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Abstract

In 2015 more than 150 million records and $400 billion were lost due to publicly-

reported criminal and nation-state cyberattacks in the United States alone. The failure

of our existing security infrastructure motivates the need for improved technologies,

and cryptography provides a powerful tool for doing this. There is a misperception that

the cryptography we use today is a “solved problem” and the real security weaknesses

are in software or other areas of the system. This is, in fact, not true at all, and

over the past several years we have seen a number of serious vulnerabilities in the

cryptographic pieces of systems, some with large consequences.

This thesis will discuss three aspects of securing deployed cryptographic systems.

We will first explore the evaluation of systems in the wild, using the example of how

to efficiently and effectively recover user passwords submitted over TLS encrypted

with RC4, with applications to many methods of web authentication as well as the

popular IMAP protocol for email. We will then address my work on developing

tools to design and create cryptographic systems and bridge the often large gap

between theory and practice by introducing AutoGroup+, a tool that automatically
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translates cryptographic schemes from the mathematical setting used in the literature

to that typically used in practice, giving both a secure and optimal output. We will

conclude with an exploration of how to actually build real world deployable systems

by discussing my work on developing decentralized anonymous credentials in order to

increase the security and deployability of existing anonymous credentials systems.

Primary Reader: Matthew Green

Secondary Readers: Aviel Rubin and Nadia Heninger
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Chapter 1

Introduction

1.1 Introduction

In 2015 more than 150 million records and $400 billion were lost due to publicly-

reported criminal and nation-state cyberattacks in the United States alone [1, 2].

The failure of our existing security infrastructure motivates the need for improved

technologies. Cryptography provides a powerful tool for doing this. There is a

misperception that the cryptography we use today is a “solved problem” and the real

security weaknesses are in software or other areas of the system. This is, in fact, not

true at all. Over the past several years we have seen a number of serious vulnerabilities

in the cryptographic pieces of systems, some with large consequences [3, 4, 5, 6]. These

can be caused by various problems, including poor designs, difficulty of implementation,

and insecure primitives.
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CHAPTER 1. INTRODUCTION

One of the unique aspects of applied cryptography as a research field is that it

is driven by practice, including security needs and goals and even attacks on real

systems. My work has focused on the security of deployed cryptographic systems in all

of its aspects, including the evaluation of real systems, developing improved tools to

design and create those systems, and actually creating real, deployable systems. Each

of these components is critical to achieving real world, secure cryptographic systems.

Analyzing and evaluating real systems is often the best method that we currently have

to determine if they are secure. Many of the errors that we find when analyzing these

systems could have been prevented if designers and software engineers had better

tools. And experience with developing and deploying real world systems is crucial to

understanding the tooling needed to best help others and where the weakpoints are in

the process. Understanding and working in each area provides you with the overall

picture needed to be most effective in the field of applied cryptography.

This thesis will focus on work from each of the three areas, highlighting my

experiences in the complete picture of applied cryptography research. I now describe

the three areas, as well as the example work from each that will be discussed later on,

in more detail.
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CHAPTER 1. INTRODUCTION

1.1.1 Evaluating, Attacking, and Securing Existing

Cryptographic Protocols

Cryptographic attacks are an important part of cryptographic development, testing,

and security and often are the only way to truly demonstrate problems with already

deployed systems. It is a community truism that “attacks only get better,” but this is

often insufficient to motivate vendors to fix existing schemes. We have often seen that

so-called “theoretical” attacks are not taken seriously until researchers demonstrate

that something is actually broken. It is important that these attacks be done in the

labs by researchers where things can then be patched, instead of happening in the

wild where they can compromise user security.

Despite many recent high-profile attacks on the RC4 encryption algorithm and

many recommendations from experts to cease using it, in 2015 approximately 30%

of all TLS traffic, including web browsing and email, was encrypted using RC4. Our

research took the position that the only way to change industry adoption of RC4

was to demonstrate and deploy practical attacks against real systems that used the

algorithm. To develop such a practical attack, we focused on recovering user passwords

submitted over TLS encrypted with RC4. We were able to effectively and efficiently

recover passwords by carefully exploiting statistical biases in the pseudorandom output

of the generator and tailoring our attack to passwords. This has potential implications

for many methods of web authentication as well as the popular IMAP protocol for

3



CHAPTER 1. INTRODUCTION

email. Demonstrating a believable, practical attack forced a change in the community

and a recognition that RC4 was well and truly broken.

This sort of work can have demonstrable real world impact both within the

community and for the general public. RC4 has now been removed from all major

web browsers [7] and prohibited by the IETF in all TLS implementations [8].

1.1.2 Tools for Developing Secure Cryptographic Sys-

tems

The second part of my research deals with developing tools that can make it easier

for both experts and non-experts to develop secure cryptographic systems. As we

have seen repeatedly, developing secure cryptographic systems is hard. Whether it

is difficulties in translating schemes developed by researchers to code, mistakes in

implementation, or poor optimizations, we are often able to find flaws in deployed

systems. Cryptographic automation is a new and promising area that is designed

to help solve many of these problems and make developing secure systems easier

and less error-prone. This approach has already shown promise. Various tools exist

to help cryptographers create security proofs in an automated, computer-assisted

manner [9, 10], while other lines of research help automate the creation of new

cryptographic schemes [11, 12].

Pairing-based cryptography has become very popular over the last decade, as

4



CHAPTER 1. INTRODUCTION

this algebraic setting offers good functionality and efficiency. It is used in many

popular cryptographic schemes, such as Identity-Based Encryption [13] and Attribute-

Based Encryption [14], and pairing-commercializer Voltage Security was acquired by

a major US company (HP) [15]. However, there is a huge security gap between how

schemes are usually analyzed in the academic literature and how they are typically

implemented. To address this, our contribution was the design, development and

evaluation of a new software tool, AutoGroup+, that automatically translates from

the mathematical setting used in the literature to that typically used in practice.

The output of AutoGroup+ is secure and optimal based on the user’s efficiency

constraints [16]. AutoGroup+ is able to take a cryptographic scheme written in a

special language, similar to LATEX, as input and then output both C and Python code

of the transformed scheme.

This sort of tool can be extremely valuable for both experts and non-experts.

Experts can use it to check their results or reduce manual (often error-prone) work. Non-

experts can use it to translate schemes from research into practical, useable schemes

for their systems, without having to attempt to do the translation or implementation

by hand. We hope that such tools will help aid in the future development of secure

cryptographic systems.

5



CHAPTER 1. INTRODUCTION

1.1.3 New Domains for Cryptographic Applications

Because cryptography is so ubiquitous in the world today, the ability to actually

develop and deploy secure systems is an important one. This is not an easy task,

as many different design decisions and tradeoffs must be considered before one even

reaches the point of designing the cryptography.

The third part of my research involves actually creating and implementing practical,

useable (secure) systems to solve real world problems. While this thesis will not discuss

it, our first work in this space [17] involves Bitcoin, the first electronic cash system

to see widespread adoption. While Bitcoin offers the potential for new types of

financial interaction, it has significant limitations regarding privacy. Specifically,

because the Bitcoin transaction log is completely public, users have little privacy. We

created Zerocoin, a cryptographic extension to Bitcoin that augments the protocol to

allow for fully anonymous currency transactions and implemented a proof of concept

system. Zerocoin leverages cryptographic zero-knowledge proofs and other techniques

to provide a privacy layer on top of the already popular Bitcoin protocol. While this

thesis will not include Zerocoin, this brief high-level overview is useful for introducing

us to my work that will be discussed.

The applications of our work on Zerocoin go far beyond electronic cash. Indeed, they

provided us with a new technique that allowed us to develop decentralized anonymous

credentials in order to increase the security and deployability of existing anonymous

credentials systems [18], which will be discussed in this thesis. Anonymous credentials

6
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provide a powerful tool for making assertions about identity while maintaining privacy.

However, a limitation of today’s anonymous credential systems is the need for a

trusted credential issuer — which is both a single point of failure and a target for

compromise. Furthermore, the need for such a trusted issuer can make it challenging

to deploy credential systems in practice, particularly in the ad hoc network setting

(e.g., anonymous peer-to-peer networks) where no single party can be trusted with this

responsibility. We proposed a novel anonymous credential scheme that eliminates the

need for a trusted credential issuer and implemented the system to show its practicality.

We also provided a number of practical applications for our techniques, including

resource management in ad hoc networks and prevention of Sybil attacks.

1.1.4 Organization

In the next three chapters, we present the aforementioned work from each of these

three areas. We begin by discussing cryptographic attacks, with my work on decrypting

user passwords encrypted with RC4 in TLS. After describing how systems can fail and

where things can go wrong, we move on to discuss ways to build more secure systems

and prevent problems from ever occurring by using cryptographic automation and

creating AutoGroup+. We conclude by discussing how to build cryptographic systems

in practice, because it is both impossible to work in either of the previous areas and be

a successful applied cryptography researcher without understanding this; this section

will focus on our work on decentralized anonymous credentials. Each chapter is drawn
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CHAPTER 1. INTRODUCTION

from the corresponding publication with little modification or additional content.
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Chapter 2

Evaluating, Attacking, and Securing

Existing Cryptographic Protocols

This chapter is based on joint work with Kenneth G Paterson and Thyla van der

Merwe while visiting Royal Holloway, University of London. The paper was originally

published in USENIX Security 2015 [19], while the complete version that appears in

this chapter was published at [20].

It is a truism in the community that “attacks only get better”, but this is often

insufficient to motivate fixes to existing schemes. As we have seen many times, only

when things are well and truly broken will they be fixed. This chapter demonstrates a

real life example of this situation, where a scheme with known problems was continually

used until a truly practical attack was demonstrated in a realistic application. We

now describe our work on decrypting user passwords encrypted with TLS using RC4.

9
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2.1 Introduction

The year 2013 was a(nother) bad one for the TLS protocol. After the trauma of

BEAST in 2011 and CRIME in 2012, came the Lucky 13 attack on CBC-mode in

TLS [21] and then, shortly after, attacks on RC4 in TLS [22] (see also [23, 24]). At the

time, most TLS (and SSL) deployments used either CBC-mode or RC4, since TLS 1.2

with its more modern ciphersuites based on AES-GCM was barely deployed. Indeed,

according to statistics obtained from the International Computer Science Institute

(ICSI) Certificate Notary project,1 in January 2013, there was a roughly 50/50 split

between CBC-mode and RC4 usage in the wild. And, at that time, no major browser

supported TLS 1.2 in its default settings.

Fast forward to February 2015: all mainstream browsers now support TLS 1.2,

TLS 1.3 is under development in the IETF, and the IETF has just published an RFC

deprecating the use of RC4 in TLS [8]. Moreover, statistics from SSL Pulse2 show that

server-side support for TLS 1.2 has grown rapidly, from less than 11.4% of the servers

surveyed in January 2013 to 54.5% in February 2015. At the same time, large vendors

have started to remove support for RC4. For example, Microsoft have made it possible

to disable RC4 across a wide range of their products,3 while CloudFlare, a major CDN

provider, recently removed RC4 ciphersuites from all their server configurations.4

1The ICSI Certificate Notary project collects statistics from live upstream SSL/TLS traffic in a
passive manner; see http://notary.icsi.berkeley.edu

2https://www.trustworthyinternet.org/ssl-pulse/
3See urlhttps://technet.microsoft.com/library/security/2868725.
4See https://blog.cloudflare.com/end-of-the-road-for-rc4/.
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At first sight, then, it would seem that the world has paid close attention to the

TLS attacks of 2013 and taken steps to remediate them. Most major implementations

patched against Lucky 13,5 while, according to [22], the only reasonable response to

the RC4 attacks was to stop using RC4 in TLS. However, the reality is not so rosy.

For example, SSL Pulse shows that, in February 2015, 74.5% of the roughly 150,000

sites surveyed still allowed negotiation of RC4. Even worse, a January 2015 survey6

of about 400,000 of the Alexa top 1 million sites show that 3712 of them, or 0.79%,

support only RC4 ciphersuites; meanwhile 8.75% force the use of RC4 in TLS 1.1 and

1.2, where better ciphers are available. And March 2015 data from the ICSI Certificate

Notary project shows that more than 30% of SSL/TLS connections are still using

RC4.7

It is instructive to examine the reasons why RC4 still remains so popular in TLS,

and why deprecating its use seems to be so hard.

We assert that, first and foremost, this is because, while the attacks of [22] break

RC4 in TLS in an academic sense, the attacks are far from being practical. For example,

the preferred cookie-recovering attack in [22] needs around 233 – 234 encryptions of

a 16-byte, base64-encoded secure cookie to reliably recover it. The number is so

high because, with mainstream browsers and taking into account the verbosity of the

HTTP protocol, the target cookie is not located near the start of the RC4 keystream,
5See http://www.isg.rhul.ac.uk/tls/lucky13.html for a list.
6https://securitypitfalls.wordpress.com/2015/02/01/january-2015-scan-results/
7An exact figure is hard to determine because of the “other” category in the relevant data which

is currently running at 4.9% and which may include some RC4-protected traffic.

11

http://www.isg.rhul.ac.uk/tls/lucky13.html
https://securitypitfalls.wordpress.com/2015/02/01/january-2015-scan-results/


CHAPTER 2. EVALUATING, ATTACKING, AND SECURING EXISTING
CRYPTOGRAPHIC PROTOCOLS

meaning that the strong, single-byte keystream biases in RC4 observed in [22] cannot

be exploited. Rather, the preferred attack from [22] uses the much weaker, long-term

Fluhrer-McGrew double-byte biases from [25]. This substantially increases the number

of required encryptions before the plaintext cookie can be reliably recovered, to the

point where, even with highly-tuned malicious JavaScript running in the victim’s

browser generating 6 million cookie-bearing HTTP POST requests per hour, the

wall-clock time to execute the attack would still be on the order of 2000 hours using

the experimental setup reported in [22]; moreover the attack would generate many

Terabytes of network traffic. Thus the practical threat posed by the RC4 attacks

reported in [22] is arguably quite limited.

The second reason for the continued popularity of RC4 in TLS is the presence of

legacy implementations which support only RC4, or which would be vulnerable to

the BEAST or Lucky 13 attacks on CBC-mode ciphersuites. Indeed, switching to

RC4 was a widely recommended countermeasure to the BEAST attack. Websites are

naturally loath to lose potential customers whose browsers are not equipped with the

latest patches or TLS versions and ciphersuites. Countering this, recent data from

CloudFlare8 shows that very few TLS clients now actually need RC4 – 0.0009% of

connections in the CloudFlare data. There is also a plethora of TLS deployment not

protecting HTTP traffic, increasingly including smart metering systems, industrial

control systems, and server-to-server communications. A further complexity, revealed
8See http://blog.cloudflare.com/killing-rc4-the-long-goodbye/ and http://blog.

cloudflare.com/the-web-is-world-wide-or-who-still-needs-rc4/
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in the CloudFlare data, is the presence of TLS-based VPNs or firewalls that perform

man-in-the-middle monitoring of SSL connections but that may need updating to stop

them from using RC4 for secure connections.

A third reason is performance: in settings where hardware support for AES is

not available (e.g. most mobile processors, including ARM processors), RC4 is fast,

significantly outperforming AES-based ciphersuites. There are certainly more secure

stream ciphers that are equally fast, or faster (for example, algorithms in the eStream

portfoliom9) but they are not standardised for use in TLS, and their widespread

deployment would take years.10

Nevertheless, it is a well-worn cliché that attacks only get better (i.e. stronger)

with time. However, this is a cliché that happens to be true for TLS, with the BEAST,

Lucky 13 and POODLE attacks all being illustrative examples. This paper presents

another illustration of this phenomenon for RC4 in TLS. We present attacks recovering

TLS-protected passwords whose ciphertext requirements are significantly reduced

compared to those of [22]: we achieve a reduction from 234 ciphertexts down to 226

– 228. We also describe proof-of-concept implementations of these attacks against

specific application-layer protocols making use of passwords, namely BasicAuth and

IMAP.
9http://www.ecrypt.eu.org/stream/

10An exception is ChaCha20, which is experimentally deployed by Google in its Chrome browser
and for which a specification is nearing completion in IETF, see https://tools.ietf.org/html/
draft-irtf-cfrg-chacha20-poly1305-08.

13

http://www.ecrypt.eu.org/stream/
https://tools.ietf.org/html/draft-irtf-cfrg-chacha20-poly1305-08
https://tools.ietf.org/html/draft-irtf-cfrg-chacha20-poly1305-08


CHAPTER 2. EVALUATING, ATTACKING, AND SECURING EXISTING
CRYPTOGRAPHIC PROTOCOLS

2.1.1 Our Contributions

In this chapter, we revisit the statistical methods of [22], refining, extending and

applying them to the specific problem of recovering TLS-protected passwords. Our

target is to reduce as much as possible the ciphertext requirements of the original RC4

attacks from [22]. Our overall objective is to bring the use of RC4 in TLS closer to the

point where it becomes indefensible and must be abandoned. This seems particularly

important in view of persistent rumours about the ability of nation-state adversaries

to break RC4 in real time, and the apparent need to strengthen the attacks in order

to convince practitioners to move to better ciphers.

Passwords are a good target for our attacks because they are still very widely used

on the Internet for providing user authentication, and are frequently protected using

TLS to prevent them being passively eavesdropped. It is true that major websites

use secure cookies for managing user authentication, but the authentication is usually

bootstrapped via password entry. However, to build effective attacks, we need to find

and exploit systems in which users’ passwords are automatically and repeatedly sent

under the protection of TLS, so that sufficiently many ciphertexts can be gathered for

our statistical analyses.

2.1.1.0.1 Bayesian analysis

We present a formal Bayesian analysis that combines an a priori plaintext distribu-

tion with keystream distribution statistics to produce a posteriori plaintext likelihoods.
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This analysis formalises and extends the procedure followed in [22] for single-byte

attacks. There, only keystream distribution statistics were used (specifically, biases in

the individual bytes in the early portion of the RC4 keystream) and plaintexts were

assumed to be uniformly distributed, while here we also exploit (partial) knowledge

of the plaintext distribution to produce a more accurate estimate of the a posteriori

likelihoods. This yields a procedure that is optimal (in the sense of yielding a maxi-

mum a posteriori estimate for the plaintext) if the plaintext distribution is known

exactly. In the context of password recovery, an estimate for the a priori plaintext

distribution can be empirically formed by using data from password breaches or by

synthetically constructing password dictionaries. We will demonstrate, via simulations,

that this Bayesian approach improves performance (measured in terms of success rate

of plaintext recovery for a given number of ciphertexts) compared to the approach

in [22].

Our Bayesian analysis concerns vectors of consecutive plaintext bytes, which is

appropriate given passwords as the plaintext target. This however means that the

keystream distribution statistics also need to be for vectors of consecutive keystream

bytes. Such statistics do not exist in the prior literature on RC4, except for the

Fluher-McGrew biases [25] (which supply the distributions for adjacent byte pairs

far down the keystream). Fortunately, in the early bytes of the RC4 keystream, the

single-byte biases are dominant enough that a simple product distribution can be

used as a reasonable estimate for the distribution on vectors of keystream bytes. We
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also show how to build a more accurate approximation to the relevant keystream

distributions using double-byte distributions. (Obtaining the double-byte distributions

to a suitable degree of accuracy consumed roughly 4800 core-days of computation;

for details, see Appendix A.) This approximation is not only more accurate but also

necessary when the target plaintext is located further down the stream, where the

single-byte biases disappear and where double-byte biases become dominant. Indeed,

our double-byte-based approximation to the keystream distribution on vectors can be

used to smoothly interpolate between the region where single-byte biases dominate

and where the double-byte biases come into play (which is exhibited as a fairly sharp

transition around position 256 in the keystream).

In the end, what we obtain is a formal algorithm that estimates the likelihood of

each password in a dictionary based on both the a priori password distribution and the

observed ciphertexts. This formal algorithm is amenable to efficient implementation

using either the single-byte based product distribution for keystreams or the double-

byte-based approximation to the distribution on keystreams. The dominant terms in

the running time for both of the resulting algorithms is O(nN) where n is the length

of the target password and N is the size of the dictionary used in the attack.

A major advantage of our new algorithms over the previous work in [22] is that

they output a value for the likelihood of each password candidate, enabling these to

be ranked and then tried in order in against a user’s account. This fits neatly with

how password authentication often works in practice: users are given a pre-determined
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number of tries before their account locks out.

2.1.1.0.2 Evaluation

We evaluate and compare our password recovery algorithms through extensive

simulations, exploring the relationships between the main parameters of our attack:

• The length n of the target password.

• The number S of available encryptions of the password.

• The starting position r of the password in the plaintext stream.

• The size N of the dictionary used in the attack, and the availability (or not) of

an a priori password distribution for this dictionary.

• The number of tries T made (meaning that our algorithm is considered successful

if it ranks the correct password amongst the top T passwords, i.e. the T passwords

with highest likelihoods as computed by the algorithm).

• Which of our two algorithms is used (the one computing the keystream statistics

using the product distribution or the one using a double-byte-based approxima-

tion).

• Whether the passwords are base64 encoded before being transmitted, or are sent

as raw ASCII/Unicode.
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Naturally, given the combinatorial explosion of possible parameter settings (and

the cost of performing simulations), we focus on comparing the performance with all

but one or two parameters or variables being fixed in each instance.

2.1.1.0.3 Proofs of concept

Our final contribution is to identify and apply our attacks to two specific and

widely-deployed applications making use of passwords over TLS: BasicAuth and

IMAP. In each case, we introduce the application and describe a proof-of-concept

implementation of our attacks against it, giving an indication of the practicality of

our attacks in each case.

For both applications, we have significant success rates with only S = 226 cipher-

texts, in contrast to the 234 ciphertexts required in [22]. This is because we are able to

force the target passwords into the first 256 bytes of plaintext, where the single-byte

keystream biases come into play. For example, with S = 226 ciphertexts, we would

expect to recover a length 6 BasicAuth password with 44.5% success rate with T = 5

tries; the rate rises to 64.4% if T = 100 tries are made. In practice, many sites

do not configure any limit on the number of BasicAuth attempts made by a client;

moreover a study [26] showed that 84% of websites surveyed allowed for up to 100

password guesses (though these sites were not necessarily using BasicAuth as their

authentication mechanism). As we will show, our result compares very favourably to

the previous attacks and to random guessing of passwords without any reference to
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the ciphertexts.

However, there is a downside too: to make use of the early, single-byte biases in

RC4 keystreams, we have to repeatedly cause TLS connections to be closed and new

ones to be opened. Because of latency in the TLS Handshake Protocol, this leads to a

significant slowdown in the wall clock running time of the attack; for S = 226, a fairly

low latency of 100ms, and exploiting browsers’ propensity to open multiple parallel

connections, we estimate a running time of around 300 hours for the attack. This is

still more than 6 times faster than the 2000 hours estimated in [22].

2.1.2 Chapter Organization

In Section 2.2 we provide further background on the RC4 stream cipher, the TLS

record protocol and its use of RC4, and password distributions. In Section 2.3 we

present our attacks; we evaluate them via simulation in Section 2.4. In Section 2.5

we explore the application of our attacks to BasicAuth and IMAP. We conclude in

Section 2.6.
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2.2 Further Background

2.2.1 The RC4 algorithm

Originally a proprietary stream cipher designed by Ron Rivest in 1987, RC4 is

remarkably fast when implemented in software and has a very simple description.

Details of the cipher were leaked in 1994 and the cipher has been subject to public

analysis and study ever since.

RC4 allows for variable-length key sizes, anywhere from 40 to 256 bits, and consists

of two algorithms, namely, a key scheduling algorithm (KSA) and a pseudo-random

generation algorithm (PRGA). The KSA takes as input an l-byte key and produces the

initial internal state st0 = (i, j,S) for the PRGA; S is the canonical representation of

a permutation of the numbers from 0 to 255 where the permutation is a function of the

l-byte key, and i and j are indices for S. The KSA is specified in Algorithm 1 where

K represents the l-byte key array and S the 256-byte state array. Given the internal

state str, the PRGA will generate a keystream byte Zr+1 as specified in Algorithm 2.

2.2.2 Single-byte biases in the RC4 Keystream

RC4 has several cryptographic weaknesses, notably the existence of various biases

in the RC4 keystream, see for example [25, 27, 28, 29, 22]. Large single-byte biases

are prominent in the early postions of the RC4 keystream. Mantin and Shamir [27]
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Algorithm 1: RC4 key scheduling (KSA)
input : key K of l bytes
output : initial internal state st0
begin

for i = 0 to 255 do
S[i]← i

j ← 0
for i = 0 to 255 do

j ← j + S[i] +K[i mod l]
swap(S[i],S[j])

i, j ← 0
st0 ← (i, j,S)
return st0

observed the first of these biases, in Z2 (the second byte of the RC4 keystream),

and showed how to exploit it in what they called a broadcast attack, wherein the

same plaintext is repeatedly encrypted under different keys. AlFardan et al. [22]

performed large-scale computations to estimate these early biases, using 245 keystreams

to compute the single-byte keystream distributions in the first 256 output positions.

They also provided a statistical approach to recovering plaintext bytes in the broadcast

attack scenario, and explored its exploitation in TLS. Much of the new bias behaviour

they observed was subsequently explained in [30]. Unfortunately, from an attacker’s

perspective, the single-byte biases die away very quickly beyond position 256 in the

RC4 keystream. This means that they can only be used in attacks to extract plaintext

bytes which are found close to the start of plaintext streams. This was a significant

complicating factor in the attacks of [22], where, because of the behaviour of HTTP

in modern browsers, the target HTTP secure cookies were not so located.
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Algorithm 2: RC4 keystream generator (PRGA)
input : internal state str
output : keystream byte Zr+1 updated internal state str+1

begin
parse (i, j,S)← str
i← i+ 1
j ← j + S[i]
swap(S[i],S[j])
Zr+1 ← S[S[i] + S[j]]
str+1 ← (i, j,S)
return (Zr+1, str+1)

2.2.3 Double-byte biases in the RC4 Keystream

Fluhrer and McGrew [25] showed that there are biases in adjacent bytes in RC4

keystreams, and that these so-called double-byte biases are persistent throughout the

keystream. The presence of these long-term biases (and the absence of any other

similarly-sized double-byte biases) was confirmed computationally in [22]. AlFardan

et al. [22] also exploited these biases in their double-byte attack to recover HTTP

secure cookies.

Because we wish to exploit double-byte biases in early portions of the RC4

keystream and because the analysis of [25] assumes the RC4 permutation S is uni-

formly random (which is not the case for early keystream bytes), we carried out

extensive computations to estimate the initial double-byte keystream distributions:

we used roughly 4800 core-days of computation to generate 244 RC4 keystreams for

random 128-bit RC4 keys (as used in TLS); we used these keystreams to estimate the
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double-byte keystream distributions for RC4 in the first 512 positions.

While the gross behaviour that we observed is dominated by products of the known

single-byte biases in the first 256 positions and by the Fluhrer-McGrew biases in the

later positions, we did observe some new and interesting double-byte biases. Since

these are likely to be of independent interest to researchers working on RC4, we report

in more detail on this aspect of our work in Appendix A.

2.2.4 RC4 and the TLS Record Protocol

We provide an overview of the TLS Record Protocol with RC4 selected as the

method for encryption and direct the reader to [22, 31, 32, 33] for further details.

Application data to be protected by TLS, i.e, a sequence of bytes or a record R, is

processed as follows: An 8-byte sequence number SQN, a 5-byte header HDR and R are

concatenated to form the input to an HMAC function. We let T denote the resulting

output of this function. In the case of RC4 encryption, the plaintext, P = T ||R, is

XORed byte-per-byte with the RC4 keystream. In other words,

Cr = Pr ⊕ Zr,

for the rth bytes of the ciphertext, plaintext and RC4 keystream respectively (for

r = 1, 2, 3 . . . ). The data that is transmitted has the form HDR||C, where C is the

concatenation of the individual ciphertext bytes.
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The RC4 algorithm is intialized in the standard way at the start of each TLS

connection with a 128-bit encryption key. This key, K, is derived from the TLS

master secret that is established during the TLS Handshake Protocol; K is either

established via the the full TLS Handshake Protocol or TLS session resumption. The

first few bytes to be protected by RC4 encryption is a Finished message of the TLS

Handshake Protocol. We do not target this record in our attacks since this message is

not constant over multiple sessions. The exact size of this message is important in

dictating how far down the keystream our target plaintext will be located; in turn

this determines whether or not it can be recovered using only single-byte biases. A

common size is 36 bytes, but the exact size depends on the output size of the TLS

PRF used in computing the Finished message and of the hash function used in the

HMAC algorithm in the record protocol.

