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Abstract  

The visual system utilizes environmental light information to guide animal behavior. 

Regulation of the light entering the eye by the pupillary light reflex (PLR) is critical for 

normal vision, though its precise mechanisms are unclear. The PLR can be driven by two 

mechanisms: (1) an intrinsic photosensitivity of the iris muscle itself, and (2) a neural 

circuit originating with light detection in the retina and a multisynaptic neural circuit that 

activates the iris muscle. Even within the retina, multiple photoreceptive mechanisms—

rods, cone, or melanopsin phototransduction—can contribute to the PLR, with uncertain 

relative importance. In this thesis, I provide evidence that the retina almost exclusively 

drives the mouse PLR using bilaterally asymmetric brain circuitry, with minimal role for 

the iris intrinsic photosensitivity. Intrinsically photosensitive retinal ganglion cells 

(ipRGCs) relay all rod, cone, and melanopsin light detection from the retina to brain for 

the PLR. I show that ipRGCs predominantly relay synaptic input originating from rod 

photoreceptors, with minimal input from cones or their endogenous melanopsin 

phototransduction. Finally, I provide evidence that rod signals reach ipRGCs using a non-

conventional retinal circuit, potentially through direct synaptic connections between rod 

bipolar cells and ipRGCs. The results presented in this thesis identify the initial steps of 

the PLR and provide insight into the precise mechanisms of visual function. 

 

Thesis advisor: Samer Hattar, Ph.D. 

Secondary reader: Nicholas Marsh-Armstrong, Ph.D. 

Thesis committee: Marnie Halpern, Ph.D. 

Alapakkam Sampath, Ph.D.  
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ways to do science. 

I can’t think of a better environment to do a Ph.D. than the Mouse Tri-Lab. It 

operates like a small family, sharing Thanksgivings, holidays, and other celebrations. 



 iv 

And day-to-day, being able to interact with helpful people who are interested in a wide 
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Chapter 1 

Introduction 

 

 

Portions of this introduction including some figures were previously published in: 

Rupp AC, Hattar S. “The functional properties of the G protein-coupled receptor 

melanopsin in intrinsically photosensitive retinal ganglion cells.” In: 

Martemyanov KA, Sampath AP, editors. G Protein Signaling Mechanisms in the 

Retina, Springer (2014). 
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The retina and visual system 

Light is a ubiquitous energy source and daily timing cue that organisms use to 

coordinate behavior and physiology. From night to day, light intensities vary by over 9 

orders of magnitude. Organisms have evolved on this predictable change in light intensity 

and have used it to guide a stunning diversity of behaviors. Virtually all known species 

with access to light have visual functions, including single-celled species like green 

algae1 and even species that live in near complete darkness like cavefish or naked mole 

rats2,3.  

As humans, the most widely appreciated use of light is our conscious visual 

perception: the ability to see features of the world based on their reflectance of light. 

Conscious visual perception relies on detecting relative differences in brightness or color 

of neighboring objects. This requires identifying precisely where the photon came from 

and comparing its brightness to its neighbors’, a difficult problem4. To achieve high 

visual acuity, the retina must be able to detect relatively small differences in brightness or 

wavelength in regions of the environment that are separated by microns.  

However, light is most often used in nature for non-spatial (i.e. non-image 

forming) functions. For instance, the most famous example is the use of light for energy 

generation in photosynthetic species such as plants. While it is beneficial for plants to be 

able to orient toward a source of light, the specific spatial orientation of the world does 

not matter. If the light is reflected off a tree or a rock makes no difference as long as the 

total number of effective photons reaching the chloroplasts is the same.  

For decades, humans were thought to be devoid of non-spatial forms of vision, 

which were reserved for ‘lower’ animal forms lacking the high visual acuity, intelligence, 
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and complex social structure of humans5,6. However, it has become apparent that light 

has a variety of non-spatial effects in virtually all mammals, humans included. The most 

widely appreciated are the alignment of sleep/wake cycles and activity to the 

environmental light/dark cycle (referred to as circadian photoentrainment)7, light’s effects 

on arousal and alertness8–10, the exacerbation of migraine headaches11, the effect of light 

on mood (e.g. season affective disorder and light-responsive forms of depression)12, and 

physiological functions such as the control of pupil size by light (pupillary light reflex). 

Despite widespread uses of non-spatial vision and their critical importance, these forms 

of vision have been understudied in animals compared to spatial vision and conscious 

visual perception. 

The goal of this thesis is to identify the precise mechanisms that govern how 

animals accomplish non-spatial visual function. In my time in graduate school, I have 

worked to understand a variety of non-spatial visual functions, including circadian 

alignment and acute regulation of sleep and body temperature by light (Chapter 5 of this 

thesis). However, I have spent the majority of my time on the pupillary light reflex (PLR) 

because of its ease of study, its widespread conservation in animals, and its importance 

for vision (Chapters 2–4 of this thesis). Therefore, I will focus this introduction 

predominantly on the PLR.  

As a visual behavior, the PLR is incredibly useful. It occurs within seconds of the 

presence of light and can be followed in real time, unlike many other non-spatial 

behaviors that occur over hours or days. In particular, I have focused on the critical first 

steps in the PLR: how light is detected and how that signal is processed by the neural 

circuits that drive pupil constriction. Ultimately, I believe that the pupillary light reflex is 
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an ideal model behavior for precisely dissecting neural circuitry underlying an important 

physiological function and the findings presented here will inform future studies of how 

complex visual behaviors are mediated by similar circuits. 

Information flow in the retina 

 The retina, a thin, layered structure that lines the back of the eye, detects light 

information for both spatial and non-spatial forms of vision. It contains six major 

neuronal cell types and two glial types that are arranged in stereotypical layers13. The six 

neuronal types include the rod and cone photoreceptors in the outer retina, the horizontal 

cells, bipolar cells, and amacrine cells in the inner nuclear layer, and the retinal ganglion 

cells and some amacrine cells in the ganglion cell layer (Fig. 1.1). Spanning all three 

layers are Müller glia cells that act as supporting cells and below the ganglion cell layer 

are astrocytes. The flow of light information follows this anatomical arrangement in 

simple succession: light is detected by the rods and cones, which signal to bipolar cells, 

which signal to retinal ganglion cells, which then form the optic nerve to relay that light 

information to the brain. (Horizontal cells and amacrine cells are interneurons that 

modify the activity of the photoreceptors, bipolar cells, and retinal ganglion cells.) 

Light information is encoded in the electrical activity of the retinal neurons. 

While most neurons maintain a hyperpolarized membrane potential at rest and are 

‘activated’ by depolarization, in darkness, the membrane potential of rod and cone 

photoreceptors is in a relatively depolarized state. This basal depolarization results in 

their continuous release of synaptic vesicles containing glutamate. Rods and cones detect 

the presence of light through the expression of a specialized form of G protein-coupled 

receptors (GPCRs) called opsins, referred to as rhodopsin in rods and cone opsins in 
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cones14–16. Opsin proteins are covalently linked to a photosensitive vitamin A derivative 

called retinal that isomerizes following light detection from 11-cis retinal to all-trans 

retinal17–21. The isomerization of retinal results in a conformational change in the opsin 

protein that results in activation of the G protein transducin (GNAT1 in rods and GNAT2 

in cones)22–28. Transducin activates a phosphodiesterase signaling cascade that results in 

the closure of cyclic nucleotide gated (CNG) cation channels (heteromeric CNGA1/B1 in 

rods and CNGA3/B3 in cones). This closure of the CNG channels results in a decrease in 

cation influx, hyperpolarizing the rods and cones and leading to a reduction in glutamate 

release. This change in the release of glutamate is what is detected by the next neurons in 

the visual circuit: the bipolar cells. 

Bipolar cells come in two broad classes: ON and OFF. ON cells depolarize in 

response to increases in light intensity (i.e. decreases in glutamate from rods and cones) 

and OFF cells depolarize in response to decreases in light intensity (i.e. increases in 

glutamate). The ON and OFF bipolar cells generate opposite responses to glutamate 

through the expression of different classes of glutamate receptors on their dendrites. ON 

cells utilize a metabotropic glutamate receptor (mGluR6) and a GPCR signaling cascade 

to keep a cation channel (transient receptor potential melastatin 1, TRPM1) closed in the 

presence of glutamate29–31. When glutamate decreases with light increases, the inhibition 

on the channel is relaxed and the cell depolarizes. In contrast, OFF cells express 

ionotropic glutamate receptors such as AMPA and kainate receptors32,33. Therefore, in 

OFF cells the presence of glutamate in darkness or with decreases in light intensity will 

result in cation influx and the depolarization of the cell. For both ON and OFF bipolar 
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cells, depolarization leads to their release of glutamate-containing synaptic vesicles, in 

either a graded fashion or through action potential generation34–36. 

ON and OFF responses are maintained in the retinal ganglion cells (RGCs). RGCs 

come in one of three broad classes: ON, OFF, or ON-OFF. As with bipolar cells, ON 

cells depolarize with increase in light, OFF cells with decreases in light, and ON-OFF 

cells with both increases and decreases. In general, ON RGCs are synaptically coupled to 

ON bipolar cells, OFF RGCs to OFF bipolar cells, and ON-OFF RGCs to both (although 

exceptions to this rule do exist). RGCs maintain the response polarity of the presynaptic 

bipolar cell by the expression of ionotropic glutamate receptors such as AMPA and 

NMDA receptors. Ultimately, the depolarization of an RGC will be propagated along its 

axon as an action potential and lead to the release of glutamate from its synaptic 

terminal(s)37, activating neurons in the brain regions that mediate visual perception and 

behavior. 

This simple diagram of light information propagation from photoreceptors to 

bipolar cells to retinal ganglion cells to the brain ignores the extreme complexity of the 

information. Along the way, distinct types of horizontal cells and amacrine cells modify 

the signal to detect specific aspects of the visual scene or filter out unwanted aspects38–44. 

Additionally, there are multiple subclasses of neurons with distinct physiological 

properties. In mouse there are two cone classes, one rod, one horizontal cell, about twelve 

bipolar cell, over forty amacrine cell, and around thirty retinal ganglion cell classes13,45,46. 

Each neuronal subtype tiles the retina in repeated arrays and forms dedicated 

‘microcircuits’ for the detection of specific visual features at each point in space (See Fig. 
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1.1). To understand how vision occurs, it is critical to identify these microcircuits and the 

visual information they encode. 

Segregation of rod and cone circuits 

Rod and cone photoreceptors are specialized for different kinds of light detection. 

Rods are exquisitely sensitive, capable of relaying the absorption of a single photon, 

making them the exclusive photoreceptor for night vision. However, their temporal 

resolution is relatively poor, which is why hand-eye coordination is worse at night. Cones 

on the other hand are orders of magnitude less sensitive than rods but capable of rapid 

light adaptation that allows them to signal robustly across the huge range in light 

intensities encountered in the day.  

Because their signaling specializations differ, it likely comes as no surprise that 

rods and cones utilize distinct downstream relay cells. While bipolar cells come in two 

large classes (ON and OFF), there are least thirteen total subtypes with distinct light 

response properties, morphology, and synaptic connections34,47–50. Of the thirteen bipolar 

subtypes, one type forms synapses exclusively with rods: the rod bipolar cell. Rod bipolar 

cells are ON bipolar cells and the most abundant bipolar cells in the mammalian retina. 

The other twelve bipolar cell types (seven ON and five OFF) receive synaptic input from 

cones and are referred to as cone bipolar cells. (Note: this strict separation into rod and 

cone bipolar cells is not absolute; there is evidence for some cone bipolar cells that 

receive rod input and some rod bipolar cells that receive cone input51. However, this does 

not appear to be widespread and this is the only mention I will make of mixed rod and 

cone input to different bipolar cell types.)  
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One major difference among the bipolar cell classes is their ability to sustain 

depolarization in response to the continued presence or absence of light. Based on this 

criterion, some bipolar cell classes are referred to as ‘transient’ and others as ‘sustained’36. 

These two categories (ON/OFF and sustained/transient) encompass the major distinctions 

of bipolar cell classes. As a result, in the mouse there are four kinds of visual information 

that bipolar cells relay: ON sustained, OFF sustained, ON transient, and OFF transient, 

although in species with robust color vision there is an additional chromatic component 

that is overlaid on top of these52,53. 

As light information travels further from the photoreceptors, it acquires more and 

more specialized information. What began as simple detection of the presence and 

intensity of light in the rods and cones and was converted to any of four response profiles 

in different bipolar cells becomes full-fledged ‘feature’ detection in different classes of 

retinal ganglion cells that are the building blocks of vision. 

Intrinsically photosensitive retinal ganglion cells 

 Everything that the brain knows about the visual world comes from the electrical 

activity of retinal ganglion cells (RGCs). The multiple different subclasses of RGCs are 

specialized in the extraction of the visual features they relay to the brain. RGC types 

differ in their light response characteristics, morphology, gene expression profiles, 

presynaptic circuits, and targets within the brain. Therefore, for the last 50 years, a major 

goal of visual neuroscientists has been to identify the complete catalog of RGCs and 

connect them to specific perceptual and behavioral functions. 

To date, it is estimated that there are thirty subtypes of RGCs54,55. Among them 

are RGCs involved in detecting the direction of object motion (direction-selective 
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RGCs)56–61, RGCs with especially large soma that detect image contrast (alpha RGCs)62–

66, and motion-sensitive RGCs with unusual asymmetric dendrites (J-RGCs)67. Arguably, 

the only subpopulation that has been definitively linked to a specific behavioral or 

perceptual function is a class known as the intrinsically photosensitive retinal ganglion 

cells (ipRGCs), which mediate a variety of non-spatial visual behaviors including the 

pupillary light reflex (PLR) and circadian photoentrainment68,69. Therefore, ipRGCs have 

become a model system for understanding how a specific RGC subclass extracts its 

specialized visual features (i.e. its specific retinal circuitry) and how it drives its 

dedicated visual function(s). I will focus the remainder of this introduction on ipRGCs 

and their role in the PLR. 

One complication in using ipRGCs as a model RGC class is the fact that they are 

both RGCs and photoreceptors, possessing their own phototransduction cascade that 

functions in the absence of rods and cones70. This remarkable fact adds a layer of 

complexity to the simple wiring diagram that visual neuroscientists had drawn for 

decades (and I had drawn in the preceding sections) in which light is detected exclusively 

by the rods and cones and is refined in greater detail in succeeding synapses. This finding 

was so surprising that it is worth telling the history of the relatively recent discovery of 

ipRGCs.  

For decades, it had been recognized that mice lacking virtually all rods and cones 

could still align their circadian rhythms to a light/dark cycle71–73 and constrict their pupils 

in response to light74. These observations were dismissed with a trivial explanation that 

although the vast majority of photoreceptors were absent (all rods and >99% of cones), 

the remaining few could mediate the residual response75. However, this explanation was 



 10 

laid to rest when it was found that humans with no conscious visual perception could 

align their sleep/wake cycles to a light/dark cycle76. This suggested that in the complete 

absence of rod and cone function, there is another functional photoreceptive mechanism. 

Further experiments in mouse definitively showed that mice lacking all rods and cones 

still retained photoentrainment, acute suppression of activity by light (masking), the PLR, 

and melatonin suppression by light77–80. These results prompted the search for a third 

photoreceptor in the mammalian retina. 

Many different classes of opsins exist in the animal kingdom and there have been 

considerable efforts to identify the full catalog of opsin families (Fig. 1.2). One study by 

Ignacio Provencio and colleagues revealed a novel opsin that they named melanopsin due 

to its expression in the photosensitive skin melanophores of Xenopus laevis81. Later, the 

same group identified a melanopsin homolog (officially referred to as opsin 4 or Opn4) in 

the mouse and human genomes with a sequence that was more similar to invertebrate 

opsins than to mammalian rhodopsin and cone opsins82 (Fig. 1.2). Intriguingly, they also 

revealed expression of mammalian melanopsin in a subset of RGCs82. This result implied 

that some RGCs might possess their own phototransduction cascade similar to rods and 

cones and therefore could mediate light detection in their absence. 

Therefore, Provencio et al. hypothesized that the RGCs that express melanopsin 

would be directly photosensitive and possibly capable of contributing to circadian 

photoentrainment and the PLR82. To test this, in 2002, David Berson and colleagues 

labeled the RGCs that project to the master circadian pacemaker, the suprachiasmatic 

nucleus (SCN)70. They found that SCN-projecting RGCs continued to depolarize to light 
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in the absence of synaptic input70. This indicated that the RGCs that control circadian 

photoentrainment are intrinsically photosensitive (thereby named ipRGCs).  

