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1 Abstract

As sequencing technologies and techniques have matured, there is now a siz-

able pool of genetic information to be used in advancing our understanding

of the genetic nature of complex human traits and diseases. To investigate

these questions, suitable methods must be applied to obtain the necessary

information from the raw sequencing data. This thesis provides compu-

tational and statistical techniques to work with Whole Exome Sequencing

(WES), Targeted Sequencing (TS), and RNA Sequencing (RNA-seq) data.

For WES data, we present a method to explicitly use a multiplex family

design to detect and evaluate rare deletions. This method is geared to-

wards detecting rare deletions shared among families, while also extending

previous work for rare (single-nucleotide) variant association tests to rare

deletions. For TS data, we present a pipeline to detect de novo deletions

in the proband of case-parent trios. This method leverages the case-parent

nature of the data and flexibly models characteristics of TS data, resulting

in greatly reduced false discoveries while maintaining comparable sensitiv-

ity to currently available methods. Lastly, the recount2 repository con-

tains compressed RNA-seq data on more than 70,000 samples from across

a diverse set of phenotypes. We provide a method for recovering mRNA

transcript expression information from such compressed data stored in this

repository.
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3 Introduction

One of the pillars of modern molecular biology is the concept of the Central

Dogma, which offers an explanation for the flow of information to and from

three classes of molecules found within cells: DNA, RNA, and proteins

[1]. Often, this concept is simplified into stating that information stored

in DNA is transferred to RNA via transcription, which is in turn used to

manufacture the proteins that carry out cellular function. Disruptions to

the proper process from DNA to protein can lead to cellular dysfunction

and disease [2, 3]. As such, much attention has been devoted to studying

the DNA and RNA within a cell to understand and improve human health.

As genetic sequencing technologies have grown by leaps and bounds over

the last few decades, researchers have gained tremendous resolution in be-

ing able to study the genetic materials of organisms [4]. These technologies

have advanced steadily from the advent of Sanger sequencing [5] in the

1970s to the Next Generation Sequencing (NGS) technologies of today [4].

These developments have brought about the feasibility of Whole Genome

Sequencing (WGS), a technique to interrogate the complete 3 billion base-

pairs of DNA that make up an individual’s genome [6]. Although the cost

of WGS sequencing per sample has fallen dramatically [7], it is still often

more feasible to prioritize resources towards interrogating a smaller subset

of the genome [8]. Whole Exome Sequencing (WES) focuses on obtain-

ing information on the 1-2% of the human genome that consists of exons

that code for protein sequences. Similarly, targeted sequencing (TS) allows

the researcher to choose specific subsection of the genome of interest for
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sequencing.

Due to these improvements in technology and accompanying rise in genetic

data collected, a large catalog of genetic variation has been revealed to

exist in the human genome [9]. The size of variations detected can range

from a single basepair to entire chromosomes [10]. The types of variations

can include single nucleotide changes, insertions and deletions of varying

sizes, as well as events like translocation and inversions. Variants have also

traditionally been categorized as common or rare, depending on whether

that variant is seen in more than 1% of the human population.

Much research has been devoted to studying the contribution of common

genetic variants to the heritability of complex diseases and traits, uncov-

ering many significant association signals [11]. However, common variants

only explain a modest portion of the heritability of most complex traits

and diseases [12], and has given impetus to studying the role of rare vari-

ants in governing complex traits and diseases. Assessing the association

between complex phenotypes and rare variants carries its own challenges,

where traditional tests developed for common variants are less than ideal,

often underpowered because these variants are by definition quite rare [11].

In sections 4 and 5, we present computational and statistical approaches

that leverage family-based study designs for rare deletion detection and as-

sociation. We have focused on investigating deletions as they can readily

give rise to loss-of-function and gene dosage effects depending on their lo-

cation and size [13]. We also leverage family-based study designs in hopes

of enriching the probability of encountering rare deletions associated with

phenotypes [14].
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More specifically, in section 4, we use Whole Exome Sequencing data of

multiplex families with multiple members afflicted by oral cleft to investi-

gate the role of rare deletions. Previously, rare variant association studies

have largely been based upon single nucleotide changes, and did not extend

to (larger) deletions; while methods geared to detect the larger deletions

from WES data have not been designed to detect rare or shared deletions

in the context of multiplex families. Our method combines a pipeline for

the detection of rare deletions from WES data with association tests to

evaluate identified deletions.

Continuing on the theme of family-based design for rare deletion detec-

tion, we present in section 5 a method to detect de novo deletions from

targeted sequencing of case-parent trios, where the two parents are pheno-

typically normal and the proband has an oral cleft. This method is again

a novel intersection between a family-based case-trio study design and de

novo deletion calling from targeted resequencing data. Currently available

methods can either infer de novo deletions in WGS data but not in targeted

sequencing data, or they can delineate deletions from targeted sequencing

data but are unable to leverage the family-based study design to ensure the

de novo nature of detected deletions.

Lastly, RNA sequencing (RNA-seq) provides an additional avenue for gain-

ing insights into the genetic variations that exist amongst individuals. Not

only can RNA-seq be used to detect mutations in the exonic sequences that

manifest in observable changes to the mRNA sequence [15], but it can also

be used to infer the relative expression of different genes [16]. Here, rel-

ative expression refers to how active different genes are, and its detection

3



is based on the premise that the more active a gene is, the more sequenc-

ing fragments one should observe of mRNAs originating from that gene.

Furthermore, the presence of alternative splicing gives rise to different ver-

sions (transcripts) of mRNAs that can be constructed from the same DNA

sequence. Just like how relative expression of different genes can be in-

ferred, relative expression of different transcripts of a given gene can also

be inferred based on the number of observed sequences attributable to each

transcripts. Expression of genes and transcripts have been shown to differ

across phenotypes and disease states [17, 18], making RNAseq a powerful

tool for investigators to leverage in understanding genetic contribution to

biological outcomes.

In section 6, we present a study on recovering the expression levels of

different mRNA transcripts in RNA-seq data using only the compressed

summary statistics provided by the recount2 [19] database. recount2

is a valuable resource containing curated information more than 70,000

RNA-seq samples across a wide range of studies and phenotypes, enabling

tremendous opportunities to for differential comparison. Although gene and

basepair level expression summaries are available, transcript-level estimates

have not yet been produced for recount2.
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4 Whole Exome Association of Rare Deletions in

Multiplex Oral Cleft Families

This section describes work published in separate form in Genetic Epi-

demiology with the following coauthors: Terri H. Beaty, Alan F. Scott,

Jacqueline Hetmanski, Margaret M. Parker, Joan E. Bailey Wilson, Mary

L Marazita, Elisabeth Mangold, Hasan Albacha-Hejazi, Jeffrey C. Murray,

Alexandre Bureau, Jacob Carey, Stephen Cristiano, Ingo Ruczinski, and

Robert B. Scharpf.

4.1 Background

Appreciable genetic heterogeneity must be expected in complex diseases

such as nonsyndromic oral clefts. One component of heterogeneity at the

DNA level is single nucleotide variants (SNVs). SNVs that are private to

affected individuals in a single multiplex family or appear in only a few

multiplex families may be responsible for association signals detected with

common variant analyses and have the potential to implicate new regions

not previously linked to disease [20]. In the context of non-syndromic oral

clefts, we recently identified rare variants in the gene ADAMTS9, a gene

encoding a member of the ADAMTS protein family and located in a re-

gion known to be lost in hereditary renal tumors; and CDH1, a known tu-

mor suppressor whose down-regulation decreases cellular adhesion [21, 22].

Structural changes to the DNA copy number, including deletions and am-

plifications of small sections of the genome, can also influence risk to oral
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clefts, but these have not been systematically evaluated using whole exome

sequencing (WES) data.

Copy number methodologies relevant to the study of rare germline deletions

include CoNIFER, XHMM, and CLAMMS [23, 24, 25], but in general these

methods are not tailored to rare deletions shared among family members.

CoNIFER normalizes exon-level reads per kilobase per million (RPKM)

by singular value decomposition. After removing the components from

the standardized RPKM scores, these adjusted scores provide a relative

measure of expression for copy number. XHMM follows an approach similar

to CoNIFER where exon-level read coverages are normalized by principal

components analysis. A hidden Markov model with states for copy number

gain and loss is used to identify CNVs [23]. Unlike CoNIFER and XHMM,

CLAMMS proproses a Lattice Aligned Mixture model for both rare and

common CNVs and is scalable to thousands of samples [25].

Methodologies to evaluate the association between rare variants and disease

are largely based on intensity levels for SNVs. In non-family based designs,

rare variants are often grouped and statistical models for association are

based on some linear combination of protective and risk alleles, possibly

using a weighted score [26, 27, 28, 29, 30]. The idea of grouping rare variants

has been extended to family-based studies [31], while others have proposed

statistical tests for sib-pairs [32, 33]. We recently proposed an exact test

for the statistical significance of a single rare sequence variant shared by

distant relatives in multiplex families [22]. The probability from this exact

test is referred to as a sharing probability. A critical assumption of our

approach is that the variant is sufficiently rare so copies in the sequenced
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relatives are almost certainly identical by descent (IBD).

Here we delineate hemizygous deletions identified from WES in multiplex

families of individuals with non-syndromic oral cleft. A combination of

bioinformatic and model-based filters identify rare deletions, including sev-

eral shared within families. We then extend analyses of shared rare SNVs

to assess the statistical significance for shared rare deletions. In particu-

lar, we compute the probability that distant relatives share the same rare

deletion under the a priori null hypothesis of no linkage or association [21].

We introduce potential sharing probabilities in the context of shared dele-

tions as a means to control the false discovery rate. Last, we also devise a

scalable global test for enrichment of rare deletion sharing.

4.2 Results

Families were recruited by separate research groups under protocols re-

viewed and approved by their respective institutional review boards as de-

scribed previously [22]. Two or three affected second and higher degree rel-

atives from 56 families (n=115 individuals) were whole exome sequenced to

an average depth of 60× coverage. Ethnic groups represented in this study

are 19 families of German ancestry (n=38), 12 Indian families (n=26), 11

Filipino families (n=22), 10 Syrian families (n=22), 2 European-American

families (n=3), one Chinese family (n=2), and one Taiwanese family (n=2).

Following alignment to the hg19 reference genome by BWA, we defined

242,600 non-overlapping bins of the exome by merging the full set of exons.

A total of 59,279 bins with low GC content, poor mappability, or low cov-
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erage were subsequently removed. The autosomal M -values were approxi-

mately Gaussian with a median lag10-autocorrelation (ACF10) of 0.03 and

median Median Absolute Deviation (MAD) of 0.17 (Supplementary Figure

4.7). Four samples with ACF10 greater than 0.2 and 3 additional samples

with MADs greater than 0.3 were excluded from further analyses. While

a family must have at least two members to assess sharing, at this stage

we included all individuals with high quality WES data. Segmentation of

the M values by CBS identified an initial set of 252 segments among 95

participants with an average M consistent with a hemizygous deletion. We

excluded regions where hemizygous deletions were identified in 6 or more

families (≈ 10 percent) and regions where a homozygous deletion was iden-

tified in any affected individual or was previously reported in any 1000G

participant. The remaining 169 candidate hemizygous deletions comprised

100 distinct, non-overlapping genomic regions. Using Bayes Factors to com-

pare normal fixed mean mixture models, we identified 88 deletions from 53

regions, spanning 12Mb of the exome (Supplementary Figure 4.9). The me-

dian number of rare hemizygous deletions identified per multiplex family

was 2, with an interquartile range of 1.0− 2.8 (Figure 4.1).

The assumption that these identified deletions are rare depends on esti-

mates of deletion frequencies in the 1000G study. While there exists het-

erogeneity of CNV frequencies among the various subpopulations in the

1000G study, the deletions identified in this study were shown to be rare

either because very few individuals with CNVs have been identified in any

of the 1000G subjects or because their size is substantially larger than pre-

viously identified CNVs in these regions (Supplementary Figure 4.10).
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Figure 4.1: Deletion filtering for rareness
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The number of autosomal hemizygous deletions (y-axis) identified among

95 participants across 46 mulitiplex families (x-axis). Candidate dele-

tions were first identified by segmentation of M values (gray). Exclud-

ing deletions overlapping with homozygous deletions and copy number

polymorphisms in the 1000G project, we obtained an initial estimate of

the frequency of rare, autosomal hemizygous deletions per family (or-

ange). At each region with a potentially rare deletion, we fit Bayesian

mixture models with and without a mixture component for these hem-

izygous copy number state to their average M values. For regions

where the log Bayes factor comparing the model with deletion to the

model without deletion was at least 2, a sample was considered hem-

izygous if the posterior probability for the hemizygous component was

at least 0.9. Excluding regions with more than 5 families identified as

hemizygous under this mixture model, a total of 88 rare deletions were

identified in these 46 multiplex families with a median frequency per

family of 2 (blue).

To gauge performance of our approach (hereafter termed RV) relative to

existing pipelines for whole exome copy number analysis, we applied the

algorithms of XHMM, CoNIFER, and CLAMMS to the oral cleft study.

Overall, 68 of the 88 (77%) rare deletions detected by RV were identified

by at least one other method. Specifically, XHMM and CoNIFER identified

61 (69%) and 53 (60%) of these rare deletions, while CLAMMS identified 32

(36%). None of the alternative methods identified the rare deletion shared

by distant relatives on chromosome 6, a region subsequently validated by

qPCR (Supplementary Figure 4.11, ). In addition, adapting XHMM and
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CoNIFER to the identification of rare deletions was not possible since these

methods do not distinguish between hemizygous and homozygous deletions.

For nearly all homozygous deletions identified by RV and called as deletions

by XHMM or CoNIFER irrespective of rarity status, the signal to noise

ratio of this normalized coverage estimate is more than 2-fold higher in

RV (Supplementary Figure 4.12). Normalized copy number estimates were

comparable in CLAMMS and RV, differing mainly in scale (Supplementary

Figure 4.13).

Among the 46 multiplex families used in the RV sharing analysis, three fam-

ilies each had three members, and the remaining 43 families had only two

members. Family 15157 had a deletion shared in 2 of 3 affected members,

but no three-member family had a deletion shared by all three members.

For the two-member families, we identified 8 shared deletions (median size

is 46 kb). The most frequent deletion meeting our rarity criteria occurred in

DUSP22 (chr6: 292,101-393,098bp) in two individuals from one family and

three individuals from three other families. Deletions involving DUSP22

have been reported as causal for Duane retraction syndrome which can oc-

cur with oral clefts [34, 35], although deletions involving this segment of

chr6p25.3 may be critical [36]. Chromosomal aberrations on the short arm

of chr6 have been previously observed in children with oral clefts, suggesting

the presence of an orofacial clefting locus (denoted OFC1 ) near 6p24 [37].

Five of the six samples with called hemizygous deletions for gene DUSP22

were confirmed by qPCR, including the two first cousins (17110 01 and

17110 19) who share this deletion.

In addition to DUSP22, the top-ranked region also contains a shared dele-
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tion [chr13: 53,078,416 - 53,158,768bp](Figure 4.2). While nominally sta-

tistically significant (p=0.004), this shared deletion spanning pseudogene

TPTE2P3 was not statistically significant after multiple testing adjustment

nor has this region been previously implicated in clefting. To further inves-

tigate the sequence complexity of this region, we extracted the sequence of

15 regions (targets) captured by the Agilent SureSelect kit spanning this

deletion. We aligned the target sequences to the human reference genome

using BLAT [38]. These BLAT alignments revealed other, off-target regions

of the genome for which these sequences match with near perfect fidelity

(Supplementary Figure 4.14).