Decryption is the reverse of the process described above. As noted in [22], any

error in decryption is treated as fatal – an error message is sent to the sender and

all cryptographic material, including the RC4 key, is disposed of. This enables an

active attacker to force the use of new encryption and MAC keys: the attacker can

induce session termination, followed by a new session being established when the

next message is sent over TLS, by simply modifying a TLS Record Protocol message.

This could be used to ensure that the target plaintext in an attack is repeatedly

sent under the protection of a fresh RC4 key. However, this approach is relatively

expensive since it involves a rerun of the full TLS Handshake Protocol, involving
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multiple public key operations and, more importantly, the latency involved in an

exchange of 4 messages (2 complete round-trips) on the wire. A better approach is

to cause the TCP connection carrying the TLS traffic to close, either by injecting

sequences of FIN and ACK messages in both directions, or by injecting a RST message

in both directions. This causes the TLS connection to be terminated, but not the TLS

session (assuming the session is marked as “resumable” which is typically the case).

This behaviour is codified in [33, Section 7.2.1]. Now when the next message is sent

over TLS, a TLS session resumption instance of the Handshake Protocol is executed

to establish a fresh key for RC4. This avoids the expensive public key operations and

reduces the TLS latency to 1 round-trip before application data can be sent. On large

sites, session resumption is usually handled by making use of TLS session tickets [34]

on the server-side.

2.2.5 Passwords

Text-based passwords are arguably the dominant mechanism for authenticating

users to web-based services and computer systems. As is to be expected of user-selected

secrets, passwords do not follow uniform distributions. Various password breaches

of recent years, including the Adobe breach of 150 million records in 2013 and the

RockYou leak of 32.6 million passwords in 2009, attest to this with passwords such

as 123456 and password frequently being counted amongst the most popular.11 For
11A comprehensive list of data breaches, including password breaches, can be found at http://

www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/.

25

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/


CHAPTER 2. EVALUATING, ATTACKING, AND SECURING EXISTING
CRYPTOGRAPHIC PROTOCOLS

example, our own analysis of the RockYou password data set confirmed this: the

number of unique passwords in the RockYou dataset is 14,344,391, meaning that

(on average) each password was repeated 2.2 times, and we indeed found the most

common password to be 123456 (accounting for about 0.9% of the entire data set).

Our later simulations will make extensive use of the RockYou data set as an attack

dictionary. A more-fine grained analysis of it can be found in [35]. We also make use

of data from the Singles.org breach for generating our target passwords. Singles.org is

a now-defunct Christian dating website that was breached in 2009; religiously-inspired

passwords such as jesus and angel appear with high frequency in its 12,234 distinct

entries, making its frequency distribution quite different from that of the RockYou set.

There is an extensive literature regarding the reasons for poor password selection

and usage, including [36, 37, 38, 39]. In [40], Bonneau formalised a number of

different metrics for analysing password distributions and studied a corpus of 70M

Yahoo! passwords (collected in a privacy-preserving manner). His work highlights

the importance of careful validation of password guessing attacks, in particular, the

problem of estimating attack complexities in the face of passwords that occur rarely –

perhaps uniquely – in a data set, the so-called hapax legomena problem. The approach

to validation that we adopt benefits from the analysis of [40], as explained further in

Section 2.4.
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2.3 Plaintext Recovery via Bayesian Analy-

sis

In this section, we present a formal Bayesian analysis of plaintext recovery attacks

in the broadcast setting for stream ciphers. We then apply this to the problem of

extracting passwords, specialising the formal analysis and making it implementable in

practice based only on the single-byte and double-byte keystream distributions.

2.3.1 Formal Bayesian Analysis

Suppose we have a candidate set of N plaintexts, denoted X , with the a priori

probability of an element x ∈ X being denoted px. We assume for simplicity that all

the candidates consist of byte strings of the same length n. For example X might

consist of all the passwords of a given length n from some breach data set, and then

px can be computed as the relative frequency of x in the data set. If the frequency

data is not available, then the uniform distribution on X can be assumed.

Next, suppose that a plaintext from X is encrypted S times, each time under

independent, random keys using a stream cipher such as RC4. Suppose also that the

first character of the plaintext always occurs in the same position r in the plaintext

stream in each encryption. Let c = (cij) denote the S × n matrix of bytes in which

row i, denoted c(i) for 0 ≤ i < S, is a vector of n bytes corresponding to the values in

positions r, . . . , r + n− 1 in ciphertext i. Let X be the random variable denoting the
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(unknown) value of the plaintext.

We wish to form a maximum a posteriori (MAP) estimate for X, given the observed

data c and the a priori probability distribution px, that is, we wish to maximise

Pr(X = x | C = c) where C is a random variable corresponding to the matrix of

ciphertext bytes.

Using Bayes’ theorem, we have

Pr(X = x | C = c) = Pr(C = c | X = x) · Pr(X = x)

Pr(C = c)
.

Here the term Pr(X = x) corresponds to the a priori distribution px on X . The term

Pr(C = c) is independent of the choice of x (as can be seen by writing Pr(C = c) =∑
x∈X Pr(C = c | X = x) · Pr(X = x)). Since we are only interested in maximising

Pr(X = x | C = c), we ignore this term henceforth.

Now, since ciphertexts are formed by XORing keystreams z and plaintext x, we

can write

Pr(C = c | X = x) = Pr(W = w)

where w is the S × n matrix formed by XORing each row of c with the vector x and

W is a corresponding random variable. Then to maximise Pr(X = x | C = c), it

suffices to maximise the value of

Pr(X = x) · Pr(W = w)
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over x ∈ X . Let w(i) denote the i-th row of the matrix w, so w(i) = c(i)⊕ x. Then w(i)

can be thought of as a vector of keystream bytes (coming from positions r, . . . r+n−1)

induced by the candidate x, and we can write

Pr(W = w) =
S−1∏
i=0

Pr(Z = w(i))

where, on the right-hand side of the above equation, Z denotes a random variable

corresponding to a vector of bytes of length n starting from position r in the keystream.

Writing B = {0x00, . . . 0xFF} for the set of bytes, we can rewrite this as:

Pr(W = w) =
∏
z∈Bn

Pr(Z = z)Nx,z

where the product is taken over all possible byte strings of length n and Nx,z is defined

as:

Nx,z = |{i : z = c(i) ⊕ x}0≤i<S|,

that is, Nx,z counts the number of occurrences of vector z in the rows of the matrix

formed by XORing each row of c with candidate x. Putting everything together, our

objective is to compute for each candidate x ∈ X the value:

Pr(X = x) ·
∏
z∈Bn

Pr(Z = z)Nx,z

and then to rank these values in order to determine the most likely candidate(s).
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Notice that the expressions here involve terms Pr(Z = z) which are probabilities

of occurrence for n consecutive bytes of keystream. Such estimates are not generally

available in the literature, and for the values of n we are interested in (corresponding to

putative password lengths), obtaining accurate estimates for them by sampling many

keystreams would be computationally prohibitive. For example, our computation for

double-byte probabilities discussed in Appendix A involved 244 keystreams and, with

highly optimised code, consumed roughly 4800 core-days of computation. This yields

the required probabilities only for n = 2. Moreover, the product
∏

z∈Bn involves 28n

terms and is not amenable to calculation. Thus we must turn to approximate methods

to make further progress.

Note also that taking n = 1 in the above analysis, we obtain exactly the same

approach as was used in the single-byte attack in [22], except that we include the a

priori probabilities Pr(X = x) whereas these were (implicitly) assumed to be uniform

in [22].

2.3.2 Using a Product Distribution

Our task is to derive simplified ways of computing the expression

Pr(X = x) ·
∏
z∈Bn

Pr(Z = z)Nx,z
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and then apply these to produce efficient algorithms for computing (approximate)

likelihoods of candidates x ∈ X .

The simplest approach is to assume that the n bytes of the keystreams can be

treated independently. For RC4, this is actually a very good approximation in the

regime where single-byte biases dominate (that is, in the first 256 positions). Thus,

writing Z = (Zr, . . . , Zr+n−1) and z = (zr, . . . , zr+n−1) (with the subscript r denoting

the position of the first keystream byte of interest), we have:

Pr(Z = z) ≈
n−1∏
j=0

Pr(Zr+j = zr+j) =
n−1∏
j=0

pr+j,z

where now the probabilities appearing on the right-hand side are single-byte keystream

probabilities, as reported in [22] for example. Then writing x = (x0, . . . , xn−1) and

rearranging terms, we obtain:

∏
z∈Bn

Pr(Z = z)Nx,z ≈
n−1∏
j=0

∏
z∈B

p
Nxj,z,j

r+j,z .

where Ny,z,j = |{i : z = ci,j ⊕ y}0≤i<S| counts (now for single bytes instead of length n

vectors of bytes) the number of occurrences of byte z in the column vector formed by

XORing column j of c with a candidate byte y.

Notice that, as in [22], the counters Ny,z,j for y ∈ B can all be computed efficiently

by permuting the counters N0x00,z,j, these being simply counters for the number of

occurrences of each byte value z in column j of the ciphertext matrix c.
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In practice, it is more convenient to work with logarithms, converting products

into sums, so that we evaluate for each candidate x = (x0, . . . , xn−1) an expression of

the form

γx := log(px) +
n−1∑
j=0

∑
z∈B

Nxj ,z,j log(pr+j,z).

Given a large set of candidates X , we can streamline the computation by first computing

the counters Ny,z,j, then, for each possible byte value y, the value of the inner sum∑
z∈BNy,z,j log(pr+j,z), and then reusing these individual values across all the relevant

candidates x for which xj = y. This reduces the evaluation of γx for a single candidate

x to n+ 1 additions of real numbers.

The above procedure, including the various optimizations, is specified as an attack

in Algorithm 3. We refer to it as our single-byte attack because of its reliance on the

single-byte keystream probabilities pr+j,z. It outputs a collection of approximate log

likelihoods {γx : x ∈ X} for each candidate x ∈ X . These can be further processed to

extract, for example, the candidate with the highest score, or the top T candidates.

2.3.3 Double-byte-based Approximation

We continue to write Z = (Zr, . . . , Zr+n−1) and z = (zr, . . . , zr+n−1) and aim to

find an approximation for Pr(Z = z) which lends itself to efficient computation of

approximate log likelihoods as in our first algorithm. Now we rely on the double-byte
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Algorithm 3: Single-byte attack
input : ci,j : 0 ≤ i < S, 0 ≤ j < n – array formed from S independent

encryptions of fixed n-byte candidate X
r – starting position of X in plaintext stream
X – collection of N candidates
px – a priori probability of candidates x ∈ X
pr+j,z (0 ≤ j < n, z ∈ B) – single-byte keystream distribution

output : {γx : x ∈ X} – set of (approximate) log likelihoods for candidates in X
begin

for j = 0 to n− 1 do
for z = 0x00 to 0xFF do

N ′
z,j ← 0

for j = 0 to n− 1 do
for i = 0 to S − 1 do

N ′
ci,j ,j
← N ′

ci,j ,j
+ 1

for j = 0 to n− 1 do
for y = 0x00 to 0xFF do

for z = 0x00 to 0xFF do
Ny,z,j ← N ′

z⊕y,j

Ly,j =
∑

z∈BNy,z,j log(pr+j,z),

for x = (x0, . . . , xn−1) ∈ X do
γx ← log(px) +

∑n−1
j=0 Lxj ,j

return {γx : x ∈ X}
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keystream distribution, writing

ps,z1,z2 := Pr((Zs, Zs+1) = (z1, z2)), s ≥ 1, k1, k2 ∈ B

for the probabilities of observing bytes (z1, z2) in the RC4 keystream in positions

(s, s+ 1). We estimated these probabilities for r in the range 1 ≤ r ≤ 511 using 244

RC4 keystreams – for details, see Appendix A; for larger r, these are well approximated

by the Fluhrer-McGrew biases [25] (as was verified in [22]).

We now make the Markovian assumption that, for each j,

Pr(Zj = zj | Zj−1 = zj−1 ∧ · · · ∧ Z0 = z0)

≈ Pr(Zj = zj | Zj−1 = zj−1),

meaning that byte j in the keystream can be modelled as depending only on the

preceding byte and not on earlier bytes. We can write

Pr(Zj = zj | Zj−1 = zj−1) =
Pr(Zj = zj ∧ Zj−1 = zj−1)

Pr(Zj−1 = zj−1)

where the numerator can then be replaced by pj−1,zj−1,zj and the denominator by

pj−1,zj−1
, a single-byte keystream probability. Then using an inductive argument and
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our assumption, we easily obtain:

Pr(Z = z) ≈
∏n−2

j=0 pr+j,zj ,zj+1∏n−2
j=1 pr+j,zj

giving an approximate expression for our desired probability in terms of single-byte and

double-byte probabilities. Notice that if we assume that the adjacent byte pairs are

independent, then we have pr+j,zj ,zj+1
= pr+j,zj · pr+j+1,zj+1

and the above expression

collapses down to the one we derived in the previous subsection.

For candidate x, we again write x = (x0, . . . , xn−1) and rearranging terms, we

obtain: ∏
z∈Bn

Pr(Z = z)Nx,z ≈
∏n−2

j=0

∏
z1∈B

∏
z2∈B p

Nxj,xj+1,z1,z2,j

r+j,z1,z2∏n−2
j=1

∏
z∈B p

Nxj,z,r+j

r+j,z

.

where Ny1,y1,z1,z2,j = |{i : z1 = ci,j ⊕ y1 ∧ z2 = ci,j+1 ⊕ y2}0≤i<S| counts (now for

consecutive pairs of bytes) the number of occurrences of bytes (z1, z2) in the pair of

column vectors formed by XORing columns (j, j +1) of c with candidate bytes (y1, y2)

(and where Nxj ,z,r+j is as in our previous algorithm).

Again, the counters Ny1,y2,z1,z2,j for y1, y2 ∈ B can all be computed efficiently by

permuting the counters N0x00,0x00,z1,z2,j, these being simply counters for the number

of occurrences of pairs of byte values (z1, z2) in column j and j + 1 of the ciphertext

matrix c. As before, we work with logarithms, so that we evaluate for each candidate
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x = (x0, . . . , xn−1) an expression of the form

γx := log(px) +
n−2∑
j=0

∑
z1∈B

∑
z2∈B

Nxj ,xj+1,z1,z2,j log(pr+j,z1,z2)

−
n−2∑
j=1

∑
z∈B

Nxj ,z,r+j log(pr+j,z).

With appropriate pre-computation of the termsNy1,y2,z1,z2,j log(pr+j,z1,z2) andNy,z,r+j log(pr+j,z)

for all y1, y2 and all y, the computation for each candidate x ∈ X can be reduced to

roughly 2n floating point additions. The pre-computation can be further reduced by

computing the terms for only those pairs (y1, y2) actually arising in candidates in X

in positions (j, j + 1). We use this further optimisation in our implementation.

The above procedure is specified as an attack in Algorithm 4. We refer to it as our

double-byte attack because of its reliance on the double-byte keystream probabilities

ps,z1,z2 . It again outputs a collection of approximate log likelihoods {γx : x ∈ X} for

each candidate x ∈ X , suitable for further processing. Note that for simplicity of

presentation, it involves a quintuply-nested loop to compute the values Ny1,y2,z1,z2,j;

these values should of course be directly computed from the (n− 1) · 216 pre-computed

counters N ′
ci,j ,ci,j+1,j

in an in-line fashion using the formula Ny1,y2,z1,z2,j = N ′
z1⊕y1,z2⊕y2,,j

.
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Algorithm 4: Double-byte attack
input : ci,j : 0 ≤ i < S, 0 ≤ j < n – array formed from S independent encryptions of fixed

n-byte candidate X
r – starting position of X in plaintext stream
X – collection of N candidates
px – a priori probability of candidates x ∈ X
pr+j,z (0 ≤ j < n, z ∈ B) – single-byte keystream distribution
pr+j,z1,z2 (0 ≤ j < n− 1, z1, z2 ∈ B) – double-byte keystream distribution

output : {γx : x ∈ X} – set of (approximate) log likelihoods for candidates in X
begin

for j = 0 to n− 2 do
for z1 = 0x00 to 0xFF do

N ′
z,j ← 0

for z2 = 0x00 to 0xFF do
N ′

z1,z2,j
← 0

for j = 0 to n− 2 do
for i = 0 to S − 1 do

N ′
ci,j ,j

← N ′
ci,j ,j

+ 1

N ′
ci,j ,ci,j+1,j

← N ′
ci,j ,ci,j+1,j

+ 1

for j = 1 to n− 2 do
for y = 0x00 to 0xFF do

for z = 0x00 to 0xFF do
Ny,z,j ← N ′

z⊕y,j

Ly,j =
∑

z∈B Ny,z,j log(pr+j,z),

for j = 0 to n− 2 do
for y1 = 0x00 to 0xFF do

for y2 = 0x00 to 0xFF do
for z1 = 0x00 to 0xFF do

for z2 = 0x00 to 0xFF do
Ny1,y2,z1,z2,j ← N ′

z1⊕y1,z2⊕y2,,j

Ly1,y2,j =
∑

z1∈B
∑

z2∈B Ny1,y2,z1,z2,j log(pr+j,z1,z2),

for x = (x0, . . . , xn−1) ∈ X do
γx ← log(px) +

∑n−2
j=0 Lxj ,xj+1,j −

∑n−2
j=1 Lxj ,j

return {γx : x ∈ X}
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2.4 Simulation Results

2.4.1 Methodology

We performed extensive simulations of both of our attacks, varying the different

parameters to evaluate their effects on success rates. We focus on the problem of

password recovery, using the RockYou data set as an attack dictionary and the

Singles.org data set as the set of target passwords. Except where noted, in each

simulation, we performed 256 independent runs of the relevant attack. In each attack

in a simulation, we select a password of some fixed length n from the Singles.org

password data set according to the known a priori probability distribution for that

data set, encrypt it S times in different starting positions r using random 128-bit keys

for RC4, and then attempt to recover the password from the ciphertexts using the set

of all passwords of length n from the entire RockYou data set (14 million passwords)

as our candidate set X . We declare success if the target password is found within the

top T passwords suggested by the algorithm (according to the approximate likelihood

measures γx). Our default settings, unless otherwise stated, are n = 6 and T = 5,

and we try all values for r between 1 and 256− n+ 1, where the single-byte biases

dominate the behaviour of the RC4 keystreams. Typical values of S are 2s where

s ∈ {20, 22, 24, 26, 28}.

Using different data sets for the attack dictionary and the target set from which

encrypted passwords are chosen is more realistic than using a single dictionary for both
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purposes, not least because in a real attack, the exact content and a priori distribution

of the target set would not be known. This approach also avoids the problem of

hapax legomena highlighted in [40]. However, this has the effect of limiting the success

rates of our attacks to less than 100%, since there are highly likely passwords in the

target set (such as jesus) that do not occur at all, or only have very low a priori

probabilities in the attack dictionary, and conversely. Figure 2.1 compares the use

of the RockYou password distribution to attack Singles.org passwords with the less

realistic use of the RockYou password distribution to attack RockYou itself. It can

be seen that, for the particular choice of attack parameters (S = 224, n = 6, T = 5,

double-byte attack), the effect on success rate is not particularly large. However, for

other attack parameters, as we will see below, we observe a maximum success rate of

around 80% for our attacks, whereas we would achieve 100% success rates if we used

RockYou against itself. The observed maximum success rate could be increased by

augmenting the attack dictionary with synthetically generated, site-specific passwords

and by removing RockYou-specific passwords from the attack dictionary. We leave

the development and evaluation of these improvements to future work.

Many data sets are available from password breaches. We settled on using RockYou

for the attack dictionary because it was one of the biggest data sets in which all

passwords and their associated frequencies were available, and because the distribution

of passwords, while certainly skewed, was less skewed than for other data sets. We

used Singles.org for the target set because the Singles.org breach occurred later than
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Figure 2.1: Recovery rate for Singles.org passwords using RockYou data set as
dictionary, compared to recovery rate for RockYou passwords using RockYou data set
as dictionary (S = 224, n = 6, T = 5, 1 ≤ r ≤ 251, double-byte attack).

the RockYou breach, so that the former could reasonably used as an attack dictionary

for the latter. Moreover, the Singles.org distribution being quite different from that for

RockYou makes password recovery against Singles.org using RockYou as a dictionary

more challenging for our attacks. A detailed evaluation of the extent to which the

success rates of our attacks depend on the choice of attack dictionary and target set is

beyond the scope of this current work.

A limitation of our approach is that we assume the password length n to be already

known, whereas in reality this may not be the case. At least four potential solutions to

this problem exist. Firstly, in specific applications, n may leak via analysis of packet

lengths or other forms of traffic analysis. Secondly we can run our attacks for the
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full range of password lengths, possibly adjusting the likelihood measure γx for each

password candidate x to scale it appropriately by its length (except for the px term).

A third approach is to augment the shorter passwords with the known plaintext that

typically follows them in a specific targeted application protocol and then run our

attacks for a fixed, but now longer, n. A fourth approach applies in protocols which

use known delimiters to denote the end of a password (such as the = symbol seen at

the end of Base64 encodings for certain username/password lengths); here, the idea is

to adapt our general attacks to compute the likelihood that such a delimiter appears

in each possible position, and generate an estimate for n by selecting the position for

which the likelihood is highest.

2.4.2 Results

2.4.2.0.4 Single-Byte Attack

We ran the attack described in Algorithm 3 with our default parameters (n = 6,

T = 5, 1 ≤ r ≤ 251) for S = 2s with s ∈ {20, 22, 24, 26, 28} and evaluated the attack’s

success rate. We used our default of 256 independent runs per parameter set. The

results are shown in Figure 2.2. We observe that:

• The performance of the attack improves markedly as S, the number of ciphertexts,

increases, but the success rate is bounded by 75%. We attribute this to the use

of one dictionary (RockYou) to recover passwords from another (Singles.org)
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Figure 2.2: Recovery rates for single-byte algorithm for S = 220, . . . , 228 (n = 6, T = 5,
1 ≤ r ≤ 251).

– for the same attack parameters, we achieved 100% success rates when using

RockYou against RockYou, for example.

• For 224 ciphertexts we see a success rate of greater than 60% for small values

of r, the position of the password in the RC4 keystream. We see a drop to

below 50% for starting positions greater than 32. We note the effect of the key-

length-dependent biases on password recovery; passwords encrypted at starting

positions 16ℓ − n, 16ℓ − n + 1, . . . , 16ℓ − 1, 16ℓ, where ℓ = 1, 2, . . . , 6, have a

higher probability of being recovered in comparison to neighbouring starting

positions.

• For 228 ciphertexts we observe a success rate of more than 75% for 1 ≤ r ≤ 120.
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Figure 2.3: Recovery rates for double-byte algorithm for S = 220, . . . , 228 (n = 6,
T = 5, 1 ≤ r ≤ 251).

2.4.2.0.5 Double-Byte Attack

Analogously, we ran the attack of Algorithm 4 for S = 2s with s ∈ {20, 22, 24, 26, 28}

and our defaults of n = 6, T = 5. The results for these simulations are shown in

Figure 2.3. Note that:

• Again, at 224 ciphertexts the effect of key-length-dependent biases is visible.

• For 226 ciphertexts we observe a success rate that is greater than 78% for r ≤ 48.
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Figure 2.4: Performance of our single-byte algorithm versus a naive single-byte attack
based on the methods of AlFardan et al. (labelled “old”). (n = 6, T = 1, 1 ≤ r ≤ 251.)

2.4.2.0.6 Comparing the Single-Byte Attack with a Naive Algo-

rithm

Figure 2.4 provides a comparison between our single-byte algorithm with T = 1 and

a naive password recovery attack based on the methods of [22], in which the password

bytes are recovered one at a time by selecting the highest likelihood byte value in

each position and declaring success if all bytes of the password are recovered correctly.

Significant improvement over the naive attack can be observed, particularly for high

values of r. For example with S = 224, the naive algorithm essentially has a success

rate of zero for every r, whereas our single-byte algorithm has a success rate that

exceeds 20% for 1 ≤ r ≤ 63. By way of comparison, an attacker knowing the password
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length and using the obvious guessing strategy would succeed with probability 4.2%

with a single guess, this being the a priori probability of the password 123456 amongst

all length 6 passwords in the Singles.org dataset (and 123456 being the highest ranked

password in the RockYou dictionary, so the first one that an attacker using this

strategy with the RockYou dictionary would try). As another example, with S = 228

ciphertexts, a viable recovery rate is observed all the way up to r = 251 for our

single-byte algorithm, whereas the naive algorithm fails badly beyond r = 160 for even

this large value of S. Note however that the naive attack can achieve a success rate of

100% for sufficiently large S, whereas our attack cannot. This is because the naive

attack directly computes a password candidate rather than evaluating the likelihood

of candidates from a list which may not contain the target password. On the other

hand, our attack trivially supports larger values of T , whereas the naive attack is not

so easily modified to enable this feature.

2.4.2.0.7 Comparing the Single-Byte and Double-Byte Attacks

Figure 2.5 provides a comparison of our single-byte and double-byte attacks. With

all other parameters equal, the success rates are very similar for the initial 256 positions.

The reason for this is the absence of many strong double-byte biases that do not arise

from the known single-byte biases in the early positions of the RC4 keystream.
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Figure 2.5: Recovery rate of single-byte versus double-byte algorithm for S =
220, . . . , 228 (n = 6, T = 5, 1 ≤ r ≤ 251).

2.4.2.0.8 Effect of the a priori Distribution

As a means of testing the extent to which our success rates are influenced by

knowledge of the a priori probabilities of the candidate passwords, we ran simulations

in which we tried to recover passwords sampled correctly from the Singles.org dataset

but using a uniform a priori distribution for the RockYou-based dictionary used in

the attack. Figure 2.6 shows the results (S = 224, n = 6, T = 5, double-byte attack)

of these simulations, compared to the results we obtain by exploiting the a priori

probabilities in the attack. It can be seen that a significant gain is made by using the

a priori probabilities, with the uniform attack’s success rate rapidly dropping to zero

at around r = 128.
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Figure 2.6: Recovery rate for uniformly distributed passwords versus known a priori
distribution (S = 224, n = 6, T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

2.4.2.0.9 Effect of Password Length

Figure 2.7 shows the effect of increasing n, the password length, on recovery rates,

with the sub-figures showing the performance of our double-byte attack for different

numbers of ciphertexts (S = 2s with s ∈ {24, 26, 28}). Other parameters are set to

their default values. As intuition suggests, password recovery becomes more difficult

as the length increases. Also notable is that the ceiling on success rate of our attack

decreases with increasing n, dropping from more than 80% for n = 5 to around 50%

for n = 8. This is due to the fact that only 48% of the length 8 passwords in the

Singles.org data set actually occur in the RockYou attack dictionary: our attack is

doing as well as it can in this case, and we would expect stronger performance with
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Figure 2.7: Effect of password length on recovery rate (T = 5, 1 ≤ r ≤ 251, double-byte
algorithm).

an attack dictionary that is better matched to the target site.

2.4.2.0.10 Effect of Increasing Try Limit T

Recall that the parameter T defines the number of password trials our attacks

make. The number of permitted attempts for specific protocols like BasicAuth and

IMAP is server-dependent and not mandated in the relevant specifications. Whilst

not specific to our chosen protocols, a 2010 study [26] showed that 84% of websites

surveyed allowed at least T = 100 attempts; many websites appear to actually allow

T = ∞. Figure 2.8 shows the effect of varying T in our double-byte algorithm for

different numbers of ciphertexts (S = 2s with s ∈ {24, 26, 28}). Other parameters are

set to their default values. It is clear that allowing large values of T boosts the success

rate of the attacks.