In parallel experiments, Samer Hattar, King-wai Yau, and colleagues developed a 

mouse line to label the cell bodies and axons of the melanopsin-expressing cells 

(Opn4tauLacZ)83. They found that there are about 700 melanopsin-expressing RGCs in each 

mouse retina, and they project to the SCN and olivary pretectal nucleus (OPN), a 

midbrain relay for the PLR83, among other brain regions84. Altogether, these results 

identified melanopsin-expressing ipRGCs as the long-sought third photoreceptor in the 

mammalian retina.  

It was then predicted that melanopsin knockout mice would be incapable of 

circadian photoentrainment or the PLR. In contrast, melanopsin knockout mice were 

virtually normal in both respects, although they had a small deficit in shifting their 

circadian phase to light and maximal pupil constriction in response to bright light85–87. It 

required removal of all three phototransduction mechanisms in the retina (rods, cones, 

and melanopsin) to abolish photoentrainment and the PLR and create truly blind mice88,89. 

This confirmed that rods, cones, and ipRGCs are the only photoreceptors in the retina, 

and put to rest a hypothesis that photosensitive flavin-based molecules called 

cryptochromes could mediate the PLR and circadian photoentrainment in mammals90–93. 

(Notably, a recent study found that there is likely a fourth photoreceptor in the retina that 

is capable of aligning the endogenous circadian rhythm of the retina to the light/dark 

cycle in the absence of rod, cone, and ipRGC function94. However, this fourth 

photoreceptor is yet unidentified and in any case incapable of contributing to circadian 

photoentrainment or the PLR, so I will not discuss it.) 
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This raised two possibilities: (1) ipRGCs are the sole relays of light information 

for circadian photoentrainment and the PLR (2) other RGCs could relay rod and cone 

light information for circadian photoentrainment and the PLR in the absence of ipRGC 

function68. To distinguish these possibilities, multiple groups used genetic means to 

ablate the ipRGCs and observed an almost complete loss of photoentrainment and PLR95–

97. Remarkably, PLR and photoentrainment were absent in these mice despite normal 

spatial vision and normal rod and cone function95. This indicated that ipRGCs are the 

predominant, if not sole, relay of light information for photoentrainment and the PLR. 

These results highlight the parallel nature of visual processing in which distinct RGC 

classes are dedicated to specific visual functions.  

Diversity of ipRGCs 

Later studies using more sensitive labeling methods showed that there are at least 

5 distinct subclasses of RGCs that express melanopsin98–104 (Fig. 1.3). These cells are 

normally grouped together as subtypes of ipRGCs (referred to as M1–M5), although I 

believe it may be more appropriate to think of them as distinct subtypes of RGCs that 

happen to all express melanopsin. For instance, the alpha RGCs mediate the detection of 

low contrast stimuli for spatial vision and one alpha cell type expresses melanopsin, so it 

has been categorized as the M4 ipRGC62,104. However, if RGCs are categorized based on 

the visual features they extract, I believe it the M4 ipRGCs should be thought of as a 

member of the spatial, contrast-sensitive RGC group that happens to express melanopsin. 

This line of thinking has important implications for how we think about the function of 

individual ipRGC subtypes. Subtypes that are clustered with conventional RGCs of a 
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certain function (e.g. contrast-sensitive) will give unique insights into the roles that those 

subtypes play.  

Regardless of how they are categorized, all ipRGCs can be linked by their 

expression of melanopsin and their ability to respond to light in the absence of rod and 

cone function. Additionally, one pragmatic reason to group all melanopsin-expressing 

RGCs together is the lack of genetic tools to separate them. Currently, genetic tools that 

ablate or activate ipRGCs will ablate or activate virtually all of them99. For this reason, 

from here forward I will stick with convention and refer to the different melanopsin-

expressing RGCs as ipRGC subtypes. 

Like RGC subtypes, the defined ipRGC subtypes differ in their gene expression 

profiles, morphology, dendritic stratification, electrophysiological responses to light, 

connectivity within the retina, and central projections62,98–103,105–107 (Fig. 1.3). The M1 

ipRGCs are the founding member of the group and comprise the cells that project to the 

SCN and OPN. However, while exclusively M1 cells innervate the SCN, other types of 

ipRGCs robustly innervate the OPN99,102. The fact that multiple ipRGC subtypes project 

to the OPN suggests ipRGC input to the PLR is more complex than to circadian 

photoentrainment.  

Because we have limited knowledge of their precise functions, the other ipRGC 

subtypes tend to be lumped together as ‘non-M1’ ipRGCs. The only function tied to non-

M1 ipRGCs to date is their role in spatial vision. They project to brain regions involved 

in conscious visual perception, such as the dorsal lateral geniculate nucleus (dLGN) and 

superior colliculus (SC)99,104. Additionally, non-M1 ipRGCs light detection is critical for 

normal spatial vision62,108–110, and can even support rudimentary spatial vision in the 
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absence of rod/cone function99,111. These effects have been proposed to be mediated by 

the M4 ipRGC62, but to date no study has specifically isolated a non-M1 ipRGC subtype 

in vivo. 

To gain access to the individual subtypes and separate their function, recent 

efforts have attempted to identify unique genetic markers. However, to date, there are 

only limited genetic markers (Fig. 1.3). One is T-box transcription factor 2 (Tbr2), which 

is expressed in multiple RGC types, including M1 cells that do not project to the SCN 

and M2 ipRGCs106,107. Removal of Tbr2 from ipRGCs (Opn4Cre/+; Tbr2fl/fl) results in PLR 

defects, although circadian photoentrainment is intact106,107.  

The other major marker for ipRGCs is the transcription factor Brn3b (whose 

official name is POU domain, class 4, transcription factor 2, or Pou4f2). Brn3b is 

expressed in many RGC subtypes, including all identified ipRGC subtypes except a small 

population of M1 cells, referred to as Brn3b-negative M1 ipRGCs105,112. Just like the 

Tbr2-negative M1 ipRGCs, these Brn3b-negative M1 ipRGCs project robustly to the 

SCN, but have minimal projections to the OPN105. A genetic mouse model that ablates 

the Brn3b-positive ipRGCs (Opn4Cre/+; Brn3bDTA/+) has a severe loss in PLR, but normal 

photoentrainment, consistent with their innervation pattern105. This indicates that Brn3b-

positive ipRGCs (of which there are 5 subtypes), are required for the PLR, but Brn3b-

negative ipRGCs are sufficient for photoentrainment. 

The finding that the Brn3b-negative M1 ipRGCs are sufficient for 

photoentrainment was the first indisputable connection of a specific RGC subtype to a 

visual function. The specific roles of the other ipRGCs are yet unclear. This is 

predominantly due to the fact that the projection patterns of each non-M1 subtype are not 
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known and they have no known specific genetic differences that can be utilized for 

ablation or activation of one subtype. Most relevant for this thesis, because many ipRGC 

subtypes project to the OPN and there are no clear ways to silence or activate a single 

subtype, it still remains unclear which ipRGCs are involved in the PLR. One suggestion 

is that the M1 subtype is most relevant due to the moderate loss in PLR after exclusive 

ablation of the majority of M1 cells68. 

Retinal connectivity of ipRGCs 

The distinct electrophysiological responses to light in ipRGC subtypes is likely 

due to differences in input from upstream cells. In the retina, the specific lamina in which 

a cell’s dendrites stratify is a strong predictor of connectivity. The axons of each different 

bipolar cell type (of which there are about thirteen) and amacrine cell (of which there are 

over forty) terminate in a distinct region of the inner plexiform layer (IPL). Each RGC 

subtype’s dendrites stratify in very precise regions of the IPL, thereby allowing them to 

connect with specific bipolar and amacrine cell types55,113–117. This precise wiring is what 

generates the diversity and specificity of light responses in each retinal ganglion cell type. 

Therefore, determining the specific retinal connectivity of each RGC subtype is a current 

major goal of visual neuroscientists. 

The specific circuits presynaptic to ipRGCs remain largely unknown (Fig. 1.4). 

The most studied circuitry is that of the M1 subtype, partly because these cells have been 

studied the longest. M1 ipRGCs are unusual for RGCs: they are ON RGCs that do not 

stratify their dendrites with the rest of the ON RGCs118. Instead, M1 ipRGCs have their 

dendrites in the outermost layer of the IPL, where predominantly transient OFF signals 

are relayed.  
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This means that M1 ipRGCs likely do not get synaptic input through the 

traditional ON circuits, despite receiving input from ON bipolar cells118. One proposed 

mechanism for input to ipRGCs is through ON bipolar cells that make en passant 

synapses with M1 ipRGCs as they pass through the OFF layer of the IPL before 

terminating with conventional axonal endings in the ON layer119–121. Some ipRGCs are 

located in the inner nuclear layer (so called ‘displaced ipRGCs’). Because of this, their 

dendrites cannot pass through the ON layer of the IPL and they receive exclusively en 

passant synapses. Studies of these cells have shown that en passant synapses are 

functional, although their synaptic input is much more transient than for those that are 

located in the ganglion cell layer120, indicating that en passant synapses are not the 

predominant bipolar cell input to M1 ipRGCs. 

So how do M1 ipRGCs get bipolar cell input? Early electron microscopic analysis 

of melanopsin-expressing cells found that they receive ribbon synaptic inputs from 

bipolar cells on their soma and proximal dendrites122. The specific subtype of bipolar cell 

is yet to be identified, but due to the fact that the connections are on the soma and 

proximal dendrites, it must be a subtype that terminates deep in the IPL. One possible 

candidate is the rod bipolar cell, which has been proposed to contact M1 ipRGC soma in 

rats123. However, this proposal has been controversial because direct rod bipolar cell to 

retinal ganglion cell synaptic connections are thought to be non-existent in the 

mammalian retina and could not be confirmed for primate ipRGCs119.  

The functional significance of M1 ipRGCs having their dendrites in the outermost 

layer of the IPL is unclear. It seems unlikely that it would be to receive the en passant 

synapses because M1 ipRGCs receive more robust conventional synapses on their 
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dendrites and soma in the ON layer. Instead, it appears most likely to me that it is to 

enhance interactions with the dopaminergic amacrine cells (DACs).  

DAC cell bodies are positioned in the inner nuclear layer and send broad axonal 

projections that stratify in the outermost layer of the IPL (in addition to sending small 

projections to the photoreceptor layer)124–126. M1 ipRGC dendrites and DAC axons are 

both anatomically and functionally connected127,128. Of the known inputs to ipRGCs, the 

anatomical link between M1 cells and DACs is by far the strongest. In fact, the coupling 

of M1 ipRGCs and DACs appears to be so tight that disrupting the DAC stratification 

pattern results in concordant disruption in M1 ipRGC dendritic stratification129.  

The synaptic connection suggests dopamine would affect ipRGC function, though 

the effect of dopamine on ipRGCs has remained unclear. Dopamine is widely known as a 

neuromodulator that mediates light adaptation in the rod and cone circuits, enhancing 

visual acuity and contrast sensitivity130. Dopamine levels oscillate with a diurnal rhythm 

and are high during the day and low at night131. Dopamine can acutely attenuate the 

ipRGC photocurrent through a cAMP/PKA pathway132,133. However, long-term dopamine 

exposure enhances expression of melanopsin134. Therefore, it is controversial whether 

dopamine and its daily variation have any effect on ipRGC function135, especially in vivo.  

As of now, the precise presynaptic circuits to the other ipRGC subtypes remain 

essentially unknown. The M3 and M5 cells are rare and therefore difficult to identify for 

study, so to date no studies have investigated their presynaptic circuits. The M2 and M4 

cells are more common and easy to identify. M2 ipRGCs in mouse appear to receive 

input from type 8 cone bipolar cells127 and primate ON stratifying ipRGCs (presumed to 

be homologous to the mouse M2 cells) have synaptic connections with the DB6 ON 
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bipolar cells119 (although the homology of mouse and primate bipolar cells is a matter of 

debate48). 

The M4 ipRGCs are synonymous with the sustained ON alpha RGCs that have a 

characteristic large soma (hence ‘alpha’) and a highly branched dendritic tree62,136. 

Physiologically, ON alpha cells are noted for their high contrast sensitivity and frequency 

doubling response (‘Y type’ response), suggesting they could contribute to visual contrast 

detection137,138. In mouse, the ON alpha cells are most closely synaptically apposed to 

type 6 and 7 ON cone bipolar cells, although this is yet to be functionally tested139. In 

addition, they make a transient synaptic connection with rod bipolar cells in development 

that is pruned away by adulthood139. 

Because the PLR likely utilizes many subtypes of ipRGCs, it remains possible 

that all the diverse synaptic inputs to ipRGCs are capable of driving the PLR. To date, 

there are no means to specifically silence or activate only one class of bipolar cell, 

making functional testing impossible. Most importantly, though it is possible that many 

retinal circuits can drive the PLR, we are likely many years away from the ability to test 

the relative importance of each circuit. 

Melanopsin phototransduction 

While ipRGCs can relay synaptic input to the brain, they also possess their own 

melanopsin phototransduction, which is makes them unique among mammalian retinal 

ganglion cells. Whereas rod and cone phototransduction results in hyperpolarization and 

graded release of synaptic vesicles, in ipRGCs phototransduction leads to depolarization 

and action potential generation70. This indicates that melanopsin uses a different 

phototransduction cascade than rods and cones.  
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The specific G protein cascade that each G protein-coupled receptor preferentially 

activates is determined by its protein sequence. Early bioinformatic analysis shortly after 

the discovery of melanopsin identified that it is more similar to the rhabdomeric opsins 

found in invertebrates than the mammalian rod and cone opsins82. Invertebrates such as 

the horseshoe crab (Limulus) and the fruit fly (Drosophila melanogaster) also have 

depolarizing phototransduction cascades140. Therefore, it was hypothesized that 

melanopsin phototransduction may be similar to Limulus and Drosophila 

phototransduction. 

Similar to mammalian rods and cones, Drosophila phototransduction is initiated 

by light-mediated isomerization of 11-cis-3-hydroxyretinal to all-trans-3-hydroxyretinal. 

This results in the conformational change in Drosophila rhodopsin (Rh) and activation of 

a Gq protein (dgq)141. Gq then goes on to activate a phospholipase C (PLC) called 

norpA142, resulting in the hydrolysis of phosphatidylinositol (4,5)-bisphosphate (PIP2) 

into inositol 1,4,5-trisphosophate (IP3), diacylglycerol (DAG), and a proton. In many 

systems, IP3 activates IP3 receptors on the smooth endoplasmic reticulum (ER) to cause 

increases in intracellular calcium, but Drosophila rhabdomeres lack smooth ER. Instead, 

phototransduction appears to rely on decreases in DAG in the membrane that cause the 

opening of a cation channel called transient receptor potential (trp) and its homolog 

transient receptor potential-like (trpl)143–146. trp and trpl open to allow the influx of 

sodium and calcium and lead to depolarization of the cell.  

The melanopsin phototransduction pathway appears to be similar to Drosophila 

rhodopsin, although there are some notable distinctions (discussed at the end). The best 

evidence comes from studies of mouse mutants that lack Plcb4 and Trpc6/7, the 
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homologs of Drosophila norpA and trp. M1 ipRGCs from Plcb4-/- or Trpc6-/-; Trpc7-/- 

mice display a dramatically reduced (<1%) melanopsin photocurrent to flashes of light in 

vitro147. This suggests that a PLCβ4-TRPC6/7 pathway accounts for the majority of the 

melanopsin phototransduction cascade, at least in M1 ipRGCs and to flashes of light (Fig 

1.5).  