Ordering the 53 regions by their potential p-values yielded 13 regions in-

cluded in the list of formal hypothesis tests. Four of the 13 regions were

shared in some (but not all families), although none of these regions reached

statistical significance (Figure 4.2). We recorded a total of 88 hemizygous

deletions that could potentially be shared within a family. The mean sep-

aration between rare deletions in this study was 21.5Mb (minimum across

all autosomes: ≈ 29kb). Stratified by individuals, there were only two in-

dividuals in which a rare deletion occurred on the same chromosome. For

these two regions on chromosome 17 and 22, the distance between the rare

deletions was 34.8Mb and 13.2Mb, respectively. As many individuals had

only one rare deletion, and all but two individuals had rare deletions on

different chromosomes, the assumption that all rare deletions are indepen-

dent for the global enrichment test is highly plausible. Of the 88 regions, 8

were shared within families and 72 were not (Figure 4.2). Our global test

for the total number of shared deletions was not significant (p = 0.84).
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Ranks of the potential p-values are plotted against the -log10 potential

p-value (A). Of the 53 regions with one or more rare deletion alleles,

the first 13 ranked regions had potential to achieve a statistically sig-

nificant association with oral cleft. Observed sharing probabilities for

the first 13 regions were less than their potential p-values, and were

not statistically significant. A circos plot displays these data for each

deleted region by genomic position (B). The tracks starting from the

outermost ring are the ideograms (beige), the top 13 ranks of the poten-

tial sharing probabilities, the potential sharing probabilities (unfilled

circles), and the contribution of each family to the potential sharing

probabilities (solid circles). Families with a shared deletion are indi-

cated in blue with tick marks on the innermost track highlighting the

8 regions with shared deletions.

4.3 Discussion

We present an exome-wide map of 88 rare hemizygous deletions at 53 re-

gions from 56 multiplex oral cleft families. These families were recruited

by separate groups originally for linkage analysis. Probands were examined

to establish they had an apparent non-syndromic oral cleft, and affected

relatives were recruited and examined whenever possible. While firmly es-

tablishing multiplex families as truly non-syndromic is difficult and some

families were known to be inbred, the WES data used here came from dis-

tant affected relatives (second or higher degree). We deliberately screened

out common deletions. The majority of rare deleted regions (45/53) were

not shared by members of the same family. Of the 8 shared deletions, four
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occurred in a single family. For each of these regions, the potential p-value

exceeded the cutoff needed to keep the family-wise error rate at 5 percent.

Interestingly, one of the top ranked regions in this study occurs on chr6p, a

region previously implicated in clefting and containing at least one reported

orofacial locus (OFC1 ). The deleted region identified here spans DUSP22,

approximately 6Mb from OFC1. Deletions involving DUSP22 have been

associated with a disorder of eye movement (Duane retraction syndrome),

although oral clefts can occur in individuals with this complex and het-

erogenous disorder. Sharing of the DUSP22 hemizygous deletion occurred

in only one of the four families where it was identified in this sample of

multiplex families, underscoring the genetic complexity of oral clefts.

Our study builds on the work of others for identifying rare deletions. The

idea of combining segmentation and mixture models to identify copy num-

ber alterations was originally described for arrays [39, 40, 41, 42, 43]. Here,

mixture models account for heterogeneity of the precision between exomic

bins used to estimate coverage. The Bayesian mixture model increases the

specificity of our approach by removing false positives in high variance re-

gions. At other regions, the Bayesian mixture model identifies additional

hemizygous samples not originally detected by segmentation, increasing

sensitivity. Finally, the methodology for modeling the statistical signifi-

cance of rare deletions shared by members within extended families is a

natural extension of the rare SNV association models proposed by [21].

Our analysis removes all homozygous deletions as these are very likely to

occur when the deletion is common. Discriminating between hemizygous

and homozygous deletions is critical for the analysis of rare deletion shar-
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ing, but this is not currently available in many whole exome copy number

analysis tools such as XHMM and CoNIFER.

For a highly inbred family, a rare deletion can occur in homozygous form due

to inbreeding alone. In both the SNV and CNV approaches, all founders

are assumed to be unrelated, and violating this assumption would lead

to inflated statistical significance. For families with low levels of kinship

between founders (cryptic relatedness), Bureau et al. 2014b propose a cor-

rection of the sharing probabilities based on empirical estimates of kinship

among founders obtained from genome-wide marker data. Integration of

genome-wide markers with the deletion analysis described here to estimate

cryptic relatedness and its corresponding sharing probabilities for homozy-

gous deletions in the Syrian families is a future direction of investigation.

Considerable genetic heterogeneity must be expected with complex dis-

eases. Rare variants may only explain part of the ”missing heritability”. In

a family where cases cluster, one possible explanation is that affected mem-

bers carry the same rare but highly penetrant variant [20, 44], although

other explanations such as high genetic burden could also apply [45, 46].

Our variant sharing approach specifically targets the former scenario, and

thus can only be successful for families where a single rare (but highly

penetrant) variant segregates. Our method does not assume complete pen-

etrance of the variant, but requires that every sequenced affected member

is a carrier of the variant (i.e. there are no phenocopies). Further, our

deletion sharing probabilities are calculated under the assumption that a

single deletion allele exists among the founders such that IBS cannot oc-

cur without IBD. The true sharing probabilities depend on the unknown
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deletion frequency in the population, with higher deletion frequencies re-

sulting in larger sharing probabilities. This assumption of IBD is crucial,

and sensitivity analyses with respect to the population deletion frequency

are recommended to assess when deletion sharing within a pedigree cannot

be explained by random chance (see [22, 21]).

For the study of rare disorders such as oral clefts, affected probands from

multiple study sites are needed to attain large sample sizes. In such studies,

genetic differences across populations and racial groups further complicate

the identification of rare, highly penetrant risk variants. Here, family-based

designs offer an important advantage over case-control studies of unrelated

individuals. In extended families with several affected members, there is

a high probability that affected relatives will carry the same rare, high-

penetrance risk variant if such a variant is found in one affected individual.

We expect the methodology for identifying rare deletions and evaluating the

probability that rare deletions are shared will be useful for other family-

based studies of complex traits, opening new avenues of epidemiologic in-

vestigation.

4.4 Methods

Library preparation, exome sequence capture, and read alignment

Exome sequencing and genotyping was performed at the Center for In-

herited Disease Research (CIDR). The Agilent SureSelect Human All Exon

Target Enrichment system kit S0297201 was used for exon capture, yielding

≈ 51 Mb of targeted sequence capture per sample. For DNA sequencing,
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the Illumina HiSeq 2500 instrument was run using standard protocols for

100-bp paired-end reads. Six samples were run per flowcell, where 92%

of exons received at least 8x coverage and the mean exon coverage was

84x. Illumina HiSeq reads were processed through Illumina’s Real-Time

Analysis software and resulting reads were aligned to the human hg19 ref-

erence genome using the Burrows Wheeler Aligner [47]. Additional details

regarding library preparation, exome sequencing, and alignment have been

previously described [22].

Processing of aligned reads

Normalized bin counts. Adjacent or partially overlapping exons for

the known genes in hg19 were merged to generate 242,600 non-overlapping

genomic intervals spanning 85Mb. The number of single end reads aligning

to each bin was counted using the countBam function in the R package

Rsamtools. We added 1 read to each bin to avoid numerical issues, and

log2 transformed the resulting counts.

As the alignment is highly dependent on the complexity of the sequence

and may confound read-depth based counts of copy number, we employed

a number of filters to remove exomic regions with low DNA complexity.

Surrogates of DNA complexity included mappability [48, 49], a score on

the interval [0,1] indicating how unique a 100mer sequence is in the genome

(0 is highly repetitive and 1 is unique), and the percent GC content of

the bin [23, 50, 51]. We removed bins with average mappability less than

0.75, as well as bins with %GC less than 0.1 or greater than 0.85 [52].

In addition, we removed autosomal bins for which 5 or more subjects (4
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percent or greater) in the study had a log-transformed count less than 3

median absolute deviations (MADs) from the median.

After mappability and GC content exclusions, the remaining 176,912 auto-

somal bins spanning 65Mb were adjusted for GC composition and bin size.

In particular, a local regression smoother (loess) with a span of 0.75 was fit

independently to each sample to model the non-linear relationship between

log ratios and GC content. The residuals from this GC-loess were then

adjusted for size (using log10 transformed bin sizes) with a loess smoother

of the same span (Supplementary Figures 4.4 and 4.5). Finally, we center

each bin by its median across all samples. This final step reduces unmod-

eled bin-to-bin variation in copy number while preserving rare changes. We

denote the normalized log ratios by M (Supplementary Figure 4.6).

Quality control statistics for the M values included the autosomal lag-10

autocorrelation (ACF10) and MAD. High autocorrelations indicate a spatial

dependence along the genome often due to technical sources of variation

[39]. Similarly, high MADs indicate low quality data, commonly giving rise

to false positive CNV calls in subsequent seqmentation analyses. Upper

limits for the acceptable range of ACF10 and MAD in this study were

chosen as 0.2 and 0.3, respectively (Supplementary Figure 4.7).

Identification of hemizygous deletions Candidate boundaries of copy

number alterations were identified by circular binary segmentation (CBS)

using the R package DNAcopy [53]. Segments with mean M values less than

-0.5 and greater than -2 represented candidate hemizygous deletions. Seg-

ments with mean M less than -2 were presumed to be homozygous deletions.
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Regions with one or more homozygous deletions (i.e. not rare) were excluded

from further analyses. To remove regions among the candidates that were

(i) not rare or (ii) likely false positives, we fit Bayesian normal mixture mod-

els implemented in the R package CNPBayes. Specifically, we fit 4 mixture

models with fixed means θ for the M values: (i) θ = (0) representing all

samples being copy-neutral, (ii) θθθ = (θ1, θ2) = (−1, 0) representing a pop-

ulation of samples with 1 and 2 DNA copies, (iii) θθθ = (θ1, θ2) = (0, log2
3
2)

representing a population of samples with 2 and 3 DNA copies, and (iv)

θθθ = (θ1, θ2, θ3) = (−1, 0, log2
3
2) representing a population of samples with

1, 2 and 3 DNA copies. We assume the mixture components have equal vari-

ance. For each of these 4 models, we computed the marginal likelihood as

described by [54] using the correction factor suggested by [55]. The ratio of

the maximum marginal likelihood for models (ii) and (iv) to the maximum

marginal likelihoods for models (i) and (iii) becomes the Bayes factor for

a hemizygous deletion model. Regions were excluded from further study

if the logarithm of the Bayes factor was less than 2, or if deletions were

identified in 6 or more of the multiplex families. For regions in which the

log Bayes factor exceeded 2, hemizygous deletions were identified as those

samples with a posterior probability for the hemizygous state exceeding 0.9.

Implementation of alternative methods for whole exome dele-

tion analysis XHMM, CoNIFER, and CLAMMS were implemented us-

ing default parameter settings where possible using the same set of ge-

nomic intervals described above. Briefly, we followed the on-line tutorial

for XHMM version 1.0 [56]. The XHMM hidden Markov model was fit

to principal component normalized coverage estimates using a parame-
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ter file available from the tutorial (http://atgu.mgh.harvard.edu/xhmm/

tutorial.shtml). CLAMMS version 1.0 was implemented as per instruc-

tions on the GitHub website using default parameters (https://github.

com/rgcgithub/clamms). CoNIFER version 0.2.2 was fit using default pa-

rameters described in their tutorial http://conifer.sourceforge.net/

tutorial.html.

PCR-based validation of putative hemizygous deletions. Selected

hemizygous deletions for a region involving gene DUSP22 on chr6 were

experimentally verified by qPCR. We used the TaqManTM Copy Number

Assays kit Hs01284455 cn (ThermoFisher, PN 4400291) that aligns to exon

6 of this gene with TaqMan Copy Number Reference Assay RNAse (PN

4403326). DNA was processed in accordance with TaqManTM protocol

(PN 4397425D). Following qPCR, copy number estimates were obtained

using Applied Biosystems CopyCallerTM Software v2.0.

Statistical significance of shared deletions

Exclusion of deletions As common deletions are less likely to be shared

IBD (required in our statistical approach, see below), we excluded deletions

if 80% or more of the width of the deleted allele was identified in ≥ 2% of

the 1000 Genomes study (1000G) participants [9]. In addition, we excluded

regions if ≥ 80% or more of the implicated deletion region was identified as

a homozygous deletion in any 1000G study participant.
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Sharing probabilities We previously developed a method to compute

the exact probabilities that multiple affected relatives share an observed

rare allele (nucleotide variant) given the pedigree structure [21]. In this

procedure, we compute the exact probability a rare allele is shared by all

sequenced relatives in a family, given it occurred in any one of them, under

the null hypothesis of complete absence of linkage and association. Our ap-

proach requires sharing of a specific rare allele. For pairs of relatives, these

sharing probabilities can easily be expressed using kinship coefficients or

degree of relatedness [57]. For two family members with genetic distance

D, the rare allele sharing probability is 1
2D+1−1

[21]. By contrast, the IBD

sharing probability used in linkage analysis is 1
2D−1 . Rare allele sharing

probabilities are always smaller than IBD sharing probabilities, approach-

ing a factor of 4 in the limit. Our approach extends rare allele sharing prob-

abilities to families with multiple affected relatives, and does not require

estimates of allele frequencies in the population to calculate the sharing

probabilities. The key assumption is that the alleles tested are sufficiently

rare such that identity-by-state implies identity-by-descent. However, we

do use estimates of allele frequencies from published reference data sets

such as the 1000G study to filter alleles of appreciable frequencies in non-

affected subjects. In this application, we applied this method to sharing

of hemizygous deletions. When two deletions overlap, we define their in-

tersection as a shared deletion allele and calculate its sharing probability

using the RVsharing package.

P-values For deletions seen in only one family, the sharing probability

can be interpreted directly as a p-value from a Bernoulli trial. For deletions
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seen in M families and shared by affected relatives in some of them, the

appropriate p-value can be obtained as the sum of the probability of events

as or more extreme than the observed sharing event. Mathematically, as

described in [21], let pm denote the sharing probability between the subjects

in family m, and let So be the set of families that share this deletion. The

p-value for the observed sharing across families is

p =
∑
v∈V

M∏
m=1

pI(m∈Sv)
m (1− pm)I(m/∈Sv),

where V is the subset of family sets Sv such that

M∏
m=1

pI(m∈Sv)
m (1− pm)I(m/∈Sv) ≤

M∏
m=1

pI(m∈So)
m (1− pm)I(m/∈So).

Potential p-values The lowest possible (“potential”) p-value for any

rare deletion, achieved if all family members share the deletion, depends on

the number of families in which the deletion was observed and the pedigree

structures. If found in only one or very few families, the sharing prob-

abilities and thus the potential p-value for a rare deletion may be high.

For example, the potential p-value is 1
7 for a grandparent-grandchild pair.

We test the null hypothesis only for rare deletions having a sufficiently

low potential p-value after multiple comparison correction. These poten-

tial p-values are independent of the actual sharing pattern among affected

relatives, and therefore of the subsequent testing of deletion sharing (i.e.

the type I error is protected). We obtain this subset of rare deletions by

ordering potential p-values of all rare deletions in decreasing order, and

stopping at the last potential p-value lower than the type I error level 0.05

23



divided by the rank t of that p-value. The critical threshold then becomes

0.05/t, assuring a family-wise error rate of at most 0.05 [21].

