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Abstract

Performance of motor behavior requires complex coordination of neural activity

across diverse regions of cortex at multiples scales. At the level of coordination

across large areas of cortex, this activity is thought to be related to similarly broad

concepts of movement from goal identification to motor planning to generation of

motor commands. At smaller scales on the level of local populations of individual

neurons in motor and premotor cortex, we observe complex non-stationary firing

patterns that appear to be related to the movement itself. Our understanding of the

details of this relationship are incomplete, however. Earlier work by the community

largely focused on the analysis of individual units in isolation. Technological advances

and changes in experimental paradigms have led to the simultaneous recording of

hundreds of neurons simultaneously. Approaches to analysis must also adapt and

embrace a shift in focus from the behavior of individual neurons to the interactions

of the population as a whole.

This work presents a number of techniques developed to address challenges and

opportunities associated with the simultaneous recordings of large populations of neu-
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rons. The first part of this thesis demonstrates that information related to reaching

and grasping is encoded dynamically within an ensemble of neurons in the motor and

premotor cortices. Second, a semi-supervised approach is developed to identify co-

modulated communities of neurons within the population ensemble for use in motor

decoding and broader exploratory analysis. Finally, this work details a model for rep-

resenting task-relevant information encoded in the structure of task-specific networks

formed by functionally connected networks of neurons. This work makes several sig-

nificant contributions to understanding and modeling the interactions of ensembles of

neurons during the performance of motor behaviors and represents important steps

toward better utilizing a growing number of simultaneously recorded neurons.

Primary Reader: Dr. Nitish V. Thakor, Ph.D.

Secondary Reader: Dr. Alcimar B. Soares, Ph.D.
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Chapter 1

Overview

Cortical neurons in motor-related regions of the brain coordinate in vast networks

and produce complex time-varying neural activation patterns in order to generate

a wide range of movements. Understanding the nature of this coordination and

activity is of significant importance to improving understanding of the brain as well

as unlocking the potential for neurally-controlled prosthetic devices.

Technological improvements to recording technology have shaped our abilities

to both examine neural systems as well as address hypotheses of signaling within

and across cortical areas. Just over fifty years ago, experimenters were limited to

recording single neurons. Today, chronically implantable microelectrode arrays allow

several hundreds of neurons to be recorded simultaneously [2–4] and improvements

to imaging techniques enable whole brain imaging [5]. As the number of observable

signals has increased, so has the need for modeling the relationship between neural
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signals and motor behavior.

More recently, brain-machine interfaces (BMIs) have motivated a need to under-

stand the nature of how these neurons encode information on an individual and pop-

ulation level. The goal of this research is to develop new algorithms and approaches

to investigating the representation of motor behavior by populations of neurons in

motor-related regions of cortex in nonhuman primates.

1.1 Research Aims

Aim 1: Study dynamics of neuronal coding in motor-related areas of cortex as they

relate to the performance of simultaneous reaching and grasping

Seeking the nature of representation of motor behaviors by neurons is of signif-

icant importance for controlling BMIs and improving out overall understanding

of the brain. In this aim I explore this interaction through inspection of lower

dimensional representations of neuronal population activity during to movement.

Following this I explore the concept of temporal generalization of decoders to ex-

amine the dynamics of how reaching and grasping are differentially represented

by the population. These approaches reveal the presence of a temporally dynamic

representation of reaching and grasping by neurons in premotor and motor cor-

tices.

Aim 2: Identify co-modulated communities of neurons using an unsupervised clus-
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tering analysis

As the number of simultaneously observed neurons grows, identifying meaningful

task-relevant neurons becomes increasingly important and manual inspection of

individual units becomes increasingly impractical. I propose a semi-supervised

approach to identifying communities of neurons that co-modulate in relation to

external variables. I demonstrate that this method is useful both for exploratory

analysis of neuronal functionality and for neuron selection for use in motor de-

coding applications.

Aim 3: Develop a neuronal encoding approach utilizing task-specific networks among

neurons to decode grasp postures

Traditional models of neuronal spiking often attempt to model neuronal firing

activity as being primarily related to the behavior being performed through use

of a specific tuning function. This approach necessitates the specification of

a tuning function and typically requires the assumption that neurons encode

signals independently of one another. I propose a model for signal encoding

that does not require a tuning function and assumes that signals are encoded

in the network structure of a neuronal population. This model prototype is

demonstrated to have several desirable properties with regards to encoding and

decoding performance compared to alternative models.
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1.2 Organization

In order to provide context for the current work, Chapter 2 provides background

related to brain recording, BMIs and approaches to modeling neuronal signals.

My proposed algorithms and methodology were developed on data from a single

experimental paradigm. Chapter 3 will describe this paradigm in detail and serve as

a reference for the data used in this research.

In Chapter 4, I investigate the presence of dynamic coding in the motor and pre-

motor cortex during performance of reaching and grasping behaviors. In particular

I detail a series of methods for initial investigation into coding of behavior by pop-

ulation and demonstrate decoding of simultaneous reaching and grasping behaviors.

These decoding techniques are then applied to better understand the dynamics of the

neural code.

Building upon the decoding results from the previous chapter, Chapter 5 proposes

a semi-supervised method for identifying populations of neurons that co-modulate in

relation to a common external stimulus. This method is then implemented in identi-

fying task-relevant neurons for use in decoders of reaching and grasping behavior.

In Chapter 6 I will describe the development of a novel approach to encoding

and decoding population activity based on task-specific interactions among neurons.

Here I hypothesize that neurons participate in functionally connected networks with

structures dependent on the task being performed. I explore this hypothesis through

the development of novel models of neuronal firing applied to the task of encoding
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and decoding of grasping behaviors.

The concluding Chapter 7 summarizes the results and proposes future directions

for additional investigation.
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Chapter 2

Background and Motivation

2.1 Introduction

The principle focus of this thesis is on the exploration of how groups of neurons

in motor and premotor cortices coordinate and encode information about motor be-

haviors. This focus closely relates to, and was initially derived from, the problems

faced in the construction and operation of Brain-Machine Interfaces (BMIs). Given

this relationship, this initial chapter will set the scene by describing what BMIs are,

providing an overview of their history, and detailing the challenges faced in their

development. Through this approach I will also introduce the concepts of neuronal

encoding and decoding as well as the principle approaches to constructing models

that address these concepts.
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2.2 Milestones in Brain Machine Interface

Development

As the name implies, brain machine interfaces (BMIs) are a means of interaction

between a brain and some other external (typically electronic) device. This interface

may be manifested in two different directions: through the being used to control a

device or a device providing some form of input directly to the brain. These two di-

rections of interaction are dependent upon the concepts of recording and stimulation,

respectively. Recording simply requires some method of obtaining a read-out of brain

activity which may then be acted upon. Stimulation involves supplying some sort of

input directly to the brain, often in the form of applied electrical current. Although

a BMI may be capable of both recording and stimulation, this is currently rare in

practice and the BMIs of interest in the context of this work are largely BMIs that

record only. However, the absence of direct stimulation does not necessarily imply

the absence of feedback or influence on the brain.

2.2.1 Cosine Tuning and Population Vectors

To understand the present state of BMIs, some historical context is important.

Perhaps the earliest BMI work can be attributed to research performed in the late

1960s by Eberhard Fetz. One early study [6] demonstrated that macaque monkeys

could learn to adjust the firing rate of individual neurons if provided with audio
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feedback that indicated the rate of firing. This initial work importantly illustrated the

potential for willfully modulating brain activity in the presence of external feedback.

While controlling the firing rate of small numbers of arbitrary neurons certainly has

validity in BMI, this concept may not scale to the control of complex devices. Later

studies sought to analyze the relationship between neural firing and motor behaviors.

If this relationship could be understood or approximated, a BMI user’s movement

intentions may be read directly from the brain and manifested in the control of

prosthetic device.

In 1982, a study by Georgopoulos, et al. [7] identified neurons in the motor cor-

tex that reliably varied their firing rate depending on the reach angle of a monkey

performing a two-dimensional reach task. Many of the cells demonstrated a max-

imal firing rate related to some preferred direction of arm movement. This firing

rate tended to fall off predictably as a function of deviation from the preferred direc-

tion with cells firing minimally when the arm moved in the opposite direction. The

researchers observed that the relation between firing rate and reach angle could be

approximated by the cosine of the angle between a neuron’s preferred direction and

the actual movement direction. With this cosine tuning function, there was now a

basis for predicting the direction of limb movement based only on observed neuronal

spiking. Though there was now a means to find a meaningful behavioral signal en-

coded by single neurons, the firing of individual neurons is especially unpredictable

and the signal-to-noise ratio is generally poor as a result.
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The same group later built upon the cosine tuning model by examining the col-

lective tuning properties of a population of neurons. In [8], the group reported that

reach direction appeared to be simultaneously encoded in the firing rates of many

neurons in a population. A model known as the population vector was proposed.

Under the population vector model, each neuron could be thought of as having a

vector pointing in its preferred direction of arm movement. The difference between

the neurons present firing rate and its maximal firing rate provided the magnitude

of this vector. If the firing activity of many such cells in a population could be ob-

served simultaneously, these vectors could all be added together resulting in a single

combined estimate of reach angle. This so called ”population vector” set the stage

for making more accurate predictions of arm movements in a shorter period of time

by leveraging the power of a population of neurons and overcoming some of the noise

issues associated with using only a single neuron.

2.2.2 Open Loop Control of BMIs

Not long after the pioneering work by Georgopolous and others, the first motor

BMIs were developed. Motor BMIs are generally any BMI that uses the subject’s

brain activity to control some motor behavior; often manifested through the move-

ment of a virtual cursor or a physical robotic limb. Many of the earliest motor BMIs

were performed in an open loop paradigm. Open loop decoding implies that a device

is being controlled without providing the user with feedback regarding the outcomes
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of neural control. Providing feedback to the user may allow improved control but

may also cause a BMI to fail if the relationship between physical activity and brain

activity was learned during actual movement. Feedback may cause the observed ob-

served brain activity to behave differently than when actual physical behavior was

performed. This may cause the BMI to under perform due to a mismatch between

the model and actual brain activity. Open loop paradigms attempt to avoid this issue

by withholding feedback about neural control.

In one of the earliest BMI experiments by Chapin et al. [9], researchers demon-

strated real time neural control of a one-dimensional robotic arm in rats using a

population of primary motor cortex neurons. The relation between neural activity

and physical activity was learned from trials in which rats physically pressed a lever

to control an arm and receive a reward. On trials where neural control was used to

control the arm, the rats still physically depressed the lever. In later similar exper-

iments by Wessberg et al. [10], monkeys were trained to control a one-dimensional

robotic limb using a joystick. Researchers found they could predict the intended

movement of the robotic limb from simultaneously recorded brain activity from mo-

tor and parietal regions of cortex. This activity was decoded and used to control

the limb while the monkey moved a disconnected joystick. In both these studies, the

BMI was considered to be controlled in an open-loop paradigm and the animals were

generally not made aware of the use of neural control as opposed to control via lever

or joystick. Despite the open loop paradigm, researchers readily demonstrated the
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ability to extract task-relevant motor intention from the brain.

2.2.3 Closed Loop Control of BMIs

The next significant milestones in the evolution of BMI came through the demon-

stration of closed loop control. Closed loop control implies that the feedback loop

has been closed and the BMI user is able to directly observe the effects of BMI

control. This distinction is especially important as providing feedback may actually

perturb the underlying neural activity causing the decoder to perform more poorly

than expected [11, 12]. Additionally, closed loop control provides the user with the

opportunity to correct for mistakes by the decoder [13] and to adapt to the decoder

over time [14].

In one of the earliest closed loop studies by Serruya et al. [15], a monkey was

trained to move a cursor on a computer screen with a joystick while neural activity was

recorded from neurons in primary motor cortex. Researchers learned a linear mapping

was learned between the cursor movement and brain activity. The researchers then

had the monkey continue the experiment while intermittently alternating between

joystick control of the cursor and brain control of the cursor. Researchers learned

that not only did the monkey successfully completed trials with brain control, but

periodically completed trials without moving the joystick at all.

In another study, Taylor et al. [16] demonstrated closed-loop three-dimensional

end point control in primates. Similar to other studies, researchers initially al-
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lowed the primate to control the limb via a joystick while recording neuronal activity

through electrode arrays. Researchers compared decoding via open-loop and closed-

loop paradigms and found that closed-loop control resulted in more successful trials

than open-loop. Additionally researchers noted that the directional tuning properties

of cells involved in the task appeared to change and the monkeys showed signs of

adaptation by improving their performance in offline-control over a period of 20 to

40 days.

One of the next milestones came through simultaneous control of several variables

through a closed-loop BMI. In [17], Carmena et al. demonstrated that a monkey could

simultaneously control reach direction, reach velocity, and grip force. This simultane-

ous control was demonstrated through the performance of a closed-loop BMI task that

required the monkey to control a virtual cursor’s two-dimensional position as well as

its size in order to match a target cursor. In addition to successfully demonstrating

simultaneous control, researchers observed neurons changing their firing properties

depending on whether physical or neural control was used.

Another milestone in BMI control was achieved recently in a study by Ifft et.

al [3]. Researchers demonstrated the capability of a monkey to use a BMI to control

two limbs independently and simultaneously in a virtual environment. An integral

part of this accomplishment was the ability to simultaneously record from nearly

500 neurons in multiple distinct brain regions. In addition to this bimanual control,

researchers also observed adaptation as well as apparently different representation for
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simultaneous bimanual control versus unilateral control.

2.2.4 BMIs in Humans

Beyond closed loop control in non-human primates, the next significant milestones

in the development of neuronal-based BMIs involved the control of BMIs by humans.

In human subjects, typically a distinction is made based on the recording technology,

i.e. electroencephalography (EEG), electrocorticography (ECoG), functional mag-

netic resonance imaging (fMRI), and implanted microelectrode arrays. While BMI

control in humans was demonstrated earlier by non-invasive EEG and less-invasive

ECoG, BMIs controlled by spiking activity recorded from microelectrode arrays have

generally shown superior performance in typical BMI tasks at the cost of being most

invasive with regards to the recording methodology.

In one of the earliest applications of neuronal-based BMI control in humans,

Hochberg et al. [18] demonstrated closed loop control of a prosthetic by a human

with tetraplegia using neuronal recordings from primary motor cortex. In this study,

an adult man with complete spinal cord injury at C4 demonstrated two-dimensional

cursor control using approximately 50 to 60 neurons in a given session. Unlike earlier

studies in monkeys, the subject was not able to participate in an initial training phase

that relied upon explicit physical movement of a limb. Instead, the subject imagined

movements in response to researcher instructions. This study demonstrated that even

imagined motor behavior could be used to learn and control a BMI.
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One concern with BMIs dependent on implanted microarrays is whether the device

will work over a period of several years. A significant milestone in this regard came

from further studies by the Donoghue group [19]. Similar to the previously mentioned

human study, this study used the same recording technology and investigated whether

long-term control of BMIs was possible following chronic implantation of an electrode

array. Remarkably, in this work a tetraplegic human subject demonstrated control of

a point and click interface 1000 days after the array had been implanted.

Following the progression of BMI control observed earlier with monkeys, additional

milestones in human BMI control were marked by an increase in the number of signals

recorded as well as the number of degrees of freedom controlled. In work by Collinger

et al. [20], researchers implanted two 96-channel microelectrode arrays in an adult

human with tetraplegia. The subject demonstrated the ability to move a robotic

limb within two days and ably demonstrated control over seven degrees of freedom

in a number of reach and grasp tasks after 13 weeks of training.

2.3 Overview of Cortical Anatomy

At their core, BMIs for motor control depend on measuring changes in brain

activity. The task at the heart of successful BMI operation is that of identifying user

intent at the level of neuronal signaling and then translating that intent into external

behaviors. Understanding the overall organization of the brain and the functionality
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Figure 2.1: Depiction of human brain with lobes highlighted. The cerebral cortex
has four principal anatomical lobes: frontal, parietal, temporal, and occiptal. These
lobes are functionally associated with movement, sensation, speech, and vision, re-
spectively. Image source: commons.wikimedia.org

of the various subdivisions informs researchers where electrodes should be placed

as well as the concepts that are encoded in a specific brain region. Here, a general

overview of cortical anatomy provides some context to the relationship between spatial

and functional organization in the brain.

Generally when referring to neuronal-based BMIs used for motor control, record-

ings are produced from neurons in the cerebral cortex. The cerebral cortex is the

outer layer of the brain and most recently evolved region. The cerebral cortex may

be divided into four lobes as shown in Fig. 2.1: frontal, parietal, temporal and oc-

cipital. While these are primarily anatomical classifications, each lobe is generally

associated with certain principle functions. The frontal lobe is associated with control

of movement, motor planning, short-term memory, and motivation. The parietal lobe
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Figure 2.2: Sagittal depiction of human brain with subset of Brodmann areas in-
dicated numerically. Brodmann areas are one means of anatomical reference for the
human brain based on histology studies by Korbinian Brodmann. In BMI work,
Brodmann areas 4 and 6 are of special interest since these correspond to the primary
motor cortex and premotor cortex, which are both principally involved in production
of movement. Image source: commons.wikimedia.org

is associated with integration of sensory information and plays an important role in

the feedback loop during movement. The temporal lobe is generally deemed responsi-

ble for production of speech and language comprehension. Finally, the occipital lobe

is responsible for vision. These regions clearly form very broad anatomical divisions

of the brain and similarly each have functional roles that are broad in scope.

The link between anatomical and functional subdivisions continues at finer scales

within individual lobes. Specific sub-regions are often identified as shown in Fig. 2.2

using a naming system referred to as Brodmann areas [21]. For BMIs used in motor

controls, a number of these anatomical structures are of particular interest: primary

motor cortex (M1), premotor cortex (PM), supplementary motor area (SMA), and
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posterior parietal cortex (PP). Though the exact function of these regions is unknown,

certain roles and responsibilities of these areas have been identified. The primary

motor cortex (Brodmann area 4) is believed to be responsible for generating the

motor commands that are transferred through the spinal cord to generate movement.

The premotor cortex and supplementary motor areas (Brodmann area 6) are involved

in planning and initiating movement. The posterior parietal cortex (Brodmann area

7) is considered to be responsible for sensorimotor integration and plays a role in

movement planning [22]. Each of these regions may be suitable for recordings for use

in motor BMIs but may encode different aspects of movement production. For the

purposes of this work, however, the motor cortex and premotor cortex are of greater

interest.

Within the motor cortex and premotor cortex there is still further evidence of

functional subdivision. In a seminal study by Penfield and Boldrey [23], electrical

stimulation was applied to points throughout sensorimotor cortices and noted result-

ing movement or sensation resulting from the stimulation. The study revealed the

presence of a functionally divided somatotopy where stimulation to physically prox-

imal areas in the cortex resulted in sensation or movement in similar regions of the

body. This research later led to the development of Penfield’s homunculus model [24]

that mapped the somatotopy between the motor cortex and external anatomy. Sim-

ilar somatotopy was similarly discovered in the brains of nonhuman primates [25].

A diagram of this broad somatotopy is shown in Fig. 2.3. Maps such as these are

17



CHAPTER 2. BACKGROUND AND MOTIVATION

Figure 2.3: Lateral view of frontal lobe of macaque monkey indicating anatomi-
cal landmarks and putative regions of gross movement representation. Regions of
movement representation are indicated for orbitofacial (OF), forelimb (FL), hindlimb
(HL), eye (E). Indicated anatomical landmarks include central sulcus (CS), primary
motor cortex (M1), ventral and dorsal premotor cortex (PMV, PMD), supplementary
motor area (SMA), superior precentral sulcus (SPcS), arcuate sulcus (AS) and lateral
sulcus (LS). Adapted from [1].

critical during the planning of electrode implantation.

Complex reaching and grasping behaviors involve recruitment and coordination of

structures in many separate regions of cortex. Naturally the aforementioned regions

of cortex do not act in isolation but coordinate information through various cortical

circuits during the production of movement [26–28]. In the performance of reaching

and grasping, references are commonly made to two specific pathways. The dorsolat-
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eral pathway, thought to be involved in grasping, connects the anterior intraparietal

sulcus (AIP) to ventral premotor cortex (PMv) which projects to primary motor cor-

tex (M1) [29]. The second pathway, the dorsomedial pathway, is generally thought

to be heavily responsible for reaching motions. The dorsomedial pathway involves

projections from medial intraparietal sulcus (MIP) to area V6a then to dorsal premo-

tor cortex (PMd) then to M1. Though these two pathways were originally thought

to separately encode reach and grasp, more recently this distinction has become less

clear. The dorsomedial pathway in particular may also have an additional role in

coordinating reach and grasp [26,30].