This would indicate that Gq proteins would be required for the activation of 

PLCβ4. Indeed, melanopsin requires the use of a heterotrimeric G protein148, though its 

precise identity is unknown. The mouse genome contains four distinct Gq family 

members: Gnaq, Gna11, Gna14, and Gna15. Transcriptomic analysis of ipRGCs has 

detected multiple Gq proteins in addition to other heterotrimeric G proteins, although 

Gnaq and Gna11 appear to be the most abundant148–150. In support of Gnaq and Gna11, 

their mRNA knockdown in a rodless/coneless mouse has similar effects on the PLR as 

knockdown of melanopsin mRNA151. However, Gnaq-/-; Gna11-/- double knockout mice 

displayed no deficits in ipRGC physiology in vitro or in melanopsin-dependent 

behaviors149. This suggests two possibilities: (1) GNAQ and GNA11 are the predominant 

G proteins in the melanopsin phototransduction cascade and when they are removed other 

Gq family genes can compensate or (2) other heterotrimeric G proteins are the capable of 

driving melanopsin phototransduction in their absence. Future studies of animals lacking 

all four Gq family genes in ipRGCs will be needed to clarify these differences. 

In either case, PLCβ4 appears to provide the predominant drive for the M1 

ipRGC photocurrent147. This suggests that the IP3/DAG/H+ pathway would be important 

for linking PLCβ4 to the TRPC6/7 channels. As in Drosophila, intracellular calcium 

stores appears to be dispensable for melanopsin phototransduction152, suggesting a 
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function for DAG. DAG is membrane-associated, and melanopsin phototransduction 

proceeds in excised patches of ipRGC membrane148, implicating DAG or another 

membrane-associated molecule. However, acute application of DAG to the recording 

pipette does not induce a current148 as it does in Drosophila. This leaves open the 

question of the second messenger in ipRGCs.  

In Drosophila, while the generation of DAG is the key second messenger step, 

DAG per se appears not be critical. Rather, it is the resulting changes in membrane 

rigidity as well as local acidification from the generation of a proton that are critical143,146. 

Therefore, the inability to generate a current in ipRGCs from exogenous DAG may be 

due to the absence of local acidification, but this idea is yet to be tested. 

Ultimately, the majority of the current in vitro (at least in M1 ipRGCs) is due to 

TRPC6/7 channels. Of the TRPC family, ipRGCs express primarily TRPC3, TRPC6, and 

TRPC7. Early studies using pharmacology found that TRPC antagonists effectively 

blocked the melanopsin photocurrent153. However, ipRGCs from individual Trpc3-/-, 

Trpc6-/-, or Trpc7-/- mice still retained a melanopsin photocurrent (although the current in 

Trpc6-/- ipRGCs was moderately reduced)154. This suggested that other TRPC channels or 

TRPC3/6/7 in combination might be required. As addressed previously, M1 ipRGCs in 

Trpc6/7-/- double mutants had virtually no photocurrent and were identical to Trpc3/6/7-/- 

triple mutants147. While it remains possible that the small residual current is due to 

another TRPC family member, it is more likely that some other unidentified pathway 

exists between melanopsin activation and ipRGC depolarization. 

The vast majority of accumulated evidence suggests that a Gq-PLCβ4-TRPC6/7 

pathway is the predominant phototransduction pathway in ipRGCs. However, a residual 
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photocurrent persists in the absence of this pathway (that is not present in melanopsin 

knockout ipRGCs) and to date no behavioral deficits have been reported in Gq, PLCβ4, or 

TRPC6/7 mutant animals147,149. This suggests that at least one other pathway is capable of 

generating a current downstream of melanopsin. In support of this, melanopsin in vitro is 

capable of activating a wide variety of signaling pathways155,156. In addition, M1 ipRGCs 

have been the most widely studied. Other ipRGC subtypes may use distinct 

phototransduction mechanisms. Each subtype has its own distinct electrophysiological 

response profile99,100,157,158, implying there may be differences in the phototransduction 

pathway. The use of a non-conventional phototransduction pathway in non-M1 ipRGCs 

would explain the lack of PLR deficit in Gq mutant mice because the PLR likely utilizes 

non-M1 ipRGC input. Future studies, both in vitro and in vivo, are needed to address the 

melanopsin phototransduction pathways in other ipRGC subtypes. 

The roles of rods, cones, and melanopsin phototransduction in the PLR 

Now that it has become well established that ipRGCs are the main outputs from 

the retina for many non-spatial visual behaviors, it is critical to understand how. The first 

question is how light information is first detected for non-image forming visual behaviors. 

ipRGCs could simply serve as relay stations for rod and cone light detection, they could 

rely almost exclusively on melanopsin phototransduction with little synaptic input, or a 

combination of the two. The behaviors that are mediated by ipRGCs vary dramatically in 

their sensitivity, duration, and preference for different wavelengths of light159, indicating 

that each behavior likely utilizes distinct photoreceptive mechanisms (and possibly 

distinct ipRGC subtypes). I will focus this section on the pupillary light reflex, because 
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its photoreceptive mechanisms have been studied most extensively and because it is the 

primary focus of my own work.  

The pupillary light reflex is a simple visual behavior that is initiated within 

seconds of light onset (Fig. 1.6). The pupil is large in darkness, rapidly shrinks, and is 

capable of maintaining constriction indefinitely in continuous light. Its remarkable speed 

and stability are critical for allowing adaptation of the photoreceptors as well as 

supporting high visual acuity160. In fact, the PLR is so critical for normal vision that it is 

broadly conserved in all major groups with camera eyes and even independently evolved 

with independent evolutionary arrivals of camera eyes evolved (Fig. 1.6). 

The PLR in vertebrates is believed to utilize a simple neural circuit. Light is 

absorbed by the photoreceptors in the retina, which transduce that energy to electrical 

information. Light information is relayed from ipRGCs to the midbrain olivary pretectal 

nucleus (OPN), then to the Edinger-Westphal (EW) nucleus, then to the parasympethatic 

ciliary ganglion, whose neurons release acetylcholine on the iris muscle, causing pupil 

constriction69. The circuit is generally drawn as a simple linear map, although there are 

many reasons to believe that it is not as simple as believed, such as the interconnectivity 

of the OPN and EW, its modulation by cognition and emotions161–163, and bilateral 

asymmetry that I will discuss later.  

However, I will focus this thesis most extensively on the initial steps of the PLR, 

the photoreceptors and their immediate synaptic partners. The photoreceptors driving the 

PLR have been investigated in depth for decades, although much controversy remains. 

This is likely due to a combination of an incomplete knowledge of the photoreceptors and 

the imprecise methods used to isolate their relative roles. The relatively recent discovery 
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of melanopsin (~15 years ago) precluded a full understanding of the photoreceptive 

mechanisms of the PLR in older studies. However, data from these early studies are still a 

rich characterization of the PLR under a variety of light conditions.  

The PLR has been historically investigated in the most detail in primates 

including humans by both basic scientists interested in the PLR mechanisms and 

clinicians who use the PLR for diagnosis of retinal and central nervous system 

disorders164. It was also believed to be a reliable readout of general photoreceptor 

function and was used by vision scientists interested in rod and cone function. We now 

know that this is not the case: the PLR follows a very specific circuit that may not hold 

for other rod/cone functions and features a multi-synaptic circuit that filters a lot of the 

information from rods and cones, preventing the ability of using it as a direct readout of 

their activity.  

The most common techniques for studying the PLR have taken advantage of the 

distinct light detection and signaling properties of rods and cones. For instance, rods and 

cones have different absorbance spectra, permitting specific wavelengths of light to be 

preferentially absorbed by rods or cones. Additionally, they are preferentially located in 

distinct regions of the primate retina (rods in the periphery, cones in the central retina). 

Lastly, rods and cones have differences in their speed of signaling: rods are relatively 

slow and cones are fast. So for instance, a long wavelength, high frequency stimulus 

delivered to the central retina will much more effectively activate cones than rods. Then, 

this effect of this stimulus on the PLR can be compared to a stimulus designed to 

preferentially activate rods.  
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However, there will always be uncertainty about the physiological suitability of 

these artificial stimuli. Showing that rods or cones can drive a PLR in response to a 

stimulus designed to activate them does not answer the question of how the 

photoreceptors drive the PLR in the environment. As a result, a variety of incompatible 

models have been proposed over the years, included rod-only models165,166, mixed rod-

cone models167–169, and cone-only models170–172. Since the discovery of melanopsin, it is 

now taken into account when designing stimuli and the models have updated to include 

cone-melanopsin173,174 and rod-melanopsin175. In all cases, there is no consensus model of 

the role of the different photoreceptors in the PLR. 

More recent studies have taken advantage of genetic mutant animals that allow 

specific manipulation of the photoreceptors. For instance, both mouse models and human 

subjects that lacks the rod and cone photoreceptor function still retain a PLR at bright 

light intensities with relatively slow kinetics74,79,111,176,177, implicating melanopsin. In 

converse experiments, melanopsin knockout mice displayed a decrease in maximal pupil 

constriction at bright light intensities87. Collectively, these experiments have 

unambiguously shown that melanopsin plays a role in the PLR at bright light intensities. 

Extending these studies to include mouse models that specifically silence either rods or 

cones is critical for understanding the full retinal control of the PLR. 

Recent studies have taken a partial step in this direction using transgenic mouse 

models that allow better spectral separation of photoreceptor activation. A mouse model 

that features a cone opsin with greater sensitivity to red light was revealed to have an 

enhanced PLR in response to red light178, leading to a model in which cones and 

melanopsin can recapitulate the entirety of the PLR. Additionally, using UV light to 
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preferentially activate the short wavelength cones (S cones) in a melanopsin knockout 

background (Opn4-/-) revealed fast fluctuations in pupil size to an oscillating UV stimulus, 

implying that S cones could drive the PLR179. Collectively, these studies have led to a 

model in which cones are the predominant photoreceptors for the PLR178,180. However, 

this remains to be tested with mouse mutant lines that block rod or cone function. 

An alternative approach to manipulating the photoreceptors is descriptive study of 

the PLR. For instance, the PLR is significantly less sensitive than the sensitivity of rods 

and is close to the sensitivity of cones, suggesting that cones may be more important for 

the PLR. However, the PLR is not a simple readout of photoreceptor activity. The OPN is 

refractory to RGC input at low light intensities179, suggesting that RGC input needs to be 

particularly strong for OPN activation and PLR. Additionally, it is unknown how reliable 

synaptic transmission is in any other part of the PLR circuit. 

Instead of using threshold sensitivity, many groups have utilized wavelength 

sensitivity to determine the photoreceptor input, referred to as an action spectrum. 

Because each photoreceptor has a distinct peak and pattern of sensitivity to wavelength, 

the pattern of wavelength sensitivity of the PLR should match that of the photoreceptor 

that drives it. However, decades of action spectra in a variety of species have not settled 

on the photoreceptors involved because the results have covered virtually the entire 

visible spectrum, from peaks that are <400 nm to >560 nm168,181,182. This appears to be 

predominantly due to inconsistencies in the criteria used to determine sensitivity (e.g. 

threshold vs. EC50) or the different background intensities (full dark adaptation or varying 

levels of light adaptation), although it may reflect distinct mechanisms in different 

vertebrate species.  
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In conclusion, the specific roles of rods, cones, and melanopsin in the PLR are 

contentious with decades of history. However, I believe the current availability of mouse 

mutant models to silence specific photoreceptors types makes the answer within reach, 

which I will address in Chapter 3 of this thesis. 

Intrinsic pupillary light reflex in mammals 

In addition to difficulties in separating the roles of rods and cones (and now 

melanopsin), virtually every previous PLR study in mammals has ignored the possibility 

of a photoreceptive iris muscle and assumed that the retina drove all PLR. However, the 

earliest recorded studies of the PLR mechanisms that I am aware of (from the nineteenth 

century) were conducted in the isolated iris muscle of non-mammalian vertebrates, which 

is robustly photosensitive in vitro183–185. Subsequent studies have implicated a rhodopsin-

based phototransduction cascade in iris186,187, although these studies were largely 

conducted before the age of molecular genetics and sequencing, and rhodopsin has yet to 

be identified with certainty as the photopigment in non-mammalian vertebrate iris. In fact, 

one study has proposed that the embryonic chick iris uses crytochrome-based 

phototransduction188. 

Despite having an intrinsic PLR, non-mammalian vertebrate iris muscles also 

receive neuronal input from parasympathetic and sympathetic neurons189,190. Despite this, 

their intrinsic response is so robust that it is widely assumed that there is very little role 

for neural input in their PLR186. This is supported by the fact that many non-mammalian 

vertebrates have either a very weak or no consensual PLR in the unilluminated eye191, 

which must be driven solely by the neural circuit. However, this question of intrinsic 
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versus neuronal input is yet to be addressed in sufficient detail in non-mammalian 

vertebrates. 

Since the discovery of an intrinsic PLR in non-mammalian vertebrates, decades of 

studies of the mammalian iris muscle failed to find intrinsic phototransduction. This led 

to the conclusion that the entirety of the mammalian PLR is from a neural mechanism, 

and precipitated the studies of rods and cones discussed previously. However, recent 

studies have drawn attention to the fact that many mammalian species (including mouse) 

have a photosensitive iris muscle, which is capable of driving an intrinsic PLR both in 

vitro and in vivo147,192–195. 

It is not clear why animals would use both a neural circuit and intrinsic 

phototransduction for the PLR. One proposed reason is to allow animals to maintain pupil 

constriction at bright light intensities at which the pupil is so small that it allows very 

little light to reach the retina147. Additionally, intrinsic iris phototransduction has been 

proposed to enhance pupil constriction on the side of the body exposed to brighter light 

(referred to as bilateral asymmetry)147. Because the PLR uses brain circuitry, it allows 

light information from one retina to reach both eyes. Therefore, there is both a ‘direct 

PLR’ on the illuminated side and a ‘consensual PLR’ on the unilluminated side. However, 

the direct PLR in mouse is more sensitive than the consensual PLR147. This bilateral 

asymmetry is thought to arise because the brain circuitry presumably activates both iris 

muscles similarly and activation of the iris muscle on the illuminated side enhances pupil 

constriction147. While this bilateral asymmetry does not exist in humans196, it would be 

especially valuable for species that have laterally placed eyes such as mouse. To date, the 

mechanisms mediating bilateral asymmetry in the PLR are unknown. 
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It was recently identified that the mouse iris muscle uses melanopsin for 

phototransduction147. However, melanopsin in the iris muscle appears to use a slightly 

different phototransduction cascade than in ipRGCs. In iris, melanopsin drives an 

intracellular calcium pathway, whereas ipRGC melanopsin uses a TRPC6/7 transduction 

cascade (as covered earlier)147. Additionally, in support of the idea that the iris muscle 

mediates bilateral asymmetry in the PLR and is critical for maintaining the PLR in bright 

light, melanopsin knockout mice have a weaker PLR bilateral asymmetry than 

wildtype147 and do not achieve full pupil constriction at bright light intensities87,147. 

However, the role of melanopsin in the iris muscle and retina for the PLR has yet to be 

disentangled.   

In summary, the PLR is a critical visual behavior, but its precise photoreceptive 

mechanisms have been surprisingly difficult to settle. This is both due to experimental 

inconsistencies as well as imprecise techniques for isolating a single photoreceptor type. 

In this thesis, I have attempted to resolve these issues by using a variety of specific 

mutant mouse lines, pharmacology, chemogenetic tools, transsynaptic viral tracing, and 

surgical techniques to reveal the photoreceptors and circuits in the PLR and to quantify 

their contributions.  

Contents of this thesis 

This thesis is based on my work studying the mechanisms of the pupillary light 

reflex (PLR) in mouse. Despite being an apparently simple behavior, its cellular and 

circuit mechanisms have remained unclear for decades. In the data presented here, I have 

focused on the first steps in the PLR: (1) whether light is detected primarily by the iris 
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and/or retina, (2) what specific photoreceptors in the retina are utilized, and (3) the retinal 

circuits connecting the rods/cones to ipRGCs to drive the PLR.  

Chapter 2 addresses the relative roles of iris and retina phototransduction in 

driving the PLR. I will show that in mice, the retina drives virtually all PLR, with 

minimal contribution from iris phototransduction. I will show that this is due to 

melanopsin expression in the iris at low levels and in a small number of cells. I will then 

show that the retina drives the PLR using a bilaterally asymmetric brain circuit mediated 

by the Brn3b-positive ipRGCs.  

Chapter 3 is then focused on which retinal photoreceptors are critical for the PLR. 

I will show that despite common beliefs, cones are only minimally involved in the PLR 

due to their rapid light adaptation. Instead, I will show that rod function is both necessary 

and sufficient for the full sensitivity of the PLR. At bright light intensities, I will show 

that melanopsin phototransduction augments rod input to the PLR to stabilize pupil size. 