Global enrichment test We also conducted an overall test for enrich-

ment of sharing, addressing whether we observe more sharing of hemizygous

deletions than expected under the global null hypothesis of complete ab-

sence of linkage and association. A critical assumption of this test is that

rare deletions are independent. We denote the collection of hemizygous

deletions that could potentially be shared in a family as D1, . . . , DK . Note,

the same region observed in multiple families would enter multiple times.

The global enrichment test statistic is the probability

pT =

K∏
k=1

p
I{Dk is shared}
k (1− pk)I{Dk is not shared} ,

where pk denotes the sharing probability of deletion Dk. Similar to Fisher’s

exact test based on the hypergeometric distribution, we calculate the signif-

icance of this test statistic using the enumeration of all 2K possible sharing

patterns across D1, . . . , DK , denoted Π1, . . . ,Π2K , ranging from complete

sharing of all K deletions (Π1) to no sharing (Π2K ) (Supplementary Figure

4.8). For each of these patterns we calculate

pΠi =
K∏
k=1

p
I{Dk is shared in Πi}
k (1− pk)I{Dk is not shared in Πi} ,
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and the p-value is the sum of the probabilities of all patterns that are not

more likely than the one observed, i.e.

p =

2K∑
i

p
I{pΠi

≤pT }

Πi
.

The calculation of this p-value can be computationally expensive with large

K. We have implemented a binary tree representation of this algorithm that

allows for significant pruning to expedite computation (see 4.6).
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4.6 Supplementary Materials

Binary tree for global p-value

In a binary tree representation of our test described earlier, each level of

the tree corresponds to a specific (deletion, family) pair. Going left at a

node represents a deletion event shared by that family and the edge carries

the sharing probabilities for that family; going right represents a deletion

event not shared and that edge carries the probability of 1 minus the shar-

ing probability. This representation is possible under the assumption of

indepedence in sharing between deletion-family pairs. In our dataset, one

could do a full expansion of the 86 level tree, accumulating the edge prob-

abilities after each expansion to the bottom leaves. For an exact p-value,

we sum the probabilities in the final leaves that were less than or equal to

the probability of the observed deletion event pattern.

To expedite this process, recognize that the full expansion is not needed.

Let us first define pobs as the probability of the observed deletion event

pattern. Everytime we expand a node on the tree, if the cumulative prob-

ability of the expansion is less than or equal to pobs, any further expansion

on that branch is unecessary. This is because (a) the leaves that result from

further expansion of that branch will be less than pobs, and will factor into

the summation for the p-value; and (b) the sum of those leaves will have

the same probability of the cumulative probability up to that point of the

parent node.

In the sample code below, p_current denotes the cumulative probabilities
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along the edges and is a placekeeper for when the tree reaches full expansion;

level is the current level of the tree; direction denotes whether expansion

is to the left (direction=1) or to the right (direction=2); max_del is the

maximum level of the tree (86 in our application); p_list is a max del× 2

matrix, where element [i, 1] is the sharing probability and element [i, 2] is

one minus the sharing probability for the ith deletion-family pair.

binaryTree<-function(p_current, level, direction, max_del, p_list){

# Base case

if(level==max_del){

if(p_current*p_list[max_del, direction] <= p_obs){

return(p_current*p_list[max_del, direction])

}

else{return(0)}

}

p_current = p_current*p_list[level, direction]

if(p_current<=p_obs){

return(p_current)

}

else{

return(expandHelper(p_current, level+1, 1, max_del) +

expandHelper(p_current, level+1, 2, max_del))

}

}

Comparison to alternative methodologies for whole exome copy

number analysis

To investigate concordance with alternative methodologies for whole exome

analysis of copy number, we evaluated XHMM, CoNIFER, and CLAMMS

[23, 24, 25]. XHMM and CoNIFER use principal components analysis and

singular value decomposition respectively to normalize coverage. CLAMMS

is most similar to the approach implemented here for preprocessing, differ-

ing mainly in scale. The filters used to identify rare deletions cannot be
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straightforwardly adapted to XHMM and CoNIFER as these pipelines do

not distinguish between homozygous and hemizygous deletions. The identi-

fication of homozygous deletions is a critical aspect of the pipeline proposed

here as we assume there is only one deletion allele shared IBD between off-

spring within a pedigree. Consequently, we exclude regions where any ho-

mozygous deletion is detected in any oral cleft subject. As an alternative to

directly comparing rare deletions identified by the different methodologies,

we evaluated (1) the fraction of rare deletions identified by our approach

that are also identified by other methodologies, and (2) the signal to noise

ratio (SNR) for any deletion identified by our method and another method

irrespective of rarity status.

Of the 88 rare hemizygous deletions identified in our manuscript, XHMM

recovered 61 (69%), CoNIFER recovered 53 (60%), and CLAMMS recov-

ered 32 (36%). None of the alternative methods identified the rare dele-

tion shared by distantly related offspring on chromosome 6 that was subse-

quently validated by qPCR (boxed region, Supplementary Figure 9). The

lower concordance between RV and CLAMMS reflects a fundamental differ-

ence in the two strategies for identifying deletions. CLAMMS uses a mix-

ture model fit at each bin across samples to derive probabilistic estimates of

the mixture component labels presumed to represent distinct copy number

states. Cluster-based identification of copy number works best when dele-

tions are common in the population. The HMM implemented in CLAMMS

uses the emission probabilities from the mixture models to segment the

exome and identify copy number variants. By contrast, our approach puts

the bin-level estimates on the same log2-based scale so that segmentation
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can be applied directly to the normalized and log2-transformed coverage to

identify deletions that are private to an individual sample. A constrained

mixture model is applied following the segmentation to exclude common

deletions.

To better understand the relative sensitivity for deletion detection, we esti-

mated a SNR for each deletion identified by multiple methods. Specifically,

we estimated the numerator of the SNR as the absolute difference between

median normalized coverage within the deletion and the median normal-

ized coverage across all autosomal bins. The denominator is given by the

median absolute deviation (MAD) of the autosomal normalized coverage.

We found that the SNR for RV (SNRRV) was greater than the SNR for

CoNIFER (SNRCoNIFER) for 85% of the deletions called by both RV and

CoNIFER. For homozygous deletions called by RV, SNRRV is at least two-

fold larger than SNRCoNIFER. Compared to XHMM, 40% of the deletions

called as hemizygous by RV have a larger SNR than XHMM and all but

one homozygous deletion called by RV has an SNR two-fold greater than

SNRXHMM (Supplementary Figure 4.12). We cannot calculate the SNR for

CLAMMS using the above approach as the substantial bin-to-bin hetero-

geneity in scale (accomodated by their mixture model) artificially inflates

the noise estimate in the denominator. However, the CLAMMS normalized

coverage is qualitatively similar to the RV normalized coverage following

log2 transformation and recentering (Supplementary Figure 4.13). As dis-

cussed above, the discordance between RV and CLAMMS reflects, in part,

diametrically opposed uses of mixture models rather than differences in

preprocessing.
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Supplementary Figure 4.3: Density log2 counts

The density of log2 counts for nine randomly selected samples.
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Supplementary Figure 4.4: GC content versus bin-level counts

A loess scatterplot smoother with span 0.75 (black line) was used to

model the non linear relationship of GC and bin-counts.
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Supplementary Figure 4.5: Bin size versus GC-adjusted counts

A loess scatterplot smoother with span 0.75 (black line) was used to

model the non-linear relationship of the GC residuals and bin-counts.
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Supplementary Figure 4.6: M score processing

We preprocessed the number of single end tags aligned to 176,912 au-

tosomal bins and 6,409 chromosome X and Y bins for samples ’40’

(column 1) and ’47’ (column 2) in family 28008. Here, we have plot-

ted every tenth bin. Bin-level summaries of copy number calculated

as log2(count + 1) are adjusted for GC-content and bin size (top). As

our interest is in rare deletions effecting a small fraction of all oral cleft

patients, we centered each bin at its median across all of the oral cleft

samples to remove common effects whether technical or biological in

origin (bottom). The resulting bin-level estimates, referred to as M

values, correspond to the log fold-change from the standard diploid

genome which generally have low MAD and ACF10.
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Supplementary Figure 4.7: MAD and ACF filter

For each sample, we calculated the median absolute deviation (MAD)

and the lag 10 autocorrelation of the autosomal M values.
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Supplementary Figure 4.8: Global sharing.

A toy example of the permutation scheme implemented to estimate the global

sharing probability. Our simulated dataset is comprised of 3 families (A, B,

and C) and three loci. The observed data is a single shared deletion in Family

B (boxed by bold black rectangle) that is not shared in any of the other

families. Note, locus 2 for Family B and locus 3 for families A and B are

not included in the grid because none of these families had deletions at these

loci. The rows of the table indicate all 32 theoretically possible observations

for this toy dataset (including the observed data) and are ordered from top-

to-bottom by the sharing probability (P1 ≤ P2 ≤ . . . ≤ P32) calculated as

previously described. The p-value is simply the sum of the P ’s that are less

than or equal to the observed sharing probablity, P30.
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Supplementary Figure 4.9: Candidate deletion filtering

Regions with high variance are filtered by the mixture models (A), as

well as regions in which additional hemizygous samples were identified

implicating common rather than rare deletions (B). Regions identified

as rare deletions by the mixture model had 5 or fewer families har-

boring a deletion allele and a log Bayes factor (log BF) comparing the

hemizygous model to the normal model of at least 2 (C and D).
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Supplementary Figure 4.10: Subpopulation pervalance of deletions

Each panel represents a rare deletion identified in the oral cleft study.

At the top left (panel [1,1])is the rare deletion with the highest potential

and at bottom right (panel [7, 5]) is the rare deletion with lowest po-

tential. Populations represented in the 1000G study are ordered along

the y-axis. Regions that have high CNV frequencies in the 1000G sub-

populations tend to span less than 80% of the deletion (gray) identified

in our oral cleft study (e.g., panel [3,4]). Such regions may be more

prone to structural alterations, though these CNVs are at least 20%

smaller than the deletions we identified. Regions such as panels [3, 7]

and [3, 8] indicate the presence of several subpopulations with high

overlap (black) and CNV frequencies near the 2 percent cutoff.
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Supplementary Figure 4.11: Deletions detected in other methods
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For each of the 88 rare variants identified, we assessed the fraction

recovered by other whole exome methodologies for CNV detection.

XHMM and CoNIFER were very similar to each other and recovered

69% and 60%, respectively, of the rare deletions. Only 36% of the rare

deletions were recovered by CLAMMs. The boxed region highlights

samples having a deletion on chr6 that were also evaluated by qPCR.

Of the 6 samples identified as hemizygous by RV, 5 were validated by

qPCR including the first cousins that share the rare deletion in family

17110. Of the whole exome analysis methods, only RV identified the

shared deletion.
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Supplementary Figure 4.12: Signal to noise ratio of methods

A comparison of the signal to noise ratio (SNR) of deletions identified in

RV and CoNIFER (left) or RV and XHMM (right) irrespective of rarity

status. Neither CoNIFER nor XHMM distinguish between hemizygous

and homozygous deletions. Homozygous deletions called by RV (black)

are more than 2-fold the SNR from XHMM or CoNIFER for all but

one deletion.
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Supplementary Figure 4.13: Normalized coverage comparison to
CLAMMS

Normalized coverage is comparable for CLAMMS and RV, differing

mainly in scale. Dashed lines correspond to theoretical copy numbers

on the RV scale, for which RV is nearly unbiased. Panels 1 and 2 are

hemizygous deletions private to sample 171044 01 (blue). Panel 3 is

an obvious copy number polymorphism that is subsequently excluded

in the RV pipeline.

41



0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
target_id

sc
or

e on_target
FALSE

TRUE

chr13: TPTE2P3

Supplementary Figure 4.14: BLAT alignment chr13 candidates

The BLAT score rescaled to 0-1 (1=perfect match) for 15 targets in the

chr13 rare deletion (x-axis). All 15 targets have multiple alignments

and nearly all targets have an off-target alignment (gray) as good as

the on-target alignment (blue).
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5 Detection of de novo copy number deletion from

targeted sequencing of trios

This section has been made possible with the contribution of co-authors:

Elizabeth J. Leslie, Alan F. Scott, Jeffrey C. Murray, Mary L. Marazita,

Terri H. Beaty, Robert B. Scharpf, and Ingo Ruczinski.

5.1 Background

Copy number variants (CNVs) are a major contributor of genome variability

in humans [58], and frequently underlie the etiology of disease [59, 60, 61, 62,

63]. de novo CNVs, especially de novo deletions, are of interest as they have

the potential to play a functional role in the genesis of a disease phenotype

[64, 65, 66, 67]. Over the last decade, next generation sequencing (NGS)

has become widespread [7, 68], permitting the assessment of CNVs based on

hundreds of millions of short reads observed in each sample. The advantages

of NGS for CNV assessment compared to single nucleotide polymorphism

(SNP) arrays include higher and more uniform coverage, better quantitation

yielding more precise estimates of DNA copy number, and higher resolution

for break point detection [69, 70]. Computational methods to detect CNVs

from NGS short reads can generally be categorized into approaches based on

discordant read mapping, split read mapping, read depth, de novo assembly,

or some combination of these approaches [71]. Due to the differences in the

attempted capture, methodologies for whole genome sequencing (WGS),

whole exome sequencing (WES), and targeted sequencing (TS) platforms
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differ substantially, with TS and WES platforms primarily relying on read

depth [72].

A large number of methods for detecting CNVs in independent samples are

available for all types of NGS data [73, 24, 74, 75, 76, 77, 56, 78, 25, 79].

However, there is no method to date that identifies de novo CNVs in parent-

offspring trios from capture-based TS and WES platforms. For WGS plat-

forms, the software TrioCNV jointly calls CNVs in parent-offspring trios

[80] using a hidden Markov model (HMM) with 125 possible underlying

states to segment the sequencing data (5 possible underlying states per

sample: two-copy deletion, one-copy deletion, normal, one-copy duplica-

tion, multiple-copy duplication). Its performance in TS or WES platforms

however is not well described. In CANOES, also HMM based, inference for

de novo copy number deletions in TS and WES data is obtained post-hoc

by comparing single-sample derived CNV calls. For each individual in the

trio, the observed read counts are modeled using negative binomial distri-

butions, and their respective variances are estimated using a regression-

based approach based on selected reference samples [81]. However, such

approaches do not fully leverage the Mendelian relationship between par-

ents and offspring to delineate de novo CNVs. The loss of statistical power

for delineating de novo CNVs by post-hoc methods has been demonstrated

previously in CNV calls from SNP array data [82, 43].

The motivating example in this manuscript is a targeted re-sequencing

study we recently carried out in 1,409 Asian and European case-parent

trios ascertained through non-syndromic orofacial cleft probands, target-

ing 13 regions previously implicated in candidate genes and genome-wide
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association studies (GWASs) [83]. The study successfully confirmed 48 de

novo nucleotide mutations, and provided strong evidence for several spe-

cific alleles as contributory risk alleles for non-syndromic clefting in humans.

