
Quantifying Human Mobility Using 

The Longest Distance Traveled 

 

 

by 
Yanjie Huang 

 

 

 

 

A thesis submitted to The Johns Hopkins University  
in conformity with the requirements for the degree of  

Master of Science 
 

Baltimore, Maryland 

April 2014 

 

© 2014 Yanjie Huang 

All Rights Reserved



 ii 

Abstract 

Background: Population movement has a dramatic impact on infectious disease 

epidemiology. Human mobility data is increasingly being used to model pathogen 

dispersion, but it is difficult to study long-distance movement of humans. 

Objectives: Develop models of long-distance human travel based on questionnaire data 

describing the longest distance traveled by someone in a household over one week, one 

month, 6 months, and 1 year. 

Methods and Analysis: Mathematical models were generated based on the daily travel 

and N-day routine hypotheses. The parameters were estimated through maximum 

likelihood method, and Bayesian information criteria (BIC) was used to assess the 

goodness of fit. 

Results and Conclusions: Household location was an important factor shaping 

human mobility. A routine-travel cycle consisting of 11-13 days provided the best fit 

(BIC = 29802). Daily human movement and human movement overall may be best 

explained by routines that are repeated biweekly or perhaps longer. 
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Introduction 

Population movement has a dramatic impact on the spread of infectious diseases. Since 

the diffusion of plagues in 1970s1, the past decades have witnessed a remarkable 

development of understanding of human mobility and its contribution to the spatial 

spread of various infectious diseases, including plagues1, malaria2-5, influenza6-8, 

SARS9,10, cholera11, HIV and other sexually transmitted diseases12-14. In particular, this 

impact has been enhanced by the increasing globalization and transportation 

infrastructure. Globalization enables the connection between people located at any points 

on earth, promoting the dispersal of infectious disease on a large scale. Additionally, 

significant reductions in transportation costs have altered human travel behaviors. 

Frequent and longer trips increase the odds of pathogens exploiting larger pools of 

humans and/or animals, supporting higher levels of endemic transmission.  

Understanding patterns and the magnitude of human mobility will provide important 

tools to characterize the potential spread of infectious diseases and help determine 

optimal control measures. 

 

Human mobility is an extremely complex process. One of the challenges in this field is 

how to collect mobility data effectively to reveal key human travel patterns. Among all 

attempts to explore the human mobility pattern, direct observation of movement is the 

most powerful to capture the overall spatial diffusion. However, tracing actual movement 

paths consumes many resources, and there are limits to what can be learned about the 

drivers of human travel from de-identified aggregate data. People have used bank 
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notes15,16 and smart cell phones17-21 to estimate the human spatial dispersal. One of the 

alternative approaches to recapture the redistribution is to record the long distance 

movements. Long-distance dispersal, of long interest in ecology, plays a critical role in 

seed dispersal and species invasion22-25. For humans, long-range air flights have been 

studied to characterize spatial movements of humans at large scales15,26-29. In this study, 

we want to look into the properties of human travel behavior at smaller scales by 

characterizing survey data that asks respondents in southern China about travel in the past 

week, month, half year and year.  

 

Mathematical models have been key tools in understanding human movement. Though 

increasing efforts have been directed towards building models of human movement, 

multiple models exist, and it is not clear which models perform best in fitting empirical 

data on movement of humans. The random and unforeseeable appearance of human 

travel leads numerous studies to describe the human travel trajectory as a stochastic 

process like a random walk or Levy flight16,30,31, which assumes that there is no 

difference between the movements of humans and bacterium. However, other models 

begin with the premise that economic or social forces like work opportunities drive 

human travel to respond to the spatial distribution of humans. These models include the 

gravity model32-36, logit model37,38 and radiation model39. The gravity model relies on the 

hypothesis that the traffic volume between two locations is related to their population size 

and their distance. Analogous to the gravity model, the logit model introduces the utility 

function into the trip decision-making. Additionally, the radiation model is based on the 
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assumption that the distance individuals’ travel responds to the number of opportunities 

they pass when traveling a given distance.  

 

Here, we take an empirical approach to describing human movement and its association 

with individual, household and community scale factors. We propose a mathematical 

framework that is based on a hypothesis that human travel is routine with certain 

temporal cycles and is associated with individual, household and community level 

characteristics. We fit multiple probability distributions to observed travel patterns 

among individuals in the Fluscape study, a longitudinal study of human movement and 

influenza in southern China40,41.  These results provide an empirical basis upon which 

mechanistic models like those described above can be built. 

 

As far as we know, our study is the first attempt to explore the modalities and properties 

of human travel through the furthest travel distance within various lengths of time periods. 

In order to assess the regularity of human travel and its association with multiple 

covariates, we built multiple models of varying structure and included multiple candidate 

covariates and then tested the consistency of these models with data on human travel 

collected in southern China. 
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Materials and Methods 
Study Area and Study Design 

All the data come from the Fluscape project conducted in Guangdong Province, China. 

The Fluscape project is a longitudinal study using validated questionnaires on household 

structure, travel and social contacts to gather data every year. We used data collected 

from December 4, 2009 to November 22, 2011. In total, there were 1096 households 

selected from 40 randomly selected study locations in a fan-shaped area (centered at 

Guangzhou and extending to the northeast, Figure 1). All the selected households were 

administered and completed questionnaires that asked participants for information about 

their household (household’s location, household size, monthly household income and 

the ownership of motor vehicle) and the household-level longest travels undertaken 

within the past 7 days, 30 days, 6 months and 1 year (including identification of the name 

of the destination).  The specific question that heads of households were asked was 

“Name the furthest location that anyone living in this household has traveled from home 

in the past X days”.  Latitude and longitudes of each of the named locations was 

determined using Google Earth 42.  