Chapter 4 then addresses the retinal circuits connecting rods to ipRGCs to drive 

the PLR. I will show that viral circuit tracing techniques identify the rod bipolar cell as 

presynaptic to ipRGCs, despite a general belief that rod bipolar cells do not contact RGCs. 

I will then show that rods drive the PLR using an ON bipolar cell that does not require 

the conventional rods circuits, implicating a functional role for the rod bipolar cell to 

ipRGC circuit in the PLR.  

Chapter 5 takes a slight divergence from studies of the PLR. There, I address the 

retinal circuit mechanisms that allow light to acutely control body temperature and 

general activity. I find that Brn3b-positive ipRGCs, using their melanopsin 

phototransduction cascade, mediate the acute effects of light on body temperature. 
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These studies provide thorough coverage of the initial steps in the PLR, from the 

detection by the photoreceptors to output circuits from the retina.  
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Figures 
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Figure 1.1: Basic structure of the visual system.  

(a) The major cell types of the retina, including the rods and cones in the outer nuclear 

layer (ONL). Rods and cones form synaptic connections with horizontal cells (HC) and 

bipolar cells (BC) in the outer plexiform layer (OPL). Horizontal cells and bipolar cells 

have their cell bodies in the inner nuclear layer (INL) with the amacrine cells (AC). 

Bipolar cells and amacrine cells form synapses with retinal ganglion cells (RGC) in the 

inner plexiform layer (IPL). Retinal ganglion cells have their cell bodies in the ganglion 

cell layer (GCL) and send their axons to the brain. Müller glia (MG) extend along all 

three layers of the retina and are supporting cells. (b) A diagrammatic flow of visual 

information shows the progressively complex transformation of visual information from 

photoreceptors to bipolar cells to RGCs. (c) The major RGC projections to the brain, 

including the suprachiasmatic nucleus (SCN), lateral geniculate nucleus (LGN) and 

intergeniculate leaflet (IGL), olivary and posterior pretectal nuclei (OPN and PPN), 

superior colliculus (SC), and medial terminal nucleus (MTN). Note: there are many other 

minor projections from RGCs as well as a few major projections encompassing the 

accessory optic system that could not be added for space reasons. 
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Figure 1.2: Evolutionary and genomic relationships of melanopsin. 

(a) Evolutionary tree of opsin genes in animals. Melanopsin families cluster with the 

invertebrate opsins and are distantly related to the rod and cone opsins. Tree is adapted 

from Davies et al. 2010197. Note: the branch lengths are of arbitrary distance, tree only 

show qualitative relationships. (b) Chromosomal synteny between mouse chromosome 

10 and human chromosome 14, the chromosomes that contain melanopsin. The expanded 

view shows the gene structure of mouse melanopsin displaying exons as black bars. Both 

chromosome and gene structure are based on NCBI Gene Database gene ID 30044 and 

94233. (c) Crystal structure of a C-terminal truncation of rhodopsin from the Japanese 

flying squid (Todarodes pacificus). Melanopsin structure is assumed to be highly similar, 

but no structure of melanopsin has been reported to date. Extracellular surface (N-

terminus) is oriented downwards and intracellular surface (C-terminus) is oriented 

upwards. Structure is reprinted from the RCSB Protein Data Bank (ID: 2Z73) as 

originally published from Murakami and Kouyama 2008198. 
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Figure 1.3: Diversity and central projections of ipRGCs.  

(a) ipRGCs are located in the ganglion cell layer (blue) and comprise at least 5 distinct 

subtypes: M1–M5. Subtypes can be classified morphologically by soma size, dendritic 

morphology (including total dendrite length and dendritic field area) and stratification 

depth. Additionally, subtypes can be partially separated genetically by the expression of 

Brn3b (all subtypes except SCN-projecting M1 cells) and Tbr2 (M1, M2, and M3, except 

SCN-projecting M1 cells). Above: vertical sections of the retina in cartoon form. Below: 

Whole-mount tracings of the entire dendritic tree of actual mouse ipRGC subtypes to 

relative scale70,99. (b) Cartoon depicting prominent central targets of ipRGCs, including 

brain areas mediating circadian functions (SCN and IGL), midbrain regions involved in 

reflexive behaviors (OPN and SC), and image-forming centers (LGN). Areas receiving 
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predominantly M1 innervation are colored blue, while areas receiving predominantly 

non-M1 innervation are in red. Abbreviations: SCN- suprachiasmatic nucleus, IGL- 

intergeniculate leaflet, OPN- olivary pretectal nucleus, SC- superior colliculous, LGN- 

lateral geniculate nucleus. Model is based on Hattar et al.84; please see this paper for 

details on more central projections. 
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Figure 1.4: Distinct inputs and outputs to different ipRGC subtypes.  

Each ipRGC subtype receives distinct input from the inner retina and sends that 

information to distinct brain regions. M1 ipRGCs are proposed to receive input from rod 

bipolar cells (RB) on their soma, type 6 cone bipolar cells (CB6) on their dendrites, and 

dopaminergic amacrine cells (DAC) on their distal dendrites. M1 ipRGCs then project to 

at least the SCN, and then send axonal collateral projects to the OPN or almost a dozen 

other regions (Diego Fernandez, Shih-Kuo Chen, unpublished data). M2 ipRGCs are 

believed to get input from type 8 cone bipolar cells (CB8), although their outputs are less 

clear. They at least project to the OPN and not the SCN, but it is unknown if they project 

elsewhere as well. The M4 ipRGCs receive input from type 6 and type 7 cone bipolar 

cells (CB6 and CB7) on their dendrites and then project to at least the dLGN and SC, 

although they may project other places as well. 
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Figure 1.5: Phototransduction in ipRGCs closely resembles Drosophila rhabdomeres.  
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Comparison of phototransduction in mammalian rods, Drosophila rhabdomeres, and 

mammalian ipRGCs. Mammalian rods use a Gi pathway and a cyclic nucleotide-gated 

channel (CNGA1/B1) to hyperpolarize in response to light. Both Drosophila rhodopsin 

and mammalian melanopsin use a Gq pathway and a transient receptor potential (TRP) 

channel to depolarize in response to light. While both mammalian rods and Drosophila 

rhabdomeres are known to utilize a calcium exchanger to reset the resting calcium 

concentration in the cytoplasm following phototransduction, no such channel has yet 

been investigated in ipRGCs, though it is believed to be present.  
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Figure 1.6: Characteristics and evolutionary conservation of PLR.  

(a) The PLR is initiated rapidly, within one second, and stable for the entirety of a 30-

second light pulse (shown here is a 10 lux stimulation). Data is shown as a relative size to 

the resting pupil size in darkness. (b) The PLR is tuned to the precise environmental light 

intensity, with greater constriction at higher light intensities. (c) An evolutionary tree 

showing the presence or absence of the pupil and PLR in a variety of animals. Many 

animals with a camera eye have a pupil that can be modulated by light (blue), while some 

have lost the ability to modulate the pupil size with light (red), some have a camera eye 

but there is no available information on whether there is a pupil or PLR (black), or have 

no camera eye (gray). Note that when a camera eye has evolved independently from the 

lineage that gave rise to mammals—as in both octopus and Tripedalia—a PLR has also 

evolved with it. This highlights the broad utility of the PLR in regulating the light 

reaching the retina. The distance on the x-axis is the median estimated evolutionary 

distance from TimeTree.org. Each gray/black box represents a different epoch in Earth’s 

geological history. The C represents the Cambrian period. 
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Figure 1.7: Light activation of one eye travels bilaterally through PLR brain 

circuitry.  

The PLR is initiated by activation the retina, which sends information to both the 

ipsilateral and contralateral OPN (1), though ipsilateral projections in mouse are minor, 

which then send information to both the opposite OPN as well as to the contralateral 

Edinger Westphal nucleus (2). From the Edinger Westphal are projections to the ciliary 

ganglion (3), which are parasympathetic neurons sending cholinergic projections to the 

iris muscle (4). This brain circuitry allows activation of both iris muscles from the 
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activation of one retina. Note: the relative strengths of most inputs are unknown and are 

drawn as lines of the same thickness.  
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Chapter 2 

Differentiating the contributions of 

retina and iris phototransduction to 

controlling pupil size 

 

 

 

This chapter is based on a manuscript in revision: 

Rupp AC, Schmidt TM, Bray ER, Somasundaram P, Hiriyanna S, Yungher BJ, Tufford 

A, Cui Y, Simon MI, Wu Z, Badea TC, Robinson PR, Cayouette M, Wess J, 

Birnbaumer L, Park KK, Hattar S. Melanopsin-expressing cells of the retina, not 

iris, mediate the pupillary light reflex.  
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Abstract 

Vertebrates possess multiple photosensitive tissues that integrate their intrinsic 

photosensitivity with neuronal input about the light environment. The iris muscle controls 

pupil size via the pupillary light reflex (PLR), integrating its intrinsic melanopsin-based 

photosensitivity with extrinsic neuronal input originating in the retina. However, how iris 

and retina light detection are coordinated for the PLR is essentially unknown. We report 

here that the mouse PLR predominantly utilizes retina input from melanopsin-expressing 

intrinsically photosensitive retinal ganglion cells (ipRGCs). We uncover that ipRGCs 

utilize a bilateral asymmetric brain circuit. In contrast, very few cells in the iris express 

melanopsin, making the mouse intrinsic PLR extremely insensitive with no apparent 

contribution to the PLR. Animals lacking melanopsin phototransduction specifically in 

the retina have similar deficits in the PLR as global melanopsin knockout. In contrast, 

animals with melanopsin expression exclusively in ipRGCs display a normal PLR. These 

results identify melanopsin-expressing ipRGCs of the retina as the specific source of light 

detection for the PLR.  
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Introduction 

Vertebrates utilize environmental light information to regulate many 

physiological functions such as alignment of circadian rhythms to the light/dark cycle, 

control of pupil size, and seasonal modulation of reproduction. Light detection is 

mediated by a variety of tissues throughout the body, most famous among them the retina, 

pineal gland, parietal eye, and iris muscle147,192,193,199–203. In addition to being light 

sensitive, all of these tissues also receive light information from neuronal 

input189,199,204,205. However, the contributions of intrinsic versus neuronal light detection 

to their physiological functions remain a mystery. 

In mammals, the situation in simpler, with only confirmed two photosensitive 

tissues: the retina and iris muscle (notwithstanding other disputed claims206,207). Retina 

and iris light detection both result in a reduction in pupil size, referred to as the pupillary 

light reflex (PLR). The iris muscle must integrate light information from both sources to 

precisely control pupil size for high visual acuity160. Additionally, unlike circadian 

photoentrainment or seasonal behaviors, the PLR is rapidly initiated and can be easily 

quantified. Therefore, we reasoned that the mammalian PLR is a useful model for 

addressing the roles of intrinsic versus neuronal input in regulating a specific visual 

function.  

While the intrinsic drive to the PLR is relatively well characterized in aquatic 

animals such as amphibians and fish185–187,208, much less is known about the mammalian 

intrinsic PLR. In fact, until recently it was widely believed that mammals possessed no 

intrinsic PLR and that all of their PLR is driven by the retina-brain circuitry189. Despite 
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this, a few studies have observed light-mediated contraction of the mammalian iris 

muscle in vitro147,192–195 as well as a neuronal-independent PLR in vivo147,193,194.  

A recent breakthrough was the identification of melanopsin as the photopigment 

mediating the iris intrinsic PLR in mice147. Melanopsin has previously been characterized 

as the photopigment in the intrinsically photosensitive retinal ganglion cells (ipRGCs) 

that mediate the retinal input to the PLR79,82,83,87,95,97. Melanopsin is critical for the PLR: 

melanopsin knockout mice lack the ability to achieve full pupil constriction in response 

to bright light87,147. However, the expression of melanopsin in both iris and retina makes 

it difficult to interpret how melanopsin controls pupil size.  

One hypothesized function for melanopsin phototransduction in the iris is 

mediating bilateral asymmetry in the PLR. Light presented to one eye drives both a direct 

PLR in the illuminated (ipsilateral) eye and a consensual PLR in the unilluminated 

(contralateral) eye. The direct PLR in mice is more sensitive than the consensual PLR147, 

although the mechanisms underlying this asymmetry are unclear. It has recently been 

proposed that if the iris has an intrinsic phototransduction cascade and the output of the 

PLR brain circuitry were equal to both eyes, the intrinsic PLR of one eye would sum with 

the neuronal input to enhance constriction on the illuminated side147. In support of this 

model, melanopsin knockout mice have a weaker PLR bilateral asymmetry than 

wildtype147. However, the separation of melanopsin function in the retina and iris is 

critical for interpreting these results.  

Here, to address the relative roles of the retina and iris phototransduction in the 

PLR and in driving its bilateral asymmetry, we used a variety of approaches to isolate 

only the intrinsic or only the retina-brain input. We find that the mouse PLR appears to 
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be exclusively mediated by the retina. A subpopulation of ipRGCs is both necessary and 

sufficient for the bilateral asymmetry of the PLR using the brain circuitry. In contrast, we 

find that very few cells in the iris muscle express melanopsin at a very low level. This 

results in extreme insensitivity of the intrinsic PLR that is neither necessary nor sufficient 

for normal PLR function. Removing melanopsin phototransduction specifically from the 

retina results in a loss in maximal pupil constriction, whereas rescue of melanopsin 

specifically in the retina of melanopsin knockout mice restores maximal pupil 

constriction. These data indicate that melanopsin phototransduction in the retina, not iris, 

is critical for its role in the PLR. 

Results 

The intrinsic PLR operates exclusively at very bright light intensities 

We first wanted to identify the sufficiency of the intrinsic PLR by isolating the 

intrinsic PLR from neuronal input in vivo. To do so, we performed either unilateral optic 

nerve transection to remove output from the retina to brain or atropine application to 

block parasympathetic input to the muscarinic acetylcholine receptors on the iris (Fig. 

2.1a). Following optic nerve transection, we observed a severe loss in the PLR of the 

illuminated eye (direct PLR), with only weak and incomplete pupil constriction at very 

bright light intensities (Fig. 2.1b), resulting in a dramatic decrease in sensitivity (mean 

EC50 for Control eye = 10.9 log photons/cm2/s, Transection = 15.8 log photons/cm2/s; P < 

0.001, paired two-tailed t test). We confirmed that optic nerve transection successfully 

blocked output from the retina and atropine blocked input to the iris, as assessed by a lack 

of consensual PLR (data not shown). Similar to optic nerve transection, acute application 
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of atropine also resulted in a dramatic loss in PLR sensitivity (Fig. 2.1c; mean EC50 for 

PBS = 10.7 log photons/cm2/s, Atropine = 16.7 log photons/cm2/s; P < 0.001, paired two-

tailed t test) and only partial pupil constriction. The sensitivities measured here are very 

similar to the intrinsic PLR sensitivities of mice and other mammals in vitro147, and in 

total indicate that the intrinsic PLR is extremely insensitive compared to the retina-brain 

input. Even at light intensities corresponding to sunlight (≥16 log photons/cm2/s), the 

intrinsic PLR only drives the equivalent amount of pupil constriction as that driven by the 

retina-brain circuitry by moonlight (~11 log photons/cm2/s). 

We then genetically isolated the intrinsic PLR by measuring the PLR of mice 

lacking the two major Gq-coupled muscarinic acetylcholine receptors (mAChR) on the 

iris muscle (M1 and M3 mAChRs). Mice lacking the M3 mAChR alone (Chrm3-/-) have 

no PLR at moderate light intensities (Fig. 2.2a, 13.0 log photons/cm2/s), but retain an 

incomplete PLR at bright light intensities (Fig. 2.2a, 15.4 log photons/cm2/s), as 

previously reported209. However, M1/M3 mAChR double mutants (Chrm1-/-; Chrm3-/-) 

had no measurable PLR at bright light intensities (15.4 log photons/cm2/s) (Fig. 2.1d), 

indistinguishable from atropine treatment (Fig. 2.1c). These results demonstrate that the 

PLR acts predominantly through cholinergic signaling to M1/M3 mAChR in the iris. 