Choosing two of these nucleotide de novo variants for functional assays, we

showed one mutation in PAX7 disrupted the DNA binding of the encoded

transcription factor, while the other mutation disrupted the activity of a

neural crest enhancer downstream of FGFR2 [83]. However, for the ma-

jority of trios, we were not able to identify a genetic cause underlying the

proband’s oral cleft. Since de novo deletions have previously been shown

to underlie oral cleft risk [84, 85, 86], we speculated that in addition to de

novo nucleotide variants, de novo deletions in the 13 targeted regions may

also contribute to clefting for some of our trio’s probands.

In this manuscript, we present a novel method to delineate de novo dele-

tions from TS of trios. We propose a novel capture-based definition of

targets (using average read depth as the defining metric for bins underlying

the algorithm, instead of using a uniform number of base pairs), normal-

ize copy number counts using the entire study population, and utilize a

”minimum distance” statistic based on normalized read count summaries,

aiming to further reduce shared sources of technical variation between off-

spring and parents within a trio. We characterize the sensitivity, specificity,

and PPV of our Minimum Distance Targeted Sequencing (MDTS) method

on simulated data to benchmark its performance relative to the closest ex-

isting methods TrioCNV [80] and CANOES [81]. We show that properly

addressing the capture in TS data is critical, and thus, methods specifically

developed for WGS data (e.g., TrioCNV) do not perform well for TS data.
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Compared to CNV callers designed for capture based sequencing data that

do not exploit the family design (e.g., CANOES), MDTS has similar sen-

sitivity but a much lower false positive rate, resulting in a much higher

PPV. In the analysis of the 6.7Mb TS oral cleft data, which identified one

de novo deletion in the gene TRAF3IP3 (a suspected regulator of IRF6),

MDTS also exhibited much better scalability.

5.2 Results

The MDTS algorithm

MDTS introduces two novel algorithmic aspects. First, MDTS employs bins

of varying sizes based on read depth (Fig. 5.1, A–D) as compared to the

common standards of using either uniform, non-overlapping bins defined

by the number of nucleotide base pairs (default in TrioCNV: tiled, non-

overlapping 200bp bins) or probe-based coordinates (default in CANOES:

the genomic coordinates of the designed capture baits). Second, MDTS

fully exploits the trio design to infer de novo deletions (Fig. 5.1, E–G),

as compared to processing the trio samples separately and carrying out

post-hoc inference. To demonstrate that both of these algorithmic features

are important in the delineation of de novo deletions, and to quantify their

relative contributions to sensitivity, specificity, and PPV, we compare the

default implementations of MDTS and CANOES in the following section,

plus MDTS based on the ”probe-based” bins (MDTS:p) and CANOES

based on the dynamically sized ”MDTS bins” (CANOES:b). Our method

is available as open source software at github.com/JMF47/MDTS.
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Figure 5.1: Schematic outline of the MDTS algorithm

Schematic flowchart of the MDTS method, from bin to CNV delin-

eation. ( A ) Design probes in the genomic regaion between 209.944

Mb and 209.948 Mb of chromosome 1. The probes are approximately

120bp long, and often overlap by 60bp ( B ) Transcripts (red lines) from

the GencodeV27 annotation. Ten transcripts of TRAF3IP3 contain the

exon (white boxes) in the region shaded blue. ( C ) Basepair coverage

(read depth) derived from the 25 samples randomly selected to calcu-
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late MDTS bins. The region indicated by the rose color was flagged

by MDTS for high variability. ( D ) MDTS bins calculated from read

depth, leading to wider bins when coverage is low (and vice versa). (

E ) Read depths for the MDTS bins among the three DS10826 family

members (proband in black). ( F ) Normalized counts (M-scores) for

the three DS10826 family members. ( G ) The minimum distance for

family DS10826, and the outcome from CBS segmentation (red line),

inferring a candidate de novo deletion.

Simulation Study

MDTS and CANOES produced somewhat similar results for sensitivity (re-

call) among de novo deletions of 1kb or larger, while CANOES had better

sensitivity for very small de novo deletions. As expected, the algorithms us-

ing the smaller (”probe-based”) bins faired slightly better for small de novo

deletions, while using read depth based bins (”MDTS bins”) had higher

sensitivity for 1kb de novo deletions or larger (Fig. 5.2A, Supplementary

Table 5.2). These findings remained the same under other definitions of

”overlap” between called and simulated deletions (Supplementary Figure

5.5). Very pronounced differences were observed with regards to the num-

ber of false positive identifications. Depending on size, up to 10% of in-

herited deletions were incorrectly identified as de novo by CANOES using

the default ”probe-based bins” (increasing to about 15% for CANOES:b,

i.e. when using ”MDTS bins”), while MDTS was extremely robust towards

this type of mistake. This was also true when ”probe-based bins” were

used in the MDTS algorithm (e.g., MDTS:p), highlighting the importance
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of fully exploiting the trio design when inferring de novo deletions (Fig.

5.2B, Supplementary Table 5.3).

In addition, MDTS incorrectly identified 3 small de novo deletions of 334,

374, and 637 base pairs in this simulation study, while CANOES yielded

2,139 false positives with a median width of 361 base pairs (ranging from

121 to 18,339 base pairs). This number was reduced to 114 false posi-

tives when instead our proposed read depth based bins were used in the

CANOES algorithm (e.g., CANOES:b), but these inferred deletions were

generally larger in size with a median width of 2,440 base pairs and a range

of 206 to 19,709 base pairs. The importance of using read depth based bins

in the algorithms to control false positive identifications was evident, as

MDTS built on probe-based coverage (MDTS:p) also faired a lot worse than

MDTS (Figure 5.2C, Supplementary Table 5.4). These differences in the

numbers of false positive identifications observed among these algorithms

also resulted in substantial differences when estimating the PPV. The al-

most complete absence of false positive identifications in MDTS resulted in

PPVs approaching 100%, while CANOES did not exceed 33% even for the

large de novo deletions. CANOES:b on the other hand achieved about 90%

PPV, highlighting the importance to use read depth based bins (Figure

5.2D, Supplementary Table 5.5).
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positive identifications from the simulation experiment (y-axis), with

length distribution on the logarithmic scale (x-axis) shown as boxplots.

MDTS with the newly defined bins only produced three additional false

positves, which are shown as points. (D) Positive predictive value

based on the true positive rate in panel (A) and the false positives in

panel (C). Colors indicate the algorithms. MDTS and CANOES refer

to the respective algorithms as implemented, MDTS:p refers to MDTS

based on ”probe-based bins”, CANOES:b refers to CANOES based on

the non-uniform read depth based ”MDTS bins”.

As expected, TrioCNV did not perform well in the simulation study due to

its design for WGS (i.e. non-capture) data. TrioCNV with default 200bp

genomic bins was unable to detect any de novo deletions, and TrioCNV

with MDTS bins only achieved at most 2% sensitivity even for the larger

deletions.

Oral Cleft Case Study

Of the full complement of 4,227 samples, 3,054 samples in 1,018 case-parent

trios passed sequencing quality control metrics. Among these families, the

MDTS binning procedure generated 25,305 bins, spanning just over 6.3Mb

of the targeted 6.7Mb autosomal region. The bins ranged in size from 19bp

to 2,956bp, with a median size of 220bp.

MDTS identified three candidate de novo deletions (Table 5.1). The first

candidate spanned a 1.6kb segment on chromosome 1 with an average Min-

imum Distance of -0.90 across 7 bins, and was strongly supported as a de
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novo deletion by the presence of improperly paired reads spanning this seg-

ment (Figure 6.1, left column). The average read depth for the proband in

that region was 714, while a read depth of 1,318 was expected for a copy

neutral state. The second candidate region spanned a 1.6kb segment on

chromosome 8 with an average Minimum Distance of -0.82 across 7 bins.

The average read depth for the proband in that region was 740, which com-

pared to an expected read depth of 1,380 for a copy neutral state, suggesting

this proband carried a hemizygous deletion. In contrast to the region on

chromosome 1 however, no improperly paired reads spanning this segment

were observed, rendering this finding somewhat less conclusive. Thus, this

region could also represents a false positive identification (Figure 6.1, right

column). Mendelian inconsistencies among trio genotypes can also indicate

a de novo deletion [87, 88], while heterozygous genotypes in the proband

provide strong evidence against de novo deletions, however neither result

was observed in this short 1.6kb region for family DS12329 (only 1 variant

was reported in the vcf files as 0/0, 0/1, 0/1 for the child and the parents,

respectively). The third candidate region spanned a 19kb deleted segment

on chromosome 8, with an average Minimum Distance of -0.88 across 74

bins. The apparent deletion in the proband of family DS11025 however

was not de novo, but inherited from a parent with zero copies (Figure 5.4,

left column). This represents a rather uncommon occurrence, as homozy-

gous deletions typically are only observed for copy number polymorphisms

(Figure 5.4, right column), while the 19kb segment on chromosome 8 was

only observed for this one family. In total, MDTS detected and flagged two

copy number polymorphic regions, a 7.1kb segment on chromosome 1 and

a 3.2kb segment on chromosome 8 (Supplementary Table 5.6).
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start locus end locus size family MD

chromosome 1 209,945,655 209,947,210 1,556 DS10826 -0.90

chromosome 8 129,614,522 129,616,078 1,557 DS12329 -0.82

chromosome 8 130,113,612 130,132,753 19,142 DS11025 -0.88

Table 5.1: MDTS inferred de novo deletions in the oral cleft data

The region on chromosome 1 (top row) is a genuine de novo hem-

izygous deletion of approximately 1,556 base pairs in the proband of

family DS10826, inferred using the minimum distance and supported

by aberrantly spaced reads (Figure 6.1, left column). The region of

about 1,557 base pairs near 129.6Mb on chromosome 8 (middle row)

likely is a false positive identification, inferred based on read depth and

the minimum distance, but not supported by aberrantly spaced reads

(Figure 6.1, right column). The region of about 19kb near 130.1Mb

on chromosome 8 (bottom row) stems from an unusal Mendelian event

in family DS11025 outside a copy number polymorphism (Figure 5.4).

MD: average minimum distance in the respective regions.
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Figure 5.3: Data underlying inferred de novo hemizygous deletions in
two probands

[ Left Column ] Evidence for a de novo hemizygous deletion on chromosome

1 for the proband in family DS10826. ( A ) The average of the M scores of

the proband (-0.93, black arrow), the parents (0.06 and 0.01, green and pink

arrows, respectively), and all other subjects (gray histogram) between loci
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209,945,655 and 209,947,210 on chromosome 1. The proband’s average of

the M scores near -1, compared to the values near zero for all other samples

including the parents, is consistent with a de novo deletion of one allele in

this region. ( B – D ) Read-pairs observed among the members of family

DS10826 near the region with the de novo hemizygous deletion. The read-

pair locations, mapped to the hg19 reference genome, are shown as thick ends

connected by thin lines (positive strands shown in yellow, negative strands

shown in blue), and sorted by beginning location of mate 1 of the read-pair

(e.g. yellow lines are left aligned, blue lines are right aligned). Read-pairs

mapped far apart, apparent as a long line, indicate a deletion between the

ends. A Z-shaped signature of read pairs flanked by such discordant reads

as seen for the proband is strong evidence for a 1-copy DNA deletion. The

gray region in these panels indicate the inferred 1,556bp hemizygous de novo

deletion region in the proband’s genome. The number at the bottom of the

grey regions in each panel indicates the total number of reads mapped to the

inferred de novo deletion. [ Right Column ] A possible false positive iden-

tification of a de novo hemizygous deletion on chromosome 8 for the proband

in family DS12329. ( E ) The average of the M scores of the proband (-0.87),

the parents (0.035 and -0.007, green and pink arrows, respectively), and all

other subjects (gray histogram) between loci 129,614,522 and 129,616,078 on

chromosome 8. The proband’s average of the M scores near -1, compared to

the values near zero for all other samples including the parents, is consistent

with a de novo deletion of one allele in this region. ( F – H ) Read-pairs

observed among the members of family DS12329 near the region with the

inferred de novo hemizygous deletion. The absence of discordant reads and

the Z-shaped signature is evidence against a 1-copy DNA deletion.
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Figure 5.4: Examples of Mendelian events with a hemizygous deletion
in the proband

[ Left Column ] A rare Mendelian inheritance event observed on chromo-

some 8 in family DS11025. ( A ) The average of the M scores for the proband

(-0.88, black arrow) and the parents (-4.3 and -0.01, green and pink arrows,

respectively), and all other subjects (gray histogram) between loci 130,113,612
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and 130,132,753 on chr8. This is consistent with a hemizygous deletion for

the proband, inheriting one copy of the allele from the copy-neutral parent

2, and the deletion from parent 1 showing a homozygous deletion. ( B –

D ) Read-pairs observed among the members of family DS11025 near the

region with the inferred Mendelian inheritance event, using the same plotting

approach as described in the Figure 6.1 legend. The Z-shaped signature of

a substantial number of read pairs flanked by aberrantly spaced reads seen

for the proband again is evidence for a 1-copy (hemizygous) deletion. The

Z-shaped signature sandwiching very few (presumably incorrectly mapped)

reads for parent 1 is evidence for a 2-copy (homozygous) deletion. The read

pairs for parent 2 show a copy-neutral state. The gray region in these pan-

els indicate the inferred 18,956 bp inherited deletion region. The number

at the bottom of the grey regions in each panel indicates the total number

of reads mapped to the inferred de novo deletion. [ Right Column ] A

Mendelian inheritance event observed at a copy number polymorphic region

on chromosome 1 in family DS11230. ( E ) The average of the M scores for

the proband (0.084, black arrow) and the parents (-5.58 and 1.06, green and

pink arrows, respectively), and all other subjects (gray histogram) between

loci 210,078,417 and 210,085,527 on chr1. This again is consistent with a

hemizygous deletion for the proband, inheriting one copy of the allele from

the copy-neutral parent 2, and the deletion allele from parent 1 who is ho-

mozygous for the deletion. Due to the polymorphic nature of this region, the

initial median normalization failed to correctly center the copy neutral state

at zero, which was subsequently inferred by the post-segmentation filter. ( F

– H ) Read-pairs observed among the members of family DS11230 near the

region with the inferred Mendelian inheritance event, supporting the inferred

7,111bp hemizygous (homozygous) deletion in the proband (parent 1).

CANOES also identified the true de novo deletion in the proband of family

DS10826, did not identify the inherited deletion in family DS11025, and
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did not report the inconclusive MDTS identification in family DS12329.