 

Analysis 

The great circle distance was used to calculate the distance between points over the 

earth’s surface. We fit multiple models to the reported furthest travel distance traveled by 

any household member.  Parameters were estimated through maximum likelihood. To 

avoid over-fitting, we evaluated the goodness of fit among models through Bayesian 

information criteria (BIC).  
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We tested two hypotheses: 

Hypothesis 1: Human travel follows a fixed daily pattern, and the pattern varies with the 

type of the day (e.g. national holidays, school holidays and ordinary days), as well as by 

the spatial location and characteristics of households. 

 

Hypothesis 2: Human travel follows a fixed daily pattern as well as a regular routine 

pattern with a cycle consisting of some number of days longer than one (to be estimated). 

We assessed these hypotheses by fitting multiple probability distributions describing 

travel distance to the observed data where separate models were fit to different 

stratifications of the data by covariates of interest.  A description of each of the models 

appears below. 

 

Hypothesis 1. Fixed Daily Travel Pattern 

For each household, the daily travel-distance within each day is assumed to be 

independent and identically distributed (i.i.d). We assume the probability distribution of 

daily travel-distance follows a lognormal distribution.  

 

𝑑𝑖~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎):  

𝐹(𝑑) =
1

2
[1 + erf (

log(𝑑) − 𝜇

𝜎√2
)] = 𝜙 (

log(𝑑) − 𝜇

𝜎
) 

 

The cumulative probability distribution: 

𝑃𝑟(𝑀𝑛 < 𝑑) = 𝑃𝑟(𝑑1 < 𝑑, 𝑑2 < 𝑑, ⋯ , 𝑑𝑛 < 𝑑) 
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= 𝑃𝑟(𝑑1 < 𝑑) × ⋯ × 𝑃𝑟(𝑑𝑛 < 𝑑) 

= 𝐹(𝑑) × ⋯ × 𝐹(𝑑) 

= (𝐹(𝑑))𝑛 

The basic form (Model 1.1): 

𝑃𝑟 (𝑀7 < 𝑑) = (𝐹(𝑑))
7
 

 𝑃𝑟 (𝑀30 < 𝑑) = (𝐹(𝑑))
30

 

 𝑃𝑟 (𝑀183 < 𝑑) = (𝐹(𝑑))
183

 

 Pr (𝑀365 < 𝑑) = (𝐹(𝑑))
365

 

 

𝜙: 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝑑𝑖: 𝑡ℎ𝑒 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑑𝑎𝑖𝑙𝑦 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑑𝑎𝑦 𝑖 

𝑀𝑛: 𝑡ℎ𝑒 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑛 𝑑𝑎𝑦𝑠  

𝑀𝑛 = 𝑚𝑎𝑥{𝑑1, … , 𝑑𝑛} 

𝐹(𝑑): 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑑𝑖 

 

Considering the impact of temporal heterogeneity, spatial heterogeneity, and household 

heterogeneity, we built Model 1.2 – 1.5 by stratifying the population by the covariates as 

indicated in table X and fitting separate models to each strata. 

 

Hypothesis 2. Fixed Daily Travel + Regular Routine Travel Pattern 

For each household, the daily travel-distribution within each day and the routine travel 

distance within each cycle are assumed to be independent and identically distributed 



 7 

(i.i.d). We also assume that both of the probability distributions for daily travel-distance 

and routine travel pattern follow a lognormal distribution.  

𝑑𝑖~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇1, 𝜎1):  

𝐹(𝑑) =
1

2
[1 + 𝑒𝑟𝑓 (

𝑙𝑜𝑔(𝑑) − 𝜇1

𝜎1√2
)] = 𝜙 (

𝑙𝑜𝑔(𝑑) − 𝜇1

𝜎1
) 

 

𝐷𝑖~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇2, 𝜎2):  

𝐹(𝐷) =
1

2
[1 + 𝑒𝑟𝑓 (

𝑙𝑜𝑔(𝐷) − 𝜇2

𝜎2√2
)] = 𝜙 (

𝑙𝑜𝑔(𝑑) − 𝜇2

𝜎2
) 

The cumulative probability distribution: 

𝑃𝑟(𝑀𝑛 < 𝑑) = 𝑃𝑟 (𝑑1 < 𝑑, 𝑑2 < 𝑑, ⋯ , 𝑑𝑛 < 𝑑, 𝐷1 < 𝑑, 𝐷2 < 𝑑, ⋯ , 𝐷
[

𝑛
𝑐𝑦𝑐𝑙𝑒

]
< 𝑑) 

= 𝑃𝑟(𝑑1 < 𝑑) × ⋯ × 𝑃𝑟(𝑑𝑛 < 𝑑) × 𝑃𝑟(𝐷1 < 𝑑) × ⋯ × 𝑃𝑟 (𝐷
[

𝑛
𝑐𝑦𝑐𝑙𝑒

]
< 𝑑) 

= 𝐹(𝑑) × ⋯ × 𝐹(𝑑) × 𝐹(𝐷) × ⋯ × 𝐹(𝐷) 