Knowledge of the overarching functional anatomy of the brain is vital for successful

development of BMIs. Keeping in mind that BMIs are about decoding intention from

brain signals, it is helpful to have a sense for how intention is represented in each

particular area of cortex. Recordings from parietal cortex may represent information

about the target of a particular reach. Meanwhile recordings from motor cortex

may represent the specific commands necessary to activate muscles and produce the

reach. Understanding the overall function of these regions is only the beginning of

the challenge, however. Understanding which general concepts are encoded by a

particular part of the cortex is not the same as understanding how those concepts are

encoded.
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2.4 The Role of Recording Technologies

Recording of brain activity has been performed with a number of different meth-

ods. These many approaches are often described in terms of a trade-off between

physical invasiveness, temporal resolution, and spatial resolution. Commonly used

noninvasive methods include functional magnetic resonance imaging (fMRI), mag-

netoencephalography (MEG), electroencephalography (EEG), and functional near-

infrared spectroscopy (fNIRS). Invasive methods include electocorticography (ECoG)

and penetrating microelectrode recordings. The noninvasive methods each suffer from

significant drawbacks such as enormous recording equipment (fMRI and MEG), poor

temporal resolution (fMRI), poor spatial resolution (MEG, EEG, fNIRS), and low

signal to noise ratio (fNIRS, EEG). ECoG provides a compromise in many of these

regards with temporal resolution comparable to EEG with higher spatial resolution

and improved signal to noise ratio. This improvement in recording quality with ECoG

comes at the cost of requiring an array of electrodes to be implanted on the surface

of the brain. Penetrating microelectrode recordings operate at the finest spatial and

temporal resolution. Microelectrodes are commonly used to record the activity of

individual neurons and can operate at temporal resolutions suitable for capturing

individual neuronal action potentials. However, this approach is considered the most

invasive as the microelectrodes are inserted into the cortex itself.

The evolution of neuronal-based BMIs is intertwined with the evolution of mi-

croelectrode recording technologies. Glass micropipette electrodes were integral to
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Figure 2.4: Example microelectrode array. Improvements to hardware have resulted
in electrode arrays with smaller footprints and densely packed grids of electrodes.
Present and ongoing developments to recording technology are driving evolution in
techniques used for analyzing neuronal recordings. The array shown here has a 4
mm × 4 mm footprint and contains 100 microelectrodes. Image credit Matthew
McKee/BrainGate Collaboration.

the development of the voltage clamp technique [31] by Hodgkin and Huxley which

provided insight into the behavior of ion channels in neurons. Eventually, develop-

ment of tungsten microelectrodes [32] and precision microposition devices [33] enabled

studies that required long repeated recordings from single units. These technologies

played a critical role in early work that contributed to the understanding of behavior

of neurons in striate cortex in response to visual stimuli [34]. While tungsten micro-

electrodes made single unit recording more accessible, experimenters typically only

recorded from one to ten neurons simultaneously. Continued development eventu-

ally resulted in the creation of chronically implantable high density microelectrode

arrays [35]. Microelectrode arrays such as the one shown in Fig. 2.4 could be em-
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Figure 2.5: Number of simultaneously recorded neurons over time. Since the ear-
liest experiments, the number of simultaneously recorded neurons has increased at a
rate approximating Moore’s law. Today, experiments regularly record from several
hundreds of individual neurons simultaneously. Reproduced from [2].

ployed to record from over a hundred neurons simultaneously. Today, experiments

commonly involve recordings from multiple implant multiple microelectrode arrays

for simultaneous recordings [3, 36,37].

One of the direct effects of technological advancement with regards to recording

can be seen in Fig. 2.5 reproduced from work by Stevenson and Kording [2]. Much

like the Moore’s law commonly applied to the doubling rate of transistors in inte-

grated circuits, the number of simultaneously recorded neurons appears to have its

own doubling rate of roughly seven years. Increasing numbers of neurons include

several positive effects such as wider varieties of neurons observed, richer information

derived from simultaneous interactions, and decreased emphasis on precise selection

of recording locations. On the other hand, as more neurons are observed simulta-

neously, recorded spiking activity approaches the ominous realm of big data. Larger
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and richer datasets require that models operating on this data must increasingly deal

with big data problems such as increases in computation time and the curse of dimen-

sionality. Understanding general anatomy informs where signals should be recorded

and recording technology dictates the volume and types of data available. The next

obstacle that must be dealt with in this sequence is deciding how this data should be

represented and capitalized upon.

2.5 Simulated Spiking

Prior to deeper discussions regarding modeling of neuronal activity, an initial

simulated example may help to convey some of the basic issues at hand. One of the

problems with recording from individual neurons is that the firing of cortical neurons

is often noisy. Though the individual action potentials from a given neuron may

be considered identical, the timing between spikes is highly variable. It has been

observed that cortical neurons rarely produce identical sequences of spikes even in

response to repeated presentations of a stimulus [38] or of repetitions of an identical

behavior. This irregularity in spike timing has given rise to the hypothesis that many

neurons represent information in the overall rate of spiking rather than in the specific

timing of spiking. This model is referred to as rate coding.

Under the model of rate coding, the low signal to noise ratio of neuronal spiking

can still be problematic. In the example shown in Fig. 2.6, firing was simulated
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from a single neuron over a period of 1000 ms. This neuron was simulated to have

an underlying actual firing rate that oscillated between 15 Hz and 55 Hz. Despite

this underlying rate, spiking is still the result of a noisy random process. From

looking at the generated spike train alone in the top panel of Fig. 2.6, oscillating

behavior is not readily apparent. As a second step, a smooth underlying firing rate

was approximated by convolving the simulated spike train with a gaussian kernel

with 25 ms standard deviation resulting in the smoothed rate shown in the middle of

Fig. 2.6. Even after smoothing, most would agree that there is not clear evidence of

oscillatory activity. Given the observation of this single trial, it would be difficult to

say anything substantive about this neuron beyond that the neuron appears to have

an average firing rate of about 35 Hz.

In practice, the issue of neuronal noise is commonly overcome through repetition.

Fig. 2.7 shows a simulation in which over 200 repetitions of 1000 ms trials were drawn

from the same unit shown in Fig. 2.6. Each trial was influenced by the same random

processes observed previously. In aggregate, both the raster of spikes over all trials

in Fig. 2.7a and the raster of smoothed firing rates in Fig. 2.7b more readily show

the presence of oscillatory firing activity. Aggregating information across these many

trials either through binning as in Fig. 2.7a or point-wise averaging as in Fig. 2.7b

recovers a firing rate that closely matches the one that generated the spikes in the

first place.

To relate this example to the problem of representation, let us imagine that these
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Figure 2.6: Example of rate coding with simulated spike train and estimated firing
rate generated by a noisy driving function. An example of a simulated spike train
(top) observed over a 1-second period generated by a time-varying driving function
(bottom). Spike trains are often smoothed with a kernel function (middle) to attempt
to better recover the underlying firing rate. The low signal-to-noise ratio of spiking
often results in single-trial firing rate estimates that only roughly approximate the
true underlying function.

recordings were made from a neuron in a rat while the each trial requires the rat to

run along some track and that this neuron is tuned to vary its firing rate in response

to the rats position on the track. The problem of representation requires us to find

an explanation for the neuron’s spiking activity while keeping in mind that we do not
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Figure 2.7: Spiking patterns become clearer through observation of multiple trials.
These examples build upon the single trial shown in Fig. 2.6. Several hundred
repetitions of the same trial were simulated and both individual spikes (a, top) and
smoothed firing rate estimates (b, top) were observed. By counting the average
number of spikes within each time bin (a, bottom) or calculating the average firing
rate observed at each time across all trials (b, bottom) reveals an estimated firing
rate much closer to the true underlying rate that generated the activity.

actually know the true underlying driving function in Fig. 2.6. We may approach an

initial solution to this by observing that the trial-averaged spiking seen in Fig. 2.7

appears to oscillate with some regular frequency. We may then correlate this signal

with some other observed signal such as the rat’s overall movement speed to observe

whether or not there appears to be a connection.
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2.6 Encoding and Decoding

Two important concepts to understand when discussing models relating brain ac-

tivity to behavior or external stimuli are encoding and decoding. In general, encoding

describes the manner in which the brain represents some signal of interest. By con-

trast, decoding describes the act of attempting to read out the behavior or stimulus

associated with some observed brain activity. These concepts of encoding and de-

coding can also be described from a modeling standpoint. An encoding model is a

mathematical function that takes a behavior or stimulus as input and provides the

expected associated brain activity as an output. A decoding model is a function that

takes brain activity as input and provides the expected behavior or stimulus as an

output.

Though the problems of encoding and decoding are inverses of one another, the

models themselves are not necessarily invertible and research is often focused on one

objective or the other. In the case of modeling the interaction between the brain

and motor behavior, the quality of an encoding model is measured by how closely

the predicted brain activity matches the observed brain activity associated with the

performance of a known behavior. The quality of a decoding model is measured by

the similarity between the behavior or stimulus predicted by the model compared

to the actual behavior that gave rise to the brain activity provided as input to the

model.

Because of the difference in objective measures, researchers must often choose to
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place emphasis on either encoding or decoding. From the standpoint of constructing

models for use in BMIs for motor control, decoding performance is typically perceived

as being of greater importance. After all, the problem underlying motor prosthetic

control is that of extracting behavioral intention from brain signals. A successful

decoding model may lead to highly intuitive, accurate, and precise control of a com-

puter cursor or prosthetic limb. Meanwhile, from the perspective of understanding

the brain, encoding performance is often of greater concern. Encoding models allow

researchers to assemble hypothetical models of brain activity and observe the extent

to which these models actually seem to describe the observed activity. A successful

encoding model may provide significant insights leading to further experimentation.

2.7 Encoding Models

Neuronal encoding models are simply models that attempt to relate the spiking

behavior of a neuron to one or more variables of interest. Encoding models take a

wide range of forms depending on their context and desired application. The Hodgkin-

Huxley model of spiking [31] for example, considers factors at a sub-millisecond scale

and attempts to describe the probability of a neuron spiking based on the activity

of individual ion channels. At a slightly larger time and spatial scale, so-called point

process encoding models [39,40] attempt to predict the occurrence of individual spikes

and at a timescale of 1 to 5 ms. In comparison to ion channel models, these point
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process models tend to focus on extracellular factors such as the spiking of nearby

neurons. At a still larger scale, firing rate models attempt to predict the overall

average firing rate of neuron, typically on a timescale of 25 ms to 500 ms. These

models tend to base predictions of spiking on concepts such sensory stimulation or

motor behavior.

Of the previous models, encoding models that attempt to explain spiking over

broader time scales have traditionally been more popular. As in the example shown in

Fig. 2.6, these models assume that the observed spiking is the manifestation of some

variable process that encodes information through variations in overall firing rate.

The seminal example here is the cosine tuning model introduced by Georgopolous

et al. [7] that related the firing rate of a neuron to the difference in the direction of

arm movement versus the neuron’s preferred direction. More generally, this encoding

model is solved through ordinary linear regression. In this model, the firing rate of a

neuron is expressed as some linear combination of a number of variables of interest.

The cosine tuning model can be shown to be a special case of this where firing is

expressed as a linear function of the arm’s instantaneous velocity through space.

Recently, point process models [39, 40] have grown in popularity. In contrast to

the rate-based model, these models do not apply any smoothing to the observed fir-

ing. Instead, these models view the neuron as having an underlying instantaneous

probability of spiking and liken the observation of a spike train to the outcome of a

sequence of coin flips. The more important difference is that of time-scale. Point pro-
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cess models can often incorporate the influence of certain intrinsic neuronal properties

such as refractoriness, bursting, or whether other neurons have fired recently [40–42].

Smoothed rate-based models often cannot account for these effects because they occur

at too fine a temporal resolution and are lost in the smoothing process.

George Box famously wrote, ”...all models are wrong, but some are useful.” Neu-

ronal encoding models are no exception. There is significant uncertainty and dis-

agreement in the manner in which neurons actually encode motor behavior. As

stated in [43], ”The activity of motor cortical neurons has been related to almost

every tested parameter including isometric force, muscle activity, joint torques, joint

angles, changes in joint angles, and even the serial order of movements.” A number

of studies have attempted to address, for example, whether neurons in motor cor-

tex individually encode single variables or instead encode multiple variables either

in sequence or simultaneously [43–45]. From the standpoint of modeling, this raises

questions with regards to the variables that should be included in the model and

whether the model should be stationary or time-varying. From the standpoint of

interpretation, encoding models for motor behavior are often met with significant

skepticism due to the similar goodness-of-fit of so many different models applied to

the same data.

Encoding models extend beyond the scale of individual neurons as well. Many

efforts are focused on how various signals are encoded by populations of neurons. In-

dividual neurons are highly variable in their behavior and in the presence of identical
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repetitions of a single stimulus are unlikely to ever respond in precisely the same way.

Thus many studies insist that attention should be applied to how populations of neu-

rons interact together in order to more reliably represent variables of interest [46,47].

The population vector model [8] provides one seminal example of modeling the en-

coding of a stimulus by a population of neurons. Though individually, each neuron

of a group encodes a noisy estimate of the direction of reach, when the individual es-

timates are combined by averaging, a more accurate and precise estimate is achieved.

Population coding is one proposed way of addressing the examples shown in Fig. 2.6

and Fig. 2.7. In lieu of repeating a process many times over to average the response

of a single neuron, the cortex likely relies on entire populations of neurons encoding

the same variable to reduce noise.

While it is still unclear whether individual neurons encode single or multiple vari-

ables, populations of neurons recorded from the same electrode array may encode

several variables simultaneously. In an experiment involving reaches around obsta-

cles, [48] found that an ensemble of neurons in primate dorsal premotor cortex (PMd)

encoded representations of the direction of hand movement, the direction of the target

relative to the current position as well as the location of the target. Additionally, the

strength of these individual representations was found to vary depending on whether

or not an obstacle was present. In another study, Shanechi et al. [49] found that a

population of neurons in the premotor cortex of a rhesus monkey encode information

about multiple cued targets simultaneously. Experimenters were able to predict both
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the first and second targets the monkey would reach toward before the reach had

been made.

2.8 Decoding Models

Within the context of BMI, the ultimate goal is often to modulate brain activity

to control a prosthetic limb or a mouse cursor in order to achieve a desired purpose.

Because of this specific objective, the encoding problem is often treated as being of

secondary importance compared to the problem of signal reconstruction or decoding.

The extent to which a particular encoding model accurately represents the neuron’s

behavior is a secondary concern to how well the model can be used to control an

external device. In many cases where decoding performance is the priority, encoding

models may not be used at all and instead the behavior may be treated as the output

of some black box into which the time-varying firing rates of neurons are providing

input.

Before advancing into further discussions regarding decoding, it is important to

point out that the generally the problem of decoding is typically addressed in one of

two ways: classification or regression. Within the context of BMIs, classification is

the task of attempting to assign a particular sequence of brain activity as belonging

to one of a number of finite groups or classes. Classification use cases within BMIs

include: choosing a letter of the alphabet to type, deciding whether to move a mouse
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cursor left or right, or determining which of a finite set of grasps a user wants to

perform with a prosthetic hand [50]. By contrast, regression is typically concerned

with trying to predict one or more continuous-valued variables. Examples of this

within the context of BMIs may include: determining the speed and direction to

move a cursor in a 2d plane, predicting how far to open or close a prosthetic hand,

attempting to reconstruct an image that someone is viewing [51]. In many cases,

either approach may offer a suitable solution, though one may be slightly preferable

to the other.

As the previous few examples suggest, neural decoding is a broad concept with

many possible applications. Within the context of this work however, the application

of decoding to the cases of reaching and grasping is of particular interest. These

actions in particular were among the first problems to be addressed by BMIs and are

perhaps the most practical uses of BMI for a paralyzed individual beyond control of

a computer cursor or wheelchair.

2.8.1 Decoding Reach

Some of the earliest decoding tasks in BMI work involved decoding of reaching

movements. The ideal case would be to use brain signals to provide biomimetic control

of a robotic limb. Brain signals could be used to control each of the joint angles of the

limb independently to allow for total control of the limb in a naturalistic fashion. This

particular goal is ambitious, however, when one considers the number of degrees of

33



CHAPTER 2. BACKGROUND AND MOTIVATION

freedom that may be utilized in naturalistic reaching. One state-of-the-art prosthetic

limb, the Modular Prosthetic Limb by the Johns Hopkins Applied Physics Lab, is

capable of moving with 26 degrees of freedom. How to extend the natural performance

of the intact human body to such a limb is difficult since the manner of control applied

by the central nervous system to manipulate the hand is still unclear [52,53]. Another

limitation appears when we consider that the human brain contains approximately

100 billion neurons. While not all of these are dedicated to control of a single limb,

there are still several orders of magnitude more neurons involved in this task than the

several hundred that researchers can simultaneously record from today. According

to [54], even if our recording capabilities increase similar to Moore’s law, with a

doubling of the number of neurons every 7 years, we still will not reach 100 billion

simultaneously recorded neurons for 220 years. Facing this reality, the problem of

decoding reach from brain signals is often simplified significantly.

One simplification comes from broadly thinking of reaching as a matter of moving

our hand to some arbitrary point in space, this line of thinking leads to modeling

reaching using a regression-based approach. Under this view, the task of decoding

is reduced to continually estimating the intended instantaneous hand (or cursor)

position or velocity. This task was initially approached through linear estimation

methods such as the population vector algorithm or linear regression [16, 17, 55, 56].

Beyond the initial linear method, a number of non-linear regression techniques were

evaluated including neural networks [10, 57] and particle filters [58]. However, the
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Kalman Filter approach has become the de facto standard for regression of reach due

to its intrinsic ability to smooth estimates of position and velocity across multiple

samples [3, 59–61]. More recently, so-called point process filters [62–64] have seen

some popularity as they offer properties similar to the Kalman Filter while allowing

spiking to be modeled as a point process. While the regression approach to reaching

has seen promising results, further simplifications are possible and may be preferable.

One further simplification is to assume that reaches can only be performed to a

small but distinct number of locations. In this paradigm, a classification approach can

be taken to determine which location a user intends to reach or which of a finite subset

of directions a user intends to reach in [57, 65–71]. Additionally, this may not be a

simplification but a necessity based on where signals are recorded. Recordings from

parietal regions of cortex, for example, may encode information about the objective of

movement rather than an explicit motor plan of how to reach that objective [22,72–74].

The drawback of this approach is often the lack of generalization. If the classifier is

trained to identify intention to reach some finite set of locations, the user is limited

to selecting from only those locations. Intention to reach to novel locations generally

cannot be accommodated under this approach.

A third approach to decoding reach blends the classification and regression ap-

proaches in a method often called goal-directed reaching. Despite the prevalence of

the Kalman Filter, pure regression performances often leave much to be desired. For

instance, neurons in M1 appear to strongly encode information about instantaneous
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reaching direction while speed is less strongly encoded [75]. This commonly results in

effects in cursor control experiments where the cursor overshoots the target or never

entirely becomes stationary. Meanwhile classification approaches often do not allow

for variations in reaching speed or overall trajectory. One approach that has emerged

to treating these effect is the combination of reach regression with information about

the objective of the reach [74, 76–79]. This approach also lends itself to hierarchical

control where information about the objective of reach may be obtained from PM or

PPC prior to reaching [78] or to hybrid control where environmental sensors such as

tracking of eye gaze may help identify reach targets [80].

2.8.2 Decoding Grasp

Much like decoding of reach, there are several different approaches to decoding

of hand posture with varying degrees of fidelity to naturalistic grasp. The human

hand is capable of many complex postures. The joints of the hand and wrist allow

for potentially 27 degrees of freedom (DoF) of movement. In reality, mechanical

coupling by tendons and muscles [81] reduces the true number of degrees of freedom

substantially. However, the resulting space of potential hand postures is still high

dimensional in comparison to the 6 degrees of freedom that describe the general

location and orientation of the hand in space.

Decoding of hand posture or grasp in order to achieve the most naturalistic pos-

tures often results in the problem being treated as one of regression. In this paradigm,
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the joint angles of the hand and wrist are seen as continuous variables to be regressed

from spiking activity. Each joint angle may be decoded individually [82]. However, in

naturalistic movement the hand does not use all degrees of freedom equally; there are

a finite number of hand postures that are regularly used by primates. From a BMI

standpoint, researchers have attempted to find a set of synergies or lower dimensional

spaces that capture hand movement [53,83–85].

In the same way that decoding of reach can be simplified by limiting the number

of possible reach locations, decoding of hand posture can be simplified by limiting the

problem to selection from among a finite number of grasps. A number of classification

approaches have been applied to this task including linear discriminant analysis [36,

86], naive bayes classifiers [87, 88], support vector machines [69, 89, 90] and various

other non-parametric approaches [91]. One approach that preserves the possibility of

more complex hand postures is decoding the activation of individual fingers [50,92].

