiency 

+ VZV, rotavirus lymphopenia, delayed language and motor 
development Coro1a-/- 

MST1-
deficiency 

+ 
HSV, VSV, MCV, 
HPV, bacterial, 

Candidal 

defective humoral responses, lymphomas, 
lymphopenia, autoimmune cytopenia, 

cardiac anomalies 
Stk4-/- 

PI3K hyper-
activation 

+ CMV 
sinopulmonary infections, 

lymphadenopathy, nodular lymphoid 
hyperplasia 

E1024K (un-
published) 

LCK-
deficiency 

-  Lymphopenia 
Lck-/-, 

inducible 
LCK OFF 

ORAI1-
deficiency 

- bacterial, viral 
(HSV), fungal defective calcification, ectodermal dysplasia Orai-/- 

STIM1/2-
deficiency 

- 
bacterial, viral 
(HSV, HHV8), 

fungal infections 
autoimmune cytopenia, Kaposi sarcoma Stim1-/- 

Stim2-/- 
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patients as lymphoproliferative disorders with Hemophagocytic Lymphohistiocytosis 

(HLH) or HLH-like syndromes. HLH is a severe disorder characterized by the 

unchecked expansion of CTLs in which excessive IFNγ production by CTLs leads to 

the secondary activation of macrophages, their organ infiltration, and secretion of 

damaging pro-inflammatory cytokines (reviewed in [30]). Thus, HLH symptoms are 

directly related to the inability of CTLs to control viral infection. 

 Granule-dependent contact-mediated killing of virally infected cells by CTLs is 

initiated when the TCR is engaged by antigen in the context of MHCI. Once the TCR 

is engaged, a signaling cascade is initiated that leads to the cytolysis of target cells 

through a number of distinct stages. Killing begins with the TCR-triggered adhesion 

of CTLs to target cells and the rapid accumulation of an actin meshwork at the 

CTL:target cell interface [31]. Actin then clears to form a ring that marks the 

periphery of the immunological synapse, the special organization of membrane and 

signaling proteins that forms in a T cell at the interface between it and its target. 

Actin clearance is followed by reorientation of the centrosome toward the target cell 

[32], where it then docks at the plasma membrane [33]. This centrosome polarization 

is accompanied by the movement of lytic granules toward the docked centrosome 

along a reorganized microtubule network [33, 34]. Polarized granules then fuse in 

the secretory domain of the synapse, releasing their lytic contents. The pore-forming 

activity of perforin allows granzymes to enter the cytoplasm of target cells and 

initiate cell death [35-38]. Thus, CTLs are able to rapidly and effectively eliminate 

virally infected targets during the adaptive immune response (Figure 1.5.1). In the 

following sections, the distinct stages of cytolysis by CTLs will be reviewed.  
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The immunological synapse  

First described as a “small space for the directed secretion of cytokines” [39], 

the TCR-triggered immunological synapse is a highly organized structure composed 

of signaling and adhesion molecules, and cytoskeletal components that forms in the 

T cell at the interface between T and target cells. Early seminal reports using 

confocal microscopy to examine single cell:cell contacts described a classic bulls-

eye patterned contact between CD4+ T cells and antigen-presenting cells (APCs) 

during antigen-specific interactions. The researchers speculated (correctly) that the 

spatially segregated components at the synapse, which they called supramolecular 

activation clusters (SMACs), could determine the effector function and fate of T cells 

	
Figure 1.5.1: Stages of cytolysis. Killing by CTLs is initiated when the TCR triggers activation 
and adherence of CTLs to targets, followed by accumulation of actin at the interface between the 
T and target cell. Actin clears to form a ring that marks the periphery of the immunological 
synapse. Immunological synapse formation is followed by polarization of centrosome and lytic 
granule toward the target cells and finally, fusion of lytic granules at the plasma membrane to 
induce death in target cells. Figure created by Senta Kapnick. 
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[40]. In 2001, the Griffiths lab first described the immunological synapse in CTLs. 

While the overall structure of the synapse was determined to be similar between 

CD4+ and CD8+ T cells, an additional “secretory domain,” or region near the center 

of the synapse at which lytic granules fuse with the plasma membrane, was noted 

[41]. Additionally, compared with the longer-lived, more stable synapses formed 

between CD4+ T cells and APCs, CTLs have been observed to form shorter-lived, 

patterned synapses. In support of this, one study showed that formation of a classic 

bulls-eye synapse is not necessarily required for cytolytic effector function [42]. This 

suggests that CTL:target interactions may only need to be long enough for the rapid 

fusion of a few lytic granules, allowing CTLs to move on the next target during an 

immune response. Thus while immunological synapses form and are grossly similar 

in both CD4+ and CD8+ T cells, structural and temporal differences may reflect the 

diverse functions of T cells subsets during an immune response. 

The finding that the immunological synapse structure could be recapitulated 

by stimulation with ligands on lipid bilayers has greatly advanced its molecular 

dissection [43]. At the center of the synapse is the central (c)SMAC where the TCR, 

CD28, and other signaling components such as LCK and PKCθ are found. Given the 

concentration of these molecules in the cSMAC, this area was originally presumed 

to be a region of TCR signaling initiation and propagation [40, 44]. Work in the early 

2000’s in Jurkat cells and an additional CD4+ T cell line showed that TCR signaling 

initiates the formation of microclusters: micron-sized assemblies of TCR, pMHC, co-

receptors, and their associated signal transduction molecules which are sites of 

tyrosine phosphorylation [44, 45]. Not long after they were identified, signaling 
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microclusters were observed to form at the periphery of the synapse and precede 

immunological synapse formation in CD4+ T cells from transgenic mice [46]. Finally, 

images revealed decreased pY at the synapse [47], supporting the idea that the 

cSMAC instead represents a site of TCR signaling termination where TCR 

microclusters are internalized and degraded [46]. Although most of the work 

examining signaling at the cSMAC has been performed in CD4+ T cells, studies 

have reported microcluster formation in CD8+ T cells as well [48-50]. However, 

whether the details of microcluster formation and signaling at the cSMAC differ 

between CD4+ and CD8+ T cells remains to be seen. 

The cSMAC is surrounded by the peripheral (p)SMAC, a ring composed of 

adhesion molecules and cytoskeletal linkers such as talin. While these molecules 

facilitate CTL adhesion to their targets, the tight junctions formed in the pSMAC 

between lymphocyte function associated antigen 1 (LFA-1) molecules and its ligand 

on target cells, intracellular adhesion marker 1 (ICAM-1), have been proposed to 

prevent the diffusion of secreted proteins beyond the junction between a T and 

target cell [39, 51]. In support of this idea, electron microscopy (EM) of CTLs in 

conjugates with their targets revealed a cleft in the membrane at the synapse [41]. 

The position of the secretory domain and this synaptic cleft in the center of the 

pSMAC is believed to concentrate and sequester secreted components of the lytic 

granules, including perforin and granzymes, in the space between CTLs and their 

targets, increasing the efficiency of killing and protecting surrounding cells from 

cytotoxic effectors.  
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The periphery of the immunological synapse, called the distal (d)SMAC, is 

marked by a ring of dense, polymerized actin enriched in actin nucleating proteins 

that maintain the symmetry of the synapse itself. During TCR-triggered actin 

remodeling, monomeric g actin polymerizes to form filamentous f actin. The 

instability of small actin oligomers makes spontaneous nucleation of filaments by g 

actin an unfavorable event [52]. Therefore cells use nucleation-promoting factors 

(NPFs) at the synapse, such as Wiskott Aldrich syndrome protein (WASp) in T cells, 

to initiate the formation of new actin filaments. Patients with mutations in WASp 

develop a primary immunodeficiency associated with defects in T cell differentiation 

linked to the impaired formation of stable synapses [53]. Once activated by GTPases 

in a TCR-dependent manner, NPFs induce actin polymerization through the actin 

	
Figure 1.5.2: Schematic of the immunological synapse. The cytolytic immunological synapse 
is a highly organized, TCR-triggered structure composed of signaling and adhesion molecules, 
and cytoskeletal components that forms in the T cell at the interface between the CTL and target 
cell. The dSMAC is a densely polymerized ring of actin that marks the periphery of the synapse. 
Inside the actin ring is the pSMAC, where integrins such as LFA-1 are found. In the center of the 
synapse lies the cSMAC, characterized by accumulated TCR bound to MHCI. Adjacent to the 
cSMAC, and unique to the CTL synapse, is the secretory domain, where the centrosome docks to 
facilitate the directed secretion of lytic granules. Figure created by Senta Kapnick. 
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related protein 2/3 (ARP2/3) complex and formins (reviewed in [54], and [55]). 

ARP2/3 drives polymerization of branched f actin found in the cortex and leading 

edge of migrating cells. Formins, on the other hand, mediate the formation of 

unbranched actin filaments. Where knockdown of ARP2/3 in T cells impairs 

spreading over the surface of APCs, formin-deficiency leads to defective centrosome 

polarization and cytolytic activity [56].  

While TCR-mediated regulation of NPFs at the synapse has received 

considerable attention, actin-severing factors are also important contributors to 

synaptic architecture. Patients with mutations in the actin-binding protein, Coronin1a, 

develop immunodeficiencies with broad susceptibility to viral infections, reminiscent 

of syndromes associated with defects in CTL and NK function. Indeed, Coronin1A is 

required for NK cell cytotoxicity, where loss of the protein results in increased f actin 

density at the synapse associated with decreased secretion [57]. However, the 

mechanistic understanding of how these proteins contribute to synaptic actin 

depolymerization is complicated by local conditions in the cell. For example, 

severing of actin filaments by the actin severing protein, cofilin, could actually 

increase the availability of g actin monomers. Thus if NPFs are active at the site of 

depolymerization, actin-severing protein activity could provide the monomeric actin 

needed for new filament growth. 

While questions remain regarding the regulation of synaptic actin architecture, 

the formation of the dSMAC and subsequent reduction of actin density at the center 

of the synapse permits the polarization of lytic granules and their secretion toward 

the target cell [58-60]. For example, actin-binding proteins such as RAS GTPase-
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activating-like protein 1 with IQ motifs (IQGAP-1) localize to the dSMAC in CTLs 

during immunological synapse formation [33]. These proteins tether plus-end 

microtubules to the actin cytoskeleton, either in conjunction with adaptors [61] or 

through the recruitment of the cytoskeletal motor dynein [62], suggesting that 

formation of the dSMAC may also play a role in generating forces that propel the 

centrosome forward during cytolysis. Thus together, the immunological synapse 

establishes the zones within which T cell activation and effector function occur. 

 

Polarization of cytolytic machinery 

 Following formation of the immunological synapse, the centrosome, which is 

normally located in the uropod of a migrating CTL, reorients toward the target cell 

and docks at the plasma membrane where cortical actin is reduced. This docking is 

believed to bring lytic granules close enough to the plasma membrane for 

degranulation to occur [33]. In T cells, the centrosome is also the microtubule-

organizing center (MTOC) and is associated with the Golgi apparatus and other 

vesicular compartments. Therefore as the centrosome moves toward the synapse, 

its movement is accompanied by a restructuring of the microtubule cytoskeleton. 

This establishes polarity in CTLs, and aligns the cellular machinery involved in 

protein trafficking with the synapse to presumably facilitate the directional secretion 

during target killing [33]. Centrosome polarization in the context of CTL:target 

conjugates was first reported over 30 years ago [31, 63-65] but only recently have 

we begun to understand the molecular mechanisms driving this stage of CTL killing.  
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Studies using a doxycycline-inducible system to turn off the expression of 

LCK in mature CTLs [66], and analog-sensitive ZAP-70 mutants allowing for 

reversible inhibition of ZAP-70 activity [67, 68], established that like CD4+ T cells, 

centrosome polarization in CTLs is driven by TCR signaling. In the mid-2000s, a new 

technique was employed that used a photo-activatable pMHC reagent that was 

turned on when irradiated with ultraviolet (UV) light to control the spatiotemporal 

activation of T cells, further facilitating the study of pathways linking TCR-triggered 

responses to cytoskeletal components using microscopy [69]. Although CD4+ T cells 

were used, Huse and colleagues utilized this technique to show that that PLCγ1 

activity was required for MTOC polarization. They went on to demonstrate that local 

activation of caged DAG using UV irradiation was sufficient to induce transient 

centrosome polarization in the absence of TCR-triggering. Interestingly, this DAG-

driven centrosome polarization occurred in a Ca2+-independent manner, where 

blocking Ca2+ flux using ethylene glycol-bis β-aminoethyl ether-N,N,N',N' tetra acetic 

acid (EGTA) or 1,2-bis o-aminophenoxy ethane-N,N,N’,N’ tetra acetic acid (BAPTA-

AM) had no effect on centrosome reorientation induced in their photo-activatable 

system [70]. Later work demonstrated that this DAG-dependent polarization led to 

PKCθ activation and the subsequent recruitment of cytoskeletal motors [62, 71, 72], 

although only partial defects in centrosome polarization in PKCθ-deficient mice 

suggest redundant activity in the PKC subfamily [73]. Thus, the full contributions of 

DAG to centrosome polarization in CTLs are still not fully understood. 

Like the centrosome, lytic granules must reorient toward the target cell for 

directional secretion during killing to occur. This process of lytic granule polarization 
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is intimately linked to centrosome polarization. A recently published comprehensive 

study described the convergence of granules at the centrosome prior to its arrival at 

the synapse during cytolysis of target cells. Thus the centrosome and granules were 

simultaneously delivered to the synapse in areas of reduced cortical actin [34]. 

Additional work has showed that unlike centrosome polarization, granule 

convergence in CTLs is responsive to the strength of TCR signaling [67], although it 

is not well understood how signal strength controls this stage. In addition, studies of 

Hermansky-Pudlak syndrome type 2 (HPS2) patients with mutations in the gene 

encoding the β-3A subunit of the adaptor protein 3 (AP3) complex, important for 

shuttling cargo from the Golgi to the endosome-lysosomal pathway [74], have 

revealed a role for AP3 in granule reorientation. AP3-deficient CTLs from HPS2 

patients have enlarged granules, and while TCR-triggered centrosome polarization 

is intact, lytic granules showed an abnormal distribution throughout the cell [75]. 

CTLs from HPS2 patients have a decreased ability to kill targets [75], emphasizing 

the importance of granule convergence and polarization for proper CTL function. 

Finally, although controversial, there is evidence that the plus-end directed 

motor protein, kinesin-1, mediates the final delivery of granules to the synapse. In 

one study, expression of a dominant-negative form of kinesin, or silencing of the 

motor protein, did not effect centrosome polarization, but transport of lytic granules 

to the synaptic membrane was inhibited [76].  

 

Lytic granule secretion 
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Following centrosome and lytic granule reorientation, several steps are still 

required for the killing of target cells. These include granule docking, priming, and 

finally, fusion. While there remain a number of questions surrounding the precise 

mechanisms that regulate lytic granule secretion in CTLs, much of the machinery 

required for granule fusion has been fairly well characterized through the study of 

human mutations that affect cytotoxic function of lymphocytes and so cause disease 

(Table 1.5.1).  

Efficient docking of mature lytic granules at the plasma membrane is 

dependent on RAB27a, a small GTPase critical for vesicle trafficking. RAB27a-

deficiency is responsible for Griscelli syndrome in humans [77] and the ashen 

phenotype in mice [78]. The loss of RAB27a in CTLs results in impaired granule 

fusion while leaving TCR-mediated centrosome and granule polarization intact [77]. 

Electron microscopy of both mice and human cells showed that lytic granules from 

RAB27a-deficient CTLs fail to dock at the plasma membrane [79, 80], offering 

mechanistic insight into the critical role of this GTPase in granule fusion. RAB27a 

interacts with effectors such as synaptotagmin-like proteins (SLP)-1 and SLP-2 [81, 

82]. SLP1 and SLP2 contain two C2 domains that can interact with vesicle and 

plasma membrane phospholipids in a Ca2+-dependent manner. While individual 

knockouts of Slp1 or Slp2 do not affect CTL killing, expression of a dominant 

negative form of SLP2 results in reduced cytolysis of targets associated with 

impaired degranulation [81, 82]. This suggests that SLP proteins could be involved 

in tethering to stabilize interactions between lytic granules and the membrane with 

which they fuse.  
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Figure 1.5.3: Lytic granule biogenesis and secretion. Following TCR stimulation and 
immunological synapse formation, mature granules polarize toward the plasma membrane. Docking 
occurs via the interaction of vesicle-associated RAB27A with SLP1 or SLP2, and the membrane-
associated MUNC18-2 with Syntaxin 11. MUNC13-4 binding to Syntaxin 11 changes it from a closed 
to open conformation. Priming occurs during formation of SNARE complexes between VAMPs and 
Syntaxin 11/SNAP23, followed by MUNC18-2-mediated fusion through zippering of SNAREs. 
Numbers indicate different stages that are impaired in various primary immunodeficiencies: (1) LYST, 
(2) AP3, (3) perforin, (4) RAB27A, (5) Syntaxin 11, (6) MUNC18-2, and (7) MUNC14-4. Reproduced 
from [83]. 
 

Once lytic granules are tethered to the plasma membrane, vesicle-associated 

MUNC13-4 proteins prime docking complexes in a Ca2+-dependent manner. Like 

RAB27a-deficiency, loss of MUNC13-4 leads to defects in lytic granule secretion 

while other pathways such as IFNγ secretion are unaffected [84, 85]. Lytic granules 

in CTLs from patients with mutations in MUNC13-4, the cause of the primary 

immunodeficiency Familial Hemophagocytic Lymphohistiocytosis (FHL) type 3 that 

has a phenotype indistinguishable from that of perforin deficiency, are able to dock 

at the plasma membrane although degranulation was significantly impaired [84, 86]. 
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MUNC13-4 mediates lytic granule fusion at the plasma membrane by regulating 

interactions between vesicle and target-associated soluble N-ethylmaleimide 

sensitive factor attachment protein receptor (SNARE) proteins. Since only specific 

combinations of SNARE proteins result in successful membrane fusion, it is thought 

that SNAREs also confer targeting specificity in cells. Although many related SNARE 

proteins are expressed in CTLs, it is thought that the MUNC13-4-mediated change 

in the SNARE protein syntaxin-11 (STX11) from its closed conformation to its open 

form initiates fusion in CTLs. In its open conformation, STX11 is able to form a 

SNARE complex with the vesicle-associated membrane proteins (VAMPs) 7 and 8, 

and synaptosomal-associated protein of 23kDa (SNAP23). The importance of 

STX11 for CTL killing was demonstrated when CTLs from FHL type 4 patients with 

mutations in STX11 were shown to exhibit partially impaired lytic granule secretion 

despite normal centrosome and granule polarization [87, 88]. Interestingly, defects in 

granule secretion in STX11-deficient NK cells can be partially rescued by IL-2 

treatment [88]. This suggests that cytokine signaling can either increase expression 

of proteins with redundant function, or possibly induce alternative secretory 

mechanisms in cells. 