= (𝐹(𝑑))𝑛 × (𝐹(𝐷))
[

𝑛
𝑐𝑦𝑐𝑙𝑒

] 

The basic form (Model 2.1): 

𝑃𝑟 (𝑀7 < 𝑑) = (𝐹(𝑑))
7

× (𝐹(𝐷))
[

7
𝑐𝑦𝑐𝑙𝑒

]
 

𝑃𝑟 (𝑀30 < 𝑑) = (𝐹(𝑑))
30

× (𝐹(𝐷))
[

30
𝑐𝑦𝑐𝑙𝑒

]
 

𝑃𝑟 (𝑀183 < 𝑑) = (𝐹(𝑑))
183

× (𝐹(𝐷))
[

183
𝑐𝑦𝑐𝑙𝑒

]
 

𝑃𝑟 (𝑀365 < 𝑑) = (𝐹(𝑑))
365

× (𝐹(𝐷))
[

365
𝑐𝑦𝑐𝑙𝑒

]
 

 

𝑀𝑛: 𝑡ℎ𝑒 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑛 𝑑𝑎𝑦𝑠  
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𝑀𝑛 = 𝑚𝑎𝑥{𝑑1, … , 𝑑𝑛, 𝐷1, … , 𝐷𝑚} 

𝐹(𝑑): 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑑𝑖 

𝐹(𝐷): 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐷𝑖 

𝑐𝑦𝑐𝑙𝑒: 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑟𝑜𝑢𝑡𝑖𝑛𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑦𝑐𝑙𝑒, 𝑐𝑦𝑐𝑙𝑒 =

 1, 2, 3, … , 365 

We used the following algorithm to estimate the cycle with the smallest minimum log 

likelihood (−𝑙𝑛ℒ)  

1. Start at 𝑐𝑦𝑐𝑙𝑒 =  1 

2. Estimate the minimum −𝑙𝑛ℒ for 𝑐𝑦𝑐𝑙𝑒 

3. Repeat step 2 with updated value of 𝑐𝑦𝑐𝑙𝑒 from 2 to 365 

4. Find the value of 𝑐𝑦𝑐𝑙𝑒 with the smallest minimum −𝑙𝑛ℒ 

5. Estimate other parameters based on 𝑐𝑦𝑐𝑙�̂� 

Considering the impact of temporal heterogeneity, spatial heterogeneity, and household 

heterogeneity, we built Model 2.2 – 2.5 with stratification. 

 

Data with missing values in any of the covariates required for any of the models lead to 

exclusion from the analysis. After data cleaning, there were 715 (65.24%) records left.  

All the analyses were performed using the statistical R package (3.0.2) (R Core Team, 

Vienna, Austria; http://www.R-project.org). 
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Results and Conclusion 

Characteristics of the furthest travel distance 

Before the model construction, we explored the characteristics of the human furthest 

travel. The median of the furthest travel distance within 7 days, 30 days, 6 months and 1 

year is 6.64 km, 14.64 km, 32.32 km, and 45.01 km respectively. A considerable fraction 

of the longest travel is reported to occur within the neighborhood of the household 

location (the proportion of the longest travel distances ≤ 10 km: within 7 days, 63.4%; 

within 30 days, 41.7%; within 6 months, 22.8%; within 1 year, 16.6%). Meanwhile, the 

proportion of the furthest travel distance that is above 100 km is also notable (the furthest 

travel distance >100 km: within 7 days, 4.3%; within 30 days, 10.6%; within 6 months, 

24.8%; within 1 year, 31.5%).  

 

Figure 2 shows the spatial distribution of the furthest-travel destination. As the temporal 

observation window extends, the geographical boundary of the furthest travel stretches 

far away from Guangzhou City, with furthest-trips reaching places with distance > 10000 

km within 30 days. Given longer time-window, people tend to take the furthest-trips to 

other cities (out of Guangzhou City: within 7 days, 10.5%; within 30 days, 23.2%; within 

6 months, 43.8%; within 1 year, 50.3%), other provinces (out of Guangdong City: within 

7 days, 2.8%; within 30 days, 6.3%; within 6 months, 14.7%; within 1 year, 22.2%), and 

even other countries (out of China: within 7 days, 0.0%; within 30 days, 0.1%; within 6 

months, 0.4%; within 1 year, 1.1%). 
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As expected, the distribution of the furthest travel distance shifts to right as the time 

interval increases (Figure 3-A). Beside the main peak for each distribution, there are two 

additional peaks located at around 1 km and 310 km (102.5 km). In order to further 

understand the properties of the furthest travel distance, we generated the graph for 

complementary cumulative probability (1 – the cumulative probability with distance) 

(Figure 3-B). The decay rate before 100 km within 7 days is the greatest one among the 

four time windows. We find that the complementary cumulative probability distribution 

for both 6 months and 1 year are similar, indicating that majority of the furthest travels 

within 1 year are possibly achieved within only 6 months.  

 

There is heterogeneity in travel distance among different time, spatial areas and 

households. The shapes of furthest travel distance within 4 time windows vary over 

different months (Figure 4-A). Considering the fact that people were asked about travel at 

different times in different sampled locations, the observed differences by location could 

be attributable to temporal differences in travel patterns. Figure 4-B shows patterns for 6 

districts offered further evidence of the spatial heterogeneity. The households in rural 

areas (Luogang, Conghua, and Zengcheng) tend to achieve longer furthest-distance trips 

within short terms (7 days and 1 month), and those in urban area (Yuexiu and Tianhe) are 

more likely to travel long furthest-trips within long terms (6 months and 1 year). 