Consistent with the general findings in the simulation study, CANOES

also reported a large number of additional de novo deletions. In the tar-

geted 6.7Mb region – representing only 0.2% of the genome – the algorithm

identified an additional 2,969 de novo deletions among the 1,018 families,

i.e. about 3 de novo deletions per trio on average. Among those 2,969 iden-

tifications, 2,702 had a Minimum Distance (calculated from probe-based

coverage) outside the [-1.3, -0.7] interval, not consistent with de novo dele-

tions (Supplementary Figure 5.6). The remaining 267 reported de novo

deletions with Minimum Distances in the interval [-1.3, -0.7] were small

(median width 361bp), and none had improper read-pairs spanning the

length of the indicated deletion (Supplementary Figure 5.7). CANOES:b

utilizing the MDTS determined bins had the same calls as CANOES re-

ported above for families DS10826, DS11025, and DS12329, but only re-

turned 79 additional de novo deletions (though only 28 of those overlapped

with any of the 2,969 deletions identified by CANOES). Among those 79

identified deletions, 67 had average Minimum Distances outside the [-1.3,

-0.7] interval, and so were inconsistent with de novo deletions (Supplemen-

tary Figure 5.8). Among the remaining 12 apparent de novo deletions (me-

dian width 619bp) with Minimum Distances in the interval [-1.3, -0.7] one

is actually an inherited homozygous deletion (Supplementary Figure 5.9),

while the other 11 are located in flagged regions of highly variable normal-

ized depth of coverage (Supplementary Figure 5.10). TrioCNV with default

bins (tiled non-overlapping 200bp bins within the targeted region) did not

report any de novo deletions among these 1,018 families. In particular, the

algorithm failed to identify the true de novo deletion on chromosome 1 of
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the DS10826 proband. TrioCNV with MDTS bins did identify 24 de novo

deletions, however, 23 of those were actually inherited deletions (Mendelian

events) within the chromosome 1 copy number polymorphism (Supplemen-

tary Figure 5.11). The remaining inferred de novo deletion supported by

only one bin had a Minimum Distance of -0.94, but no improperly mapped

read-pairs spanning the deletion which would support a true de novo dele-

tion (Supplementary Figure 5.12). This version of the algorithm also failed

to identify the de novo deletion on chromosome 1 of the DS10826 proband.

Scalability

MDTS completed the analysis of the 1,018 oral cleft trios in under 29 hours

using a single core, peaking at 15G of memory in the binning step (Sup-

plementary Tables 5.7 and 5.8). The run time was cut to less than 6 hours

when employing the distributed computing option with 15 cores, albeit at

the cost of increasing the peak memory usage to 160G during the counting

step. For CANOES, even after editing the supplied R code (which resulted

in an almost ten-fold speed-up of the inference), this analysis still required

1,310 hours of CPU times for a single core, but only 14G of memory. Tri-

oCNV, using default parameters except for the distance between adjacent

CNVs to be merged and the GC content bin range (see Methods) had a

comparable computational footprint to MDTS, requiring 34 CPU hours

and 11G of memory to complete the analysis. The usage of MDTS bins

slightly reduced the run time for TrioCNV and cut the CANOES CPU

time about in half, though the latter was still an order of magnitude slower

than MDTS and TrioCNV. MDTS based on probe based bins (MDTS:p)
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required additional CPU time for the inference compared to the default

(MDTS), presumably due to the auto-correlation of the Minimum Distance

estimates (resulting from the overlapping design probes) passed to CBS,

making break point selection more challenging.

5.3 Discussion

In this manuscript we presented the Minimum Distance for Targeted Se-

quencing (MDTS) approach for delineating de novo copy number deletions

simultaneously across multiple trios from TS data. In a simulation study,

our approach had a sensitivity competitive with existing methods, but to

our knowledge, MDTS is the first caller that rarely generates any false

positives. In our simulation study, this approach resulted in a positive

predictive value of nearly 100%. We showed this improvement is largely

due to two novel algorithmic features. MDTS employs non-uniformly sized

bins based on read depth instead of using uniform, non-overlapping bins

defined by the number of nucleotide base pairs, and further, MDTS fully

exploits the trio design by using a ”minimum distance” statistic to quantify

differences in read depths between the offspring and the parents, thereby re-

ducing shared sources of technical variation. We note similar results (equal

sensitivity but much improved specificity) were observed for detection of

de novo deletions based on SNP array data when the Minimum Distance

approach was employed, and compared to the results from the trio based

PennCNV algorithm [82, 43]. Summarizing the trio data at each locus

(probe for SNP arrays or bins for sequencing data) and segmenting these

statistics resulted in an estimating procedure with much lower dimensional-
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ity than that of a HMM (as used for example in CANOES and TrioCNV).

A smaller parameter space is less likely to over-fit, and to generate false

positive identifications. Further, fitting a HMM induces an empirical pro-

cess governing the rate and lengths of these deletions, which may not be

realistic as de novo deletions are very rare, and could be very small or very

large. It should also be noted that MDTS was designed with the sole in-

tent to detect de novo deletions in trios, and thus, is much more limited in

scope than other CNV callers such as CANOES and TrioCNV (although

in principle the MDTS algorithm could also be adapted to detect de novo

amplifications).

Split reads provide additional compelling evidence for the presence of copy

number deletions, and allow for base pair resolution when detecting break

points. However, mapping split reads is computationally infeasible for

larger deletions unless a candidate has already been identified, and thus,

methods based on read depth bins are usually employed to find larger dele-

tions. MDTS is such a method primarily based on read depth, and similar

to other read-depth based CNV callers, MDTS has problems identifying

very small deletions. In our simulation study, MDTS nonetheless achieved

greater than 80% sensitivity for de novo deletions of at least 1kb, and

virtually 100% sensitivity for de novo deletions of 5kb. We have also imple-

mented functionality allowing for post-hoc inspection of the read ensemble

mapped to a region around any putative deletion. In particular the pres-

ence of a Z-shaped signature of read pairs flanked by discordant reads - as

seen in the suspected IRF6 regulator for the proband of family DS10826 -

provides further support for a deletion, and uses information beyond to read
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depth alone. As the MDTS specificity is very high and de novo deletions are

rare, the number of candidate deletions to be inspected is low. We queried

BAM files to locate split reads in the vicinity of a putative deletion. We

used SAMtools (samtools.sourceforge.net) to extract split alignments

and BLAT (genome.ucsc.edu/cgi-bin/hgBlat) to re-align un-mapped se-

quences, but were unsuccessful in locating supporting split reads. Thus, no

attempts were made to employ LUMPY, arguably the most common CNV

caller currently used, to call de novo deletions in our data, as its perfor-

mance heavily relies on such split reads [89]. Further, LUMPY was intended

for WGS data and does not account for family structure, thus being less

applicable for comparison than TrioCNV and CANOES. Lastly, LUMPY

depends on an external read depth caller, which we provide here for TS

data in trios.

We also applied our method to 1,305 case-parent trios with 6.7Mb of TS

data of regions previously implicated in the etiology of oral clefts. We de-

tected one de novo deletion in the gene TRAF3IP3 on chromosome 1q32

in a Caucasian proband with a cleft lip. TRAF3IP3 is adjacent to IRF6, a

gene known to be causal for Van der Woude syndrom (a Mendelian malfor-

mation syndrome). Finding only one de novo deletion is not too surprising

though, as these events are rare, and the MDTS sensitivity is high for dele-

tions larger than 1kb. However, in contrast to single nucleotide variants

[90], exact de novo mutation rates for copy number variants have not been

reported widely. Acuna-Hidalgo et al. [91] estimate one event in 50-100

meiosis for large de novo CNVs (in excess of 100kb), but do not give esti-

mates for smaller CNVs citing technical limitations in detecting such events
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with current short-read sequencing technology. MDTS also returned a sec-

ond candidate de novo region, spanning a 1.6kb segment on chromosome

8. This call was supported by a roughly 50% observed decrease in read

depth in this region, in contrast to the region on chromosome 1 however,

no improperly paired reads spanning this segment were observed. As no

split reads were observed either, we are less confident in whether or not

this region harbored a true de novo deletion in the proband. In contrast,

one rare inherited deletion identified by MDTS was strongly supported by

the observed read depths and improperly paired reads, in addition to two

copy number polymorphic regions. It is noteworthy that these two de novo

deletions as well as the rare inherited deletion identified by MDTS (Table

5.1) were adjacent to known CNPs on chromosomes 1 and 8, respectively

(Supplementary Table 5.6).

Both CANOES and CANOES:b also identified the true de novo deletion in

the proband of family DS10826, but did not identify the inherited deletion

in family DS11025, nor did they report the questionable de novo deletion

in family DS12329. TrioCNV on the other hand did not perform well due

to its design for WGS (i.e. non-capture) data. In our simulation study,

CANOES had almost identical sensitivity to MDTS for de novo deletions

1kb or larger, which was pushed even higher when using the MDTS bins

based on read depth in the CANoes algorithm(CANOES:b). In conjunction

with a much smaller false positive rate observed (and thus much higher

PPV), CANOES:b generally outperformed CANOES in detecting de novo

deletions (a small caveat however is that CANOES:b was more likely to

classify inherited deletions as de novo). The reduced number of ”hits”
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from CANOES using our bins compared to the default bins is likely due to

our bins avoiding areas where baits were designed, but actual capture was

poor. The median MDTS bins size in the oral cleft data analysis was about

160bp, but the size can also be controlled by the user. Thus, if detection

of smaller de novo deletions was a priority, smaller bins could be chosen

(which would come at the expense of specificity, naturally).

Scalability of an algorithm is always a concern when working with genomic

sequencing data. Even for TS data, CPU demand can be excessive when

many samples (or here, many trios) are jointly analyzed. MDTS exhibited

much better scalability than CANOES. The oral cleft data analysis was not

computationally feasible with the original CANOES code, but we were able

to substantially speed up that algorithm by moving a variance-covariance

estimation step outside the loop over all trios. Despite running an order of

magnitude faster with this tweak, CANOES was still more than an order of

magnitude slower than MDTS, and about two orders of magnitude slower

than MDTS run multi-threaded. In our opinion it is likely that CANOES

was simply not designed with the scale of our oral cleft dataset in mind.

The novel MDTS method to delineate de novo deletions from targeted se-

quencing of trios fills a specific void in computational approaches for CNV

detection. MDTS has similar sensitivity (recall) but a much lower false pos-

itive rate compared to related but less specific CNV callers, which results in

a much higher positive predictive value (precision). This improvement can

be attributed to using non-uniformly sized bins based on read depth in the

algorithm, and fully exploiting the trio design to infer de novo deletions.

MDTS also has superior scalability.
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MDTS has been submitted for review to the Bioconductor consortium

(www.bioconductor.org) and is available as open source software written

in the statistical environment R at github.com/JMF47/MDTS. The targeted

sequences used in the oral cleft data analysis are available from dbGaP

www.ncbi.nlm.nih.gov/gap under accession number phs000625.v1.p1.

5.4 Methods

Samples and Target Region Selection

The original study population included 1,409 case-parent trios comprised of

4,227 individuals of Asian or European ancestry from Europe, the United

States, China, and the Philippines (Table S1 in Leslie et al. [83]). Thirteen

genomic regions spanning 6.7 Mb were selected for sequencing based on

prior association and/or linkage studies, targeting both coding and non-

coding sequence at each locus (Table 1 in Leslie et al. [83]).

Library Preparation, Sequencing, and Alignment

Multiplexed libraries were constructed with 1 mg of native genomic DNA

according to standard Illumina protocol with modifications as follows, de-

scribed in [83]: (1) DNA was fragmented with a Covaris E220 DNA Sonica-

tor (Covaris) to range in size between 100 and 400 bp; (2) Illumina adaptor-

ligated library fragments were amplified in four 50 ml PCR reactions for 18

cycles; and (3) solid phase reversible immobilization (SPRI) bead cleanup

was used for enzymatic purification throughout the library process, as well
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as final library size selection targeting 300-500 bp fragments. NimbleGen

custom target probes were designed to the target region and hybrid capture

on pools of 96 indexed samples per capture was performed. Each capture

pool was sequenced on two lanes of Illumina HiSeq for an average of ∼40 Gb

per lane or ∼835 Mb per sample. Reads were mapped to the GRCh37-lite

reference sequence by BWA v.0.5.912 [47].

The MDTS algorithm

Definition of Bins and M Scores

Due to the prevalence of off-target capture and heterogeneity of coverage

within targeted regions, we utilized an empirical approach to define the

MDTS bins for computing read depth. Specifically, we randomly sampled

25 subjects and calculated the coverage statistics in each sample across

the autosomes. A set of contiguous proto-regions were identified as the set

of all basepairs where at least one of the samples had observed coverage

of 10x or more. As proto-regions harbored substantial heterogeneity in

size depending on both probe density and capture efficiency, the final bins

were generated by sequentially partitioned the proto-regions into smaller,

non-overlapping regions where the median number of reads across the 25

subsamples was at least 160. Bins were excluded if the average mappability

of a bin was less than 0.75, or if the average GC content was outside a

”normal” range defined as [0.15, 0.85]. Subsequently, the number of reads

overlapping the bins were counted for all samples. The raw count data

were organized in a ”bin by sample” matrix. We applied a log2(count + 1)
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transformation to reduce skewness. Each cell of the matrix was centered by

row and column medians. The resulting scores for each sample were further

adjusted for average GC content and 100mer mappability of their respective

bins, using a locally weighted scatterplot smoother (loess) fit to produce M

scores, a relative measures of DNA copy number, with an expected value of

0 for a copy-neutral DNA segment, and -1 for a single copy deletion (unless

there is a CNP).

Minimum Distance

To infer de novo deletions, we utilize the Minimum Distance statistic, pre-

viously defined for SNP array data [43]. In brief, at each bin we considered

the difference in M scores the between the offspring (O) and the father (F),

calculated as MO −MF , and denote this difference as δF . We calculated

the equivalent distance of offspring and mother, and denote this difference

as δM . The Minimum Distance between parents and offspring at a bin is de-

fined as the smaller of those two differences when comparing their absolute

values:

d = arg minδ∈{δF ,δM}|δ| (1)

Filtering and Segmentation

Of the 1,409 families, 383 were removed prior to MDTS bin calculation for

experimental design insufficiencies. For these families, the family members

were either run in different batches, or did not pass basic quality control
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as noted by the reporting lab. An additional 8 families were excluded from

the analysis based on Minimum Distances summary statistics (lag10 auto-

correlation > 0.4 and/or variance > 0.05). Circular Binary Segmentation

(CBS) [53, 92], implemented in the Bioconductor package DNAcopy, was

used for each targeted region to segment the Minimum Distances across

the bins for each trio. CBS computes a permutation reference distribution

of the input Minimum Distances to infer change points for copy number.

As this is a random process by default, we fixed a seed set.seed(137) in R

to ensure reproducibility of our results. We required the minimum number

of bins in any segment to be at least 3. In general, default input parameters

were used, except using α = 0.001 as the minimum significance required

in the CBS t-tests to infer a change point. Further, we allowed change

points to be undone when the difference in means was less than 4 standard

deviations (undo.splits=’sdundo’ in conjunction with undo.SD=4). Can-

didate de novo hemizygous deletions were identified as regions where the

segmented Minimum Distance was within 0.3 of the theoretical value of -1.

To reduce the likelihood of false positives based on failures in the normal-

ization process (caused by the existence of CNPs or technical anomalies),

regions of high variability were identified as bins where more than 5% of

samples had M scores outside the interval [-0.5, 0.5]. MDTS reported de

novo deletions only when more than half of the bins in the candidate region

were not flagged.
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Alternative Approachs

Alternative Approach: CANOES

This algorithm was designed for capture-based WES and TS data, but

the statistical inference does not explicitly take the familial relationship

into account. Assessment of de novo copy number events in CANOES is

based on a post-hoc comparison of the inferred copy number states of the

individual samples. The default binning scheme in the algorithm utilizes

the bait design coordinates, but MDTS bins can also be used as input.

A simple modification had to be made to the CANOES R code, publicly

available at www.columbia.edu/∼ys2411/canoes/, to make it scalable for

our simulation study and the oral cleft data analysis. For large sample sizes

(here, n=3,054 in the oral cleft study) the calculation of the n×n covariance

matrix between bin read counts of samples to locate reference samples for

a given individual is computationally very intensive. In the original R code

this is carried out for each sample (within the for() loop), but actually

has to be carried out only once (outside the for() loop).