Note however that a careful comparison must be made between our attack with

parameter T and the success rate of the obvious password guessing attack given T

attempts. Such a guessing attack does not require any ciphertexts but instead uses
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Figure 2.8: Effect of try limit T on recovery rate (n = 6, 1 ≤ r ≤ 251, double-byte
algorithm).

the a priori distribution on passwords in the attack dictionary (RockYou) to make

guesses for the target password in descending order of probability, the success rate

being determined by the a priori probabilities of the guessed passwords in the target

set (Singles.org). Clearly, our attacks are only of value if they significantly out-perform

this ciphertext-less attack.

Figure 2.9 shows the results of plotting log2(T ) against success rate α for S = 2s

with s ∈ {14, 16, . . . , 28}. The figure then illustrates the value of T necessary in our

attack to achieve a given password recovery rate α for different values of S. This

measure is related to the α-work-factor metric explored in [40] (though with the added

novelty of representing a work factor when one set of passwords is used to recover

passwords from a different set). To generate this figure, we used 1024 independent

runs rather than the usual 256, but using a fixed set of 1024 passwords sampled

according to the a priori distribution for Singles.org. This was in an attempt to

improve the stability of the results (with small numbers of ciphertexts S, the success
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Figure 2.9: Value of T required to achieve a given password recovery rate α for S = 2s

with s ∈ {14, 16, . . . , 28} (n = 6, r = 133, double-byte algorithm).

rate becomes heavily dependent on the particular set of passwords selected and their

a priori probabilities, while we wished to have comparability across different values of

S). The success rates shown are for our double-byte attack with n = 6 and r = 133,

this specific choice of r being motivated by it being the location of passwords for our

BasicAuth attack proof-of-concept when the Chrome browser is used (similar results

are obtained for other values of r). The graph also shows the corresponding work

factor T as a function of α for the guessing attack (labeled “optimal guessing” in the

figure).

Figure 2.9a shows that our attack far outperforms the guessing attack for larger

values of S, with a significant advantage accruing for S = 224 and above. However,

as Figure 2.9b shows, the advantage over the guessing attack for smaller values of

S, namely 220 and below, is not significant. This can be attributed to our attack
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Figure 2.10: Recovery rate of Base64 encoded password versus a “normal” password
for 6-character passwords (T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

simply not being able to compute stable enough statistics for these small numbers of

ciphertexts. In turn, this is because the expected random fluctuations in the keystream

distributions overwhelm the small biases; in short, the signal does not sufficiently

exceed the noise for these low values of S.

2.4.2.0.11 Effect of Base64 Encoding

We investigated the effect of Base64 encoding of passwords on recovery rates,

since many application layer protocols use such an encoding. The encoding increases

the password length, making recovery harder, but also introduces redundancy, po-

tentially helping the recovery process to succeed. Figure 2.10 shows our simulation

results comparing the performance of our double-byte algorithm acting on 6-character
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passwords and on Base64 encoded versions of them. It is apparent from the figure

that the overall effect of the Base64 encoding is to help our attack to succeed. In

practice, the start of the target password may not be well-aligned with the Base64

encoding process (for example, part of the last character of the username and/or a

delimiter such as “:” may be jointly encoded with part of the first character of the

password). This can be handled by building a special-purpose set of candidates X

for each possibility. Handling this requires some care when mounting a real attack

against a specific protocol; a detailed analysis is deferred to future work.

2.4.2.0.12 Shifting Attack

It was observed in [22] and elsewhere that for 128-bit keys, RC4 keystreams exhibit

particularly large “key-length-dependent” biases at positions r = 16ℓ, ℓ = 1, . . . , 7,

with the bias size decreasing with increasing ℓ. These large biases boost recovery rates,

as already observed in our discussion of Figure 2.2.

In certain application protocols and attack environments (such as HTTPS) it is

possible for the adversary to incrementally pad the plaintext messages so that the

unknown bytes are always aligned with positions having large keystream biases. Our

algorithm descriptions and code are both easily modified to handle this situation, and

we have conducted simulations with the resulting shift attack.

Figure 2.11 shows the results for the shift version of our double-byte algorithm. In

the shift attack, the true number of ciphertexts is equal to n× S, since we now use S
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Figure 2.11: Recovery rate of shift attack versus double-byte algorithm (n = 6, T = 5,
1 ≤ r ≤ 251).

ciphertexts at each of n shift positions. So a proper comparison would compare with

one of our earlier attacks using an appropriately increased value of S. Making this

adjustment, it can be seen that the success rate is significantly improved, particularly

for small values of r = 16ℓ where the biases are biggest.

2.5 Practical Validation

In this section we describe proof-of-concept implementations of our attacks against

two specific application-layer protocols running over TLS, namely BasicAuth and

IMAP.
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2.5.1 BasicAuth

2.5.1.0.13 Introducing BasicAuth

Defined as part of the HTTP/1.0 specification [41], the Basic Access Authentication

scheme (BasicAuth) provides a means for controlling access to webpages and other

protected resources. Here we provide a high-level overview of BasicAuth and direct

the reader to [41] and [42] for further details.

BasicAuth is a challenge-response authentication mechanism: a server will present

a client with a challenge to which the client must supply the correct response in order

to gain access to the resource being requested. In the case of BasicAuth, the challenge

takes the form of either a 401 Unauthorized response message from an origin server,

or a 407 Proxy Authentication Required response message from a proxy server.

BasicAuth requires that the client response contain legitimate user credentials – a

username and password – in order for access to be granted. Certain web browsers may

display a login dialog when the challenge is received and many browsers present users

with the option of storing their user credentials in the browser, with the credentials

thereafter being automatically presented on behalf of the user.

The client response to the challenge is of the form

Authorization: Basic Base64(userid:password) where Base64(·) denotes the Base64

encoding function (which maps 3 characters at a time onto 4 characters of output).

Since the username and password are sent over the network as cleartext, BasicAuth
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needs to be used in conjunction with a protocol such as TLS.12

2.5.1.0.14 Attacking BasicAuth

To obtain a working attack against BasicAuth, we need to ensure that two condi-

tions are met:

• The Base64-encoded password included in the BasicAuth client response can be

located sufficiently early in the plaintext stream.

• There is a method for forcing a browser to repeatedly send the BasicAuth client

response.

We have observed that the first condition is met for particular browsers, including

Google Chrome. For example, we inspected HTTPS traffic sent from Chrome to an

iChair server.13. We observed the user’s Base64-encoded password being sent with

every HTTP(S) request in the same position in the stream, namely position r = 133

(this includes 16 bytes consumed by the client’s Finished message as well as the

20-bytes consumed by the TLS Record Protocol tag). For Mozilla Firefox, the value

of r was the less useful 349.

For the second condition, we adopt the methods used in the BEAST, CRIME

and Lucky 13 attacks on TLS, and also used in attacking RC4 in [22]: we assume
12The Digest Access Authentication Scheme was introduced to address the cleartext transmission

of passwords. See [42] for details.
13iChair is a popular system for conference reviewing, widely used in the cryptography research

community and available from http://www.baigneres.net/ichair. It uses BasicAuth as its user
authentication mechanism.
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that the user visits a site www.evil.com which loads JavaScript into the user’s

browser; the JavaScript makes GET or POST requests to the target website at

https://www.good.com by using XMLHttpRequest objects (this is permitted under

Cross Origin Resource Sharing (CORS), a mechanism developed to allow JavaScript

to make requests to a domain other than the one from which the script originates).

The Base64-encoded BasicAuth password is automatically included in each such

request. To force the password to be repeatedly encrypted at an early position in the

RC4 keystream, we use a MITM attacker to break the TLS connection (by injecting

sequences of TCP FIN and ACK messages into the connection). This requires some

careful timing on the part of the JavaScript and the MITM attacker.

We built a proof-of-concept demonstration of these components to illustrate the

principles. We set up a virtual network with three virtual machines each running

Ubuntu 14.04, kernel version 3.13.0-32. On the first machine, we installed iChair.

We configured the iChair web server to use RC4 as its default TLS cipher. The

second machine was running the Chrome 38 browser and acted as the client in our

attack. We installed the required JavaScript directly on this machine rather than

downloading from another site. The third machine acted as the MITM attacker,

required to intercept the TLS-protected traffic and to tear-down the TLS connections.

We used the Python tool Scapy14 to run an ARP poisoning attack on the client and

server from the MITM so as to be able to intercept packets; with the connection
14Available at http://www.secdev.org/projects/scapy/.
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hijacked we were able to force a graceful shutdown of the connection between the client

and the server after the password-bearing record had been observed and recorded. We

observed that forcing a graceful shutdown of each subsequent connection did allow for

TLS resumption (rather than leading to the need for a full TLS Handshake run).

With this setup, the JavaScript running in the client browser sent successive

HTTPS GET requests to the iChair server every 80ms. Our choice of 80ms was

motivated by the fact that for our particular configuration, we observed a total time

of around 80ms for TLS resumption, delivery of the password-bearing record and

the induced shutdown of the TCP connection. This choice enabled us to capture 216

encrypted password-bearing records in 1.6 hours (the somewhat greater than expected

time here being due to anomalies in network behaviour). Running at this speed, the

attack was stable over a period of hours.

We note that the latency involved in our setup is much lower than would be found

in a real network in which the server may be many hops away from the client: between

500ms and 1000ms is typical for establishing an initial TLS connection to a remote site,

with the latency being roughly half that for session resumptions. Notably, the cost of

public key operations is not the issue, but rather the network latency involved in the

round-trips required for TCP connection establishment and then running the TLS

Handshake. However, browsers also open up multiple TLS connections in parallel when

fetching multiple resources from a site, as a means of reducing the latency perceived

by users; the maximum number of concurrent connections per server is 6 for both the
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Chrome and Firefox browsers (though, we only ever saw roughly half this number

in practice, even with low inter-request times). This means that, assuming a TLS

resumption latency (including the client’s TCP SYN, delivery of the password-bearing

record and the final, induced TCP ACK) of 250ms and the JavaScript is running fast

enough to induce the browser to maintain 6 connections in parallel, the amount of

time needed to mount an attack with S = 226 would be on the order of 776 hours. If

the latency was further reduced to 100ms (because of proximity of the server to the

client), the attack execution time would be reduced to 312 hours.

Again setting n = 6 , T = 100, r = 133 and using the simulation results displayed

in Figure 2.10, we would expect a success rate of 64.4% for this setup (with S = 226).

For T = 5, the corresponding success rate would be 44.5%.

We emphasise that we have not executed a complete attack on these scales, but

merely demonstrated the feasibility of the attack in our laboratory setup.

2.5.2 The Internet Message Access Protocol

In Appendix B, we describe how our attacks can be applied to the Internet Message

Access Protocol (IMAP), a common client-server protocol for dealing with e-mail. In

summary, IMAP’s AUTHENTICATE PLAIN SASL and LOGIN mechanisms lead to user

passwords being sent over IMAP, with the password being protected by TLS thanks to

the execution of the IMAP STARTTLS command; moreover, in our experimental setup,

we saw the location of the password in the subsequent TLS session varying between
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positions 102 and 108 (depending on the server to which the client connected, but

with stable results on a per server basis). The main issue was the slow rate at which

our email client polled the server, leading to a correspondingly slow rate of encrypted

password transmission. We describe several ways by which this rate could be boosted

in Appendix B.

2.6 Conclusion and Open Problem

We have presented plaintext recovery attacks that derive from a formal Bayesian

analysis of the problem of estimating plaintext likelihoods given an a priori plaintext

distribution, suitable keystream distribution information, and a large number of

encryptions of a fixed plaintext under independent keys. We applied these ideas to

the specific problem of recovering passwords encrypted by the RC4 algorithm with

128-bit keys as used in TLS, though they are of course more generally applicable – to

uses of RC4 other than in TLS, and to stream ciphers with non-uniform keystream

distributions in general. Using large-scale simulations, we have investigated the

performance of these attacks under different settings for the main parameters.

We then studied the applicability of these attacks for two different application

layer protocols, BasicAuth and IMAP. In both cases, for certain browsers and clients,

the passwords were located at a favourable point in the plaintext stream and we could

induce the password to be repeatedly encrypted under fresh, random keys. We built
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a proof-of-concept implementation of both attacks. In both cases, it was difficult

to arrange for the rate of generation of encryptions to be as high as desired for a

speedy attack. For BasicAuth this was mainly due to the latency associated with TLS

connection establishment (even with session resumption) rather than any fundamental

barrier. For IMAP, the low rate of encryption was more due to the rate at which

an IMAP client polls an IMAP server. We discussed ways in which this could be

overcome.

Good-to-excellent password recovery success rates can be achieved using 224 –

228 ciphertexts in our attacks. We also demonstrated that our single-byte attack

for password recovery significantly outperforms a naive password recovery attack

based on the ideas of [22]. We observed an improvement over a guessing strategy

even for low numbers (222 or 224) of ciphertexts. By contrast to these numbers, the

preferred double-byte attack of [22] required on the order of 234 encryptions to recover

a 16-byte cookie, though without incurring the time overheads arising from TLS

session resumption that our approach incurs. In view of our results, we feel justified

in claiming that we have significantly narrowed the gap between the feasibility results

of [22] and our goal of achieving practical attacks on RC4 in TLS.

Our research has led to the identification of a number of areas for further work:

• Our Bayesian approach can also be applied to the situation where we model the

plaintext as a word from a language described as a Markov model with memory.

It would be interesting to investigate the extent to which this approach can
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be applied to either password recovery or more general analysis of, say, typical

HTTP traffic.

• We have focussed on the use of the single-byte biases described in [22] and

the double-byte biases of Fluhrer and McGrew (and from our own extensive

computations for the first 512 keystream positions). Other biases in RC4

keystreams are known, for example [28]. It is a challenge to integrate these in

our Bayesian framework, with the aim being to further improve our attacks.

• We identified new double-byte biases early in the RC4 keystream which deserve

a theoretical explanation.

• It would be an interesting challenge to develop algorithms for constructing

synthetic, site-specific dictionaries along with a priori probability distributions.

Existing work in this direction includes Marx’s WordHound tool.15

• We identified several open questions in the discussion of our simulation results,

including the effect of the choice of password data sets on success rates, and the

evaluation of different methods for recovering the target password’s length.
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Chapter 3

Tools for Developing Secure

Cryptographic Systems

This chapter is based on joint work with Joseph A. Akinyele and Susan Hohenberger

at Johns Hopkins University. The paper was originally published in Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications Security, pages

1370–1381. ACM, 2015 [16], while the complete version that appears in this chapter

was published at [43].

Automation is a growing area within the field of cryptography, as it is one method

to help us see the greater deployment of cryptographic systems, but in a correct and

secure manner. Various factors can influence the use of cryptography, and in this

chapter we tackle the problem of the often large gap between the academic setting

where cryptography is designed and the practical world where it is used. We do this
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by creating AutoGroup+, a tool that securely and efficiently translates pairing based

cryptography from the theoretical setting to the practical one.

3.1 Introduction

Automation is increasingly being explored as a means of assisting in the design or

implementation of a cryptographic scheme. The benefits of using computer assistance

include speed, accuracy, and cost.

Recently, automation for pairing (also called bilinear) cryptographic constructions

(e.g., [11, 12, 44, 45]) has been under exploration. Since the seminal work of Boneh

and Franklin [13], interest in pairings is strong: they have become a staple at top

cryptography and security conferences, the open-source Charm library has been

downloaded thousands of times worldwide and recently pairing-commercializer Voltage

Security was acquired by a major US company (HP) [15].

Pairings are algebraic groups with special properties (see Section 3.2.1), which

are often employed for their functionality and efficiency. There are different types of

pairings: Type-I called “symmetric” is typically how schemes are presented and proven

secure in the literature, because it is simpler and the complexity assumptions can be

weaker; however, Type-III called “asymmetric” is typically the most efficient choice for

an implementation in terms of bandwidth and computation time.

Unfortunately, translating a Type-I scheme into the Type-III scheme is complicated.
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First, there may be thousands of different Type-III translations of a Type-I scheme and

the “best” translation may depend on the application. For instance, one translation

might optimize ciphertext size while another offers the fastest decryption time. Second,

each new translation requires a new proof under Type-III assumptions. Exploring and

analyzing all possible translations is clearly a great burden on a human cryptographer.

Indeed a small subset of manual translations of a scheme or particular set of schemes

is regarded as a publishable result in its own right, e.g., [46, 47, 48].

Given this translation hurdle, common practice today is to analyze a Type-I scheme,

but then use ad-hoc means to derive a Type-III translation that is unproven and

possibly non-optimal. The goal of this work is to address this problem by covering

new ground in cryptographic automation.

Our Contribution: The AutoGroup+ Tool. Our primary contribution is the

design, development, and performance evaluation of a new publicly-available1 tool, Au-

toGroup+, that automatically translates pairing schemes from Type-I to Type-III. The

output of AutoGroup+ is: (1) “secure” provided the input is “secure” (see Section 3.3.2)

and (2) optimal based on the user’s efficiency constraints (see Section 3.3.1.5).2 The

input is a computer-readable format of the Type-I construction, metadata about its

security analysis, and user-specified efficiency constraints. The output is a translated

Type-III construction (in text, C++, Python, or LATEX) with metadata about its
1AutoGroup+ can be downloaded at https://github.com/jhuisi/auto-tools.
2These claims regard the cryptographic transformation and exclude any software or run-time

errors.
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security analysis. (See Figure 3.1.)

The audience for this tool is: (1) anyone wanting to implement a pairing construc-

tion, and (2) pairing construction designers. We highlight some features.

New Scheme Description Language (SDL) Database. The input to AutoGroup+ re-

quires a computer-readable format of the Type-I construction, the Type-I complexity

assumption(s), and the Type-I security proof. It was a challenge to create a means of

translating human-written security proofs into SDL. We focused on a common type

of proof exhibiting a certain type of black-box reduction.3 We created a new SDL

structure for representing assumptions and reductions of this type that may be of

independent interest. Additionally, we did the tedious work of carefully transcribing

five assumptions, eight reductions and improving the SDLs for nine popular construc-

tions (from [12]). (See Appendix D for an example of a simple case.) One transcribed,

however, these SDL files can be reused. We believe the future of cryptographic

automation research will involve processing the assumptions and proofs; thus our

database is made public as a testbed for future automation research.

Speed of Tool. AutoGroup+ took less than 21 seconds to process any of the test set,

which included seven simple schemes (16 or less solutions), three medium schemes

(256 to 512 solutions), and three complex schemes (1024 to 2048 solutions). (The

preference for simple schemes was to compare with prior work.) This measures from

SDL input to a C++ (or alternative) output. Speed is very important here for usage,
3The theoretical translation security results of [44] on which we will base our security are also

limited to this class of proof.
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because we anticipate that designers may iteratively use this tool like a compiler and

implementors may want to try out many different efficiency optimizations.

In contrast, in CRYPTO 2014, Abe, Groth, Ohkubo and Tango [44] laid out an

elegant theoretical framework for doing pairing translations in four steps. It left open

the issue of whether their framework was practical to implement for a few reasons: (1)

they automated only one of four steps (code not released), (2) their algorithm for this

step was exponential time, and (3) they tested it on only simple and medium schemes,

but their medium scheme took over 1.75 hours for one step. Our fully automated

translation of that scheme took 6.5 seconds, which is much more in line with the

“compiler”-like usage we anticipate.

We attribute our drastic efficiency improvement in part to our use of the Z3 SMT

Solver. As described in Section 3.3, we encode the translation of the scheme, its

assumption(s) and its reduction as a constraint-satisfaction problem and then use Z3

to quickly find the satisfying set of solutions.

New Results. We evaluated AutoGroup+ on 9 distinct constructions (plus 4 additional

variations of one scheme), with various optimization priorities, for 48 bandwidth-

optimizing translations. In Figure 3.8, we report the sizes compared to the symmetric

case, which are significantly smaller. In Figure 3.9, we report on over 140 timing

experiments resulting from the translations. Due both to the asymmetric setting and

AutoGroup+’s optimizations, in most cases, the running times were reduced to less

than 10% of the symmetric case. In Figure 3.10, we report on the effect that different
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levels of complexity have on translation time for a single scheme.

In Section 3.5, we compare the performance of AutoGroup+ to prior automation

works, published manual translations, and translations existing as source code in the

Advanced Crypto Software Collection [49] and Charm library [50]. We discovered a

few things. In fourteen points of comparison with AutoGroup, AutoGroup+ matches

those solutions and provides a security validation and new assumptions, adding only

a few additional seconds of running time. In three points of comparison with Abe et

al. [44] and subsequent personal communications [51], our translated results match.

In the five points of overlap with ACSC and Charm, we are able to confirm

the security and ciphertext-size optimality of one broadcast encryption and one

hierarchical identity-based encryption implementation. We are also able to confirm

the security of two signature implementations, although only one is signature-size

optimal. These confirmations are new results. Our tool was able to confirm the

ciphertext-size optimality, but not the security of the Charm implementation of Dual

System Encryption [52] (meaning it may not be secure). That implementation made

changes to the keys outside the scope of the translations here or in [12, 44]. However,

our tool did find a secure translation with the same ciphertext-size.

Overall, our tests show that the tool can produce high-quality solutions in just

seconds, demonstrating that pairing translations can be practically and securely

performed by computers.
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3.1.1 Prior Work

The desirability of translating Type-I to Type-III pairings is well documented.

First, this is an exercise that cryptographers are still actively doing by hand. In

PKC 2012, Ramanna, Chatterjee and Sarkar [46] nicely translated the dual system

encryption scheme of Waters [52] from the Type-I pairing setting to a number of

different Type-III possibilities. Recently, Chen, Lim, Ling, Wang and Wee [47, 48]

presented an elegant semi-general framework for (re-)constructing various IBE, Inner-

Product Encryption and Key-Policy Functional Encryption schemes in the Type-III

setting, assuming the SXDH assumption holds.4 These works go into deeper creative

detail (changing the scheme or adding assumptions) than our automator, and thus

mainly get better results, but then, these works appear to have taken significant

human resources. In contrast, our work offers a computerized translation as a starting

point.

The Advanced Crypto Software Collection (ACSC) [49], including the Charm

library [50], contains many Type-III implementations of schemes that were published

and analyzed in the Type-I format. To the best of our knowledge, there is no formal

analysis of these converted schemes and thus also no guarantees that the translations

are secure or optimal efficiency-wise for a user’s specific application. (We remark

that ACSC/Charm makes no claims that they are secure or optimal.) The public

Github records for Charm show that it has been downloaded thousands of times;
4Informally, the SXDH assumption asserts that in a Type-III pairing group, there exist no efficient

isomorphisms from G1 to G2 or from G2 to G1.
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thus, it would be prudent to verify these implementations. (See our results on this in

Section 3.5.)

In ACM CCS 2013, Akinyele, Green and Hohenberger [12] presented a publicly-

available tool called AutoGroup, which offered an automated translation from Type-I

to Type-III pairing schemes. This work employed sophisticated tools, such as the

Z3 Satisfiability Modulo Theories (SMT) solver produced by Microsoft Research (see

Section 3.2), to quickly find a set of possible assignments of elements into G1 or G2.

There was not, however, any guarantee that the resulting translation remained secure.

Indeed, Akinyele et al. [12] explicitly framed their results as follows: translation has

two parts: (1) the search for an efficient translation, and (2) a security analysis of it.

They automated the first part and left the security analysis to a human cryptographer.

Since they made their source code public, we used it as a starting point and thus

named our work after theirs.

While using AutoGroup is certainly faster than a completely manual approach, the

lack of a security guarantee is a real drawback. At that time, there was simply no

established theory on how to generalize these translations.

Fortunately, in CRYPTO 2014, Abe, Groth, Ohkubo and Tango [44] pushed the

theory forward in this area. They elegantly formalized the notion that if certain

dependencies from the Type-I complexity assumption(s) and the reduction in the

security analysis were added to the dependencies imposed by the scheme itself, then

there was a generic way to reason about the security of the translated scheme. Their
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main theorem, which we will later use, can informally be stated as:

Theorem 3.1.1 (Informal [44]). Following the conversion method of [44], if the Type-I

scheme is correct and secure in the generic Type-I group model, then its converted

Type-III scheme is correct and secure in the generic Type-III group model.

There are four steps in their translation: (1) build a dependency graph between the

group elements for each algorithm in the construction, the complexity assumption(s)

and the security reduction (In the graph, elements are nodes and a directed edge

goes from g to h if h is derived from g, such as h = gx.), (2) merge all graphs into a

single graph, (3) split this graph into two graphs (where elements of the first graph

will be assigned to G1 and elements of the second assigned to G2), and (4) derive the

converted scheme.

For the four schemes tested in [44], steps (1), (2), and (4) were done by hand.

The algorithm for step (3) was exponential in two variables5 and the Java program to

handle step (3) reported taking 1.75 hours on a medium scheme. Thus, this is a great

theory advance, but it left open the question of whether the entire translation could

be efficiently automated as a “real-time” tool.

AutoGroup+ in a Nutshell. In short, prior work admitted a public tool that is fast, but

possibly insecure [12], and a cryptographic framework that is slow, but secure [44]. Our

goal was to realize the best of both worlds. Even though the implementations differed,

we discovered that both works began by tracing generator to pairing dependencies,
5Their splitting algorithm runs exponentially in both the number of pairings and the bottom

nodes (without outgoing edges) of the dependency graph. Thus, scalability is a real concern.

71



CHAPTER 3. TOOLS FOR DEVELOPING SECURE CRYPTOGRAPHIC
SYSTEMS

where [12] did this bottom up and [44] used a top down approach. Since both of these

representations can be helpful for different optimizations, AutoGroup+ does both. It

also traces these dependencies for the complexity assumptions and reductions. The

pairings and hash variables in the combined dependency graph are translated into

a formula and constraints, and then fed into a SMT solver. The output set is then

efficiently searched for an optimal solution using the SMT solver again, then verified as

a valid graph split (as formalized in [44]). Finally, if the split is valid, then a converted

scheme and complexity assumption(s) are output.

3.2 Background

3.2.1 Pairings

Let G1, G2 and GT be groups of prime order p. A map e : G1 × G2 → GT is

an admissible pairing (also called a bilinear map) if it satisfies the following three

properties:

1. Bilinearity: for all g ∈ G1, h ∈ G2, and a, b ∈ Zp, it holds that e(ga, hb) =

e(gb, ha) = e(g, h)ab.

2. Non-degeneracy: if g and h are generators of G1 and G2, resp., then e(g, h) is a

generator of GT .

3. Efficiency: there exists an efficient method that given any g ∈ G1 and h ∈ G2,
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computes e(g, h).

A pairing generator is an algorithm that on input a security parameter 1λ, outputs

the parameters for a pairing group (p, g, h,G1,G2,GT , e) such that p is a prime in

Θ(2λ), G1, G2 and GT are groups of order p where g generates G1, h generates G2

and e : G1 ×G2 → GT is an admissible pairing.

The above pairing is called an asymmetric or Type-III pairing. This type of

pairing is generally preferred in implementations for its efficiency. We also consider

symmetric or Type-I pairings, where there is an efficient isomorphism ψ : G1 → G2

(and vice versa) such that a symmetric map is defined as e : G1 × ψ(G1)→ GT . We

generally treat G = G1 = G2 for simplicity and write e : G×G→ GT . These types of

pairings are typically preferred for presenting constructions in the academic literature

for two reasons. First, they are simpler from a presentation perspective, requiring

fewer subscripts and other notations. More importantly, they are sometimes preferred

because the underlying symmetric assumption on which the proof is based may be

viewed as simpler or weaker than the corresponding asymmetric assumption.

We include current efficiency numbers for Type-I and Type-III groups in Ap-

pendix C, demonstrating the significant advantages of the latter.
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3.2.2 The Z3 Satisfiability Modulo Theories (SMT)

Solver

Our implementation also relies on the power of the state-of-the-art Z3 SMT

solver [53] developed at Microsoft Research. SMT is a generalization of boolean

satisfiability (or SAT) solving where the goal is to decide whether solutions exist to a

given logical formula. The publicly available Z3 is one such tool that is highly efficient

in solving constraint satisfaction problems and used in many different applications.