Different from them, the travel behavior for households in suburban area (Baiyun) shows 

a unique pattern. For households located in this area, the furthest trips within 7 days are 

longer than the trips taken by households in other areas. However, for the furthest trips 

within longer time intervals (6 months and 1 year), this feature no longer exists. The 
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heterogeneity in the impacts of different income levels on furthest trips is obvious (Figure 

4-C). Across all time windows, the richer households are more likely to take longer 

furthest trips.   

 

Based on the two different hypotheses, there are two main series of models in our 

analysis: the daily travel model, and the daily travel and regular routine model.  

 

Performance of daily travel model 

We have fitted various distributions via Maximum Likelihood for the null model. In 

terms of characterizing the entire furthest travelled distance within four time windows, 

the lognormal distribution does a better job offering the best fit with BIC = 31096.61 than 

the Weibull distribution and Gamma distribution. The estimated median distance for 

daily travel in Model 1.1 is 1.4 meters (95% CI: 1.1 ~ 1.7 meters). After accounting for 

temporal, spatial and household heterogeneity, the predictive performance of daily travel 

distance distribution is improved (Table 1). We note that the daily travel model with 

stratification by household income and districts (Model 1.5.3) is the best one to capture 

the overall distribution of furthest travel distance within 7 days, 30 days, 6 months and 1 

year (BIC = 30566.62). The estimates of parameters for Model 1.5.3 are presented in 

Table 3. 

 

These estimation results are problematic. The estimates of median distance for daily 

travel have a range from 0.1 m to 1161.8 m. And the standard deviation for daily-travel 

distance on the log scale ranges from 1.29 to 4.84. They are much lower than what we 
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observe in our daily life. However, besides those numbers, they show two major features. 

One of them is that households in the rural and suburban areas take longer daily trips. 

The other one is that, besides Baiyun District, households with a monthly household 

income higher than 5000 RMB tend to have the longest daily trips. Overall, those models 

are not able to facilitate good fittings. Based on the poor performance of this model series, 

the first hypothesis is proved to be not close enough to explain our data. 

 

Performance of daily travel and regular routine model 

In order to verify the second hypothesis that there is a regular routine travel pattern with 

certain cycle, we included a term representing the regular routine into the model.  

 

Before the model comparison, the first step is to estimate the cycle length for the regular 

routine. With restricting the cycle as an integer ranging from 1 to 365, we are able to 

assess the maximum value of likelihood for each potential cycle length within the defined 

range. Then, we are able to find out the cycle length with the largest maximum likelihood. 

After repeating this procedure in different sub-datasets, surprisingly, we note a certain 

pattern indicating there is a routine travel cycle consisting of 11 to 13 days. By including 

a routine travel with such a cycle, the impact on the reduction of the negative log-

likelihood value is apparent. Additionally, this pattern is stably identical through all 

stratified subgroups (Figure 5). This phenomenon supports our Hypothesis 2 that for 

human travel behavior, beside the daily travel pattern, there is a regular routine travel 

with a cycle consisting of several certain days. And the promising length of the regular 
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routine trips is around 12 days. We believe that there are two distinct mobility behaviors 

for human travel activity, and this regularity pattern could be quite stable and universal.   

 

Compared with the fixed daily travel model, the model with regular routine provides 

much better fitting (Table 2). Even for the null model, the regular routine significantly 

improves the model performance by reducing BIC from 31096.61 (Model 1.1) to 

30515.66 (Model 2.1). Additionally, the null model (Model 2.1) in this series beats the 

best model (Model 1.5.3) in the previous series for the fixed daily travel model. The 

improvement was observed across all the sub-models with the regular routine. Again, it 

provides convincing evidence that besides daily travel behavior, there is a regular routine 

travel pattern. 

 

Among all the models, the one with stratification by household locations (6 districts: 

Yuexiu, Tinahe, Baiyun, Luogang, Conghua, and Zengcheng) provides the best fitting 

(BIC = 29802.18, Figure 6). The results suggest that, both for the daily travel and the 

regular routine travel, the spatial heterogeneity is the most important factor in explaining 

the variation in travel behavior. The estimates of median distance for daily travel for 

households in 6 different districts are 386.7 meters (Yuexiu), 173.8 meters (Tianhe), 

726.1 meters (Baiyun), 142.3 meters (Luogang), 140.9 meters (Conghua), and 143.7 

meters (Zengcheng). And the estimates of median distance for each regular routine travel 

are 45 meters (Yuexiu), 316.6 meters (Tianhe), 537.9 meters (Baiyun), 663.7 meters 

(Luogang), 860.7 meters (Conghua), and 657 meters (Zengcheng). Except for Yuexiu 

District, the median daily travel distance is overall shorter than the regular routine travel. 
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And in general, the median daily trips for households in urban and suburban areas are 

longer than the median daily trips in rural area. However, this pattern of regular routine 

travel shows an entirely distinct pattern. Households in rural areas tend to take longer 

regular routine travel, and the length of routine cycle is slightly longer. In other words, 

compared with households located in urban areas, those households in rural areas are 

more likely to take short daily trips more frequently, and take longer regular routine 

travel less frequently. The estimates of parameters for Model 2.3.2 are show in Table 4. 
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Discussion 

Most of the existing research on human mobility tests complex theory or relies on local 

socioeconomic information. The cost of taking such an approach may be a loss of ability 

to reveal the fundamental characteristics of human travel. Here, we have analyzed 

questionnaire data describing the longest distance moved by families over various periods 

of time. Based on analysis of that data, the properties of extreme value statistics, and a 

novel mathematical framework allowing us to test plausible hypotheses, at least some 

new aspects of human mobility. 