Alternative Approach: TrioCNV

In comparison to CANOES, this algorithm explicitly models the proband-

parent trio relationship, however was designed for WGS data (i.e., non-

capture based sequencing data). The default binning scheme for the in-

ference is based on subdividing the genome into non-overlapping 200bp

windows. We restricted these bins to those in the 6.7Mb targeted for se-
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quencing [83]. In the simulation study and the oral cleft data analysis we

used the TrioCNV default parameters, with two exceptions: We reduced

the value for the argument min distance, which specifies the distance be-

tween adjacently called CNVs to be merged, from the default 10,000 to

1,000. We also changed the value for the argument gc bin size, from its

default value of 1 to 2. This value determines the grouping of bins for the

estimation of the emission probabilities in the Hidden Markov Model. The

default value of 1 did not produce a sufficient number of bins for certain GC

values in the capture based data, resulting in JAVA runtime errors thrown.

Simulation Study

We sampled with replacement 1,000 case-parent trios from the 1,018 fami-

lies that passed QC. For each instance, we simulated read data based on the

TS data for that trio. We first sampled 10 non-overlapping regions among

MDTS regions passing the normalization criterion described above. Of the

10 regions, 5 were designated to harbor de novo deletions, and 5 were desig-

nated to harbor inherited deletions of sizes 250bp, 500bp, 1,000bp, 2,000bp,

and 4000bp. The 5 de novo deletion spike-ins were achieved by randomly

and independently dropping reads overlapping the selected regions with

probability 0.5 in the proband’s BAM file. The 5 inherited deletions were

generated by randomly and independently dropping reads overlapping the

respective regions with probability 0.5 in the BAM files of the proband and

one parent. Split reads were not simulated as all methods compared here are

based on read-depth. We compared the performances of MDTS, CANOES,

and TrioCNV, using default and alternative binning schemes. Specifically,
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we assessed the performances of MDTS with default read-depth based bins

(MDTS), MDTS with probe based bins based on bait design coordinates as

defined in CANOES (MDTS:p), CANOES with MDTS bins (CANOES:b),

CANOES with default bins (CANOES), TrioCNV with MDTS bins (Tri-

oCNV:b), and TrioCNV with restricted genomic bins as described above

(TrioCNV). For CANOES and CANOES:p, the CNV calling was carried

out for each family member. Inferred deletions in the proband found to be

at least 25% covered by a called deletion in at least one of the parents were

deemed to be inherited, otherwise deletions in the proband were considered

de novo. The spiked-in de novo and inherited deletions were considered

called if 25% of the deletion was covered by candidates reported. Alterna-

tive thresholds of > 0% (any overlap) and 50% (at least half of the deletion

was identified) were also considered.
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5.6 Supplementary materials

size (bp) −→ 250 500 1,000 2,000 4,000

MDTS 182 465 825 948 986

MDTS:p 309 449 628 824 904

CANOES:b 360 729 958 994 994

CANOES 476 636 781 903 968

Supplementary Table 5.2: Sensitivity in simulation

Number of true positive identifications of de novo deletions (sensitivity)

among 1,000 iterations in the simulation study. MDTS and CANOES

refer to the respective algorithms as implemented, MDTS:p refers to

MDTS based on the ”probe-based” bins, CANOES:b refers to CA-

NOES based on the non-uniform read depth based bins.

size (bp) −→ 250 500 1,000 2,000 4,000

MDTS 0 1 1 1 0

MDTS:p 3 4 7 3 2

CANOES:b 87 156 144 63 16

CANOES 77 56 30 11 4

Supplementary Table 5.3: Number of false positives in simulation

Number of false positive identifications among the inherited deletions,

among 1,000 iterations in the simulation study, for four different algo-

rithms.
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N Median Minimum Maximum

MDTS 3 374 334 637

MDTS:p 1,930 241 121 17,917

CANOES:b 114 2,440 206 19,709

CANOES 2,139 361 121 18,339

Supplementary Table 5.4: Information on incorrectly called deletions

The total number N of incorrectly called de novo deletions among 1,000

iterations in the simulation study, and median, minimum, and maxi-

mum sizes (in nucleotide bases) among those false positives, for four

different algorithms.

size (bp) −→ 250 500 1,000 2,000 4,000

MDTS 0.984 0.994 0.996 0.997 0.997

MDTS:p 0.138 0.189 0.246 0.299 0.319

CANOES:b 0.759 0.865 0.894 0.897 0.897

CANOES 0.182 0.229 0.267 0.297 0.312

Supplementary Table 5.5: Estimated positive predictive values.
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start end size nhom nhem

chromosome 1 210,078,417 210,085,527 7,111 297 507

chromosome 8 129,762,791 129,766,015 3,225 296 450

Supplementary Table 5.6: Polymorphic regions in oral cleft data

Two regions, close to the inferred de novo deletions, were highly poly-

morphic for CNVs in the oral cleft TS data. The data indicate approx-

imate genomic coordinates and the size (in base pairs) of the CNPs, as

well as the number of probands with an inherited homozygous (nhom)

or hemizygous (nhem) deletion.
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MDTS 15-c MDTS CANOES TrioCNV

:p :p :b :b

Binning 2 2 2 2

Counting 25 25 3 4 600 1,180 ∗25 ∗25

Inference 2 12 1 1 ∗70 ∗130 5 9

Total 29 37 6 5 672 1,310 32 34

Supplementary Table 5.7: Runtime requirement of methods

Runtimes (CPU hours, rounded) of MDTS, CANOES, and TrioCNV,

and respective modified versions thereof, on the full dataset of 1,018

oral cleft trios, plus runtime for MDTS using an embarrassingly par-

allel multi-threaded version using 15 cores. Binning refers to the read

depth based delineation of MDTS bins using a randomly selected sub-

set of samples, as described in the Methods section. Counting refers

to the calculation of read depths for the bins used in the respective

algorithms. The asterisk (∗) indicates modifications were made to the

publicly available code, described in detail in the Methods section.
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MDTS 15-c MDTS CANOES TrioCNV

:p :p :b :b

Binning 15 15 15 15

Counting 11 14 160 200 1 1 ∗11 ∗11

Inference 7 15 105 210 ∗6 ∗14 2 3

Maximum 15 15 160 210 15 14 15 11

Supplementary Table 5.8: Memory requirement of methods

Memory requirements (GB) of MDTS, CANOES, and TrioCNV, and

respective modified versions thereof, on the full dataset of 1,018 oral

cleft trios, plus memory requirements for MDTS using an embarrass-

ingly parallel multi-threaded version using 15 cores. Binning refers to

the read depth based delineation of MDTS bins using a randomly se-

lected subset of samples, as described in the Methods section. Counting

refers to the calculation of read depths for the bins used in the respec-

tive algorithms. The asterisk (∗) indicates that modifications were

made to the publicly available code, described in detail in the Methods

section.
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Supplementary Figure 5.5: Sensitivity of methods with uncer-
tainty.

True positive rate (sensitivity, y-axis) among 1,000 iterations for sim-

ulated de novo deletions of various sizes (x-axis) using different defini-

tions of ”overlap” to define true positives, for four different algorithms.

The lines show true positive rates using the 25% threshold described

in the Methods and shown in Figure 5.2. The top of the bands re-

sult from using a >0% threshold (e.g., any overlap), the bottom of the

bands result from a 50% threshold (e.g.m at least half of the deletion

was identified).
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Supplementary Figure 5.6: Canoes:p false positive scenario 1

2,702 of the 2,970 trios with CANOES inferred proband de novo dele-

tion did not have Minimum Distances consistent with such events. In

this example the Minimum Distance was -0.32. The proband does not

have discordant read pairs flanking the identified 361bp region.
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Supplementary Figure 5.7: CANOES:p false positive scenario 2

267 trios with CANOES inferred proband de novo deletion did have

Minimum Distances consistent with such events. In this example the

Minimum Distance was -0.75. However, in none of these trios discor-

dant read pairs flanking the identified regions were present.
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Supplementary Figure 5.8: CANOES:b false positive scenario 1

A Medelian event incorrectly called de novo by CANOES:b. The M

scores (-1.00, 0.00, and -0.93 for the proband and the parents, respec-

tively) and the family Minimum Distance of -0.07 indicate an inherited

hemizygous deletion from parent 2. This is further corroborated by the

read ”Z signatures” in the proband and parent 2.
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Supplementary Figure 5.9: CANOES:b false positive scenario 2

A Medelian event incorrectly called de novo by CANOES:b. The M

scores (-4.83, -4.06, and 0.01 for the proband and the parents, respec-

tively) and the family Minimum Distance of -0.77 indicate an inherited

homozygous deletion in the proband, from one homozygous parent (1)

and one hemizygous parent (2). This is further corroborated by the

read ”Z signatures” in the individuals.
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Supplementary Figure 5.10: CANOES:b false positive scenario 3

A technical (likely read mapping) artifact, resulting in a de novo call by

CANOES:b. This pattern is observed in many samples, and reflected

in the variability of the M score distribution. Although the Minimum

Distance is -1.14, this region is discarded by MDTS due to the spread

of the M scores.
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Supplementary Figure 5.11: TrioCNV:b false positive scenario 1

A Medelian event incorrectly called de novo by TrioCNV:b. The

data clearly indicate a homozygous deletion in the proband, result-

ing through inheritance of one hemizygous deletion from each parent.

This region is actually a piece of the larger CNP on chromosome 1

identified by MDTS.
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Supplementary Figure 5.12: TrioCNV:b false positive scenario 2

The M scores (-1.04, 0.08, and -0.11 for the proband and parents re-

spectively) and the resulting Minimum Distance of -0.93 are consistent

with a de novo deletion, very few reads are observed in this reqion,

resulting in one bin only and highly variable statistics. In addition, no

discordant read-pairs span this 441bp region.
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6 RNA-seq transcript quantification from reduce

representation data in recount2

This section has been made possible with the contribution of co-authors:

Kai Kammers, Abhinav Nellore, Leonardo Collado-Torres, Jeffrey T. Leek,

and Margaret A. Taub.

RNA sequencing (RNA-seq) can be used to measure gene (and transcript)

expression levels genome-wide. Large-scale RNA-seq datasets have been

produced by studies such as the GTEx (Genotype-Tissue Expression) con-

sortium [93], which comprises 9,662 samples from 551 individuals and 54

body sites (under version 6), and the Cancer Genome Atlas (TCGA) study

[94], which comprises 11,350 samples from 10,340 individuals and 33 cancer

types. Furthermore, public data repositories such as the Sequence Read

Archive (SRA) host tens of thousands of human RNA-seq samples [95].

These data collectively provide a rich resource which researchers can use

for discovery, validation, replication, or methods development.

These data are even more valuable when processed in a consistent manner

and presented in an accessible format. Researchers can query the database

to test any relevant hypotheses they may have. The recently published

recount2 project [19] is the result of such an undertaking. All raw data

from the thousands of sequencing studies were aligned to a common refer-

ence genome using a scalable and reproducible aligner Rail-RNA [96]. Sum-

mary measures (gene, exon, junction, and base-pair level coverage) were de-

rived from the Rail-RNA output and made available in an R package and
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through https://jhubiostatistics.shinyapps.io/recount/. The over

70,000 curated samples have reads whose lengths fall within approximately

5 distinct peaks and were either paired or unpaired (see Table 6.1)

Read length 37 50 75 100 150

Single end 5,714 10,557 2,395 3,459 232 22,357

Paired end 1,953 14,123 14,965 16,725 874 48,640

7,667 24,680 17,360 20,184 1,106 70,997

Table 6.1: Distribution of read lengths in recount2

The number of samples in recount2 falling closest to each read length,

paired-status categories. Five distinct peaks of read lengths (37, 50, 75,

100, and 150bp) were observed in recount2, and samples are assigned

to the closest matching read length out of the 5 above categories.

Currently, recount2 provides summary measures directly allowing for anal-

yses like annotation-agnostic base-pair level and annotation-specific gene,

exon, junction differential expression. However, transcript-level abundance

estimates are missing from recount2, preventing subsequent transcript-

level analyses. Despite the existence of many successful transcript quan-

tification programs (such as Cufflinks [97], Kallisto [98], Salmon [99], and

RSEM [100]), this deficiency persists because methods capable of estimating

transcript abundances using the summarized output collected in recount2

do not exist. Here, we present a linear model-based method to accomplish

this estimation task.

Previous linear model-based transcript abundance estimation techniques
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include IsoformEx [101], MultiSplice [102], and CIDANE [103]. IsoformEx

transforms aligned reads into Reads Per Kilobase per Million mapped reads

(RPKM) of splice junctions and disjoined exons and applies a length-

weighted non-negative least squares regression for estimating abundance.

In addition to the basic exon and junction counts, MultiSplice and CIDANE

account for reads that are more identifiable to a unique transcript - such

as reads spanning multiple junctions, or a read-pair that uniquely links

multiple exons. Since our model does not have access to the highly dis-

criminating read-level information leveraged by MultiSplice and CIDANE,

we were restricted to maximizing the summary coverage statistics accessed

by IsoformEx. Toward this goal, our model further subdivides exonic seg-

ments and introduces an aligner-estimated model matrix. Our objective in

developing this method was not to be faster or more accurate than existing

methods operating on raw sequencing data, but to provide fuller utilization

of the data in the recount2 project through transcript-level abundance

estimates.

6.1 Results

Overview of method

recount2 includes a repository of coverage summary measures, including

coverage of exon-exon splice junctions, produced by a uniform application

of the aligner Rail-RNA to more than 70,000 publicly available RNA-seq

samples. For a given read length and a reference transcriptome, we deter-

mine a set of sufficient features comprised of subdivided exonic segments
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and exon-exon junctions, so that coverage of these features adequately sum-

marizes the transcript quantification encoded in the raw reads. Counts of

reads overlapping the features become the sufficient statistics of our linear

model, which we denote as feature counts (see Figure 6.1).

Figure 6.1: Feature calculation for modeling

Given the read length of a particular experiment and a reference tran-

scriptome, we determine a set of sufficient features so that coverage

of these features adequately summarizes the transcript quantification

encoded in the raw reads. This figure illustrates the process to deter-

mine the set of features for a mock gene with 2 transcripts and 100bp

reads. We first disjoin the annotated exons into non-overlapping bins.

Any remaining exonic segments longer than twice the read length are

further evenly subdivided into bins below 100bp. Each unique splice
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junction is included without modification as a feature. The number of

reads overlapping the final set of features are the sufficient statistics

for our linear model, and serve as a compression of the raw read-level

data.

Using these feature counts as the dependent variable, we fit a non-negative

least squares regression model to estimate the underlying abundance of

the transcripts. The independent variables in our model are transcriptome

annotation-specific, and are denoted as feature probabilities. A feature

probability encodes the chance that a random read from a transcript will

contribute an observed count to the corresponding feature. Standard error

estimates are reported to reflect our model’s confidence in abundance as-

signment. Lastly, our method also reports a ’uniqueness’ score for each tran-

script reflecting how distinguishable each transcript is compared to other

transcripts during quantification. Further details about our methods are

described in Methods and are implemented in the R package recountNNLS.