3.2.3 A Scheme Description Language (SDL) and

Toolchain

This work builds on the efforts of prior automation works [11, 12] which include

several tools such as a scheme description language (or SDL), an accompanying parser

for SDL, a code generator that translates SDL schemes into executable code in either

C++ or Python, and a LATEX generator for SDL descriptions. We obtained all these

prior tools from the publicly-available AutoTools GitHub repository.6 Our code

and SDL database will be made public in this repository as well. The SDL for the

constructions are the same in AutoGroup and AutoGroup+; the difference is that the

latter also includes SDL for assumptions and security reductions. Since we used the

code of AutoGroup as a starting point, we derived our tool name from it.
6Project link: https://github.com/jhuisi/auto-tools
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3.3 The AutoGroup+ System

As described in Section 3.1, AutoGroup+ is a new tool built to realize the best of

both worlds from a prior tool called AutoGroup [12] (fast, but no security guarantees)

and new theoretical insights [44] (secure, but exponential time and no public tool.)

3.3.1 How It Works

We begin with an illustration of the AutoGroup+ system in Figure 3.1. This system

takes in the description of a symmetric (Type-I) pairing-based scheme S, together

with metadata about its security and user-desired efficiency constraints, and outputs

an asymmetric (Type-III) pairing-based translation S ′, together with metadata about

its security. Informally, if S was secure, then S ′ will be both secure and optimal for

the constraints set by the user over the space of “basic” translations.

3.3.1.1 Step 1: Generating Computer-Readable Inputs

AutoGroup+ operates on four inputs: an abstract description of the (1) scheme

itself, (2) the complexity assumption(s) on which the scheme is based, (3) the black-box

reduction in the scheme’s proof of security, and (4) a set of efficiency optimization

constraints specified by the user (e.g., optimize for smallest key or ciphertext size.). The

abstract descriptions are all specified in a Scheme Description Language (SDL) [11, 12].

The need for SDL representations of the complexity assumptions and security
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Input: SDL of
Scheme S

SDL Parser
Extract Dependencies

from S and Assumption(s)

Output: SDL of
Scheme S'

Program Slice/Graph
for each pairing input

Merge Dependency 
Graphs into G

AutoGroup+

Execute Z3
1. find all solutions that respect constraints

2. reduce iteratively by user constraint priorities
3. split graph G using selected solution

4. check that split is valid

Efficiency Pass
optimize solution

Input: SDL of 
Symmetric

Assumption(s)

Input: SDL of 
Reduction

Extract Dependencies
introduced in Reduction

Output: SDL of
Asymmetric 

Assumption(s)

Encode  
Pairings/Hashes 

from G as 
Formula & Constraints

Input: User 
Optimization 
Constraints

Figure 3.1: A high-level presentation of the AutoGroup+ tool. Components that are new
or improved, over AutoGroup, are included with dashed lines. Both AutoGroup+ and
AutoGroup use external tools Z3, SDL Parser and Code generator (omitted from the
figure).

reductions are new challenges for this work. To run our Section 3.5 tests, we had to

translate the text in the published papers to the SDL format by hand. This was a

time-consuming and tedious task. However, we maximize the benefit of doing this,

by making these SDL files publicly available. This enables anyone to check their

correctness and provides a ready-made base of test files for any future automation

exercises that require this deeper scheme analysis.

One novel and curious observation we made during these experiments was that how

group elements were derived in the symmetric group impacted the dependency graphs

and therefore the asymmetric results. To say this another way, two schemes computing

the exact same elements, but in different ways, could have different dependency graphs

and therefore different asymmetric translations. As a toy example, suppose a scheme

has PK = (g, A = ga, B = gb) and SK = (PK, a, b). Now suppose that as part of a
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signing algorithm, the holder of SK must compute the value C = gab. Suppose in

Scheme 1, the signer computes this as x = ab mod p and C = gx. Suppose in Scheme

2, the signer computes this as C = Ab. Then in the dependency graph for Scheme

1, there is a root node g, with nodes A and C hanging off it. Whereas for the graph

of Scheme 2, there is a root node g with A off it, and C off of A. The importance of

these differences comes alive when we attempt to split the graph (see Step 3.3.1.4).

Suppose there is the pairing e(A,C). Then in Scheme 1, the generator g must be

split, but A can be assigned to G1 and C to G2, resulting in a 4 element public key.

However, in Scheme 2, the generator g and the element A must be split, with A1 ∈ G1

and A2 ∈ G2, so that one can compute C = (A2)
b ∈ G2. This results in a 5 element

public key. The general rule is that the fewer unnecessary dependencies the better.

Interestingly, Abe et al. [44] sometimes added dependencies that did not exist in the

original schemes. For instance, for the Waters 2005 IBE [54], Waters clearly states to

choose g2, u′, ui as fresh random generators, but Abe et al. explicitly "assume" that

they are generated from a separate generator g. For this particular scheme, this does

not impact the asymmetric translations, but in theory it could.

Our experiments did not add any dependencies. We note that in this step, a

human is not being tasked with any job but simple transcription of the input into a

language the computer can understand.
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3.3.1.1.1 System Limitations and Allowable Inputs

This system shares some of the same limitations as prior works [12, 44]. First, this

is a junk-in-makes-junk-out system. AutoGroup+ assumes that the security reduction is

correct, the complexity assumptions are true, and that the SDL was typed in correctly.

If any of these turn out to be false, the output cannot be depended on. Fortunately,

we can mitigate these risks as follows. The correctness of the security reductions might

be verified automatically using a number of tools, such as EasyCrypt [10], but this

likely requires further research. The pairing-based assumptions may be sanity-checked

in the generic group model using the recently developed tool by Barthe et al. [45]

from CRYPTO 2014. Finally, the SDL transcriptions can be verified in the usual

crowd-based manner which we encourage by making them public.

Second, the system does not accept all possible schemes that might appear in the

literature. AutoGroup+ supports only prime-order symmetric pairing schemes with

a “standard” reduction analysis7. It can support most non-interactive assumptions.

It can also support dynamic (also called q-based) assumptions, where the size of the

assumption may grow depending on the usage of the scheme. It can also support

interactive (also called oracle-based) assumptions such as the LRSW assumption

behind the popular Camenisch-Lysyanskaya [55] pairing-based signatures.

Third, how the scheme hashes into pairing groups also may disqualify it from
7We refer the reader to Abe et al. [44] for a formal definition of the allowed reductions. Roughly,

we mean an analysis where there is an efficient algorithm called a reduction that is successful in
solving the hard problem (underlying the complexity assumption) given black-box access to an
adversary that successfully attacks the scheme.
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being translated. We now give an example of how to alter the Setup algorithm of the

Waters 2005 IBE scheme [54], so that AutoGroup+ cannot translate it. (Indeed, it

is not clear to us if a translation even exists.) In the original Setup algorithm, the

master authority chooses a generator g ∈ G at random. Then public parameter g1

is derived from g, while parameters g2, u0, . . . , un ∈ G are chosen independently at

random. Instead, suppose we treat the hash function H : {0, 1}∗ → G as a random

oracle. Let generator g ∈ G be computed as g = H(ID), where ID is some string

describing the master authority. Then g1 is derived from g as before, but we set

g2 = gr, u0 = gr0 , . . . , un = grn for random r, r0, . . . , rn ∈ Zp (where p is the order of

G). It is easy to see that the public parameters have the same distribution as before

(assuming the random oracle model); all we have changed is how the master authority

samples these parameters. Thus, this variant of the Waters IBE remains secure in

the symmetric setting, and yet it is not clear how to translate it to the asymmetric

setting. We return to this example in Section 3.5.

These limitations also appear in the theoretical work of Abe et al. [44], and

fortunately, these issues seem relatively rare and did not come up for any of the

schemes we tested (except our hand-made counterexample). As in [12, 44], we note

that if AutoGroup+ cannot produce a translation, it does not imply that a translation

does not exist. A characterization of untranslatable schemes is an open theoretical

problem.
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3.3.1.2 Step 2: Extracting Algebraic Dependencies

Once AutoGroup+ has parsed all its input files, it begins processing them to graph

the algebraic dependencies between source group elements in a scheme, assumption

and reduction. All source group elements are nodes in the graph and a directed edge

exists if there is a direct dependency between two elements. E.g., if h = gx, then h is

derived from g and we place an edge from g and h.

AutoGroup+ extracts the dependency graphs automatically from the SDL for each

input file and builds a distinct graph from the SDL representations and metadata.

AutoGroup+ defines two new procedures that programmatically extract the dependency

graph for the assumption(s) as well as the reduction(s) (see Section 3.4 for an example).

Then, AutoGroup+ reuses logic from AutoGroup to programmatically build the graph of

the scheme by tracking the generators in the setup algorithm and by tracing backward

from each pairing in the scheme. It merges the program slice (or trace) extracted for

each pairing input into one dependency graph for the scheme. The resulting graphs are

the same as those produced by Abe et al. [44] (except where we reduced dependencies

by computing elements more directly as discussed in the last step.)

The work of Abe et al. [44] required a human to build (and later merge) these

dependency graphs by hand and the graphs were constructed starting from the common

generators downward. The AutoGroup work of Akinyele et al. [12] automatically derived

these graphs for the scheme only from the SDL description of the scheme. They did

not consider the assumptions or reduction dependencies. Indeed, AutoGroup only
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graphed the dependencies as a traceback from the pairings, whereas AutoGroup+ also

adds a top-down analysis from the assumption down to the pairings for the security

logic.

3.3.1.3 Step 3: Merge Dependency Graphs

After extracting the dependencies, AutoGroup+ has a set of distinct graphs:

one graph that represents dependencies from the setup, key generation, encryp-

tion/signature and decryption/verification algorithms, as well as a graph for each

complexity assumption and one or more graphs for the reduction. These graphs

are then systematically merged together using the metadata provided with the SDL

inputs. The metadata includes a reduction map which relates the names of source

group elements in the reduction to those in the assumption. We require this map

to understand which nodes represent the same group element (across the scheme,

assumption and reduction) to simplify merging into a single node. See the example

in Section 3.4. AutoGroup+ programmatically checks the type information in the

reduction map across all SDL inputs to ensure correctness during the merge.

3.3.1.4 Step 4: Assign Variables using the SMT Solver

This is the most complex step in the automation. In the symmetric setting, all

group elements in the scheme were in G. To move to the asymmetric setting, we

must assign elements to either G1 or G2 in such a way that the dependencies between
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elements are not violated (e.g., if h = gx, then both g, h must be in the same group)

and such that for all variables a, b, if we have a pairing between them e(a, b), then

a and b must be in distinct source groups (e.g., a ∈ G1 and b ∈ G2 or vice versa).

Such an assignment may not be feasible (see such an example in Section 3.3.1.1) or

it may require that one or more variables in the symmetric scheme be duplicated

in the asymmetric scheme with one assigned to G1 and another to G2. E.g., in the

symmetric setting if g ∈ G, a = gx and b = gy and these elements are paired as e(a, b),

then in the asymmetric setting, g will be split into g1 ∈ G1 and g2 ∈ G2, where a = gx1

and b = gy2 , so that one can compute e(a, b).

To efficiently make these variable assignments, AutoGroup+ follows the approach

of AutoGroup in that it uses a powerful Z3 Satisfiability Modulo Theories (SMT) solver

produced by Microsoft Research (see Section 3.2) to compute the set of all possible

splits (i.e., all possible variable assignment combinations) and then later identifies the

best one. Z3 takes as input a logical formula and determines whether valid variable

assignments exist that evaluate that formula to true. Similar to AutoGroup, Auto-

Group+ expresses the pairing equations as a logical formula of conjunctions and

inequality operations over binary variables. For example, e(a, b) · e(c, d) is translated

to the logical formula P1[0] ̸= P1[1] ∧ P2[0] ̸= P2[1] where P1[0] is a reference to a,

P1[1] to b, and so on. AutoGroup+ simply follows the pairing identifier convention

established by Abe et al. [44].

One major difference between AutoGroup+ and AutoGroup is that the former’s
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dependency graphs include dependencies based on the assumptions and reductions.

The formula is derived from the pairings that occur in the graph (from the construction,

reduction and assumption(s)) with a conjunction joining each pairing piece, plus extra

constraints added for variables that cannot be duplicated (regarding hashing). This

formula is then fed into the solver. The solver returns a set of 0 or 1 assignments

for each variable. We then apply each solution to the merged dependency graph to

generate the split (variables assigned to 0 on one side and the rest on the other).

3.3.1.5 Step 5: Search for Optimal Solution

There are often many (possibly thousands) of ways to translate a symmetric scheme

into an asymmetric scheme; thus, we can end up with many feasible graph splits.

Indeed, the output of the SMT solver in the last step is a set of assignments of the

variables. In this step, we again use the SMT solver to deduce which assignment from

this set is “best”. AutoGroup+ allows selection of assignments based on a number of

user-specified optimization constraints. For public-key encryption, the user can choose

to minimize the public-key, assumption, secret key and/or ciphertext size. Similarly

for signature schemes, the user can mimize the public-key parameters, assumption,

and/or the signature size.

To select an optimal assignment, AutoGroup+ encodes these user requirements as

parameters of some objective function. We then call the solver a second time with

this objective function set to rank/narrow the given solutions to one. Depending on
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the optimization goal, the objective function can be specified in one of two ways. If

reducing public-key size or the assumption, then we are concerned with minimizing

the duplication of source group elements. As such, we first specify an EvalGraph

function that the solver uses to compute the splits for each element in the public key

or assumption: EvalGraph(Aj, B,G) = S, where Aj = a1, . . . , an represents pairing

input variable assignments for the j-th solution (each ai variable is either 0 = G1 or

1 = G2), B = b1, . . . , bm represents the source group elements to minimize either in

the assumption or public-key, and G represents the merged dependency graph.

Our search algorithm first applies the EvalGraph function to determine how the

bi values are assigned for each solution. Once the bi values are assigned, we then

compute S = s1, . . . , sm where each si corresponds to one of three values for each bi

assignment. That is, let a w1 value denote a G1 only assignment, w2 is G2 only, and

w3 = w1 +w2 is both a G1 and G2 assignment (or simply a split). We then set w1 and

w2 to the group size of G1 and G2 for Type-III pairing curves (e.g., BN256). Each

solution is ranked in terms of splits and the total size of group elements in B. Our

search returns the j-th solution that results in the fewest splits in B with the smallest

overall size Sj. This overall size breaks ties between multiple solutions with the same

number of splits.

min
j∈|A|

(CountSplits(Sj),
m∑
i=1

Sj,i) (3.1)

84



CHAPTER 3. TOOLS FOR DEVELOPING SECURE CRYPTOGRAPHIC
SYSTEMS

For the other optimization options (i.e., secret-key, ciphertext, etc), we can reuse the

objective function specified by AutoGroup as is:

min
j∈|A|

F (Aj, C, w1, w2) =
n∑

i=1

((1− ai) · w1 + ai · w2) · ci (3.2)

where the Aj represents the j-th solution as before, C = {c1, . . . , cn} represent some

cost associated with each ai variable reference, and w1 and w2 correspond to weights

(for different Type-III pairing curves) over groups G1 and G2. By encoding these

cost values, it is feasible to create different weight functions that adhere to the user

specified constraints. Once these functions are specified correctly, we minimize it

across the set of assignments and return the solution that yields the lowest value.

Thus, the combination of equations 3.1 and 3.2 yield all the possible ways a current

user can optimize a given symmetric scheme. Further optimizations are future work.

Once the “best” solution is found, we have a CheckValidSplit procedure that verifies

that the conditions (1) and (2) of a “valid split” hold as defined in Definition 3.3.1. If

this solution satisfies these conditions, we are done. If not, we simply test the next

best solution, because the solver caches all solutions and we record metadata about

each solution in terms of efficiency and security.
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3.3.1.6 Step 6: Evaluate and Process the Solution

Once a split is chosen, AutoGroup+ must reconstruct SDL for the asymmetric

scheme and assumption(s). It reuses the functionality provided by AutoGroup to con-

struct the SDL as dictated by the split.8 To output the new asymmetric assumptions,

AutoGroup+ follows the logic of Abe et al. [44] (although they did not implement this

step) and implements a new procedure that uses the graph split to reconstruct the

asymmetric assumption(s). For each element in the asymmetric assumption, we learn

the new assignments of the elements using the graph split and mechanically generate

the asymmetric assumption SDL. Finally, we rely on existing tools [11, 12] to translate

the new asymmetric SDL representation into executable code for C++ or Python, or

simply LATEX.

3.3.2 Analysis of AutoGroup+

We analyze AutoGroup+’s security and optimizations.

Security. At a high-level, the Abe et al. [44] security argument works as follows. In

the Type-I setting, we treat G1 = G2 because there are efficient isomorphisms between

these two groups. However, suppose we work in the generic Type-I group model, where

elements are a black box and to compute this isomorphism, a party must utilize an

oracle O. Next, consider moving to a Type-III group, where every element (for which

the discrete logarithm is known with respect to the base generators) is duplicated; that
8We further perform an efficiency check on the final scheme as previously done in AutoGroup.
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is, for h = gx ∈ G, we have h1 = gx1 ∈ G1 and h2 = gx2 ∈ G2. Then in the generic Type-

III group model, we can simulate having efficiently computable isomorphisms between

these groups by exposing an oracle O′ that on input d1 ∈ G1 outputs d2 ∈ G2 (or vice

versa). In essence, by exposing the “corresponding" group element (through the oracle

in the Type-III setting), we “allow” all necessary isomorphism computations for the

scheme itself to operate, however, at the same time, we can argue that any adversary

that breaks this scheme (with these elements exposed) can be turned into an attacker

against the Type-I scheme, where these isomorphisms are natively computable. The

resulting theorem was summarized in Theorem 3.1.1: namely, the Type-III conversion

will be secure in the generic group model, if one follows the conversion criteria in [44]

and the Type-I input was secure in the generic group model.

Thus, we must argue that the AutoGroup+ implementation satisfies the criteria

in [44]. The dependency graphs are created and merged according to the same algo-

rithm. (AutoGroup+ tracks some additional information on the side for optimization

purposes.) What is required is that the splitting of the merged dependency graph

satisfies Abe et al.’s notion of a “valid split.”

Definition 3.3.1 (Valid Split [44]). Let Γ = (V,E) be a dependency graph for Π =

(S,R,A), a tuple representing a scheme, reduction and assumption(s) that are in the

set covered by the [44] translation. Let P = (p1[0], . . . , pn[1]) ⊂ V be pairing nodes.

A pair of graphs Γ0 = (V0, E0) and Γ1 = (V1, E1) is a valid split of Γ with respect to

NoDup ⊆ V if the following hold:
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1. merging Γ0 and Γ1 recovers Γ,

2. for each i ∈ {0, 1} and every X ∈ Vi\P , the ancestor subgraph of X in Γ is

included in Γi.

3. for each i ∈ {1, . . . , np} pairing nodes pi[0] and pi[1] are separately included in

V0 and V1,

4. No node in V0 ∩ V1 is included in NoDup. NoDup is a list of nodes that cannot

be assigned to both V0 and V1.

In terms of AutoGroup+ security, conditions (1) and (2) are satisfied in the search

procedure (step 5). That is, before we admit a split, we do these simple tests. Condition

(3) is satisfied by the SMT solver with the logical formula encoding of pairing nodes

(step 4). Condition (4) is also satisfied by the SMT solver (step 4). We encode the

output of hashes as constraints over the logical formula; specifically, we ask the solver

to find splits that keep hashes in G1. This is the only place we differ slightly. Abe

et al. allow G1 or G2 assignment for hashes but not both. Our approach prioritizes

solutions that preserve efficiency but we could give the user the option of relaxing this

to match Abe et al. The translation back to SDL is fairly straightforward from the

split.

Optimizations. In terms of optimality over the set of solutions admitted by the

“valid split” method, AutoGroup+ finds the “best” one by searching over the entire set.

It does this efficiently by turning the user-specified optimizations into the appropriate
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objective function and passing this function into the SMT solver. Our experiments

in Section 3.5 provide evidence that the tool is, indeed, finding the optimal solutions

over the space of valid translations.

As discussed in Section 3.1.1, we do not rule out the existence of even better

solutions that employ insights outside of this method (such as altering the construction

or adding “stronger” assumptions, such as SXDH.)

3.4 An Automation Example with BB-HIBE

In this section, we illustrate each phase of the AutoGroup+ implementation de-

scribed in Section 3.3 by showing the step-by-step translation of the Boneh-Boyen

hierarchical identity-based encryption [56] (or BB HIBE) scheme. We begin by re-

calling the scheme: an efficient HIBE scheme (with ℓ = 2) [57, §4.1] that is selective

identity secure based on the standard Decisional Bilinear-Diffie Hellman (DBDH)

assumption.

This scheme consists of four algorithms: Setup, KeyGen, Encrypt and Decrypt.

The Setup algorithm takes as input a security parameter and defines public keys (ID)

of depth ℓ as vectors of elements in Zℓ
p. We define ℓ = 2, thus the identity is comprised

of ID = (ID1, ID2) ∈ Z2
p. The algorithm generates system parameters as follows. First,

select a random generator g ∈ G, a random α ∈ Zp, and sets g1 = gα. Then, pick

random h1, h2, g2 ∈ G. Set the master public parameters params = (g, g1, g2, h1, h2)
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and the master secret key msk = g2
α.

The KeyGen algorithm takes as input an ID = (ID1, ID2) ∈ Zp
2, picks random

r1, r2 ∈ Zp and outputs:

d1 = g2
α · (g1ID1 · h1)r1 · (g1ID2 · h2)r2 , d2 = gr1 , d3 = gr2

and the algorithm outputs dID = (d1, d2, d3)

The Encrypt algorithm takes as input the public parameters params, an identity ID and

a message M ∈ GT . To encrypt the message M under the public key ID = (ID1, ID2),

picks a random s ∈ Zp and computes:

C = (e(g1, g2)
s ·M, gs, (g1

ID1 · h1)s, (g1ID2 · h2)s)

and the algorithm outputs C = (C1, C2, C3, C4).

The Decrypt algorithm takes as input a private key dID = (d1, d2, d3) and a ciphertext

C and computes M as:

M = C1 ·
e(C3, d2) · e(C4, d3)

e(C2, d1)

The scheme is based on the DBDH assumption.

Assumption 1 (Decisional Bilinear Diffie-Hellman). Let g generate group G of prime

order p ∈ Θ(2λ) with mapping e : G × G → GT . For all p.p.t. adversaries A, the
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following probability is negligible in λ:

|1
2
− Pr[a, b, c← Zp, z ← {0, 1}, A = ga,

B = gb, C = gc, T0 = e(g, g)abc, T1 ← GT ;

z′ ← A(g, A,B,C, Tz) : z = z′]|.

3.4.0.0.1 Step 1: Generating SDL Inputs

In order for AutoGroup+ to perform the translation, we first begin by transcribing

the scheme, reduction and the DBDH assumption into SDL. We provide the SDL

description of the above scheme, reduction and assumption in Appendix D. The reader

will notice that the SDL descriptions closely and concisely follow the paper counterpart.

This design is on purpose as to reduce the burden of transcribing these constructions

for AutoGroup+ users. Indeed, in our experience the most time consuming and tedious

part is in specifying the reductions accurately.

3.4.0.0.2 Step 2: Extracting the Dependencies

Once the SDLs have been generated along with the metadata and the user’s desired

optimization goal, the user can proceed with executing AutoGroup+ to begin deriving

the dependency graphs for each input file. AutoGroup+ programmatically extracts

the dependencies from the SDL descriptions starting with the assumption(s), then

the reduction(s) and finally, the scheme. The dependency graph diagrams for BB
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g

A B C

Figure 3.2: Dependency graph for the DBDH instance generated by AutoGroup+.
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C3

P4[1] P2[0]

g

d3 d2g1 C2

P3[1] P2[1]P1[0]

h2

P4[0]

Figure 3.3: Dependency graph that merges Setup, KeyGen, Encrypt and Decrypt
algorithms in BB HIBE and generated by AutoGroup+. For brevity, we only show
the combined scheme graph and omit the smaller ones for each routine in the scheme.
Note that nodes P1 through P4 represent unique pairing identifiers, with a 0 index
representing a left-hand pairing element and a 1 the right.
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d1 d3 h1

d2
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g1g2 g3
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Figure 3.4: Dependency graph for the reduction to DBDH in BB HIBE. This graph
was generated by AutoGroup+.
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HIBE [57, §4.1] are included in Figures 3.2, 3.3, and 3.4. Note that these diagrams

were generated automatically by our tool; we believe this feature provides more

transparency to make it easier for humans to verify that the software is operating

correctly. In “naming” the nodes of our dependency graphs, we closely follow the

naming conventions that the user employed in the SDL, thus supporting the quick

and easy verification.

3.4.0.0.3 Step 3: Merge the Graphs

In Figure 3.5, we show the third step in AutoGroup+ which is to merge the multiple

dependency graphs (assumption, reduction and scheme graphs) into one single graph.

g1

P1[0]

d1

h2

C4 C3

h1

P4[1]P3[0]

g

C2

C d2

d3

BA

P2[0]

g3 g2

P1[1]g2alpha

P4[0]

P2[1]

P3[1]

Figure 3.5: The merged dependency graph for the assumption, reduction to DBDH,
and the BB HIBE scheme. This graph was generated by AutoGroup+.
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3.4.0.0.4 Step 4: Assignment of Variables

With the merged graph, we encode the pairing equations as a logical formula as

in AutoGroup but also encode certain group elements in the dependency graph as

additional constraints to the solver (with optimization requirements):

P1[0] ̸= P1[1] ∧ P2[0] ̸= P2[1] ∧ P3[0] ̸= P3[1] ∧ P4[0] ̸= P4[1]

Recall that pairing identifiers (e.g., P2[0], P2[1]) are unique references which refer to

pairing inputs from the scheme (e.g., e(C3, d2)).

3.4.0.0.5 Step 5: Search for an Optimal Solution

In our BB HIBE example, the goal is to minimize the number of splits in the master

public parameters params, so this requires specifying the following parameters of the

EvalGraph function. Let B = {g, g1, g2, h1, h2} be the set of elements in the public

parameters we wish to minimize and let G be an encoding of the merged dependency

graph shown in Figure 3.5. As reflected in Table 3.8, the solver identifies 16 possible

solutions for the BB HIBE scheme and computes the following on each solution as

Sj = EvalGraph(Aj, B,G) where Aj is the j-th set of possible variable assignments.

Recall that EvalGraph simply applies a given solution to G and records how elements

of B are assigned. From the set S, the solver finds an assignment that has the fewest

number of duplicated public key elements with the smallest overall size. Based on this
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criteria, the solver returned a optimal solution in the fifth step which consisted of 2

splits (i.e., two duplicated elements). The new public key elements are assigned as

B′ = {g, g̃, g1, g2, g̃2, h1, h2} ∈ G5
1 ×G2

2. This constitutes only an addition of 2 group

elements in G2.

3.4.0.0.6 Step 6: Assignment of Variables

In the last step, AutoGroup+ splits the graph as dictated by the optimal solution

found by the solver. The resulting graphs for G1 and G2 assignments for the BB HIBE

scheme are shown in Figure 3.6. AutoGroup+ programmatically converts the split

graph into an asymmetric translation for the scheme and assumption. We improve on

code from AutoGroup to do the former translation and write a new module to do the

latter (see Figure 3.7 for the graph split of co-DBDH). These resulting SDL files are

provided in Appendix D.2. As mentioned before, there is a publicly-available tool (see

Section 3.2.3) for automatically turning this SDL into C++, Python or LATEX.

3.5 AutoGroup+: Experimental Evaluation

We tested AutoGroup+ on 9 schemes, with 3-4 optimization options and 4 different

levels of BB HIBE, for 48 total translations.9 Figure 3.8 summarizes the translation

times and resulting scheme sizes.10 To demonstrate the improvement in running
9Currently the tool does not support the assumption minimization option for schemes with more

than one assumption. This is future work, although we would like to explore how valuable assumption
minimization is to tool users.