2.8.3 Decoding Simultaneous Reach and Grasp

Though many studies treat decoding of reaching and grasping separately, natural-

istic reaching and grasping requires coordination of the two. A number of studies have

incorporated the two to varying degrees. Typically reaching is controlled through a

regression approach and grasping is limited to a binary hand open/close postures or

regression of grasp aperture. An early example of simultaneous decoding of reaching

and grasping by Carmena et al [17] required monkeys to control the location and size
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of a virtual cursor through a BMI that had previously been trained on wrist velocity

and grip force. Another previously mentioned study by Velliste [56], required a mon-

key to use a BMI to control a physical robotic limb to reach to a piece of food, then

grasp it and return. Other experiments by the Donoghue group [93,94] demonstrated

simultaneous offline decoding of reach and grasp using data from an experiment that

required a monkey to reach out and grab a swinging object. Similar studies have been

performed with human subjects using a BMI to control cursor position and clicking

in virtual reality [19] or using a BMI to control the reaching and grasping of a robotic

limb [20,86].

2.9 Summary

This chapter attempted to provide a broad overview and introduction to many of

the concepts involved in working with BMIs. Though this work is focused more on

encoding and decoding than on the implementation of these models in a BMI, the

concepts generally go hand in hand. Whether the intention is to control a BMI or

perform exploratory brain research, the concepts of cortical anatomy, recording tech-

nology, and modeling methodologies are all interlinked. While each topic is worthy

of independent research in its own right, the following chapters will largely focus on

the modeling aspect. In particular these chapters detail a number of methods suit-

able for dealing with encoding and decoding while keeping in mind the trend toward
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simultaneous recordings from ever larger populations of neurons.
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Chapter 3

Experimental Protocol

3.1 Introduction & Background

The work in this thesis depends upon data from an experimental protocol con-

ducted on non-human primates in the lab of Dr. Marc Schieber at the University of

Rochester. Since data from this experiment will be re-used throughout this work, an

early description of the experiment seems prudent. Here we present the experimental

procedure, the methodology of neurophysiological recordings, and a number of figures

and tables that may serve as a reference for further chapters.

The experimental procedures and signal acquisition described in this chapter were

fully performed by Dr. Schieber and the members of his lab at the University of

Rochester. All procedures involving nonhuman primates were approved by the Uni-

versity Committee on Animal Resources at the University of Rochester.
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3.2 Experimental Procedure

Two male rhesus monkeys (monkey L and monkey X ) were trained to perform a

center-out reach, grasp, and manipulate task. The monkey was seated in a primate

chair and restrained such that the task was performed only with the right hand and

arm. The monkey interacted with an experimental apparatus similar to that depicted

in Fig. 3.1A. Four peripheral objects and a central home object were mounted on

individual rods extending outward from a vertical plane in front of the monkey. The

peripheral objects were arranged along a coplanar arc centered on a central home

object. The arc had a radius of 13 cm and each peripheral object was separated by

45° along the arc. The home object was positioned approximately 32 cm in front of

the monkey’s right shoulder.

The peripheral objects consisted of 4 unique forms: sphere, coaxial cylinder (pull),

perpendicular cylinder (mallet) and push button (push). Each object also had a

specific manipulation associated with it. The coaxial and perpendicular cylinders

could be pulled toward the monkey against a small spring load, the sphere could be

rotated, and the push button could be pressed.

A trial began when the monkey grasped and pulled the home object approximately

1 cm toward itself against a small spring load. This initiated a variable hold period

requiring the monkey to maintain its pull on the home object for a random duration

from 1,000 to 1,500 ms for monkey X and 1,500 to 2,000 ms for monkey L. Following

the initial hold period, a blue LED was illuminated next to one of the four peripheral
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Figure 3.1: Experimental apparatus (A) and analyzed experimental conditions (B).
Trials consisted of cued reach, grasp and manipulate behaviors from a home object
(indicated with darker shading) to one of four objects located at 45 degree intervals
along an arc centered on the home object. Moving clockwise along the arc, the
objects were: perpindicular cylinder, coaxial cylinder, push button and sphere. The
apparatus could be rotated and allowed for objects to be presented at 8 possible
locations. During a single experimental session, trials were performed at a total of 24
unique object-location combinations. We subdivided these conditions into 2 sets for
analysis (Subset 1 and Subset 2, as indicated). Subsets were constructed to include 3
objects presented at each of 4 locations. In this figure, objects are denoted by shapes
and possible positions are indicated by number. The apparatus setting depicted in
(A) shows the objects in positions 2, 4, 6 and 8.

objects. This cued the monkey to release the home object and to reach, grasp and

manipulate the indicated object. Successful manipulation of the indicated object

resulted in the closure of a microswitch. This illuminated a green LED next to the

object indicating successful manipulation and initiating a final hold period. The

final hold period required the object manipulation to be maintained for 1,000 ms.

Completion of the final hold resulted in a successful trial; the blue and green LEDs

were turned off and the monkey received a liquid reward. Failure to complete any

portion of this sequence resulted in a failed trial and no reward.

The mounting rods were attached to a mechanical apparatus that allowed rotation

about the central object. This apparatus could be rotated to any of 8 discrete zones
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Figure 3.2: Average time course of a typical trial. Event markers of interest such
as onset of movement (OM), object contact (OC) and static hold (SH) are indicated.
Successful trials required the monkey to maintain the static hold for an additional
1000 ms (not shown).

separated by a rotation of 22.5°. Peripheral objects maintained their ordering along

the arc and adjacent peripheral objects were always separated by 45°. For example,

in one zone, the four objects would be located at 0°, 45°, 90° and 135°. An adjacent

configuration would reposition the objects at 22.5°, 67.5°, 112.5° and 157.5°.

The experiment was self-paced and the monkey voluntarily initiated each trial by

pulling on the central (home) object. Trials were performed in blocks consisting of

approximately 10 reaches per object with the apparatus fixed in one zone. Following

each block, the apparatus would be rotated to a new zone in pseudorandom fashion.

Within a block, trials were cued in pseudorandom order except for in the event of

failed trials. Following a failed trial, the next trial would be cued to repeat the same

object and location. Failed trials were not included in this analysis. Trials were

limited to objects located in the range of 0° to 157.5°. As a result, trial blocks could

consist of cued reaches to 2, 3 or 4 objects depending on the rotation of the apparatus.

These tested conditions are shown in Fig. 3.1B and summarized along with number

of trials at each condition in Table 3.1.
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Table 3.1: Trial Counts At Each Object & Location For Monkey X (Monkey L)

0° 22.5° 45° 67.5° 90° 112.5° Total

Sphere 34 (30) 33 (30) 39 (27) 24 (29) – – 130 (119)

Push 28 (25) 26 (26) 29 (27) 30 (26) 37 (27) 29 (29) 179 (160)

Pull 33 (29) 33 (30) 33 (29) 35 (29) 33 (29) 31 (31) 198 (177)

Mallet – – 25 (28) 29 (29) 31 (29) 34 (31) 119 (117)

Total 95 (84) 92 (86) 126 (114) 118 (113) 101 (85) 94 (91) 626 (573)

Critical time points in each trial were measured via the experimental apparatus to

provide precise measurements of several experimental epochs. Cue presentation (Cue)

is meant as the time when the LED was first ignited next to the target peripheral

object. Onset of movement (OM) indicates the time the monkey released the central

home object and was determined initially by accelerometers placed in the central ob-

ject and verified by post-experimental analysis of motion recordings. Object contact

(OH) corresponded to the initial contact of the monkey with one of the peripheral

objects and was determined according to recordings made from accelerometers in

each of the peripheral objects. Switch closure (SC) corresponds to the completion of

object manipulation as determined by closure of a microswitch located on the target

peripheral object.

The epoch from cue presentation to onset of movement is referred to as planning

epoch and the duration of this epoch may be referred to as reaction time. The ensuing

epoch from onset of movement to object contact is labeled as the reach epoch and

the duration is referred to as the reaching time. The epoch from object contact to

switch closure consists of the period in which the monkey was manipulating the object
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Table 3.2: Average and standard deviation experimental epoch durations for each
monkey

Monkey X

Object Trials Reaction Time Reach Time Switch Time

Sphere 130 0.43 ± 0.07 0.17 ± 0.02 0.16 ± 0.07

Push 179 0.42 ± 0.07 0.27 ± 0.08 0.33 ± 0.17

Coax. Cyl. 272 0.38 ± 0.07 0.17 ± 0.04 0.15 ± 0.04

Perp. Cyl. 185 0.38 ± 0.05 0.18 ± 0.04 0.15 ± 0.04

Monkey L

Object Trials Reaction Time Reach Time Switch Time

Sphere 119 0.32 ± 0.07 0.18 ± 0.03 0.13 ± 0.11

Push 160 0.32 ± 0.06 0.29 ± 0.09 0.15 ± 0.13

Coax. Cyl. 237 0.31 ± 0.04 0.20 ± 0.05 0.15 ± 0.08

Perp. Cyl. 176 0.31 ± 0.03 0.15 ± 0.03 0.07 ± 0.06

and is referred to as the grasping epoch. Finally, after switch closure, the monkey

maintained his final grasp posture in an epoch referred to as static hold.

3.3 Electrophysiology

Each monkey was chronically implanted with multiple floating microelectrode ar-

rays (FMAs) (MicroProbes for Life Science, Inc). Each FMA consisted of 16 recording

microelectrodes arranged in a 4 x 4 grid. Microelectrodes within each FMA were of

variable length ranging from 1.0 to 6.0 mm. Recordings were made simultaneously

from 8 separate FMAs during performance of the task.

In each monkey, recordings were made from arrays implanted in putative primary

motor cortex (M1) and premotor cortex (PM) regions of the left hemisphere. In the

sessions examined in this study, recordings were made from 6 FMAs in M1 and 2
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Figure 3.3: Location of implanted arrays in Monkey X and Monkey L. Each monkey
was implanted with 8 electrode arrays. Each array consisting of 4×4 grid of electrodes.
Arrays were implanted in putative forelimb regions of the motor cortex consistent
with known anatomical landmarks. Array E in Monkey X is not shown since reliable
spiking activity was not observed from this array in the examined sessions.

FMAs in PM. Approximate positions of these FMAs are depicted in Fig. 3.3. Specif-

ically, the M1 arrays in each monkey were implanted anterior to the central sulcus

and positioned to record from varying depths down the anterior bank of the central

sulcus as well as from the crown of the precentral gyrus. The M1 arrays spanned the

entire upper forelimb representation as verified by intracortical microstimulation. In

each monkey, two FMAs were implanted posterior to the genu of the arcuate sulcus

and lateral to the superior precentral gyrus in the ventral premotor area. Additional

details regarding implantation are available in [36].

Analog neural recordings were taken from a total of 16 channels per array for a

total of 128 channels per monkey. Neural activity was recorded with a Plexon Multi-
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Table 3.3: Number of identified spiking units per array for each monkey including
definite single units, probable single units, and multi units

Monkey X Monkey L

Array Loc. Count Array Loc. Count

E M1 0 G M1 19

F M1 2 H M1 15

G M1 11 I M1 15

H M1 8 J M1 17

I M1 26 K M1 20

J M1 16 L M1 12

C PMv 14 E PMd 2

D PMv 35 F PMd 4

Total 112 104

Acquisition Processor (Plexon, Dallas, TX). Spike snippets from each channel were

extracted online using Plexon Sort Client software (Plexon, Dallas, TX) with channel

gains and thresholds set by the experimenter. Offline spike sorting was performed

using Plexon Offline Sorter (Plexon, Dallas, TX). Principal component analysis was

used to project waveform features into a low dimensional representation. Unit wave-

form centers were manually identified by visualizing raw waveforms and clusters in

principal component space. Automated spike sorting was applied by assigning wave-

forms to the nearest cluster.

Following spike sorting, spike trains were characterized based upon the signal to

noise ratio (SNR) and inter-spike intervals (ISIs). Signals were classified as definite

single units if the SNR was greater than 3.0 and there were no ISIs of less than 1 ms.

Signals were classified as probable single units if the SNR was greater than 2.5 and

at least 90% of ISIs were greater than 1 ms. Other units were classified as multiunit

recordings. These procedures are in line with metrics recommended in [95]. In the
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analyses presented in this document, we do not distinguish between single unit and

multi-unit activity. This lack of distinction between signal types is expected to have

little impact on the analyses.

Empirically, trial averaged responses of neurons tended to show significant vari-

ation in firing rate due to the grasp being performed as well as the location of the

object. Inspection of condition-specific peristimulus time histograms of the various

spiking units revealed units with varying degrees of object-only or location-only tun-

ing as well as several units with notable interaction effects between the conditions.

The spiking activity and task-specific average firing rate for an individual unit is

shown in Fig. 3.4.

3.4 Summary

The experiment described here provides a rich data set suitable for many analytical

approaches. These procedures improve upon earlier similar experiments performed

by Dr. Schieber’s group at the University of Rochester [36, 82] by incorporating a

means of dissociating reach location from object shape. A thoughtfully designed ex-

perimental apparatus and trial structure allows for precise identification of several

behaviorally relevant events such as onset of movement and object contact. Simulta-

neous recordings from multiple electrode arrays enable examination of the interaction

of neuronal activity across multiple spatial and temporal scales. While the number of
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Figure 3.4: Spike rasters and trial averaged firing rates from all trials for an indi-
vidual unit from Monkey L grouped by grasp (top panel) and reach (bottom panel)
conditions. Trials were aligned to the onset of movement (thick vertical line) and or-
der within task conditions by increasing trial duration. Times of completion of object
manipulation in each trial are indicated with thick black marks. Spike trains were
smoothed with a Gaussian kernel with standard deviation of 50 ms before averaging.
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identified spiking units was typically on the order of one hundred, analysis techniques

developed to deal with this cardinality of neurons should largely be relevant for several

hundreds of neurons or more. Data gathered from this experiment in the following

chapters will be applied to the task of investigating the dynamics of neural coding,

identification of neuronal functionality by unsupervised clustering, and task-specific

networks of functionally connected spiking units.

50



Chapter 4

Exploring Dynamic Motor Code

4.1 Introduction & Background

The response to stimulus and production of movement requires coordination across

multiple regions of the brain, each with a distinct role to play in the process. In the

example of producing a reaching behavior, separate regions of the brain are believed

to engage dynamically in the tasks of identifying an objective, preparing a motor plan,

producing the signals required to execute that plan, integrating sensory information

to provide feedback, and making continuous adjustments to the process to account

for noise and changes in the external environment [96]. However, this dynamical

interaction is not restricted to larger brain regions.

The firing activity of neurons in motor cortex and premotor cortex has been

observed to vary with time both in preparation of performing a movement [57,97,98]
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as well as during the movement itself. The variation of this firing activity is of great

interest. Repeated variations in firing rate of a single neuron over repetitions of a

trial may provide clues as to the types of information represented by the neuron,

such as limb kinematics or the eventual goal of a reaching motion. At the level of

a population of neurons, systematic variations in population firing activity across

experimental conditions may enable the decoding or read-out of the motor behavior

being performed.

Decoding is commonly applied to neural signals with the intent of controlling a

BCI. Decoding can serve a more general purpose by attempting to measure the in-

formation content in a set of neural signals as well as the stability of a particular

representation [99]. More commonly within the motor BCI framework, population

dynamics are often marginalized by averaging firing rate over entire trials or time

periods of several hundred milliseconds. Information about a stimulus or behavior

may involve coordination of an entire ensemble or population of neurons [100]. Addi-

tionally, individual neurons have been shown to have significant time-varying activity

not readily explained by a extrinsic task-relevant covariates [43–45, 73, 101–104]. In-

dividual units may further vary the parameters that are encoded depending on the

task [48] or the presence of prior information [71].

In decoding motor behavior, regression-based approaches to decoding can account

for some temporal variation in population activity by associating the time-varying

firing rates with one or more time-varying kinematic parameters. Classification tech-
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niques, meanwhile, typically model neural population activity as evolving through

some number of discrete states using finite state machines [67] or hidden markov

models [105, 106]. Insight into spatial and temporal evolution of discriminable neu-

ral activity can be assessed by evaluating classifier performance based on signals

limited to a particular window of time [36] or a particular subset of all available

signals [36, 69,94,107].

In this chapter we apply dimensionality reduction and classification techniques to

signals from motor and premotor cortex in order to investigate the dynamics of the

neural population during production of reach and grasp motions.

4.2 Methods

4.2.1 Experimental Protocol

The experimental protocol used here was the same as that described in Chapter

3. Briefly, two rhesus macaques participated in a motor experiment involving cued

reach to grasp and manipulate trials beginning from a central object and ending at

one of four peripheral objects positioned at one of eight possible locations. In total, 24

experimental conditions were evaluated. Electrophysiological recordings were made

from eight intracortical floating microelectrode arrays implanted in M1 and PM areas

of each monkey. Each array consisted of a 4 x 4 square grid of 16 recording electrodes

of varying lengths. Recordings from each channel were processed to isolate neuronal
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spiking activity as described in Chapter 3.

4.2.2 Feature Extraction and Time Rescaling

For this work, we assumed the observed neurons encoded information through

rate coding. In each trial, spike times for each unit were converted to binary spike

trains with sampling rate of 1 kHz. These binary spike sequences were convolved with

a 50 ms wide boxcar kernel to provide an estimate of firing rate. This technique of

generating smoothed firing rate estimates by convolution with a gaussian or boxcar

kernel is commonly applied in the literature [82, 88, 93, 108]. The width of these

smoothing functions commonly range from 50 ms to 200 ms or more depending on

the intended application. In BCI applications the choice of kernel width reflects a

trade-off between responsiveness and smoothness [13,108], while in other applications

the width reflects inherent time-scale of neural activity of interest.

Trials exhibited differences in average duration related both to object type as

well as location. Differences in trial duration can complicate multi-trial analysis due

to misalignment of key events. In order to ameliorate difficulties due to variation

in trial lengths, we applied a time normalization technique to smoothed firing rates

for each trial. Linear interpolation was used to resample each experimental epoch

to be the same number of samples across trials. Three epochs were identified: cue

presentation to onset of movement, onset of movement to object contact, and object

contact to static hold. Linear interpolation was applied to resample each interval to
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a number of equally spaced samples matching the number of samples corresponding

to the interval’s global average at a sample rate of 1 kHz. Since this interpolation

is performed after the estimation of firing rates, the magnitude of each unit’s firing

does not change, though the overall time course may become compressed or dilated.

For example, the global average duration for the OM to OC epoch was approx-

imately 200 milliseconds or 200 samples at 1 kHz. In each trial, the smoothed fir-

ing rate samples corresponding this epoch were linearly interpolated to 200 samples.

While this results in some dilation or compression of time across trials, the percentage

of time elapsed between experimental events is preserved. In this case, 50 samples

from the rescaled trials during epoch will always correspond to 25% of the time elapsed

between onset of movement and object contact, regardless of the original duration.

4.2.3 Visualization and Comparison of Neural Tra-

jectories

To visualize the dynamics of the ensemble during reaching and grasping, we apply

a two-step dimensionality reduction procedure similar to that described in [108,109].

Spiking activity was converted to smoothed firing rate estimates as described pre-

viously. Each unit’s smoothed firing rate was standardized by mean centering and

scaling according to its standard deviation. Each trial’s standardized neuronal ac-

tivity was then time-rescaled as previously described to a vector of length n. This
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time-rescaled activity from each of p spiking units during the ith trial was gathered

into a n × p matrix Xi. This matrix represents the time-varying trajectory of the

neural population in p-dimensional space over the course of a single trial.

Average task-specific population trajectories can be produced by first gathering

all the matrices for each of the trials in one or more experimental conditions, then

averaging each cell of X along the collected trials. We performed this procedure

for trials in each of the 24 experimental conditions observed during the experiment,

where the expected population activity for the ith experimental condition E
[
X(i)

]
is

denoted S(i). These trajectories were compared pairwise on a sample-by-sample basis

according to average euclidean distance in the high-dimensional space

d(S(i),S(j)) =
1

n

n∑
k=1

||s(i)k − s
(j)
k ||2 (4.1)

where s
(i)
k is the kth row of the matrix S(i), or the kth sample of the time-rescaled

population activity averaged across all trials within condition i. This gives us the av-

erage point-wise distance between any pair of average population trajectories S(i) and

S(j). The interpretation of these distances are straightforward: pairs of trajectories

with smaller distances tend to be more similar than pairs of trajectories with larger

distances. The pairwise distances were evaluated for each pair i, j of 24 conditions

and assembled into a 24× 24 distance matrix D.

We can then visualize a lower dimensional representation of these trajectories

through a procedure known as multidimensional scaling (MDS) [110]. In short, mul-
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tidimensional scaling is a dimensionality reduction procedure that attempts to find

an arrangement of points in low-dimensional space that preserves the inter-point

distances observed in the original space. For example, consider the case of being pro-

vided a 10 × 10 matrix of inter-city distances between 10 major cities in the United

States, but not the actual names or locations of those cities. MDS can attempt to

produce a 10× 2 dimensional matrix describing the locations of a set of 10 points in

2-dimensional space that roughly preserves the original distance matrix. These points

can then be used to visualize the approximate relative positions of each of the 10 cities

in a 2-dimensional map. Here we use apply MDS to our matrix D to attempt to find

an arrangement of points in 2-dimensional space that preserves the original pairwise

distances. We will use this approach to better understand the overall behavior of the

population trajectory across each of the 24 conditions.