 

Our study exhibits two vital properties of the human travel. First of all, besides daily 

travel, our analysis suggests there is a clearly regular routine travel with a cycle 

consisting of 11 to 13 days. This feature is fairly stable, and it could reveal a universal 

aspect of human movement habits and behavior. In the real world, human daily trips are 

shaped because of various purposes like jobs, schools, and business. Over slightly longer 

periods, there may be predictable breaks from a regular routine, such as visiting relatives, 

friends, and an escape from daily life. These “occasional” events, which may dominate 

the reasons for long-distance travel, may be of great importance for the spread of 

infectious diseases. 

 

We also learn that the spatial heterogeneity is the factor that best explains variation in the 

travel distances. In our study, the daily travel and regular routine travel show different 

shapes for different areas. Households in urban and suburban areas tend to take longer 
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daily trips. For households in rural areas, longer routine trips appear to occur on this 

longer cycle.  

 

It seems reasonable that human mobility behaviors are hugely shaped and regulated by 

where we live. From a large scale, the transportation system and the unique resources 

found in a city largely determine where we are going and how to go there. From the 

individual’s perspective, social economical status and health status are closely related 

with where we live and mobility patterns.  

 

However, our results also indicate that our models have limited ability to describe short-

term travel. Based on Figure 6-A and 6-B, our model clearly overestimates the 

probability of furthest travel with distance from 10 meters to 1000 meters, but 

underestimate the probability of the furthest travel distance with 10000 to 100000 meters. 

It fits better for long-term furthest travel, especially for 6-month and 1-year time period. 

The result shows the potential in-homogeneity of travel distance within short term and 

long term.  

 

One of the potential explanations is that the i.i.d assumptions we made may be unrealistic 

for the human travel. There could be an auto-regression relationship that the travel 

distance we made on a certain day is dependent upon the trips we took in the previous 

days. Another possible reason is that the distribution describing regular travel routines 

could be different from lognormal distribution. It may also be true that travel cycles at 

monthly or annual time scales.  
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Additionally, the parameter estimates based on maximum likelihood that results in 

assigning heavier weight for long-term travel is another reason that the estimate is more 

accurate for long term. This is one of the limitations of this study. During the procedure 

of maximum likelihood estimate, it autumnally assigns heavier weight by giving the term 

days as 183 (6 months) or 365 (1 year).  

 

Another limitation of our study is the lacking of prediction of travel direction. The shapes 

of the density are not ideally smoothing and standard distributed (Figure 3-A). Our model 

has limited ability to capture the other peaks located at around 1 km and 310 km. Causing 

by higher probability of travelling to locations with the certain length, it reveals the 

disparate spatial distribution of travelled destinations. Our studies in the future will try to 

combine with spatial social network into our framework. 

 

Despite the limitations, our study is useful for the field of epidemiology. When modeling 

geographic spread of infectious disease and constructing the early warming system, it is 

important to take the spatial heterogeneity into consideration. Some places are more 

mobile than others. Furthermore, travel patterns such as daily trips and regular routine 

travel could have different roles in the infectious disease spread. The study of longest 

distance traveled could be a promising starting point for understanding general patterns 

and causes of individual travel patterns and exploring their effects on disease 

transmission. 
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Figure 1. Spatial Distribution of Sampled Households in Guangzhou, China 
Our samples were located in 6 different districts in Guangzhou. Yuexiu District (dark red) and Tianhe 
District (red) belong to urban area. Baiyun District (green) is located in the suburban area. Luogang District 
(light blue), Conghua District (blue) and Zengcheng (dark blue) are in the rural area. The number of 
sampled households for Yuexiu, Tianhe, Baiyun, Luogang, Conghua, and Zengcheng are 34 (4.78%), 133 
(18.68%), 33 (4.63%), 154 (21.63%), 41 (5.76%) and 317 (44.52%) respectively. 
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Figure 2. Spatial Distribution of the Destination for the Furthest-Travel within 7 Days, 30 
Days, 6 Months and 1 Year 
(A) Trips within 7 days; (B) Trips within 30 days; (C) Trips within 6 months; (D) Trips within 1 year. 
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Figure 3. Probability Distribution for the Furthest Travel Distance 
(A) Probability distribution for furthest travel distance by 7 days (red), 30 days (orange), 6 months (green) 
and 1 year (blue); (B) Complementary cumulative probability distribution for furthest travel distance by 7 
days, 30 days, 6 months and 1 year.
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Figure 4. Distribution of Furthest Travel Distance with Stratification by Investigated Date, Household Location and Household 
Income 
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Figure 5. The Rank of Negative Log-Likelihood Value by Different Cycles Settings 
With restricted the cycle as integer ranging from 1 to 365, the cycle of the regular routine was estimated through Maximum Likelihood. We ranked the negative 
likelihood values. (A) The smallest ranks exist between 7 days to 14 days. (B) The pattern becomes obvious by zooming in the area in red box in (A: 1~30 days). 
This evidence supports Hypothesis 2. 
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Figure 6. The Density of Observed Furthest Trips and Predicted Values based on Model 
2.3.2 
(A) Trips within 7 days; (B) Trips within 30 days; (C) Trips within 6 months; (D) Trips within 1 year. Solid 
lines in red are the observed data. Dashed lines in blue are the density distribution for simulated data based 
on Model 2.3.2, which includes the terms regarding to 6 districts.