Finally, SNARE interactions are regulated by the SEC1/MUNC18 family of 

accessory proteins [89]. Mutations in MUNC18-2 cause FHL type 5, yet another 

immunodeficiency associated with defective cytotoxic lymphocyte function [90, 91]. 

MUNC18-2 interacts with STX11 to promote trans-SNARE complex formation, thus 

facilitating lytic granule fusion at the membrane. 



  28 

 As described, many parts of the machinery required for lytic granule fusion 

have been characterized. What is not well understood is what exactly triggers 

vesicle fusion in CTLs, and whether additional proteins provide a layer of regulation 

beyond those described, as is the case in the neurological synapse. Granzyme 

release in CTLs has long been considered Ca2+-dependent [92]; chelation of 

extracellular Ca2+ using EGTA or intracellular Ca2+ with BAPTA-AM completely 

abolishes secretion in CTLs. NK cells from ORAI1-deficient patients exhibit defects 

in granule secretion leading to impaired target lysis [93], emphasizing the 

importance of Ca2+ flux in lymphocyte cytotoxicity. However, while some components 

of the granule fusion machinery mentioned above contain Ca2+-binding domains, 

precisely which molecule(s) determine the dependence of granule secretion on Ca2+ 

is still unclear.  

 One additional series of candidates for Ca2+ sensors in CTLs are the 

synaptotagmins, a family of proteins that bind SNAREs in a calcium-dependent 

manner [94]. CTLs from OT-I transgenic synaptotagmin VII (SYTVII)-deficient mice 

exhibit reduced killing of peptide-pulsed targets, although lytic granule secretion was 

unaffected by the cross-linking of soluble anti-CD3 antibodies [95]. However, unlike 

the brain-specific synaptotagmin I that functions as a Ca2+ sensor for 

neurotransmitter release [96], SYTVII has a low affinity for Ca2+ [97], making the 

argument for its involvement in Ca2+-mediated granule secretion unclear. 

Lastly, early studies using cyclosporine A, an inhibitor of the Ca2+/calmodulin-

dependent phosphatase calcineurin, reported reduced granzyme release in murine 

CTLs [98, 99]. These data provided an additional hypothesis for another molecular 
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basis of the Ca2+ dependence on granule secretion. More extensive work in TALL-

104 CTLs, a human leukemic cell line, showed that overexpression of either full-

length calcineurin or a mutant Ca2+-independent truncated version augmented 

granule secretion [100]. Again, they saw no granule secretion in the absence of 

extracellular calcium, highlighting the importance of Ca2+ in the granule fusion 

process. Although the contribution of calcineurin to granule secretion is established, 

once again the substrate mediating the effect of calcineurin on granule secretion 

remains elusive.  

 

1.6 Aims of this thesis 

Work in this thesis is aimed towards increasing our understanding of the 

requirements for proper CTL function through the study of mutants affecting TCR 

signaling pathways. This work has uncovered a previously unappreciated role for the 

TCR signaling factor, ITK, in regulating the late stages of CTL killing. A second 

series of work focused on understanding how the actin cytoskeleton regulates the 

cessation of secretion in CTLs. It is hoped that these studies provide additional 

insight into the requirements for cytolysis, and an improved understanding of primary 

immunodeficiencies associated with impaired CTL function. 

In chapter 2, I present work examining the contribution of ITK to CTL effector 

function using Itk-/- mice. I show that the absence of ITK results in a global defect in 

the killing of target cells by CTLs. Although I found that ITK-deficiency affects 

differentiation of CD8+ T cells, using pharmacological inhibitors of ITK in WT CTLs, I 

also present evidence that this defect is associated with impaired lytic granule 



  30 

secretion, independent of the effects of ITK on CTL differentiation. Lastly, I report 

that IL-2 can rescue functionality of ITK-deficient CD8+ T cells. 

In chapter 3, I characterize the role of the cortical actin cytoskeleton in 

secretion of lytic granules during target cytolysis. Although previous work has 

examined the contribution of actin in the initiation of secretion by CTLs, I present 

data that directly evaluates the role of cortical actin throughout the entire course of 

CTL:target interactions. Combining specialized microscopy techniques with mouse 

models of primary immunodeficiencies and pharmacological manipulation, I show a 

novel role for actin in the termination of cytolysis by CTLs. Additional work presented 

here implicates PIP2 as a potential regulator of cortical actin during CTL effector 

function. 
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Chapter 2: Inducible T cell kinase regulates expression of 
cytolytic effectors and degranulation in CD8+ cytotoxic T 
lymphocytes 
 

2.1 Introduction 

Inducible T cell kinase (ITK) is one of five members of the Tec family of non-

receptor tyrosine kinases, which are predominantly expressed in hematopoietic cells 

and are important for lymphocyte signaling [101, 102]. Although three of the five Tec 

kinase family members are expressed in T cells (ITK, resting lymphocyte kinase 

(RLK), and Tec), ITK is most highly expressed and has the most clearly defined 

function. For this reason, ITK is considered to be the predominant family member 

contributing to T cell development and differentiation.   

ITK activity is regulated by localization, phosphorylation, and interaction with 

adaptor proteins (reviewed in [8]). It is recruited to the plasma membrane by the 

interaction of its PH domain with IP4 and PI3K-generated PIP3 [6, 103]. At the plasma 

membrane, ITK interacts with the TCR-triggered LAT:SLP-76 complex via its SH2 

and SH3 domains [104, 105]. The kinase activity of ITK is activated following 

phosphorylation of its activation loop by LCK [105-107], leading to the 

phosphorylation of its major target, PLCγ1. Accordingly, the loss of ITK results in 

profound impairment of Ca2+ flux, leading to significant defects in NFAT activation 

and other Ca2+-dependent functions in T cells [12, 108]. ITK has also been shown to 

have a kinase-independent role in TCR signaling, probably due to its function as an 

adaptor molecule, helping recruit or stabilize interactions of proteins within the 

LAT:SLP-76 complex, such as the GEF, VAV1. Kinase-deficient mutants rescue the 
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ability of actin to accumulate at the immunological synapse [109], and activate 

Serum Response Factor, a transcription factor dependent on cytoskeletal changes 

for its activation [110] in ITK-deficient cells. Studies on CD4+ T cells from Itk-/- mice 

have shown that suboptimal TCR signaling in the absence of ITK can lead to 

dramatic effects on TH cell differentiation, and alter functional T cell outcomes 

including impaired Type II responses. Some of these defects are secondary to either 

decreased IL-2 production or altered responses to IL-2 [12, 13, 111-114]. Notably 

however, these studies have primarily focused on either total T cell or CD4+ T cell 

populations, leaving the role of ITK in CD8+ T cells less well explored.  

As a modulator of TCR signaling and cell differentiation, ITK has been shown 

to have a role in the control of infection in several disease models. Relevant to 

CTLs, Itk-/- mice can mount protective immune responses against vaccinia virus, 

vesicular stomatitis virus, and lymphocytic choriomeningitis virus (LCMV) [115, 116]; 

however, viral clearance is delayed in these studies. While delayed viral clearance 

may reflect poor activation of CD8+ T cells under conditions of suboptimal TCR 

signaling, whether or not there were specific defects in granule-mediated cytolysis 

on a per cell basis has not been examined.  

In 2009, the first patients with loss of function mutations in ITK were reported. 

They exhibited severe fulminant infectious mononucleosis triggered by Epstein Barr 

virus (EBV) infection [117-119]. EBV is a common Herpes virus family member 

transmitted through mucosal secretions, notably saliva. Primary infection generally 

occurs in the pulmonary epithelium, but chronic infection persists in B cells where 

the virus can enter a latent phase. EBV is best known to cause infectious 
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mononucleosis, characterized by fatigue, fever, and lymphadenopathy associated 

with lymphoproliferation in healthy individuals. However, in patients with primary 

immunodeficiencies, such as ITK-deficient patients, EBV infection can lead to the 

severe immune dysregulation that manifests as a fatal mononucleosis, 

Hemophagocytic Lymphohistiocytosis (HLH) or HLH-like syndromes (as previously 

described), the development of lymphomas, and defective antibody responses. Nine 

ITK-deficient patients have now been described, some of whom, in addition to high 

EBV viral loads, present with viral infections including cytomegalovirus (CMV), 

severe varicella, and respiratory complications due to progressive pulmonary 

infections (reviewed in [120], see Table 2.1.1).  

Together, this clinical phenotype resembles a number of other primary 

immunodeficiencies (Table 1.5.1 in chapter 1), most notably X-linked 

lymphoproliferative syndrome (XLP-1), a disease caused by mutations affecting the 

small adaptor molecule, signaling lymphocyte activation molecule (SLAM)-

associated protein (SAP). Our lab has previously shown that CTLs from SAP-

deficient mice exhibit specific defects in killing B cells, despite normal cytolysis of 

other targets [50]. Analogous observations have been made in cells from patients 

with XLP-1 [121], providing mechanistic insight into the particular inability of SAP-

deficient CTLs to kill EBV-infected B cells. The similar clinical phenotypes in ITK-

deficiency, and XLP-1, raise the question of whether ITK-deficiency may also 

specifically affect cytolysis of EBV-infected B cells. Thus, a more complete 

characterization of the role of ITK in CTL effector function is critical for our 

understanding of the pathogenesis of ITK-deficiency. 



  34  

Table 2.1.1: ITK patient information 
 

 patient 1, Turkey patient 2, 
Turkey 

patient 3, 
Palestine 

patient 4, 
Palestine 

patient 5, 
Palestine 

mutation R335W 
(SH2 domain) 

R335W (SH2 
domain) 

Y588X (kinase 
domain) 

Y588X (kinase 
domain) 

Y588X (kinase 
domain) 

gender female female female male male 
age at 

diagnosis 5 6 4 5 3 

current status died at 
age 10 died at age 7 died at 

age 6 
remission after 
chemotherapy 

healthy after 
HSCT 

lymphadenopathy + + + + + 
hepatosplenomegaly + + + + + 

defective antibody 
responses + + + + + 

pulmonary 
infections + none none + + 

histology B cell LPD, 
Hodgkin’s 

B cell LPD, 
Hodgkin’s Hodgkin’s Hodgkin’s Hodgkin’s 

autoimmunity none none none nephritis, 
thyroiditis thyroiditis 

HLH none + + none none 
CD8+ T cell numbers normal decreased increased decreased normal 

EBV status acute acute past infection acute n.d. 

other  infections 
BK polyomavirus, 

Pneumocystis 
jirovecii 

n.d. n.d. 
common 

respiratory viral 
infections 

common 
respiratory 
infections 

references Huck, Feyen 2009 Huck, Feyen 
2009 

Stepensky, 
Weintraub 2011 

Stepensky, 
Weintraub 2011 

Stepensky, 
Weintraub 2011 

 
 

	ITK patient information, continued 
 

 patient 6, Morocco patient 7, India patient 8, Iran patient 9, Turkey 

mutation R29H (PH domain) D500T, F501L, M503X 
(kinase domain) 

P157P, R265X 
(SH3/2 domain) Q17X (PH domain) 

gender male female female male 
age at 

diagnosis 11 6 14 18 

current status died at age 26 died after HSCT, age 8 died at age 15 unknown 
lymphadenopathy + + + + 

hepatosplenomegaly + + + none 
defective antibody 

responses + +   

pulmonary 
infections + + + + 

histology B cell LPD 
B cell LPD, Hodgkin’s, 

LBL, lymphomatoid 
granulomatosis 

B cell LPD none 

autoimmunity autoimmune 
hemolytic anemia none none none 

HLH none + none none 
CD8+ T cell numbers normal normal normal normal 

EBV status past infection n.d. n.d. negative 

other  infections CMV in serum and 
BAF 

common respiratory 
viral infections n.d. n.d. 

references Linka, Risse 2012 Linka, Risse 2012 Mansouri, 
Mahdaviani, 2012 

Serwas, Cagdas 
2014 

 
 
Abbreviations: BAF, bronchial aspiration fluid; CMV, cytomegalovirus; EBV, Epstein Barr virus; 
HLH, Hemophagocytic Lymphohistiocytosis; HSCT, hematopoietic stem cell transplantation; LBL, 
large B cell lymphoma; LPD, lymphoproliferative disorder; n.d., not determined. 
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Here, we used the OT-I TCR transgenic system to examine the role of ITK 

specifically in CD8+ T cell cytolytic effector function. We found that ITK was required 

for efficient killing of multiple different target cells. Surprisingly, examination of 

discrete stages of CTL function revealed that ITK-deficiency did not affect the early 

stages of killing, including adhesion to targets and polarization of the centrosome 

and granules, which were intact in ITK-deficient CTLs. Instead, ITK-deficiency in 

CTLs was associated with decreased expression of the effector molecules, 

granzyme B and perforin, combined with defects in degranulation, a late stage of 

target killing. Impairment of both killing and degranulation could be reproduced by 

treating WT murine CTLs or activated human CD8+ T cells from healthy donors with 

an ITK-specific inhibitor during cytolysis assays, suggesting that these defects were 

not due to altered T cell development or differentiation, and highlighting the effects of 

ITK on degranulation. Nonetheless, we also found that prolonged incubation with IL-

2 rescued these defects, similar to a number of other immunodeficiencies with 

defective function of cytotoxic lymphocytes. These results suggest that ITK plays a 

previously unappreciated role in lytic granule secretion during CTL killing, and 

provide evidence for novel roles for ITK and TCR signaling in regulating late stages 

of cytolytic activity that may contribute to reduced viral clearance in patients with 

mutations in ITK. 

 

2.2 Results 

ITK-deficient CTLs have impaired cytolytic effector function against targets 
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Previous studies on the effects of ITK-deficiency on murine CD8+ T cell 

function revealed both decreased and delayed viral clearance, accompanied by 

decreased CTL expansion in vivo and in vitro [115, 116]. However, whether there 

may be specific defects in cytotoxicity on a per cell basis, and whether there are 

defects against distinct targets, have not been examined. To evaluate the effects of 

ITK on CD8+ T cell cytotoxicity, we used the OT-I TCR transgenic mouse model. T 

cells from OT-I mice express a clonal TCR that recognizes a peptide, OVA257-264, 

derived from the ovalbumin protein in the context of H2Kb [122]. This system allowed 

us to evaluate killing of different targets presenting the same antigen in a controlled 

environment, using defined numbers of effectors and targets. Furthermore, although 

ITK-deficient mice show altered thymic development of CD8+ T cells, expression of 

the OT-I transgene largely rescues these phenotypes [123].  

To generate effector CTLs, splenocytes from WT and ITK-deficient OT-I mice 

were stimulated in vitro with the OVA257-264 peptide for three days. Cells were 

washed and cultured in fresh medium with IL-2, which was changed every 48 hours 

throughout the duration of the culture. After six days, this culture program generated 

activated CTLs from naïve CD8+ T cells. To evaluate activation, we examined cell 

proliferation and surface expression of the TCR and additional surface markers. 

Consistent with their TCR signaling defects, Itk-/- OT-I CD8+ T cells exhibited 

delayed proliferation (Figure 2.2.1A) measured by the dilution of the amine reactive 

dye, Cell Trace Violet (CTV), as well as differences in the initial induction and down-

regulation of surface activation markers (Figure 2.2.1B). However, by day six when 

CTLs were used in functional assays, the mean fluorescence intensity (MFI) of 
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Figure 2.2.1: in vitro activation of WT and Itk-/- OT-I CD8+ T lymphocytes. (A) Representative 
histogram of CellTrace Violet (CTV) dilution in WT (black lines) or Itk-/- (gray solid) OT-I CD8+ T 
cells either directly ex vivo (dotted lines) or following 48-hour stimulation of whole splenocytes with 
10nM OVA257-264 (solid lines). (B) Representative histograms of Vα2, CD69, CD62L, and CD25 
surface marker staining on WT (black lines) or Itk-/- (gray solid) OT-I CD8+ T cells at indicated time 
points during in vitro activation.  
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markers including Vα2, CD69, and CD25, as well as the percentage of CD62L+ 

cells, were similar between WT and Itk-/- OT-I CD8+ T cells. (Figure 2.2.1B). 

Therefore, we used day 6-7 stimulated CTLs to compare cytolysis between WT and 

Itk-/- cells.  

 CTLs from SAP-deficient patients who have phenotypes similar to ITK-

deficient patients are unable to kill B cells, despite normal killing of other cellular 

targets. To evaluate whether Itk-/- OT-I CTLs also showed differential killing of 

targets, we used three target cell types that were pulsed with 1µM of OVA257-264 

peptide: LPS-activated B cells from WT C57Bl/6 mice, the EL4 thymoma cell line, 

and the MC57 fibrosarcoma cell line. While in vitro activated WT OT-I CTLs could kill 

WT B cells effectively, CTLs from Itk-/- OT-I mice had impaired cytotoxicity against B 

cell targets (Figure 2.2.2A). However, unlike SAP-deficient CTLs that show defective 

killing primarily of B cell targets and low-avidity T cell targets [50], ITK-deficient CTLs 

also failed to efficiently kill both the peptide-pulsed EL4 lymphocyte and MC57 non-

	

Figure 2.2.2: ITK-deficient CTLs have impaired cytolytic function against targets. In vitro 
cytolysis of (A) LPS-activated WT B cells, (B) EL4, or (C) MC57 targets pulsed with 1µM OVA257-

264 peptide by WT OT-I (black) or Itk-/- OT-I (gray) CTLs at decreasing CTL:target ratios. Graphs 
show percent target lysis. (D) In vivo cytolysis of 1 µM OVA257-264 peptide-pulsed LPS activated B 
cell targets. Each connecting line represents paired mice from an individual experiment. 
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lymphocyte cell lines (Figure 2.2.2B and C). Defects were also seen in an in vivo 

transfer model; activated CTLs from Itk-/- OT-I mice had impaired cytotoxicity against 

WT C57Bl/6 B cell targets pulsed with OVA257-264 peptide when co-transferred into 

WT C57Bl/6 recipients (Figure 2.2.2D). Together these data suggest that unlike 

SAP-deficiency, ITK–deficiency leads to a global defect in CTL killing. 