10We only give details for two variations of BB HIBE because the results are similar for all levels.
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d1

P4[1]
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g1g2G1 h2G1 h1G1

C4 P1[0] C3g2alpha

P3[0] P2[0]

(a) Showing G1 elements in the scheme

d3

P3[1]

g2G2

P1[1]

gG2

d2 C2
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(b) Showing G2 elements in the scheme

Figure 3.6: The dependency graphs for the asymmetric translation of BB HIBE scheme
only (with PK optimization). This graph was generated by AutoGroup+.

gG1

A BG1 CG1

gG2

BG2 CG2

Figure 3.7: The dependency graph for the co-DBDH assumption and generated by
AutoGroup+.
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Conversion Number of Group Elements Assumption Num.
Time Public Key Secret Key Ciphertext Assumption Solutions

ID-Based Enc.
BB04 HIBE [56, §4] Symmetric (l = 2) - G5 G3 G3 ×GT G4 ×GT DBDH
Asymmetric [Min. PK] 592 ms G5

1 ×G2
2 G1 ×G2

2 G2
1 ×G2 ×GT G4

1 ×G3
2 ×GT 16

Asymmetric [Min. SK] 641 ms G5
1 ×G4

2 G3
1 G3

2 ×GT G3
1 ×G3

2 ×GT 16
Asymmetric [Min. CT] 626 ms G4

1 ×G5
2 G3

2 G3
1 ×GT G3

1 ×G3
2 ×GT 16

Asymmetric [Min. Assump] 582 ms G4
1 ×G5

2 G3
2 G3

1 ×GT G3
1 ×G3

2 ×GT 16
BB04 HIBE [56, §4] Symmetric (l = 9) - G12 G10 G10 ×GT G4 ×GT DBDH
Asymmetric [Min. PK] 20629 ms G12

1 ×G2
2 G1 ×G9

2 G9
1 ×G2 ×GT G4

1 ×G3
2 ×GT 2048

Asymmetric [Min. SK] 15714 ms G12
1 ×G11

2 G10
1 G10

2 ×GT G3
1 ×G3

2 ×GT 2048
Asymmetric [Min. CT] 15690 ms G11

1 ×G12
2 G10

2 G10
1 ×GT G3

1 ×G3
2 ×GT 2048

Asymmetric [Min. Assump] 20904 ms G11
1 ×G12

2 G10
2 G10

1 ×GT G3
1 ×G3

2 ×GT 2048
GENTRY06 [58, §3.1] Symmetric - G3 Zp ×G G×G2

T G3+q ×GT trunc. dec. q-ABDHE
Asymmetric [Min. PK] 669 ms G2

1 ×G2
2 Zp ×G2 G1 ×G2

T G3+q
1 ×G2+q

2 ×GT 4
Asymmetric [Min. SK] 718 ms G2

1 ×G3
2 Zp ×G1 G2 ×G2

T G2+q
1 ×G3+q

2 ×GT 4
Asymmetric [Min. CT] 723 ms G2

1 ×G2
2 Zp ×G2 G1 ×G2

T G3+q
1 ×G2+q

2 ×GT 4
Asymmetric [Min. Assump] 676 ms G2

1 ×G2
2 Zp ×G2 G1 ×G2

T G3+q
1 ×G1+q

2 ×GT 4
WATERS05 [54, §4] Symmetric - G4+n G2 G2 ×GT G4 ×GT DBDH
Asymmetric [Min. PK] 725 ms G4+n

1 ×G2
2 G1 ×G2 G1 ×G2 ×GT G4

1 ×G3
2 ×GT 8

Asymmetric [Min. SK] 770 ms G4+n
1 ×G3+n

2 G2
1 G2

2 ×GT G3
1 ×G3

2 ×GT 8
Asymmetric [Min. CT] 767 ms G3+n

1 ×G4+n
2 G2

2 G2
1 ×GT G3

1 ×G3
2 ×GT 8

Asymmetric [Min. Assump] 716 ms G4+n
1 ×G3+n

2 G2
1 G2

2 ×GT G3
1 ×G3

2 ×GT 8
WATERS09 (DSE) [52, §3.1] Symmetric - G13 ×GT G8 × Zp Zp ×G9 ×GT (G4 ×GT ), (G6), (G6) DBDH, DLIN, DLIN
Asymmetric [Min. PK] 6217 ms G10

1 ×G4
2 ×GT G4

1 ×G4
2 × Zp G5

1 ×G4
2 ×GT (G4

1 ×G3
2 ×GT ), (G6

1 ×G6
2) 256

Asymmetric [Min. SK] 5871 ms G7
1 ×G13

2 ×GT G8
1 × Zp G9

2 ×GT (G3
1 ×G3

2 ×GT ), (G6
1 ×G6

2), (G6
1 ×G6

2) 256
Asymmetric [Min. CT] 5858 ms G13

1 ×G7
2 ×GT G8

2 × Zp G9
1 ×GT (G3

1 ×G3
2 ×GT ), (G6

1 ×G6
2), (G6

1 ×G6
2) 256

Asymmetric [Min. Assump] 6228 ms G12
1 ×G5

2 ×GT G3
1 ×G5

2 × Zp G6
1 ×G3

2 ×GT (G4
1 ×G2

2 ×GT ), (G6
1 ×G6

2), (G6
1 ×G6

2) 256
Broadcast Encryption
BGW05 [59, §3.1] Symmetric (n users) - G2n+1 G G3 G2l+1 ×GT decision l-BDHE
Asymmetric [Min. PK] 530 ms G2n+1

1 ×G2n
2 G2 G2

1 ×GT G2l
1 ×G2l+1

2 ×GT 4
Asymmetric [Min. SK] 601 ms G2n

1 ×G2n+1
2 G1 G2

2 ×GT G2l
1 ×G2l+1

2 ×GT 4
Asymmetric [Min. CT] 587 ms G2n+1

1 ×G2n
2 G2 G2

1 ×GT G2l
1 ×G2l+1

2 ×GT 4
Asymmetric [Min. Assump] 544 ms G2n+1

1 ×G2n
2 G2 G2

1 ×GT G2l
1 ×G2l+1

2 ×GT 4
Signature
ACDKNO [60, §5.3] Symmetric - G15 G2 G8 (G4), (G6), (G6) CDH, DLIN, DLIN
Asymmetric [Min. PK] 18216 ms G14

1 ×G5
2 G2

2 G1 ×G7
2 (G2

1 ×G4
2), (G2

1 ×G6
2), (G2

1 ×G6
2) 1024

Asymmetric [Min. Sig] 14689 ms G6
1 ×G14

2 G2
1 G8

1 (G4
1 ×G2

2), (G6
1 ×G2

2), (G6
1 ×G2

2) 1024
Asymmetric [Min. Assump] 18135 ms G5

1 ×G14
2 G2

1 G7
1 ×G2 (G4

1 ×G2
2), (G6

1 ×G2
2), (G6

1 ×G2
2) 1024

BLS [61, §2.2] Symmetric - G2 Z∗
p G G4 CDH

Asymmetric [Min. PK] 515 ms G2
2 Z∗

p G1 (G4
1 ×G3

2), (G3
1 ×G3

2), (G3
1 ×G3

2) 2
Asymmetric [Min. Sig] 556 ms G2

2 Z∗
p G1 (G4

1 ×G3
2), (G3

1 ×G3
2), (G3

1 ×G3
2) 2

Asymmetric [Min. Assump] 517 ms G2
2 Z∗

p G1 (G4
1 ×G3

2), (G3
1 ×G2

2), (G3
1 ×G3

2) 2
CL04 [55, §3.1] Symmetric - G3 Z∗

p
2 G3 G3 LRSW

Asymmetric [Min. PK] 278 ms G3
1 ×G2 Z∗

p
2 G3

2 G3
1 2

Asymmetric [Min. Sig] 328 ms G1 ×G3
2 Z∗

p
2 G3

1 G3
2 2

Asymmetric [Min. Assump] 275 ms G3
1 ×G2 Z∗

p
2 G3

2 G3
1 2

WATERS05 [54, §7] Symmetric - G4+n G G2 G4 ×GT DBDH
Asymmetric [Min. PK] 724 ms G3

1 ×G2 G3
2 G1 ×G2 G4

1 ×G2
2 ×GT 8

Asymmetric [Min. Sig] 721 ms G4+n
1 ×G3+n

2 G1 G2
1 G3

1 ×G3
2 ×GT 8

Asymmetric [Min. Assump] 755 ms G4+n
1 ×G2

2 G1 G1 ×G2 G4
1 ×G2

2 ×GT 8

Figure 3.8: A summary of the experimental evaluations of AutoGroup+ on a variety
of schemes and optimization options. For the symmetric baseline with curve SS1536,
elements in G are 1536 bits and GT are 3072 bits. For the asymmetric translations
with BN256, elements in G1 are 256 bits, G2 are 1024 bits, and GT are 3072 bits. For
BGW05, the private key size is listed for a single user.
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Time•

Setup Keygen Encrypt/Sign Decrypt/Verify
ID-Based Enc.
BB04 HIBE [56, §4] Symmetric (SS1536) (l = 2) 346.47 ms 84.75 ms 118.64 ms 133.48 ms
Asymmetric (BN256) [Min. PK] 5.09 ms 4.79 ms 12.92 ms 21.36 ms
Asymmetric (BN256) [Min. SK] 8.15 ms 2.95 ms 14.95 ms 21.32 ms
Asymmetric (BN256) [Min. CT] 9.84 ms 6.23 ms 12.38 ms 21.22 ms
Asymmetric (BN256) [Min. Assump] 9.08 ms 7.30 ms 12.27 ms 21.64 ms
BB04 HIBE [56, §4] Symmetric (SS1536) (l = 9) 892.69 ms 283.11 ms 217.39 ms 446.10 ms
Asymmetric (BN256) [Min. PK] 9.25 ms 17.64 ms 17.10 ms 70.84 ms
Asymmetric (BN256) [Min. SK] 20.53 ms 11.14 ms 24.36 ms 71.45 ms
Asymmetric (BN256) [Min. CT] 21.60 ms 27.02 ms 16.48 ms 72.03 ms
Asymmetric (BN256) [Min. Assump] 21.68 ms 31.96 ms 16.77 ms 70.48 ms
GENTRY06 [58, §3.1] Symmetric (SS1536) 172.30 ms 28.23 ms 137.79 ms 48.42 ms
Asymmetric (BN256) [Min. PK] 2.88 ms 2.47 ms 21.08 ms 10.01 ms
Asymmetric (BN256) [Min. SK] 4.22 ms 1.18 ms 22.46 ms 9.96 ms
Asymmetric (BN256) [Min. CT] 2.93 ms 2.53 ms 21.02 ms 10.02 ms
Asymmetric (BN256) [Min. Assump] 2.88 ms 2.53 ms 21.10 ms 10.09 ms
WATERS05 [54, §4] Symmetric (SS1536) 908.94 ms 29.78 ms 78.08 ms 111.76 ms
Asymmetric (BN256) [Min. PK] 10.31 ms 2.04 ms 11.98 ms 14.23 ms
Asymmetric (BN256) [Min. SK] 24.11 ms 1.37 ms 13.68 ms 14.11 ms
Asymmetric (BN256) [Min. CT] 25.39 ms 3.67 ms 11.25 ms 14.23 ms
Asymmetric (BN256) [Min. Assump] 23.81 ms 1.36 ms 13.71 ms 14.38 ms
WATERS09 (DSE) [52, §3.1] Symmetric (SS1536) 755.50 ms 195.27 ms 212.88 ms 414.79 ms
Asymmetric (BN256) [Min. PK] 23.13 ms 9.71 ms 13.70 ms 66.45 ms
Asymmetric (BN256) [Min. SK] 36.83 ms 7.07 ms 20.08 ms 66.42 ms
Asymmetric (BN256) [Min. CT] 34.41 ms 14.82 ms 11.08 ms 66.92 ms
Asymmetric (BN256) [Min. Assump] 29.90 ms 11.09 ms 13.03 ms 66.92 ms
Broadcast Encryption
BGW05 [59, §3.1] Symmetric (SS1536) (n = 10) 376.84 ms 140.27 ms 86.96 ms 68.65 ms
Asymmetric (BN256) [Min. PK] 55.29 ms 13.98 ms 11.457 ms 6.13 ms
Asymmetric (BN256) [Min. SK] 38.45 ms 5.82 ms 12.49 ms 8.122 ms
Asymmetric (BN256) [Min. CT] 37.75 ms 12.32 ms 11.18 ms 6.27 ms
Asymmetric (BN256) [Min. Assump] 37.74 ms 12.31 ms 11.186 ms 6.12 ms
Signature
ACDKNO [60, §5.3] Symmetric (SS1536) 395.23 ms 497.04 ms 275.99 ms 937.14 ms
Asymmetric (BN256) [Min. PK] 9.05 ms 17.19 ms 15.27 ms 147.62 ms
Asymmetric (BN256) [Min. Sig] 8.31 ms 22.65 ms 14.33 ms 152.60 ms
Asymmetric (BN256) [Min. Assump] 8.43 ms 22.23 ms 13.94 ms 147.77 ms
BLS [61, §] Symmetric (SS1536) - 93.20 ms 92.61 ms 167.73 ms
Asymmetric (BN256) [Min. PK] - 2.99 ms 0.74 ms 14.20 ms
Asymmetric (BN256) [Min. Sig] - 3.00 ms 0.75 ms 14.20 ms
Asymmetric (BN256) [Min. Assump] - 3.03 ms 0.69 ms 14.18 ms
CL04 [55, §3.1] (SS1536) - 464.7 ms 178.18 ms 973.48 ms
Asymmetric (BN256) [Min. PK] - 9.27 ms 15.12 ms 121.61 ms
Asymmetric (BN256) [Min. Sig] - 14.54 ms 7.38 ms 119.16 ms
Asymmetric (BN256) [Min. Assump] - 11.53 ms 15.32 ms 124.19 ms
WATERS05 [54, §7] (SS1536) - 720.75 ms 29.72 ms 135.00 ms
Asymmetric (BN256) [Min. PK] - 10.42 ms 2.02 ms 21.44 ms
Asymmetric (BN256) [Min. Sig] - 25.60 ms 1.43 ms 23.13 ms
Asymmetric (BN256) [Min. Assump] - 10.18 ms 2.01 ms 21.42 ms
•Average time measured over 100 test runs and the standard deviation in all test runs were within ±1% of the average.

Figure 3.9: A summary of the running times of the AutoGroup+ translations using
curve BN256 as compared to the running times using the roughly security-equivalent
symmetric curve SS1536 in MIRACL. The asymmetric setting plus AutoGroup+’s
optimizations cut the running times by one or two orders of magnitude.
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Conversion Num.
Time Solutions

BB04 HIBE [56, §4] (l = 2) - -
Asymmetric [Min. PK] 592 ms 16
Asymmetric [Min. SK] 641 ms 16
Asymmetric [Min. CT] 626 ms 16
Asymmetric [Min. Assump] 582 ms 16
BB04 HIBE [56, §4] (l = 6) - -
Asymmetric [Min. PK] 2361 ms 256
Asymmetric [Min. SK] 2019 ms 256
Asymmetric [Min. CT] 2023 ms 256
Asymmetric [Min. Assump] 2375 ms 256
BB04 HIBE [56, §4] (l = 7) - -
Asymmetric [Min. PK] 4555 ms 512
Asymmetric [Min. SK] 3644 ms 512
Asymmetric [Min. CT] 3662 ms 512
Asymmetric [Min. Assump] 4519 ms 512
BB04 HIBE [56, §4] (l = 8) - -
Asymmetric [Min. PK] 9344 ms 1024
Asymmetric [Min. SK] 7148 ms 1024
Asymmetric [Min. CT] 7194 ms 1024
Asymmetric [Min. Assump] 9299 ms 1024
BB04 HIBE [56, §4] (l = 9) - -
Asymmetric [Min. PK] 20629 ms 2048
Asymmetric [Min. SK] 15714 ms 2048
Asymmetric [Min. CT] 15690 ms 2048
Asymmetric [Min. Assump] 20904 ms 2048

Figure 3.10: A summary of the conversion times of AutoGroup+ for various lev-
els/degrees of complexity of BB04 HIBE [56, §4] and a variety of optimization options.
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times due to both the asymmetric setting and AutoGroup+’s optimizations, Figure 3.9

includes over 140 timing experiments, showing drastic improvements. In Figure 3.10,

we summarize the effect of scheme complexity on AutoGroup+ conversion time by

varying the complexity of BB HIBE. We note that even given a more complex scheme

than attempted by any other tool, AutoGroup+ still provides fast conversion times.

System Configuration. All of our benchmarks were executed on a standard workstation

that has a 2.20GHz quad-core Intel Core i7-2720QM processor with 8GB RAM running

Ubuntu 11.04 LTS, Linux Kernel version 2.6.38-16-generic (x86-64-bit architecture).

Our measurements only use a single core of the Intel processor for consistency. The

AutoGroup+ implementation utilizes the same building blocks as AutoGroup which

include the MIRACL library (v5.5.4) and/or RELIC cryptographic toolkit [62], Charm

v0.43 [50] in C++ or Python code, and the Z3 SMT solver (v4.3.2).

Limitations. In Section 3.3.1.1, we provide an example of a scheme which falls into a

category of things that Abe et al. warned about and on which AutoGroup gets confused.

AutoGroup tries to power through and split the hash output (which it cannot really

do because the discrete log is unknown), so while it eventually outputs some SDL,

this SDL is not a proper translation. Unlike AutoGroup, AutoGroup+ includes logic to

output a warning when processing such inputs and continues trying to translate the

scheme. If the verification check of a valid split fails (e.g., due to hash split), then

AutoGroup+ identifies the split as invalid and attempts checking the next best solution.

If there are no such solutions, AutoGroup+ outputs no solution.
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3.5.1 Comparison with ACSC/Charm

Our experiments have five schemes in common with public implementations in the

Advanced Crypto Software Collection [49] and Charm [50]. Where we have matches,

our new results confirm the security and optimality of those (unproven) implemented

translations.

For Waters 2009 [52], we compare with the Charm implementation by Fan Zhang.

For our PK-size optimization, our translation is 3 elements shorter (we split only g,

whereas they split g, w, u, h.) For our ciphertext-size optimization, it looks the closest

to theirs, but they do not match. Both translations have short ciphertexts leaving

all base elements in G1. However, the Charm translation appears to have shifted

some elements from the public key to the secret key and dropped some elements from

the master secret key (e.g., we split v and include both in the MSK, because that is

the naive way to do it, but they use the v split for G1 only in the Setup and then

drop it from the MSK.) While we cannot confirm the security of this implementation

using our tool (so we believe this is left as an open question), the tool did produce a

translation with the same ciphertext-size that is secure.

For BGW 2005 [59], we compared with the C implementation on the ACSC website

by Matt Steiner and Ben Lynn. Indeed, our translations that minimize the public

parameters or ciphertext size are the same, and the same as their manual translation.

We confirm security and PP/ciphertext-size optimality.

For BB HIBE [56], Charm has a full HIBE implementation. We tested it for a
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minimum of 2 levels, but their implementation matches ours for ciphertext minimiza-

tion, except that they add a precomputed pairing (element in GT ) to the public key

so that it does not have to be done per encryption. This impacts only efficiency. We

confirm security and ciphertext-size optimality.

For CL [55], we can confirm that the Charm implementation is secure and public-

key-size optimal. However, in the more likely event that one wants to minimize

signature size, AutoGroup+ found a translation with a shorter signature.

For BLS [61], our translations also match. This is a simple case with only two

translation options.

Charm [50] also includes variants of the Waters encryption and signature schemes [54]

from 2005, but we translated the original schemes (as did [12, 44]), so our translations

are not directly comparable to these Charm variants.

3.5.2 Comparison with Abe et al.

Abe et al. [44] tested their method on two encryption schemes: Waters 2005 [54]

and Waters 2009 (Dual System Encryption) [52]. They looked at minimizing the

size of the public key and the Type-III assumption. We conjecture that practitioners

would be more interested in minimizing ciphertext or private key size, so our summary

also includes those optimizations.

For Waters 2005, AutoGroup+ found the same construction as their semi-automated

method. As remarked in Section 3.3.1.1, their dependency graph for this scheme
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included some unnecessary dependencies. Waters [54] clearly states to choose g2, u′, ui

as fresh random generators, but Abe et al. explicitly “assume” that they are generated

from a common generator g. From a functionality and security standpoint of the

Type-I scheme, this distinction certainly does not matter. However, it does change the

intermediate dependency graphs, which could in some cases affect the output (though

it does not in this situation). Both their partial automation and our full automation

of Waters 2005 took under one second.

For Waters 2009, AutoGroup+ first appeared to find a PK-optimized construction

with one less group element than the PK-optimized construction of Abe et al. [44].

However, subsequent discussions [51] determined that this was merely the product of

a different counting method; the numbers reported in this work are the correct ones

for both AutoGroup+and the Abe et al. method.

In the original work [44], no schemes with interactive assumptions were reported

on. In subsequent communcations [51], Abe et al. demonstrated a translation for the

Camenisch-Lysyanskaya signatures [55] based on the interactive LSRW assumption.

We derived the SDL files for the scheme, assumption and proof and ran it through

AutoGroup+. The results matched.

Drawing and merging the dependency graphs by hand is tedious and becomes

infeasible for a complex scheme like [60]. In addition, the Abe et al. graph splitting

program took 1.75 hours for Waters09, whereas our tool handled everything in 6.5

seconds. Thus, we find that it is considerably easier and faster to transcribe the SDL
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and use AutoGroup+.

3.5.3 Comparison with AutoGroup

The AutoGroup tool [12] was used as the starting point for our implementa-

tion, hence the name of AutoGroup+. Our 48 translation experiments overlap with

AutoGroup in 14 points (seven schemes in common and they do fewer optimizations).

For these 14, the tools found the same constructions. However, a major difference is

that with AutoGroup+, we have security guarantees. This required us to write new

SDL descriptions for all the assumptions and proofs involved.

Indeed, one crucial question was how the security logic would increase translation

times. We focused our effort on leveraging an SMT Solver to help handle this security

logic, which kept the running times of AutoGroup+ within a few seconds of AutoGroup.

In addition to the security logic we added, we also found that the public key

optimization flag for encryption was not implemented. Because we wanted to compare

our results with [44], we implemented it.

AutoGroup was tested on one signature scheme omitted here. Boneh-Boyen [63]

has a nested proof structure that falls outside of the black box reductions considered

in this work.
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3.5.4 Comparison with manual translations

The Dual System Encryption scheme of Waters [52] has a few manual translations

with a security analysis. Ramanna, Chatterjee and Sarkar [46] provide a variety of

translations, one with the smallest public parameter/key size, at the cost of introducing

some mild complexity assumptions. Similarly, Chen, Lim, Ling, Wang and Wee [47]

presented a translation introducing the SXDH assumption, which achieved the shortest

ciphertext size. These results are superior to those derived by AutoGroup+ and [12, 44],

but it is not yet clear how to generalize and systematize the human creativity used.

3.6 Conclusions

Automation is the future for many cryptographic design tasks. This work success-

fully demonstrates automating a complex translation of a scheme from one algebraic

setting to another. There was a demonstrated need for such a compiler both for pairing

designers and implementors. Its realization combined and improved on contributions

from the systems [12] and theory [44] communities. The result is a practical tool,

AutoGroup+, that enables secure pairing translations for everyone.
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Chapter 4

New Domains for Cryptographic

Applications

This chapter is based on joint work with Matthew Green and Ian Miers at Johns

Hopkins University. The paper was originally published in Network and Distributed

System Security Symposium (NDSS), 2013, ISOC [18], while the complete version that

appears in this chapter was published at [64].

One of the barriers to the deployment of certain cryptographic schemes is often the

need to have a trusted party for some part of them, whether it is setup or part of the

actual execution of the scheme. These parties inherently require our trust, which we

might not want to give them, and provide a large target for compromise, which might

not always be detectable. In this chapter, we will discuss how to leverage a public,

append-only ledger, like Bitcoin’s blockchain, to remove the need for a trusted third
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party in anonymous credentials schemes. These “decentralized” anonymous credentials

are able to operate without a trusted credential issuer, allowing them to be practically

deployed in a variety of settings.

4.1 Introduction

Traditionally, making statements about identity on the Internet, whether actual

assertions of identity (“I am Spartacus”) or about one’s identity (“I am a gladiator”)

involves centralized providers who issue a credential attesting to that verification.

These organizations, which include Certificate Authorities, DNS maintainers, or login

providers like Google and Facebook, play a large role in securing internet infrastructure,

email, and financial transactions. Our increasing reliance on these providers raises

concerns about privacy and trust.

Anonymous credentials, introduced by Chaum [65] and developed in a line of

subsequent works [66, 67, 68, 69, 70], represent a powerful solution to this privacy

concern: they deprive even colluding credential issuers and verifiers of the ability to

identify and track their users. Although credentials may involve direct assertions of

identity, they may also be used for a large range of useful assertions, such as “my

TPM says my computer is secure,” “I have a valid subscription for content,” “I have a

certain reputation,” or “I am eligible to vote.”

Indeed, anonymous credentials have already seen several practical applications. The
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most widely deployed example is the Direct Anonymous Attestation (DAA) portion

of the Trusted Platform Module specification [71, 72]. DAA extends the standard

attestation capabilities of the Trusted Platform Module to allow for anonymous

attestations of TPM state and to admit pseudonyms that are cryptographically bound

to the TPM’s internal identity certificate.

Unfortunately, current anonymous credential systems such as DAA have a fun-

damental limitation: while identity certification itself can be performed by a variety

of centralized and decentralized processes, all existing anonymous credential systems

employ blind signatures and thus require the appointment of a central, trusted party

to issue the credentials. This issuer represents a single point of failure and its signing

key an obvious target for compromise, either of which can seriously damage the

reliability of the credential system. Moreover, compromise or issuer malfeasance can

be particularly difficult to detect in an anonymous credential system. As a result, in

distributed settings such as ad hoc or peer-to-peer networks, it may be challenging to

identify parties who can be trusted to play this critical role or verify that the trust is

well placed. The ability to remove this trusted party or even verify their continued

good behavior is a distinct advantage.

These challenges raise two questions: 1) is it possible to build practical anonymous

credential systems where the process of issuing credentials — if not the establishment

of identity itself — no longer depends on a trusted party? And 2) is it possible to do

so without the need for a central party?
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Our contribution. In this chapter we answer both questions in the affirmative,

proposing a new technique for constructing anonymous credentials which does not rely

on the continued integrity of signature keys. A consequence of this result is that our

anonymous credential system can be instantiated on-demand and operated by an ad

hoc group of mistrustful peers. We further show how to extend our credential scheme

to create updatable (e.g., stateful) anonymous credentials in which users obtain new

credentials based on changing properties of their identity.

As a basic ingredient, our protocols require the existence of a public append-only

ledger. When the ledger is implemented using trusted hardware, or a central party

who is audited by the rest of the network, we obtain a positive answer only to the

first question. To answer both questions in the affirmative we require that 1) this

ledger be maintained in a distributed manner that need not require a trusted party or

parties and 2) the identity claims we are issuing credentials on must be verifiable by

everyone participating in the system. We refer to this new primitive as a decentralized

anonymous credential system and elaborate on its properties herein. We note that

one promising instantiation of a decentralized ledger is the “block chain” construction

used by Bitcoin [73] to implement a decentralized digital currency. Not only can this

technology be used to actually construct a separate distributed ledger for identities,

but using existing techniques for embedding small amounts of data in the block

chain [74] we can leverage Bitcoin’s existing ledger and protocol without modification

to transform any reliable storage mechanism (whether a central server or a distributed

110



CHAPTER 4. NEW DOMAINS FOR CRYPTOGRAPHIC APPLICATIONS

mechanism like a DHT) into an append-only ledger.

We show that our techniques have several immediate applications. They include:

• Decentralized Direct Anonymous Attestation. We show how to decen-

tralize the Direct Anonymous Attestation protocol [71], allowing individual col-

lections of nodes in an ad hoc or distributed system to securely assert properties

of their system state. We provide an exemplary description of our decentralized

(dDAA) construction.