While the MDS allows us to visually understand the relationship between popu-

lation trajectories on average, the approach averages out temporal variation. Ideally

we would like to be able to observe how population trajectories tend to evolve over

time. To reduce the dimensionality of the high-dimensional averaged trajectories

while preserving the temporal structure, we apply Principal Components Analysis

(PCA). Though there are many approaches to dimensionality reduction for spiking

activity (see [111] for a review), PCA is fast, effective, and widely used for investi-

gating simple differences between differences in trial-averaged activity.

PCA is a procedure that finds a linear transformation matrix in order to find a set
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of orthogonal vectors that capture the directions of the greatest variance of samples

in the matrix. Given an n − by − p matrix X where each row is an observation and

each column is a feature, PCA can be performed by standardizing the columns of X

then performing the singular value decomposition (SVD) of the resulting standardized

matrix. The SVD procedure finds a decomposition of X:

X = UΣVT (4.2)

where U is a n × p matrix of left singular vectors, V is a p × p matrix of right

singular vectors, and Σ is a diagonal p × p matrix of singular values corresponding

to the square root of the eigenvalues of X. The entries of U and V correspond to

the eigenvectors of XXT and XTX. The principal components of X are given by the

columns of UΣ and dimensionality reduction can be performed by keeping the first

k < p principal components.

For each monkey, we performed PCA on the data collected in three different

ways: object-specific trajectories, location-specific trajectories, and combined object-

location specific trajectories. As an example, the find reduced dimensions of object

specific trajectories, we grouped the time-rescaled population activity X
(obj1)
i for the

first object type. We then calculated the average of these matrices, S(obj1). This

process was repeated for each of the remaining three object types. We then vertically

concatenated these matrices into a 4n× p matrix:
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S(obj) =
[
S(obj1);S(obj2);S(obj3);S(obj4)

]
(4.3)

PCA was performed on the resulting stacked matrix. The first 3 principal com-

ponents were retained and the corresponding average reduced-dimensional trajectory

matrices (now each n× 3) were unstacked. The resulting matrices then represented a

projection of each of the object-specific average population vectors into 3-dimensional

space. This same procedure was repeated for the 8 reach locations as well as for the

24 total experimental conditions.

4.2.4 Static vs. Dynamic Decoding Performance

We are interested in further investigating the dynamics of coding of reach and

grasp through an analysis based in population decoding. To achieve this, we chose

to model and classify firing rates using a Linear Discriminant Analysis (LDA) clas-

sifier. LDA is a widely used classifier commonly applied in population decoding of

neural signals [36, 82, 99]. LDA is favored for its simplicity, minimal computational

requirements, and overall performance in classification tasks [112].

LDA is a generative classifier that models samples of the neural data during per-

formance of a particular class as independent draws from a multivariate gaussian

distribution with a class-specific mean, µc, and a common covariance matrix that is

shared across all classes, Σc = Σ. From these assumptions, the likelihood of a single
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observation x under any class-specific distribution is defined as:

p(x, θ) = |2πΣ|−
1
2 exp

[
−1

2
(x− µc)

TΣ−1(x− µc)
]

(4.4)

The probability that the sample was drawn from a particular class can then be

evaluated from Bayes Rule:

p(y = c|x) = p(y = c)p(x|y = c)∑
c′ p(y = c′)p(x|y = c′)

(4.5)

Thus under the assumptions made by the LDA model, the posterior distribution

can be estimated as:

p(y = c|x, θ) =
|2πΣ|−

1
2 exp

[
−1

2
(x− µc)

TΣ−1(x− µc)
]

∑
c′ |2πΣ|

−1
2 exp

[
−1

2
(x− µ′

c)
TΣ−1(x− µ′

c)
] (4.6)

This expression can be reduced to:

p(y = c|x, θ) = exp
[
µcΣ

−1x− 1
2
µcΣ

−1µc + log πc

]
exp

[
−1

2
xΣ−1x

]
(4.7)

Model training corresponds to identifying the means for each class and estimat-

ing the pooled covariance matrix. Once a model has been fit, classification can be

performed by evaluating the posterior probability of a new data point under each of

the class conditional distributions. The data point can then be labeled as being a

member of the class corresponding to the highest posterior probability. The name
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LDA is derived from the fact that decision boundaries between a pair of classes are

simple hyperplanes.

For our case, we treat each observation of the population activity in some par-

ticular bin as a single observation of a p-dimensional feature. We took two different

approaches to classifying data from a particular bin, however. A single classifier was

trained on data from all of the discretized bins in all of the trials from the training

set. We call this classifier the global or static classifier as it reflects the assumption

that the population activity is relatively stationary over the entire trial duration. In

addition, this classifier learns a boundary optimized for separating data aggregated

over the entire trial and will thus tend to ignore localized variations.

Multiple local classifiers were trained to evaluate the possibility of a dynamic

neural code. Each local classifier was trained on data from a single discretized time

bin from all of the trials in the training set. In other words, given m instances of n×p

single trial population activity X(1), X(2), ... X(m), we trained n separate classifiers,

each trained on data from a single row of each of the m population activity matrices.

If the underlying code is static, the classification performance of any local classifier

on data from any point during a trial should be similar. That is, a classifier trained

on data from a specific point in time should have roughly equal chance of correctly

classifying data from any point during the trial, regardless of time. If instead the

population activity is dynamic over the course of a trial, we would expect to observe

a change in classification accuracy as some function of the time difference between the
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training bin and evaluation bin. In general, we would expect performance to fall off

as the temporal difference between training time and evaluation time increases. As

described in [113], a monotonic decrease in performance need not always be the case,

such as in the presence of oscillatory systems. Evaluating classification performance

in this way will provide an indirect view of temporal variations in the representation

of behavior-specific population spiking activity.

The global classifier as well as each of the local classifiers were then evaluated on

data from all discretized time bins in the testing set. Decoding metrics were indexed

according to the time bin the test data was drawn from.

4.2.4.1 Temporal Generalization

In the event that a neural code is changing dynamically and utilizing different

elements of the population over time, a classifier trained on data from one point

during a trial may not generalize well to data from other points during a trial. This

general concept is known as temporal generalization [113]. Temporal generalization is

a property of the classifier itself and not necessarily a property of the brain. However,

the choice of classifier represents an assumed model of coding utilized by the brain

and allows us to better consider whether this proposed coding scheme is static or

dynamic.

Temporal generalization was examined by evaluating performance of each of the

local classifiers against data from all time bins. Performance by the local classifier
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trained on data from time bin i and evaluated on test data from time bin j was

aggregated for all values i and j to form a temporal generalization matrix, G. The

entries along the main diagonal of this matrix, G(i, j) for i = j, should reflect optimal

decoding performance. This is because the main diagonal represents evaluation of

data on a classifier trained under similar, if not identical, conditions. Meanwhile,

entries off of the main diagonal indicate temporal generalization. As the magnitude

of the difference between i and j increases, we would generally expect classification

performance to decrease in the event of a dynamic neural code. This is because data

from time bin j may no longer be representative of the underlying neural conditions

that were present during the period i in which the classifier was trained. The temporal

generalization matrix avails itself to empirical inspection where various patterns may

reveal insights into the underlying neural code [113]. The global classifier does not

lend itself to evaluation for temporal generalization because it was trained on data

from all time bins.

The extent of temporal generalization was quantified by measuring the half-

bandwidth of generalization performance. Specifically the half-bandwidth was identi-

fied as the duration between peak classification performance and the first time point

in which this performance fell to 1/
√
2 of its maximal value.
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4.2.4.2 Crossvalidation

A stratified 5-fold crossvalidation approach was applied to divide entire trials

into training and testing sets to ensure a reasonable approximation of generalization

performance. Within each fold, 20% of trials were assigned to the test set. The

remaining trials were allocated to the training set. Across all folds, each trial appeared

in the test set exactly once. A stratified approach was applied to ensure that the

relative proportions of experimental conditions were preserved. That is, the testing

set and training set each contained approximately the same distribution of trials

corresponding to each class as was present in the full dataset.

4.2.5 Temporal Recruitment of Neurons

In the event temporal generalization is evaluated and the underlying neural pop-

ulation is observed to have a dynamic representation of behavior, we would like to

attempt to understand how and where this information is distributed over time.

In [99], researchers proposed a method of identifying neurons engagement at dif-

ferent points in a task. Their method consisted in evaluating the difference in average

firing rate for a neuron across two conditions, a measure similar to modulation or tun-

ing depth [17]. This time-series was taken as an estimate separability, or the degree

to which a particular neuron’s activity changes across differences in the experimental

condition. This separability measure was then compared with the temporal general-
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ization performance of a population classifier trained at a specific time bin. If the two

time-series were significantly correlated, the neuron was accepted as being engaged

in the task at that particular time bin.

Here we apply a similar technique. The difference in firing rate method does not

directly extend to the case of more than two classes. As a surrogate measure of the

degree of differential representation of signals by each neuron, we repeat the earlier

procedure of training and evaluating LDA classifiers at each time bin. The time-

rescaled activity from each unit was binned and used individually to train a single

classifier for each time bin. This classifier was then evaluated on samples from the

same time bin from trials in the test set. We substitute the instantaneous classification

accuracy as a measure of separability.

Pearson’s correlation was measured between each neuron’s time-series of classi-

fication accuracy with the time-series of temporal generalization of the population

classifier trained at a particular time bin. If this correlation was statistically signifi-

cant (p < 0.0001), the unit was taken to be a significant contributor to the population

classifier trained in that time bin. As such, the unit was labeled as being significantly

engaged in the representation of the task at this point in time.
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4.3 Results

Neural units with average firing rates less than 3 Hz were excluded from the

analysis. This resulted in inclusion 58 of 112 units in Monkey X and 74 of 104 units

in Monkey L. The initial reach to grasp experiment consisted of 24 unique reach and

grasp combinations. All 24 of these conditions were included in the initial analysis,

but only a subset of these trials were included in the classification analysis. Conditions

used for classification were limited to trials to the sphere, push button, and coaxial

cylinder at locations 1, 2, 3, and 4. This combination of trials is denoted as Subset 1

in 3.1B. This selection was made to ensure that each object and location included in

the subset were examined in all possible combinations so as to minimize bias of the

classifier.

Spike trains from these trials were converted to firing rate estimates by convolution

with a boxcar kernel with a width of 100 ms. For each monkey, data from all trials was

temporally rescaled to be of uniform length with an approximately 1 kHz sampling

rate.

The time course of the firing rates for each trial were interpolated in order to

standardize trials to be of equal duration. Three intervals were identified: reaction

time (Cue to OM), reach time (OM to OC), manipulation time (OC to SC). The

average duration of these intervals for each monkey are detailed in Chapter 3. In

addition to these intervals, an additional 250 ms following switch closure were included

for each trial. This final epoch was included as a representative sample of the static

66



CHAPTER 4. EXPLORING DYNAMIC MOTOR CODE

hold period which lasted a full 1000 ms.

As a result of this time rescaling, trials for monkey X were rescaled to a total of

967 samples and trials for monkey L were rescaled to 846 samples. The mean and

standard error of trial length distortion (absolute difference in number of samples

between original and time-rescaled trials) was 136 ± 5.4 samples for monkey X and

110± 4.4 samples for monkey L. The magnitude of the firing rate estimates was not

standardized or rescaled. Rescaled firing rates were downsampled from 1 kHz to 100

Hz such that samples reflected a sliding 100 ms window with a 10 ms slide size.

4.3.1 Empirical Analysis of Population Dynamics

Spiking activity from all units in a particular trial were combined into a single

matrix representative of the neural trajectory through high dimensional space during

that trial. To better visualize these matrices, trials within experimental conditions

were combined and average to form an average neural trajectory. PCA was performed

on concatenated versions of these trajectories and the top 3 principal components were

visualized in three-dimensional space.

Inspection of low dimensional representations of neural trajectories yielded several

insights that were consistent across both monkeys. PCA was performed separately

on neural trajectories grouped by object type as well as trajectories grouped by reach

location. The averaged object-specific and location-specific trajectories are shown

in principal component space in 4.1. The first three principal components of object
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Figure 4.1: Visualization of neural trajectories for reaching and grasping in lower di-
mensional space. Dimensionality reduction techniques (principal component analysis)
were applied to time normalized population activity during simultaneous reaching and
grasping. Trial-averaged responses to different object types (left panels) and reach
locations (right panels) are shown for Monkey X (top panels) and Monkey L (bottom
panels).

specific trajectories accounted for 71% and 72% of the variance in monkeys X and

L, respectively. The first three components of location specific trajectories accounted

for 68% and 76% of the variance.

Both grasp-specific and object-specific trajectories exhibited a cyclical shape orig-

inating from a common point corresponding to cue presentation. In general trajec-
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tories appear to diverge as they travel away from the origin then converge as the

loop returns toward the origin. That is to say the pairwise distance between any

pair of trajectories appears to achieve a maximum sometime during the middle of the

trajectory before declining.

Trajectories corresponding to reaches to different locations appear to vary smoothly

through the low directional space. For example, the trajectory corresponding to loca-

tion 2 appears to be closer in space to the trajectory for location 1 than the trajectory

for location 8. Object-specific trajectories appear to have similar topology overall but

also appear to be better separate than location-specific trajectories.

PCA was then performed on the mean trajectories of all 24 experimental con-

ditions and the resultant PCs were visualized as in 4.2. Though all 24 trials are

shown in the figure, trajectories are colored according to object shape. The first

three components here accounted for 57% and 59% of the variance in monkeys X and

L.

Simultaneous inspection of mean neural trajectories for all experimental conditions

appear to show that in the lower dimensional space, neural trajectories for different

grasps are better separated than trajectories for different reaches to locations. In this

low dimensional space, we see that trajectories appear to cluster by grasp first and

then show differentiation based on reach location within the broader grasp cluster.

The trajectories collectively appear to simultaneously exhibit the qualities shown in

the reach-specific and object-specific trajectories in Fig. 4.1.
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Figure 4.2: Visualization of neural trajectories for reaching and grasping across all
experimental conditions shown in lower dimensional space. Dimensionality reduc-
tion techniques (PCA) were applied to time normalized population activity during
simultaneous reaching and grasping. Trial-averaged responses to all experimental
conditions are shown for Monkey X (left) and Monkey L (right). Traces have been
colored by grasp type to illustrate clustering among grasps.

To further examine the differences between condition-specific trajectories, we

examined the pairwise distance between the condition-specific average trajectories.

These distance were combined to form a distance matrix for each monkey shown in

4.3. Distances were calculated according the the average pointwise euclidean distance

over time under the assumption that trajectories moved through space at the same

velocity.

The distance matrices largely appear to confirm what we empirically observed

in the reduced dimension visualizations. The neural trajectories between trials to

the same object at two adjacent locations tended to be more similar than trajectories

between trials to two different objects at the same location. There does, however seem

to be a relationship among reach locations preserved across objects. For example,

push button trials at location 1 (experimental condition 5 in Fig. 4.3) are more
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Figure 4.3: Pairwise distance of averaged neural trajectories for each of the 24
experimental conditions in Monkey X (left) and Monkey L (right). Conditions are
presented in order of object and location. Here, condition 1 corresponds to the sphere
at 00 where condition 2 is sphere at 22.50. Condition 5 is push button at 00 and
condition 10 is push button at 1350. Neural trajectories for a particular object tend
to be close together though there appears to be a monotonically increasing distance
between trajectories as a function of distance. Trajectories for a single object at two
adjacent locations tend to be closer than trajectories for different objects at the same
location.

similar to coaxial cylinder trials at location 1 (experimental condition 11) than they

are to coaxial cylinder trials at any other location (experimental conditions 12-18).

As a final visualization of the population activity, the average pairwise trajectory

distance matrix was reduced to two dimensional space using multidimensional scaling

(MDS). The result of this operation is shown in Figure 4.4. A good quality of fit

was ensured by examining the correlation between the original pairwise distances and

the pairwise distances of the coordinates resulting in the MDS space. In Monkey

X (Monkey L) these distances had a Pearson’s r value of 0.88 (0.86). These values

indicate that the visualization is a relatively good low dimensional representation of
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Figure 4.4: Multidimensional scaling of average neural trajectories for Monkey X
(left) and Monkey L (right). A 2-dimensional representation of average neural trajec-
tories was found through multidimensional scaling. Each of the points corresponds
to a different experimental condition representing a combination of an object (S =
sphere, B = push button, C = coax. cyl., P = perp. cyl) and a location (1-8).

the data.

The reduced dimensional representation produced by MDS confirms largely what

was observed in the visualizations produced by PCA. Experimental conditions appear

largely to be grouped primarily by grasp type and then secondarily by reach location.

We also see that the smooth relationship of distance between reach trajectories is gen-

erally preserved in each of the grasp specific clusters. MDS also confirms that reaches

to one location are largely similar across objects. For example, in both monkeys we

see in Fig. 4.4 that reaches to the same location are generally close together despite

being primarily clustered by object.
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4.3.2 Classification by Neural Populations

The previous visualization of the averaged neural trajectories appear to indicate

the presence of a substantial degree of structure and separability suggesting that

both classification of reach and grasp should be possible. We examined two different

paradigms for classification of population activity:

1. Global classification: A single classifier is trained on data from all time bins.

Performance is then evaluated with data from all time bins.

2. Local classification: Multiple classifiers are trained, each one using data exclu-

sively from a single time bin. Performance for each classifier is evaluated data

from the bin it was trained on.

As we are using simple LDA classifiers, the difference in performance between

global and local classifiers may be seen as an indicator of the complexity of the

boundary between neural trajectories of different conditions. In general, we would

expect the local classifiers to have better performance than the global classifier. This

is because the local classifiers are better able to fit localized trends in the data than

a single global classifier. One exception to this is that local classifiers may have

poorer performance than the global classifier in situations where the local classifier

overfits the training data due to insufficient data for reasonable parameter estimates.

A large difference between the local and global classifier performance would suggest

boundaries are highly nonlinear, whereas small distance would indicate the boundaries
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Figure 4.5: Classification accuracy of object and location decoding for each monkey.
Dashed vertical lines correspond to average time-rescaled occurrences of movement
onset, object contact and switch closure. Performance is shown for local classifiers,
which were trained and evaluated on data from the same time bin, and global clas-
sifiers, which were trained on data from the entire trial and evaluated on data from
each time bin.

between classes are not changing substantially over time.

For each monkey, classification was performed independently for decoding object

and location. The performance of these classifiers is shown in Fig. 4.5. Three objects

and four locations were assessed resulting in chance classification accuracy of 33% and

25%, respectively. Several trends were evident and consistent across both monkeys.

Classification of grasp performed significantly better than classification of location.

Local classifiers had better classification accuracy than the global classifier. On a

point-by-point basis, local classifiers tended to outperform global classifiers.

Object decoding was assessed in terms of classification accuracy. Monkey X

achieved a maximum classification accuracy of 100% ± 0 for local classifiers and

95.7% ± 1.1% for the global classifier. Monkey L achieved a maximum classification

accuracy of 100% ± 0 for local classifiers and 98.8% ± 0.3% for the global classifier.
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Location decoding was similarly assessed in terms of classification accuracy. Mon-

key X achieved a maximum location classification accuracy of 66.3%± 2.8% for local

classifiers and 62.7%± 1.5% for the global classifier. Monkey L achieved a maximum

location classification accuracy of 59.7%±3.5% for local classifiers and 48.9%±24% for

the global classifier. Differences in maximum classification accuracy for both object

and location were significant in Monkey L (paired t-test, p < 0.05) but not Monkey

X.

Classification accuracy alone does not provide the full picture of decoding per-

formance for decoding location. In further assessing the performance of location

decoding, we analyzed performance in terms of a cost function. A simple linear cost

function was chosen. If the classifier correctly classified the location, there were 0

units of cost incurred. If the classifier incorrectly chose an adjacent location, 1 unit of

cost was incurred. Classifying to the next location even further out incurred 2 units

of cost and so on. This difference in evaluations was necessary as we would generally

consider a near miss during a reach to be better than missing by an especially large

margin. In the space of grasping, if an incorrect class of grasp is performed, it is

difficult to generally quantify just how close the incorrect grasp was to the intended

grasp.

Monkey X achieved a minimum mean cost of 0.40 ± 0.04 for the local location

classifiers and 0.43 ± 0.02 for the global location classifier. Monkey L achieved a

minimum mean cost of 0.44± 0.04 for the local location classifiers and 0.58± 0.04 for
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the global location classifier. This difference in location decoding performance was

not significant in monkey X but was significant in monkey L (p < 0.05).

4.3.3 Temporal Generalization

We observed in the previous section that local classifiers did outperform global

classifiers, though the effect size seemed somewhat small. To better understand the

nature of the dynamics in the population code, we examined the concept of temporal

generalization. Analysis of temporal generalization makes use of the local classifiers

trained on data from a single time bin. Each classifier’s performance is then evaluated

on data from all other time bins. Unlike the previous section, we are interested in ob-

serving how performance falls off as data is provided from temporally distant regions.