 

ITK-deficient cells show decreased expression of effector molecules  

During activation, CD8+ T cells differentiate into CTLs, which express 

cytolytic effector molecules critical for the cytolysis of target cells. The expression of 

several of these effector molecules is dependent on IL-2, mTOR, and PI3K-mediated 

pathways [20, 23]. Our lab recently found that ITK-deficient CD4+ T cells show 

impaired activation of mTOR, as evidenced by decreased phosphorylation of 

ribosomal protein S6, which is phosphorylated by S6 Kinase, a direct target of the 

mTORC1 complex [114]. Similarly, we observed decreased phosphorylation of S6 

on the S6K phosphorylation site during early activation of ITK-deficient CD8+ T cells 

(Figure 2.2.3A). Consistent with reports that mTOR controls a diverse transcriptional 

program that includes the expression of lytic effector molecules [23], both granzyme 

B and perforin levels were reduced in Itk-/- OT-I CTLs when compared with WT cells 

(Figure 2.2.3B and C).  

To determine whether decreased expression of these effector molecules was 

the sole cause of reduced cytotoxicity in the absence of ITK, we treated previously 
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activated WT OT-I CTLs with 10n, an inhibitor of ITK, immediately prior to their use. 

This treatment allowed for short-term inhibition of ITK during cytolysis, while 

minimizing non-specific effects that could alter differentiation. Treatment of activated 

WT CTLs with 10n led to impairments in Ca2+ flux comparable to that seen in Itk-/- 

CTLs (Figure 2.2.4A), confirming its ability to reproduce phenotypes associated with 

loss of ITK activity. Incubation of WT CTLs with 10n during the cytolysis assay 

reproduced the defects in killing seen in activated ITK-deficient OT-I CTLs (Figure 

2.2.4B). Similarly, treatment with 10n of allo-activated human CD8+ T cell blasts 

generated from healthy peripheral blood mononuclear cell (PBMC) donors also led 

to impaired killing of P815 targets, a mouse mastocytoma cell line expressing high 

levels of Fc receptors that can present anti-CD3, making it a target for human CD8+ 

T cells (Figure 2.2.4C). Thus treatment with the 10n inhibitor leads to similar defects 

in TCR-triggered responses as in ITK-deficient CD8+ T cells. These data suggest  

	

Figure 2.2.3: ITK-deficient CTLs show decreased expression of lytic effector molecules. (A) 
Whole splenocytes from WT (black) or Itk-/- (gray) OT-I CD8+ T cells were activated in the 
presence of 10nM OVA257-264 peptide and stained for pS6 (S235/236) using flow cytometry. 
Histograms are representative of two independent experiments. (B) Representative histogram of 
granzyme B expression levels in day 6 in vitro activated WT (black, solid line) or Itk-/- (gray, solid 
line) OT-I CTLs. (C) Perforin expression in total lysates from day 7 activated WT and ITK-deficient 
CD8+ T lymphocytes, probed for perforin and for actin as a loading control. Representative of 
three independent experiments.  
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that while suboptimal TCR signaling in the absence of ITK affects the kinetics of 

activation and the expression of cytolytic effectors, impaired killing is not fully 

attributable to altered activation and differentiation of CD8+ T cells. 

 

Figure 2.2.4: Pharmacological inhibition of ITK results in impaired killing of target cells. (A) 
Intracellular Ca2+ flux in WT (black), Itk-/- (gray), or WT OT-I CTLs treated with 300nM 10n (red) 
following 5µg/mL anti-CD3 and 10µg/mL anti-CD8 crosslinking, plotted as the ratio of Fluo-3 (FL-
1)/FuraRed (FL-3) over time. Histograms are representative of two independent experiments. (B) In 
vitro cytolysis of EL4 targets by previously activated ITK-deficient (gray) or WT OTI CTLs treated 
with indicated concentrations of the ITK inhibitor, 10n (blue, green, and red) or left untreated as a 
control (black) at decreasing CTL:target ratios. (C) In vitro cytolysis of P815 target cells pulsed with 
2µg/mL OKT3 by allo-reactive human CD8+ T cells generated from healthy donors and treated with 
10n at indicated concentrations. Graphs show percent target lysis ± SD for each healthy donor at 4-
hour time points using 20:1 T:target cell ratio.  
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Itk-/- CTLs show normal adhesion and actin ring formation  

To better understand the roles of ITK and TCR signaling in regulating cytolytic 

activity, we examined the discrete stages of CTL function in Itk-/- cells. Killing by 

CTLs is initiated when TCR engagement triggers adherence of CTLs to targets. 

Previous data from our laboratory have shown that ITK-deficient CD4+ T cells have 

decreased adhesion to B cell targets [124]. Freshly isolated Itk-/- OT-I CD8+ T cells 

also showed decreased adhesion to B cell targets in a flow-based adhesion assay 

(Figure 2.2.5A). However, once activated, Itk-/- OT-I CTLs formed conjugates with 

peptide-pulsed LPS-activated WT B cell targets (Figure 2.2.5B) or EL4 targets 

(Figure 2.2.5C) as well as WT CTLs. These results suggest that once CTLs are 

generated, an impairment in adhesion does not likely contribute to defects in killing 

by Itk-/- CTLs.  

Figure 2.2.5: Activated ITK-deficient CTLs adhere normally to target cells. (A) Adhesion of ex 
vivo WT (black) or Itk-/- (gray) OT-I CD8+ T cells to LPS-activated WT B cells not pulsed or pulsed 
with OVA257-264 peptide at indicated concentrations. Adhesion of previously activated WT (black) or 
Itk-/- (gray) CTLs to (B) LPS-activated WT B cells or (C) EL4 cells pulsed with 1µM OVA257-264, or 
not pulsed as a control. Conjugation was performed at 1:2 T:target cell ratios for 20 minutes. Bars 
represent mean ± SD of the percent of CD8+ target+ cells in the CD8+ gate. 
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Following adhesion, an actin-rich meshwork accumulates at the interface 

between T and target cells. Actin then rapidly clears from the center of the synapse 

to form an enriched actin ring that marks the periphery of the immunological synapse 

[40, 41]. This central clearing is thought to be important for centrosome polarization 

and lytic granule reorientation toward the target cell [33, 34, 41]. Previous work has 

shown that ITK-deficient CD4+ T cells or Jurkat cells treated with siRNA to ITK have 

defects in actin polarization [109], likely due to a kinase-independent requirement for 

ITK in stabilizing SLP76:VAV1 interactions during signaling [109]. To examine actin 

organization in Itk-/- OT-I CTLs, we evaluated actin localization in CTLs by 

immunofluorescence confocal microscopy. Actin accumulation at the CTL:target 

interface appeared normal in Itk-/- OT-I CTLs (data not shown). The ring-like 

organization of the actin cytoskeleton as evaluated in 3-dimensional reconstructions, 

z-stacks turned en face (Figure 2.2.6A), also did not differ between WT and Itk-/- 

cells (Figure 2.2.6B and C). This, in combination with their normal adhesion, 

suggested that once activated, CTLs do not require ITK for the early stages of their 

interactions with target cells. 

 

Itk-/- CTLs show normal centrosome and lytic granule reorientation during 

cytolysis of targets  

Following immunological synapse formation, the centrosome reorients toward 

the interface between T and target cells, thus directing lytic granules toward their 

target for effective killing [33, 34]. Studies suggest that centrosome polarization in T 
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Figure 2.2.6: Itk-/- CTLs exhibit normal actin ring formation during immunological 
synapse formation. (A) Representative images of maximum projections of WT or Itk-/- CTLs 
in conjugate pairs with LPS activated WT B cell targets pulsed with 1µM OVA257-264 (first and 
third columns, respectively). 1µm slice of reconstructed z stacks rotated in the yz plane are 
included (second and fourth columns). Nuclei (blue), CD8 (red), actin (green). Scale bars = 
5µm. Quantification of actin ring localization at the immunological synapse between WT 
(black) and Itk-/- (gray) CTLs and (B) LPS activated WT B cell targets (WT n=105, Itk-/- n=82 
from 3 independent experiments) or (C) EL4 targets (WT n=185, Itk-/- n=194 from 4 
independent experiments) pulsed with 1µM OVA257-264 peptide.	
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cells requires PLCγ1 activation, but is a DAG signaling-dependent, calcium-

independent process [70]. Because ITK directly phosphorylates PLCγ1, which is 

responsible for DAG production during TCR signaling, we wanted to evaluate 

centrosome reorientation and lytic granule polarization in CTL:target conjugates. To 

examine centrosome polarization, we co-stained for actin and γ-tubulin as a marker 

for the centrosome (Figure 2.2.7A and B) and examined localization using confocal 

immunofluorescence microscopy. We found that ITK-deficient CTLs polarized their 

centrosomes normally in response to peptide-pulsed EL4 targets (Figure 2.2.7C). 

Nonetheless, consistent with previous reports [13, 71, 108], we found that Ca2+ 

mobilization in response to anti-CD3 stimulation was markedly abnormal in activated 

CTLs in the absence of ITK (Figure 2.2.4A), suggesting that PLCγ1 activation was 

still impaired in ITK-deficient CTLs.  

The polarization of lytic granules has also been linked to the strength of TCR 

signaling in the OT-I system, where weak signals generated by low avidity ligands 

induced centrosome polarization without triggering concomitant lytic granule 

polarization [67, 125]. These data suggest that the reorientation of the centrosome 

and polarization of lytic granules can be decoupled under suboptimal TCR-triggering 

conditions. Although the absence of ITK during TCR engagement also results in 

suboptimal TCR signaling, we found normal polarization of lytic granules toward the 

immunological synapse, as evaluated by granzyme B staining of ITK-deficient CTLs 

in response to peptide-pulsed EL4 targets (Figure 2.2.8A, B, and C). Gross 

examination of granule convergence also did not reveal obvious defects in the 

absence of ITK. These results suggest that the impaired killing of targets by OT-I 
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CTLs in the absence of ITK does not result from defects in lytic granule 

reorientation, and that once activated CTLs are generated, ITK is not required for 

centrosome or lytic granule polarization toward targets, despite defective activation 

of PLCγ1. 

	

Figure 2.2.7: Itk-/- CTLs show normal centrosome 
reorientation during cytolysis of targets. 
Centrosome reorientation in (A) WT and (B) ITK-
deficient OT-I CTLs shown as maximum projections. 
Nuclei (blue), EL4 targets (red), actin (green), γ-tubulin 
(white). Centrosome position is highlighted by a yellow 
arrow. Scale bars = 5µm. (B) Quantification of 
centrosome reorientation patterns in WT (black, n=129) 
and Itk-/- (gray, n=128) CTLs. Bars represent mean  ± 
SEM from 3 independent experiments. 
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TCR-triggered degranulation is reduced in ITK-deficient CTLs 

 The final stage of granule-dependent killing of target cells by CTLs is the 

fusion of the lytic granules to release their cytotoxic contents, leading to target cell 

killing. To evaluate this step, we used a flow-based degranulation assay that 

measures cycling of lysosomal associated membrane protein 1 (LAMP1) in 

response to TCR stimulation [126]. LAMP1 is a prominent component of lytic granule 

Figure 2.2.8: Itk-/- CTLs show normal lytic granule 
distribution during cytolysis of targets. (A) Lytic 
granule polarization shown as maximum projections. 
Nuclei (blue), EL4 targets (red), actin (green), 
granzyme B (white). Granules are highlighted by 
yellow arrows. Scale bars = 5µm. (B) Quantification 
of lytic granule polarization patterns in WT (n=127) 
and Itk-/- (n=151) CTLs in conjugates with EL4 targets 
pulsed with 1µM OVA257-264 peptide. Bars represent 
mean  ± SEM from 3 independent experiments.  
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membranes but is found at very low levels on the surface of resting cells. When 

TCR-engagement triggers fusion of lytic granules at the plasma membrane, LAMP1 

is exposed to the surrounding environment where it can be bound by fluorophore-

conjugated anti- LAMP1 antibodies in the medium, before being rapidly taken up and 

recycled. Thus, the accumulation of a fluorescent signal serves as readout for 

degranulation in CTLs. Using this assay, we found that Itk-/- OT-I CTLs exhibited 

reduced degranulation. Although the extent of this defect was more variable, and 

less severe, than the defect in cytotoxicity, we observed defective degranulation in 

response to plate-bound anti-CD3 (Figure 2.2.9A), as well activated targets, 

including both peptide-pulsed LPS-activated WT B cells (Figure 2.2.9B) and EL4  

Figure 2.2.9:  ITK-deficient CTLs exhibit reduced TCR-
triggered degranulation. Degranulation measured in a 
flow-based LAMP1 cycling assay in WT  (black) or Itk-/- 
(gray) CTLs in response to (A) plate-bound anti-CD3, (B) 
OVA257-264-pulsed LPS-activated B cell, or (C) EL4 
targets. Each connecting line represents paired mice 
from an individual LAMP1 cycling experiment. (D) 
Representative histogram of total CD107a content in 
permeabilized WT (black) and Itk-/- (gray) CTLs used in 
degranulation assays.  
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cells (Figure 2.2.9C). Importantly, intracellular staining confirmed that total LAMP1 

content was equivalent between WT and ITK-deficient CTLs (Figure 2.2.9D), 

suggesting that reduced degranulation in the absence of ITK was not due to 

differences in total LAMP1 levels between WT and ITK-deficient CTLs. To confirm 

that impaired degranulation by Itk-/- CTLs was due to the loss of ITK activity, we 

again treated previously activated WT OT-I CTLs with increasing concentrations of 

the ITK-inhibitor, 10n, during LAMP1 cycling assays. Inhibitor treatment of WT CTLs 

led to reductions in degranulation similar to those seen in Itk-/- OT-I CTLs (Figure 

2.2.10A). As was the case for Itk-/- cells, upstream processes such as adhesion were 

not affected by the ITK inhibitor (Figure 2.2.10B). Similarly, treatment of allo-

activated human CD8+ T cells with 10n also led to impaired degranulation (Figure 

	

Figure 2.2.10: Pharmacological inhibition of ITK 
results in impaired degranulation. (A) Degranulation in 
WT CTLs (black), WT CTLs pre-treated with the ITK 
inhibitor, 10n, at 0.03 µM (blue), 0.1 µM (green), 0.2 µM 
(yellow) or 0.3 µM (red), or Itk-/- CTLs (gray). (B) 
Adhesion of WT (black), Itk-/- (gray), WT CTLs treated 
with 10n (red), or Itk-/- CTLs treated with 10n (light gray) 
to EL4s pulsed with 1µM OVA257-264 peptide or non-
pulsed as a control after 20 minutes. Bars represent 
mean ± SD of percent of CD8+ target+ cells in the CD8+ 
gate. (C) Degranulation in allo-reactive human CD8+ T 
cells from healthy donors (black and white) treated with 
10n in response to 5µg/mL OKT3.  
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2.2.10C). These results suggest that ITK activity plays a previously unappreciated 

role in lytic granule fusion, the final stage of CTL killing, without affecting upstream 

events.  

 

Evaluation by electron microscopy reveals subtle differences between the 

immunological synapses formed by WT and Itk-/- cells 

 In an effort to understand the cellular basis for the reduction in LAMP1 cycling 

observed in FACS-based secretion assays, we collaborated with Jane Stinchcombe 

in the Griffiths lab at the Cambridge Institute for Medical Research to closely 

examine the immunological synapse in WT or ITK-deficient CTL:target conjugates 

using transmission electron microscopy (TEM). This method provided us with 

structural information at a resolution that we could not obtain using 

immunofluorescence techniques.  

TEM images revealed that ITK-deficient CTLs formed conjugates and made 

normal contact sites with targets; secretory clefts indicative of mature immunological 

synapses were observed in both WT and Itk-/- CTL:target conjugates. Polarized 

centrosomes, organized microtubule networks, and accumulated granules were 

evident in ITK-deficient CTLs (Figure 2.2.11A), to the same extent as in the WT 

cells. These EM data are consistent with our observations made using 

immunofluorescence that centrosome and lytic granule polarization are unaffected 

by the absence of ITK (Figure 2.2.7C and 2.2.8C).  

However, when comparing populations of WT and Itk-/- CTLs, our 
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Figure 2.2.11: TEM images of WT or Itk-/- CTLs in conjugate with OVA257-264 peptide-
pulsed EL4 target cells. (A) WT and ITK-deficient CTLs prepared in the absence of HRP. 
The equivalent organization of the microtubule network from the membrane at the synapse 
can be seen. Looser contact site and debris in WT CTL:target conjugates can be seen, 
compared with Itk-/- CTL:target pairs. Bottom panels are the same images at higher 
magnification. (B) Itk-/- CTLs only, where the granules are labeled with HRP and microtubule 
reorganization from tightly polarized centrosome material at the contact site is observed. (C) 
Thick sections through CTL:target conjugates t provide an overview of organelle behavior in 
HRP-labeled cells. WT cell (top) shows classic phenotype with polarized centriole, granules, 
and Golgi. The image of the ITK-deficient CTL (bottom) was taken in the plane to side of the 
centriole to show granule position. Target in both cases are dying, indicated by vacuolation of 
the ER. (D) Itk-/- CTLs only, representing different profiles of granule polarization to the contact 
site in ITK-deficient cells. No target cell death noted. Black asterisk, site of centriole baral; 
white asterisks, lytic granules; G, Golgi apparatus. Images provided by Dr. Jane Stinchcombe. 
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collaborators also reported some interesting subtle differences that were consistent 

among three independent experiments. First, a looser contact site between WT 

CTLs and conjugates was noted, with evidence of released material visible in 

between the cells membranes. The contact site between ITK-deficient CTLs and 

targets appeared more flat, or tight, with less material visible between CTLs and 

targets (Figure 2.2.11A). WT CTLs also showed an organelle polarization that was 

more focused toward the synapse with fewer granules evident at the contact site 

(Figure 2.211A, B, C, and D). In WT cells, more of the tightly polarized conjugates 

were associated with dying targets, as indicated by the presence of apoptotic 

structures in some targets in TEM images (Figure 2.2.11C). Although dying targets 

were also observed in some conjugates formed with ITK-deficient CTLs, fewer Itk-/- 

CTLs were associated with apoptotic targets. This observation is consistent with the 

poorer killing in our in vitro cytolysis assays.  