 24 

 
Table 1. Summary of the Fixed Daily Travel Models 

Models Number of 
Parameters −𝑙𝑛ℒ AIC BIC 

Model 1.1 Null model 2 15540.35 31084.70 31096.61 
Model 1.2 Temporal Heterogeneity 

 
  

   Model 1.2.1 National Holiday, Non-Holiday 4 15527.25 31062.50 31086.32 
  Model 1.2.2 National Holiday + School Holiday, Non-Holiday 4 15529.94 31067.88 31091.70 
  Model 1.2.3 National Holiday, School Holiday, Non-Holiday 6 15517.35 31046.70 31082.43 

  Model 1.2.4 National Holiday, School Holiday (Winter), School Holiday (Summer), 
Non-Holiday 8 15511.07 31038.14 31085.77 

Model 1.3 Spatial Heterogeneity    
   Model 1.3.1 Urban, Suburban, Rural 6 15406.61 30825.22 30860.95 

  Model 1.3.2 6 Districts  12 15373.12 30770.24 30841.69 
Model 1.4 Household Heterogeneity    

   Model 1.4.1 Household Income (7 levels) 14 15277.43 30582.86 30666.22 
  Model 1.4.2 Household Income (3 levels) 6 15306.93 30625.86 30661.59 
  Model 1.4.3 Motor vehicle 4 15459.96 30927.92 30951.74 
  Model 1.4.4 Household size 1 (Members > 3, Members ≤ 3) 4 15462.51 30933.02 30956.84 
  Model 1.4.5 Household size 2 (Members > 4, Members ≤ 4) 4 15478.41 30964.82 30988.64 
Model 1.5 Combinations     
  Model 1.5.1 Temporal Heterogeneity (1.2.3), Household heterogeneity (1.4.2) 18 15285.03 30606.06 30713.24 
  Model 1.5.2 Temporal Heterogeneity (1.2.3), Spatial Heterogeneity (1.3.2) 36 15303.34 30678.68 30893.04 
  Model 1.5.3 Spatial Heterogeneity (1.3.2), Household Heterogeneity (1.4.2) 36 15140.13 30352.26 30566.62 
  Model 1.5.4 Temporal Heterogeneity, Spatial Heterogeneity, Household Heterogeneity 108 15035.27 30286.54 30929.61 

 
National public holidays in China include New Year’s Day, Chinese New Year, QingMing Festival, Labor Day, Dragon Boat Festival, 
Mid-Autumn Days, and National Days. School holidays consist of winter and summer vacations. 
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Table 2. Summary of the Daily Travel + Regular Routine Models 

Models Number of 
Parameters  −𝑙𝑛ℒ AIC BIC 

Model 2.1 Null model 4 15241.92 30491.84 30515.66 
Model 2.2 Temporal Heterogeneity       Model 2.2.1 National Holiday, Non-Holiday 6 15241.43 30494.86 30530.59 
  Model 2.2.2 National Holiday + School Holiday, Non-Holiday 6 15241.26 30494.52 30530.25 
  Model 2.2.3 National Holiday, School Holiday, Non-Holiday 8 15240.05 30496.10 30543.73 

  Model 2.2.4 National Holiday, School Holiday (Winter), School Holiday (Summer), 
Non-Holiday 10 15229.85 30479.70 30539.24 

Model 2.3 Spatial Heterogeneity       Model 2.3.1 Urban, Suburban, Rural 12 14944.07 29912.14 29983.59 
  Model 2.3.2 6 Districts  24 14805.64 29659.28 29802.18 
Model 2.4 Household Heterogeneity       Model 2.4.1 Household Income (7 levels) 28 14871.39 29798.78 29965.50 
  Model 2.4.2 Household Income (3 levels) 12 14980.70 29985.40 30056.85 
  Model 2.4.3 Motor vehicle 8 15169.62 30355.24 30402.87 
  Model 2.4.4 Household size 1 (Members > 3, Members ≤ 3) 8 15181.68 30379.36 30426.99 
  Model 2.4.5 Household size 2 (Members > 4, Members ≤ 4) 8 15170.21 30356.42 30404.05 
Model 2.5 Combinations     
  Model 2.5.1 Temporal Heterogeneity (2.2.2), Household heterogeneity (2.4.1) 35 14864.11 29798.22 30006.62 
  Model 2.5.2 Temporal Heterogeneity (2.2.2), Spatial Heterogeneity (2.3.2) 30 14797.61 29655.22 29833.85 
  Model 2.5.3 Spatial Heterogeneity (2.3.2), Household heterogeneity (2.4.1) ---- ---- ---- ---- 
  Model 2.5.4 Temporal Heterogeneity, Spatial Heterogeneity, Household Heterogeneity ---- ---- ---- ---- 