Collectively, isolating the intrinsic PLR through surgical, pharmacological, or genetic 

means, we find that the intrinsic PLR only partially constricts the pupil, and only at 

extremely bright light intensities at which the PLR in intact animals has reached 

saturation, suggesting that the intrinsic PLR does not contribute to the PLR when the 

retina-brain circuit is intact. 
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Limiting amounts of melanopsin in the iris muscle 

We hypothesized that low melanopsin levels in iris could contribute to the 

observed insensitivity of the intrinsic PLR. To test this, we performed 

immunofluorescence for melanopsin in albino mouse iris. While we observed a robust 

signal compared to our no primary antibody control (Fig. 2.3a,b), this signal persisted in 

melanopsin knockout iris despite a complete absence of the melanopsin protein (Fig. 2c– 

f), suggesting that melanopsin protein is at levels that are undetectable over background.  

Due to the undetectable levels of melanopsin, we mated melanopsin-Cre mice 

(Opn4Cre) to a ubiquitous fluorescent reporter under a general promoter (ROSASynaptophysin-

tdTomato) to permanently label iris cells that have ever expressed melanopsin (Fig. 2.4a). 

We observed that a tiny fraction of cells in the iris sphincter muscle were tdTomato-

positive (Fig. 2.4b,c: occupying ~1.7% ± 0.5% (SEM) of the total iris sphincter area; 7.0 

± 2.0 (SEM) total cells per iris sphincter muscle, n = 4 mice), in marked contrast to the 

dense tdTomato labeling in the retina (Fig. 2.4d). Unexpectedly, we also saw many cells 

in the iris dilator muscle labeled (Fig. 2.4e)—always more than in the sphincter—which 

is counterintuitive because activation of the dilator muscle leads to pupil dilation. This 

suggests that a combination of very low levels of melanopsin in the iris, very few cells in 

the iris sphincter expressing melanopsin, and expression of melanopsin in the iris dilator 

could contribute to the extreme insensitivity of the intrinsic PLR.  

This suggests that melanopsin levels could contribute to the intrinsic PLR 

sensitivity. To test this, we compared the intrinsic PLR in wildtype mice (2 copies of 

melanopsin) to melanopsin heterozygous mice (1 copy of melanopsin) and melanopsin 

knockout mice (0 copies of melanopsin). We show partial disruption of the PLR in 
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melanopsin knockout mice (Opn4-/-) after vehicle treatment (PBS, Fig. 2.4f) and a 

complete absence of the direct PLR following atropine treatment (Atropine, Fig. 2.4g), 

because melanopsin is required for the intrinsic PLR147,194. Intriguingly, we found that the 

intrinsic PLR following atropine application was essentially eliminated in melanopsin 

heterozygous mice (Opn4+/-) that still retain one copy of the melanopsin gene (Fig. 2.4g). 

Importantly, these mice had a normal PLR in the absence of atropine administration (PBS, 

Fig. 2.4f), demonstrating that the intrinsic PLR is dispensable for normal PLR function. 

Collectively, these data suggest that melanopsin is present at limiting amounts in the iris 

muscle and that the intrinsic PLR may not contribute to the magnitude of the PLR.  

Modulation of the strength of the intrinsic PLR 

A previous report found that blockade of all neural firing in the eye resulted in an 

enhancement of the intrinsic photosensitivity147. Therefore, we wondered how the neural 

circuit could affect the intrinsic PLR. To test this, we blocked the neuronal input to the 

iris muscle for 7 days using atropine. Following daily atropine administration, we 

observed an enhancement of the direct PLR every day, although it never reached levels in 

the vehicle-treated eye (Fig. 2.5a). This suggests that animals have a mechanism to 

measure the amount of input to the iris and can adapt accordingly to strengthen the 

intrinsic PLR. 

To determine if atropine is interpreted as loss of input to the iris or loss of output 

from the retina, we performed unilateral optic nerve transection and followed the 

response of the direct PLR for seven days. To our surprise, the injured eye did not show 

enhancement of PLR, but instead rapidly lost the direct PLR within 3–4 days of 

transection (Fig. 2.5b), opposite to the effect of atropine. This decay in response also 
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occurred following optic nerve crush, indicating that this result is not specific to one 

method of blocking retinal output (Fig. 2.6). Additionally, to be sure that this effect is 

specific to the iris muscle phototransduction and is not non-specifically modulating the 

PLR, we performed the daily atropine administration in melanopsin knockout animals 

and never saw a PLR (Fig. 2.7). This suggests a complex interplay between the retina-

brain circuitry and the intrinsic PLR to modulate its strength.  

While optic nerve transection and atropine administration both isolate the intrinsic 

PLR from the neural circuitry, they do so through opposite means. Optic nerve 

transection blocks output from the transected eye, while atropine administration blocks 

input to the treated eye. This means that for the seven days of treatment, the iris of the 

transected eye received neuronal input from the contralateral eye, whereas the iris that 

was treated with atropine received no input from either eye.  

 To determine the epistatic relationship between optic nerve transection and 

atropine treatment, we performed optic nerve transection with or without daily atropine 

administration. Treatment with atropine following optic nerve transection resulted in a 

slowly enhanced direct PLR, opposite to transection plus vehicle treatment (Fig. 2.5c). 

This suggests that the loss of all input to the iris is capable of altering the sensitivity of 

the intrinsic PLR, even when loss of retinal output would normally attenuate the intrinsic 

PLR. These experiments show that mice may possess mechanism(s) to detect the strength 

of input from the PLR brain circuitry and modulate the intrinsic PLR in accord. 

Melanopsin phototransduction in the retina, but not iris, is required for the PLR 

Melanopsin is required for maximal PLR at bright light intensities, but not lower 

light intensities87,147. However, it is unknown if melanopsin in the iris or retina is 
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responsible. It has been suggested that iridic melanopsin would be particularly important 

for driving the PLR at bright light intensities when a small pupil would limit the total 

light reaching the retina147. To determine if the PLR at bright light intensities requires 

melanopsin in retina or iris, we took advantage of the fact that melanopsin in the retina 

and iris use distinct phototransduction pathways: Melanopsin in the M1 subtype of 

ipRGCs that is most important for the PLR95 predominantly utilizes a Gq–PLCβ4–

TRPC6/7 pathway, while melanopsin in the iris utilizes a Gq–PLCβ4–intracellular 

calcium pathway147 (though the requirement for Gq in iris and retina remains presumed 

but unproven)149 (Fig. 2.7a). Plcb4-/- mice have severely diminished phototransduction in 

both iris and M1 ipRGC phototransduction, whereas Trpc6/7-/- mice have normal iris 

phototransduction, but essentially no M1 ipRGC phototransduction147. Therefore, Plcb4-/- 

mice should phenocopy global melanopsin knockout, whereas Trpc6/7-/- mice are tissue-

specific knockouts of melanopsin phototransduction in the retina. 

We confirmed that global melanopsin knockout mice (Opn4-/-) display a deficit in 

maximal direct PLR (Fig. 2.8b), as previously reported147. However, it should be noted 

that the maximal pupil constriction deficit is small, showing that even rod/cone input 

through ipRGCs can largely compensate for the loss of melanopsin in both retina and iris. 

Surprisingly, we found that Plcb4-/- mice appeared to have a deficit in maximal 

constriction that was less severe than melanopsin knockout (Fig. 2.8c), though it is 

statistically indistinguishable (Plcb4-/- v. Opn4-/-: P = 0.070 by two-tailed t test). In 

contrast, Trpc6/7-/- mice display a deficit in maximal direct PLR that appears identical to 

melanopsin knockout (Fig. 2.8d; Trpc6/7-/- v. Opn4-/-: P = 0.156 by two-tailed t test). 

These mouse lines had previously been tested in vitro for melanopsin phototransduction 
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in retina and iris147, making these results the first in vivo evidence of the specific 

components of the melanopsin phototransduction pathway. Importantly, Trpc6/7-/- mice 

retain an intrinsic PLR after atropine treatment similar to control animals (Fig. 2.9a). This 

result indicates that melanopsin in the retina is specifically required for driving a 

maximal PLR, even in the presence of iris phototransduction.  

In a converse experiment, we removed melanopsin from the iris but retained it in 

the retina. To do so, we infected the retina of melanopsin knockout mice (Opn4Cre/Cre) 

with an AAV that expresses melanopsin in a Cre-dependent manner (Fig. 2.8e, AAV-

DIO-mRuby-P2A-Opn4). We confirmed that the virus did not infect the iris muscle (Fig. 

2.8e) and that the intrinsic PLR was still lacking after melanopsin restoration in the retina 

(Fig. 2.9b), demonstrating that this method specifically restores melanopsin in the retina 

while leaving melanopsin absent from the iris. Following restoration of melanopsin in 

ipRGCs of one retina, we observed a full rescue of the direct PLR compared to the 

opposite, uninfected eye (Fig. 2.8f). This provides further evidence that removal of iris 

phototransduction has no effect on the PLR. Importantly, exogenous melanopsin 

expression did not enhance the sensitivity of the PLR, because we saw no differences in 

PLR at lower light intensities (Fig. 2.8g). To test the hypothesis that iridic melanopsin is 

important for maintaining small pupil sizes across the day147, we monitored the pupil size 

of mice with melanopsin rescued in the retina (Opn4Cre/Cre with AAV-DIO-Opn4) under 

bright light across the day. We found that melanopsin’s exclusive presence in the retina is 

capable of maintaining small pupil sizes for at least twelve hours in bright light (Fig. 

2.9c). Collectively, our results indicate that melanopsin-expressing ipRGCs are the 
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primary drivers of the PLR, while iris phototransduction is dispensable for the PLR even 

at bright light intensities. 

Brn3b-positive ipRGCs are required for PLR bilateral asymmetry 

 One proposed function of iris phototransduction is to generate bilateral 

asymmetry in the PLR (i.e. greater constriction on the illuminated side)147. However, our 

experiments thus far have shown that the retina represents the predominant input to the 

PLR, raising the possibility that instead, the retina mediates bilateral asymmetry in PLR.  

To test if ipRGCs alone could mediate bilateral asymmetry in the PLR, we sought 

to activate only the ipRGCs without activating the iris. To do so, we infected one retina 

of melanopsin-Cre mice (Opn4Cre/+) with an adeno-associated virus that expresses a Cre-

dependent Gq-coupled DREADD (AAV-DIO-hM3D(Gq)-mCherry), restricting 

expression to ipRGCs. Importantly, the virus did not infect the iris muscle (Fig. 2.10a), 

allowing us to activate only the ipRGCs of one retina in darkness using the selective 

DREADD agonist clozapine N-oxide (CNO)210 and observe pupil constriction in both 

eyes. After infection, we saw the expression of mCherry in multiple subtypes of ipRGCs, 

including Brn3b-negative ipRGCs and M1 ipRGCs (Fig. 2.11a–e), though M1 ipRGCs 

appeared to express mCherry at the lowest level. 

Following intraperitoneal injection of CNO, we observed robust pupil constriction 

in both eyes, with greater constriction on the infected side (Fig. 2.10b), indicating that 

ipRGCs alone can drive bilateral asymmetry in PLR. To confirm that this effect is not 

due to the presence of melanopsin in the iris, we performed the same experiment in 

melanopsin knockout mice (Opn4Cre/Cre) and again observed robust bilateral asymmetry 

in PLR by activating the retina alone (Fig. 2.11f).  
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Recently, we and others have proposed that ipRGCs might mediate the direct PLR 

independent of the brain194,195,211,212 to drive bilateral asymmetry. This is based on several 

observations: (1) a subpopulation of ipRGCs survives optic nerve transection213 (Fig. 

2.12a–c), (2) ipRGCs located in the retinal periphery send projections into the ciliary 

body/iris complex194 (Fig. 2.12d) and not to the optic disc214, (3) the intrinsic PLR slowly 

degrades over seven days following optic nerve transection (Fig. 2.5b) or optic nerve 

crush (Fig. 2.6), and (4) the intrinsic PLR is defective in animals lacking rod 

phototransduction195. 

To address this direct retina to iris connection, we performed several 

experiments: First, we again expressed a Gq-coupled DREADD in ipRGCs and showed 

that the pupil constriction in response to CNO was absent following either optic nerve 

transection (Fig. 2.13a) or atropine application (Fig. 2.13b). Second, the PLR was absent 

following atropine application in mice with melanopsin restored exclusively in the retina 

(Fig. 2.9b). Third, we were unable to locate any putative synaptic release sites from 

ipRGCs in iris or ciliary body using the albino Opn4Cre/+; ROSASynaptopysin-tdTomato/+ mouse 

line (Fig. 2.4a). These results strongly suggest that ipRGCs require the conventional brain 

circuitry to drive the direct PLR. However, we cannot rule out the possibility that a 

unique subpopulation of ipRGCs mediates the PLR independent of the brain and was not 

infected by either AAV that expresses either DREADD or melanopsin. Regardless, these 

data show that the retina-brain circuitry is sufficient for generating bilateral asymmetry in 

the PLR and that any functional contribution of ipRGCs independent of the brain is 

minimal.  
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Additionally, we find that bilateral asymmetry is specifically mediated by the 

Brn3b-positive M1 ipRGCs that mediate the consensual PLR95,105, providing further 

evidence for ipRGCs using the brain circuitry for the PLR bilateral asymmetry. When we 

injected mice lacking the Brn3b-positive ipRGCs (Brn3b-DTA: Opn4Cre/+; Brn3bDTA/+)105 

with the same Cre-dependent Gq-coupled DREADD virus (Fig. 2.11e), we observed 

minimal pupil constriction following CNO administration with no bilateral asymmetry 

(Fig. 2.10c), indicating Brn3b-positive ipRGCs are required for the bilateral asymmetry 

in the PLR. Additionally, when we infected aDTA mice (Opn4aDTA/aDTA)95 that lack the 

M1 ipRGCs but retain non-M1 ipRGCs with a similar Gq-coupled DREADD AAV that is 

not Cre-dependent (AAV-hM3D(Gq)) (Fig. 2.14b), we saw minimal PLR and no bilateral 

asymmetry (Fig. 2.10d, Fig. 2.14d), despite robust bilateral asymmetry in wildtype 

controls (Fig. 2.14c). These results demonstrate that activation of ipRGCs alone can 

generate robust bilateral asymmetry using the brain circuitry without iris 

phototransduction.  

Additionally, not only are Brn3b-positive ipRGCs sufficient for bilateral 

asymmetry, they are also required. When we tested the direct and consensual PLR in 

control mice (Opn4Cre/+) across a range of light intensities, we observed a robust bilateral 

asymmetry across ~4 log-units (Fig. 2.10e). In contrast, when we tested both the direct 

and consensual PLR in Brn3b-DTA mice (Opn4Cre/+; Brn3bDTA/+), we observed 

essentially no PLR in either eye until very bright light intensities (Fig. 2.10f), similar to 

optic nerve transection or atropine treatment (Fig. 2.1). The greatest bilateral asymmetry 

in control mice occurred at relatively low light intensities at which the Brn3b-positive 

cells are required for the PLR (Fig. 2.10e, f). At bright light intensities when Brn3b-DTA 
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mice retain partial PLR, there is no bilateral asymmetry in control mice. Therefore, this 

indicates that Brn3b-positive ipRGCs are both necessary and sufficient for normal 

bilateral asymmetry in the PLR.  

Despite a normal requirement for Brn3b-positive ipRGCs, Brn3b-DTA mice 

displayed a more robust direct PLR in bright light, although they did not reach wildtype 

levels (Fig. 2.15a, Opn4Cre/+ vs. Opn4Cre/+; Brn3bDTA/+ P = 0.007 by one-way ANOVA 

with Sidak’s post-test). To test if the iris muscle phototransduction mediates this direct 

PLR in Brn3b-DTA mice, we blocked the neuronal input using atropine. Atropine 

administration largely abolished the direct PLR in both Brn3b-DTA and controls, 

resulting in minor direct PLR in both lines (Fig. 2.15b). Additionally, the direct PLR in 

Brn3b-DTA mice was effectively lost following additional knockout of melanopsin 

(Opn4Cre/Cre; Brn3bDTA/+) (Fig. 2.15c), suggesting that the direct PLR in Brn3b-DTA mice 

is due to iris muscle phototransduction. Interestingly, the consensual PLR in Brn3b-DTA 

mice lacking melanopsin was also impaired compared to Brn3b-DTA mice (P < 0.001 by 

two-tailed t test; compare Fig. 2.15a with 2.15c), implying that the remaining Brn3b-

negative ipRGCs have a unique requirement for melanopsin. Together, these results 

confirm that the Brn3b-positive ipRGCs mediate the neuronal PLR105, but that at bright 

light intensities the iris muscle can enhance a small direct PLR in their absence. 