Although the differences cited between populations of WT and ITK-deficient 

CTLs were very subtle and therefore we must take precautions in their interpretation, 

a noted increase in the accumulation of lytic granules around the centrosome and at 

the contact site instead of along the membrane suggests that there may be a block 

in the dissociation of granules from the microtubule network before fusion, or in 

granule docking. 

 

Total internal reflection fluorescence microscopy visualization of 

degranulation in WT and ITK-deficient CTLs 
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To further visualize the degranulation, we used total internal reflection 

fluorescence (TIRF) microscopy. This imaging technique uses an evanescent wave 

to only excite fluorescent proteins that are 200 nm from the cell:glass interface, 

making it particularly suited for examining events that occur at the plasma 

membrane in cells, such as secretion.  

For TIRF imaging, we first crossed the ITK-deficient mice to mice expressing 

LifeAct-mRuby, a sensor for polymerized actin. However, we found that CTLs from 

these mice did not express high enough levels of LifeAct to reproducibly image using 

TIRF. We then proceeded by optimizing double transfections of activated WT and 

ITK-deficient CTLs with LifeAct-mApple and LAMP1-eGFP constructs. While 

transfection with LifeAct constructs alone did not dramatically reduce viability in cells 

when compared with cells that were electroporated in the absence of plasmid, 

transfection with the LAMP1-eGFP construct significantly affected cell survival 

(Figure 2.2.12). Since low viability greatly complicates imaging, as dead cells cannot 

be excluded via gating or other methods, we next moved to a hybrid system that 

combined transfection with retroviral transduction in order to reduce the cell death 

	

Figure 2.2.12: Viability following transfection with 
fluorescent constructs. WT CTLs cultured under 
previously described standard conditions, untransfected, 
transfected with empty vector, LifeAct-mApple alone, 
LAMP1-eGFP alone, or co-transfected with LifeAct-
mApple and LAMP1-eGFP constructs. Graph shows 
percent viability ± SD in each group, as determined by 
the percent of cells in the live gate. 
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associated with transfection of the LAMP1-eGFP construct. For this method, CTLs 

were activated for 36 hours, transduced with a LAMP1-eGFP retrovirus, and then 

cultured in IL-2 for two days before sorting eGFP positive cells. The sorting step also 

eliminated a problem with interpretation of our TIRF data acquired using doubly-

transfected cells; that is, the inability to distinguish between CTLs that did not appear 

to polarize and/or secrete because they were not expressing LAMP1-eGFP versus 

those where the absence of LAMP1 fusion in TIRF represented a real biological 

phenomenon. This was an important consideration, especially since FACS-based 

degranulation data indicated that the defect we were trying to visualize was partial. 

After sorting, cells were allowed to recover in culture before transfection with LifeAct-

mApple to label actin in the cells, and then imaged the following day. This process 

required culturing cells for a total of eight days, i.e. six days after the initial addition 

of IL-2 to media, or three rounds of IL-2 stimulation in total.  

Using cells prepared with this transfection/transduction hybrid system, we 

were able to confirm in TIRF that ITK-deficient cells could form actin rings as well as 

WT CTLs. Lytic granules were seen moving into the TIRF field, and degranulation 

was visualized by the diffusion of the eGFP signal into the plasma membrane upon 

granule fusion (Figure 2.2.13A). However, after six days in culture with IL-2, we 

found that the percent of cells that degranulated was equivalent between WT and 

ITK-deficient CTLs (Figure 2.2.13B). While lytic granules could polarize and fuse, 

there was a slight, albeit statistically insignificant, tendency toward decreased 

numbers of granules undergoing fusion in the absence of ITK when compared to WT 

CTLs (Figure 2.2.13C).  



  55 

 

 

 

Figure 2.2.13: TIRF imaging of CTLs. (A) TIRF images of a WT CTL expressing LifeAct-
mApple (red) and LAMP1-eGFP (green) degranulating on anti-CD3-coated glass surfaces. 
Top row displays signal from the LifeAct-mApple (561) channel and middle row from the 
LAMP1-eGFP (488) channel, shown in gray scale. Merged images are shown in bottom row. 
Degranulation in the middle row is highlighted by a yellow arrowhead. Time shown in 
minutes:seconds. Scale bar = 5µm. (B) Percent of LAMP1-eGFP-transduced, LifeAct-
mApple-transfected WT (black) or Itk-/- (gray) OT-I CTLs that degranulated in response to 
anti-CD3-coated glass surfaces, imaged with TIRF microscopy. Mean ± SEM. WT n=109, 
Itk-/- = 59, from 5 independent experiments. (C) Number of granules that fused in each 
secreting WT (black) or Itk-/- (gray) OT-I CTL transduced with LAMP1-eGFP and transfected 
with LifeAct-mApple, then imaged via TIRF microscopy. Graphs represent mean ± SEM. WT 
n=103, Itk-/- = 75, from 5 independent experiments. 
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Degranulation and cytotoxicity are restored in ITK-deficient CTLs after 

prolonged culture in IL-2 

 Because we were unable to visualize the degranulation defect in ITK-deficient 

CTLs by microscopy, we decided to look more closely at differences between how 

the CTLs were prepared for the FACS-based assays versus TIRF imaging. A side-

by-side comparison of cells under each activation condition using our FACS-based 

degranulation assay revealed that the preparation of cells for TIRF assays resulted 

in augmented granule fusion in the absence of ITK. After extensive studies to rule 

out the effects of retroviral transduction, cell sorting, or transfection itself (data not 

shown), we turned to the prolonged culture in IL-2 as a possible explanation for the 

augmented degranulation in ITK-deficient CTLs.  

IL-2 has long been known to enhance lymphocyte cytotoxicity in culture, 

particularly for natural killer (NK) cells [127]. More recent data has shown that IL-2 

stimulation of peripheral blood lymphocytes (PBLs) augments degranulation in 

healthy donor cells. In addition, IL-2 has been shown to partially restore 

degranulation in PBLs from Familial Hemophagocytic Lymphohistiocytosis type 4 

(FHL4) patients that carry a mutation in STX11, a gene encoding a t-SNARE 

important for vesicle fusion in CTLs [88], and to a lesser extent in peripheral blood 

mononuclear cells (PBMCs) from FHL3 and FHL5 patients [74, 128] carrying 

mutations affecting UNC13D and STXBP2, all parts of lytic granule fusion 

machinery. Although different molecular requirements for NK cell and CTL 

cytotoxicity have not been described, very little is understood about the contribution 
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of IL-2 to CTL degranulation, in part due to the requirement for IL-2 for differentiation 

of CTLs. However, since IL-2 culture restored cytotoxic capability in NK cells from 

patients with primary immunodeficiencies with defects in lymphocyte degranulation, 

we hypothesized that prolonged exposure to IL-2 might also augment degranulation 

in ITK-deficient CTLs.  

To test this, we continued culturing both WT and Itk-/- OT-I CTLs for six days 

after the initial addition of IL-2 to medium (nine days total), resuspending the cells in 

fresh medium plus IL-2 every 48 hours. Under these prolonged culture conditions, 

cells were exposed to an additional round of IL-2 stimulation. We noted that viability 

in WT OT-I CTLs cultures began to decrease after eight days from an average of 

83.3% on day seven to 25.8% on day nine, while the viability of Itk-/- OT-I CTLs was 

much less affected over the same time in culture, changing only from 76% on day 

seven to 62.8% on day nine (Figure 2.2.14A). These observations are consistent 

with previous reports that ITK-deficient CD4+ T cells are resistant to cell death under 

a number of conditions [129].  

To compare degranulation between cells activated for different periods of 

time, we put cells in culture each day for a series of five days. This provided us with 

cells from staggered cultures so that degranulation assays could be performed on 

the same day using cells at different time points following primary activation. 

Interestingly, prolonged exposure to IL-2 restored degranulation in Itk-/- OT-I CTLs, to 

levels equivalent to those seen in viable WT OT-I CTLs that were stimulated for the 

same period of time (Figure 2.2.14B). Notably, this was not secondary to reduced 

degranulation in the viable WT cells, but rather to an increase in ITK-deficient cells.  
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To determine whether augmented degranulation in ITK-deficient CTLs during 

prolonged culture in IL-2 translated into increased cytolysis, we evaluated killing of 

peptide-pulsed EL4 target cells by CTLs. Similarly, prolonged incubation with IL-2 

rescued the ability of ITK-deficient CTLs to kill targets (Figure 2.2.14C). Together 

these data suggest that, like NK cells from FHL3, 4, and 5 immunodeficient patients, 

prolonged IL-2 treatment can restore both degranulation and cytolysis in ITK-

deficient OT-I CTLs. 

 

2.3 Discussion 

ITK is an important modulator of TCR signaling, required for maximum PLCγ1 

activation and Ca2+ signaling in T cells. Previous work has suggested that viral 

	

Figure 2.2.14: Degranulation and cytotoxicity are restored in ITK-deficient CTLs after 
prolonged culture in IL-2. (A) Degranulation in response to 5µg/mL of plate-bound anti-CD3 in WT 
(black) or ITK-deficient (gray) OT-I CTLs cultured under indicated culture conditions. Bars show ± 
SD. (B) WT (black) or Itk-/- (gray) OT-I CTLs were cultured and stained with Live/Dead dye to 
evaluate viability. Graph depicts percent of total CD8+ cells with dye excluded at indicated time 
points. Points represent mean ± SEM from two independent experiments. (C) Graph depicts percent 
of WT (black) or Itk-/- (gray) CTLs cycling LAMP1 in response to 5µg/mL of plate-bound anti-CD3 
evaluated at indicated days after the start of primary activation. (D) in vitro cytolysis of EL4 targets 
pulsed with 1µM OVA257-264 peptide by WT OT-I (black) or Itk-/- OT-I (gray) CTLs at a 20:1 
effector:target ratio, evaluated at indicated days after primary activation. Graphs show percent 
cytotoxicity ± SD at 4-hour time points. Representative of 3 independent experiments. 
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clearance was delayed in ITK-deficient animals, although ultimately Itk-/- mice mount 

a protective immune response against viral infection [115, 116]. This information, 

coupled with reports that patients with mutations in ITK are particularly susceptible to 

viral infections, led us to further probe how ITK-deficiency directly affects the 

process of killing in CTLs. Our results provide new insight into the effect of ITK and 

suboptimal TCR signaling on CD8+ T cell function, and how it may contribute to 

phenotypes associated with ITK-deficiency in humans.  

Here, we show that ITK-deficient CTLs have an intrinsic defect in cytolysis. 

Despite delays in activation and expression of effector molecules, once CTLs were 

generated, early TCR-driven events of target cell recognition, adhesion, and cell 

polarization were normal in the absence of ITK. However, we found that 

degranulation in ITK-deficient CTLs was impaired. We further found that this defect 

could be overcome by prolonged exposure to IL-2 in culture. Similar observations 

have been made for other primary immunodeficiencies where IL-2 was reported to 

enhance cytotoxic lymphocyte function, notably in the FHL family of diseases [88, 

128]. 

 Given altered actin accumulation in ITK-deficient CD4+ T cells, we were 

surprised to find that the early stages of CTL killing were normal in the absence of 

ITK. Indeed, ex vivo CD8+ T cells from Itk-/- OTI mice exhibited reduced adhesion to 

target cells, similar to ITK-deficient CD4+ T cells. We do not think this is strictly due 

to developmental defects during thymocyte maturation, since the OT-I transgene 

improves many features of altered development seen in non-transgenic Itk-/- mice 

[123]. For example, we observed similar surface levels of TCR and other surface 
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markers in cells directly isolated ex vivo from WT and ITK-deficient OT-I mice. 

However, once CTLs were fully activated, ITK-deficiency did not alter adherence or 

actin recruitment to target cells. This suggests that the cells that expanded during in 

vitro activation were now more functional. We speculate that this rescue may be at 

least partially attributable to the presence of IL-2 in culture, as adhesion and other 

defects in NK cell populations from patients with primary immunodeficiencies have 

also reportedly been rescued by IL-2 (see below for further discussion) [74, 128, 

130].  

Downstream of TCR engagement, the activation of PLCγ1 leads to the 

hydrolysis of PIP2 to generate two major second messengers in T cell signaling: 

DAG and IP3. Localized DAG gradients generated by TCR activation serve as a 

polarizing signal, regulating centrosome reorientation toward target cells by 

recruiting PKC isozymes [71, 73]. We found that both centrosome and lytic granule 

polarization toward target cells were normal in Itk-/- CTLs. Thus, although ITK is 

important for the full activation of PLCγ1 in T cells, the DAG gradient generated in 

ITK-deficient CTLs is sufficient to drive cell polarization, despite evidence that 

PLCγ1 activation was defective, as indicated by the decreased Ca2+ mobilization. It 

is possible that ITK affects other downstream effectors that influence DAG 

concentrations, such as the diacylglycerol kinase (DGK) α and ζ, thereby diminishing 

the effects of decreased DAG generation by PLCγ1. Consistent with the idea that 

ITK-deficient cells have sufficient levels of DAG, we found that treatment of ITK-

deficient cells with a DGK inhibitor, which would increase DAG concentrations by 

preventing conversion of DAG to phosphatidic acid, did not augment degranulation 
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by ITK-deficient CTLs (Figure 2.3.1). This is in 

contrast with SAP-deficient CTLs, whose 

defect in cytolysis is partially rescued by 

treatment with the same inhibitor [131]. 

Once granules reach the plasma 

membrane, TIRF microscopy has revealed 

them to be highly dynamic structures that must 

dock before fusion can occur. Previous work 

has suggested that efficient granule docking, 

defined as the tethering of vesicles to the 

plasma membrane (reviewed in [132]), is 

dependent on the strength of TCR signaling 

[67, 125]. Since ITK-deficiency leads to impaired degranulation, and CTLs undergo 

suboptimal TCR signaling due to the loss of ITK, one possible explanation for the 

impaired degranulation is that docking is defective in Itk-/- CTLs. Although the precise 

upstream signals controlling docking are not known, the importance of this step in 

degranulation has been established through the study of patients with mutations in 

membrane- or vesicle-associated fusion machinery who have inherited forms of HLH 

syndromes. TEM data from our collaborators in the Griffiths lab indicates that while 

ITK-deficient CTLs are able to polarize their centrosome, granules, and microtubule 

network, there exists a subtle but reproducible difference in the pattern of lytic 

granules accumulating at the synapse. This observation suggests a problem in 

transfer of granules from the microtubule network to the membrane, or possibly in 

	

Figure 2.3.1: Inhibition of DGK in 
ITK-deficient does not rescue 
degranulation. Graph depicts 
percent of WT (black) or Itk-/- (gray) 
CTLs treated with indicated 
concentrations of a DGK inhibitor 
and cycling LAMP1 in response to 
5µg/mL of plate-bound anti-CD3. 
Mean ± SD. 
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granule docking. Although high-resolution images of the synapse provide clues to 

how the absence of ITK affects granule fusion specifically, it is difficult to quantify the 

subtle defects observed. The extensive EM studies required to do so are beyond the 

scope of this thesis. 

Efficient granule docking and priming in CTLs is dependent on membrane- or 

vesicle-associated fusion machinery, including RAB27a, tethering proteins, and 

SNAREs, that lead to abnormal CTL responses. We found that protein expression of 

STX11 (33kDa), MUNC13-4 (120kDa), MUNC18-2 (66kDa), SNAP23 (23kDa), and 

SYT7 (60-90kDa) was equivalent in WT and ITK-deficient CTLs (Figure 2.3.2A-D).  

 

 
 
Figure 2.3.2: Lytic granule fusion machinery is expressed at equivalent levels in WT and ITK-
deficient CTLs. Expression of (A) MUNC13-4 (120kDa), (B) MUNC18-2 (66kDa), (C) STX11 
(33kDa), (D) SYTVII (60-90kDa), or (E) SNAP23 (23kDa) in total lysates obtained from day 7 WT or 
Itk-/- OT-I CTLs. Blotted for actin as a loading control. 
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However, interpretation of protein expression levels is complicated in some cases by 

data that mouse STX11 antibodies also recognize other syntaxins (possibly STX3, 

since reactivity is seen in STX11 gene-targeted mice) (Gillian Griffiths, unpublished 

observations). Likewise, most studies probing RAB27a function have relied on the 

overexpression of a tagged form of the protein. Examining endogenous RAB27a 

protein levels, as well as the localization of other components of the fusion 

machinery, has proven difficult due to the limited availability of good reagents for 

western blotting and microscopy. We therefore cannot rule out impaired localization 

of these molecules, nor lytic granule biogenesis or the generation of mature granules 

containing the necessary machinery for efficient TCR-triggered fusion at the plasma 

membrane, as a possible explanation for our phenotype in ITK-deficient CTLs. 

Alternatively, components of fusion machinery may be dependent on TCR-triggered 

post-translational modifications to regulate degranulation in CTLs. This is not 

unprecedented; Fc receptor-induced phosphorylation of SNAP23 in mast cells by 

IκB kinase, a kinase downstream of IgE receptor signaling, is essential for 

degranulation, as expression of a phospho-mimetic SNAP23 mutant partially 

rescues degranulation in IκB kinase-deficient mice [133].  