• Anonymous resource management in ad hoc networks. Peer-to-peer

networks are vulnerable to impersonation attacks, where a single party simulates

many different peers in order to gain advantage against the network [75]. We

show that our credentials may be useful in mitigating these attacks. The basic

approach is to construct an anonymous subscription service [76, 77, 78] where

parties may establish unique or costly pseudonyms (for example by submitting a

valid TPM credential or paying a sum of digital currency). They can then assert

possession on their identity under a specific set of restrictions, e.g., a limit to

the number of requests they can make in each time period.

• Auditable credentials. Our techniques may also be used to extend existing

centralized credential systems by allowing for public audit of issued credentials.

This helps to guard against compromised credential issuers and allows the network

to easily detect and revoke inappropriate credential grants. For example, in
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Direct Anonymous Attestation (DAA) one might want to prevent a malicious

DAA authority from covertly granting certificates to users who do not have a

TPM or whose TPM did not attest.

Is decentralized credential issuance valuable? Before proceeding to describe our proto-

cols, it is worth asking whether decentralizing the issuance of anonymous credentials

is a useful goal at all. After all, identity credentialing is frequently a centralized

process. One might ask: what do we gain by decentralizing the issuance of anonymous

credentials?

A first response to this question is that most anonymous credential systems

separate the process of issuing anonymous credentials from the process of certifying

the underlying identity claims. Frequently, the claims being certified are publicly

verifiable. For example, each TPM ships with an Endorsement Key (EK). Identity

assertions using the EK could be publicly verifiable merely by checking the certificate

chain on the EK certificate and engaging in a challenge/response protocol to ensure

the TPM can read nonces encrypted to the EK.1 The problem is that transactions

conducted using this certificate are linked to the particular TPM device.

DAA solves this issue by having a central party issue new anonymous credentials to

a device. Organizations must configure a local server to validate identity certifications

and issue the corresponding anonymous credential. All this server does is transform a

publicly verifiable identity assertion into an anonymous one. This adds a cumbersome
1Conceptually the TPM’s EK can sign a statement and forgo any interactive issuing process. The

TPM 1.1 spec places an arbitrary restriction against using the EK RSA key for signing.
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step to the anonymous attestation system and also introduces a point of failure. Indeed,

this pattern of a trusted party transforming existing credentials into an anonymous

credential repeats in many settings. Allowing for the distributed issue of anonymous

credentials, even if they can only certify centrally validated assertions, removes this

additional point of trust.

An obvious question is why, if the identity assertion is publicly verifiable, do we

need any transformation mechanism at all? Why not present the information we

used to convince the authority to issue the credential to everyone? The issue is that

proving an identity statement may reveal far more information than the statement

itself. For example, a driver’s license can prove to anyone that the bearer is over

21 but also reveals a whole host of other information that the statement that “some

trusted mechanism says I am over 21” does not. Because anonymous credentials add a

layer of indirection between certifying that an identity statement is true and actually

showing that statement, they fix this issue and avoid linking any use of the credential

to the information used to issue it.

A more interesting question is whether identity certification itself can be decentral-

ized. At least for certain claims, this seems like a promising direction. For example,

non–extended validation SSL certificates are simply an assertion that the bearer

controls the specified domain.2 Similarly, DNS names are generally an assertion that

the owner was the first to register that name and wants it mapped to certain values
2In practice, CA’s usually verify that the bearer controls some administrator email such as

admin@domain or webmaster@domain.
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(e.g., an IP address). In both cases, since these claims are publicly verifiable by simple

criteria, a distributed set of entities can easily validate these claims for themselves.

In fact, a now largely unused fork of Bitcoin, Namecoin [79], shows that such

modifications are readily achievable. Namecoin uses Bitcoin’s append-only ledger

mechanism to maintain such first-come first-serve name-value mappings. Individuals

register a name and an owning public key. Provided they are the first to register that

name, they can make arbitrary updates to the associated value by signing them with the

registered key. A DNS system built atop this — DotBIT — is already in experimental

deployment. Namecoin can also be used to maintain mappings from names to public

keys. One could imagine more complex semantics for allowing name registration —

e.g., proofs of work, proofs of payment, TPM attestations, publicly verifiable proofs of

storage and retrievability of files [80] — supporting more sophisticated functionality

than simple DNS.

4.1.1 Overview of Our Construction

We now provide a brief overview for our construction, which is inspired by the

electronic cash proposals of Sander and Ta-Shma [81] and Miers et al. [82].

Issuing and showing credentials. The ability to establish identities and bind them

to a public key ensures that users can assert their identity in a non-anonymous fashion,

simply by issuing signatures from the corresponding secret key. Unfortunately, this does

not immediately show us how to construct anonymous credentials, since traditional
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anonymous credentials consist of a signature computed by a credential issuer. Since

no central party exists to compute the credential signature, this approach does not

seem feasible without elaborate (and inefficient) use of threshold cryptography.3

We instead take a different approach. To issue a new credential in our decentralized

system, the user establishes an identity and related attributes as described above.

She then attaches a vector commitment to her secret key skU along with the identity

and attribute strings that are contained within her identity assertion. Finally, she

includes a non-interactive proof that the credential is correctly constructed, i.e., that

the attributes in the commitment correspond to those revealed in the identity assertion.

The network will accept the identity assertion if and only if the assertion is considered

correct and the attached proof is valid.

At a later point an individual can prove possession of such a credential by proving

the following two statements in zero-knowledge:

1. She knows a commitment Ci in the set (C1, . . . , CN ) of all credentials previously

accepted to the block chain.

2. She knows the opening (randomness) for the commitment.

In addition to this proof, the user may simultaneously prove additional statements

about the identity and attributes contained within the commitment Ci. The challenge

in the above construction is to efficiently prove statements (1) and (2), i.e., without
3A possibility is to use ring signatures [83], which do not require a single trusted signer. Un-

fortunately, these signatures grow with the number of participating signers and require expensive
communication to generate.
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producing a proof that scales with N . Our solution, which adapts techniques from

distributed e-cash systems [82], circumvents this problem by using an efficient publicly-

verifiable accumulator [69] to gather the set of all previous commitments together.

Using this accumulator in combination with an efficient membership proof due to

Camenisch and Lysyanskaya [84], we are able to reduce the size of this proof to O(λ)

for security parameter λ, rather than the O(N · λ) proofs that would result from a

naive OR proof.

Of course, merely applying these techniques does not lead to a practical credential

system. A key contribution of this work is to supply a concrete instantiation of the

above idea under well-studied assumptions and to prove that our construction provides

for consistency of credentials (ensuring multiple users cannot pool their credentials),

the establishment of pseudonyms, and a long set of extensions built upon anonymous

credentials. Last but not least, we need to formally define and prove the security of a

distributed anonymous credential scheme and provide some model for the distributed

ledger. Our instantiation requires a single trusted setup phase, after which the trusted

party is no longer required.4

4.1.2 Outline of This Chapter

The remainder of this chapter is organized as follows. In the next section we

discuss how to get a distributed bulletin board. In §4.3 we discuss specific applications
4In §4.7 we discuss techniques for removing this trusted setup requirement.

116



CHAPTER 4. NEW DOMAINS FOR CRYPTOGRAPHIC APPLICATIONS

for decentralized anonymous credentials and argue that these systems can be used

to solve a variety of problems in peer-to-peer networks. In §4.4 we define the notion

of a decentralized anonymous credential scheme and provide an ideal-world security

definition. In §4.5 we describe the cryptographic building blocks of our construction,

and in §4.6 we provide an overview of our basic construction as well as a specific

instantiation based on the Discrete Logarithm and Strong RSA assumptions. In

§4.7 we extend our basic construction to add a variety of useful features, including

k-show credentials, stateful credentials, and credentials with hidden attributes. In

§4.8 we describe the implementation and performance of a prototype library realizing

our credential system. Finally, in §4.9, we show how to use our library to build a

distributed version of anonymous attestation.

4.2 Real-World Bulletin Boards and Decen-

tralized Bulletin Boards

A core component of our system is an append-only bulletin board we can use

to post issued credentials. The board must provide two strong security guarantees:

(1) that credentials must not be tampered with once added to the board and (2) all

parties will share a consistent view of the board. For the distributed instantiation we

additionally require (3) no party can control the addition of credentials to the board.

We detail ways to achieve both distributed and centralized versions of such a bulletin
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board here.

4.2.1 Bitcoin

Bitcoin is a distributed currency system [73], which has grown since 2009 to

handle between $2–$5 million USD/day in transaction volume in a highly adversarial

environment. The heart of Bitcoin is the block chain, which serves as an append-only

bulletin board maintained in a distributed fashion by the Bitcoin peers. The block

chain consists of a series of blocks connected in a hash chain.5 Every Bitcoin block

memorializes a set of transactions (containing an amount of bitcoin, a sender, and a

recipient) that are collected from the Bitcoin broadcast network. Thus the network

maintains a consensus about what transactions have occurred and how much money

each user has.

Bitcoin peers, who are free to enter and leave the network, compete to generate

the next block by trying to calculate H(block || nonce) < t where H is a secure hash

function and t is an adjustable parameter. This process is known as mining, and the

difficulty level t is adjusted so that a block is created on average every 10 minutes.

When a block is generated, it is broadcast to the network and, if valid, accepted as

the next entry in the block chain. Bitcoin and related systems provide two incentives

to miners: (1) mining a block (i.e., completing the proof of work) entitles them to a

reward6 and (2) nodes can collect fees from every transaction in a block they mine.
5For efficiency reasons, the hash chain is actually a Merkle Tree.
6For Bitcoin this reward is set at 25 BTC but will eventually diminish and be eliminated.
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While Bitcoin uses the hash chain for the specific purpose of implementing an

electronic currency, the usefulness of the Bitcoin bulletin board has already been

recognized by several related applications. One spinoff of the Bitcoin concept is

Namecoin [79], a fork of Bitcoin that uses the block chain to maintain key–value

mappings. Namecoin is currently being used to implement an experimental DNS

replacement, dotBIT [85]. Users pay a small fee to register a key–value pair along

with a controlling public key. They can then make updates to the pair provided (1)

the updates are signed by that key and (2) if necessary, they pay a transaction fee.7

Due to this flexibility we use the Namecoin software in our implementations, but we

stress that the same techniques can be used with nearly any hash chain based network,

including mature deployments such as Bitcoin.

Because of the way Bitcoin’s block chain is constructed, recently added blocks

maybe be removed, and, more importantly, it is possible to introduce short-term forks

in the block chain that could be used to convince a single party that a poisoned-pill

credential was issued and hence identify them (see §4.4.3 for more details). One

solution, which is commonly used in Bitcoin, is to wait until a block has several blocks

on top of it (known as confirmations) before using it. Typically, waiting six blocks, or

roughly 60 minutes, is sufficient. Of course, peers are free to show credentials based

off blocks sooner than that as doing so does not make the show less secure. However

it comes at an increased privacy risk.
7Currently, neither Namecoin nor Bitcoin require significant transaction fees.
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4.2.2 A Central Ledger

An alternative to using Bitcoin’s block chain technology is to simply use a central

service to maintain an append-only ledger. This service must be trusted to give a

consistent view of the credential ledger to all parties. The most effective way to do

this is with trusted hardware (e.g., TPM attestations) that ensures that (1) the list is

append only and (2) the same version of the list is shown to everyone for a given time

period.

For lower security systems, it may be possible to simply run a service that signs the

list and have users audit the system by periodically comparing the list they received.

Similar mechanisms exist for auditing SSL authorities (e.g., Google’s Certificate

Transparency project). Tampering would not only be readily apparent but, due to the

signature on the list, provable. This, however, only acts as a deterrent to tampering

as it would not be detected until the next such comparison. As such tampering can

identify users when they authenticate, we only recommend this approach when either

the consequences of such a privacy breach are low or loss of reputation to an authority

when its malfeasance is subsequently detected is prohibitively high.

4.2.3 A Hybrid Approach

A third approach is to use some reliable storage mechanism (e.g., a central server

or a robust DHT) to store credential requests and insert checkpoints into Bitcoin’s
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actual block chain to ensure the ledger is append only. This can be done without any

modification to Bitcoin. We can achieve this by periodically (e.g., every 10 minutes)

inserting the digest of the ledger into the Bitcoin block chain. One way to accomplish

this is by using CommitCoin [74] which encodes information into the keys used for

transactions without destroying funds.8

Our one last technical challenge is to actually mark these transactions as checkpoints

for anyone to see. To accomplish this we propose leveraging multi–sig transactions9

where one key encodes the checkpoint with CommitCoin’s techniques and another is a

marker address that designates a checkpoint. For a distributed storage service, this

requires that the network elect a node or set of nodes to hold the marker key and

insert checkpoints and elect a new set of nodes with a fresh marker if the current set

either fails to insert checkpoints or inserts too many (either case is a denial of service

attack and will not compromise the integrity or anonymity of credentials).

4.3 Applications

In this section we discuss several of the applications facilitated by decentralized

anonymous credentials. While we believe that these credential systems may have

applications in a variety of environments, we focus specifically on settings where

trusting a central credential issuer is not an option or where issued credentials must
8The naive approach replaces the public key specifying the recipient with the hash of the data,

making it impossible to retrieve the funds. CommitCoin fixes this.
9Transactions that require signatures from multiple parties to redeem.
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be publicly audited.

Mitigating Sybil attacks in ad hoc networks. Impersonation attacks can have

grave consequences for both the security and resource allocation capabilities of ad

hoc networks. A variety of solutions have been proposed to address this problem.

One common approach is to require that clients solve computational puzzles [86]. For

example, for a challenge c and a difficulty target t, find a nonce n such that H(c||n) < t.

Solving such a puzzle takes a meaningful amount of effort — thus deterring Sybil

attacks — and, as anyone can hash n and c, is publicly verifiable. For a centralized

service, this proof can be done once per client on registration. In a peer-to-peer

system, however, far more complex mechanisms are needed to avoid having to provide

a proof of work per each pair of interacting peers [86]. We stress that the issue with

distributed approaches is not the lack of publicly verifiable puzzles but the number of

puzzles and who they are sent to. This is even more difficult if we require the system

to be anonymous.

Our solution to this problem is to use k-show anonymous credentials. In this

approach, peers establish a single credential by solving a proof of work (similar to

using a central service). This allows the peer to obtain a credential that can be used

a limited number of times or a limited number of times within a given time period.

When a peer exceeds the k-use threshold (e.g., by cloning the credential for a Sybil

attack), the credential can be identified and revoked. We note that this proposal is

a distributed variant of the anonymous subscription service concept, which was first
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explored by Damgård et al. [76] and Camenisch et al. [77].

Managing resource usage. In networks where peers both contribute and consume

resources, ensuring fair resource utilization can be challenging. For example, a storage

network might wish to ensure peers provide as much storage as they consume [87]

or ensure that peers fairly use network bandwith [88]. This can be problematic in

networks that provide anonymity services (e.g., Tor), where peers may be reluctant to

identify which traffic they originated. An anonymous credential system allows peers to

identify their contributions to routing traffic in exchange for a credential which they

can then use to originate traffic. Of course, we are restricted to issuing credentials on

metrics which peers can publicly establish. Thankfully this is a fairly expressive set.

Eigenspeed [89] allows peer-to-peer networks to form accurate bandwidth estimates

for all peers even in the presence of active attackers. Similarly, there exist publicly

verifiable proofs of retrievability that can be used to verify storage of a file [80]. Both

of these are effective metrics for resource management.

4.4 Decentralized Anonymous Credentials

A traditional anonymous credential system has two types of participants: users and

organizations. Users, who each have a secret key skU , are known by pseudonyms both

to each other and organizations. NymO
A, for example, is the pseudonym of user A to

organization O. Decentralized anonymous credentials have no single party representing
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the organization. Instead, this party is replaced with a quorum of users who enforce a

specific credential issuing policy and collaboratively maintain a list of credentials thus

far issued. For consistency with prior work, we retain the term “organization” for this

group.

A distributed anonymous credential system consists of a global transaction ledger, a set

of transaction semantics, as well as the following (possibly probabilistic) algorithms:

• Setup(1λ)→ params. Generates the system parameters.

• KeyGen(params)→ skU . Run by a user to generate her secret key.

• FormNym(params,U , E, skU) → (NymE
U , skNymE

U
). Run by a user to generate

a pseudonym NymE
U and an authentication key skNymE

U
between a user U and

some entity (either a user or an organization) E.

• MintCred(params, skU , NymO
U , skNymO

U
, attrs, aux) → (c, skc, πM). Run by a

user to generate a request for a credential from organization O. The request

consists of a candidate credential c containing public attributes attrs; the user’s

key skU ; auxiliary data aux justifying the granting of the credential; and a proof

πM that (1) NymO
U was issued to the same skU and (2) the credential embeds

attrs.

• MintVerify(params, c,NymO
U , aux, πM)→ {0, 1}. Run by nodes in the organiza-

tion to validate a credential. Returns 1 if πM is valid, 0 otherwise.
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• RegNym(NymO
U ,U , O): U logs into TP with skU to register a nym with organization O.

If she does not have an account, she first creates one. She gives TP a unique random string
NymO

U for use as her nym with O. TP checks that the string is indeed unique and if so
stores (NymO

U ,U , O) and informs U .

• MintCred(NymO
U , O, attrs, aux): U logs into TP authenticating with skU . If NymO

U is not
U ’s nym with O or skU is wrong, reject. Otherwise, TP checks that aux justifies issuing a
credential under O’s issuing policy and if so generates a unique random id id and stores
(NymO

U ,U , id , attrs). It then adds id to its public list of issued credentials for O.

• ShowOnNym(NymO
U ,Nym

V
U , O, V, attrs,C): U logs into TP with skU . If NymO

U is not
U ’s nym with O or NymV

U is not U ’s nym with V , reject. Else, TP checks if the tuple
(NymO

U ,U) exists, if id associated with that tuple is in the set of credentials C that U
provided, and if the given attributes attrs match the attributes associated with that tuple.
If all conditions hold, TP informs V that NymV

U has a credential from O in the set C. V
then retrieves the set of credentials CO issued by O from TP and accepts TP ’s assertion if
and only if C ⊆ CO and O’s issuing policy is valid ∀c′ ∈ CO.

• GetCredList(O): TP retrieves the list of credentials for organization O and returns it.

Figure 4.1: Ideal Functionality. Security of a basic distributed anonymous credential
system.

• Show(params, skU ,Nym
V
U , skNymV

U
, c, skc,CO) → πS. Run by a user to non-

interactively prove that a given set of attributes are in a credential c in the set

of issued credentials CO and that c was issued to the same person who owns

NymV
U . Generates and returns a proof πS.

• ShowVerify(params,NymV
U , πS,CO) → {0, 1}. Run by a verifier to validate a

shown credential. Return 1 if πS is valid for NymV
U , 0 otherwise.

We now describe how these algorithms are used in the context of an anonymous

credential system.
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4.4.1 Overview of the Protocol Semantics

To realize the full anonymous credential system, we integrate the above algorithms

with a decentralized hash chain based bulletin board as follows. We assume a bulletin

board such as Namecoin that provides a means for storing arbitrary key–value pairs.10

We provide a concrete realization of our protocols in §4.6 and §4.8.

Formulating a pseudonym. Prior to requesting a new credential, the user executes

the KeyGen algorithm to obtain skU and then runs the FormNym algorithm to obtain

a pseudonym for use with this organization. This requires no interaction with the

bulletin board, hence the user can perform these actions offline.

Obtaining a credential. To obtain a credential, the user places the organization name

and some public identity assertion — for example, a TPM attestation and AIK

certificate chain — into the auxiliary data field aux, then executes the MintCred

routine to obtain a credential and a signature of knowledge on that information. She

then formulates a transaction including both the resulting credential and the auxiliary

data and broadcasts it into the hash chain network, along with (optionally) some sum

of digital currency to pay for the transaction fees. She retains the secret portion of

the credential.

Once received by the network, all parties can verify the correctness of the cre-

dential and the identity assertion using the MintVerify routine and whatever external
10While this functionality is supported by default in Namecoin, it is also possible to store arbitrary

data in existing block chains such as the Bitcoin chain.
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procedures are needed to verify the auxiliary data. This process can be conducted

directly by the network nodes, or it can be validated after the fact by individual

credential verifiers.

Showing a credential. When a user wishes to show a credential to some Verifier, she

first scans through the bulletin board to obtain a set CO consisting of all candidate

credentials belonging to a specific organization. She next verifies each credential using

the MintVerify routine (if she has not already done so) and validates the auxiliary

identity certification information. She then runs the Show algorithm to generate a

credential, which she transmits directly to the Verifier. The Verifier also collects the

set of credentials in CO and validates the credential using the ShowVerify routine. She

accepts the credential certification if this routine outputs 1.

4.4.2 Security

We define our system in terms of an ideal functionality implemented by a trusted

party TP that plays the role that our cryptographic constructions play in the real

system. All communication takes place through this ideal trusted party. Security and

correctness for our system comes from a proof that this ideal model is indistinguish-

able from the real model provided the cryptographic assumptions hold. Our ideal

functionality is outlined in Figure 4.1.

It consists of organizations who issue credentials and users who both prove that

they have these credentials and verify such proofs. Organizations have only two things:
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1) an efficient and publicly evaluable policy, policyO, for granting credentials and 2) an

append-only list of credentials meeting that policy maintained by the trusted party.

4.4.3 Trusting the Ledger

An obvious question is whether the append-only transaction ledger is necessary at

all. Indeed, if the list of valid credentials can be evaluated by a set of untrusted nodes,

then it seems that a user (Prover) could simply maintain a credential list compiled

from network broadcasts and provide this list to the Verifier during a credential show.

However, this approach can enable sophisticated attacks where a malicious Verifier

manipulates the Prover’s view of the network to include a poisoned-pill credential that

— although valid by the issuing heuristic — was not broadcast to anyone else. When

the Prover authenticates, she has completely identified herself.

The distributed transaction ledgers employed by networks such as Bitcoin and

Namecoin provide a solution to this problem, as their primary purpose is to ensure a

shared view among a large number of nodes in an adversarial network. In practice this

is accomplished by maintaining a high degree of network connectivity and employing

computational proofs of work to compute a hash chain.

For an attacker to execute the poisoned credential attack against such a ledger,

she would need to both generate and maintain a false view of the network to delude

the Prover. This entails both simulating the Prover’s view of the rest of the network

complete with all its computational power and forging any assurances the Prover might
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expect from known peers about the present state of the network. If the Prover has a

reasonable estimate of the actual network’s power (e.g., she assumes it monotonically

increases), then an attacker must actually have equivalent computational power to

the entirety of the network to mount such an attack. For the purposes of this paper

we assume such active attacks are impossible even if the attacker controls a simple

majority of the computational power. Attackers are still free to attempt any and all

methods of retroactively identifying a user and mount any other active attacks.

4.5 Preliminaries

We make use of the following complexity assumptions and cryptographic building

blocks to construct our scheme.

4.5.1 Complexity Assumptions

The security of our scheme relies on the following two complexity assumptions:

Strong RSA Assumption [90, 91]. Given a randomly generated RSA modulus n

and a random element y ∈ Z∗
n, it is hard to compute x ∈ Z∗

n and integer exponent

e > 1 such that xe ≡ y mod n. We can restrict the RSA modulus to those of the form

pq, where p = 2p′ + 1 and q = 2q′ + 1 are safe primes.

Discrete Logarithm (DL) Assumption [92]. Let G be a cyclic group with

generator g. Given h ∈ G, it is hard to compute x such that h = gx.
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4.5.2 Cryptographic Building Blocks

Zero-knowledge proofs. In a zero-knowledge protocol [93] a user (the prover)

proves a statement to another party (the verifier) without revealing anything about

the statement other than that it is true. Our constructions use zero-knowledge proofs

that can be instantiated using the technique of Schnorr [94], with extensions due to,

e.g., [95, 96, 97, 98]. We convert these into non-interactive proofs by applying the

Fiat-Shamir heuristic [99]. When we use these proofs to authenticate auxiliary data,

we refer to the resulting non-interactive proofs as signatures of knowledge as defined

in [100].

When referring to these proofs we will use the notation of Camenisch and

Stadler [101]. For instance, NIZKPoK{(x, y) : h = gx ∧ c = gy} denotes a non-

interactive zero-knowledge proof of knowledge of the elements x and y that satisfy

both h = gx and c = gy. All values not enclosed in ()’s are assumed to be known to

the verifier. Similarly, the extension ZKSoK[m]{(x, y) : h = gx ∧ c = gy} indicates a

signature of knowledge on message m.

Accumulators [82]. An accumulator allows us to combine many values into one

smaller value (the accumulator). We then have a single element, called the witness,

that allows us to attest to the fact that a given value is actually part of the accumulator.

Our constructions use an accumulator based on the Strong RSA assumption. The

accumulator we use was first proposed by Benaloh and de Mare [102] and later

improved by Baric and Pfitzmann [90] and Camenisch and Lysyanskaya [69]. We
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describe the accumulator using the following algorithms:

• AccumSetup(λ)→ params. On input a security parameter, sample primes p, q

(with polynomial dependence on the security parameter), compute N = pq, and

sample a seed value u ∈ QRN , u ̸= 1. Output (N, u) as params.

• Accumulate(params,C) → A. On input params (N, u) and a set of prime

numbers C = {c1, . . . , ci | c ∈ [A ,B]},11 compute the accumulator A as

uc1c2···cn mod N .

• GenWitness(params, v,C)→ ω. On input params (N, u), a set of prime num-

bers C as described above, and a value v ∈ C, the witness ω is the accumulation

of all the values in C besides v, i.e., ω = Accumulate(params,C \ {v}).

• AccVerify(params,A, v, ω) → {0, 1}. On input params (N, u), an element v,

and witness ω, compute A′ ≡ ωv mod N and output 1 if and only if A′ = A, v

is prime, and v ∈ [A ,B] as defined previously.

For simplicity, the description above uses the full calculation of A. Camenisch and

Lysyanskaya [69] observe that the accumulator may also be incrementally updated,

i.e., given an existing accumulator An it is possible to add an element x and produce

a new accumulator value An+1 by computing An+1 = Ax
n mod N .12

11“Where A and B can be chosen with arbitrary polynomial dependence on the security parameter,
as long as 2 < A and B < A2." [84] For a full description, see [84, §3.2 and §3.3].

12This allows the network to maintain a running value of the accumulator and prevents individual
nodes from having to recompute it [82].
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Camenisch and Lysyanskaya [69] show that the accumulator satisfies a strong

collision-resistance property if the Strong RSA assumption is hard. Informally, this

ensures that no p.p.t. adversary can produce a pair (v, ω) such that v /∈ C and yet

AccVerify is satisfied. Additionally, they describe an efficient zero-knowledge proof

of knowledge that a committed value is in an accumulator. We convert this into a

non-interactive proof using the Fiat-Shamir transform and refer to the resulting proof

using the following notation:

NIZKPoK{(v, ω) : AccVerify((N, u), A, v, ω) = 1}.

Verifiable Random Functions. A pseudorandom function (PRF) [103] is an effi-

ciently computable function whose output cannot be distinguished (with non-negligible

advantage) from random by a computationally bounded adversary. We denote the

pseudorandom function as fk(·), where k is a randomly chosen key. A number of PRFs

possess efficient proofs that a value is the output of a PRF on a set of related public

parameters. Two examples of this are the Dodis-Yampolskiy (DY) PRF [104] and the

Naor-Reingold PRF [105].

Pedersen Commitments. A commitment scheme allows a user to bind herself to a

chosen value without revealing that value to the recipient of the commitment. This

commitment to the value ensures that the user cannot change her choice (i.e., binding),

while simultaneously ensuring that the recipient of the commitment does not learn
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anything about the value it contains (i.e., hiding) [106]. In Pedersen commitments [107],

the public parameters are a group G of prime order q, and generators (g0, . . . , gm).

In order to commit to the values (v1, . . . , vm) ∈ Zm
q , pick a random r ∈ Zq and set

C = PedCom(v1, . . . , vm; r) = gr0
∏m

i=1 g
vi
i .