Performance on Dirichlet-negative binomial simulated data

Using simulated data based on a Dirichlet-negative binomial specification

described in Methods, we evaluated the performance of our model and the

commonly-used pipelines HISAT2-Cufflinks [104, 97], Kallisto [98], Salmon

[99], and RSEM [100]. We simulated 10 scenarios of varying read-length

and paired-end status using the polyester R package [105]. Our method

was run on the reduced-representation output from applying the aligner

Rail-RNA [96] to the simulated FASTA files. All other methods extracted

information from the full simulated FASTA files.
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Figure 6.2: Performance of methods over read lengths and paired
status

The mean absolute error (MAE) of each method’s performance plotted

over read length in Dirichlet-negative binomial simulations, separated

into panels for paired-end status. In both single and paired-end simu-

lations, all methods were able to improve performance as read length

increases. Colors correspond to method which are denoted as NNLS

(nnls), Kallisto (kl), HISAT2-Cufflinks (cl), Salmon (sl), and RSEM

(rsem) Kallisto, HISAT2-Cufflinks, Salmon, and RSEM are able to

leverage information encoded by the pairing of reads to further reduce

error. The effective read length under paired-end reads is a combina-

tion of the insert size and sequencing read length.

The accuracy of all methods across the range of simulated scenarios is mea-

sured in mean absolute error of estimated abundance compared to the truth,

and is visualized in Figure 6.2 with numbers reported in Supplementary

Table 1.
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Figure 6.3 is constructed from the 75bp, paired-end simulation scenario

described in Methods and helps illustrate the utility of the ’uniqueness’

score produced by our model. The distribution of ’uniqueness’ scores is

visualized in Figure 6.3 (A). Figure 6.3 (B) shows some that bias in

transcript estimates decreases as ’uniqueness’ scores increases. In Figure

6.3 (C), we observe that as ’uniqueness’ scores decrease, the standard

errors reported by our model increase to reflect the uncertainty caused by

similarity between transcripts.

Performance of confidence intervals

To assess confidence interval coverage probabilities, for a random subset of

2000 transcripts from chromosome 1, we simulated 100 datasets for each

of the 10 Dirichlet-negative binomial scenarios. For each dataset, we con-

structed 95% confidence intervals and evaluated whether those intervals

overlapped the truth. We observed that as ’uniqueness’ score of a tran-

script increased, confidence intervals constructed for that transcript were

more likely to capture the truth at least 95 times out of the 100 repeats. We

also observed that as read length increased, the proportion of transcripts

with 95% confidence intervals that overlap the truth in at least 95 out of

the 100 repeats increased. (Figure 6.4 (B, C)).

Performance on hybrid simulated data

To assess performance on simulated data that might more accurately re-

flect biology than the Dirichlet-negative binomial scenario described above,
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we also simulated a 75bp, paired-end dataset using the RSEM estimated

read counts for the ERR188410 sample of the GEUVADIS Consortium

data as known true expression levels. RSEM was excluded from this com-

parison. Our method’s performance relative to the others is consistent

with our above Dirichlet-negative binomial simulation of 75bp, paired-end

reads (Supplementary Table 1, last row). The distribution of ’unique-

ness’ scores is seen in Figure 6.5 (A). Our method again showed decreas-

ing mean absolute error accompanying a rise in ’uniqueness’ score Figure

6.5 (B). The median standard error decreases with increasing ’uniqueness’

scores in Figure 6.5 (C).

Performance on GEUVADIS Consortium data

Using recount2 feature counts of sample ERR188410 (a 75bp paired-end

sample) from the GEUVADIS dataset [106], we ran recountNNLS to esti-

mate transcript abundance levels. We also downloaded the FASTQ files for

this sample, and applied the 4 other methods mentioned above to estimate

transcript abundances. Pair-wise comparisons of the estimates were car-

ried out to evaluate Spearman’s correlation and concordance of transcripts

assigned non-zero expression.

For this sample, the Spearman correlations between the other methods are

high, at greater than 0.85. recountNNLS achieves much more moderate cor-

relation of approximately 0.65 with these other methods. The lower triangle

of Table 6.2 presents the number of transcripts each of the corresponding

methods both assigned non-zero expression to. Salmon detected the most

transcripts with non-zero expression at 83,733, while our method reported
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the least with 68,568 transcripts.

Quantifier
recount

NNLS
Kallisto

HISAT2

Cufflinks
RSEM Salmon

recount

NNLS
68,568 0.64 0.65 0.63 0.64

Kallisto 55,201 82,742 0.86 0.91 0.99

HISAT2

Cufflinks
54,921 69,404 79,442 0.90 0.86

RSEM 50,864 70,239 67,562 73,075 0.91

Salmon 55,697 82,300 70,215 70,761 83,733

Table 6.2: Comparison of assigned transcript counts for ERR188410
of Geuvadis Consortium dataset using five methods

Pair-wise comparison of the evaluated methods on example ERR188410

of the GEUVADIS consortium samples. The upper half shows pair-wise

Spearman’s correlation. The lower half shows the number of transcripts

where both methods detected expression. The diagonal cells show the

number of transcripts for the corresponding method assigned some ex-

pression to.

6.2 Discussion

We have presented here a method to provide transcript-level abundance es-

timates on the reduced-representation expression data available in recount2.

Our model’s performance most closely approximates other methods in the

37bp single end read setting. All methods considered here were able to
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improve as read lengths increase (Figure 6.2), likely because longer reads

have a higher probability of being uniquely attributable to a single tran-

script. However, our method was not able to leverage the full information

of longer reads, such as reads spanning a unique sequence of junctions, and

showed more modest improvements. Similarly, for paired-end scenarios,

the insert length works in conjunction with the read length to dramatically

increase the probability of uniquely assigning a read for those methods who

have access to such information.

Many loci have annotated transcripts that are structurally very similar. Un-

surprisingly, expression levels for highly similar transcripts are difficult to

tease apart. To identify how structurally similar one transcript is among a

set of transcripts, in the context of linear estimation, we calculate a ’unique-

ness’ score to represent the proportion of variability in feature probabilities

of a transcript that can be attributed to other transcripts. This score ranges

from 0 to 1, with 0 indicating that a transcript’s feature probabilities can

be perfectly recapitulated by other transcripts, and 1 indicates that a tran-

script is wholly unique. As noted above, we see a clear relationship between

the ’uniqueness’ score and the estimated accuracy of our method in both

Figure 6.3 (B) and Figure 6.5 (B). The other methods evaluated also

tend to show a trend in decreasing bias with increasing score from our

model.

Our model’s standard error estimates are also related to this ’uniqueness’

score. Under our Dirichlet-negative binomial and hybrid simulations, we

observe an increase in median standard errors as uniqueness decreases in

Figure 6.3 (C) and Figure 6.5 (C). Similarly, in Figure 6.6, we observe
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the structure and estimates of 2 selected genes from sample ERR188410 of

the GEUVADIS Consortium dataset. For the gene KLHL17, all 5 tran-

scripts have unique features that make these transcripts highly distinct.

Our method shows their standard errors are relatively low (Figure 6.6,

top). In the gene G6PD, there are strong structural similarities between

some of the transcripts. The difference in the identifiability of the tran-

scripts is clearly reflected in our reported standard errors: transcripts that

are difficult to distinguish from others are assigned higher standard errors

(Figure 6.6, bottom). In particular, the top two transcripts are almost

identical, with ’uniqueness’ scores of far less than 0.01 and inferred standard

errors orders of magnitude larger than other transcripts at this locus.

Not surprisingly, the more uniquely identifiable a transcript is, the more

likely that transcript will have confidence intervals that cover the truth

in greater than 95 out of 100 repeated simulations (Figure 6.4 (B,C)).

Transcripts of low ’uniqueness’ scores tend to have higher bias, leading to

less-than-nominal confidence interval coverage. Similarly, as read length in-

creases, ’uniqueness’ scores of all transcripts tend to improve overall. Thus

the validity of our confidence intervals also improves as read length in-

creases.

Working with the transcript abundances produced by our method is very

straightforward. For a given SRA project id (x) currently in recount2, one

can access the transcript quantification stored as a RSE object by installing

the recountNNLS R package and calling a single function, getRseTx(x).

We also include an example differential transcript expression analysis of

healthy versus cancer TCGA breast samples in the Supplementary Ma-
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terials. We input our model estimates into a popular differential expression

pipeline using the R packages limma [107] and edgeR [16] to produce es-

timates of transcript-level differential expression between these groups of

samples.

Our model is able to adjust for factors that might affect quantification (such

as GC content, mappability, and transcript location bias) by adjusting the

feature probability matrices. For example, to adjust for GC content, we

could learn the GC content bias of the sample by selecting for the subset of

1-transcript genes and assessing GC bias using their sequence composition

and expression levels. The selected transcripts can then be broken down

into the set of features and their respective feature counts. Using a loess

smoother, one could model the relationship between the GC content of

those features and these feature counts. This relationship could then be

used on multi-transcript genes to up-weight or down-weight the feature

probability matrix entries. Substituting the adjusted matrices into NNLS

estimation would yield GC-adjusted estimates. Similar processes can be

carried out for any kind of adjustment where one could attain feature-level

characteristics, such as mappability, positional biases, etc.

6.3 Methods

recount2 summary measures

recount2 includes a repository of coverage summary measures produced

by a uniform application of the aligner Rail-RNA to more than 70,000

publicly available RNA-seq samples. For each sample, recount2 contains
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two primary files necessary for our linear modeling approach. First, each

sample had a BigWig-format file [108] containing the number of reads over-

lapping each genomic position of the hg38 assembly. Secondly, each sample

had a file containing the number of reads spanning observed exon-exon

splice junctions. Other useful summarizations are also available directly

from recount2, like precomputed exon-level and gene-level coverages based

upon the GencodeV25 reference transcriptome using the above mentioned

BigWig files.

Sufficient statistics for transcript quantification

Given the read length of a particular experiment and a reference transcrip-

tome, we determine a set of sufficient features such that the coverage of

these features adequately summarizes the transcript quantification encoded

in the raw reads. For simplicity, we illustrate our definition of features with

an example gene containing two transcripts, and with an example data-

generating experiment with read lengths of 100 base pairs, but our method

generalizes to arbitrary transcript structure and different read lengths.

Consider the gene portrayed in Figure 6.1, which is composed of 2 tran-

scripts, 3 distinct exons, and 1 exon-exon junction, and suppose that the

experiment produces reads of length 100bp. We first disjoin the annotation

into unique, non-overlapping sub-exonic segments, similar to the scheme

that IsoformEx [101] employs. However, in a process unique to our model,

any bins longer than 200bp (twice the experiment read length) are then

further evenly subdivided so that the largest resulting piece is less than

100bp. This process increases the identifiability of the transcripts. For our
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example, the final product is a set of 7 features, of which 6 are sub-exonic

segments while 1 is an exon-exon splice junction.

The sufficient statistics for our linear model are the counts of reads over-

lapping each feature, which we will denote as feature counts. To extract

the feature counts given a set of features, we query the BigWig files for

the coverage of sub-exonic sections, and the junction file for the junction

equivalent. The values in the BigWig files are stored as the number of

reads overlapping each base pair so for each feature, we take the sum of

these values and then divide by the read-length of the experiment to de-

termine the equivalent number of reads overlapping each feature. No such

normalization is necessary for the values from the junction coverage file,

however.

Deriving model inputs

Our goal is to derive transcript abundances given the known gene structure

and feature counts summarized above. Continuing with the example gene

from Figure 6.1, transcript 1 is composed of all 7 features, while transcript

2 is composed of features 1 and 2 only. Based on this structure, reads

aligning to features 3-7 should have originated from transcript 1 and not

transcript 2. We use this structure to set up the design matrix for our linear

model.

We name our independent variables feature probability vectors, and de-

note them as X1 and X2 respectively for each transcript. Each vector is

of length 7, corresponding to the number of features. Each element Xk
j

99



encodes the probability a random read from transcript k overlaps feature j

of our gene, where k = 1 . . . 2 and j = 1 . . . 7. The column-wise collection

of feature probability vectors for our example gene is denoted as X with

dimension [7x2] and is referred to as the feature probability matrix for

this gene. Note the values in this matrix depend on both the calculated

features and the length of the reads of the sequencing experiment (100bp

in this example).

The true X is not known, but it can be estimated based on sequence con-

tent of the transcripts and the read length of the experiment. To estimate

X1, sliding segments of 100bp from transcript 1 are aligned to the GRCh38

reference using the aligner HISAT2 [104]. The number of aligned segments

overlapping each feature is summed and divided by the number of total

100bp segments to produce the estimate of X1, denoted by X̂1. The esti-

mated feature probability matrix X̂ is the column-wise collection of such

estimated feature probability vectors for all transcripts in the gene. More

complex implementations can readily include adjustments for GC content,

5’ bias, and mappability differences by weighting each row of X̂ appropri-

ately.

Non-negative linear model

For our gene, we denote the observed feature counts vector Y . The un-

derlying assumed data generation process is illustrated in Figure 5.4. We

are interested in estimating the true transcript abundances β using our

estimated X̂ by solving for:
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arg min
β̂≥0

∥∥∥Y − X̂β̂′
∥∥∥

2

subject to the constraint that each element of β̂ is non-negative. Many

existing algorithms and implementations exist for finding the solution. For

recountNNLS, we used the function nnls found in the R package nnls [109]

Figure 6.7: Assumed data generating process

For one example gene, an illustration of our model formulation of the

relationship between transcript abundances and the observed feature

counts. A column of the feature probability matrix represents the

expected contribution to the observed feature counts by a random read

from the corresponding transcript. Our model estimates β using a non-

negative linear model. Furthermore, since the true feature probability

matrix is unknown, we estimate it by applying the aligner HISAT2 to

possible reads from each transcript.
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Standard error calculation

Our model is amenable to standard error estimation of β̂ using a het-

eroscadastic consistent sandwich estimator proposed and dubbed as HC4

by Cribari-Neto [110]. The covariance matrix of β̂ is estimated as:

(X′X)−1X′diag
[ ε2i
(1− hii)δi

]
X(X′X)−1

where εi is the residual from the i-th feature, and hii is the i-th diagonal of

the projection (“hat”) matrix H calculated as:

H = X(X′X)−1X′

δi = min(4, n ∗ hii/p), with n the number of transcripts and p the number

of features. hii is capped to be at most 0.99 to ensure division by 0 does

not occur for points with hii computationally equal to 1.

Confidence interval construction

The construction of confidence intervals is based on a t-statistic approach,

where the critical value depends on a degree of freedom equal to n−p. n is

the number of features and p is the number of transcripts being estimated

at once. Let ŜE denote the diagonal of the estimated covariance matrix

for β̂, we have that the α-level confidence intervals are:

β̂ ± t(α/2,n−p) ∗ ŜE
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’uniqueness’ score

Our method also produces a ’uniqueness’ score for transcript i, defined as

rssi/tssi. rssi is the residual sum of squares for transcript i after fitting

NNLS(Xi, X−i), where Xi is the ith column of X and X−i is X with the

ith column removed. Here, tssi is the sum of the squares of each term of

Xi.

Quantification compilation for recount2

To quantify the entire transcriptome for a given sample, we execute sepa-

rate linear models on each of what we refer to as “bundles” of genes. We

define a single bundle as all genes sharing any non-zero entries in the fea-

ture probabilities. As different read lengths affect the multi-mapping of

sequencing reads, we calculate the set of bundles for each read length, by

examining all feature probability matrices. However, for read lengths of

37bp and 50bp, this results in the creation of a bundle encompassing 1966

and 4953 genes respectively - too large to handle in computation at once.