The hydrolysis of PIP2 by PLCγ1 to produce IP3 triggers store-operated 

calcium entry (SOCE) into the cell through the action of ER calcium sensors, STIM1 

and 2, and the subsequent activation of the calcium release-activated channel 

(CRAC), ORAI1, at the plasma membrane. Some components of fusion machinery, 

such as MUNC13-4 and SYT7, have both calcium and phospholipid-binding 

domains that are thought to mediate SNARE assembly and lytic granule fusion by 
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increasing affinity. Thus, the balance between calcium flux and phospholipid 

composition could fine-tune lytic granule fusion in CTLs. While the precise signals 

that couple surface receptor signaling to degranulation machinery in CTLs are still 

not fully understood, there is an absolute dependence on Ca2+ for lytic granule 

secretion. CTLs do not degranulate in the presence of EGTA, a potent chelator of 

calcium, and cytotoxic lymphocytes from patients with mutations in STIM1 or ORAI1 

have defects in secretion [93, 134, 135] (and data not shown), while polarization in 

these cells remains intact. Similarly, we find Ca2+ flux defects in Itk-/- CD8+ T cells, 

and the defects we observe in degranulation in the absence of ITK are reminiscent 

of those seen in NK cells from patients harboring mutations in ORAI or STIM 

proteins. Nonetheless, treatment of WT CTLs with ionomycin, a calcium ionophore 

that bypasses TCR signaling for calcium flux minimally induced degranulation (from 

2-3% in non-treated cells to 6-10% in cells treated with 1ug/mL of ionomycin (Figure 

2.3.3). While degranulation in ITK-deficient CTLs treated with ionomycin in the 

	

Figure 2.3.3: TCR-triggered degranulation in 
ITK-deficient is not rescued by 
PMA/ionomycin treatment. Degranulation 
measured in a flow-based LAMP1 cycling 
assay in WT  (black) or Itk-/- (gray) CTLs in 
response to 0 (no stim) or 5µg/mL plate-bound 
anti-CD3 in the presence of ionomycin 
(1µg/mL), ionomycin + PMA (20ng/mL), or 
EGTA (0.5mM). Bars represent mean ± SD, 
representative of three or more experiments. 
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absence of TCR engagement could reach levels equivalent to WT CTLs, this result 

was not always consistent, and in any case was small. Furthermore, ionomycin (or 

PMA and ionomycin) treatment was unable to elicit levels of degranulation achieved 

in WT cells with TCR stimulation, or rescue degranulation in Itk-/- CTLs in the 

presence of TCR stimulation (i.e. in response to either anti-CD3 or peptide-pulsed 

targets) (Figure 2.3.3). Nonetheless, ionomycin treatment could rescue FACS-based 

calcium flux assays and cytokine production, where ionomycin treatment induced 

robust calcium flux and IFNγ and TNFα production in ITK-deficient CTLs in 

conjunction with PMA (data not shown). Although there are reports in the literature 

that NK cells, and both human CD8+ T cells and T cell clones degranulate in 

response to ionomycin alone [93, 136], there is virtually no evidence that Ca2+ flux 

can induce robust degranulation in primary murine CTLs (Ritter, unpublished 

observations). This suggests that Ca2+ flux is necessary, but not sufficient, for 

degranulation in primary murine CTLs, at least under the conditions we have 

examined.  

Although our inhibitor data suggest that ITK plays an activation-independent 

role in TCR-triggered degranulation, the stages of docking or fusion are probably not 

the only problem in ITK-deficient CTLs. We find that expression of downstream 

effectors, such as granzyme B and perforin, is also reduced in the absence of ITK. 

Previous work has shown that through the HIF1α pathway, mTORC1 signaling 

controls a diverse transcriptional program including the expression of cytolytic 

effectors in T cells [23]. We have previously shown that CD4+ T cells from ITK-

deficient mice have reduced mTORC1 signaling and HIF1α expression [114]. 
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Similarly, we show here that ITK-deficient CD8+ T cells have altered mTORC1 

signaling at early time points during activation, as well as decreased granzyme B 

and perforin expression. Together the results suggest that ITK-deficiency in CD8+ T 

cells has two consequences: when naïve CD8+ T cells in the periphery encounter 

antigen, a suboptimal TCR signal in the absence of ITK generates a population of 

CTLs with altered maturation kinetics, expressing less granzyme B, perforin and 

perhaps other effectors. Upon second antigen encounter, that population of sub-

optimally activated CTLs is further unable to efficiently degranulate in the absence of 

ITK. In this scenario, the lytic granules that do undergo fusion may contain less 

granzyme B and perforin, thus together making ITK-deficient CTLs poor cytotoxic 

lymphocytes that are less effective at clearing virally infected targets at early time 

points during infection (Figure 2.3.4). Whether ITK affects other mediators of lytic 

granule secretion and cytolysis is an important question for the future.  

However, we show here that prolonged culture of ITK-deficient CTLs in IL-2 

rescues degranulation and cytolysis of target cells. To our knowledge, this is the first 

report that IL-2 can rescue cytolytic functionality of CTLs cells with TCR signaling 

defects. IL-2 treatment has long been known to increase cytolysis in NK cells and 

PBLs from patients with a variety of immunodeficiencies [130, 136-138]. Whether 

this is the result of increased expression of gene products important for cytolytic 

function, or whether there are direct effects on fusion is not clear. For example, 

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an 

increased susceptibility to Herpes virus infections and decreased NK cell 

cytotoxicity. NK cytotoxicity in the absence of WASp improves with IL-2 in culture, 
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Figure 2.3.4: The dual consequences of ITK-deficiency. 

 

and IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells. 

Intriguingly, IL-2 stimulation of NK cells in vitro led to increased phosphorylation of 

the WASp homolog WAVE2, which was required for inducing WASp-independent 

NK cell function, but not for baseline activity [130]. These results suggest a potential 

signaling mechanism through which IL-2 can rescue defects in cytotoxic lymphocyte 

function. More recently, an elegant study investigating how T cells integrate intrinsic 

signaling with environmental cytokine cues showed that IL-2, in conjunction with 

strength of TCR signaling, regulates cell cycle entry through the activation of the 
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PI3K signaling [21]. The loss of ITK in CTLs is 

reminiscent of many phenotypes associated with altered 

peptide or reduced TCR signaling: delayed proliferative 

responses, impaired mTORC signaling, reduced 

expression of effector molecules, and decreased Ca2+ 

flux. It is therefore possible that in our system and others, 

IL-2 provides a synergizing signal that enables complete 

activation of CTLs in the absence of optimal TCR 

signaling. Indeed, expression of surface markers in ITK-

deficient CTLs improved after addition of IL-2 on day 

three of culture. Likewise, the expression of granzyme B 

also improves after prolonged culture (>8 days) of ITK-

deficient CTLs with IL-2 (Figure 2.3.5). It is interesting to speculate that these effects 

may contribute to the eventual clearance of viral infections in ITK-deficient mice.  

Overall, this work demonstrates two significant effects of ITK-deficiency on 

CTL function: first, a decrease expression of effectors and second, a potentially 

novel role for ITK in regulating degranulation without affecting upstream processes 

such as adhesion or cell polarization. Importantly, we also offer additional evidence 

for the role of IL-2 in integrating TCR and costimulatory signaling pathways for the 

generation of fully functional CTL responses. Together, this work provides insight 

into the defects that may account for the particular susceptibility to viral infections 

observed in patients with mutations in ITK and TCR signaling components. 

	
Figure 2.3.5: ITK-deficient 
CTLs show equivalent 
expression of granzyme B 
after prolonged culture in 
IL-2. WT (black) or Itk-/- 
(gray) OT-I CTLs activated in 
the presence of 10nM 
OVA257-264 peptide and 
cultured for nine days in the 
presence of IL-2. Histogram 
is representative of two 
independent experiments.  
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Chapter 3: Cortical actin regulates secretion of lytic granules 
in CD8+ cytotoxic T lymphocytes 
 

3.1 Introduction 

CTLs carry out their cytolytic functions through the directed polarization and 

secretion of lytic granules, specialized structures that contain perforin and 

granzymes, molecules that induce death of target cells. Our studies of CTL function 

have led us to further investigate the mechanisms regulating this final stage in killing. 

A single CTL is capable of killing multiple target cells during an immune response 

[139, 140], hence they are thought to act as “serial killers”. As such, CTLs need to 

tightly regulate secretion, both in order to kill only appropriate target cells on contact, 

and to preserve the finite number of lytic granules for effective serial killing of 

targets. Data suggest that each CTL releases only a handful of granules per 

productive killing outcome. However, how CTLs regulate the number of granules 

secreted during an individual T:target interaction is still not yet understood. 

One mechanism that has been proposed to play a role in regulating 

exocytosis in cells is through the control of the dense network of F actin known as 

the actin cortex. The contributions of the actin cytoskeleton at the plasma membrane 

to CTL activation and signaling have been explored (reviewed in [141] and [142]), 

but the dynamics of cortical actin at the synapse throughout the entire course of 

T:target interactions have not been well described. Upon interaction with target cells, 

T cells rapidly accumulate actin to the site of contact. However, within minutes of the 

T cell encountering the target, the cortical actin density at the center of the synapse 

undergoes a dramatic reduction compared with the rest of the cell [41]. This 
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reduction in cortical actin density has been spatially and temporally correlated with 

the secretion of lytic granules [34], yet how actin may contribute to the regulation of 

secretion during later stages of T:target interactions, and the maintenance of the 

serial killing capability of CTLs, is largely unknown.  

To further explore the role of the cortical actin in regulating both the initiation 

and the termination of secretion of cytolytic granules in CTLs, we used live cell 

spinning disk confocal microscopy and total internal reflection fluorescence (TIRF) 

microscopy to directly examine the relationship of actin to secretion during T:target 

interactions. Our results suggest that the cortical actin meshwork contributes to 

regulation of both the initiation and the termination of secretion. Additional 

experiments further revealed a correlation between the recovery of actin and PIP2 

and the synapse, suggesting that the distribution of phosphatidylinositols in the 

membrane represent a potential mechanism through which CTLs regulate the 

density of actin during cytolysis. This work provides insight into actin-related 

mechanisms regulating through which CTLs can carefully control secretion and 

preserve serial killing capacity during immune responses. 

 

3.2 Results 

Cortical actin recovers at the synapse during CTL cytolytic activity 

To examine actin dynamics during the termination of T:target cell interactions, 

we first used live cell spinning disk confocal microscopy to follow actin during the 
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entire course of CTL interactions with their targets. To visualize actin dynamics in 

real time, we used CTLs expressing LifeAct-mEmerald, a fluorescently labeled actin-

binding protein that allows visualization of polymerized actin in cells [143], in 

conjunction with fluorescently labeled targets. As previously shown [34], CTLs 

exhibit reduced actin at the site of contact with labeled targets. However, during the 

course of CTL:target interactions, the density of cortical actin at the synapse 

recovered across the synapse (Figure 3.2.1).  

Because of the availability of fluorescence sensors, it was difficult to 

simultaneously image actin cortex dynamics and secretion of lytic granules in 

CTL:target conjugates. Therefore, to examine the relationship between actin 

dynamics and granule fusion with greater resolution and sensitivity in the context of 

secretion, we turned to total internal reflection fluorescence (TIRF) microscopy. 

CTLs were engineered to co-express both LifeAct-mApple to monitor actin dynamics 

	
Figure 3.2.1: Actin recovers at the synapse during T:target interactions.  Spinning disk 
confocal time lapse of a WT OT-I CTL expressing LifeAct-mEmerald (green) interacting with an 
EL4 target cell expressing tagRFP (red) pulsed with 1µM OVA257-26 (merge, bottom row). Images 
showing signal from the LifeAct (488) channel in a single slice correspond to the center of the 
synapse and are shown in gray scale (top row). n=11 cells from 3 independent experiments. Time 
shown as minute:second; scale bars = 5µm. 
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and LAMP1-eGFP to follow secretory granules. Cells were activated on anti-CD3-

coated glass, allowing us to simultaneously visualize cortical actin density and lytic 

granule secretion over time. When cells engaged the stimulating coverslip, we 

observed a rapid reduction in central cortical actin density at the synapse that was 

followed by movement of lytic granules into the TIRF field. At various points after the 

appearance of these granules, we saw the disappearance of a concentrated vesicle 

fluorescence associated with the rapid diffusion of the green fluorescent signal 

through the membrane, indicative of degranulation. Similar to CTL:target interactions 

in our live confocal microscopy, TIRF images confirmed that cortical actin recovered 

at the immunological synapse following secretion (Figure 3.2.2A). Sixty-five cells in 

total were captured before actin had cleared or early enough after clearance that 

lytic granules had not yet appeared in the TIRF field. Cells included in our analysis 

were also large enough that granule secretion events were sufficiently spatially 

separated for accurate quantification. Over time, 78% (51/65) of these cells 

degranulated, indicated by the diffusion of LAMP1-eGFP in the plasma membrane, 

with an average of 3.8 ± 2.9 (mean ± SD) number granules fused per cell (Figure 

3.2.2B). Of the 51 cells that degranulated, 94% (48/51) recovered cortical actin 

density within the 20 minute window in which they were imaged in TIRF. The mean 

time to actin recovery following fusion of the last granule in TIRF was observed at 

1.59 ± 1.0 minutes (mean ± SD) (Figure 3.2.2C). We also noted that although 

granules could still be seen in the TIRF field behind the newly increased cortical 

actin density, fusion was no longer observed. Thus, secretion only occurred during  
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the period of actin clearance; actin recovery only occurred after secretion and once 

actin recovered, we no longer observed secretion. These data suggest that although 

granules remained polarized toward the contact site after secretion, recovery of the 

actin network may serve as barrier for secretion. 

 

 
 
Figure 3.2.2: Actin recovers at the synapse following lytic granule secretion. (A) TIRF images of 
a CTL expressing LifeAct-mApple (red) and LAMP1-eGFP (green) degranulating on anti-CD3-coated 
glass surfaces (merge, bottom row). Top row displays signal from the LifeAct (561) channel and 
middle row from the LAMP1-eGFP (488) channel, shown in gray scale. Degranulation event in the 
middle row is highlighted by a yellow arrowhead. Time shown as minute:second; scale bars = 5µm. 
(B) Graph of time to actin recovery following secretion, where each circle represents an individual 
cell. n=48 cells from 9 independent experiments. 
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To further correlate actin dynamics with CTL function, we used target cells 

expressing the Ca2+ indicator GCaMP6 that fluoresces upon increased intracellular 

Ca2+ concentration [139, 144, 145]. Previous work has shown that Ca2+ increases 

are associated with very early loss of membrane integrity [146], thus GCaMP6 

fluorescence is a readout for loss of the target cell membrane integrity induced by 

CTL degranulation. As in our earlier results, we saw a reduction in cortical actin 

density at the synapse after contact with target cells using live cell spinning disc 

confocal microscopy (Figure 3.2.3A). The mean time to actin recovery after GCaMP 

fluorescence was 1.83 ± 0.96 minutes (mean ± SD) minutes (Figure 3.2.3B). 

However, once Ca2+ flux was seen in targets, we observed a recovery in the actin 

density at the synapse in greater than 90% of the CTL:target conjugates. Together 

	

Figure 3.2.3: Actin recovers at the synapse following 
release of perforin containing granules. (A) Spinning disk 
confocal time lapse images of a WT OT-I CTL expressing 
LifeAct-mApple (green) in conjugate with an EL4 target cell 
expressing GCaMP6 (outline, and in red) pulsed with 1µM 
OVA257-26 (merge, bottom row). Images showing signal from 
the LifeAct channel (561) in a single slice correspond to the 
center of the synapse and are shown in gray scale (top row). 
Time shown as minute:second; scale bars = 5µm. (B) Graph 
of time to actin recovery following secretion, where each 
circle represents an individual cell. n=26 cells from 5 
independent experiments. 
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these experiments suggest that 1. cortical actin recovers at the synapse following 

cytolytic activity, and 2. the secretion of lytic granules only occurs during the period 

of actin clearance, i.e. once cortical actin recovers, secretion is no longer observed. 

 

Removal of dense cortical actin permits granule secretion 

 The correlation between actin recovery and the cessation of secretion 

suggested to us that recovered cortical actin could act as a physical barrier, and thus 

serve as a mechanism for regulating secretion in CTLs. To test this hypothesis, 

CTLs expressing LifeAct-mApple and LAMP1-eGFP were allowed to interact with 

anti-CD3-coated glass, secrete lytic granules, and recover cortical actin. Following 

actin recovery, cells were treated with a carrier control (Figure 3.2.4A), or Latrunculin 

A (LatA) to depolymerize actin (Figure 3.2.4B), and monitored using TIRF 

microscopy to observe the effect of treatment on lytic granule secretion. Before 

treatment (-0:15, minutes:seconds), we often observed movement of lytic granules in 

the TIRF field behind the recovered cortical actin meshwork, but no fusion. After 

treatment with LatA (at 0:00), we saw a reduction in the intensity of cortical actin, 

indicating disassembly of the actin network (0:15-0:45) (Figure 3.2.4B). The 

reduction in cortical actin density was followed by lytic granule movement closer to 

the plasma membrane in the TIRF field, as indicated by an increase in LAMP1-

eGFP fluorescence intensity (0:45). Furthermore, within one minute of this increase 

in lytic granule (eGFP) intensity, lytic granule secretion was again observed at the 

plasma membrane, as indicated by the diffusion of eGFP in the TIRF plane (1:30) 
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Figure 3.2.4: Removal of cortical actin permits granule 
secretion.  Time lapse TIRF images of a CTL expressing 
LifeAct-mApple (gray scale, top rows) and LAMP1-eGFP (gray 
scale, middle rows), or merged channels (bottom rows) that 
have already secreted and recovered actin in response to ani-
CD3-coated glass (-0:15), then treated at 0:00 with carrier 
control (A) or 0.5M LatA (B). Kymograph of movies; 
fluorescence under a 5 pixel-thick line (dashed white line) is 
displayed over time. Dashed yellow lines indicate time of LatA 
treatment. Scale bar = 5µm in still TIRF images, scale bar = 2 
minutes in kymographs. Time shown as minutes:seconds. (C) 
Graph depicts percent of cells that degranulated after treatment 
with carrier or LatA (mean ± SD). n=19 LatA-treated, 16 carrier-
treated cells from 3 independent experiments. 
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(Figure 3.2.4B). This movement and secretion of granules could also be visualized 

by kymographic analyses, which allowed visualization of fluorescence intensity 

across a region of interest over time. In carrier-treated cells, recovered actin 

remained relatively stable across the synapse following treatment, indicated by the 

maintenance of fluorescent signal over time in the kymograph. Likewise, granules 

could also be seen moving in and out of the TIRF field, but lines of stable intensities 

over time indicated that no granule fusion had occurred (Figure 3.2.4A). In contrast, 

LatA treatment resulted in actin depolymerization that was accompanied by granule 

fusion, as evidenced by the rapid increase in LAMP1-eGFP signal and diffusion of 

that signal through space and time (Figure 3.2.4B). Removal of the actin barrier 

resulted in secretion in 78.9 ± 9.4% of cells compared with secretion in only 12.5 ± 

8.2% of cells treated with a carrier control (Figure 3.2.4C). These results suggest 

that recovered actin does indeed act as a barrier to effectively prevent further lytic 

granule secretion in CTLs. 