4.6 A Concrete Instantiation

We now provide a concrete instantiation of our construction and prove the security

of our construction under the Discrete Logarithm and Strong RSA assumptions.

4.6.1 Overview of the Construction

Alice’s pseudonym with a given organization/user is an arbitrary identity that she

claims in a transaction. She tags this value with a Pedersen commitment to her secret

key sk and signs the resulting transaction using a signature of knowledge that she

knows the secret key. There is no separate process for registering a pseudonym: instead

they are simply used in issue and show to allow operations to be linked if necessary.

Alice’s credential c is a vector Pedersen commitment to both sk and a set of public

attributes attrs = a0, . . . , am, which Alice also includes in her credential. To issue a

credential, Alice provides the network with a credential, a pseudonym, her attributes,

optionally some auxiliary data justifying the credential issue (e.g., a proof of work

that Alice is not a Sybil), and a proof that (1) the commitment and the pseudonym
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contain the same secret key and (2) the attributes are in some allowed set. If all of

this validates, the entry is added to the ledger. Alice shows the credential under a

different pseudonym by proving in zero-knowledge that (1) she knows a credential

on the ledger from the organization, (2) the credential opens to the same sk as her

pseudonym, and (3) it has some attributes.

4.6.2 The Construction

The full construction is provided in Figure 4.2. We use Pedersen commitments and

a Strong RSA based accumulator to instantiate the core of the protocol. The proofs

of knowledge in the Show algorithm are conducted using Schnorr-style proofs modified

using the Fiat-Shamir heuristic as in previous work [94, 69]. The implementation of

the proofs are similar to those used by Miers et al. in [82].

Theorem 4.6.1. The basic distributed anonymous credential system described in

Figure 4.2 is secure in the random oracle model under the Strong RSA and the

Discrete Logarithm assumptions.

We provide a sketch of the proof of Theorem 4.6.1 in Appendix E.
13“Where A and B can be chosen with arbitrary polynomial dependence on the security parameter,

as long as 2 < A and B < A2." [84]. For a full description, see [84, §3.2 and §3.3].
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• Setup(1λ) → params. On input a security parameter λ, run AccumSetup(1λ) to obtain the
values (N, u). Next generate primes p, q such that p = 2wq + 1 for w ≥ 1. Let G be an order-q
subgroup of Z⋆

p, and select random generators g0, . . . , gn such that G = ⟨g0⟩ = · · · = ⟨gn⟩. Output
params = (N, u, p, q, g0, . . . , gn).

• KeyGen(params)→ sk . On input a set of parameters params, select and output a random master
secret sk ∈ Zq.

• FormNym(params, sk)→ (Nym , skNym ). Given a user’s master secret sk , select a random r ∈ Zq

and compute Nym = gr0g
sk
1 . Set skNym = r and output (Nym , skNym ).

• MintCred(params, sk ,NymO
U , skNymO

U
, attrs, aux) → (c, skc, πM ). Given a nym NymO

U and its
secret key skNymO

U
; attributes attrs = (a0, . . . , am) ∈ Zq; and auxiliary data aux, select a random

r′ ∈ Zq and compute c = gr
′

0 gsk1
m∏
i=0

gai
i+2 such that {c prime | c ∈ [A ,B]}.13 Set skc = r′ and

output (c, skc, πM ) where πM is a signature of knowledge on aux that the nym and the credential
both belong to the same master secret sk , i.e.:

πM = ZKSoK[aux]{(sk , r′, r) :

c = gr
′

0 gsk1

m∏
i=0

gai
i+2 ∧ NymO

U = gr0g
sk
1 }

Finally, submit the resulting values (c, πM , attrs,NymO
U , aux) to the public transaction ledger.

• MintVerify(params, c, attrs,NymO
U , aux, πM ) → {0, 1}. Given a credential c, attributes attrs, a

nym NymO
U , and proof πM , verify that πM is the signature of knowledge on aux. If the proof

verifies successfully, output 1, otherwise output 0. The organization nodes should accept the
credential to the ledger if and only if this algorithm returns 1.

• Show(params, sk ,NymV
U , skNymV

U
, c, attrs, skc,CO)→ πS . Given a user’s master secret sk ; a nym

NymV
U between the user and the verifier and its secret key skNymV

U
; a credential c and its secret

key skc; the attributes (a0, . . . , am) used in the credential; and a set of credentials C, compute
A = Accumulate(params,CO) and ω = GenWitness(params, c,CO) and output the following proof
of knowledge:

πS = NIZKPoK{(sk , ω, r′, c, r,NymV
U ) :

AccVerify(params,A, c, ω) = 1 ∧ c = gr
′

0 gsk1

m∏
i=0

gai
i+2 ∧ NymV

U = gr0g
sk
1 }

• ShowVerify(params,NymV
U , πS ,CO) → {0, 1}. Given a nym NymV

U , proof of possession of a
credential πS , and the set of credentials issued by organization O CO, first compute A =
Accumulate(params,CO). Then verify that πS is the aforementioned proof of knowledge on
c, CO, and NymV

U using the known public values. If the proof verifies successfully, output 1,
otherwise output 0.

Figure 4.2: Our basic decentralized anonymous credential scheme.
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4.7 Extensions

We consider extending the basic system in several ways.

4.7.1 k-show Credentials

Damgård et al. [76] first suggested a credential system where users could only

authenticate once per time period. Camenisch et al. [77] independently proposed a

significantly more efficient construction that allows for up to k authentications per

time period, with the ability to revoke all cloned credentials if a credential was used

beyond this limit. Camenisch et al. suggested that these techniques might be used to

build anonymous subscription services, allowing users to access a resource (such as a

website) within reasonable bounds. We briefly show that these same techniques can

be applied to our basic credential system.

In the system of [77] an authority issues a credential on a user’s secret seed s. To

show a credential for the ith time in validity period t, the user generates a serial number

S using a verifiable random function (VRF) as S = fs(0||t||i). She also includes a

non-interactive zero-knowledge proof that this serial number is correctly structured.14

This technique can be applied to our construction provided we can securely store

a seed for the VRF. This is easy: the user simply generates a random seed s and

includes this value in the commitment she stores in the transaction ledger. We note
14The re-use of a credential would result in a repeated serial number, and yet the nature of the

VRF’s output (for an honest user) ensures that attackers cannot link individual shows.
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that for the trivial case of one-time show credentials, we can simply reveal the seed.

For k-show, the user provably evaluates the VRF on the seed plus a secret counter.15

4.7.2 Credentials with Hidden Attributes

In our basic construction of §4.6, users provide a full list of attributes when

requesting and showing credentials. While this is sufficient for many applications,

there exist cases where a user might wish to conceal the attributes requested or shown,

opting instead to prove statements about them, e.g., proving knowledge of a secret

key or proving that an attribute is within a certain range. There are two simple ways

to do this. First, we can simply use multi-message commitments where each message

is an attribute. This increases the size of our zero-knowledge proofs (they are linear in

the number of messages in a commitment) but does not change our schemes. A more

efficient construction is to encode the attributes in one single value and then prove

statements about that committed value rather than reveal it. For example, one could

prove that a given bit corresponding to a certain attribute was set. One could also

use the first x bits for attribute one, the next x bits for attribute two, etc. and use

range proofs [108, 109, 110, 111] to reveal only those attributes we want to display.
15Camenisch et al. [77] describe a further extension that reveals the user’s identity in the event

of a credential double-show. We omit the details here for space reasons but observe that the same
technique can be applied to our construction.
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4.7.3 Stateful Credentials

A stateful anonymous credential system [106] is a variant of an anonymous cre-

dential system where credential attributes encode some state that can be updated by

issuing new credentials. This credential issuance is typically conditioned on the user

showing a previous credential and offering proof that the new credential should be

updated as a function of the original.

Intuitively, we can already have this capability quite easily due to the fact that

our credentials are non-interactively issued. We can make stateful credentials simply

by changing the policy by which we issue credentials: to issue a credential in a new

state s1, we require a user to demonstrate that they had a credential in state s0 and

discard it by revealing its single use serial number.

We construct a “single show” credential c embedding some state state in the

attributes and a serial number S. Users are free to show c as many times as they like

without revealing the serial number. However, to update the state of the credential,

they must author a transaction that shows the original credential and reveals the

serial number S and “mint” a new candidate credential c′ containing the updated

state state′ (hidden inside of a commitment) and a proof that there exists a valid

relationship between the state encoded in c and the new state in c′ (for example, that

the attributes have been incremented).

This requires only minor extensions to our basic scheme composing the existing

secure functionality. In this case we add an Update algorithm that operates similarly
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• Update(params, sk , c, skc,CO, update_relation, state′)→ (c′, sk′c, πu). Given a cre-
dential c and associated secret key sk c, a set of credentials CO, an updated state
state′ = (s′0, . . . , s

′
m) ∈ Zq, and an update relation update_relation, generate

a fresh random serial number S ′ ∈ Zq and random value r′ ∈ Zq to form a

new credential c′ = gr
′

0 g
sk
1 g

S′
2

m∏
i=0

g
s′i
i+3 with the aforementioned restrictions. Com-

pute A = Accumulate(params,CO) and ω = GenWitness(params, c,CO). Output
(c′, sk′c, πu) where sk′c = (S ′, state′, r′) and

πu = NIZKPoK{(sk , ω, c, state, r, c′, S ′, state′, r′) :

AccVerify(params,A, c, ω) = 1

∧ c = gr0g
sk
1 g

S
2

m∏
i=0

gsii+3 ∧ c′ = gr
′

0 g
sk
1 g

S′

2

m∏
i=0

g
s′i
i+3

∧ update_relation(state, state′) = 1}

• UpdateVerify(params, c,CO, πu)→ {0, 1}. Given a stateful credential c, a credential
set CO, and proof πu, output 1 if πu is correct, the proved state transition is a legal
one, and the serial number S was not previously used. Otherwise 0.

Figure 4.3: Extensions for a stateful anonymous credential system.
update_relation(. . .) = 1 denotes that the update encodes some arbitrary
state transition (e.g. ∀i s′i = si + 1).

to MintCred but includes the earlier credential and a proof of its construction. A valid

proof of the existing credential now becomes a condition for the organization accepting

the updated credential into the ledger. We provide a description of this new algorithm

in Figure 4.3.
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4.8 Integrating with Proof-of-work Bulletin

Boards

We provide a basic implementation of our credential scheme as a library and

construct a basic example using Namecoin as the bulletin board. Our prototype

system allows users to prove they have a (fresh) commitment to some attributes in

an issued credential. For our purposes it is sufficient to merely reveal the content of

that commitment (the attributes) in its entirety during a show. However, selectively

disclosable attributes are trivially realizable, see §4.7.2.

4.8.1 Integration

Namecoin integration is straightforward. Namecoin provides a built in mechanism

for storing key–value pairs which, by convention, have a namespace as a prefix. It also

provides a basic functionality to scan the list of existing names. Thus we can scan for

credentials, validate them, and then accumulate them. It is then simply matter of

generating and verifying proofs against that computed accumulator value.

For Alice to obtain a credential, she:

1. Pays a very small fee (currently 0.0064 USD) to purchase some name in the

system’s namespace by registering a public key as the owner of the name. This

corresponds to a transaction looking like:
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1 665a... OP_2DROP

OP_DUP OP_HASH160 6c1abe34

OP_EQUALVERIFY OP_CHECKSIG

2. Prepares a fresh credential with some attributes and any supporting documen-

tation necessary for her identity claim and stores the private portion of the

credential.

3. Updates, using the public key from step 1, her registered name to contain a

credential and its supporting documentation.

2 642f7... 7b...

OP_2DROP OP_2DROP

OP_DUP OP_HASH160

14d... OP_EQUALVERIFY OP_CHECKSIG

Once this update is confirmed, Alice has a fully formed credential.

To show the credential to Bob, Alice:

1. Scans through the list of added names and retrieves all candidate credentials.

2. Checks the supporting documentation for each candidate and puts valid ones in

C.

3. Runs Show with the public parameters, the private portion of her credentials,

and C and sends the result to Bob.
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4. Bob does steps 1 and 2 and computes C himself.

5. Bob runs ShowVerify on Alice’s supplied credential and C to verify it.

Alice has now proved she has a credential to Bob.

What the supporting documentation is and how it is verified is an application

specific problem. For some applications, merely having paid the tiny registration fee

may be sufficient and no verification is necessary. For others, some digital signature

may need to be verified or some assertion about resource management (e.g., a proof

of storage/retrievability) may need to be verified. Without modifications to Name-

coin/Bitcoin, any assertion must be verifiable by all participants.16 We consider one

such application in the next section.

4.8.2 Operating Cost

Namecoin is not free to use as purchasing a name costs a small (less than 0.10

USD as of 12/1/2013) amount of money. This fee is necessary both to prevent mass

name hoarding and to provide an economy to pay the miners who maintain the block

chain. This cost must minimally be paid by users when creating a credential. For

certain applications (e.g., k-anonymous credentials), relying parties must also post

data on the block chain (e.g., double spend tags and serial numbers). This, again,

costs a small fee. As such, there are monetary costs to using such an identity scheme.
16With modifications, identity assertions can be validated as part of the consensus protocol,

abrogating relying parties from validating credential issue and allowing the use of ephemeral supporting
documentation.
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4.8.3 Latency

A third consideration for the limited show credentials is the latency of inserting

items into the block chain. Because completely meaningful proofs of work take time,

some time must elapse in any such system. Namecoin and Bitcoin both aim to

create blocks every 10 minutes. Thus, the naive wait time from a block is about 5

minutes. Propagation delays in the network and transaction volume, however, skew

this distribution. While historical data for Namecoin is not available, for Bitcoin it

takes slightly less than 9 minutes for a transaction to first be confirmed. In practice,

it then takes multiple confirmations to solidify the transaction’s place in the block

chain. Variants of Bitcoin operate with faster confirmation times (e.g., Feathercoin,

which aims to get a block every 2.5 minutes), though it is not yet clear if the more

aggressive of these are entirely stable.

Given these latency constraints, our system, at least built on top of proof of work

based bulletin boards, is not suitable for applications that require fast credential issue

or quick detection of multi-spends across mutually distrusting parties.17 A side effect

of this is that double spend prevention mechanisms for fast transactions need to rely

on detection and punishment (e.g., forfeiture of an escrowed value), not prevention.
17Obviously, parties could cooperate and maintain a faster store of double spend tags, alleviating

this problem.
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Figure 4.4: Library performance as a function of parameter size.

4.8.4 Performance

We now examine the performance of our anonymous credential system. There are

four underlying operations: minting a credential, verifying that the mint is correct,

showing a credential, and verifying that show. Showing and verifying credentials also

entail computing the accumulation of all or all but one of the current credentials.

However, both the accumulator and the witnesses can be computed incrementally as

credentials are added: for each added credential, the nodes must update both the

accumulator and the witness for each credential they intend to show. Because this

cost is both amortized for any individual credential show or verify, it does not come

into play. Hence, we measure the accumulation cost separately and run our other

benchmarks with a precomputed witness and accumulator. We also give measurements

for our performance with different security parameters. See Figure 4.4.
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All experiments were conducted on a 2010 MacPro with 16GB of RAM and two

2.4GHz quad core Xeon E5620 processors running OSX 10.8.3. Experiments were

measured in seconds via wall clock run time and were repeated for 500 iterations.

Because of the speed of accumulating elements, we measure accumulator time in

seconds per 100 accumulations.

The primary performance bottleneck for our library is the complexity of the proof

of knowledge generated during the credential show. Because this double discrete

logarithm proof uses cut-and-choose techniques, we need to perform between 80 and

128 iterations depending on the security parameter. This entails approximately 800-

1000 exponentiations. Luckily, the same cryptographic requirements that force these

iterations also mandate that such computations are independent and hence they can

easily be parallelized. To exploit this, we make use of OpenMP to parallelize proof

generation and verification. As shown in Figure 4.4c, this offers significant performance

benefits.

Unfortunately, OpenSSL, which we use for the computations underpinning our

system, is not fully parallelizable due to the fact that its PRNG is synchronous. The

resulting locks around RNG usage prevent us from effectively parallelizing portions of

our code for showing a credential. It also causes problems when minting a credential.

The resource intensive portion of credential mint is creating commitments and then

testing if they are prime. This requires random numbers both directly for commitment

generation and indirectly for primality testing which uses randomized Miller-Rabin.
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We believe further performance gains could be realized by using a parallelizable RNG

(e.g., Intel’s RDRand instruction).

4.9 Example Application: Distributed Direct

Anonymous Attestation (dDAA)

In the original TPM 1.1b specification [112], attestations are signed by a TPM’s

Attestation Identity Key (AIK). Each TPM device can generate many AIKs, and

prior to use each AIK public key is signed by a trusted third party called a Privacy

CA, creating an AIK certification. The purpose of this awkward mechanism is to

provide a layer of indirection between attestations and the manufacturer-specified

keys programmed into the device, such as the permanent Endorsement Key (EK).

By introducing a third party, it becomes possible to create many identities and thus

remove the risk that a given device could be linked to all of its endorsements.

Direct Anonymous Attestation (DAA) [71], replaced the privacy CA with a cryp-

tographically sound group signature scheme. Instead of signing attestations with an

AIK, a TPM signs attestations with a private key for a group signature scheme that

preserves the signer’s anonymity. The TPM obtains the group signing key from a

DAA authority by authenticating non-anonymously to the authority with the AIK.

Because the group signature key is used anonymously, the authority can never link its

use to the AIK key that caused its issue. Unfortunately, the integrity of this process
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depends fundamentally on the integrity of the software running in the DAA authority.

This makes deploying a DAA instance somewhat problematic: each organization is

responsible for deploying and securing this DAA authority, and any compromise of this

server opens the door for credential theft or denial of service. Given the critical role

envisioned for TPM attestations, this may inhibit the deployment of DAA systems.

We propose a new TPM design that retains the privacy advantages of DAA without

the need to run a separate DAA server for each deployment. The advantage of our

approach is that organizations may still maintain separate trust environments for

private assertions by TPM devices but without the need to run a vulnerable separate

server. Our solution requires one modification to the existing TPM infrastructure,

namely that the TPM be updated to include a (non-anonymous) signing key, with

a permission level similar to that of the Endorsement Key (EK). We will refer to

this key as the Endorsement Signing Key, or ESK, and assume that each new TPM

will ship with an Endorsement Signing Key Certificate signed by the manufacturer.18

Given this modification we show how to use our anonymous credential scheme as a

replacement for DAA.

To obtain a credential in the new scheme, the TPM runs the MintCred routine,

securely store the resulting sk and transmitting the resulting credential up to the block

chain along with a signature under the TPM’s Endorsement Signing Key (ESK).19

18The TPM Endorsement Key and Endorsement Key Certificate would be sufficient for this role.
However this key is limited by the specification to performing a decryption-only role, largely for
privacy reasons. Our sole modification is to allow signing with this key, or a second key of a similar
nature.

19In principle this ESK signature can be replaced with an AIK signature with no changes to the
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This signature authenticates the credential as having been generated by a valid TPM.

Once the credential and signature are validated, they can be accumulated by verifiers.

The TPM can later attest to a particular configuration by running a modified version

of Show that ensures πS is a signature of knowledge on the attestation values (i.e., the

program configuration registers (PCRs) and an optional nonce). Running ShowVerify

with the appropriate modifications for checking the signature of knowledge validates

the attestation. We stress that even though the TPM’s ESK (or AIK) is on the ledger

with the issued credential, showing a credential never identifies which issued credential

was used and hence does not identify the ESK (or AIK).

4.10 Related Work

Anonymous credentials. Introduced by Chaum [65] and developed in a line of

subsequent works (e.g., [66, 67, 68]), anonymous credentials allow a user to prove that

she has a credential issued by some organization, without revealing anything about

herself other than that she has the credential. Under standard security definitions,

even if the verifier and credential issuer collude, they cannot determine when the

credential was issued, who it was issued to, or when it was or will be used. A

common construction involves issuing a credential by obtaining a signature from an

organization on a committed value (e.g., using the signature scheme of [69]) then

TPM mechanism, but AIKs will have to be issued by a trusted third party.

148



CHAPTER 4. NEW DOMAINS FOR CRYPTOGRAPHIC APPLICATIONS

proving in zero-knowledge that one has a signature under the organization’s public

key on that value. The contents of the commitment may be revealed outright or

various properties can proved on the committed values (e.g., Alice can prove she is

over 21 years old). Extensions to this work describe credentials that can only be

shown anonymously a limited number of times [77] or delegated to others [70]. All of

these schemes require issuing organizations to maintain a secret key.

Bitcoin and append-only ledgers. Our construction relies on the existence of

a distributed append-only transaction ledger, a technology that makes up the core

component of the Bitcoin distributed currency: the log of all currency transactions

called the block chain [73]. These ledgers are maintained by an ad hoc group of network

nodes who are free to enter and leave the network (there is no key provisioning necessary

for them to join). A typical transaction ledger consists of a sequence of blocks of data

that are widely replicated among the participating nodes, with each block connected

to the previous block using a hash chain. Nodes compete for the opportunity to add

new blocks of transactions to the ledger by producing a partial hash collision over the

new data and the hash of the last block in the chain. The hash collision serves two

purposes: first, it is a computationally-difficult-to-forge authenticator of the ledger

and second, since finding a partial hash collision involves substantial computational

effort, the peer who finds it is chosen “at random” with a probability proportional

to the rate at which he can compute such partial collisions. As a result, an ad hoc

group of mutually distrusting and potentially dishonest peers can correctly manage
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such a ledger provided that a majority of their computational power is held by honest

parties. Recent experience with Bitcoin and Namecoin provides evidence that this

assumption holds in practice.

Namecoin. Namecoin [79] is a decentralized identity system that uses the same block

chain technology as Bitcoin. Namecoin’s primary purpose is to associate names with

arbitrary data. A user can claim a name provided (1) they pay the price in NMC for

it and (2) it is unclaimed. At that point, an entry is inserted into the block chain

mapping the name to a public key and some arbitrary data. The public key allows the

owner to update the data by signing a new record. The data allows for various uses.

If it is an IP address, then one has a distributed DNS system (such a system, .bit, is

already deployed). On the other hand, if it is a public key, the result is a basic PKI.

The first-come first-served nature of Namecoin seems somewhat anachronistic, however

it replicates in miniature the way normal DNS names are generally assigned, where the

first person to claim the name gets it. Similarly, standard (non–extended validation)

SSL certificates for a domain are typically issued to anyone who can demonstrate

control of a domain (usually via an email to admin@domain).

4.11 Conclusion

In this work we constructed a distributed anonymous credential system and several

extensions. Our constructions are secure in the random oracle model under standard
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cryptographic assumptions provided there exists a trustworthy global append-only

ledger. To realize such a ledger we propose using the block chain system already in

real world use with the distributed cryptographic currency Bitcoin. Although we are

limited in the class of identity assertions we can certify, we argue that several basic

assertions are of particular use in peer-to-peer systems, as they can be used to mitigate

Sybil attacks, ensure fair resource usage, and protect users’ anonymity while verifying

their computer’s correctness.

Future work. We leave two open problems for future work. First, the proofs in

this work assumed the security of a transaction ledger. We leave a precise formal

model of the ledger, which attacks are allowable, and what bounds may be placed

on their consequence as an open problem. Second, the efficiency of our construction

can be improved. Although all of our algorithms are efficient (in that they do not

scale with the size of the ledger), the need for double-discrete logarithm proofs leads

to somewhat large proof sizes when showing a credential (roughly 50KB for modest

parameters). Our construction may be optimized for certain applications that do not

require the full flexibility of our construction. For example, schemes not requiring

selective disclosure of credentials require about half that proof size. At the same

time, we hope that advances in bilinear accumulators, mercurial commitments, or

lattice based techniques may provide a more efficient construction. We are particularly

hopeful that generic work in verifiable computation [113, 114] will offer drastically

smaller proof sizes without resorting to bespoke proofs and protocols.
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Conclusion

Deploying secure cryptographic protocols has many challenges, and this thesis

discussed various ways to increase the security and deployability of real-world cryp-

tographic systems. We first discussed the benefit of analyzing already deployed

cryptographic protocols by demonstrating weaknesses in the popular RC4 algorithm

and showing how to decrypt user passwords encrypted with RC4 in TLS. We then

explored how to make it easier to develop and deploy secure and efficient cryptographic

systems and take theoretical work to practice by discussing cryptographic automation

and AutoGroup+. We concluded by showing how to build secure real-world systems

as well as work to remove barriers of deployment by detailing our work on building

decentralized anonymous credentials using a blockchain. While these works are of

course not a complete solution to the problem of securing deployed cryptographic

systems, they advance the understanding of the problem and propose various different
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avenues for solutions.
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Appendix A

Double-byte biases in the RC4

keystream distribution

As mentioned in Section 2.2, we estimated the initial double-byte keystream

distributions for RC4 in the first 512 positions using roughly 4800 core-days of

computation to generate 244 RC4 keystreams for random 128-bit RC4 keys (as used

in TLS). As noted there, while the gross behaviour that we observed is dominated

by products of the known single-byte biases in the first 256 positions and by the

Fluhrer-McGrew biases in the later positions, we did observe some new and interesting

double-byte biases.

In Figure A.1, for instance, the influence of the single-byte key-length-dependent

bias [115], and the single-byte r-bias [22] are evident. The former can be observed

as the strong vertical line at Z16 = 0xEO, while the latter can be seen as the lines at
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Figure A.1: Measured biases for RC4 keystream byte pair (Z16, Z17). The colouring
scheme encodes the strength of the bias, i.e., the deviation from the expected probability
of 1/216, scaled by a factor of 222, capped at a maximum of 1.

Z16 = 0x10 and Z17 = 0x11. The faint diagonal line appears to be a new double-byte

bias (that is not accounted for as a product of single-byte biases). It appears in

many early positions. For example, it is at least twice as strong as that arising in

the product distribution for at least 64 of the 256 possible byte values from positions

(Z3, Z4) up to positions (Z110, Z111). It then gradually disappears, but reappears at

around positions (Z192, Z193) (albeit as a positive bias) and persists up to positions

(Z257, Z258) (changing sign again at (Z255, Z256)).

The presence of horizontal and vertical lines in Figure A.1 and the absence of

other strong biases, which is typical for the early positions, indicates that the adjacent
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Figure A.2: Measured biases for RC4 keystream byte pair (Z384, Z385). The colouring
scheme encodes the strength of the bias, i.e., the deviation from the expected probability
of 1/216, scaled by a factor of 224, capped at a maximum of 1.

bytes behave largely independently of each other. In other words, there are very

few strong conditional biases in the first 256 positions of the RC4 keystream. For

later positions in the keystream, Figure A.2 depicts what is typical in terms of bias

behaviour: the presence of Fluhrer-McGrew biases only. These are visible in Figure

A.2 at (Z384, Z385)= (0x00, 0x01) and (0x81, 0xFF) for example.

Finally, of particular interest is the distribution of (Z1, Z2). Figure A.3a shows

the raw distribution for this position pair, while Figure A.3b shows the residual

biases when the product distribution of Z1 and Z2 is removed. Note that the raw

distribution is predominately negatively biased; this is because of the effect of the
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the bias after the product of single-byte biases
for positions Z1 and Z2 is removed, scaled by
a factor of 222, capped at a maximum of 1.

Figure A.3: Measured biases for RC4 keystream byte pair (Z1, Z2).

large Mantin-Shamir positive bias towards 0x00 in position Z2, and the compensating

negative single byte biases for all other values of Z2. Note also the two diagonal lines

in Figure A.3b. The “positive” (blue-coloured) diagonal here represents a negative

bias in (Z1, Z2) for all byte pairs (z, z) where z ∈ B \ {0x00}; this bias is also evident

in the raw distribution in Figure A.3a. The “negative diagonal” in Figure A.3b shows

that there is a systematic difference between the raw double-byte distribution and the

product distribution. It manifests itself as a white-coloured negative diagonal in the

raw double-byte distribution shown in Figure A.3a; thus, in the raw distribution, it

forms a structured set of unbiased pairs against a largely negatively-biased background.