For the purposes of analysis of temporal generalization, classification performance

was of grasping was measured in terms of classification accuracy while classification

performance of grasping was measured in terms of the previously mentioned average

linear cost.

Temporal generalization metrics were arranged into generalization matrices as

shown in Fig. 4.6, where the main diagonal reflects the optimal performance of a

classifier evaluated on data from the same time bin it was trained on. This per-

formance is identical to the local performance shown in Fig. 4.5. The off-diagonal

elements are more of interest, however. Elements above the diagonal represent per-

formance on time bins later than when the classifier was trained. Similarly, elements
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Figure 4.6: Generalization matrix for classification of grasp shape (left) and reach
location (right) in monkey L (top) and monkey X (bottom). Each column of this
matrix indicates the classification accuracy of an LDA classifier trained in one time
period when this classifier is evaluated on data from all time periods. The main
diagonal indicates optimal classification performance while the off-diagonal region
indicates generalization performance across time. The three vertical lines correspond
to the average times of onset of movement, object contact, and switch closure. The
pattern here suggests information about grasp becomes available just before onset of
movement and is dynamically represented before switch closure. After switch closure
there is evidence of the emergence of a more stable code.

below the diagonal represent performance on time bins prior to the training of the

classifier.

The temporal generalization matrices exhibited several trends common to both
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Figure 4.7: Half bandwidth of temporal generalization performance for both mon-
keys in each experimnental epoch. Half bandwidth here indicates the average time
for a specific classifier’s performance to decline from peak accuracy to 70.1% of peak
accuracy. Half bandwidth was used because the rolloff was not always symmetric and
bandwidth was taken as the minimum time elapsed on either side of the peak. Each
bar represents the average half bandwidth within the epoch and error bars indicate
standard error.

monkeys. In general, for both reach and grasp decoding, the generalization matrices

showed a banded structure that began just prior to onset of movement and continued

throughout the remainder of the trial. The width of this band may be thought of as an

approximation to the temporal relevance of the population code at any point in time.

Specifically the bandwidth can be thought of as the range over which the classification

rules learned in that instant are still relevant. We observed that, relatively speaking,

the bandwidth was smallest prior to movement and gradually broadened over the

remainder of the movement. The average bandwidth during each experimental epoch

is shown in Fig. 4.7.

The bandwidth broadened substantially during the static hold period indicating

that the degree of change of the population dynamics had reduced and a more stable
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code was present. This narrow banded structure broadens significantly after switch

closure, indicating that the encoding of reach and grasp is more stable during this

period. Additionally, taken in consideration with the results shown in Fig. 4.5 and

Fig. 4.1, this period also exhibits a slow decline in classification performance that

appears to correspond to a gradual decline in the separability of the class-conditional

signals. This suggests that population activity appears to slowly converge toward a

baseline state.

4.3.4 Individual Unit Performance

In order to examine dynamic coding at the scale of individual units, we evaluated

the grasp classification performance of each unit individually. For each unit, separate

LDA classifiers were trained for each time bin. Five fold cross-validation was applied

and performance was evaluated on data from the holdout set from the same bin the

classifier was trained on. Classification was measured in a manner identical to the

optimal local classifier performance from previous sections.

The results of this classification analysis are shown in Fig. 4.8. In both monkeys,

the time course of classification accuracy for individual units showed unimodal char-

acteristics. Individual units also showed a wide range of preferred times, with most

having peak classification performance sometime after the onset of movement. When

considering the population-averaged individual unit classification performance, mon-

key X showed peak performance between switch closure and static hold while monkey
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Figure 4.8: Individual unit classification performance for both monkeys on object
classification. Each plot shows performance of classifier trained on individual unit.
Units were sorted by order of peak accuracy (upper right). The average individual unit
performance (shaded region ± standard error) is shown below. Left panel indicates
maximum classification accuracy for each of the units.
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L had peak performance shortly after switch closure.

While units did generally indicate a range of preferred times for maximal clas-

sification performance, there was substantial variation in the maximal classification

accuracy as seen in the left panels of Fig. 4.8. The period of relevance for each unit

also showed variation in that many units appear to have object-specific firing rate

variation in small time windows while others demonstrate largely separable activity

over longer periods. This variation is easily observed in the upper right panel of Fig.

4.8.

4.4 Discussion

In this chapter we applied several methods to examining the nature of neuronal

population activity by spiking units in motor cortex and primary motor cortex during

performance of a reach to grasp and manipulate task. We created smoothed estimates

of firing rates that were temporally normalized to attempt to align event markers

across trials and allow for comparisons across experimental conditions. These aligned

trajectories were then used to examine lower dimensional projections of task-specific

population activity. Classification analysis was performed to assess the presence of

discriminative activity within the population as well as the temporal stability of this

code at a population level. Finally classification analysis was performed at the level of

individual units to gain further insight into the nature of the time varying population
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code.

4.4.1 Dimensionality Reduction

Population trajectories observed in lower dimensional space are consistent with

those seen previously in similar works [91,108,111,114,115]. The average trajectories

for different experimental conditions exhibit apparent smooth structure in low dimen-

sional space and appear to be largely monophasic in the first three principal com-

ponents. Empirical analysis of the PCs along with dimensionality reduction through

multidimensional scaling suggest a hierarchical structure to the trajectories primarily

along grasp type and secondarily along reach location. In a recent study [116], a

similar smooth variation in firing patterns in low dimensional space was observed for

center-out reaches to different directions.

This separation observed in low dimensional space was reflected by the perfor-

mance of population classifiers for reach and grasp. Classifiers readily achieved near-

perfect classification of object type while having difficulties decoding reach location.

This suggests that while there is apparent structure across trial averaged population

trajectories, the signal to noise ratio across individual trials may be low. Another

explanation could be that the observed units were more primarily involved in coding

behavior related to the hand and wrist. An analysis of the separability of location

based on joint angle in [117] indicated that much of the discriminating information

about reach location was contained in shoulder angles as opposed to joint angles of
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the hand and wrist.

4.4.2 Population Coding

Population performance was compared for global linear classifiers as well as se-

quences of linear classifiers. The sequence of piecewise linear classifiers approximates

the behavior of a more complex non-linear classifier. Differences in performance

between global and local classifiers could indicate significant deviations from linear

separability and justify the use of more complex decoding approaches. In the case of

Monkey L, local classifiers appear to result in slightly improved overall classification

performance of both reaching and grasping. Monkey X showed little to no difference

in decoding performance for the local versus global classifier. These results are not

especially surprising given inspection of task-specific trajectories in Fig. 4.1, which

seem to indicate that trajectories may generally be well separated by a hyperplane.

Perhaps more revealing is that local classifiers did not dramatically improve decoding

of reach location, again suggesting that classification performance is limited by noise

or feature representation rather than the flexibility of the classifier.

Analysis of population coding by temporal generalization matrices indicated the

presence of a dynamic code throughout much of the movement. Prior to the static

hold period, locally trained population classifiers tended to be relevant only for 100-

200 ms as shown in Fig. 4.7. A more stable code appeared to emerge during the static

hold period, corresponding to a general abatement of kinematic activity. This stable
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code appeared to begin just prior to switch closure and largely considered throughout

the 250 ms of static hold period that was included in the analysis. This observation

is similar to findings of another study that observed slowing of neural dynamics in

motor cortex during the hold period of a center-out reach task [115].

4.4.3 Individual Unit Relevance

The dynamics expressed in the analysis of population classification suggest that

individual units are relevant to the task for only brief periods of time. To investigate

this further we examined the temporal patterns of classification performance by each

of the individual units. We observed that many units appeared to provide discrim-

inative information related to object type for only a brief period during each trial.

Individual neurons exhibited a wide range of classification performance as shown in

Fig. 4.8. There did not appear to be a clear relationship between the time offset of

temporal relevance and overall maximum classification performance at the single unit

level. While most units exhibited temporally localized discriminative information,

some units in both monkeys were relevant over a more broad period of time. These

units also appeared to have better discrimination performance overall.

This sequential activity has been observed in other domains and could potentially

be explained as the activation of sequences of cell assemblies [118]. Similar sequences

of activation have been observed in other brain areas including hippocampus [119],

prefrontal cortex [120,121], and parietal cortex [99,122]. Within motor areas, however,
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this sequential activity could also potentially be tied to the kinematics of the monkey

performing the task [117].

The analysis of dynamics in this chapter provided some insight into the complex

nature of coding of behaviors by neurons in the motor and premotor cortices. Neurons

did not all contribute information about behavior equally or at the same time. With

larger numbers of recorded neurons, there may be a need to select and decode using

only the most relevant neurons in a population. The next chapter will address this

issue along with providing another method for exploration of neuronal interactions

within a population.
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Chapter 5

Finding Co-modulated

Communities of Neurons

5.1 Introduction & Background

When working with spiking data in the brain, we are interested in finding natural

structure within the firing patterns of individual units as well as common structure

across units. Researchers may be interested in finding cell assemblies that are broadly

characterized as groups of neurons with similar firing properties [118, 123–127]. Ac-

cording to Donald Hebb [123], these assemblies were correlated with repeated co-

activation or synchronous firing of neurons. This concept is remembered in the well

known mnemonic: ”Cells that fire together, wire together.” Clustering techniques

have previously been demonstrated as effective means for finding patterns of neu-
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ronal activity in single unit and multi unit responses [128–130]. Similar approaches

have been developed for detecting cell assemblies based on similar firing activity across

units [126,131–133].

Neurons may form other functional groups, however, that do not necessarily have

correlated firing rates. In the motor cortex, neural activity has been shown to corre-

late to a number of external covariates including reach direction, hand position, joint

angles, and muscle activity. Generating movement of the limb to reach for and grasp

an object requires these external covariates to be coordinated. Though the exact

means of how this is achieved at the cortical level is still unclear, evidence of coordi-

nated physical behavior has been observed through movement synergies [53,134,135],

muscle synergies [136,137], evocation of complex multi-joint movements from stimu-

lation [138,139], and muscle synergies [140,141].

Though physical activity may be coordinated, randomly sampled neurons involved

in producing this coordinated activity may not necessarily have correlated firing ac-

tivity. In general, the specific coding properties of a given neuron are unknown.

Neurons may not be tuned to a single parameter or function, and neurons within a

small volume may have heterogeneous firing properties [43,44,142]. Multiple neurons

may be involved in control of the same limb but may each contribute differently.

Additioanlly, neurons that are tuned to represent a given signal are not necessarily

tuned linearly and may dramatically change their firing properties in association with

small changes of the encoded signal [143]. A number of unsupervised methods are
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useful for exploring the relationship between the neural activity and a behavior or

stimulus [91,116,140,144,145].

In this chapter we develop a clustering-based method for identifying task-relevant

neurons and co-modulated communities of neurons. We use cluster analysis to create

partitions of single trial activity within individual spiking units. Partitions are chosen

such that they are maximally similar to the natural variation across trials resulting

from experimental design. A partition similarity measure is then applied to assess

each unit’s suitability for use in a classifier. Partitions are compared across neurons

to identify groups of neurons with firing patterns that tend to modulate in response

to a common external variable. This approach allows us to identify units that may

somehow interact functionally to produce a behavior while not necessarily having

similar firing properties.

5.2 Methods

As in the previous chapter, we base our analysis on data collected from two rhesus

macaques performing a simultaneous reach to grasp and manipulate task. Array

implantation, signal acquisition, spike sorting, and experimental procedure are all as

reported in Chapter 3. Briefly, in each monkey, single unit and multi unit spiking

was recorded from floating microelectrode arrays implanted in ventral premotor cortex

and motor cortex.
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Spike times were first converted to binary spike trains with a sampling rate of 1

kHz. These spike trains were convolved with a boxcar function (width = 100ms) to

produce an estimate of each unit’s firing rate.

5.2.1 Time Rescaling

Firing rate estimates for each unit and each trial were temporally rescaled in order

to be of equal length. We identified the mean duration across all trials of each of three

experimental epochs: cue presentation to onset of movement, onset of movement to

object contact, and object contact to switch closure. For each unit and each trial,

linear interpolation was performed to rescale the firing rate in each epoch to the

length of that epoch’s average duration.

We define X(p) as a n×m matrix of firing rates from the pth individual unit. Each

row vector xi represents the firing of the unit over the ith trial rescaled to m discrete

bins.

5.2.2 Clustering Single Unit Activity

To perform clustering, we apply the K-means algorithm to the elements of the

firing rate matrix X(p). This clustering procedure is performed separately for each

unit p.

The k-means algorithm consists of assignment and update steps performed itera-
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tively in a method similar to the expectation maximization algorithm. The method

is initialized by specifying a number of clusters, k, and randomly assigning k m-

dimensional vectors, µ1,µ2, ...,µk, to serve as initial centroids.

In the assignment step, each vector of firing rates xi is assigned to the group that

minimizes the distance between the firing rate vector and the group’s centroid, µ,

according to some distance function d(·, ·):

si = argmin
k′

d(xi,µk′) (5.1)

where d(xi,µk′) is some appropriate distance function and si is a k-dimensional

binary vector with a single non-zero element indicating the group assignment of the

ith vector.

This procedure is performed for all the samples such that each firing rate vector

is assigned to the cluster with the nearest centroid. A new centroid is estimated for

each of the k clusters according to the mean of all the vectors in that cluster:

µj =
1

|Cj|
∑
xi∈Cj

xi (5.2)

where |Cj| is the cardinality of the jth cluster and the sum is over all members

belonging to that cluster.

The procedure then iterates by re-assigning each datapoint to clusters based on

the new centroid values followed by updating estimates of the centroids following this
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assignment. The iteration continues until the sum of distances between all points and

their centroids converges and there are no further changes to cluster membership.

Due to the random initialization and the possible existence of local minima in the

loss function, k-means will not necessarily close to a globally optimum configuration

on a single iteration. Performance of k-means is sensitive both to the number of

clusters chosen as well as the initial locations of the cluster centroids. To improve

performance, we choose initial centroids according to the k-means++ algorithm [146].

The choice of distance function applied by k-means can dramatically affect the

results. For clustering trials from an individual unit, we use cosine distance [128,147].

Cosine distance can be defined as

d(xi,xj) = 1− xi · xj

||xi|| · ||xj||
(5.3)

where xi and xj are equal-length vectors of binned spike counts from neuron i

and neuron j respectively. As the firing rates were always non-negative, the value of

the second term ranged between 0 and 1. The distance measure then was bounded

between 0 when firing rate vectors were identical and 1 when they were orthogonal.

5.2.2.1 Clustering Examples

To see the potential benefit of clustering single trials, consider the toy example

presented in Fig. 5.1a. In this example, 500 repeated trials of 1000 ms length were

sampled from a simulated neuron. The neuron was simulated such that it had two
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Figure 5.1: Clustering may reveal hidden structure. Here, simulated activity is
shown from 500 1-second simulated trials of a neuron with constant firing activity.
When trials are not grouped in any particular order (a, top), no trial-average structure
is apparent (a, bottom). However, if a clustering algorithm is applied and trials are
ordered by cluster (b, top), we may see apparent differences in trial-averaged activity
(b, bottom).

behavioral modes. In both modes, the neuron had a sinusoidal firing rate with a fixed

frequency. However, this signal was 180 degrees out of phase across the two modes.

In Fig. 5.1a, we observe a simulated raster when the simulated trials are shown in

the order they were produced and the neuron’s mode was set randomly to one of the

two states in each trial. The trial-averaged activity shown in the lower panel of Fig.

5.1a indicates the absence of any real patterned firing.

However, after applying the aforementioned clustering technique to the simulated
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data with the number of clusters set to two, structure emerges. In Fig. 5.1b, the

trials have been rearranged according to cluster membership and the presence of two

stable oscillatory modes becomes apparent. This is confirmed by the cluster-specific

trial averaged activity shown in the lower panel of Fig. 5.1b. In neuronal recording

scenarios across repeated trials of varying conditions, this clustering technique may

help to reveal structure that is not readily apparent from the original rasters alone.

However, as an example of the potential pitfalls associated with this clustering

approach, consider the simulation shown in Fig. 5.2. In this second simulation, 500

trials of 1000 ms length were sampled from a simulated neuron. Unlike the previous

example, however, the neuron only had one mode of operation. Spiking was generated

with a uniform firing rate. The trial averaged firing rate shown in the lower panel of

Fig. 5.2a is a good representation of this activity.

As in the previous simulation, single trial clustering was applied to this simu-

lated activity. Here 5 clusters were chosen. Trials were grouped according to cluster

assignment and visualized as in Fig. 5.2b. The clustering assignment appears to

reveal significant structure indicating that this neuron had periods of phasic firing

with different offsets. The differences between the cluster-specific activity are made

more apparent in the cluster-averaged firing rates shown in the lower panel of 5.2b.

Of course, this structure is spurious as the simulated neuron was set to spike with a

constant firing rate. Trial clustering grouped trials that were similar purely by chance

rather than differences in structure. This reveals one of the concerns of clustering:
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Figure 5.2: Clustering may erroneously detect structure where none exists. Here,
simulated activity is shown from 500 1-second simulated trials of a neuron with con-
stant firing activity. When trials are not grouped in any particular order (a, top), no
trial-average structure is apparent (a, bottom). However, if a clustering algorithm is
applied and trials are ordered by cluster (b, top), we may see apparent differences
in trial-averaged activity (b, bottom). These apparent differences across clusters are
not the result of structured variation but rather a byproduct of repeated random
sampling.

finding structure when none actually exists. The following sections will present a

potential solution to this problem by ensuring that structure found by clustering is

similar to structure expected from experimental design.
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5.2.2.2 Comparing Partitions

There are many ways to divide a finite set of units into groups. We define any

given division of a set of units into groups as a partition. We refer to divisions within

a partition as clusters or groups. Thus a number of trials may be assigned to form

a coherent group and any division of all the trials into groups is referred to as a

partition. In this study we will be interested in a measure of similarity between any

two partitions. To quantify the consistency of group membership over task conditions,

we computed the normalized mutual information (NMI) [148,149] between partitions.

As the name suggests, this is simply the mutual information between two partitions

that has been normalized such that it takes on values in the range of 0 to 1. Formally,

mutual information between two random variables X and Y is defined as:

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(5.4)

This quantity represents the reduction in uncertainty of the value of X due to

knowledge of Y [150]. This quantity is bound according to

0 ≤ I(X;Y ) ≤ min(H(X), H(Y )) (5.5)

where H(X) and H(Y ) are the entropy of X and Y , respectively. To facilitate

more general comparison among partitions, this quantity is commonly normalized to

form the normalized mutual information:
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NMI (X, Y ) =
2I(X;Y )

H(X) +H(Y )
(5.6)

For some intuition behind this value, consider a set of items and two identical

partitions of these items, A and B. If we draw an item at random and are not told

anything about the item other than the cluster it belongs to in partition A, we still

know with certainty the cluster it belongs to in partition B. The NMI in this case

is 1. Now imagine that we modify partition B by swapping a few items randomly

between groups. This has introduced some uncertainty into the system. Now if we

choose a random item and are told its group membership in A, we are no longer fully

certain which group that item belongs to B. The NMI in this case is less than 1 and

will continue to decrease if we continue randomly swapping items between groups in

either partition. After some number of swaps, the partitions may become completely

independent; knowing the group membership of a random item in A tells us nothing

about its group membership in B. In this instance, the NMI between A and B is 0.

To actually calculate NMI between two arbitrary partitions X and Y , we create

an nX ×nY contingency table N, where nX and nY are the number of groups in each

of the partitions. Table values N(i, j) are set to the cardinality of the intersection of

the ith group in X with the jth group in Y . This table is then normalized such that

the sum of all entries is 1. We refer to this normalized matrix as Pxy. Entries of this

matrix now corresponds to values of the joint probability distribution, p(x, y), over

cluster assignments across the two partitions. The vectors of marginal probabilities
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of group membership, px and py, for the two partitions are found according to the

row sums and column sums of Pxy, respectively.

To compute NMI, we must first use this table to calculate the mutual information,

I(X;Y ), which can be defined as:

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (5.7)

where

H(X) =

nX∑
i=1

px(i) logpx(i) (5.8)

H(Y ) =

nY∑
j=1

py(j) logpy(j) (5.9)

H(X, Y ) =

nX∑
i=1

nY∑
j=1

Pxy(i, j) logPxy(i, j) (5.10)

These quantities are then plugged back into Eq. 5.6 in order to produce the

estimate of NMI between partitions.

5.2.2.3 Selecting the number of clusters

In any application of k-means clustering, the number of clusters k is a free pa-

rameter that must be externally specified. Failing to evaluate the quality of fit of a

particular number of clusters may result in detection of spurious clusters. In such
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cases, as in the simulated data in Fig. 5.2, structure may be found in data where

none actually exists. Typically, various values of k are evaluated by repeating the

procedure over a range of values. The optimal number of clusters is commonly chosen

as one that optimizes some heuristic, such as the silhouette value [151] or the gap

statistic [152].