 

PIP2 correlates with cortical actin density at the synapse over time 

The regulation of secretion by the actin cytoskeleton led us to ask what 

factors contribute to the control of actin cytoskeletal dynamics at the CTL:target 

interface. One factor known to regulate cortical actin density is phosphatidylinositol 

4,5-biphosphate  (PIP2) [147-149], which can bind and activate a variety of actin 

regulatory proteins including, WASP, N-WASP, ADF/cofilin, and Coronin1A 

(reviewed in [150]). Data suggest that manipulation of PIP2 at the plasma membrane 
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in Cos7 cells has direct and potentially functional outcomes on actin polymerization 

[151, 152] (Ritter, unpublished observations). Furthermore, it has previously been 

shown that the clearance of actin at the CTL synapse correlates with reduced PIP2 

[34]. To evaluate whether there was a similar spatial correlation between actin and 

PIP2 at later time points during CTL:target interactions, we co-transfected CTLs with 

the LifeAct-mApple and a Tubby-eGFP construct expressing a PIP2-binding domain 

of Tubby fused to eGFP [153]. Expression of these constructs allowed us to 

simultaneously visualize PIP2 and polymerized actin in the same cell using live cell 

spinning disc confocal microscopy. Interestingly, actin recovery was associated with 

a recovery of PIP2 levels during CTL:target interactions (Figure 3.2.5A). Farnesyl-

eGFP probes appeared homogenous across the plasma membrane at all times 

during target interactions, confirming that the observed changes in intensity of the 

Tubby-eGFP probe were not the result of alterations in membrane density at the 

synapse (data not shown).  

We were also able to confirm the association between actin and PIP2 in TIRF 

microscopy. At early time points during the interaction with anti-CD3-coated 

surfaces, Tubby-eGFP adopted a similar ring pattern as LifeAct in CTLs. At later 

time points, Tubby-eGFP recovered across the synapse concomitant with LifeAct 

(Figure 3.2.5B). Line scans confirmed the colocalization of fluorescence intensity in 

each channel across the synapse at both early (cleared, 0:24) and late (recovered, 

1:03) time points (Figure 3.2.5C and D). These data suggest that PIP2 not only 

correlates with the TCR-triggered reduction in actin density during early interactions, 

but also with the recovery of cortical actin across the synapse over time. 
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Pharmacological inhibition of PLCγ1 and PI3K inhibits actin clearance in CTLs  

   
The observed spatial correlation between actin and PIP2 in CTLs led us to 

ask if altered PIP2 levels play a role in cortical actin regulation in CTLs. PIP2 is a 

substrate for a number of enzymes activated by T cell receptor (TCR) signaling, 

notably PLCγ and phosphoinositide-3-kinase (PI3K). To test whether inhibition of 

PLCγ1 affects actin clearance, we pretreated cells with either U-73122, an inhibitor 

of PLCγ1 activity, or U-73343, an inactive analog, and allowed T:target conjugates to 

Figure 3.2.5: Actin density 
correlates with PIP2 at the synapse. 
(A) Time lapse confocal images of a 
WT CTL expressing LifeAct-mApple 
(red) and Tubby-eGFP (green) 
interacting with an EL4 target cell 
(blue). Signal from individual channels 
in gray scale (top and middle rows). (B) 
TIRF images of a CTL expressing 
LifeAct-mApple (red) and Tubby-eGFP 
(green) interacting with anti-CD3-
coated glass. Dashed yellow lines 
indicate area of line scans (C) at 0:24 
and (D) at 1:03, showing intensities 
across region. Scale = 5µm.	
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form before fixation. Treatment with U-73122 prevented clearance of cortical actin at 

the synapse, while treatment of cells with U-73343 had no effect (Figure 3.2.6A and 

B). These data suggest that TCR-triggered PLCγ1 activation contributes to actin 

cytoskeleton regulation in CTLs. However, PLCγ1 is also important for the 

generation of the second messengers, IP3 and DAG, which regulate Ca2+ 

mobilization and cell polarization in CTLs, respectively. To determine whether the 

effect of PLCγ1 inhibition on cortical actin dynamics was due to downstream 

generation of these second messengers, we once again allowed CTLs to interact 

with target cells and then treated them with phorbol 12-myristate 13-acetate (PMA) 

and ionomycin to pharmacologically rescue possible downstream DAG- and Ca2+ 

flux-mediated effects, respectively. Incubation with PMA and ionomycin failed to 

rescue defects in cortical actin dynamics (Figure 3.2.6B). Although we cannot rule 

out localized effects, or some other reason why these may not rescue, these results 

suggest that the defect in cortical actin clearance at the synapse is distinct from 

PLCγ1-mediated effects on Ca2+ or DAG. Although less dramatic, treatment of cells 

with LY-294002, an inhibitor of PI3K (which also uses PIP2 as a substrate), also 

reduced the clearance of actin at the synapse when compared with cells treated with 

a carrier control (Figure 3.2.6C). 

To address whether PLCγ1 activation in CTLs is critical for clearance of both 

PIP2 and actin at the synapse, we co-transfected CTLs with LifeAct-mApple and 

Tubby-eGFP to simultaneously monitor actin polymerization and PIP2 in CTLs. In 

cells treated with the inactive analog we observed reduced PIP2 at the synapse 

(Figure 3.2.6A); PLCγ1 inhibitor-treated cells showed uniform Tubby-eGFP  
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Figure 3.2.6: Pharmacological inhibition of PLCγ1 results in impaired actin clearance at the 
synapse in CTLs. Representative spinning disk images of WT OT-I CTLs expressing LifeAct-mApple 
(red) and Tubby-eGFP (green) interacting with 1µM OVA257-26 peptide-pulsed EL4-tagBFP target cells 
in the presence of (A) 1mM U-73343, 1mM U-73122, or 1mM U-73122 plus PMA and ionomycin (P/i) 
at 20ng/mL and 1µg/mL, respectively. LifeAct-mApple and Tubby-eGFP channels are shown in gray 
scale. Scale bars = 5µm. Graphs depicts the percent of cells in conjugates with actin cleared in the 
presence of (B) U-73343 (n=234), U-73122 (n=259), U-73122 + P/I (n=116), or (C) DMSO (n=158), 
LY-294002 (n=165), from at least 3 independent experiments. 
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fluorescence at the CTL:target interface, similar to LifeAct intensity (Figure 3.2.6A). 

Together this data suggests that PLCγ activation in CTLs is critical for the clearance 

of both PIP2 and actin at the plasma membrane during CTL:target interactions. 

 

Secretion-deficient Rab27a-/- CTLs have impaired actin recovery at the 

synapse  

Our observations that actin recovers at the synapse during TCR-triggered 

interactions also raised the question of how actin recovery in CTLs is initiated. We 

noted a temporal correlation between cessation of lytic granule secretion and actin 

recovery at the synapse both in our live confocal and TIRF imaging (Figure 3.2.2 

and 3.2.3). These observations raised the possibility that granule secretion itself may 

play a role in actin recovery. To test this hypothesis, we evaluated actin recovery in 

cells that were unable to secrete granules due to a mutation affecting RAB27a, a 

critical component of lytic granule fusion machinery. Activation of RAB27a-deficient 

cells on anti-CD3-coated glass led to the rapid reduction of cortical actin density, 

followed shortly by appearance of lytic granules within the TIRF field, as seen in WT 

CTLs. However, Rab27a-/- CTLs were unable to secrete their granules and did not 

recover actin at the synapse (3.2.7B). Kymographic analyses showed that the area 

of reduced cortical actin density persisted throughout the 20 minute duration of 

imaging in the context of a secretion- deficient CTL (Figure 3.2.7A and B) when 

compared with WTCTLs, where cortical actin density increased following secretion. 
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Figure 3.2.7: Secretion-deficient Rab27a-/- CTLs do not recover actin at the synapse. 
TIRF images and kymographs of WT (A) or Rab27a-/- (B) CTLs expressing LifeAct-mApple 
(red) and LAMP1-eGFP (green) interacting with anti-CD3-coated glass. Gray scale images for 
LifeAct (top) and LAMP1 (middle); bottom rows show merged channels. Yellow arrow in 
middle row highlights a secretion event. Kymographs of movies (right panels). Scale bar = 
5µm in TIRF, scale bar = 2 minutes in kymographs. Time in minutes:seconds. (C) Graph 
represents percent of WT (black) or Rab27a-/- (gray) cells with cleared actin fixed after 3 
minutes and 8 minutes after interaction with anti-CD3-coated glass.	
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To quantitate actin recovery in the cell population, WT or Rab27a-/- CTLs were 

allowed to interact with anti-CD3- coated glass and visualized at either an early (3 

minute) or late (8 minute) time points. Phalloidin staining showed that while most WT 

CTLs had recovered actin after eight minutes, secretion-deficient RAB27a mutant 

CTLs failed to recover actin as well as their WT counterparts (Figure 3.2.7C). The 

fact that cortical actin does not recover in these cells suggests that lytic granule 

secretion is coupled to the mechanism that mediates cortical actin recovery in CTLs. 

Thus, actin cytoskeletal dynamics both regulate and are regulated by secretion, 

suggesting that actin recovery may be a critical step in both initiating and limiting 

CTL secretion. 

 

3.3 Discussion 

Actin dynamics in CTLs play an important role in signaling and overall effector 

function. Previous work has shown that cortical actin density is rapidly reduced after 

the immunological synapse forms in CTLs, and it is in those areas of reduced 

cortical that lytic granule secretion occurs [34, 41]. However, few studies have 

focused on the relationship between actin dynamics and secretion during the entire 

course of CTL:target interactions. Here, we monitored cortical actin throughout the 

duration of TCR-triggered responses in the context of secretion. We find that granule 

fusion is consistently followed by the recovery of cortical actin across the 

immunological synapse in CTLs. This recovery correlates with cessation of granule 

secretion. Our results suggest that recovered cortical actin acts as a barrier to 
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prevent further granule secretion, and that recovery itself is triggered by granule 

fusion. We also show that both clearance and recovery of cortical actin occurred 

concomitantly with PIP2, suggesting that PIP2 may play a role in driving actin 

dynamics at the synapse in CTLs. Together, our results suggest that while a 

reduction in cortical actin density is critical for granule fusion, the reciprocal is also 

true - that cortical actin recovery plays a role in regulating the cessation of granule 

fusion in CTLs. Thus, cortical actin both regulates, and is regulated by, secretion in 

CTLs, offering a new level of control of granule secretion in CTLs that may serve as 

a mechanism to preserve their serial killing capacity. 

 The role of actin in secretion has been studied in many cell types specializing 

in exocytosis, including NK cells [59, 75], mast cells [154], pancreatic β cells [155], 

and adrenal chromaffin cells [156, 157]. One model, known as the barrier model, 

suggests that the actin cortex acts as a physical barrier that prevents vesicles from 

coming in close enough proximity to the plasma membrane for fusion to occur [155]. 

This model is supported by evidence in chromaffin cells where ion channel clusters 

and SNARE complexes were associated with areas of low actin density, indicating 

that the actin cytoskeleton influenced the distribution of components of secretory 

machinery, thus influencing secretion by preventing access of granules and fusion 

machinery to the plasma membrane [158]. Live cell imaging of stimulated secretion 

in chromaffin cells showed that the depolymerization of actin permitted secretory 

vesicles and associated machinery access to the plasma membrane, promoting 

fusion [156]. Using structured illumination microscopy (SIM) combined with TIRF-

based imaging (TIRF-SIM), our collaborator, Alex Ritter, found that recovered 



  86 

cortical actin at the immunological synapse in CTLs appeared to form a dense wall 

of interconnected filaments (personal communication). Together, these observations 

suggest that a rich actin meshwork could act as a barrier preventing access of lytic 

granule to the plasma membrane, and thus preventing further secretion. This 

hypothesis was supported by our experiments that showed that the removal of this 

cortical actin barrier using the actin depolymerization agent, Latrunculin, resulted in 

resumed fusion of lytic granules. Thus, like in other cell types, cortical actin forms a 

barrier that blocks secretion in CTLs.  

Two recent studies have shed light on the relationship between cortical actin 

density and lytic granule secretion in NK cells, which, like CTLs, rely on polarized 

secretion for killing. In this work, structured illumination and stimulated emission 

depletion microscopy of NK cells revealed that following stimulation with activating 

ligands, actin was reduced, but did not entirely clear at the synapse [58, 59]. On 

these activating surfaces, lytic granules preferentially localized and fused in areas of 

actin “hypodensity.” Notably, TIRF-SIM images revealed that although centralized 

actin density during early stages of TCR-triggered immunological synapse formation 

was markedly reduced, a loose network of branched actin filaments remained across 

the synapse (Alex Ritter, personal communication), albeit less dense than reported 

in NK cells [59, 75]. Differences between mechanisms regulating CTL and NK cell 

secretion have not been fully explored, and it remains to be seen whether the 

persistence of sparse actin filaments across the synapse in CTLs plays a role in 

granule fusion as in other cell types [154, 159-161]. Furthermore, whether denser 

actin networks also act as a barrier in NK cells also is not known. Nonetheless, the 
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current available data suggests that in CTLs, lytic granule convergence toward a 

docked centrosome at the plasma membrane is sufficient to bring granules in close 

enough proximity to the plasma membrane to promote fusion. Additionally, we now 

provide evidence that recovered actin in CTLs can act as a barrier to block access of 

granules to the plasma membrane, preventing further secretion. It will be interesting 

to see if similar mechanisms for cortical actin in regulating secretion hold true for 

directional versus non-directional secretion of other factors in CD8+ and CD4+ T 

cells, such as cytokines, which rely on similar stimuli but are found in different 

vesicular compartments.  

 The observation that cortical actin density recovered across the synapse 

during CTL:target interactions led us to explore what regulates actin dynamics in 

CTLs. Specifically, studies in macrophages reported that the disassembly of actin 

around newly formed phagosomes correlated with the loss of PIP2 [162]. Actin 

cytoskeletal dynamics during phagocytosis in macrophages has been compared to 

immunological synapse formation in CTLs (reviewed in [163]). Interestingly, multiple 

reports suggest that T cells [41, 164], B cells [165, 166], and NK cells [167, 168] 

trogocytose, or take up surface membrane from cells with which they interact. Given 

these similarities, we hypothesized that like in macrophages, PIP2 has a role in 

regulating actin disassembly in CTLs. In agreement with this, previous work in CTLs 

showed that loss of cortical actin density at the synapse correlated with a reduction 

in PIP2 [34]. Our study extends this finding to reveal that the recovery of actin also 

coincides with the recovery of PIP2.  
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During TCR engagement, PIP2 levels at the plasma membrane in T cells are 

modulated primarily by PLCγ1 and PI3K activity. PLCγ1 hydrolyzes PIP2 to generate 

IP3 and DAG that lead to calcium flux and the nucleation of downstream signaling, 

and PI3K phosphorylates PIP2 to generate PIP3, creating docking sites for a number 

of PH domain-containing proteins. We show here that pharmacological inhibition of 

PLCγ1 activity, and to a lesser extent, PI3K activity, resulted in impaired TCR-

triggered clearance of actin at the synapse in CTLs. Concomitantly, PIP2 intensity at 

the synapse also persisted in PLCγ1 inhibitor-treated cells (data not shown). The 

lack of actin clearance was not rescued by the addition of ionomycin and PMA. 

Although there are many reasons why this rescue may not occur, these observations 

support the idea that reduction in cortical actin density at synapse is driven the direct 

activity of PLCγ1 on PIP2 and is independent of downstream DAG- or calcium-

mediated effects. Although PI3K also uses PIP2 as a substrate, CTLs are less 

dependent on CD28 co-stimulation than CD4+ T cells. CD28 is a major regulator of 

PI3K signals in T cells and we, therefore, speculate that actin clearance in CTLs 

may also be less dependent on PI3K activity. In fact, while we saw some reduction 

in the ability of CTLs to reduce actin at the synapse, inhibition of PI3K had a far less 

dramatic effect than inhibition of PLCγ1, making PLCγ1 the probable major regulator 

of PIP2 at the CTL membrane. Notably, PLCγ1 itself is recruited to the TCR-triggered 

signaling complex at the plasma membrane, where it is fully activated following 

phosphorylation by ITK. Thus, its activity is regulated by localized TCR signaling and 

restricted to the immunological synapse in CTLs, making PLCγ-mediated modulation 

of PIP2 levels at the synapse a probable mechanism for regulating actin dynamics at 
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the synapse. The normal actin clearance in ITK-deficient CTLs, however, suggests 

that there is enough PLCγ1 activity to regulate actin dynamics in these cells. 

Whether subtle differences occur, however, may require evaluation at the super 

resolution level.  

We further provide evidence that granule secretion itself triggers recovery of 

cortical actin at the synapse in CTLs. CTLs from ashen mice, which have a null 

mutation in the gene coding for RAB27a, are unable to secrete lytic granules and kill 

target cells. In these CTLs, cortical actin density remained reduced at the 

immunological synapse, long after WT CTLs had degranulated and recovered their 

cortical actin. To our knowledge, this is the first report that secretion plays a role in 

the recovery of actin at the synapse in CTLs. While at this time, we cannot rule out 

that this is a RAB27a-dependent defect independent of secretion, additional 

experiments using CTLs from mice with similar genetic defects in secretion due to 

mutations in alternative fusion machinery proteins, such as MUNC13-4, may provide 

additional insight into our observation. Alternatively, a washout experiment using a 

pharmacological inhibitor of granule fusion, such as botulinum toxin that inhibits 

SNARE activity, may clarify this question. Interestingly, mutations in RAB27A in 

humans lead to Griscelli syndrome type 2 (GS2), a primary immunodeficiency 

making them prone to recurrent viral infections [169]. GS2 patients also develop 

HLH, where an abundance of hyper-activated CD8+ T cells producing excessive 

IFNγ leads to the secondary activation of macrophages that, in turn, infiltrate organs 

and secrete damaging pro-inflammatory cytokines. Given that HLH and HLH-like 

symptoms are commonly associated with the inability of CTLs to control viral 
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infections, and RAB27A-deficient CTLs have defects in secretion-triggered recovery 

of cortical actin, it is possible that the hyper-activated phenotype seen in GS2 

patients may not only be ascribed the inability of RAB27A-deficient CTLs to kill 

virally infected targets due to impaired secretion, but also the failure of CTLs to down 

regulate their own effector function due to their lack of granule exocytosis.  