 
National public holidays in China include New Year’s Day, Chinese New Year, QingMing Festival, Labor Day, Dragon Boat Festival, 
Mid-Autumn Days, and National Days. School holidays consist of winter and summer vacations. 
For Model 2.5.3 and 2.5.4, there are 42 sub-datasets. 12 of them include only around 10 observations. The small sample data sets in 
general provide less reliable bases for estimating models, so we did not present results here. 
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Table 3. Summary Table for Model 1.5.3 

District Monthly Household Income 𝝁 (𝒔𝒅) 
Yuexiu < 1000 RMB −9.10 (4.05) 

1000~4999 RMB −9.78 (4.87) 
>5000 RMB −8.38 (4.78) 

Tianhe < 1000 RMB −10.10 (4.84) 
1000~4999 RMB −8.47 (4.76) 

>5000 RMB −5.84 (4.03) 
Baiyun < 1000 RMB −10.29 (4.80) 

1000~4999 RMB −1.75 (1.97) 
>5000 RMB −4.31 (3.35) 

Luogang < 1000 RMB −5.54 (3.24) 
1000~4999 RMB −5.85 (3.52) 

>5000 RMB −4.91 (3.48) 
Conghua < 1000 RMB −4.30 (2.41) 

1000~4999 RMB −3.00 (2.39) 
>5000 RMB 0.15 (1.29) 

Zengcheng < 1000 RMB −5.84 (3.18) 
1000~4999 RMB −5.12 (3.17) 

>5000 RMB −4.69 (3.22) 
 

 
 

Table 4. Summary Table for Model 2.3.2 

District Cycle (days) Daily Travel + Regular Routine Model 
Daily 𝜇 (𝑠𝑑) Regular Routine 𝜇 (𝑠𝑑) 

Yuexiu 11 −0.95 (0.23) −3.10 (4.04) 
Tianhe 11 −1.75 (0.12) −1.15 (3.28) 
Baiyun 12 −0.32 (4.54 × 10−16) −0.62 (2.65) 
Luogang 12 −1.95 (6.32 × 10−16) −0.41 (2.73) 
Conghua 13 −1.96 (1.08 × 10−3) −0.15 (1.86) 
Zengcheng 13 −1.94 (1.36 × 10−13) −0.42 (2.20) 
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Appendix  

Supplementary Method 

Models used in this study are as follow: 

Fixed Daily Travel Models 

Model 1.1 Null Model 

 𝑃𝑟(𝑀𝑛 < 𝑑) = (𝐹(𝑑))𝑛 (Model 1.1) 

Model 1.2 Models with Temporal Heterogeneity 

 𝑃𝑟(𝑀𝑛 < 𝑑) = (𝐹(𝑑|𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ℎ𝑜𝑙𝑖𝑑𝑎𝑦))
𝑛1

× (𝐹(𝑑|𝑛𝑜𝑛 − ℎ𝑜𝑙𝑖𝑑𝑎𝑦))
𝑛2 (Model 1.2.1) 

   
 Pr(Mn < d) = (F(d|national holiday + school holiday))

n1

× (F(d|non − holiday))
n2 (Model 1.2.2) 

   

 

Pr(Mn < d) = (F(d|school holiday))
n1

× (F(d|national holiday))
n2

× (F(d|non − holiday))
n3 (Model 1.2.3) 

   
 𝑃𝑟(𝑀𝑛 < 𝑑) = (𝐹(𝑑|𝑤𝑖𝑛𝑡𝑒𝑟 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛))

𝑛1

× (𝐹(𝑑|𝑠𝑢𝑚𝑚𝑒𝑟 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛))
𝑛2

× (𝐹(𝑑|𝑜𝑡ℎ𝑒𝑟 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ℎ𝑜𝑙𝑖𝑑𝑎𝑦))
𝑛3

× (𝐹(𝑑|𝑛𝑜𝑛 − ℎ𝑜𝑙𝑖𝑑𝑎𝑦))
𝑛4

 (Model 1.2.4) 

Model 1.3 Models with Spatial Heterogeneity 

 𝑃𝑟(𝑀𝑛|𝑢𝑟𝑏𝑎𝑛 < 𝑑) = (𝐹(𝑑|𝑢𝑟𝑏𝑎𝑛))
𝑛

 

𝑃𝑟(𝑀𝑛|𝑠𝑢𝑏𝑢𝑟𝑏𝑎𝑛 < 𝑑) = (𝐹(𝑑|𝑠𝑢𝑏𝑢𝑟𝑏𝑎𝑛))
𝑛

 

𝑃𝑟(𝑀𝑛|𝑟𝑢𝑟𝑎𝑙 < 𝑑) = (𝐹(𝑑|𝑟𝑢𝑟𝑎𝑙))
𝑛

 (Model 1.3.1) 
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 𝑃𝑟(𝑀𝑛|𝐷𝐼𝑆𝑇𝑅𝐼𝐶𝑇 < 𝑑)