In this application, we have reason to believe that there will be some inherent

structure in single trial clustering due to the repetition of trials within experimental

conditions and the highly-trained states of the monkeys. We would expect in general

that trials from a single experimental condition would have similar firing patterns and

would tend to be assigned to the same cluster. With this in mind, we incorporated

this expectation into our procedure for choosing k. Simply, we will choose the value

k that maximizes the NMI between the clustering of single trials and the natural

partition defined by experimental conditions.

For each unit, p, we varied the number of clusters, k, from 2 to 10 and performed

k-means each time. We refer to the resulting partition of trials from the pth unit with

k clusters as R(p)
k . We created a separate fixed partition of the trials according to the

known experimental conditions. Each of the location and object combinations was

assigned to a separate group. Thus the experimental conditions partition divided the

trials into 24 groups. We refer to this partition by experimental conditions as S.

For each of the R(p)
k partitions, we calculated the similarity to the experimental

condition partition as NMI (R(p)
k ,S). However, since we are varying the value k, we
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must account for a baseline similarity that may occur due to chance. We define a

random partitioning of the trials into k clusters as Qk. Thus instead of attempting to

maximize NMI (R(p)
k ,S) directly, we wish to choose k that maximizes the difference

in similarity as compared to a random partition. We define this as:

∆NMI (R(p)
k ,S) = NMI (R(p)

k ,S)− E [NMI (Qk,S)] (5.11)

where E [NMI (Qk,S)] denotes the expected NMI due to a random partitioning

of trials into k clusters. We approximated this baseline expectation by creating 20

random partitions for each k value and taking the average over all the resulting

NMI (Qk,S) values.

For each number of clusters k, we performed 20 repetitions of the k-means proce-

dure and calculated the average value for ∆NMI (Rp
k,S). This repetition is necessary

since k-means is a stochastic procedure with final results dependent upon an initial

random initialization. The optimal value for k corresponded to the number of clusters

that had the largest average delta value. Of the 20 repetitions, we kept the partition

that maximized ∆NMI (Rp
k,S) for the optimal k value. This optimal partition for

unit p is referred to as Rp. An example of these values is shown for a single unit in

Fig. 5.3.
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Figure 5.3: Example of cluster selection procedure. This unit from array J in
monkey L shows an average initial partition similarity (left) with a maximum value at
10 clusters. However, average partition similarity due to chance (middle) increases as
a function of the number of clusters. When this factor is accounted for by subtraction,
a new peak is revealed in the delta similarity (right), suggesting the optimal number
of clusters for this unit is 3.

5.2.2.4 Partition Similarity to Known Labels

Once the optimal partition of trials, Rp, was found for each unit we evaluated

the similarity of the partition to known experimental labels. We previously created

a partition S that assigned each trial to one of 24 groups corresponding to the ex-

perimental condition. In addition to this, we created partitions Sobj and Sloc that

partitioned trials based on the object grasped or the location of the object, respec-

tively. We then calculated the similarity of the partition based on spiking with each

of these two partitions as:

NMI pobj = NMI (Rp,Sobj)− E [NMI (Qp,Sobj)] (5.12)

NMI ploc = NMI (Rp,Sloc)− E [NMI (Qp,Sloc)] (5.13)
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where Qp represents a random permutation of the cluster assignments of Rp. As

in eqn. 5.11 the second term here is a correction for similarity due to chance. By

creating instances of Qp through permutations of the group labels in Rp, we preserve

the number of clusters as well as the cluster cardinality while largely eliminating

meaning from the individual cluster assignments. The expected random similarity

was estimated by evaluating the random similarity over 20 repetitions and taking the

average.

Since a larger NMI value corresponds to larger concordance between a pair of par-

titions, we expect that units with large NMI obj values have significant inherent firing

rate modulation related to object type and units with large NMI loc have significant

inherent firing rate modulation related to reach location.

5.2.3 Classification

To evaluate the claim that NMI obj and NMI loc are indicative of natural task-

modulation, we perform a classification analysis. Here we implement a naive bayes

classifier. Naive bayes is a generative classifier that models each input feature as

being independent from the other input features. More formally, for an observation

of a D-dimensional feature vector x, the joint conditional distribution over x given

the sample was drawn from class c is:
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p(x|y = c) =
D∏
j=1

p(xj|y = c) (5.14)

As with many generative classification model, selection of the final class is chosen

as the class that is most probable according to a posterior distribution p(y|x). This

posterior distribution can be found from the class-conditional likelihood distribution

through application of Bayes Rule:

p(y = c|x) = p(y = c)p(x|y = c)∑
c′ p(y = c′)p(x|y = c′)

(5.15)

where p(y = c) is the prior probability of class c. In our case we assume a uniform

prior over all classes.

The features for our classifier are the vectors of unit-specific cluster assignments

resulting from the observed firing activity of single trials. As an example, assume a

partition R(p) consisting of 4 clusters. The feature vector from a trial belonging to

cluster 3 would be represented as [0, 0, 1, 0]. Given this structure, a natural choice

for each unit’s class conditional distribution, p(xj|y), is the categorical distribution.

The categorical distribution is a generalization of the bernoulli distribution to events

where one (and only one) of K outcomes is possible.

Here, the class-specific likelihood for each unit was estimated as a K-dimensional

categorical distribution where K was the number of clusters in that unit’s partition.

Estimation of the class-specific categorical distributions for each neuron consisted of
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isolating the trials for a given class (specific object or reach location) and finding

the proportions of those trials that were assigned to each of the K clusters. For

the ith unit, the probability of observing a sample from the jth cluster during the

performance of condition c′ was estimated as:

p(xi = j|y = c′) =
Nj|c′

Nc′
(5.16)

where Nc′ is the number of trials in the training set characterized as belonging to

class c′ and Nj|c′ is the subset of these trials assigned jth cluster for unit i.

This procedure was performed separately for each individual unit (ensemble size of

1), as well as for varying cardinalities of ensembles of units. For an ensemble of a given

cardinality, units were recruited into the ensemble randomly without replacement

from a pool of all the units. Each unit’s probability of being selected into the ensemble

was based on one of three different selection procedure according to their respective

NMI obj or NMI loc scores:

1. Uniform selection: Units were chosen with uniform probability

2. Proportional selection: Units were chosen with probability proportional to their

partition similarity score relative to the scores of the remaining members of the

pool

3. Inverse proportional selection: Ensemble members were chosen with probability

inversely proportional to their partition similarity score relative to the scores of
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the remaining members of the pool

Classification performance was assessed by classification error. This procedure was

performed both for classification of object type as well as reach location. For each

ensemble cardinality we repeated the ensemble selection and classification procedure

500 times.

5.2.3.1 Clustering by Inter-unit Similarity

Following the line of reasoning that units with large NMI obj values show natural

modulation with changes in object type, we might further expect that pairs of units

with large NMI obj values would also have partitions similar to one another. We may

also observe pairs of units with similar partitions that do not have significant NMI obj

or NMI loc values. This might indicate an additional external variable not directly

related to object type or location causing systematic modulation of certain units

across trials.

For each pair of units i and j we define the inter-unit similarity as:

NMI
(i,j)
unit = NMI (R(i),R(j))− E

[
NMI (Q(i),Q(j))

]
(5.17)

As before, we correct for similarity in clustering due to chance by creating multiple

random permutations of R(i) and R(j), denoted Q(i) and Q(j). The observed chance

similarity was again evaluated over 20 random permutations and subtracted from the
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observed inter-unit similarity.

Once NMI
(i,j)
unit was calculated for all pairs of units, we formed these values into

a n × n matrix. Each row, i, represents the similarity of a given unit’s partition,

R(⟩), to the partitions of each of the other units. We may think of think of this

matrix as consisting of n observations in n-dimensional space. We applied the k-

means procedure to this matrix to evaluate the potential presence of co-modulated

communities of units. Here, the number of clusters, k, was varied between 1 and 5 and

the distance between samples was taken as the squared euclidean distance between

vectors of NMI unit values. Partition quality was assessed empirically by reordering

the matrix of NMI unit values according to cluster membership and inspecting the

reordered matrix for apparent structure. In this context, structure would be indicated

by members of a cluster having similar feature vectors. In both monkeys, clustering

units by inter-unit similarity showed significant signs of over-clustering for k greater

than 5 and thus higher numbers of clusters were not considered.

5.3 Results

This analysis was applied to data collected from two rhesus macaques (monkey X

and monkey L) performing the reach to grasp and manipulate task described previ-

ously in Chapter 3. We included data from trials performed to each of the 24 tested

experimental conditions consisting of certain combinations of reaches and grasps to
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4 different objects located at 8 different locations. All 24 observed experimental con-

ditions were included in the analysis resulting in inclusion of 690 trials for monkey L

and 764 trials for monkey X.

Analysis of data from each trial was limited to the period from cue presentation

to 250 ms following switch closure. All spiking units included in the analysis had an

average firing rate during this period of at least 3 Hz. This resulted in inclusion of

74 units for monkey L and 58 units for monkey X.

Spike trains were converted to firing rate estimates by convolution with a gaussian

kernel with standard deviation of 25 ms. For each monkey, data from all trials was

temporally rescaled to be of uniform length with an approximately 1 kHz sampling

rate. The rescaling procedure produced trials of 967 samples each for monkey X and

846 samples each for monkey L. The mean and standard error of trial length distortion

(absolute difference in number of samples between original and time-rescaled trials)

was 136 ± 5.4 samples for monkey X and 110 ± 4.4 samples for monkey L. The

magnitude of the firing rate estimates was not standardized or rescaled.

5.3.1 Basic clustering results

For each unit, k-means clustering was performed on the time-rescaled firing rate

vectors from each trial. Distance between trials was assessed as the cosine distance

between their respective firing rate vectors. A range of values for k was tried ranging

from 2 to 10 and the optimal k value was chosen following the procedure described
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in the methods section. After identifying the optimal number of clusters, k′, in a

partition, the best instance among examined partitions with k′ clusters was chosen

as the partition R with maximal similarity to partitioning trials according to the 24

experimental conditions, S.

Trials that did not contain any spiking activity were excluded from the single

trial cluster analysis. These trials have a constant firing rate of zero and thus have an

undefined cosine distance with other signals. The clustering procedure was performed

using the remaining trials and excluded trials were assigned randomly to the identified

clusters.

The mean number of clusters in each unit’s optimal partition was 5.0 ± 0.4 in

monkey X and 5.8 ± 0.3 in monkey L. The median number of clusters was 4 in

monkey X and 6 in monkey L.

5.3.2 Unit-task partition similarity

After identifying the optimal partition for each unit, partition similarity was cal-

culated between the unit’s spiking-based partition and the label-based partitions Sobj

and Sloc. These values are shown for each unit in Fig. 5.4. Additionally the array-wise

averages for NMI (R,S) are documented in Table 5.1.

Examination of these results shows several notable trends. Some of the largest

overall similarity values between partitions based on spiking and experimental con-

ditions are observed in arrays F, G, and H in monkey X and arrays H, I, and J in
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Figure 5.4: Similarity between unsupervised single trial partitions and ground truth
partitions for object and location. Each bar represents a single unit and the similarity
between partitions found via clustering and partitions based on object structure.
Bars are grouped according to the electrode array they belonged to as described in
Chapter 3. Divisions between electrode array memberships are indicated by vertical
bars. Similarity between these partitions was evaluated using Normalized Mutual
Information (NMI). Bars are colored according to each unit’s cluster membership
based on inter-unit NMI.

Table 5.1: Average unit-task partition similarity by array

Monkey X Monkey L

Array Loc. Cnt. NMI(R,S) Array Loc. Cnt. NMI(R,S)

E M1 0 −−±−− G M1 13 0.021± 0.003

F M1 2 0.182± 0.141 H M1 9 0.119± 0.033

G M1 7 0.111± 0.052 I M1 14 0.140± 0.021

H M1 6 0.241± 0.092 J M1 12 0.197± 0.045

I M1 15 0.108± 0.026 K M1 12 0.097± 0.034

J M1 7 0.126± 0.041 L M1 10 0.092± 0.016

C PMv 8 0.058± 0.014 E PMd 1 0.269±−−
D PMv 13 0.162± 0.031 F PMd 3 0.046± 0.019

monkey L. By comparing these array locations as shown in Chapter 3, these results

are consistent with what we might expect to see a priori. Specifically, these arrays just
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medial of the superior precentral sulcus seem to show significant modulation related

to reach and grasp. Additionally, we see that NMI obj is generally larger than NMI loc

suggesting that most of the observed neurons are likely to be more strongly tuned for

variations in object type than they are tuned for variations in reach location.

5.3.3 Classification performance

We examined whether the unit-task partition similarity measures could be useful

in informing feature selection for classification tasks. To evaluate this we constructed

naive Bayes classifiers using randomly chosen ensembles of units. For each ensem-

ble size we performed 500 repetitions for each of three different ensemble selection

strategies. The results of the classification analysis are shown in Fig. 5.5.

We observe from these results that our intuition was correct and preferentially

choosing neurons with high unit-task similarity values results in improved classifi-

cation performance versus random selection. Additionally we observed that inten-

tionally selecting units with low unit-task similarity values resulted in classification

performance worse than classifiers consisting of units chosen at random. This result

further emphasizes the suitability of this approach for feature selection. These trends

persisted across classification of both object type and reach location in datasets from

both monkeys.
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Figure 5.5: Classification performance for ensembles of units chosen based on simi-
larity of natural clusters to trial labels. Each ensemble size and method was evaluated
over 500 repetitions. Selected ensembles were then used to train naive bayes classi-
fiers to classify trials according to object shape or reach location. Darker line shows
average classification error versus ensemble size for each the three ensemble selection
methods. Shaded region indicates 1 standard deviation of classification error for each
method.

5.3.4 Inter-unit partition similarity

In order to explore pairwise similarity in partitioning among units, we calculated

the NMI between the partitions for each pair of units. Pairs or groups of units with

comparatively high inter-unit NMI might be indicative of having a common source of
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Figure 5.6: Clustering of units based on similarity of single trial partitions. Cluster
boundaries are indicated by white lines. The primary factor for clustering seems
to be the degree to which trials were task modulated. Both monkeys indicated the
presence of groups of units with high, moderate, and low task-related modularity.
Interestingly, clustering of units in monkey L also indicated a group of units which
modulate similarly across trials but do not appear to be related to the task.

modulation. We expect to see, for instance, that units with high unit-task similarity

would also tend to have high inter-unit similarity. The pairwise inter-unit similarities

for all units in each monkey are shown in Fig. 5.6.

We applied k-means analysis to this matrix to search for structure in the form of

clusters. Empirically we discovered 3 clusters of units in monkey X and 4 clusters in

monkey L. These clusters are indicated by color in Fig. 5.6.

Examination the relationship between inter-unit similarity and unit-task similarity

suggests that the primary means of similarity between units was their degree of task-

specificity. The scatter plot in Fig. 5.7 shows the relationship between each unit’s

clustering similarity to the 24 task conditions versus the maximal inter-unit similarity

among all other units. In both monkeys we see that the two are correlated. We also

111



CHAPTER 5. FINDING CO-MODULATED COMMUNITIES OF NEURONS

Figure 5.7: Comparison of partition similarity between experimental conditions
versus other units. Each point represents an individual unit colored according to its
cluster assignment based on inter-unit NMI. Displacement along the horizontal axis
corresponds to similarity between partitions based on trial clustering and partitions
based on experimental design. Displacement along the vertical axis corresponds to
the maximum of the similarity of partitions based on trial clustering between the
given unit and all other units. Diagonal line represents identity.

see that for most units, clustering assignments were more similar to the experimental

condition groupings than they were to the clustering of any other unit.

One noticeable exception to this is the small cluster of units observed in Monkey

L shown in purple in Fig. 5.4, Fig. 5.6, and Fig. 5.7. Units in this cluster all belong

to the same array (G) and appear to have greater inter-unit similarity than unit-task

similarity. This difference in similarity suggests that there may be some unobserved

external variable that is causing these units to be coordinated and that this external

variable is not directly linked to object type or reach location. Indeed, examination

of the unit rasters, as shown for one of the units in Fig. 5.8 tends to show common

temporal structure within clusters. However when these same units are examined
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Monkey L - Unit 2 - Object Ordered
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Figure 5.8: Raster of unit 2 in Monkey L, ordered by cluster, object, and location.
Red horizontal lines indicate divisions between groups. Vertical blue lines indicate
event boundaries after time rescaling (OM, SC, SH). Each plot shows the same firing
rate activity where each row represents a trial. Trials are reordered based on group
membership where groups are clusters (top), reach location (bottom left) or object
type (bottom right). This unit located on Array G shows substantial structure when
ordered by cluster assignment but no empirically apparent structure when organized
by experimental condition.

for structure or modulation related to object type or location, there is less (if any)

structure apparent.
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5.4 Discussion

In this chapter we applied a cluster analysis to the single trial responses of individ-

ual units that were simultaneously recorded during a reach to grasp and manipulate

task. The cluster assignments for each trial for a given unit made up a specific parti-

tion. We compared this partition to other trial partitions determined by experimental

conditions and observed that there seemed to be significant agreement between these

partitions for many units. To investigate the utility behind these similarities, we per-

formed a classification analysis that relied on stochastically chosen ensembles with

each unit’s probability of selection related to its partition similarity. We observed su-

perior performance from ensembles that were preferentially made up of units whose

spike-based partitions were similar to the task-based partitions. Similarly we observed

below average performance from ensembles that were made up of units with low unit-

task partition similarity. Finally we attempted to search for community structure

among the units by examining inter-unit similarity. Though most of the discovered

structure appeared to be related to the primary experimental variables, we found

evidence for at least one community that appeared more likely to be modulated by

some unobserved variable.
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5.4.1 On Clustering

Our method is dependent upon finding meaningful clusters among a set of trials

for individual units. Clustering in general is often difficult due to the challenge of

finding a useful metric to define the relationship between elements of a set and also

deciding on how clusters should be shaped [153]. A specific choice of metric may

dramatically change the results and reveal clustered structures that other metrics

would miss [116,145].

When dealing with neuronal spike trains, commonly used distance measures in-

clude euclidean distance [91,140], correlation [131,132], cosine distance [128,147], and

hamming distance [126,154]. Many of these distances may take on different properties

depending on how the spike train is represented as in the case of conversion to firing

rates by convolution with a kernel [133,155–159]. Other studies have avoided the need

for convolution by using distance metrics based on edit-distance [116, 160–162]. An

important point to note is that each of these distance metrics require some specifica-

tion of a time scale. In nearly all cases, at least one free parameter must be chosen

in order to represent the time-scale on which similarity will be observed. Smaller

time-scales will emphasize synchrony while larger time-scales will place more empha-

sis on variation in mean firing rate. In general, there does not appear to be any

distance measure which performs optimally under all conditions. Here we found gen-

eral success with a gaussian kernel with standard deviation of 25 milliseconds, though

different kernel widths may perform better for specific units.

115



CHAPTER 5. FINDING CO-MODULATED COMMUNITIES OF NEURONS

The choice of clustering method is nearly as influential as the choice of distance

metric. Here k-means was chosen for its simplicity as well as its suitability. K-means

tends to find clusters that are compact, which in this case seemed reasonable to assume

that firing rate vectors from a single experimental condition might form compact

clusters around a prototypical centroid spike train. While k-means has been broadly

applied [129], different results may be obtained from fuzzy k-means [128], hierarchical

clustering [91,140,141,163], spectral clustering [126,131,132,154,164–166], and other

network methods [133, 167, 168]. For review on differences in clustering techniques

and the various user choices involved, see [153].

Finally with regards to clustering, one must consider how to optimize over the

various hyperparameters involved. These include the number of clusters to look for

as well as the time-scale of similarity. We made a critical assumption that trials from

each unit should form natural groups that reflect the block design of the experiment.

Though k-means was performed on the units over many repetitions and many numbers

of clusters, we ultimately selected the partitions that resulted in trial clusterings that

aligned with the division among experimental conditions. This step is likely critical

with regards to using the partitions for feature selection, but not necessarily for

searching for structure in trials unrelated to the task. Different optimal partitions

would likely have been selected had we used another metric such as the silhouette

value or gap coefficient. It is unclear though how strongly this would have impacted

our results, if at all.
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5.4.2 Feature Selection for Classification

As we have demonstrated, our clustering approach may be used as a means to iden-

tify units that will provide good performance when included in a classifier. Within

the domain of research related to brain computer interfaces, feature selection is a

common topic [169–175]. In general, classifier performance can degrade when the

number of features is large relative to the number of available samples. This phe-

nomenon is often called the ”curse of dimensionality” [176] and is generally related to

a classifier’s inability to properly learn generalizable relations among the high dimen-

sional data. The task of feature selection generally involves measuring the relevance

of each feature to the task and then selecting some subset of features with the most

relevance. The most common approach is to identify task-relevant neurons by group-

ing trials according to a known experimental condition and then performing ANOVA

analysis on the group-averaged firing activity. Other approaches learn a generative

model to describe the firing for each group [169, 172, 175] and attempt to find neu-

rons with significant task-related variation across models. A third approach involves

analysis of classification performance when features are included or excluded from a

classifier [171].