As such, for 37bp and 50bp datasets, we resort to approximating the bun-

dles with the bundles built for 75bp, resulting in some increase in bias, but

allowing for computational tractability. As an addition to the recountNNLS

package, we offer precomputed features, feature probability matrices, and

bundles reflecting read lengths of 37, 50, 75, 100, and 150bp in the package

recountNNLSdata.

Our method produces a Ranged Summarized Experiment (RSE) object per

project - mirroring the structure of recount2. For each sample of a project,
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we utilize the set of feature probability matrices matching the read length of

the sample most closely. If the match is not exact, we adjust the estimated

abundances and standard errors by the ratio of feature probability matrix

read length over actual sample read length.

For each project, the RSE object contains the estimated fragment counts,

standard errors, ’uniqueness’ scores, and degrees of freedom, accessible via

the function assays as fragments, ses, scores, and df respectively. Each

row of the fragments, ses, scores, and df matrices represents a transcript,

and each column represents a sample. The corresponding transcripts are

stored as a GRangesList accessible via the rowRanges function, and meta

information such as length and number of exons is stored in a table accessi-

ble by the function rowData. Transcripts that introduce colinearity (either

perfect or computational) in the model matrix X̂ are reported as NA in

counts and ses. Transcripts are deemed too colinear by default behavior

of the lm() function in R.

Performance evaluation

Using our linear model on real and simulated data, we compare our esti-

mates to those from the established methods Kallisto [98], Cufflinks [104],

RSEM [100], and Salmon [99].

Dirichlet-negative binomial simulation scenarios

We simulated RNA-seq data using the R package polyester [105] under

10 scenarios: read lengths of 37, 50, 75, 100 and 150bp with either single-
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end or paired-end FASTA reads. For the sake of simulation expediency, we

selected all coding transcripts from chr1 and chr14 from the GencodeV25

transcriptome annotation, which comprises 12.5% of the entire annotation.

Reads were generated via polyester [105] with fragment length distribu-

tion Gaussian with mean 250 and standard deviation 25. The number of

reads to simulate was determined on a gene-by-gene basis, with most genes

having a dominant transcript producing over 50% of the sequencing reads.

The relative abundances of the transcripts are chosen via a Dirichlet dis-

tribution with α = 1/f , where f is the number of transcripts coded by the

gene. The total number of reads at a gene is chosen as a negative binomial

with size=4 and p=0.01. The number of reads of each transcript is the

product of the outcomes of the Dirichlet and the negative binomial.

We created alignment indices for the subset of the transcriptome from chr1

and chr14 for use with Kallisto [98] and Salmon [99]. The simulated FASTA

files were fed to Kallisto [98], HISAT2-Cufflinks [104, 97], RSEM [100],

and Salmon [99] with default parameters where applicable. Methods were

only asked to quantify the abundances of the subset of transcripts from

protein-coding genes on chr1 and chr14. For single end simulations, salmon

[99] and Kallisto [98] require input of the fragment length distribution, for

which the true parameters of (250, 25) were used. For Cufflinks [97], we

provided the fragment length ditsribution, and used --total-hits-norm

--no-effective-length-correction --no-length-correction options.

For our linear model, we utilized Rail-RNA [96] to process the FASTA files

in the same manner as in recount2 [19]. For evaluation, each method’s

abundance estimates (est) were compared to the true number (truth) us-
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ing mean absolute error (MAE):

MAE = (
n∑
i=1

|esti − truthi|)/n

where i denotes a transcript out of the n total transcripts being evaluated.

Confidence interval coverage by transcript

We randomly sampled 2000 transcripts from the set of transcripts belonging

to protein-coding genes from chr1. We simulated 100 repeated datasets

for each Dirichlet-negative binomial scenario described above, with each

selected transcript receiving 20x coverage. The simulated fasta files were

aligned via Rail-RNA, and the output BigWig and junction files were passed

to our model for quantification. Confidence intervals were constructed using

the t-statistic-based method described above. For a given transcript, the

number of simulations in which the confidence interval for that transcript

covered the truth was recorded.

Hybrid simulation scenario

Using polyester, we also simulated a dataset with 75bp read length and

paired-end reads to mimic the expression levels in sample ERR188410 of

the GEUVADIS Consortium dataset. The ground truth number of counts

generated for each transcript was taken from these estimated counts from

applying RSEM to transcripts part of protein-coding genes in the Gen-

codeV25 annotation. Although we know these counts may not be com-

pleletly accurate, we felt they would better capture patterns of correlation
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and variability present in real data than possible under the simulation sce-

nario described above. The insert length was again set to have a mean of

250 and a standard deviation of 25. The simulated FASTA files were used as

input for Salmon [99], Kallisto [98], and HISAT2-Cufflinks [104, 97], while

the Rail-RNA output BigWig and junction files were used as input for

out method. We asked each method to quantify all transcripts composing

protein-coding genes of the GencodeV25 annotation, using suitable indices

for each method built on the entire GencodeV25 annotation. Cufflinks [97]

was used with --total-hits-norm --no-effective-length-correction

--no-length-correction options. For evaluation, each method’s esti-

mates were again measured using MAE.

GEUVADIS Consortium

We downloaded the raw paired-end FASTQ files for sample ERR188410 of

the GEUVADIS Consortium dataset. The FASTQ files were used directly

as input for Kallisto [98], HISAT2-Cufflinks [104, 97], RSEM [100], and

Salmon [99] using default parameters. The recount2 summary measures for

the GEUVADIS project samples were used as inputs for our linear model.

We were only interested in estimating the abundances of the transcripts

belonging to protein-coding genes in the GencodeV25 annotation. Indices

were built for the GencodeV25 transcriptome where needed. Cufflinks [97]

was run with --total-hits-norm --no-effective-length-correction

--no-length-correction. Abundance estimations on the transcript- and

gene-level were compared pair-wise between methods using Spearman’s cor-

relation. We also examined pair-wise the number of transcripts assigned
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non-zero expression under both methods.
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6.5 Supplementary Materials

Availability of data and material

The following code will reproduce the analyses presented in this project (if

R has access to sufficient resources) for a given project id. An example case

is demonstrated below for project DRP000366, and additional commands

are located in the supplement.

library(devtools)

install_github(’JMF47/recountNNLSdata’, ref=’70ded71’)

install_github(’JMF47/recountNNLS’, ref=’ba9ee10’)

library(recountNNLS)
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pheno = processPheno(’DRP000366’)

rse_tx = recountNNLS(pheno)

Example differential expression

The following code will perform a differential expression analysis of tran-

script abundances between healthy and cancerous breast samples of TCGA,

using recountNNLS quantified expression as input in conjunction with the

R packages limma and edgeR.

library(devtools)

install_github("jmf47/recountNNLSdata", ref="R-3.4")

install_github("jmf47/recountNNLS", ref="R-3.4")

library(recountNNLS); library(edgeR); library(limma)

## Downloading and loading in the data of interest

load(getRseTx(project="TCGA", tissue="breast"))

## Extracting counts for normalization

cts <- assays(rse_tx)$counts

cts_comp = cts[complete.cases(cts),]

dge <- DGEList(counts = cts_comp)

dge <- calcNormFactors(dge)

## Extracting cancer/normal label for modeling

cancer_tissue <- (colData(rse_tx)$cgc_sample_sample_type!=
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"Solid Tissue Normal")*1

design <- data.frame(intercept=1, cancer_tissue)

## Fit model and present top signals

v <- voom(dge, design, plot=FALSE, normalize="quantile")

fit <- lmFit(v, design)

fit <- eBayes(fit)

topTable(fit, coef=ncol(design))

Reproducibility

To recreate the reported RSE objects produced by this paper, please install

the recountNNLSdata and recountNNLS packages as follows (under R-3.4).

library(devtools)

install_github("JMF47/recountNNLSdata", ref="70ded71")

install_github("JMF47/recountNNLS", ref="ba9ee10")

The commands correspond to the following versions of the 2 packages:

https://github.com/JMF47/recountNNLSdata/tree/

70ded71bdc8162ad5ea64be803cd6d25222f1d6c

https://github.com/JMF47/recountNNLS/tree/

ba9ee107244777299e9d99ce62c720919ace4d1f
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Recreating recountNNLS on recount2 samples

The following code will quantify each project using the R packages installed

above.

library(recountNNLSdata); library(recountNNLS)

# Locate all the project ids

url_table <- recount::recount_url

unique_ids = unique(url_table$project)

# Analyze TCGA separately and ignore sra

unique_ids = as.character(unique_ids[unique_ids!="sra"])

# Simple for-loop to execute the model for each project

for(unique_id in unique_ids){

message(which(unique_ids==unique_id))

pheno = processPheno(unique_id)

rse_tx = recountNNLS(pheno)

}

Special accommodations for TCGA

TCGA samples require extra work - specifically the meta information. The

read length and run fields are missing from the recount2 metadata. The

following code will recreate infer the missing read length information by

calculating the number of aligned base-pairs divided by the number of

reads reported. The filled metadata is automatically loaded when calling
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processPheno("TCGA") from a saved R object in recountNNLSdata.

library(recountNNLS)

tcga_meta = processPheno("TCGA")

tcga_meta$run = stringr::str_extract(tcga_meta$bigwig_path,

"bw/.*bw")

tcga_meta$run=stringr::str_replace(tcga_meta$run,"bw/","")

tcga_meta$run=stringr::str_replace(tcga_meta$run,".bw","")

estimateReadLength = function(sample, tcga_meta){

bw = rtracklayer::import(tcga_meta$bigwig_path

[tcga_meta$run==sample])

tot_cov = sum(width(bw)*bw$score)

estimated = tot_cov/tcga_meta$mapped_read_count

[tcga_meta$run==sample]

return(round(estimated))

}

# Infer the read length of experiment:

# read length = total basepairs mapped/

# total number of mapped reads

samples = tcga_meta$run

rls = sapply(tcga_meta$run[1:2],estimateReadLength,tcga_meta)

rls_avail = c(37, 50, 75, 100, 150)

rls_group = sapply(rls, function(x)

rls_avail[which.min(abs(rls_avail-x))])
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tcga_meta$rls = rls

tcga_rls_group = rls_group

The rest of the quantification can proceed as normal (given enough com-

putational resources available to R) using:

pheno = processPheno("TCGA")

rse_tx = recountNNLS(pheno)

Additional code

Additional code for performance evaluation (simulated and GEUVADIS

Consortium) and figure creation can be found at

https://github.com/JMF47/recountNNLSpaper.
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Additional tables

recountNNLS Kallisto Cufflinks RSEM Salmon

37 single 15.92 12.00 9.17 7.05 15.45

50 single 14.99 9.15 7.93 6.46 12.27

75 single 13.82 6.73 6.34 5.95 9.08

100 single 12.93 6.10 5.56 5.09 7.14

150 single 11.00 5.76 4.92 4.16 5.03

37 paired 15.07 4.69 6.23 2.83 4.65

50 paired 14.29 4.16 6.59 2.92 4.13

75 paired 13.02 3.45 4.96 2.87 3.42

100 paired 12.63 3.09 4.36 2.96 3.05

150 paired 10.63 2.90 4.18 3.06 2.86

RSEM-based 58.40 9.42 13.21 NA 7.24

Supplementary Table 6.3: Mean absolute error of simulations

This table records the mean absolute error of the different methods over

the simulated scenarios. All methods improve as read lengths increase,

though recountNNLS improves more modestly.

Additional figures
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Supplementary Figure 6.17: MA plots 37bp single-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 37bp, single-end simulated data. Each

panel is a MA plot of the number of estimated reads by each method

compared to the ground truth. The Y axis represents the difference

between estimated and true counts on the log2 reads scale, while the

X axis represents the average of the estimated and true counts on the

same scale.
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Supplementary Figure 6.18: MA plots 50bp single-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 50bp, single-end simulated data. Each

panel is a MA plot of the number of estimated reads by each method

compared to the ground truth. The Y axis represents the difference

between estimated and true counts on the log2 reads scale, while the

X axis represents the average of the estimated and true counts on the

same scale.
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Supplementary Figure 6.19: MA plots 75bp single-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 75bp, single-end simulated data. Each

panel is a MA plot of the number of estimated reads by each method

compared to the ground truth. The Y axis represents the difference

between estimated and true counts on the log2 reads scale, while the

X axis represents the average of the estimated and true counts on the

same scale.
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Supplementary Figure 6.20: MA plots 100bp single-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 100bp, single-end simulated data.

Each panel is a MA plot of the number of estimated reads by each

method compared to the ground truth. The Y axis represents the dif-

ference between estimated and true counts on the log2 reads scale, while

the X axis represents the average of the estimated and true counts on

the same scale.
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Supplementary Figure 6.21: MA plots 150bp single-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 150bp, single-end simulated data.

Each panel is a MA plot of the number of estimated reads by each

method compared to the ground truth. The Y axis represents the dif-

ference between estimated and true counts on the log2 reads scale, while

the X axis represents the average of the estimated and true counts on

the same scale.
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Supplementary Figure 6.22: MA plots 37bp paired-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 37bp, paired-end simulated data.

Each panel is a MA plot of the number of estimated reads by each

method compared to the ground truth. The Y axis represents the dif-

ference between estimated and true counts on the log2 reads scale, while

the X axis represents the average of the estimated and true counts on

the same scale.
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Supplementary Figure 6.23: MA plots 50bp paired-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 50bp, paired-end simulated data.

Each panel is a MA plot of the number of estimated reads by each

method compared to the ground truth. The Y axis represents the dif-

ference between estimated and true counts on the log2 reads scale, while

the X axis represents the average of the estimated and true counts on

the same scale.
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Supplementary Figure 6.24: MA plots 75bp paired-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 75bp, paired-end simulated data.

Each panel is a MA plot of the number of estimated reads by each

method compared to the ground truth. The Y axis represents the dif-

ference between estimated and true counts on the log2 reads scale, while

the X axis represents the average of the estimated and true counts on

the same scale.
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Supplementary Figure 6.25: MA plots 100bp paired-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 100bp, paired-end simulated data.

Each panel is a MA plot of the number of estimated reads by each

method compared to the ground truth. The Y axis represents the dif-

ference between estimated and true counts on the log2 reads scale, while

the X axis represents the average of the estimated and true counts on

the same scale.
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Supplementary Figure 6.26: MA plots 100bp paired-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 100bp, paired-end simulated data.

Each panel is a MA plot of the number of estimated reads by each

method compared to the ground truth. The Y axis represents the dif-

ference between estimated and true counts on the log2 reads scale, while

the X axis represents the average of the estimated and true counts on

the same scale.
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Supplementary Figure 6.27: MA plots 150bp paired-end simulation

A figure of the performance of our method compared to Kallisto, HISAT2-

Cufflinks, RSEM and Salmon for 150bp, paired-end simulated data.

Each panel is a MA plot of the number of estimated reads by each

method compared to the ground truth. The Y axis represents the dif-

ference between estimated and true counts on the log2 reads scale, while

the X axis represents the average of the estimated and true counts on

the same scale.
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Supplementary Figure 6.28: MA plots RSEM-based simulation

A figure of the performance of methods based on a 75bp, paired-end

stimulation with RSEM estimated counts of sample ERR188410 from

the Geuvadis Consortium dataset as ground truth. Each panel is a MA

plot of the number of estimated reads by each method compared to the

ground truth. The Y axis represents the difference between estimated

and true counts on the log2 reads scale, while the X axis represents the

average of the estimated and true counts on the same scale.
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