= (𝐹(𝑑|𝑌𝑢𝑒𝑥𝑖𝑢) × 𝑌𝑢𝑒𝑥𝑖𝑢 + 𝐹(𝑑|𝑇𝑖𝑎𝑛ℎ𝑒)
× 𝑇𝑖𝑎𝑛ℎ𝑒 + 𝐹(𝑑|𝐵𝑎𝑖𝑦𝑢𝑛) × 𝐵𝑎𝑖𝑦𝑢𝑛
+ 𝐹(𝑑|𝐿𝑢𝑜𝑔𝑎𝑛𝑔) × 𝐿𝑢𝑜𝑔𝑎𝑛𝑔 + 𝐹(𝑑|𝐶𝑜𝑛𝑔ℎ𝑢𝑎)
× 𝐶𝑜𝑛𝑔ℎ𝑢𝑎 + 𝐹(𝑑|𝑍𝑒𝑛𝑔𝑐ℎ𝑒𝑛𝑔) × 𝑍𝑒𝑛𝑔𝑐ℎ𝑒𝑛𝑔)𝑛 (Model 1.3.2) 

Model 1.4 Models with Household Heterogeneity 

 

𝑃𝑟(𝑀𝑛|𝐼𝑛𝑐𝑜𝑚𝑒 < 𝑑)

= (𝐹(𝑑|𝐼𝑛𝑐𝑜𝑚𝑒1) × 𝐼𝑛𝑐𝑜𝑚𝑒1 + 𝐹(𝑑|𝐼𝑛𝑐𝑜𝑚𝑒2)
× 𝐼𝑛𝑐𝑜𝑚𝑒2 + 𝐹(𝑑|𝐼𝑛𝑐𝑜𝑚𝑒3) × 𝐼𝑛𝑐𝑜𝑚𝑒3
+ 𝐹(𝑑|𝐼𝑛𝑐𝑜𝑚𝑒4) × 𝐼𝑛𝑐𝑜𝑚𝑒4 + 𝐹(𝑑|𝐼𝑛𝑐𝑜𝑚𝑒5)
× 𝐼𝑛𝑐𝑜𝑚𝑒5 + 𝐹(𝑑|𝐼𝑛𝑐𝑜𝑚𝑒6) × 𝐼𝑛𝑐𝑜𝑚𝑒6
+ 𝐹(𝑑|𝐼𝑛𝑐𝑜𝑚𝑒7) × 𝐼𝑛𝑐𝑜𝑚𝑒7)𝑛 (Model 1.4.1) 

   
 𝑃𝑟(𝑀𝑛|𝐼𝑁𝐶𝑂𝑀𝐸 < 𝑑)

= (𝐹(𝑑|𝐼𝑁𝐶𝑂𝑀𝐸1) × 𝐼𝑁𝐶𝑂𝑀𝐸1
+ 𝐹(𝑑|𝐼𝑁𝐶𝑂𝑀𝐸2) × 𝐼𝑁𝐶𝑂𝑀𝐸2
+ 𝐹(𝑑|𝐼𝑁𝐶𝑂𝑀𝐸3) × 𝐼𝑁𝐶𝑂𝑀𝐸3)𝑛 (Model 1.4.2) 

   
 𝑃𝑟(𝑀𝑛|𝑚𝑜𝑡𝑜𝑟 < 𝑑)

= (𝐹(𝑑|𝑤𝑖𝑡ℎ 𝑚𝑜𝑡𝑜𝑟) × 𝑊𝑖𝑡ℎ 𝑚𝑜𝑡𝑜𝑟
+ 𝐹(𝑑|𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑜𝑡𝑜𝑟) × 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑜𝑡𝑜𝑟)𝑛 (Model 1.4.3) 

   
 𝑃𝑟(𝑀𝑛|𝑀𝑒𝑚𝑏𝑒𝑟1 < 𝑑)

= (𝐹(𝑑|𝑀𝑒𝑚𝑏𝑒𝑟 > 3) × 𝑀𝑒𝑚𝑏𝑒𝑟31
+ 𝐹(𝑑|𝑀𝑒𝑚𝑏𝑒𝑟 ≤ 3) × 𝑀𝑒𝑚𝑏𝑒𝑟30)𝑛 (Model 1.4.4) 

   
 𝑃𝑟(𝑀𝑛|𝑀𝑒𝑚𝑏𝑒𝑟2 < 𝑑)

= (𝐹(𝑑|𝑀𝑒𝑚𝑏𝑒𝑟 > 4) × 𝑀𝑒𝑚𝑏𝑒𝑟41
+ 𝐹(𝑑|𝑀𝑒𝑚𝑏𝑒𝑟 ≤ 4) × 𝑀𝑒𝑚𝑏𝑒𝑟40)𝑛 (Model 1.4.5) 

Model 1.5 Combinations 

Models 1.5.1-1.5.4 are based on the sub-models with the relatively best fitting 

among Model 1.2-Model 1.4.  

Fixed Daily Travel + Regular Routine Travel Models 

Similar with fixed daily travel models, the models in this series include null model, 

models with spatial heterogeneity, spatial heterogeneity, and household 
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heterogeneity. Beside of the daily travel component, we also include the units 

representing the regular routine travel. The basic form (𝐹(𝑑))𝑛 is replaced with 

 (𝐹(𝑑))𝑛 × (𝐹(𝐷))
[

𝑛

𝑐𝑦𝑐𝑙𝑒
]
.  
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Graphs for Fixed Regular Routine Travel 
 
 
 

 

 
 
Figure 7(S). Plot of the −𝑙𝑛ℒ value for Various Lengths of Routine Travel Cycle - 1  
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Figure 8(S). Plot of the −𝑙𝑛ℒ value for Various Lengths of Routine Travel Cycle - 2 
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Figure 9(S). Plot of the −𝑙𝑛ℒ value for Various Lengths of Routine Travel Cycle - 3 
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