Remarkably, the extent of PLR bilateral asymmetry across vertebrates is 

correlated with the ratio of contralateral and ipsilateral retinal projections to the brain215. 

~90% of RGC projections in mouse go to the contralateral hemisphere, and mice have 

moderate bilateral asymmetry. Species with roughly equal ipsi-/contralateral projections 

such as humans have no bilateral asymmetry196, and species with all contralateral 



 59 

projections have no consensual PLR at all. In total, these results show that the entirety of 

the PLR can be recapitulated by the activity of the Brn3b-positive M1 ipRGCs using a 

bilateral asymmetric brain circuit, and demonstrate that iris phototransduction does not 

contribute to the PLR in mice. 

Discussion  

The possibility of a photosensitive iris muscle in mammals and its role in the 

pupillary light reflex has been of considerable debate for decades189. We confirm here 

that there is a melanopsin-dependent PLR in mammals that is independent of the 

conventional PLR retina-brain circuitry, implicating the iris muscle phototransduction. 

However, we show that this iris muscle phototransduction does not appear to contribute 

to normal PLR function and is only observable in the absence of the retina-brain PLR. 

Even in non-mammalian vertebrates—whose robust intrinsic PLR has been the primary 

target of study—the iris muscle receives neuronal input that drives the PLR189. Therefore, 

it remains unclear how important the intrinsic photosensitivity is in defining pupil size or 

PLR sensitivity in any species.  

The uncertainty in the roles of the iris and retina is due to the inability to 

specifically silence phototransduction exclusively in either tissue and compare the 

resulting PLR in vivo, even in non-mammalian vertebrates. The identification of 

melanopsin as the photopigment in the mouse iris muscle and its use of different signal 

transduction pathways in iris and retina147 allowed us to specifically delete melanopsin 

phototransduction in the iris muscle or retina and determine its effect on the PLR in vivo. 

We ultimately found that the role of melanopsin in the PLR is exclusively through the 

ipRGCs of the retina. 
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We find here that melanopsin dosage is critical for the intrinsic PLR (Fig. 2.4). 

The primate iris muscle expresses melanopsin, but they have no intrinsic PLR in vitro or 

following optic nerve transection147. Even animals that have an intrinsic PLR in vitro, 

such as dogs and albino rats147, lack a PLR following blockade of the retina-brain 

circuitry193,216. These findings, in combination with our results, indicate that the presence 

of melanopsin in the iris and even an intrinsic PLR in vitro are not reliable predictors of a 

role for intrinsic iris photosensitivity in the PLR. 

Perhaps the most surprising finding of this work is that ipRGCs mediate the PLR 

using a bilateral asymmetric circuit. While we have no clear anatomical basis for this 

finding, bilateral asymmetry exists at multiple levels of the PLR brain circuit. ipRGCs 

project to both the ipsilateral and contralateral OPN99, with unknown relative strengths. 

Additionally, each OPN projects to many brain regions on both its ipsilateral and 

contralateral side, with a wide variety of relative strengths. Even each OPN sends a weak 

projection to the opposite OPN. It is currently unclear how important each of these 

projections is in determining the bilateral asymmetry and will be interesting to investigate 

this circuitry in more quantitative detail in the future. 

Why does the PLR have bilateral asymmetry or bilaterality at all? The most likely 

benefit of a bilateral PLR is to ensure that eyes that receive different amounts of light 

constrict their pupils to different degrees. Because pupil size is so finely tuned for high 

visual acuity at each light intensity160, it would be beneficial to allow each eye to largely 

independently regulate its own pupil size. In agreement, animals whose eyes likely 

receive very different light intensities because they are more laterally placed, such as 
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mouse and shark, have a relatively weak consensual PLR147,217. However, species with 

forward-facing eyes such as humans have identical direct and consensual PLR196. 

While we believe it is unlikely that melanopsin phototransduction in the iris 

contributes to the PLR, we cannot rule out the possibility that it might contribute to other 

functions. Activated melanopsin couples to Gq signaling proteins, which modulate a 

variety of signal transduction cascades through their effects on intracellular calcium. 

Additionally, when melanopsin is exogenously expressed in non-neuronal cells, its 

phototransduction cascade can regulate gene expression through Ca2+ signaling and 

activation of the transcription factor NFAT218. Therefore, the presence of melanopsin in 

the iris muscle might serve a physiological function separate from the PLR. 

Methods 

Animal husbandry 

C57Bl/6 x Sv129 hybrid mice were used in all experiments and were housed 

according to guidelines from the Animal Care and Use Committee of Johns Hopkins 

University. Male and female mice age 2–8 months were housed in plastic translucent 

cages with steel-lined lids in an open room. Ambient room temperature and humidity 

were monitored daily and tightly controlled. Food and water were available ad libitum. 

All mice were maintained in a 12hr:12hr light-dark cycle for the entirety of their lives 

with a light intensity around 500 lux during the day.  

Pupillometry 

All mice were dark-adapted for at least 30 minutes prior to any experiments and 

all PLR experiments were performed between Zeitgeber times (ZT) 2 and 10. Mice were 
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exposed to a 474-nm LED bulb (SuperBrightLEDs) that was directed to one eye using the 

gooseneck arms of a dissecting microscope light source. Light intensity was adjusted by 

applying neutral density filters (Roscolux) that reduced intensity by 12.5%. The photon 

flux was measured using a luminometer (SolarLight) and converted from W/m2 to 

photons/cm2/sec.  

Videos of the eye were taken using a Sony Handycam (DCR-HC96) mounted on 

a tripod a fixed distance from the mouse. Manual focus was maintained on the camera to 

ensure that only one focal plane existed for each mouse and that therefore variable 

distance from the camera should not contribute to differences in relative pupil area 

throughout the video. Pupil size was first recorded under dim red light and the 

endogenous infrared light source of the camera to capture the dark-adapted pupil size. 

Following at least 5 seconds of recording in dark, the pupil was continuously recorded for 

at least 30 seconds of a light step stimulus. All pupil images presented in the paper were 

cropped to a fixed square area (generally 100 x 100 pixels) surrounding the eye using 

GNU Image Manipulation Program (GIMP). The images were made grayscale and then 

brightness and contrast were adjusted to enhance visibility of the pupil and exported as 

PNG files.  

Data analysis  

Videos were transferred from the camera to a computer as Audio Video Interleave 

(AVI) files and individual frames were taken using VLC media player 

(www.videolan.org/vlc/) and saved in portable network graphics format (PNG). Images 

were taken in the dark, at 5 seconds, and at least 30 seconds following stimulus onset. 

Pupil area was then quantified manually in ImageJ (http://rsbweb.nih.gov/ij/) software. 
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First, the image was enlarged to 300% normal size. Then, the image was converted to 

grayscale and brightness and contrast were adjusted so as to confine the borders of the 

input channel (black  white) to the edges of the pixel intensity histogram. The pupil 

area was measured in pixels using the oval tool in which the 4 cardinal points of the oval 

were touching their respective edges of the pupil. The relative pupil area was calculated 

using LibreOffice Calc or Microsoft Excel in which the area during the light stimulus was 

divided by the area prior to lights onset. The minimum relative pupil size was used for all 

genotypes. 

The intensity-response curve was fit using a variable slope sigmoidal dose-

response curve in Graphpad Prism 6. The top and bottom of the fit were constrained to 

1.0 and between 0 and 0.10, respectively, to ensure the EC50 for each genotype was 

represented by similar curves. The sensitivity for each genotype or treatment was 

calculated using the same process of fitting each individual animal’s data points with a 

sigmoidal dose-response curve to generate EC50.  

Optic nerve transection and crush 

Optic nerve transection and crush surgeries were performed by Kevin Park, Ben 

Yungher, and Eric Bray of the University of Miami. Unilateral optic nerve crush was 

performed on WT mice of a mixed C57Bl/6 x Sv129 background. Unilateral and bilateral 

optic nerve transections were performed on F1 C57Bl/6 x Sv129 mice purchased from 

Jackson Labs.  

Atropine application 

0.1% atropine solution was prepared by dissolving atropine sulfite salt 

monohydrate (Sigma A0257) in phosphate buffered saline (PBS). After at least 30 



 64 

minutes of dark adaptation, 1 μl of atropine solution was applied to the cornea using a 

pipettor. Animals were returned to the cage for at least 5 minutes to allow the atropine to 

dissolve into the eye. For control experiments, PBS was applied instead of atropine 

solution. One application of atropine was effective at blocking the contralateral PLR for 

many hours of testing and was partially effective 24 hours later. Therefore, only one 

application of atropine was applied per day of experiments even if using multiple light 

intensities. 

Statistical analysis 

All statistical tests were performed in Graphpad Prism 6. Specific statistical 

comparisons are listed in the figure legends. Because the EC50 data appears to be a 

normal distribution on a log scale (log-normal distribution), all statistical tests and data 

analysis involving EC50 were performed on the log transformed data set. 

Viral infection 

Mice were anesthetized by intraperitoneal injection of avertin (2, 2, 2-

Tribromoethanol) and placed under a stereo microscope. 0.5–1 μl AAV-DIO-hM3DGq-

mCherry (4.6 x 1012 viral particles/ml, Roth lab, UNC Vector Core) or 0.5 μl AAV-DIO-

mRuby-P2A-Opn4 (kindly provided by Preethi Somasundaram and Phyillis Robinson, 

University of Maryland, Baltimore County) was placed on a piece of Parafilm and drawn 

into a 10-μl microcapillary tube (Sigma P0674) that had been pulled to a needle (Sutter 

Instruments, Model P-2000). The loaded needle was then placed in the holster of a pico-

injector (Harvard Apparatus PLI-90). The needle punctured the eye posterior to the ora 

serrata and air pressure was used to drive the viral solution into the vitreous chamber of 

the eye to ensure delivery specifically to the retina. Mice recovered from surgery on a 
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heating pad until they woke from anesthesia. All PLR experiments and confocal imaging 

were done at least 3 weeks following viral injection. 

Confocal microscopy 

Mice that had been infected with the AAV were anesthetized with avertin and 

then euthanized using cervical dislocation. The eyes were removed and the retinas were 

dissected in PBS and then fixed in 4% paraformaldehyde for 1–2 hours on ice. The 

retinas were then washed in PBS at least three times before either mounting on a 

microscope slide (Fisher) in Fluoromount (Sigma) with DAPI (2-(4-amidinophenyl)-1H-

indole-6-carboxamidine) or preparing for immunofluorescence. Immunofluroescence was 

performed in 4% goat serum with antibody concentrations as follows: anti-melanopsin 

1:1000 (Advanced Targeting Systems), anti-Brn3a 1:500. Secondary antibodies include: 

Goat anti-rabbit 488 1:1000, goat anti-rabbit 546 1:1000, goat anti-mouse IgG H+L 546 

1:1000. Images were taken on a Zeiss LSM 710 confocal microscope using a 20X 

objective. After imaging, images were made grayscale, background subtracted, and 

brightness and contrast were adjusted in FIJI (http://fiji.sc) for the image presented in the 

chapter. 

 

 

 

  



 66 

Figures 

 

 

 

Figure 2.1: The intrinsic PLR operates exclusively at bright light intensities.  

(a) Diagram showing the strategy to isolate the intrinsic PLR from retina-brain circuitry 

by cutting the optic nerve (Optic nerve transection) or blocking the mAChR on the iris 

muscle (Atropine). The oculomotor nerve sends a branch to the ciliary ganglion (CG), 

which then innervates the iris muscle by the short ciliary nerves. The short ciliary nerves 

are cholinergic parasympathetic fibers, and their inputs to the iris can be blocked with 

mAChR antagonists such as atropine. (b) Intensity-response curve of unilateral optic 

nerve transection in wildtype mice versus control, untransected eye (n = 8 mice). Mean ± 

95% confidence intervals (CI). (c) Intensity-response curve of wildtype mice following 
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unilateral atropine administration versus vehicle (PBS) eye (n = 4 mice). Mean ± 95% CI. 

(d) M1/M3 mAChR double knockout mice (Chrm1-/-; Chrm3-/-, n = 7) have no 

measureable pupil constriction at 15.4 log photons/cm2/s compared to wildtype controls 

(n = 3). Line is mean and data points are individual mice. 
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Figure 2.2: M3 mAChR are required for a normal PLR.  

M3 mAChR knockout mice (Chrm3-/-, green, n = 5) have a deficit in maximal pupil 

constriction at both a moderate (13.0 log photons/cm2/s) and bright (15.4 log 

photons/cm2/s) compared to wildtype controls (black, n = 5). Line indicates mean, data 

points are individual mice. For both moderate and bright light, WT v. Chrm3-/-: P < 0.001 

by two-way repeated measures ANOVA with Sidak’s post-test. 
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Figure 2.3: Melanopsin immunofluorescence in albino iris.  

(a) Melanopsin immunofluorescence (green) generates a robust signal in albino iris that is 

absent in (b) albino iris stained with a no primary antibody control. The dotted line refers 

to the division between the iris sphincter and iris dilator muscles. (c–f) Melanopsin 

immunofluorescence is observed in the iris of albino (c) wildtype and (d) melanopsin 

knockout (Opn4-/-), though it is only detectable in the (e) wildtype and not (f) melanopsin 

knockout retina. 
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Figure 2.4: Melanopsin pervasiveness contributes to PLR insensitivity.  

(a) Whole mount of albino iris with a melanopsin reporter (Opn4Cre/+; ROSASynaptophysin-

tdTomato/+) identifies very few cells in the iris muscle that express melanopsin. Most 

tdTomato+ cells are in the iris dilator muscle (e), as opposed to the iris sphincter muscle 

(b). (c) tdTomato+ cells only encompass about 1.7% of the total iris sphincter area. (d) 

Robust Syp-tdTomato labeling is seen in the retina. (f,g) Melanopsin knockout mice 

(Opn4-/-) display defects in direct PLR at 16.3 log photons/cm2/s in response to (f) PBS 

administration and no pupil constriction in response to (g) atropine. WT n = 4 (replotted 

from 2.1c), Opn4+/- n = 7, Opn4-/- n = 10. P values calculated by one-way ANOVA 

followed by Sidak’s post-test. 
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Figure 2.5: Modulation of intrinsic PLR strength over time.  

(a) Persistent blockade of input to the iris muscle of one eye by atropine administration 

for 7 days (green, n = 4) enhances the intrinsic PLR. However, at day 7 the intrinsic PLR 

is still less effective than the control eye (PBS, black). Dark line is mean, light lines are 

individual mice. (b) Unilateral optic nerve transection (red, n = 7) decreases the intrinsic 

PLR over 7 days compared to day 1. Black lines represent the uninjured control eyes. (c) 

Transection with atropine administration (blue, n = 4) enhances the intrinsic PLR, while 

transection with vehicle administration (red, n = 4) decreases the intrinsic PLR. All 

statistical comparisons were determined by two-way ANOVA followed by Sidak’s post-

test. Light intensity for all experiments is 15.4 log photons/cm2/s. 
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Figure 2.6: Optic nerve crush leads to a reduction in intrinsic PLR over time.  

Unilateral optic nerve crush measured daily for 7 days following injury leads to a loss in 

direct PLR (15.4 log photons/cm2/s), n = 4 wildtype mice (Optic nerve crush Day 1 vs. 

Day 7: P < 0.001 by one-way ANOVA followed by Sidak’s post-test). The direct PLR on 

the injured side is significantly worse than control (P < 0.001 by two-way repeated 

measures ANOVA with Sidak’s post-test). 
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Figure 2.7: Enhancement of PLR by atropine requires melanopsin.  

Performing daily atropine administration in melanopsin knockout mice (n = 4, blue line, 

Opn4-/-) results in no enhancement of the PLR over 7 days. The same effect was absent in 

melanopsin heterozygous mice (n = 4, black line, Opn4+/-), suggesting that a critical 

amount of melanopsin is required for PLR enhancement by atropine. Dark, thick lines 

represent the mean for each genotype; thin, transparent lines represent each mouse. Light 

intensity is 15.4 log photons/cm2/s. 
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Figure 2.8: Melanopsin knockout in the retina, not iris, causes PLR deficits.  