By comparison, our approach to feature selection is model-free and does not de-

pend on explicit knowledge of the explicit differences between experimental condi-

tions. Instead, our approach simply needs to know when different experimental con-

ditions were occurring. Even then, in the absence of this knowledge, reasonable results
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might be obtained by thoughtful construction of a synthetic partition of the trials by

the researcher.

At its core, the clustering acts as a form of vector quantization (VQ). VQ serves

to reduce the dimensionality of vectors or time-series by finding a low dimensional

codebook and then encoding the vectors using these codes. In our case, fire rates of

several hundred samples were reduced to one of 2 to 10 scalar values corresponding

to the identity of their cluster assignment. After this quantization, each spike train

could be thought of as realizations of draws from a random variable from a categorical

distribution. The true trial labels themselves (reach location, object type, or exper-

imental condition number) can similarly be thought of as observations of random

variables from categorical distribution. With these assumptions, mutual information

between the two variables is a natural approach to feature selection [177].

5.4.3 Identifying Latent Communities

An important benefit to our approach is the potential for detection of communi-

ties of units. Though several other clustering applications have shared a similar aim,

our approach has an important fundamental difference in initial assumption. Many

community detection approaches assume that units within a community have similar

firing properties expressed in terms of synchrony in spiking or correlation at a wider

time-scale [126, 131, 133, 154]. Our approach assumes instead that units may belong

to a community where membership is based not on spiking similarity but in modu-
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lating their firing activity in response to changes to some common external variable.

Members of these co-modulated communities may be related through some common

upstream source of stimulation.

Interestingly, cluster analysis revealed a small community of units in Monkey L

that appeared to significantly coordinate across trials yet did not appear to provide

substantially discriminative information about reach location or object. Additionally,

empirical analysis of rasters of firing rate when ordered by experimental condition did

not show apparent structure within conditions. However, when ordered by cluster,

rasters and PETHs showed evidence of temporal structure and phasic activity. These

units were all located on array G in Monkey L, which was located laterally along the

M1 relative to arrays showing selectivity for reach location and object. This suggests

this community may have been involved somehow in orbitofacial movements. This

result in particular highlights the value of our approach. The multistage clustering

revealed the presence of a potential neural assembly that would not have otherwise

been found had investigation been limited to analysis of activity specifically related

to reaching and grasping alone.

The clustering method described in this chapter proved to have significant utility

for identifying groups of neurons with certain desirable properties such as task rele-

vance. The approach makes no attempt, however, to model the actual relationship

among neurons in a group. The nature and strength of these relationships may ac-

tually contain important information that accounts for observed spiking as well as
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task-specific variations in spiking. In the next chapter I will describe a novel approach

to modeling the task-specific interactions among groups of neurons. These models

will be used both to better describe spiking activity among groups of neurons and

improve the ability to read-out the behavior represented in spiking activity.
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Chapter 6

Task-specific Ensembles

6.1 Introduction & Background

Neurons in motor and premotor cortices in nonhuman primates demonstrate

variations in firing activity that correlate with parameters related to motor behav-

ior [7, 44,178]. Identification of how populations of neurons encode these parameters

is of great importance to improving the usability of brain-controlled prosthetic devices

and increasing understanding of the brain as a whole [20,86]. Reaching and grasping

motions require the activation and coordination of functional networks of neurons.

Significant effort has been applied to investigating encoding of motor behavior by

neuronal populations by focusing on how individual neurons in motor and premotor

cortices independently encode motor behaviors [7, 37, 44, 69, 179]. As recording tech-

nologies improve and the number of simultaneously observable neurons grows [2], so
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too grows the potential for discovering relevant encoding of behavior in the interac-

tions between neurons.

Inspection of simultaneous recordings of neuronal activity often focuses upon the

existence of apparent interaction among neurons through correlations in firing pat-

terns. This functional (or effective) connectivity [180, 181] is widely incorporated in

models of neuronal interactions and demonstrates effectiveness in accounting for spike

time variability [40, 41, 54, 124, 182–188]. In some cases, inclusion of ensemble activ-

ity has even been shown to result in improved ability to decode sensory stimuli [41]

and some motor behaviors [54]. These studies treat the interactions among neurons

in the ensemble as being stationary with regard to changes in stimulus or behavior.

Instead, the relationship between firing rate and changes in behavior or stimuli are

relegated to a tuning function or stimulus filter. Instead, improvements to decoding

performance due to inclusion of the ensemble terms are relegated to accounting for

shared inputs or common noise [54].

Dynamic interactions among neurons in an ensemble may contain important infor-

mation about a stimulus or behavior that complements the information contained in

direct variations in firing rate alone [189, 190]. A cartoon of this concept is depicted

in Fig. 6.1. Changes in spike correlation between pairs of motor cortex neurons

at short time scales (< 50 ms) have been observed to vary repeatably during mo-

tor tasks [190–192]. Other studies observed that short time scale correlations were

shown to encode motor information beyond that coded through simple rate modula-
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tion [189,193]. Changes in firing rate covariance of small groups of neurons at longer

time scales has been observed during performance of arm movements [65], prehen-

sion [194], and motor planning [195,196]. Accounting for these task-related changes in

functional connectivity could potentially improve both encoding and decoding models

based of neuronal activity.

In this chapter I construct models of spiking activity that incorporate ensemble

activity from other neurons through task-specific functional connections. Specifically,

I investigate whether information about motor behaviors is available within the varia-

tion of functional connectivity in neuronal ensembles. I examine both the case where

the ensemble weights are static across all grasp types as well as the case in which

the ensemble weights are task-specific and assumed to vary with the task being per-

formed. Specifically, I compare the performance of these models within the context

of decoding the object being grasped by monkeys performing a reach-to-grasp task.

Through this analysis I show that additional discriminative information about motor

behavior may be found in variations in functional connectivity of a neuronal ensemble.

6.2 Methods

6.2.1 Encoding Models

The firing of each spiking unit was modeled as a discrete-time point process.

Discrete-time point processes are random processes in discretized time with binary
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Figure 6.1: Conceptual image of task-specific ensembles. In this diagram, grasps
for two different objects are shown alongside a conceptual diagram of a network of
neurons. The colored circles represent individual neurons with variable firing rates
corresponding to the grasp being performed (darker implies higher firing rate). Mean-
while the lines connecting the circles indicate functional connectivity between pairs
of neurons. Here we can see that different grasps may cause neurons to modify their
firing rate but may also be associated with a change in the overall network topology.

observations. Within this context, the spiking activity of a unit can be represented as

a time-series with a value of 1 when spikes occur and a value of 0 otherwise. Models

of point processes are fully characterized by a conditional intensity function (CIF),

λ(t), which describes the estimated instantaneous event rate at time t. To represent

spiking as a discrete-time point process, I discretized spike trains from each unit to 1

ms bins such that at most one spike could occur in any time bin.

Following this discretization, a valid CIF for a given unit may be any function that
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produces an estimate of the probability of a spike occurring in a given time bin. Here, I

cast this as a binomial logistic regression problem [197], which is a specific formulation

of a generalized linear model (GLM) [198]. Thorough derivations of this general

approach as it applies to modeling spiking have been published previously [40, 199].

Under this model and the limitation of at most one spike occurring in any time bin,

the likelihood of an observation in a single time bin tk for a given CIF is provided by:

P (Xi(tk)|λ(tk)) = exp

{
log λi(tk)Xi(tk)− λi(tk)

}
(6.1)

where λi(tk) is the value of the estimated conditional intensity function for neuron

i in time bin tk and Xi(tk) is the (binary) spiking activity of neuron i in time bin

tk. This likelihood function may be extended to account for a sequence of spiking

activity under a given CIF by treating the sequence as a collection of conditionally

independent Bernoulli trials. For a collection of k sequential time bins, the likelihood

of such a sequence given a CIF can be expressed as:

P (Xi(t1:k)|λ(t1:k)) =
K∏
k=1

P (Xi(tk)|λ(tk)) (6.2)

Thus, the task of learning a encoding model can be reduced to providing a valid pro-

totype function for λ(t) and estimating the coefficients through maximum likelihood

estimation.

The encoding models I examine here consist of two distinct components: a baseline
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firing rate and a rate dependent on the recent activity of other neurons in the recorded

ensemble. Following the convention applied in [40, 42, 200], I model the firing rate of

a unit as consisting of a baseline firing rate combined with a multiplicative term that

conditionally modifies the baseline rate. Our general form for the CIF is

λ(t|g,Ht) = λB(t|g)λE(t|g,Ht) (6.3)

where λB(t|g) represents the baseline firing rate dependent on the grasp, g, and

λE(t|g,Ht) represents a variable gain function dependent on the grasp as well as

the past spiking activity of other units in the ensemble, Ht. Here, I propose three

variations on this general form.

6.2.1.1 Baseline Model

The baseline model treats the spiking probability for each unit as constant within

trials with a rate that is dependent upon the object being grasped.

λB
i (t|g) = exp {β0(g)} (6.4)

where β0(g) is a functional parameter that represents the baseline firing rate as a

function of the discrete grasp, g, being performed. In this case, other units in the

observed ensemble make no contribution to the predicted spiking probability.

The functional baseline parameter β0(g) is intended to behave as a single coefficient
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whose value is dependent on the grasp being performed. In this work, functional

coefficients are used in conjunction with indicator functions as follows:

βk(g) =
G∑

g′=1

βk,g′ · I(g = g′) (6.5)

where g′ ∈ {1, 2, ...G} is a discrete value indicating one of G possible grasps, β is a

model parameter and I(g = g′) is an indicator function that is identity during trials

when grasp g is being performed and zero otherwise. Here k is a grouping subscript

to indicate that the βk parameters interact as a group with the kth model covariate

(or constant, for k = 0). Within the context of the baseline model, this functional

parameter allows for variations in a unit’s average firing rate depending on the grasp

being performed.

6.2.1.2 Static Ensemble Model

The static ensemble model augments the baseline model with ensemble terms that

modulate the baseline firing probability as a weighted combination of the firing rates

of other units. Under this paradigm, the firing of each unit is modeled as:

λi(t|g,Ht) = λB
i (t|g) · exp

{∑
j ̸=i

βj · rj(t)

}
(6.6)

where rj(t) is the observed number of spikes fired by unit j in the previous 100 ms

and βj is a ensemble coefficient representing the strength of influence of unit j upon
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the firing of unit i. In this model the ensemble coefficients, βj, are assumed to be

constant and not conditional upon the grasp performed. In other words, the influence

of spiking from other units is assumed to be stationary with respect to both time and

behavior.

6.2.1.3 Task-specific Ensemble Model

The task-specific ensemble model further extends the baseline and static ensemble

models by adding the flexibility to allow for ensemble weights that are conditional

upon the task being performed. This model is expressed as:

λi(t|g,Ht) = λB
i (t|g) · exp

{∑
j ̸=i

βj(g) · rj(t)

}
(6.7)

where βj(g) indicates the task-specific influence of recent spikes from the jth unit.

In this paradigm, the ensemble coefficients, βj(g) are assumed to vary with the task

and can be expanded as described in equation (6.5). Here the functional ensemble

coefficients vary with the grasp being performed and allow modeling of task-specific

influence from other neurons. In both the static and task-ensemble models, ensem-

ble effects were captured in a single 100 ms history window. This was chosen to

incorporate relevant time periods identified in the literature [37, 40, 54, 187] while

minimizing the total number of parameters in our final model. Self-history effects

were excluded in order to better isolate the role of ensemble effects on encoding and
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decoding performance.

These three models represent different assumptions about the underlying behavior

of neurons and provide varying degrees of model flexibility. An example of the encod-

ing performance of each of these three models for an individual unit is shown in Fig.

6.2. Each of the three models incorporates a task-dependent baseline component that

allows for variation in average firing rate due to the task. Beyond this point the three

models diverge. The static and task-specific ensemble models incorporate influence

from the firing rate of other neurons. Each other unit’s firing rate may be thought of

simply as a time-varying signal. The static model assumes that the influence of these

time-varying signals is fixed while the task-specific model allows for this variation to

depend on the task. As Fig. 6.2 shows, these assumptions and model prototypes

result in very different model behavior.

6.2.2 Model Fitting

Estimates for model parameters were obtained using weighted maximum likelihood

estimation. This approach follows the same procedure of the standard maximum like-

lihood estimation procedure for point process GLM models as described in [40] with

the exception that each sample in the training data was assigned a weight to account

for differences in trial duration. Variations in experimental conditions resulted in tri-

als of different lengths as can be seen in Fig. 3.4. For instance, trials to the right side

of the workspace took longer on average than trials to the left. This results in trials
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Figure 6.2: Example of trial-averaged predicted spiking activity for an individual
unit versus observed spiking activity under each of the object conditioned model
paradigms. The black trace shows the trial-averaged observed firing rate for all trial
repetitions of a particular object type. The colored traces show the predicted firing
rates (λ(t|·)) that were predicted by each of the models under different assumptions
regarding the object being grasped. In each row, the predicted firing corresponding to
a match between the assumed object being grasp and the actual object being grasped
is indicated as a solid colored trace. Predicted firing rates for a mismatch between
model assumptions and actual object are shown with dashed traces. For illustrative
purposes, both observed and predicted spiking activity were convolved with a gaussian
kernel (std. dev. 25 ms) before averaging. Trials were time-normalized within each
experimental epoch before averaging. Vertical traces indicated alignment points for
event times of cue, onset of movement (OM), switch closure (SC) and static hold
(SH).

to the right contributing more data samples to the training set than trials to the left.

As a result of this imbalance, in regular maximum likelihood, samples from experi-

mental conditions with longer trials on average could contribute a disproportionately
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large amount to the total likelihood. The weighted maximum likelihood approach

compensates for these potential biases by assigning lower weights to samples from

experimental conditions that were longer than average and higher weights to samples

from experimental conditions that tended to be shorter than average.

Encoding performance of each model for each unit was assessed in terms of spike

timing predictability (STP). This measure compares the predictive performance of a

proposed encoding model against an uninformed null model of spiking [41,54,124,143].

The null model is an uninformed model that predicts the unit’s firing probability as

being constant regardless of experimental conditions or other factors. This probability

is equivalent to the unit’s overall average firing rate across all trials. STP is defined

as

STP(λ) = E [logL(x|λ)]− E [logL(x|λ0)] (6.8)

where E [logL(x|λ)] is the expected log likelihood of some spiking sequence x under

the proposed model and E [logL(x|λ0)] is the expected log likelihood evaluated under

the null model. This measure was calculated in log2 and normalized over time to

return a value in bits per second. As described in [124, 150] this value represents

the expected number of bits per second saved by a model representing the observed

sequence with some additional knowledge such as the grasp being performed or the

activity of other neurons. A positive STP indicates that the alternative model’s

prediction of spiking tends to better match observed spiking than the uninformed null

model. A negative STP indicates that the alternative model tends to be less efficient
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at describing the observed spiking than the null model. In general one expects that

adding informative covariates to the model would result in increased STP whereas

adding non-informative covariates would result in either no change or a decrease to

the STP.

6.2.3 Decoding

After encoding models were fit for each unit, the models were applied to the task of

decoding the grasp on each trial given observed spiking activity. Using the definition

for the probability of a particular sequence conditioned on a grasp type described

in equations (6.1) and (6.2), the posterior probability over grasp postures can be

evaluated using Bayes’ Rule. The posterior density over grasps can be expressed as

follows:

P (g|Xi(t1:k), λ(t1:k)) =
P (Xi(t1:k)|λ(t1:k), g)P (g)∑
G P (Xi(t1:k)|λ(t1:k), g)P (g)

(6.9)

where P (g|Xi(t1:k), λ(t1:k)) is the posterior likelihood of the grasp being performed

given the set of models and the observed population spiking activity, P (Xi(t1:k)|λ(t1:k), g)

is the likelihood of spiking under some hypothesized task and P (g) is the prior distri-

bution over task probabilities. The prior distribution over tasks was taken as uniform

since there is no reason to expect a priori that any one behavior in this experiment

is more likely than the others. Given this estimate of the posterior density, decoding

can be performed by identifying the grasp type that has the maximum probability

132



CHAPTER 6. TASK-SPECIFIC ENSEMBLES

under the posterior.

This decoding approach was applied in a synchronous manner in that the decoder

had knowledge of when a trial was initiated. Since the likelihood of a sequence

of spiking activity evolves as the number of observations increases, so too does the

estimate of the posterior density over grasps. In general, one expects that the posterior

density is uniform over all grasps at the beginning of a trial and becomes more peaked

around one or more grasp types as additional data is observed. Applying the decoder

synchronously allows us to examine the evolution of decoder performance over the

time-course of a trial.

The decoding approach described so far applies to so-called individual unit de-

coding as the decoder output is determined by the spiking of an individual unit.

Note, however, that the output of the CIF may depend on observed spiking of other

neurons. In practice, individual unit outputs are combined within the context of

population decoder to overcome the low signal to noise ratio of individual unit spike

trains. To extend decoding to incorporate the population activity as a whole, I ap-

plied a simple majority voting rule. At each time bin during a trial, each observed

unit supplied a vote for the grasp with the maximum probability according to the

posterior distribution. The grasp receiving the most votes was chosen as the output

of the classifier.

The posterior likelihood generated by our decoder provides the added benefit of a

measure of certainty or confidence in the prediction. Thus, decoding performance was
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compared in terms of classification accuracy as well as confidence in the prediction

as measured by the posterior distribution over grasps. The evaluated model types

were compared using a multinomial selection procedure (MSP) to assess differences

in decoding performance for each spiking unit [201,202]. Rather than just accounting

for classification accuracy, the MSP takes into account the posterior probability asso-

ciated with each model’s prediction. In the case where models have similar decoding

accuracy, we would generally prefer a classifier that assigns a higher confidence to its

prediction. The MSP procedure reflects this preference. Under the MSP approach,

the predictions from each model in a set are evaluated against known labeled data.

For each sample data point, the model that assigns the highest posterior probability

to the correct class is chosen as a winner. This step in particular helps to disambiguate

between models that may have similar classification accuracy. Across all samples, the

percentage of times each model one is calculated. The two models with the highest

win percentages are identified and a two proportion Z Test is performed to assess

statistical significance.

6.3 Results

The analysis was performed on a single session of recorded data from each of two

monkeys. The sessions consist of neural recordings made during repetitions of uni-

lateral center-out reach-to-grasp trials to four objects across eight locations as shown
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in Fig. 3.1b. The number of trials performed by each monkey under each experi-

mental condition is summarized in Table 3.1. To account for potential imbalances in

the sampled experimental conditions, data from each session was subdivided into two

subsets for analysis. Subset 1 consisted of the sphere, push button, and pull trials

each at locations 1, 2, 3, and 4 (0°, 22.5°, 45°, 67.5°) and consisted of 377 and 376

trials for monkey X and L, respectively. Subset 2 consisted of push button, pull, and

mallet trials each at locations 3, 4, 5, and 6 (45°, 67.5°, 90°, 112.5°) and consisted of

340 trials for each monkey. Trials at locations 7 and 8 (135°and 157.5°) were excluded

from the analysis since only two different objects were ever grasped at these locations,

whereas other locations included grasps of at least three different objects.

Each subset of trials was analyzed independently. Analysis was isolated to the time

period between cue presentation and completion of object manipulation indicated by

closure of the associated microswitch. This period had an average duration of 0.79

seconds per trial in monkey X and 0.65 seconds per trial in monkey L. Within each of

the subsets, a stratified 5-fold cross-validation approach was used to divide trials into

mutually exclusive groups for training and testing. In each fold of cross-validation,

20% of trials from each experimental condition included in the subset were held out

for testing. The remaining 80% of trials were used to estimate the parameters of

the encoding models. The encoding and decoding performance of these models was

evaluated using the trials in the test group. Each of the trials within a data subset

was included in the testing group once across all five cross-validation folds.
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Firing rate models were estimated only for units with average firing rates greater

than 3 Hz. This selection lessened the chance of model overfitting on units with very

sparse firing activity. This resulted in inclusion of 58 of 112 units in monkey X and

74 of 104 units in monkey L. For monkey X, of the 58 units with firing rates greater

than 3 Hz, there were 2 definite and 17 definite or probable single units. The SNR

was 2.8 ± 1.2 (mean ± standard deviation) for the remaining 39 multi units. For

monkey L, of the 74 units with firing rates greater than 3 Hz, there were 14 definite

and 29 definite or probable single units. The SNR was 2.8 ± 1.0 for the remaining

31 multi units. The included units had mean firing rates of 12.0 Hz and 14.9 Hz for

monkey X and monkey L, respectively.