However, while we demonstrate here that secretion-impaired CTLs do not 

recover actin as well as secretion-sufficient CTLs, we do not fully understand how 

granule fusion triggers actin recovery at the synapse in CTLs. Lytic granules are 

estimated to be between 250 and 500nm in size [58, 170, 171], and signaling 

clusters imaged at the plasma membrane in activated T cells using super resolution 

techniques have been estimated to be between 40 and 300nm in size (reviewed in 

[172]). It is therefore possible that granule fusion physically disrupts remaining 

signaling complexes at found at the plasma membrane, terminating PLCγ signaling 

and allowing recovery of PIP2 across the synapse, followed by cortical actin.  

Alternatively, lytic granules may directly add membrane and membrane 

components, including PIP2, that could change the composition of the membrane 

and influence signaling as well as actin dynamics. Lytic granules contain a number 

of membrane-associated components that are not found at the plasma membrane, 

such as lysosomal associated membrane protein 1 (LAMP1), a large and highly 

glycosylated receptor that can make up 50% of the lysosomal membrane [173, 174]. 

Therefore secretion may deliver a completely new set of granule-associated 

glycoproteins and phospholipids to the membrane that triggers actin recovery. The 

kinetic segregation model of TCR signaling suggests that clustering of TCR 
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complexes brings the TCR and target membranes in close proximity. This contact 

excludes larger inhibitory signaling components with long extracellular domains, 

such as CD45 phosphatase [175]. The delivery of large glycoproteins such as 

LAMP1 could conceivably force apart CTL and target membranes enough to disrupt 

TCR:MHCI interactions, allowing more inhibitory molecules access to cSMAC, from 

which they are normally excluded, and lead to inhibition of TCR signaling at the 

synapse. Discontinued PLCγ and PI3K activity could therefore result in resumed 

accumulation of PIP2, through reduced enzymatic activity, delivery from lytic granule 

membrane, or diffusion from elsewhere. PIP2 could then facilitate the recovery of 

cortical actin at the synapse following secretion, preventing further degranulation by 

CTLs.  

Based on our data, we propose a model where when a CTL interacts with 

other cells, cortical actin acts as a barrier to prevent unwanted secretion. Once a 

CTL productively encounters a target, cortical actin must be broken down to permit 

lytic granule fusion for killing to occur. TCR-triggering by target cells initiates a 

signaling cascade that leads to the recruitment of PLCγ1 (and PI3K, to a lesser 

extent) to signaling complexes at the synapse, where it hydrolyzes PIP2 in a 

localized fashion. The hydrolysis of PIP2 contributes to the reduction of cortical actin 

at the synapse, perhaps through loss of nucleation promoting factor (NPF) activity, 

the release of actin severing proteins, or both. Reductions in cortical actin density 

promote the polarization and docking of the centrosome, delivering lytic granules to 

the immunological synapse in a region of reduced cortical actin density where they 

can efficiently fuse. In turn, secretion itself then triggers the recovery of cortical actin 
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across the synapse, effectively restoring the cortical actin barrier and preventing 

further secretion. Whether this recovered actin then alters dynamics with target cells, 

allowing them to move on to allow subsequent attack of new target cells, remains an 

intriguing question. However, we propose that this offers a mechanism through 

which CTLs could limit secretion and preserve their serial killing capacity. 
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Chapter 4: Concluding remarks and future directions 

 CD8+ cytotoxic T lymphocytes are critical for killing virally infected and 

tumorigenic cells. CTLs affect target cell killing through a tightly regulated process of 

granule release, after which effector molecules found in granules, such as perforin 

and granzymes, induce death in target cells. Given the importance of CTLs in 

dealing with viral infections, it is perhaps not surprising then that mutations in genes 

that affect the development, differentiation, or overall effector function of CTLs can 

lead to the development of primary immunodeficiencies that are associated with 

impaired viral clearance. Through the study of this growing family of primary immune 

disorders related to defective CTL function, we are gaining a basic appreciation of 

the cellular mechanisms required for CTLs to function properly, the components of 

which are still not fully understood.  

 Work in this thesis investigated the role of a proximal TCR signaling molecule, 

ITK, in CTL effector function. Patients with mutations in ITK, a kinase that serves as 

an amplifier of TCR signaling, develop lymphoproliferative disease associated with 

ineffective responses to EBV, and broad susceptibility to viral infections. We found 

CTLs from ITK-deficient mice exhibit impaired killing of several types of targets, 

suggesting ITK-deficiency leads to global defects in cytolysis. While in vitro activated 

CTLs from Itk-/- mice had impaired expression of granzymes and perforin, killing 

defects were not necessarily due to altered T cell differentiation because they could 

be reproduced by treating WT CTLs with an ITK-specific inhibitor during cytolysis 

assays. To evaluate what other steps may be affected by loss of ITK, we carefully 

examined the distinct stages of cytolysis. Killing by CTLs occurs when TCR signaling 
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triggers adherence to targets, formation of the immunological synapse, centrosome 

and granule polarization, and release of lytic granules inducing cytolysis of targets. 

Although early events such as adhesion, actin ring formation, and cell polarization 

were normal in ITK-deficient murine CTLs, granule secretion was defective 

suggesting ITK may play an unappreciated role in the final stages of killing. 

Surprisingly, prolonged culture of ITK-deficient CTLs in IL-2 could rescue defects in 

degranulation. This is similar to what has been observed for other mutants with 

defective NK cell function, where cytotoxicity is enhanced in culture after IL-2 

stimulation. Together these experiments provide clues to novel roles for ITK and 

proximal TCR signaling in regulating the late stages of CTL function that may 

account for reduced viral clearance in patients with mutations in ITK.  

 While my efforts to mechanistically link the activation-independent 

contribution of ITK to secretion were not successful, more extensive work examining 

the granule fusion stage in ITK-deficient CTLs will provide additional information on 

how secretion can be regulated by proximal TCR signaling components, such as 

ITK. For example, the precise contribution of ion flux to degranulation in CTLs 

remains poorly understood. Studies in chromaffin cells have reported patches of 

fusion machinery colocalized with clusters of L- and P/Q type calcium channels 

[158]. As defects in cytolysis of targets by ITK-deficient CTLs are associated with 

impaired secretion, and ITK-deficiency can lead to profound defects in calcium flux, 

more extensive studies exploring the specific channels contributing to secretion, as 

well as their association or activation of fusion machinery, warrants additional 

research. More broadly, phosphoproteomics studies performed on WT CTLs versus 
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WT CTLs treated with an ITK-inhibitor would provide insight into TCR-triggered post-

translational modifications, such as phosphorylation, that directly effect 

degranulation and cytolysis in CTLs.  

 We also found that prolonged culture in IL-2 augments degranulation and 

cytolysis in the absence of ITK; exactly how IL-2 enables the complete activation of 

CTLs in the absence of optimal TCR signaling remains an intriguing question. One 

possibility is that over time, IL-2 signaling activates transcriptional or translational 

programs, through persistent STAT5 signaling or activation of mTOR-related 

pathways, that supplement suboptimal signals received through the TCR in the 

absence of ITK. To explore this, microarray or RNAseq experiments examining the 

transcriptional profile in WT versus ITK-deficient CTLs at different time points 

following TCR stimulation and IL-2 administration may offer clues to help address 

how and where IL-2 and TCR signaling pathways converge to enable complete 

activation of CTLs. It may also be of interest to examine molecules and pathways 

affected in specific genetic disorders in which degranulation has been rescued by IL-

2 to determine whether these might provide additional insight.  

 To further understand what regulates cytotoxic granule release in CTLs, we 

also examined the role of actin in regulating degranulation. This work was performed 

in collaborative work with Alex Ritter, a graduate student co-mentored by Gillian 

Griffiths at the Cambridge Institute for Medical Research, and Jennifer Lippincott-

Schwartz at the National Institutes of Health. Similar to the previously reported role 

of actin in controlling the initiation of secretion, we show here that actin recovery can 

affect the termination of secretion, most likely by acting as barrier to prevent access 
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of lytic granules to the plasma membrane. We also provide evidence that granule 

secretion itself triggers the recovery of cortical actin density across the synapse in 

CTLs and speculate that mechanisms such as this have evolved in CTLs in order to 

conserve a limited number of lytic granules for multiple target cell encounters.  

A number of potential mechanisms may regulate the TCR-triggered density of 

cortical actin at the synapse. Our experiments reveal a spatial and temporal 

correlation between the recovery of actin and PIP2 and the synapse, suggesting that 

the distribution of phosphatidylinositols in the plasma membrane represent a 

potential way through which CTLs regulate the density of cortical actin during 

T:target interactions. These observations fit well with the known ability of PIP2 to 

activate a number of actin regulatory proteins. Together this work provides new 

insight into actin-related mechanisms that regulate the cessation of secretion in 

CTLs, and the preservation of serial killing capacity during an immune response. 

Future work dissecting the relationship between PIP2 and actin dynamics at the 

synapse will reveal new roles for specific known and perhaps even novel nucleation 

promoting factors and actin severing proteins important for the down regulation of 

CTL responses. It will also be interesting to examine how the delivery of new protein 

and lipid components to the plasma membrane during secretion contributes to CTL 

behavior at the termination of T:target interactions. 

Experiments described in this thesis using mouse models of 

immunodeficiency have provided us with clues to novel roles for ITK ad TCR 

signaling in regulating secretion and killing in CTLs. Additionally, I’ve presented data 

that implicates actin as a major contributor to the termination of secretion during 
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CTL:target interactions. I hope this work will help us better understand the defects 

that we see in immunodeficient patients with mutations in genes that effect CTL 

effector function. 
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Chapter 5: Materials and Methods 

5.1 Solutions 

Complete medium for culture of primary T and B cells (RPMI 10): Roswell Park 

Memorial Institute (RPMI) 1640 (Thermo Fisher Scientific) supplemented with 10% 

fetal bovine calf serum or human serum (FBS), 2mM L-glutamine, 100U/mL 

Penicillin, 100µg/mL Streptomycin, and 50uM β-mercaptoethanol. 

 

Cell line medium (DMEM 10 and EMEM 10): Dulbecco's Modified Eagle Medium 

(DMEM, Thermo Fisher Scientific) or Eagles Minimum Essential Medium (EMEM) 

supplemented with 10% fetal bovine calf serum (FBS), 2mM L-glutamine, 100U/mL 

Penicillin, and 100µg/mL Streptomycin. 

 

Killing assay medium: phenol-red free RPMI 1640 supplemented with 2% FBS, 

100U/mL Penicillin, and 100µg/mL Streptomycin. 

 

Imaging medium: phenol-red free RPMI 1640 supplemented with 5% FBS. 

 

Fluorescence activated cell sorting (FACS) buffer: 1x phosphate buffered saline 

(PBS, Thermo Fisher Scientific) supplemented with 1% FBS, 100U/mL Penicillin, 

and 100µg/mL Streptomycin. 

 

Magnetic activated cell sorting (MACS) buffer: 1x PBS containing 2mM ethylene-
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diamine-tetra-acetic acid (EDTA), and 0.5% bovine serum albumin (BSA, Sigma-

Aldrich), sterile-filtered. 

 

Phospho-staining buffer: 1x PBS containing 1% Triton-X, and 0.5% BSA. 

 

5.2 Mice 

Wild-type (WT) OT-I [122], Itk-/- [176] OT-I TCR transgenic, and C57Bl/6 

(Jackson Laboratories) mice were between 7-10 weeks of age. LifeAct-mRuby mice, 

the generous gift of Roberto Weigert, were crossed to WT OT-I and Itk-/- OT-I TCR 

transgenic mice to generate LifeAct-mRuby WT and ITK-deficient OT-I mice. 

Rab27a-/- (ashen) mice were generous gifts from both John Hammer and Gillian 

Griffiths [80]. Animal husbandry and experiments were performed in accordance with 

approved protocols by the National Human Genome Research Institute Animal Use 

and Care Committee at the National Institutes of Health. 

 

5.3 Antibodies and dyes 

Tables 5.3.1 and 5.3.2. list the dyes and antibodies used.  

 
Table 5.3.1: Dyes 
 

Dye Concentration 
or dilution Application Source 

CellTrace Violet 0.1µM FC, IF Life Technologies 
CFSE 1µM FC, IF eBioscience 

Lysotracker 50nM FC, IF Life Technologies 
Live/Dead, green 1:2500 FC Life Technologies 
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Table 5.3.2: Antibodies 
 

Antigen Clone Host Reactivity Isotype Application Dilution Source 
actin AC-40 Rb, Ms Ms, Rt, Hu IgG2a IF, WB 1:2000 Sigma 
β-actin AC-15 Ms Ms, Rt, Hu IgG1 WB 1:10000 Sigma 
CD3ε 2C11 Ar Ham Ms IgG1 FC 1:500 eBio, BD 
CD4 RM4-5 Rt Ms IgG2a FC 1:1000 Miltenyi 

CD8α 53-6.7 Rt Ms IgG2a FC 1:500 Miltenyi 
CD11a 2D7 Rt Ms IgG2a FC 1:250 eBio, BD 
CD16     FC  BioXCell 
CD19 1D3 Rt Ms IgG2a FC 1:500 eBio, BD 
CD25 7D4 Rt Ms IgM FC 1:250 eBio, BD 
CD44 IM7 Rt Ms IgG2b FC 1:1000 eBio, BD 

CD62L MEL-14 Ms Ms IgG2a FC 1:250 eBio, BD 
CD69 H1.2F3 Ar Ham Ms IgG1 FC 1:250 eBio, BD 

CD107a 1D4B Rt Ms IgG2a FC 1:500 Cell Sig 
CD178 MFL3 Ar Ham Ms IgG FC 1:200 BioLegend 
EEA1 C45B10 Rb Ms, Rt, Hu IgG1 IF 1:500 Cell Sig 

γ-tubulin poly Rb Ms, Rt, Hu  IF, WB 1:200, 
1:1000 Sigma 

GM130 mono Rb Ms, Rt, Hu IgG IF 1:1000 abcam 

AF488  Gt, Dn Ms, Rb, Rt  IF 1:1000 Life Tech 

AF568  Gt, Dn Ms, Rb, Rt  IF 1:1000 Life Tech 
AF647  Gt, Dn Ms, Rb, Rt  IF 1:1000 Life Tech 
granz B GB11 Ms Hu IgG1 FC 1:250 BD 
granz B poly Rb Ms, Rt, Hu IgG WB 1:500 Abcam 
LAMP1 poly Rb Ms, Rt, Hu IgG IF, WB  Abcam 

LCK 3A5 Ms Ms, Rt, Hu  IF 1:200 Millipore 
IFNγ XMG1.2 Rt Ms IgG1 FC 1:250 BD 
IL-2 JES6-5H4 Ms Ms IgG2b FC 1:100 BD 

MUNC13-4 poly Gt Ms, Hu  IF, WB 1:500 Novus Biol 

MUNC18-2 poly Rb Ms, Hu  IF, WB 1:200 Synaptic 
Sys 

perforin poly Rb Ms  WB 1:1000 Cell Sig 
pS6   Ms     
pY 4G10 Ms Ms IgG2b WB 1:2000 Millipore 

SNAP23      1:100 Roche lab 
(NIH) 

SYTI     IF, WB 1:1000 Synaptic 
Sys 

SYTVII poly Rb Ms, Rt, Hu  IF, WB 1:150, 
1:1000 

Synaptic 
Sys 

STX11 poly Rb Ms, Rt, Hu  IF, WB 1:150, 
1:1000 

Synaptic 
Sys 

talin 8D4 Ms Ms, Rt, Hu  IF  Sigma 
TCRβ H57-957 Ar Ham Ms IgG2 FC 1:500 eBio, BD 
TNFα MP6XT22 Rt Ms IgG1 FC 1:200 eBio 
Vα2 B20.1 Rt Ms IgG2a FC 1:500 eBio, BD 

 
Abbreviations: FC, flow cytometry; IF, immunofluorescence; WB, Western blotting 
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5.4 Cell culture 

in vitro activated mouse CTLs and primary B cells 

To generate in vitro activated mouse CTLs, whole splenocytes from naïve WT 

or Itk-/- OT-I mice were harvested and stimulated at 0.5x106 cells/mL with 10nM 

OVA257-264 peptide (AnaSpec) for 3 days in RPMI 10 at 37C with 5% CO2. Cells were 

then washed once and resuspended at 0.5x106 cells/mL in RPMI 10 plus 10 IU/mL 

recombinant human IL-2 (rHIL-2) and seeded in fresh media plus rhIL-2 every 48 

hours. All experiments were performed with CTLs between 6 and 8 days after 

primary in vitro stimulation, unless otherwise indicated. Resting B cells were purified 

by negative selection with αCD43 microbeads (Miltenyi) and activated with 1µg/mL 

LPS from E. coli (Enzo Life Sciences) in RPMI 10 for 2-3 days before use as targets 

in all assays.  

 

Cell lines 

MC57 and P815 cell lines were maintained in DMEM10. EL4 cell lines were 

maintained in RPMI 10. Stably transduced EL4-tagRFP-MEM and EL4-GCaMP6 cell 

lines were a generous gift of the Lippincott-Schwartz lab and maintained in RPMI10. 

293T cell lines were maintained in EMEM10. 

 

Human allo-activated CD8+ T cells 
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Blood from healthy donors was obtained at the NIH Clinical Center under 

approved protocols. Peripheral blood mononuclear cells (PBMCs) were isolated from 

whole blood by density-gradient centrifugation using Lymphocyte Separation 

Medium (MP Biomedical), washed twice in phosphate buffered saline (PBS), and 

resuspended at 1x106 cells/mL. One mL of cells was then added to each well of a 

24-well plate and placed at 37° C. Mixed buffy coats for anti-allogeneic stimulation 

were irradiated and resuspended at 1x106 cells/mL, and phytohemagglutinin 

(PHA)was added to the buffy coats at 2µg/mL. To stimulate lymphocytes, 1mL of 

activated buffy coat was added to each well for a final ratio of 1:1 

stimulators:responders in 1µg/mL PHA. PHA blasts were split as needed, and CD8+ 

T cells isolated using a CD8+ T cell isolation kit (MACS Miltenyi). Bulk CD8+ T cells 

were cultured for use in experiments. For inhibition experiments, previously activated 

WT OT-I CTLs or human CD8+ T cells were pre-treated for 10 minutes at 37°C with 

ITK inhibitor (gift of Craig Thomas) at indicated concentrations and used directly in 

assays without washing. 