The only other previously known bias of this nature in this portion of the keystream
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is due to Isobe et al. [23], who showed that:

Pr(Z1 = 0x00 ∧ Z2 = 0x00) = 2−16 · (1 + 20.996).

This bias is also evident in Figure A.3. By contrast, the new diagonal biases are

negative, sporting magnitudes in the region of 2−22. For example, we empirically

observe:

Pr(Z1 = 0x14 ∧ Z2 = 0x14) = 2−16 · (1− 2−6.097).

Let us now formally define a large double-byte bias to be one whose magnitude

is at least 2−24. We observed 103,031 such large biases in total. Note that with 244

keystreams, all such biases are statistically significant and highly unlikely to arise from

random fluctuations in our empirical analysis. For, in each position pair (r, r + 1) we

have 216 counters, one for each possible pair (Zr, Zr+1), so, in the absence of any biases,

each counter would be (roughly) normally distributed with mean 244 · 2−16 = 228 and

standard deviation σ of approximately
√
228 = 214. Then a bias of size 2−24 would

lead to a counter value of around

244(2−16 + 2−24) = 228 + 26 · 214

which is a 64σ event. Using the standard tail bound for the normal distribution,
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even with 225 counters in total (across 512 positions), we would expect to see only

218 · e−2048/π ≪ 1 such events.

We found that 643 (less than 1%) of the large biases that we observed were at least

twice the size (in absolute value) of biases resulting from the products of single-byte

biases or of the expected Fluhrer-McGrew bias in the same positions. In other words,

most of the large biases that we observed arise from the product distribution or are

explained by Fluhrer and McGrew’s results. We also note that we did find double-byte

biases in all the positions predicted by Fluhrer and McGrew [25] starting from byte

pair (Z4, Z5) onwards. This is not surprising given that the idealized assumption

concerning the internal state of the RC4 algorithm that was used in the analysis of [25]

is well approximated after a few invocations of the RC4 keystream generator. However,

in many such cases, the magnitude of the bias we observed is greater than is predicted

by the Fluhrer-McGrew analysis. For example, in byte pair (Z6, Z7) we observed

Pr(Z6 = 0x07 ∧ Z7 = 0xFF) = 2−16 · (1− 2−6.487),

whereas the corresponding specified Fluhrer-McGrew probability for this byte pair,

namely the (i+1, 0xFF) byte pair where i is the internal variable of the RC4 keystream

generator, is 216(1 + 2−8).

We do, however, note a transition to the regular Fluhrer-McGrew double-byte

biases from position 257 onwards. We also note the disappearance of the single-byte
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biases from roughly this point onwards. This is illustrated in Figure A.4, which shows

the absolute value of the largest single-byte bias observed in our data as a function of

keystream position r.

2-22
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2-17
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B
ia

s
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Figure A.4: Absolute value of the largest single-byte bias for keystream bytes Z240 to
Z272.
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Appendix B

Details of IMAP Proof of Concept

In this section we describe the proof-of-concept implementation of our attacks

against IMAP in more detail.

B.1 Introducing IMAP

The Internet Message Access Protocol, currently at version 4: revision 1 (IMAP4rev1),

facilitates the retrieval and manipulation of e-mail messages stored on a server. We

provide a brief description of the protocol, focusing only on the client/server commands

and responses that are relevant to this work. Further details can be found in [116].

An IMAP session commences with the establishment of a client/server connection,

followed by an initial greeting message from the server and the subsequent exchange

of messages between the client and the server. All IMAP messages are text-based
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with client messages taking the form of commands and server messages typically

taking the form of responses. Client commands cover a broad spectrum of functions

including the creation, searching and deletion of e-mails but of interest here are the

AUTHENTICATE and LOGIN commands. These commands are only valid when an IMAP

server is in what is known as the not authenticated state. This state is entered into

when a client/server connection is established, and the client must supply legitimate

authentication credentials so as to enable the server to move to the authenticated state.

The AUTHENTICATE command specifies an authentication mechanism to be used by

the server to identify and authenticate the user. The various mechanisms available

are specified in [117, 118, 119]. We will target the PLAIN Simple Authentication and

Security Layer (SASL) mechanism [118]. The arguments for this mechanism include an

authorization identity string, a username and a password. The authorization identity

string is a sequence of zero or more Unicode characters that represent the identity

the client wishes to assume. It is possible for the authorization identity string to be

empty, in which case, the server will derive an authorization identity from the other

credentials provided. As with BasicAuth, the authorization credentials are not directly

protected by IMAP.

The format of the AUTHENTICATE command is specified in [116] and involves the

transmission of username and password in Base64 encoded form, with these fields being

separated by a NULL character. The LOGIN command identifies and authenticates a

user to the server by providing a username and a password. The command has the
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following format:

A001 LOGIN "username" "password".

These credentials are again transmitted in the clear. We note that the IMAP specifi-

cation [116] recommends that the AUTHENTICATE PLAIN and LOGIN commands only

be used when a secure channel is available, such as provided by TLS. In fact, the

LOGIN command is recommended as a last resort only. The establishment of a TLS

session is achieved by the STARTTLS command. Once a client issues this command, it

must wait for the server to acknowledge this request and the subsequent completion

of the TLS negotiation before issuing any further commands. Also, the client must

discard any information about server capabilities received prior to the issuance of

the STARTTLS command. This is to protect against Man-In-The-Middle (MITM)

attacks which alter the capability list prior to the establishment of the TLS ses-

sion. According to [116], “IMAP client and server implementations MUST implement

the TLS_RSA_WITH_RC4_128_MD5 cipher suite, and SHOULD implement the

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite." The use of RC4 in

IMAP can therefore be expected to be prevalent.
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B.2 Attacking IMAP

As with BasicAuth, we require the password to be located sufficiently early in the

plaintext streams of IMAP connections, and we need to find a means of forcing an

IMAP to repeatedly send the AUTHENTICATE or LOGIN commands.

We have verified the former condition to hold for specific clients such as Mozilla

Thunderbird. For example, with that client, we saw the password vary between

positions 102 and 128 for AUTHENTICATE, depending on the server that the client

connected to; however this number was consistent on a per server basis. We speculate

that this is because of different server configurations or presented client capabilities.

Moreover, clients are typically configured to connect to the server and check for new

mail on a regular basis, typically every 10 minutes, but often much more frequently.

We built a proof-of-concept demonstration of an attack on IMAP, with the setup

being as follows. A client machine ran Mozilla Thunderbird, set to check for new

mail every 10 minutes. The client can be setup to either connect to the IMAP server

via STARTTLS on port 143 or IMAPS on port 993. The latter is an alternative means

of establishing a TLS connection for IMAP data transfers. The server was running

the Dovecot1 open source IMAP email server, configured with TLS and set to prefer

RC4 ciphersuites. The MITM was set up between the client and the server. All three

(client, server, MITM) were separate physical machines, though they all resided on

the same network. We again used Scapy to do all the packet handling at the MITM.
1http://www.dovecot.org/
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The MITM capability was achieved by configuring the Thunderbird client to connect

directly to the MITM machine, which then forwarded all traffic through to the IMAP

server (via an iptables rule). The MITM then also has the ability to delay or block

packets, though it did not exercise that capability for the most part in our attack.

This way of configuring our network replaced the ARP spoofing step used in our

BasicAuth attack.

The attack then proceeded as follows. The client and server were allowed to

establish a TLS-protected IMAP connection. After the password was sent (an event

that we can identify because of the rigid format of IMAP messages), the MITM issued

TCP RST messages terminating the connection. The next time the client tries to poll

the server, it is forced to redo the TCP handshake and the TLS handshake, thus

opening a new session and allowing the MITM to collect another encryption of the

password (since every time the client opens a new connection to the server, it must

reauthenticate).

In our proof-of-concept, we successfully executed all of the above steps and collected

encrypted passwords. However, the rate at which the encrypted passwords could be

gathered was slow, because of its dependence on the frequency with which the IMAP

client polls the server for new mail. There are several different ways in which the rate

can be increased in practice:

• Many mail clients (though not Thunderbird) actively reconnect and perform

client authentication whenever the TLS connection between client and server is
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broken. An active MITM attacker could then simply break the TLS connection

between client and server at as high a speed as the client and server can handle,

thereby increasing the rate at which encrypted passwords are sent.

• The widely implemented IMAP IDLE command [120] enables a server to notify

a client that an event has occurred on the server of relevance to the user, for

example that new mail has arrived at the server. It works by the client regularly

sending an IDLE command to the server, and the server responding with alerts

concerning new messages.2 When used, the rate of IDLE commands can be

expected to be every few seconds to a minute (so that the user has the illusion

of receiving instant updates). Each IDLE command can be expected to be sent

on a fresh TLS connection and involve client authentication.

• An alternative mechanism, widely used on cell phones, are PUSH notifications.

Here, the user is notified directly by the server when new mail arrives (or another

event of significance occurs), rather than in response to a poll. By sending a

large amount of spam e-mail to an account at a constant rate, and having the

MITM break the TLS connection at a similar rate, an attacker could ensure that

the client connects to the server at that rate, with each connection involving

reauthentication and therefore retransmission of the user password. Of course,

it is unreasonable to send 224 e-mails to a single account in order to mount

our attack. However, note that for a PUSH system to be effective, the PUSH
2See http://www.isode.com/whitepapers/imap-idle.html for a good overview.
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notifications would need to be capable of being sent over an unprotected channel

(since such a channel may not be in place when the notification needs to be

sent). This makes them spoofable by an active MITM, which may be exploited

as a means to trigger the establishment of the required TLS connections.

The detailed exploration of these different methods for speeding up our proof of

concept against IMAP is left for future work.
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Current Efficiency Numbers for

Type-I and Type-III Pairings

Size (in bits) Exp. Time (in milliseconds)
Sym. vs. Asym. Setting G1 G2 GT G1 G2 GT Pairing Time
SS1536 (or Type-I) 1536 1536 3072 5.3 ms 5.3 ms 1.0 ms 14.9 ms
BN256 (or Type-III) 256 1024 3072 0.2 ms 1.2 ms 2.1 ms 2.2 ms

Figure C.1: Comparing Size and Efficiency of Pairing-based Curves.

We include current efficiency numbers for Type-I and Type-III groups as imple-

mented in the highly efficient RELIC cryptographic toolkit version 0.4 [62] (using the

GMP library [121] for big number operations and the default configuration options

for prime field arithmetic) measured on a standard workstation.1 In Figure C.1, we

show the differences between Type-I and Type-III pairings at the same security level

in terms of group representation and efficiency. 2 A typical candidate for Type-I
12.4 GHz Intel Core i5 processor and 8GB of RAM (1067 MHz DDR3) running Mac OS X Lion

version 10.7.5
2A careful reader may observe that the exponentiation time for GT in SS1536 appears surprisingly
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are supersingular elliptic curves (or SS) [122, 123] in which the embedding degree is

typically small (i.e., k ≤ 6). One such example is a supersingular curve at the 128-bit

security level where the prime order of the group is large, |p|= 1536-bits, and the

embedding degree is k = 2. Conversely, one common Type-III candidate at the same

security level are Barreto-Naehrig (BN) [124] curves in which the embedding degree is

much larger (e.g., k = 12) and the prime order can be as small as |p|= 256-bits. As

reflected in Table C.1, group operations and pairing times in the Type-III setting can

be drastically more efficient and have shorter representations than the Type-I setting.

We remark on hashing into Type-I and Type-III pairing groups. In the Type-I

setting, it is feasible to hash arbitrary strings into G, e.g., for the SS curve, hashing

arbitrary strings to G takes on average 36.8 ms. In the Type-III setting (e.g., over

ordinary elliptic curves), it is feasible to hash arbitrary strings into both G1 and G2

independently with different costs, e.g., for the BN curve, hashing to G1 takes 0.04

ms and to G2 takes 0.37 ms on average (a ratio of roughly 9 to 1 from G2 to G1).

See [125] for more details.

small. We reassure the reader that this is not a typo. With the SS1536, GT = Fp
2 is a lower extension

of a larger field, whereas with BN256, GT = Fp
12, which is a higher extension of a smaller field. Thus,

even though the elliptic curve points are larger with SS1536, the field multiplication operation in GT

is quite efficient. This does not apply to G1,G2 as those are doing scalar multiplication.
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SDL Descriptions for Section 3.4

We now provide examples of the input and output Scheme Description Language

(SDL) for AutoGroup+.

D.1 SDL as Input

First we will show our SDL transcription of the DBDH assumption:

name := DBDH

setting := symmetric

BEGIN :: types

a := ZR

b := ZR
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c := ZR

z := ZR

END :: types

BEGIN :: func:setup

input := None

a := random(ZR)

b := random(ZR)

c := random(ZR)

z := random(ZR)

g := random(G1)

assumpKey := list{g, a, b, c, z}

output := assumpKey

END :: func:setup

BEGIN :: func:assump

input := assumpKey

assumpKey := expand{g, a, b, c, z}

A := g ^ a
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B := g ^ b

C := g ^ c

coinflip := random(bin)

BEGIN :: if

if { coinflip == 0 }

Z := e(g, g) ^ (a * b * c)

else

Z := e(g, g) ^ z

END :: if

assumpVar := list{g, A, B, C, Z}

output := assumpVar

END :: func:assump

Then, the full SDL transcription for the symmetric BB HIBE scheme [57]:

name := BB04HIBE

setting := symmetric

BEGIN :: types

M := GT
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ID1 := ZR

ID2 := ZR

END :: types

BEGIN :: func:setup

input := None

g := random(G1)

alpha := random(ZR)

g1 := g ^ alpha

h1 := random(G1)

h2 := random(G1)

g2 := random(G1)

g2alpha := g2 ^ alpha

msk := list{g2alpha}

pk := list{g, g1, g2, h1, h2}

output := list{msk, pk}

END :: func:setup
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BEGIN :: func:keygen

input := list{pk, msk, ID1, ID2}

pk := expand{g, g1, g2, h1, h2}

msk := expand{g2alpha}

r1 := random(ZR)

r2 := random(ZR)

d1 := g2alpha * \

(((g1^ID1)*h1)^r1) * (((g1^ID2)*h2)^r2)

d2 := g ^ r1

d3 := g ^ r2

sk := list{d1, d2, d3}

output := sk

END :: func:keygen

BEGIN :: func:encrypt

input := list{pk, M, ID1, ID2}

pk := expand{g, g1, g2, h1, h2}
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s := random(ZR)

C1 := (e(g1,g2)^s) * M

C2 := g ^ s

C3 := ((g1^ID1) * h1)^s

C4 := ((g1^ID2) * h2)^s

ct := list{C1, C2, C3, C4}

output := ct

END :: func:encrypt

BEGIN :: func:decrypt

input := list{pk, sk, ct}

pk := expand{g, g1, g2, h1, h2}

ct := expand{C1, C2, C3, C4}

sk := expand{d1, d2, d3}

M := C1*((e(C3,d2) * e(C4,d3))/(e(C2,d1)))

output := M
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END :: func:decrypt

Finally, the reduction from [57] for the BB HIBE scheme:

name := BB04

setting := symmetric

l := 2

k := 2

BEGIN :: types

l := Int

j := Int

k := Int

M := list{GT}

ID := list{ZR}

IDstar := list{ZR}

alphai := list{ZR}

h := list{G1}

r := list{ZR}

di := list{G1}

Ci := list{G1}

msk := G1

END :: types
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BEGIN :: func:setup

input := list{IDstar}

a := random(ZR)

b := random(ZR)

c := random(ZR)

z := random(ZR)

g := random(G1)

A := g^a

B := g^b

C := g^c

coinflip := random(bin)

BEGIN :: if

if { coinflip == 0 }

Z := e(g, g)^(a * b * c)

else

Z := e(g, g)^z

END :: if
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g1 := A

g2 := B

g3 := C

BEGIN :: for

for{i := 1, l}

alphai#i := random(ZR)

h#i := (g1^-IDstar#i) * (g^alphai#i)

END :: for

pk := list{g, g1, g2, h}

assumpVar := list{A, B, C, Z}

reductionParams := list{g3, alphai, IDstar}

output := list{msk, pk, reductionParams, assumpVar}

END :: func:setup

BEGIN :: func:queries

input := list{j, pk, ID, reductionParams}

pk := expand{g, g1, g2, h}

198



APPENDIX D. SDL DESCRIPTIONS FOR SECTION 3.4

reductionParams := expand{g3, alphai, IDstar}

BEGIN :: for

for{i := 1, j}

r#i := random(ZR)

END :: for

dotProd1 := init(G1)

BEGIN :: for

for{v := 1, j}

dotProd1 := dotProd1 * (((g1^(ID#v - IDstar#v)) * \

(g^alphai#v))^r#v)

END :: for

d1 := (g2^((-alphai#j) / (ID#j - IDstar#j))) * dotProd1

BEGIN :: for

for{i := 1, j}

BEGIN :: if

if {i == j }

di#j := (g2^(-1/(ID#j - IDstar#j))) * (g^r#j)
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else

di#i := g^r#i

END :: if

END :: for

sk := list{d1, di}

output := sk

END :: func:queries

BEGIN :: func:challenge

input := list{M, ID, reductionParams, assumpVar}

pk := expand{g, g1, g2, h}

assumpVar := expand{A, B, C, Z}

reductionParams := expand{g3, alphai, IDstar}

b := random(bin)

C1 := M#b * Z

C2 := g3
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BEGIN :: for

for{i := 1, k}

Ci#k := g3 ^ alphai#i

END :: for

ct := list{C1, C2, Ci}

output := ct

END :: func:challenge

We provide the configuration file that embeds the metadata required by Auto-

Group+ to perform the translation:

schemeType = "PKENC"

assumption = ["DBDH"]

reduction = ["reductionBB04HIBE"]

short = "public-keys"

masterPubVars = ["pk"]

masterSecVars = ["msk"]

keygenPubVar = "pk"
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keygenSecVar = "sk"

ciphertextVar = "ct"

reducCiphertextVar = "ct"

reducQueriesSecVar = "d"

D.2 Translated Scheme and Assumption SDL

Descriptions

We now show the SDL outputs of AutoGroup+. The first is the SDL output of the

co-DBDH assumption:

name := DBDH

setting := asymmetric

BEGIN :: types

a := ZR

b := ZR

c := ZR

z := ZR

END :: types
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BEGIN :: func:setup

input := None

a := random(ZR)

b := random(ZR)

c := random(ZR)

z := random(ZR)

gG1 := random(G1)

gG2 := random(G2)

assumpKey := \

list{gG1, gG2, a, b, c, z}

output := assumpKey

END :: func:setup

BEGIN :: func:assump

input := assumpKey

assumpKey := \

expand{gG1, gG2, a, b, c, z}

A := (gG1^a)

BG1 := (gG1^b)

BG2 := (gG2^b)

203



APPENDIX D. SDL DESCRIPTIONS FOR SECTION 3.4

CG1 := (gG1^c)

CG2 := (gG2^c)

coinflip := random(bin)

BEGIN :: if

if {coinflip == 0}

Z := (e(gG1,gG2)^((a * b) * c))

else

Z := (e(gG1,gG2)^z)

END :: if

assumpVar := list{gG1, gG2, A,\

BG1, BG2, CG1, CG2, Z}

output := assumpVar

END :: func:assump

The second SDL output is the asymmetric BB HIBE scheme [57] that optimally

minimizes the public key parameters:

name := BB04HIBE

setting := asymmetric

BEGIN :: types

M := GT

204



APPENDIX D. SDL DESCRIPTIONS FOR SECTION 3.4

ID1 := ZR

ID2 := ZR

END :: types

BEGIN :: func:setup

input := None

gG1 := random(G1)

gG2 := random(G2)

alpha := random(ZR)

g1 := (gG1^alpha)

h1 := random(ZR)

h1G1 := (gG1^h1)

h2 := random(ZR)

h2G1 := (gG1^h2)

g2 := random(ZR)

g2G1 := (gG1^g2)

g2G2 := (gG2^g2)

g2alpha := (g2G1^alpha)

msk := list{g2alpha}

pk := list{gG1, gG2, g1, g2G1, g2G2, h1G1, h2G1}
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output := list{msk, pk}

END :: func:setup

BEGIN :: func:keygen

input := list{pk, msk, ID1, ID2}

pk := expand{gG1, gG2, g1, g2G1, g2G2, h1G1, h2G1}

msk := expand{g2alpha}

r1 := random(ZR)

r2 := random(ZR)

d1 := ((g2alpha * \

(((g1^ID1) * h1G1)^r1)) * (((g1^ID2) * h2G1)^r2))

d2 := (gG2^r1)

d3 := (gG2^r2)

sk := list{d1, d2, d3}

output := sk

END :: func:keygen

BEGIN :: func:encrypt
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input := list{pk, M, ID1, ID2}

pk := expand{gG1, gG2, g1, g2G1, g2G2, h1G1, h2G1}

s := random(ZR)

C1 := ((e(g1,g2G2)^s) * M)

C2 := (gG2^s)

C3 := (((g1^ID1) * h1G1)^s)

C4 := (((g1^ID2) * h2G1)^s)

ct := list{C1, C2, C3, C4}

output := ct

END :: func:encrypt

BEGIN :: func:decrypt

input := list{pk, sk, ct}

pk := expand{gG1, gG2, g1, g2G1, g2G2, h1G1, h2G1}

ct := expand{C1, C2, C3, C4}

sk := expand{d1, d2, d3}

M := (C1*((e(C3,d2) * e(C4,d3))/e(d1,C2)))
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output := M

END :: func:decrypt
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Proof Sketch of Security for Our

Basic System

We now provide a sketch of the proof of security for our basic distributed anonymous

credentials system.

Our basic approach is to show that for every real-world adversary A against the

credential system, we can construct an ideal-world adversary S against the ideal-world

system such that the transcript of A interacting with the real system is computationally

indistinguishable from the transcript produced by A interacting with S. We assume a

static corruption model in which the adversary controls some set of users and leave

a proof in the adaptive corruption model for future work. For this sketch we also

assume that our zero-knowledge signatures of knowledge include an efficient extractor

and simulator and that the params are created using a trusted setup process. Note
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that in the random oracle model this assumption holds for the Fiat-Shamir proofs we

employ, provided we conduct the proofs sequentially.

Our proof assumes the existence of a global, trusted transaction ledger, which we

use as a black box. We leave a complete proof that considers this construction and

models it to future work.

We begin by sketching the simulator S for our system.

E.1 Description of the Simulator

Minting a credential. When a user controlled by the adversary with nym NymO
U

wants a credential, the user first generates (c, πM , attrs). When the simulator receives

notification of this, it first verifies that the credential and proof are valid and meet

the organization’s policy. If so it employs the knowledge extractor for the signature of

knowledge on πM to obtain (sk , aux).

The simulator then checks if it has a record of (U , sk ,NymO
U ) on its list of users.

If the user with key sk and nym NymO
U exists, then S retrieves skU associated with

(U , sk ,NymO
U ) and proceeds. If it is not on the list, the simulator checks if it has

previously seen a user with key sk . If the user with key sk is not present, then the

simulator creates a user U and runs RegNym(NymO
U ,U , O) to register NymO

U and

obtain skU for further interactions with TP . S then stores (U , sk , skU ,Nym
O
U ) in its

list of users controlled by the adversary. If a user U with key sk exists, then it runs
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RegNym(NymO
U ,U , O) to register NymO

U and adds NymO
U to U ’s record.

Once the simulator has registered the nym or verified it already exists, it runs

MintCred(NymO
U , O, attrs, aux). The simulator then transmits the credential infor-

mation to the trusted store and acknowledges the credential’s issuance. S stores

(sk ,NymO
U , attrs, aux, c, πM) in its list of granted credentials.

When an honest user, through TP , wants to establish a credential, the simulator

creates a credential c (using the publicly available attrs) and uses the simulator for

the signature of knowledge πM to simulate the associated proof. It then transmits the

credential information (c, πM , attrs) to the trusted store.

Showing a credential. When a user controlled by the adversary wants to show a

credential from organization O to verifier V with which it has nyms NymO
U and NymV

U

respectively, the user first generates πS. When the simulator receives notification of

this, it verifies the proof as in the real protocol (rejecting if it is invalid). If the show

verifies, it runs the knowledge extractor for the proof of knowledge on πS to get sk .

The simulator then checks if it has a record of (U , sk ,NymO
U ,Nym

V
U ) on its list of

users. If the user with key sk and nyms NymO
U and NymV

U exists, then S retrieves

skU associated with (U , sk ,NymO
U ) and proceeds. If the record does not exist, either

in part or in full, the simulator checks if it has previously seen a user with key sk .

If the user with key sk is not present, then the simulator creates a user U and runs

RegNym(NymO
U ,U , O) and RegNym(NymV

U ,U , V ) to register NymO
U and NymV

U and

obtain skU for further interactions with TP . S then stores (U , sk , skU ,Nym
O
U ,Nym

V
U )
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in its list of users controlled by the adversary. If a user U with key sk exists, then

it runs RegNym(NymO
U ,U , O) (resp. RegNym(NymV

U ,U , V )) to register NymO
U (resp.

NymV
U ) and adds NymO

U (resp. NymV
U ) to U ’s record.

Now, the simulator S runs ShowOnNym(NymO
U ,Nym

V
U , O, V,C) where C is ob-

tained by the simulator through a call to GetCredList(O).

When an honest user (through TP ) wants to show a credential to a verifier V

controlled by the adversary, the simulator generates a random prime commitment and

runs the zero-knowledge simulator for πS to simulate a proof that it then sends to V .

E.1.1 Proof (sketch) of a Successful Simulation

Our simulation is computationally indistinguishable from the real protocol if the

Strong RSA and the Discrete Logarithm assumptions hold. While we do not provide

a full proof here due to space reasons, we provide an overview of the argument for

security.

We first begin by discussing the signatures/proofs πM and πS. Under the Discrete

Logarithm assumption, πM is a computational zero-knowledge signature of knowledge

on aux of the values sk , r, and r′ such that the nym NymO
U and the credential c

both belong to the same master secret sk . The proof is constructed using standard

techniques in the random oracle model [94], and the resulting proofs are (at least)

computationally zero knowledge. An attacker who forges this proof to spend a new

coin would violate the soundness guarantee of the proof system. Alternatively, an
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attacker might forge this message by identifying a collision on the commitments, which

occurs with negligible probability under the Discrete Logarithm assumption [107]. In

the event that this occurs, we can use the extractor for the zero knowledge proof to

obtain the collision with all but negligible probability.

Under the Strong RSA and Discrete Logarithm assumptions, πS is a statistical

non-interactive zero-knowledge proof of knowledge of the values sk , ω, c, NymV
U , r,

and r′ such that ω is a witness that c is in the accumulator A and nym NymV
U and the

credential c both belong to the same master secret sk . This proof is again constructed

using standard techniques [94, 69] similar to the proofs used by Miers et al. in [82]. In

order to forge such a proof, the adversary would need to either find a collision on the

commitments or forge an accumulator membership proof. We previously discussed

how the first case occurs with negligible probability. The second case occurs with

negligible probability under the Strong RSA assumption due to [69]. See the full

version of the paper for a formal treatment/reduction of these statements.

Intuitively, we can now see that the simulator will fail with at most negligible

probability because it deals solely with zero-knowledge signatures of knowledge and

zero-knowledge proofs of knowledge, which have efficient extractors and simulators.

Our proofs πM and πS have knowledge extractors that succeed with probability 1−ν(λ)

for some negligible function ν(·). Since signatures and proofs are the sole point of

failure for our simulator described above, it fails with negligible probability. Because

the adversary only sees the simulated zero-knowledge proofs and signatures, and the
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simulated signatures and proofs are computationally indistinguishable from legitimate

ones, the adversary cannot distinguish a simulated transcript from the real protocol

except with negligible advantage. Hence the adversary cannot distinguish between an

interaction with the simulator and the real protocol.

We note that the Pedersen commitments we use are non-standard in that we

output only commitments that are prime. We stress that these commitments remain

information theoretically hiding and computationally binding under the assumption

that the Discrete Logarithm assumption holds in ⟨g⟩.
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