(a) Diagram of phototransduction pathways in retina and iris. Note that ipRGCs utilize 

TRPC6/7 channels while the iris does not. (b) Melanopsin knockout mice (Opn4-/-, n = 

10) have a defect in maximal direct PLR compared to wildtype (n = 3) and littermate 

heterozygous control mice (Opn4+/-, n = 7). (c) Plcb4 knockout mice (Plcb4-/-, n = 5) also 

have a deficit in maximal direct PLR compared to littermate wildtype (n = 9) and 

heterozygous controls (Plcb4+/-, n = 5) (d) Trpc6/7 double knockout mice (Trpc6/7-/-, n = 

6) also have a defect in maximal direct PLR compared to WT (n = 4) and littermate 

Trpc6+/- or Trpc6+/-; Trpc7+/- heterozygous controls (Trpc6/7+/-, n = 5). Statistical tests 

for b–d are one-way ANOVA followed by Sidak’s post-test and all light intensities are 

16.3 log photons/cm2/s. (e) Viral infection of AAV-DIO-mRuby-P2A-Opn4 in albino 

Opn4Cre shows expression of the mRuby reporter in just the retina of one eye, leaving 

melanopsin absent in both iris muscles (L-iris, R-iris) and opposite retina (L-retina). (f) 

Enhancement of the PLR at bright light (15.4 log photons/cm2/s) after rescue of 

melanopsin in just the right retina compared to the left eye that still lacks melanopsin. 

Statistical test is paired one-tailed t test, n = 5 mice. (g) Intensity-response curve of the 

direct PLR in melanopsin knockout mice with one retina with restored melanopsin 

expression (black) versus the opposite control eye (blue) shows a specific enhancement 

of PLR at bright light intensities and no difference in sensitivity. Data is mean ± 95% CI 

for n = 5 mice. 
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Figure 2.9: Differentiating melanopsin’s role in iris and retina.  

(a) Atropine application does not block the PLR in Trpc6/7-/- mice (n = 3) and littermate 

controls (n = 7), indicating the intrinsic PLR is intact after the removal of M1 ipRGC 

phototransduction. Littermate controls are mixtures of single Trpc6 or Trpc7 single 

homozygous or heterozygous mutants in varying combinations. Statistical test is two-

tailed t test. (b) The intrinsic PLR remains abolished in melanopsin knockout mice 

(Opn4Cre/Cre) after viral restoration of melanopsin only in ipRGCs (AAV-DIO-Opn4). 

Left eye is control while right eye was infected with virus, n = 4. Statistical test is paired 
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two-tailed t test. (c) Wildtype (black, n = 3) and mice with melanopsin removed from the 

iris (Opn4Cre/Cre with AAV-DIO-Opn4, blue, n = 4) were kept under relatively bright 

room lighting (1000 lux) for 12 hours corresponding to their circadian day and their pupil 

size was monitored at various times. Mice lacking melanopsin in iris were able to 

maintain small pupil sizes across the day. By repeated-measures two-way ANOVA 

followed by Sidak’s post test, there is a slight deficit in melanopsin iris knockout mice (P 

= 0.045), but the effect size is very small and not physiologically relevant and 

presumably reflects the fact that melanopsin was restored in only one retina and not in all 

cells in that retina. Data is mean ± 95% CI and line is linear regression. 
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Figure 2.10: Brn3b-positive ipRGCs are both necessary and sufficient for bilateral 

asymmetry in the PLR.  

(a) Injection of an AAV expressing a Cre-dependent hM3D(Gq)-mCherry in only the 

right eye of albino Opn4Cre/+ mice shows infection of just the right retina, with the left 

retina and both left and right irises uninfected. Scale bar = 50 μm. (b) Intraperitoneal 

injection of CNO in darkness drives a robust bilateral asymmetry in PLR when only 

activating the ipRGCs of one retina (Opn4Cre/+ with AAV-DIO-hM3D(Gq), n = 8). (c, d) 

The magnitude and bilateral asymmetry in PLR after CNO are abolished following 

genetic ablation of the (c) Brn3b-positive ipRGCs (Opn4Cre/+; Brn3bDTA/+ n = 5) or (d) 

the M1 ipRGCs (Opn4aDTA/aDTA, n = 6). Statistical tests in b–d are paired two-tailed t tests. 

(e, f) Intensity-response curves of the direct (closed circles, ipsilateral eye) and 

consensual (open circles, contralateral eye) for (e) control (Opn4Cre/+, n = 5) and (f) 

Brn3b-DTA mice (Opn4Cre/+; Brn3bDTA/+, n = 5). Mean ± 95% CI. Note that the 
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intensities at which the PLR in control mice shows robust bilateral asymmetry (shaded 

area) require Brn3b-positive ipRGCs. 
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Figure 2.11: Infection of multiple ipRGC subtypes with AAV-DIO-hM3D(Gq).  

(a–c) Injection of AAV-DIO-hM3D(Gq) into the vitreous of melanopsin-Cre mice that 

also have a LacZ cassette to preferentially label M1 ipRGCs (Opn4Cre/tauLacZ). mCherry 

expression (a) can be seen in a variety of RGCs with different morphologies, 

corresponding to different ipRGC subtypes. Immunofluorescence for beta-galactosidase 

(b) preferentially labels M1 ipRGCs, revealing that many of them express mCherry, 

though not all (see merge in c). (d, e) Additionally, Brn3b-negative ipRGCs are labeled 

by the virus, as revealed by mCherry expression in Brn3b-DTA mice (Opn4Cre/Cre; 

Brn3bDTA/+) (e). Though the number of cells labeled is far below that of control mice 

(Opn4Cre/Cre) (d) because the Brn3b-positive ipRGCs are killed by the DTA transgene. (f) 

Bilateral asymmetry by unilateral infection of AAV-DIO-hM3D(Gq) persists in 

melanopsin knockout mice (Opn4Cre/Cre, n = 6), indicating that iris muscle melanopsin is 
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not required for the retina to drive bilateral asymmetry. Statistical test is paired two-tailed 

t test. Scale bars = 50 μm. 
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Figure 2.12: Evidence for ipRGC involvement in the intrinsic PLR.  

(a) Immunofluorescence for ipRGCs (OPN4, green) and conventional RGCs (BRN3A, 

magenta) following unilateral optic nerve transection. Control eye is the contralateral eye. 

(b) Some OPN4+ cells are lost following optic nerve transection, many survive, 

especially compared to (c) BRN3A+ cells. Statistical tests are paired two-tailed t test. (d) 

Alkaline phosphatase staining in the retina and attached ciliary body of P14 albino 

Opn4Cre/+; Z/AP mice. Processes from ipRGCs can be seen exiting the retinal periphery 

and entering the ciliary body.   
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Figure 2.13: ipRGCs require brain circuitry to drive the PLR.  

PLR following CNO administration in Opn4Cre/+ mice injected with AAV-DIO-

hM3D(Gq) is abolished following (a) unilateral optic nerve transection (n = 7) and (b) 

unilateral atropine application (n = 3). In both cases, optic nerve transection and atropine 

application were performed on the ipsilateral eye that received viral infection. 
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Figure 2.14: Mice lacking M1 ipRGCs lack PLR bilateral asymmetry.  

(a, b) mCitrine fluorescence in the ganglion cell layer following infection of AAV-hSyn-

HA-hM3D(Gq)-IRES-mCitrine in the retina of either (a) wildtype or (b) mice lacking the 

M1 ipRGCs (aDTA: Opn4aDTA/aDTA). Many different cell types are infected in both mouse 

lines. (c) Wildtype mice (n = 4) expressing AAV-hM3D(Gq) in one retina show PLR 

bilateral asymmetry with greater constriction on the infected side following injection of 

CNO. (d) After ablation of the M1 ipRGCs (aDTA: Opn4aDTA/aDTA, n = 6), a residual PLR 

is present with reduced magnitude following CNO injection (WT v. aDTA P = 0.012 for 

Contra and P < 0.001 for Ipsi by two-way repeated measures ANOVA followed by 
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Sidak’s post test), though it has no bilateral asymmetry; replotted from Fig. 2.10d. 

Statistical tests for P values reported on the graphs are paired two-tailed t tests.  
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Figure 2.15: Enhanced direct over consensual PLR occurs in Brn3b-DTA mice at 

bright light intensities.  

(a) The direct PLR is enhanced in Brn3b-DTA mice (Opn4Cre/+; Brn3bDTA/+) compared to 

the consensual PLR (P = 0.001 by one-way ANOVA followed by Sidak’s post-test). (b) 

The robust direct PLR is largely abolished in both Brn3b-DTA (n = 6) and control mice 

(n = 7) following atropine administration. P = 0.299 by two-tailed t test. (c) Removal of 

melanopsin in Brn3b-DTA mice (Opn4Cre/Cre; Brn3bDTA/+, n = 4) abolishes the 

enhancement of the direct PLR, but it is retained in control mice (Opn4Cre/Cre, n = 4). All 

light intensities are 16.3 log photons/cm2/s. 
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Chapter 3 

Rods mediate the rapid pupillary light 

reflex 

 

 

 

This chapter is based on a manuscript currently in submission: 

Keenan WT†, Rupp AC†, Somasundaram P, Hiriyanna S, Wu Z, Badea TC, Robinson 

PR, Hattar S. A visual circuit uses discrete mechanisms to support transient and 

sustained pupil constriction.  

† Denotes equal contribution 
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Abstract 

Light-dependent changes in pupil size are critical for vision. The pupil rapidly closes or 

opens following changes in luminance and maintains a consistent pupil size during steady 

light. Despite a century of research, the quantitative contribution of light detection by 

rods, cones, and melanopsin to the pupillary light reflex (PLR) across environmental light 

intensities and timescales remains unclear. Here we report differential requirements for 

distinct photoreceptive systems for rapid versus sustained pupil constriction. Rods, which 

are required for vision only at low light intensities, are the predominant contributors to 

the PLR at all light intensities for rapid responses. However, within minutes of light onset, 

the PLR switches to a melanopsin-based response for prolonged light stimulation (at least 

12 hours). Thus, we report complementary roles for rod and melanopsin 

phototransduction in driving a critical visual behavior across time and light intensity. 
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Introduction 

The pupillary light reflex (PLR) converts luminance information to pupil size 

across the day to limit the light reaching the retina. With increases in background light 

intensity, the PLR drives precise decreases in pupil size rapidly that are accurately tuned 

for high visual acuity160. The PLR is also widely used as a diagnostic in clinical 

evaluations of retina and brain function164. Therefore, it is essential to understand the 

precise mechanisms allowing the PLR to drive the optimal pupil size at different light 

intensities.  

The mammalian retina contains three photoreceptor types: rods, cones, and 

melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). These 

photoreceptors are responsible for driving the PLR88. The precise contribution of 

individual photoreceptors to the PLR, however, has remained controversial despite 

decades of work79,87,165,167–169,173–179,181,182,219–221. Previous studies have taken advantage 

of the different light detection properties of each photoreceptor type to deliver stimuli 

that activate one photoreceptor to a greater extent than others169,173–175,178,179,182,220–222. 

These studies have unequivocally shown that rods, cones, and melanopsin 

phototransduction are each capable of driving the PLR under unique spectral stimuli, but 

their precise contributions to the PLR under environmental conditions of variable 

intensity and duration is essentially unknown.  

Light input for the PLR is relayed through ipRGCs95,97, which integrate their 

endogenous melanopsin phototransduction cascade with indirect light information from 

rods and cones70,83,88. Removing melanopsin results in only minor PLR deficits due to the 

fact that rod and cone light input reaches ipRGCs87,95. Additionally, blind patients and 
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mice lacking rod and cone function still retain a PLR, but only at bright light 

intensities79,111,177. This, in combination with the previous findings that all photoreceptors 

are capable of driving the PLR, suggests that there may be redundancy in photoreceptor 

input to the PLR. This raises an intriguing evolutionary question: why do ipRGCs require 

light input from different sources if each input alone is capable of driving the PLR?  

To quantitatively determine the role of the different photoreceptors in driving the 

PLR, it is necessary to specifically silence individual photoreceptor types and to measure 

the PLR under more natural conditions. Here, we used an array of well-established mouse 

mutant lines that block rod, cone, or ipRGC phototransduction pathways to study the 

PLR. We show that rapid activation of the PLR predominantly utilizes rods, with 

minimal contribution from cones and melanopsin phototransduction. However, rod 

contributions are unstable at bright light intensities, where instead the less sensitive 

melanopsin phototransduction provides stable light detection for the PLR. Surprisingly, 

we find minimal involvement of cone photoreceptors. These findings uncover a 

mechanism of complementary stimulus encoding by different cell types that allows a 

sensory system to be sensitive to small changes in intensity but yet relay stable sensory 

information. 

Results 

Experimental PLR setup to mimic the natural environment 

To measure the pupillary light reflex under ‘environmental’ conditions, we used 

broad-spectrum white light (‘daylight’) directed from above a mouse’s head (Fig. 3.1). 

Using this approach, we measured a rapid induction of the PLR in wildtype mice within 
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seconds that was maintained for the entire 30-second stimulus. Wildtype mice initiate the 

PLR at relatively low light intensities ~0.001 lux, corresponding to a cloudy night, and 

reach saturation ~1000 lux, corresponding to a bright office building or dawn/dusk on a 

bright day. In all cases, pupil constriction was maintained for the entire 30 seconds, 

although at dimmer intensities there was a moderate decrease in constriction. 

PLR action spectrum matches rhodopsin/melanopsin spectrum 

To characterize the photoreceptor input to the mouse PLR, we generated an action 

spectrum. We produced a full intensity-response curve for five distinct narrow 

wavelength lights for wildtype mice (Fig. 3.2). As previously reported, we found that 

blue (474-nm light) was the most sensitive, with green (526-nm) and ultraviolet (400-nm) 

light about one log-unit less sensitive than blue light. Finally, the PLR in response to long 

wavelength light (orange (590-nm) and red light (626-nm)) was even less sensitive. 

Plotting the relative sensitivity of the PLR to each wavelength against the relative 

sensitivity of each photoreceptor, we find that the PLR sensitivity most closely matches 

the sensitivity of melanopsin/rhodopsin, with little overlap with either of the cone opsins 

(Fig. 3.2). This suggests that rod and melanopsin phototransduction account for the 

majority of the PLR. 

Rod phototransduction is required for the rapid PLR 

To directly test if rod and melanopsin phototransduction are required for the PLR, 

we used genetic mutant mouse lines that lack critical components of each individual cell 

type’s phototransduction cascade while leaving the function of the other photoreceptors 

intact (Fig. 3.3). We refer to mice lacking functional cones as cone knockout, lacking 

functional rods as rod knockout, and lacking functional melanopsin as melanopsin 
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knockout. We tested a variety of mutant mouse lines to corroborate our findings. 

Specifically, we used mice with distinct mutations of critical phototransduction 

machinery or complete ablation of cell bodies (rod knockouts: Gnat1-/- and Rod-DTA; 

cone knockouts: Cnga3-/-, Gnat2-/-, and Cone-DTA) (Fig. 3.3)22,23,223–225. In addition, we 

removed phototransduction in ipRGCs using melanopsin knockout mice (Opn4-/-) (Fig. 

3.3)83,99. 

Importantly, all of these mutant mouse lines have been extensively tested for 

visual function. Rod sensitivity and function is unchanged in cone mutant animals and 

cone sensitivity and function is unchanged in rod mutant animals22,223,226–230. For ipRGCs, 

electrophysiological recordings show functional rod input in cone mutants and functional 

cone input in rod mutants231. Additionally, all of the mutant lines used in this paper have 

similar pupil sizes in darkness (Fig. 3.3b). Therefore, these mouse lines allow precise 

separation of rod, cone, and melanopsin activation while leaving the function of the other 

photoreceptors intact.  

When we tested the rapid PLR of rod, cone, and melanopsin mutant mice (Fig. 

3.4a), we were surprised that rod knockout mice displayed no pupil constriction at a 

moderate light intensity that drives robust constriction in wildtype mice (10 lux, Fig. 

3.4b). In contrast, cone knockout and melanopsin knockout mice were indistinguishable 

from wildtype in pupil constriction amplitude and kinetics (Fig. 3.4b). When we 

determined the full intensity-response relationship, all cone knockout and melanopsin 

knockout animals displayed pupil constriction that was indistinguishable from wildtype 

animals at all light intensities (Fig. 3.4c, d). In fact, Cone-DTA mice had a more sensitive 

PLR than wildtype (Fig. 3.4c, d). In contrast with cone and melanopsin mutant mice, rod 
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knockout mice show virtually no pupil constriction until the light intensity becomes 

relatively bright (i.e. >10 lux, Fig. 3.4c, d). This results in rod knockout mice displaying a 

>2-log unit decrease in sensitivity (Fig. 3.4d; mean EC50 for WT = 0.17 lux, Gnat1-/- = 

57.5 lux, Rod-DTA = 52.5 lux). These results indicate that rod function is required for a 

normal rapid PLR. 