6.3.1 Encoding Performance

For each unit in the ensemble, I estimated three encoding models: a baseline

model, a static-ensemble model, and a task-specific ensemble model. An example

of the trial-averaged firing rates predicted by each of these models for an individual

unit is shown in Fig. 6.2. This figure compares the trial averaged observed firing

rate for the indicated unit as well as the trial averaged conditional predicted firing

rate under each grasp type and each model type. As shown in Fig. 6.2, the three

model variations exhibit very different predictions for spiking behavior. The predicted

firing activity from the baseline models has an average rate that varies across task

conditions but is otherwise constant in time. The static ensemble model allows for
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some temporal variation that better matches the observed spiking activity. However,

because ensemble weights are assumed to be constant across object types, grasp-

specific variations in predicted firing rate are limited to changes in offset and the

overall shape of the predicted firing rate profile has a similar shape regardless of

the grasp the model is conditioned on. Finally, the task-specific model demonstrates

greater overall temporal variability in the predicted firing rate as well as object-specific

temporal variations in the predicted firing activity.

Model encoding performance was assessed by evaluating how well each model’s

predicted firing activity compared to observed firing activity. I examined the spike

timing predictability (STP) of each model [124], which is the ratio of the expected

log-likelihood of spiking activity under the proposed model compared to a null model

based on average spiking across all trials. The null model is a constant-rate model

representing the average firing rate across all trials irrespective of experimental con-

dition. STP has units of bits per second and positive values correspond to a more

descriptive encoding model. The average encoding and decoding performance of each

unit is shown in Fig. 6.3

The baseline model significantly improved upon the STP of the null model in 52%

of neurons in monkey X and 55% of neurons in monkey L (t-test, p < 0.01). The

mean STP score of the baseline model was 0.48 ± 0.17 bits per second in monkey X

and 0.42 ± 0.15 bits per second in monkey L. These results confirm that accounting

for grasp-specific changes to the baseline firing rate often improves the performance
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Figure 6.3: Relationship between spike timing predictability and accuracy. STP
is plotted against average individual unit classification accuracy (main panel) for
each unit. Values represent the average across both data subsets. The marginal
distribution of classification accuracy (left panel) and STP (bottom panel) of these
units are shown as box plots. In the box plots, the tick mark corresponds to the
median and the thicker region of each colored trace indicates inter-quartile range.

of a model in predicting whether or not a spike is going to occur.

The addition of static ensemble terms improved the STP compared to the baseline

model. Static ensemble models had higher STP scores compared to baseline models
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in 83% of units in monkey X and 74% of units in monkey L (paired t-test, p < 0.01).

The mean STP among units under the static ensemble model was 2.29 ± 0.42 bits

per second in monkey X and 3.67 ± 0.56 bits per second in monkey L.

Task-specific ensemble models tended to have superior encoding performance com-

pared to the baseline model but did not generally outperform static ensemble models.

Task-specific ensemble models improved upon baseline models in 62% (57%) of units

and improved upon static ensemble models in 10% (8%) of units in monkey X (mon-

key L) (p < 0.01). The mean STP under the task-specific ensemble models was 2.18

± 0.49 bits per second in monkey X and 3.16 ± 0.62 bits per second in monkey L. The

STP for each unit under the static and task-specific ensembles was strongly correlated

in both monkeys (Pearson’s r of 0.997 in monkey X, 0.991 in monkey L).

The average STP scores for each model type were aggregated across all units and

a Friedman test with post hoc analysis was applied to compare encoding performance

for each of the model types. In both monkeys, task-specific and static ensemble

models had higher STP than baseline models (p < 0.01) and the static ensemble

model had higher STP than the task-specific ensemble model (p < 0.01).

6.3.2 Decoding Performance

Decoding was performed by synchronously evaluating the maximum likelihood

estimate of grasp shape using the learned encoding models. Decoding performance

was evaluated using both classification accuracy as well as prediction confidence as
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Figure 6.4: Trial averaged classification accuracy for individual unit decoding across
all trials for both monkeys averaged across both subsets. Classification accuracy av-
eraged across units is indicated for each of the three model types. Shaded region
denotes standard error. Classification at each time step was performed by select-
ing the class corresponding to the maximum under the posterior distribution given
observations prior to that time step. Vertical lines indicate cue presentation (Cue),
onset of movement (OM), object contact (OC), and static hold (SH). Decoder out-
put was time-normalized within each epoch (Cue to OM, OM to OC, OC to SH)
before averaging. The horizontal dashed line indicates threshold for chance decoding
performance at p = 0.05 significance level.

accounted for by the use of the posterior distribution in the multinomial selection

procedure. Each trial was evaluated sequentially, allowing the predicted class estimate

to be updated with each time step. The evolution of average individual unit accuracy

over the time course of a trial is shown in Fig. 6.4.

Differences in individual unit decoding performance for individual units was evalu-

ated using the multinomial selection procedure (MSP), which is based on the posterior
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distribution of the classifier rather than accuracy. Task-specific ensemble models ex-

hibited superior decoding performance in 82% of units in both monkey X and monkey

L (averaged over both data subsets, p < 0.01). Baseline models had the best classi-

fication accuracy in approximately 1% of units in each monkey. The remaining units

did not have superior performance under any one model according to the MSP. Static

ensemble models were never identified as having the best decoding performance.

Individual unit decoding performance was also assessed based on average classifi-

cation accuracy at the end of each trial (switch closure). In monkey X (monkey L)

individual units achieved a mean accuracy of 43.7% ± 1.2% (43.6% ± 0.9%) under

the baseline model, 41.6% ± 0.9% (41.0% ± 0.7%) under the static ensemble model

and 50.0% ± 1.6% (50.2% ± 1.5%) under the task-specific ensemble model. Overall

individual unit classification accuracy under the three models were compared using a

Friedman test with post hoc analysis. In both monkeys, individual unit classification

accuracy was significantly higher for the task-specific ensemble model than both the

static ensemble and baseline models (p < 0.01). The baseline model had higher clas-

sification accuracy than the static ensemble model in monkey L (p < 0.01), but not

in monkey X (p > 0.05).

Within a model type, units showed a strong correlation between STP and individ-

ual unit classification accuracy. In monkey X (monkey L), the Pearson’s correlation

between the mean STP and mean individual unit decoding performance for each unit

had a value of 0.66 (0.58) for the baseline model, 0.79 (0.80) for the static ensemble,
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and 0.80 (0.76) for the task-specific ensemble. This suggests that within a model

type, units with better encoding performance relative to the population also tend to

have better decoding performance.

Population decoding was performed using a simple majority vote during each

step of a trial. Typical trial-averaged performance is shown in Fig. 6.5. Population

classification accuracy was greatest for the task-specific ensemble models, though all

three models performed significantly better than chance with average accuracy of at

least 75% by the time of switch closure. In monkey X (monkey L) the final mean

population classification accuracy was 79.6% ± 2.8% (87.8% ± 1.1%) for the baseline

model, 77.3% ± 1.3% (75.8% ± 1.6%) for the static ensemble model and 95.4%

± 1.5% (96.6% ± 0.6%) for the task-specific ensemble model. In both monkeys,

classification accuracy for population decoding was significantly higher for the task-

specific ensemble model than both the static ensemble and baseline models (p <

0.001). Population decoding performance under the baseline model was significantly

greater than the static model in monkey L (p < 0.001) but not in monkey X (p >

0.05).

6.4 Discussion

I examined the impact of modeling task-specific effective connectivity among an

ensemble of simultaneously recorded cortical neurons in motor and premotor regions
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Figure 6.5: Trial averaged classification accuracy for population decoding across all
trials for both monkeys averaged across both subsets. Average classification accu-
racy is indicated for each of the three model types. Shaded region denotes standard
error. Classification at each time step was performed using a simple majority vote
with each spiking unit contributing a single vote for the most likely grasp given the
observations prior to that time point. Vertical lines indicate cue presentation (Cue),
onset of movement (OM), object contact (OC), and static hold (SH). Decoder output
was time-normalized within each epoch (Cue to OM, OM to OC, OC to SH) before
averaging. The horizontal dashed line indicates threshold for chance classification
performance at p = 0.05 significance level.

during performance of a motor task. Point process encoding models were constructed

based on neuronal activity recorded from motor cortical areas of non-human primates

during a reach to grasp and manipulate task. I evaluated and compared three differ-

ent models of neuronal firing. A baseline model in which each neuron was modeled

as having a baseline firing rate dependent on the object being grasped. A static en-

semble model in which the baseline model was augmented with ensemble interaction

terms that were fixed across all grasp types. Finally, a task-specific ensemble model

in which the influence of the ensemble interaction varied with the grasp performed.

Model performance was assessed both in terms of the ability to predict spiking ac-

tivity (encoding) as well as the ability to discriminate between different grasp types
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(decoding).

The relative encoding and decoding performance of the three model types was

consistent in both data subsets in both monkeys. Inclusion of ensemble activity in

both the static and task-specific ensemble models improved encoding performance

compared to the baseline model as can be seen in Fig. 6.3. This result is consistent

with several previous studies [40,41,54] that found ensemble interactions can be espe-

cially predictive of spiking activity given even a modestly-sized ensemble. Modeling

task-specific ensemble interactions did not generally improve spike timing prediction

beyond that achieved by static ensemble models. Decoding performance was signif-

icantly improved compared to baseline in task-specific ensemble models but not in

static ensemble models. This difference in decoding performance was observed in the

case of both individual unit and population decoding as shown in Fig. 6.4 and Fig.

6.5. The inclusion of ensemble activity generally improves prediction of spiking, but

significant improvements in decoding performance due to ensemble activity require

the model to account for task-specific variations in functional connectivity. Simply

increasing the number of parameters in the model, as in the case of the static ensemble

model compared to baseline, does not necessarily increase classification accuracy.

One might expect a priori that the task-specific ensemble model would outper-

form the static ensemble models in both encoding and decoding performance. The

task-specific ensemble model did not generally outperform the static ensemble model

in terms of encoding. This was likely due to a difference in model structure and the
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availability of data. The task-specific ensemble model had three times as many en-

semble parameters as the static ensemble model. Additionally, under the task-specific

ensemble model, estimates of ensemble parameters corresponding to a particular ob-

ject are improved only by observations of trials involving that object; e.g. trials

involving the sphere object tell us nothing about the ensemble structure specific to

the push button object. As a result, there is more uncertainty in the estimates of

task-specific ensemble parameters compared to static ensemble parameters given the

same amount of trials overall.

In the event that task-specific ensemble effects are small or zero, differences in pre-

cision of model parameter estimates could account for lower STP performance by the

task-specific ensemble model compared to the static ensemble. If object-specific en-

semble effects were sufficiently large, one would expect to see the task-specific model

to have better encoding performance compared to a static ensemble model. This was

the case for some units, but not the majority. However, if there were no variation in

ensemble effects with object, one would expect to see no difference in decoding perfor-

mance between the static and task-specific ensemble models. Task-specific ensemble

models do improve decoding performance compared to baseline while the static en-

semble models do not. These results suggest that there are potentially small but

significant variations in functional connectivity across objects.

Decoding of grasping activity from neuronal data has been demonstrated previ-

ously with high classification accuracy [36, 82, 87–89, 91, 203]. Though precise com-
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parison across studies involving decoding is difficult due to variations in experimental

procedure, our approach achieved decoding performance consistent with these earlier

efforts. Our underlying model is a generative model that continually assesses the like-

lihood of spiking activity in one millisecond time bins given recently observed activity

from the neural ensemble. Though this approach makes the common assumption that

the time of cue presentation was known, transitioning to purely asynchronous decod-

ing could be facilitated through a separate state classifier or other heuristic to detect

the onset of a new trial or intention to move [50,67,82,105,204]. Another advantage

is that our method relies on modeling functional interactions with other neurons with

time-varying behavior. This allows our model to account for significant task-specific

temporal variability in firing rates without explicit modeling of a tuning function or

state-transition models [67, 105, 106]. Finally, the underlying application of a gener-

alized linear model to model firing facilitates introspection of the model and further

investigation of the model behavior.

Accounting for task-specific ensemble behavior is not without its drawbacks. The

number of parameters included in the task-specific model is determined by the prod-

uct of the number of units in the ensemble, the number of time bins included in each

ensemble interaction, and the total number of task conditions being modeled. As the

number of simultaneously recorded neurons grows or the task expands in complexity,

the amount of data required to adequately estimate model parameters grows quickly.

The risk of overfitting may be mitigated by limiting the number of ensemble interac-
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tions through neuron selection or by incorporating regularization during the process

of fitting the model itself, as in [183, 197, 199]. Modification of the cost function

during regularization provides the added benefit of tuning the model to emphasize

encoding performance, model sparsity, or decoding performance. In this study I opted

for an unbiased maximum likelihood approach and reduced the risk of overfitting by

excluding neurons with low firing rates.

The findings suggest task-specific functional interactions between neuronal spike

trains recorded from motor-related cortical regions may provide information about

motor behavior. By using point process models of spiking, these interactions are

modeled and compared against traditional assumptions of independent variation of

firing rate with motor behaviors. Both static and task-specific ensemble interactions

explained significant amount of spiking behavior in many neurons. Task-specific vari-

ations in ensemble interactions, though small, carried a significant amount of discrim-

inative information about the grasp being performed.
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Conclusions and Future Directions

7.1 Summary

The work presented here represents a significant contribution to the field of neuro-

science as well as brain machine interfaces through the development and application

of methods related to the encoding of motor behaviors by networks of neurons in

motor and premotor cortices in primates. Understanding the representation of motor

behaviors by the brain is of vital importance to neuroscience as well as the effective-

ness and performance of BMIs. Traditional approaches to learning this representation

were largely developed with a focus on individual units acting in isolation. This ap-

proach is suitable for applications when only a small number of neurons are available.

Continued developments in recording technologies, however, have resulted in the abil-

ity to from hundreds of individual neurons simultaneously. Taking full advantage of
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these observed populations requires new techniques for analyzing the encoding of in-

formation in these populations as well as new models for representing this encoding.

The first part of this thesis presented a number of techniques for exploratory

analysis of neuronal activity during the performance of a complex motor task. The

exploratory analysis consisted of initial dimensionality reduction techniques to bet-

ter understand the overall neuronal population activity during the performance of a

task that involved simultaneous reaching and grasping. This analysis revealed tempo-

rally complex trajectories that showed structured organization in population activity

across movement types. Classifiers were built to examine the concept of temporal

generalization both at the population level and at the individual unit level. Results

of temporal generalization analysis indicated the presence of temporally and spatially

dynamic coding of reaching and grasping by neurons in motor and premotor cortices.

The second aim consists of applying semi-supervised clustering techniques to trial

responses of individual spiking units in order to find natural variations in spiking

activity across a number of experimental conditions. This technique can be extended

to serve as a neuron selection procedure for identifying relevant subsets of neurons

to include in classification-based decoders. Additionally this same technique may

be used to identify groups of neurons with common external drivers, even when the

source of that drive is unknown. When applied to the reach-to-grasp experiment,

this technique readily identified different subsets of neurons that offered higher than

average performance in decoding of reach and decoding of grasp. Similarly this tech-
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nique was also used to intentionally identify subsets of neurons with below average

classification performance.

The third and final aim developed the idea of task-specific neuronal ensembles for

use in encoding and decoding applications. The core model introduced here is built

on the premise that members of a large ensemble of neurons will form a functional

network through apparent statistical interactions and that the structure of this net-

work is dependent on the task being performed. Task-specific ensemble models had

good overall decoding performance and superior decoding performance to traditional

models that assume only variations in baseline firing rate. These results indicate that

ensemble interactions may be used to great benefit when modeling the behavior of in-

dividual units for the purposes of motor decoding. As larger ensembles are observed,

these models will become more powerful as units have a larger universe of potential

signals to incorporate.

7.2 Future Directions

Evidence suggests that neural data is trending toward larger and larger vol-

umes [2]. Today, studies regularly report recording from several hundred units si-

multaneously [3] and at least one group reported recording from as many as 1,800

units at once [4]. This same study forecast that current technology could soon be used

to record from more than 5,000 units simultaneously. In order to utilize these large
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populations, a number of broad changes to methodology will likely occur including

careful consideration of the relationship between feature dimensionality and algorith-

mic complexity. Very likely, methods assessing neuronal importance [169–175] will

become of increasing importance as a means to perform feature selection as a prepro-

cessing step. Recording from so many neurons will have many practical implications

requiring dramatic changes to the way data is analyzed. While traditional approaches

to data analysis born in the early days of single unit recording are unlikely to be aban-

doned, they will perhaps become less relevant as data grows increasingly larger. While

this thesis presented a number of tools useful to addressing these changes, the results

suggest a number of avenues for further research.

7.2.1 Honing Co-modulated Communities

The combination of knowledge about experimental design with clustering single-

trial activity of individual units proved to be a powerful approach to neuron selection

and an effective means for identifying groups of units for further analysis. The inspi-

ration behind this approach was driven two factors:

1. Neurons should have similar responses across repetitions of the same stimulus

or behavior

2. Neurons may coordinate as part of a group without having correlated firing

activity
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The first point leads to a question of how similarity between spike trains is defined.

In the present work, similarity was gauged by cosine similarity of two trials following

firing rate smoothing and time rescaling. The role of time in assessing similarity

is important, however, as different neurons may have different intrinsic time scales

for representation or may have different degrees of stochasticity to responses across

multiple repetitions. As presented, the methodology assumed that this time scale was

fixed and identical across all observed neurons. Different results might be achieved

by extending the similarity measure to include optimization over multiple timescales

[126,155,161].

The second point above gave rise to the idea of co-modulated communities. Neu-

rons may be linked by a common upstream driver or ancestor. Selection of neurons

for inclusion in a classifier was performed by comparing similarity of each neuron’s

trial clustering to known variation in blocked experimental variables. A similar con-

cept may be employed to determine whether units are potentially modulated by other

observed experimental variables. In the same way that neurons should have similar

responses over repeated trials, other variables such as joint angles, endpoint kine-

matics, and electromyographic signals may should also express similar behavior over

repeated trials. The described clustering method may be applied to each of these

variables in turn. Resulting partitions may then be compared to partitions for each

of the neurons. Similarity of partitions between a neuron and one of these exter-

nal covariates may indicate presence of a functional interaction. This method could
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potentially be used, for example, to identify groups of neurons modulated by mus-

cle activity versus groups modulated by endpoint kinematics without requiring the

nature of the encoding be specified.

Finally, the classification technique described in the earlier chapter is not directly

translatable for usage in online brain-computer interfaces. The presented classifier

relied on finding the nearest cluster for a newly observed spike train. Under the

presented methods, calculating this cluster assignment required knowledge of the

timing of behavioral events in order to properly perform time rescaling. In the scenario

of online decoding in a BMI, the timing of behavioral events would be unknown. A

suitable replacement for online control may be found by learning a spiking trajectory

model associated with each cluster. These trajectory models may be approximated

as hidden markov models [105,106,205] or switching linear dynamical systems [206].

Such trajectory models would largely eliminate the need for knowledge of precise

timing but may result in poorer classifier performance due to the decrease in certainty

of cluster assignment. Though in a closed-loop BMI setting, these differences may be

mitigated by through mechanisms of feedback and adaptation.

7.2.2 Extensions to Task-Specific Ensembles

Encoding models incorporating task-specific interactions among neurons were

shown to have several desirable properties including good encoding and decoding

performance without requiring the specification of a motor-specific tuning function.
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However, two particular assumptions made in this analysis could be examined more

closely in future investigations to expand the basic model and potentially improve

performance.

One assumption is that ensemble structures are static over the time course of a

trial. We are may observe, however, that ensemble structure is dependent on both

the type of movement as well as the overall movement state. Temporal variation in

the observed ensemble structure is especially likely in the scenario where recordings

are produced from different functional regions such as motor cortex, premotor cortex,

and parietal cortex. We would expect to see network structure change across these

areas as the subject transitions from observation to planning to movement. In light

of the results from the analysis of dynamic coding of these same cells, we may observe

temporal variations in ensemble structure even if the ensemble is recorded entirely

from a single region. A simple solution to adding temporal structure to the task-

specific ensemble model could be achieved through combination of the presented

model with a separate model performing state estimation such as a hidden markov

model [105,106] or linear discriminant classifier [82].

In addition to temporal stationarity, the examined neuronal ensemble connec-

tions were assumed to be dependent upon grasp. Similar task-dependent ensemble

structures may also be present during reaching. In the case of reaching however, the

ensemble structure is more likely to vary continuously as a function of reach angle

than switch between a finite set of states. If the ensemble of neurons is imagined

154



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

to form a fully connected network, the strength of connection between any pair of

neurons may be modeled as a function of the reach direction. The task-specific en-

semble models presented earlier may be viewed as a varying coefficient model [112]

where each model coefficient varied as a function of grasp. In the case of grasping, the

coefficient function was specified to be an indicator function. To extend this idea to

reach direction, the indicator function may be replaced by a number of overlapping

epanechnikov kernels with support over the domain of possible reach angles. The

resultant model could then describe the expected spiking activity for reaches over a

continuous range of values rather than only specific increments.
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