 

5.5 Flow Cytometry 

Data were acquired on a FACS Calibur, LSRII, or AriaII (all BD Biosciences) 

and analyzed using FlowJo software (Tree Star).  

 

Cell surface and intracellular staining 



  103 

To stain surface markers cells were washed once in fluorescence activated 

cell sorting (FACS) buffer (PBS plus 2% FBS) and samples were incubated at 4°C in 

the presence of Fc block (BioXCell) for 10 minutes to reduce non-specific antibody 

binding. Cells were stained in 50µL of FACS buffer containing the appropriate 

antibodies for 20 minutes at 4°C. For antibodies not directly conjugated to 

fluorophores, primary antibody staining was followed by a second 20-minute 

incubation at 4°C with the appropriate species-specific fluorophore-conjugated 

secondary antibody. After staining, cells were washed twice in FACS buffer and 

fixed with 2% paraformaldehyde (PFA, Sigma-Aldrich). For intracellular staining, 

surface staining was followed by a fixation/permeabilization step using BD 

CytoFix/CytoPerm, 35 minutes at 4°C. Cells were then washed once in 1X 

Permeabilization Buffer (eBioscience) and stained in 50µL of Permeabilization Buffer 

containing the appropriate fluorophore-conjugated antibodies at 4°C for 35 minutes. 

After staining, cell were washed twice and resuspended in FACS buffer for analysis. 

For phospho-antibody staining, cells were fixed with 4% paraformaldehyde, 

methanol-permeabilized at -20 C, stained for 60 minutes at 4 C with indicated 

phospho-antibodies in PBS plus 1% Triton X-100 and 0.5% bovine serum albumin 

(BSA), and resuspended in PBS for analysis. 

 

Fluorescence Activated Cell Sorting 

To prepare cells for sorting, samples were washed once and resuspended in 

fluorescence-activated cell sorting (FACS) buffer at a concentration of 10x106 
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cells/mL. If surface marker staining was required, samples were stained as 

described above. Cells were sorted directly into 10% complete medium plus IL-2, 

spun down for 10 minutes, and plated at 1x106 cells/mL plus 10 IU/mL IL-2 for 

culture.  

 

Proliferation assays 

To evaluate cell proliferation, splenocytes were stained with 1µM Cell Trace 

Violet (CTV, Life Technologies) in PBS at 37 C for 10 minutes. Stained cells were 

washed three times with complete media and then stimulated in the presence of 

OVA257-264. Cells were collected at indicated time points, stained with anti-CD8 

antibodies, and evaluated via flow cytometry. 

 

5.6 Cytotoxicity assays 

Lactate dehydrogenase release 

Cytolytic activity was determined in vitro using CytoTox Non-radioactive 

Cytotoxicity Assays (Promega) according to the manufacturer’s instructions. Briefly, 

targets were pulsed with 1µM OVA257-264 peptide for 1 hour at 37°C, washed twice, 

and resuspended in phenol red-free RPMI with 2% FBS (assay buffer). Activated 

CTLs were washed and resuspended in assay buffer, added to 96 well plates and 

titrated in assay buffer. Targets or assay buffer were added to wells to achieve 

appropriate effector:target ratios and control groups, and plates were incubated for 4 
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hours at 37°C. Twenty minutes before the completion of the assay, lysis buffer was 

added to control wells for maximum lactate dehydrogenase (LDH) release from 

target cells. Supernatants were then transferred to plates containing chromogenic 

assay substrate and the OD read at 490nm on a Thermomax plate reader to 

measure lactate dehydrogenase (LDH) release. Percent cytotoxicity was calculated 

as {[(E-Mbkgnd)-(CTLsp-Mbkgnd)-(Tsp-Mbkgnd)]/[Tmax-(Tsp-Mbkgnd)-Vc]} x100, where E is the 

measured LDH release value, CTLsp represents the spontaneous LDH release from 

CTLs alone, Tsp is the spontaneous release of LDH from targets alone, Tmax is the 

maximum value of LDH release from lysed target cells, Mbkgnd is the assay buffer 

background, and Vc is the volume correction control for the addition of lysis buffer to 

obtain maximum LDH release.  

 

FACS-based cytotoxicity 

In vitro cytolytic activity was also evaluated by FACS. Targets were stained 

with 1µM Cell Trace Violet (CTV, Life Technologies) as previously described. 

Targets were either left unpulsed as a control, or pulsed with 1µM OVA257-264 peptide 

for 1 hour at 37°C, washed twice, and resuspended in 10% complete medium. 

Activated CTLs were washed and resuspended in assay buffer, added to 96 well 

round bottom plates and titrated in 10% complete medium. Control, non-pulsed, or 

pulsed targets were added to wells with T cells to achieve appropriate effector:target 

ratios, and additional wells set up with target cells alone to control for spontaneous 

target cell death. Plates were centrifuged at 500RPM for one minute, and incubated 
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at 37°C. After 4-6 hours, plates were centrifuged, and supernatants discarded. Cells 

were then stained with αCD8-PECy7 antibodies and LiveDead green for 20 minutes 

at 4C, and washed once with FACS buffer before analysis. For more sensitive 

measurement of cell death, some samples were labeled with Annexin V. For 

AnnexinV staining, an additional single wash in 1x AnnexinV staining buffer 

(BioLegend) was performed, and cells were resuspended in 1x AnnexinV buffer plus 

allophycocyanin (APC)-conjugated AnnexinV. Plates were incubated in the dark at 

room temperature for 20 minutes, and additional 1x AnnexinV buffer was added to 

each well. Plates were read within the hour on a LSRII instrument using a high 

throughput sampler. For analysis, the CTV+ LiveDead+ (or AnnexinV-) population 

represents the target cells that have been killed, while the CTV+ LiveDead- (or 

AnnexinV+) population represents the remaining viable target cells in each well. 

Percent cytotoxicity was calculated as: 100 – [(viable CTV+ cells in sample)/(viable 

CTV+ cells in control)] x 100, where CTV+ cells in sample are cells in experimental 

wells, and viable CTV+ cells in control are cells in wells without T cells. 

 

in vivo cytotoxicity  

To examine cytolytic activity in vivo, indicated numbers of either WT or ITK-

deficient CTLs were adoptively transferred via retro-orbital injection into naïve WT 

C57BL/6 hosts. LPS-activated B cell targets from WT GFP mice were labeled with 

either 0.2µM or 2µM Cell Trace Violet (CTV, eBioscience). 0.2µM-dyed B cell targets 

were left unpulsed as a control, and 2µM-dyed target were pulsed with 1µM OVA257-
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264 peptide for 1 hour at 37°C. B cells were then mixed at a 1:1 ratio and transferred 

via retro-orbital injection into mice 24 hours after injection of CTLs. Spleens were 

harvested at indicated time points and populations analyzed via flow cytometry. 

Transferred B cells were distinguished from recipient B cells by gating on the GFP- 

positive population, and peptide pulsed versus non-pulsed targets were 

distinguished by the intensity of CTV fluorescence. Percent cytotoxicity was 

calculated as = 100 – {[(Tpulsed/Tnon-pulsed)/(Cpulsed/Cnon-pulsed)] x 100}, where Tpulsed is 

the percentage of peptide-pulsed targets harvested from spleens of recipients, Tnon-

pulsed is the percentage of non-pulsed targets harvested from spleens of recipients, 

Cpulsed is the percentage of peptide-pulsed targets harvested from spleens of PBS 

recipients, and Cnon-pulsed is the percentage of non-pulsed targets harvested from 

spleens of PBS recipients. 

 

5.7 T:target conjugate assays 

For FACS-based conjugate assays, LPS-activated primary B cells, EL4, or 

MC57 targets were stained with 0.1µM carboxyfluorescein diacetate succinimidyl 

ester (CFSE), and pulsed with peptide at the concentrations indicated for 1 hour at 

37°C or left unpulsed as a control. After washing, targets were mixed with previously 

activated CTLs at a 2:1 T:target ratio in 96-well round bottom plates, centrifuged, 

and incubated for 20 minutes at 37°C. Cells were washed and stained with α-CD8α-

PerCPCy5.5 or –APC and conjugates enumerated via flow cytometry, where the 

CD8+CFSE double positive population represented T cells forming conjugates with 

targets.  
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5.8 Degranulation assays  

For degranulation assays, activated CTLs were stimulated in plates coated 

with αCD3ε (BioXCell) or mixed at a 1:1 ratio with peptide-pulsed or unpulsed 

targets at 37°C in the presence of αCD107a-PE or –APC labeled antibody. At 

indicated time points, plates were placed on ice and cells transferred into cold PBS, 

stained with αCD8α and αCD107a-FITC antibodies, and analyzed via flow 

cytometry.  

 

5.9 Intracellular cytokine production  

 To measure intracellular cytokine production, cells were stimulated with plate-

bound αCD3ε or mixed at a 1:1 ratio with peptide-pulsed or non-pulsed targets at 

37°C for 4-6 hours in the presence of 1µL/mL Golgi Stop containing monensin (BD 

Biosciences). Surface and intracellular staining was then done as described above.  

 

5.10 Biochemistry 

Preparation of total T cell lysates and immunoblotting 

To obtain total lysates, naïve or previously activated CD8+ T cells were 

washed twice in PBS, resuspended in serum-free medium, and rested at 37C for two 

hours. Cells were then spun down and 1x106 to 5x106 cells were resuspended in 

50µL. For lysis, 50µL of 2x loading buffer plus 2-mercaptoethanol heated to 99C was 

added to cells and transferred to a 99C heating block for 5 minutes. A size standard 
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and lysates were loaded onto Tris-glycine gels and run between 90V and 120V for 

two hours, transferred to nitrocellulose membranes using an iBlot dry blotting system 

(Thermo Fisher Scientific), and incubated for one hour at room temperature in 1% 

BSA in Tris-buffered saline plus 0.1% Tween (TBS-T), to block non-specific antibody 

binding. Membranes were blotted overnight at 4C with primary antibody in TBS-T, 

washed 4x for five minutes each with TBS-T and blotted with the appropriate 

secondary antibody for one hour at room temperature, protected from light. 

Following four washes in TBS-T, blots were imaged using an Odyssey Infrared 

Imaging System (LICOR Biosciences). 

 

5.11 T cell transfections 

 The Amaxa Mouse T Cell Nucleofector kit (Lonza) was used to transfect 

primary T cells. Briefly, 2mL per reaction of proprietary rescue medium was 

supplemented with 10% FBS, 2mM L-glutamine, and 10µL/mL of proprietary 

Medium Supplement A and B, and incubated at 37C with 5% CO2 for a minimum of 

1 hour before use. For each reaction, 85µL of Nucleofector solution was mixed with 

19µL of proprietary Supplement 2 provided with the kit, and 2µg of the plasmid of 

interest. Between 5x106 and 10x106 CD8+ T cells were centrifuged at 600RPM for 5 

minutes, and resuspended gently, using a wide-bore tip, in the supplemented 

Nucleofector solution. Cells were then transferred into an electroporation cuvette, 

and transfected using X-001 CD8 T cell program on a Nucleofector 2b Device 

(Lonza). Immediately after electroporation, cells were transferred to the rescue 
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medium for 2-3 hours before being split into additional wells containing pre-warmed 

RPMI 10 containing 10IU rhIL-2 for continued culture. 

 

5.12 Retroviral transductions 

Plasmids 

The LifeAct-mApple construct and LAMP1-eGFP cloned into the pMIGR 

retroviral expression vector were gifts from the Lippincott-Schwartz lab (NICHD, 

NIH). Constructs coding for the lipid binding domains of Tubby and AKT fused to 

eGFP were provided by Tamas Balla (NICHD, NIH). The pCL-Eco retroviral 

packaging vector has been previously described [177]. 

 

Generation of retroviral supernatants 

Retroviral supernatants were generated through the transient transfection of 

HEK293T cells using TransIT-293 Transfection Reagent (Mirus). Eighteen to 24 

hours before transfection, 1.5x106 HEK293T cells were plated in 2.5mL complete 

10% EMEM per well in a six well plate. Immediately before transfection, TransIT-293 

Reagent was warmed to room temperature and vortexed gently. For each well of the 

six well plate, 2µg of plasmid DNA, 1µg of packaging plasmid, and 9µL of TransIT-

293 Reagent were added to 300µL of Opti-MEM Reduced-Serum Medium and 

mixed by pipetting. After incubation at room temperature for 15-30 minutes, the 

TransIT-293 Reagent:DNA complex was added drop wise to different areas of the 
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each well in the six well plate, gently rocked, and plates were incubated for 48 hours 

before supernatants were harvested. 

 

Transductions 

30 hours prior to transduction, whole splenocytes from naïve WT or Itk-/- OT-I 

mice were harvested and stimulated at 0.5x106 cells/mL with 10nM OVA257-264 

peptide (AnaSpec) in 10% complete RPMI. Cells were washed and 2x106 activated 

OT-I T cells were plated per well in a 24-well plate. Viral supernatants were 

harvested and centrifuged for 10 minutes at 2000 RPM to remove cell debris. 

Supernatants were transferred to a fresh conical tube, and Polybrene and IL2 were 

added at a final concentration of 8µg/mL and 10IU/mL, respectively. 1mL per well of 

viral supernatants were added per well and plates were spun down at 2000 RPM for 

90 minutes at 37°C. After transduction, supernatants were removed and replaced 

with fresh media plus IL2 for continued culture. 

 
 

5.13 Microscopy 

 All microscopy used an Axio Observer Z1 microscope (Carl Zeiss Inc.) with oil 

immersion Plan-Apochromat 40x, 63x, or 100x objectives. Spinning disc images 

were acquired with a Zeiss Yokogawa Spinning Disk system mounted on the 

microscope using a 16-bit Photometrics Evolve EMCCD camera (Photometrics); 

TIRF images were acquired on the same microscope, without the spinning disk 

attachment and using a cMOS camera (PCO Edge). Image acquisition was 
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controlled using Zeiss Zen Blue Software. Data were analyzed with Imaris Scientific 

Image Processing and Analysis Software (Bitplane Scientific Software) and ImageJ 

(NIH) software.  

 

Confocal microscopy of fixed cells 

To prepare conjugates for immunofluorescence microscopy, targets were 

pulsed with 1µM OVA257-264 at 37°C for 1 hour, washed twice, and resuspended in 

pre-warmed phenol red-free RPMI (imaging media). Activated CTLs were washed 

and resuspended in imaging medium and mixed with peptide-pulsed targets at a 1:1 

ratio. Cells were incubated at 37°C for 15 minutes to allow conjugate formation and 

then plated on glass multi-well slides on previously coated with 0.01% poly-L-lysine 

for 5 minutes at 37°C. Cells were fixed and permeabilized with cold methanol on ice 

or fixed at room temperature with 2% paraformaldehyde for 5 minutes, followed by 

several washes in PBS. Methanol-fixed cells were blocked for 30 minutes at room 

temperature in 1% BSA in PBS plus Fc block (blocking buffer). PFA-fixed cells were 

quenched for 10 minutes with 5mM glycine, and permeabilized and blocked with 

0.2% saponin in blocking buffer for 30 minutes at room temperature. Cells were 

incubated with primary antibodies in blocking buffer for 1 hour at room temperature, 

washed in either blocking buffer or blocking buffer containing 0.2% saponin, followed 

by a 45-minute incubation with secondary antibodies at room temperature, and 

washed several times. Samples were preserved using ProLong Gold with DAPI (Life 
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Technologies) and no. 1.5 cover glass (VWR), and imaged using an Axio Observer 

Z1 microscope (Carl Zeiss Inc.). 

 

Spinning disc live confocal imaging 

To prepare cells for live imaging, previously activated and transduced cells 

were sorted on a BD Aria III instrument. Samples were washed once and 

resuspended in FACS buffer at a concentration of 10x106 cells/mL. Cells were 

sorted directly into 10% complete medium, spun down for 10 minutes, and plated at 

1x106 cells/mL plus 10 IU/mL rhIL-2 for culture. Alternatively, activated CTLs were 

transfected using a Mouse T Cell Nucleofector kit (see above) and immediately 

transferred into manufacturer-provided rescue medium plus rhIL-2 for 18 hours 

before imaging. Cells were imaged within 6 to 24 hours after transfection, depending 

on the plasmid. For imaging, peptide-pulsed targets were resuspended in serum-free 

imaging medium at 1-2x106 cells/mL and allowed to settle at 37C in chambers 

(Nunc, Lab-Tek) previously coated overnight at 4C with 0.5µg/mL ICAM-1/FC (R&D 

Systems). After 5 minutes, chambers were gently washed with imaging medium and 

placed on the microscope with heat and CO2. Transfected or transduced CTLs were 

resuspended at 10x106-20x106 cells/mL in 150uL of imaging medium and added 

drop wise into the chamber containing the plated target cells. Serial confocal 1µm z 

stacks were taken at 25-second intervals, and imaging began within minutes of 

addition of the CTLs to each chamber. 
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Total internal reflection fluorescence microscopy  

For total internal reflection fluorescence (TIRF) microscopy imaging, CTLs 

were plated on #1.5 cover glass 8-well imaging chambers (Lab-Tek) previously 

coated with 0.01% poly-L-lysine (Sigma) and anti-CD3ε in pre-warmed imaging 

media. Retrovirally transduced and sorted or transfected cells were added drop wise 

into chambers, and images were acquired every 3 seconds using the Axio Observer 

Z1 microscope (Carl Zeiss Inc.) with TIRF fiber illuminator and oil immersion 100x 

TIRF objective.  

 

Transmission electron microscopy  

 To prepare cells for transmission electron microscopy (TEM), WT and Itk-/- 

OT-I splenocytes were activated for three days in the presence of OVA257-264 as 

previously described, and frozen before shipment to the Griffiths lab where Dr. Jane 

Stinchcombe performed all TEM and analysis. For TEM, vial contents were thawed 

into medium plus IL-2 for 48 hours to allow for the recovery and expansion of CTLs, 

after which they were labeled overnight with horseradish peroxidase (HRP, 

Boehringer Ingelheim) to load secretory lysosomes. The following day, EL-4 targets 

were pulsed with either 1µM or 10nM OVA257-264 to generate conjugates with CTLs 

for TEM. Cells were fixed, processed, and imaged as previously described [41, 67]. 
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5.14 Statistical analysis 

 All statistical analysis (Student’s t tests and two-way ANOVA) was performed 

using Microsoft Excel or GraphPad Prism software. p values less than 0.05 were 

considered statistically significant. 
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