These results were unexpected due to the previous published reports indicating 

the importance of cones in driving the rapid PLR178,179. Mice lack a long-wavelength 

opsin, making them less sensitive to red light than humans. However, in a transgenic 

mouse model in which the mouse green cone opsin is replaced by the human red cone 

opsin, mouse cones become more sensitive to red light (Opn1mwred)232. Using this mouse 

model and stimulating the PLR using red light, a previous study found an enhancement of 

the PLR in the red-sensitive cone line compared to wildtype animals178, suggesting that 

cones provide strong input to the PLR. Due to the conflict in conclusions with our results 

from Fig. 3.4c, we wanted to confirm these previous findings using the same mouse 

model (Opn1mwred). However, using this mouse model and stimulating the rapid PLR 

with red light, we measured no difference in magnitude or sensitivity of the PLR between 

cone transgenic mice and wildtype littermate controls (Fig. 3.4e, f). In fact, when we 

mated this mouse line to the rod knockout line (Gnat1-/-; Opn1mwred), we found that all 

rapid pupil constriction in response to red light occurs through rods, even when cones 

have enhanced sensitivity to red light (Fig. 3.4g). Overall, this supports our findings that 

cones are not the predominant input to the rapid PLR.   

Recently, it has been proposed that short wavelength-sensitive cones (S cones) are 

particularly important for the PLR and other non-spatial behaviors172,179,233,234. The red 
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cone opsin transgenic mouse line we used replaces the green cone opsin and will not 

affect the UV opsin232. Therefore, we wondered if the reason we see minimal cone 

requirement for the PLR is because rods are much more sensitive than S cones to broad-

spectrum white light. While our light source contains substantial UV light to activate S 

cones similar to sunlight (Fig. 3.1), their signal will be relatively swamped out by the 

robust activation of rods.  

To test if S cones are involved in the PLR, we tested the PLR in the different 

retinal mutant lines to UV light (365 nm) that will enhance the relative activation of S 

cones compared to white light, while decreasing the relative rod activation. In this 

situation, we find that both cone and rod knockout mice show a decrease in sensitivity 

(Fig. 3.5). This result shows that when designing a stimulus to preferentially activate S 

cones, we see evidence of their involvement in the PLR. However, it underscores the fact 

that under natural conditions of broad-spectrum light, rod signals predominate over cone 

signals. 

This result is also inconsistent with the previous observations that melanopsin 

knockout mice have a small deficit in PLR magnitude at high light intensities87,147,149,179. 

We reasoned that the discrepancy could be due to a major difference between our and 

previous light stimulation protocols. In our stimulations, we use overhead white light 

simulating environmental light. Most PLR studies, including those of melanopsin 

knockout mice, stimulate a single eye with monochromatic light and observe constriction 

in the opposite eye. When we tested melanopsin knockout mice using the latter 

methodology (contralateral light), we observed the previously reported deficit in 

melanopsin knockout mice (Fig. 3.6). However, when we measured the PLR of the same 
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melanopsin knockout mice under our overhead paradigm simulating environmental light, 

there was no observable difference from wildtype animals (Fig. 3.6). These results 

suggest that melanopsin may be required specifically for the contralateral PLR and 

confirm our findings that melanopsin activation is not required for the rapid PLR under 

environmental conditions. 

Collectively, these results indicate that rods are the only photoreceptors that are 

required for any aspect of the rapid PLR. Even at light intensities at which cones mediate 

spatial vision229, rod function is required for driving the rapid PLR. 

Rods are sufficient for the full rapid PLR 

We next wondered if rods are sufficient to drive rapid pupil constriction. To test 

this, we generated double mutants of cone and melanopsin phototransduction used 

previously (Cone mutants: Cnga3-/-, Gnat2-/-, and Cone-DTA, Melanopsin mutant: Opn4-

/-) 228. In these mouse lines, rods are the only functional photoreceptors in the retina (‘rod-

only’). These lines are referred to as rod-only 1, 2, and 3 depending on the cone mutation 

used (Fig. 3.7a). We found that rod-only lines 1 and 3 had identical rapid PLR to wild-

type at all light intensities (Fig. 3.7b,c). This indicates that rods alone are sufficient for 

the rapid PLR at all light intensities, including bright intensities at which rods are 

presumably saturated for vision. Notably, while rod-only type 2 was generally similar to 

wildtype in sensitivity (Fig. 3.7c), this mouse line had a decrease in overall amplitude at 

all light intensities and high variability between and within animals (Fig. 3.7b). 

Regardless of the differences between RO2 and the other rod-only lines, all rod-only lines 

were either identical or similar to wildtype and indicate that rods are sufficient for the full 

PLR. 
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 Though we have shown that rods provide the predominant input to the rapid PLR, 

the fact that animals lacking rod function (Fig. 3.4) or both rod and cone 

function79,111,176,177 retain a PLR at bright light intensities indicates that melanopsin in 

possible combination with cones is sufficient for the rapid PLR at bright light intensities. 

To define the sufficiency of cones and melanopsin, we generated double mutant mice as 

previously for the rod-only lines (‘cone-only’ CO: Gnat1-/-; Opn4-/-, ‘melanopsin-only’ 

lines: MO1 Gnat1-/-; Cnga3-/-, MO2 Gnat1-/-; Gnat2-/-, MO3 Rod-DTA; Cone-DTA).  

As expected and in marked contrast to the rod-only animals, both cone-only and 

melanopsin-only mice had severe sensitivity defects in the rapid PLR (Fig. 3.7d,e; mean 

EC50 for WT = 0.13 lux, MO1 = 182 lux, MO2 = 126 lux, MO3 = 141 lux, CO = 1233 

lux, P < 0.001 for all 4 genotypes by one-way ANOVA with Sidak’s post-test). However, 

melanopsin-only mice still retained a normal PLR at bright light intensities, in agreement 

with previous findings79,147,177. Notably, melanopsin-only mice were indistinguishable 

from rod knockouts (Fig. 3.7e), providing further evidence that cones are dispensable for 

the rapid PLR, even in the absence of rod function. Furthermore, we found that cone-only 

animals had virtually no PLR at all light intensities up to 1000 lux, at which they 

achieved only partial constriction (Fig. 3.7d). This results in cone-only mice having a 

further sensitivity deficit compared to rod knockout (Fig. 3.7e; mean EC50 for RKO = 64 

lux, CO = 1233 lux, P < 0.001 by one-way ANOVA).  

The ‘rod-only’, ‘cone-only’, and ‘melanopsin-only’ mouse lines also displayed 

differences in PLR kinetics indicative of those photoreceptor’s signaling properties. 

‘Rod-only’ mice display similar kinetics to wildtype animals with rapid (<1 s) onset of 

constriction which is maintained for the duration of the 30s stimulus (Fig. 3.7f). ‘Cone-
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only’ mice displayed similar rapid (<1 s) onset of constriction but showed rapid decay 

back to baseline during the thirty-second stimulus, consistent with cone light adaptation 

(Fig. 3.7f). ‘Melanopsin-only’ mice show a small delay in onset (3–5 seconds), consistent 

with melanopsin’s sluggish kinetics177, but then show continued constriction throughout 

the 30 seconds (Fig. 3.7f). These results provide an explanation for why cones have 

minimal input to the PLR: their rapid adaptation that is integral for their role in spatial 

vision prohibits their ability to sustain pupil constriction for more than a few seconds. 

 Collectively, these results indicate that rods are the only photoreceptors that are 

both necessary and sufficient for the rapid PLR at light intensities encompassing the 

dynamic range of the rapid PLR (i.e. light intensities up to 100 lux). Therefore, rod 

activation is the key determinant of pupil size for rapid constriction. While rods are not 

required for the rapid PLR at very bright light intensities, the remaining contribution is 

predominantly from melanopsin, not cones, due to its stable signaling properties.  

The photoreceptor contributions to the pupillary light reflex over time and intensity  

 These experiments allow us to generate a model of the distinct roles of each 

photoreceptor type in the PLR at all light intensities (Fig. 3.8, see Methods for detailed 

explanation). First, we generated a quantitative model of a wildtype mouse’s pupil size at 

the entire range of environmental light intensities and times up to 30 seconds (Fig. 3.8a). 

Then, we constructed individual heat maps quantifying the degree of necessity or 

sufficiency of rod, cone, and melanopsin phototransduction across both light intensity 

and time. Finally, we took the maximum of necessity or sufficiency at each time and light 

intensity to create a merged heat map representing photoreceptor contributions (Fig. 

3.8b,c). This heat map provides a comprehensive visualization of the relative contribution 
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of each photoreceptor type to the PLR at any particular time or environmental light 

intensity. 

Discussion 

We find that redundancy is minimal for the PLR; distinct components of the PLR 

are mediated by distinct photoreceptors. Using a battery of mouse mutant lines, we show 

that upon light stimulation, the pupil rapidly constricts using exclusively rod input at light 

intensities corresponding to night and dawn/dusk. At higher light intensities 

corresponding to day, both rods and melanopsin are capable of driving this rapid response, 

though melanopsin input is more sluggish and provides stability to the rod input. At even 

brighter intensities, cones begin to contribute weakly to the rapid PLR, though their 

signal rapidly adapts.  

This complementary arrangement of photoreceptors for the PLR is analogous to 

conscious visual perception, which utilizes rods at dim light and cones at bright light. 

However, we find that for the rapid PLR, rods dominate responses at all light intensities, 

dim and bright, with little contribution from cones. This difference between spatial vision 

and the rapid PLR raises the possibility that ipRGCs receive different rod/cone input than 

conventional RGCs. In support of this possibility, all ipRGC subtypes receive sensitive 

rod input231 and cone input to some subtypes is relatively weak101.  

Although this possibility could explain our results, we believe there is a more 

fundamental explanation for the difference between spatial vision and rapid PLR. Namely, 

the PLR requires measurement of absolute light intensity whereas image vision requires 

measurement of relative differences. Rods, but not cones, provide signaling capabilities 

consistent with measuring absolute magnitude. Specifically, rods have limited light 
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adaptation capabilities and longer temporal integration compared to cones235. 

Additionally, the vast majority of photoreceptors in the mammalian retina are rods and 

they are extremely sensitive under dark adaptation, and the predominant interneurons are 

the rod bipolar cells. While this circuitry largely pools rod signals by the time they reach 

retinal ganglion cells, it still has the consequence that rods and the rod circuitry are the 

predominant cells activated by any light stimulus. In agreement with this idea, the dark-

adapted electroretinogram (ERG), which corresponds to rapid PLR is essentially only 

driven by rods22. This means that the requirement of rods in the rapid dark-adapted PLR 

is not specific to the ipRGCs circuit, but instead that detection of any increases in light 

intensity from darkness or low light levels is going to be predominantly driven by rods. 

For example, rod-based signals overwhelm cone-based signals to preclude full color 

discrimination and the speed of perception at mesopic light236, as occurs in the human 

peripheral retina.  

While humans and other primates have a rod-dominated retina like the mouse, 

they also possess a fovea, which concentrates the rare cones in the retina. This raises the 

question of whether the rapid PLR in mice is applicable to the human PLR. In support, 

the primate dark-adapted rapid PLR action spectra match a rhodopsin spectrum175,181,182. 

In addition, rod mutant humans display a similar sensitivity defect in the PLR as we 

measured in rod mutant mice167. Therefore, rods are likely the predominant 

photoreceptors for the rapid PLR in humans. 

The minimal cone contributions to the PLR we find here is unexpected given the 

previous studies showing cone input to the PLR178,179. Notably, most of these previous 

studies have used dynamic stimuli to preferentially activate cones and have observed 
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matching changes in pupil size, indicating cones are capable of modulating pupil size179. 

Cones are most effective at encoding dynamic changes in light intensity and not stable 

background luminance due to their rapid activation and adaptation. In support, we find 

that cone-only animals show rapid adaptation of pupil size in response to steady light (Fig. 

3.7f). It is probable then that cones have no role in defining the absolute pupil size in the 

environment. Instead, we find it most likely that cones contribute to relatively small 

fluctuations around a mean pupil size that is defined by rod or melanopsin 

phototransduction.  

Instead, we find that melanopsin provides robust input to the PLR at bright light 

intensities. Why is melanopsin involved if rods alone are sufficient for the PLR? One 

possibility is that the pupil sizes of rod-only animals are relatively instable compared to 

wildtype or cone mutants. This suggests that melanopsin is involved in the PLR to 

provide stable pupil sizes at high light intensities when rods saturate and adapt.  

Another more likely possibility is that melanopsin has not been maintained in the 

PLR circuit for its role in the rapid PLR. Melanopsin phototransduction is capable of 

signaling for many hours237, and the PLR also is stable for many hours177. Notably, this 

stability of melanopsin for long-term signaling appears to be most important for 

maintaining pupil sizes after rods begin to light-adapt (Bill Keenan, data presented in the 

associated manuscript in preparation). Therefore, the minor role of melanopsin in the 

rapid induction of pupil constriction may simply be to initiate its real purpose: to stabilize 

the pupil across the day. 
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Methods 

Animal husbandry 

C57Bl/6 x Sv129 hybrid mice were used in all experiments and were housed 

according to guidelines from the Animal Care and Use Committee of Johns Hopkins 

University. Male and female mice age 2–8 months were housed in plastic translucent 

cages with steel-lined lids in an open room. Ambient room temperature and humidity 

were monitored daily and tightly controlled. Food and water were available ad libitum. 

All mice were maintained in a 12hr:12hr light-dark cycle for the entirety of their lives.  

Pupillometry 

Light intensity during the day was kept around 500 lux, except in the case of rod-

only type 1 (Cnga3-/-; Opn4-/-) and rod-only type 3 (Cone-DTA; Opn4-/-), which were 

maintained in a dim light-dark cycle. Photoentrainment is poor at bright light in both of 

these lines228 and we observed more variable pupil constriction when these lines were 

maintained in a bright light-dark cycle, presumably due to lack of photoentrainment. All 

mice were dark-adapted for at least 30 minutes prior to any experiments and all PLR 

experiments were performed between Zeitgeber times (ZT) 2 and 10.  

Mice were restrained manually under a 10-, 13-, or 23-Watt compact fluorescent 

light bulb (GE Daylight FLE10HT3/2/D or Sylvania Daylight CF13EL and CF23EL) 

with a color temperature of 6500 K to simulate natural sunlight. The light intensity was 

measured using a light meter (EXTECH Foot Candle/Lux Light Meter, 401025) at the 

surface on which the mouse was held. The light meter was initially calibrated by 

EXTECH using a Tungsten 2856 K light source; because our experiments used a 

fluorescent bulb of 6500 K, all measured light intensities reported here may vary by 
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0.92–1.12 times the actual light intensity. Light intensity was adjusted by a combination 

of altering the distance of the light bulb(s) from the mouse and/or applying neutral 

density filters (Roscolux). The light meter is incapable of detecting light intensities below 

1 lux, so one neutral density filter cutting the light intensity by 12.5% was applied to the 

bulb to estimate 1-log unit decreases in illumination below 1 lux. Light intensities above 

500 lux required the use of multiple light bulbs. 

For the monochromatic light PLR experiments, an LED light (SuperBrightLEDs) 

was housed in a microscope light source with fiber optic gooseneck arms to direct the 

light source to the mouse eye. For the experiments involving the Opn1mwred mice, we 

used a 626-nm LED in this setup and directed light to both eyes simultaneously or to just 

one eye and measured the PLR in the illuminated eye (see figure legends). The photon 

flux was measured using a luminometer (SolarLight) and converted from W/m2 to 

photons/cm2/sec. The light intensity was decreased by 12.5% using neutral density filters 

(Rosco).  

Videos of the eye were taken using a Sony Handycam (DCR-HC96) mounted on 

a tripod a fixed distance from the mouse. Manual focus was maintained on the camera to 

ensure that only one focal plane existed for each mouse and that therefore variable 

distance from the camera should not contribute to differences in relative pupil area 

throughout the video. Pupil size was first recorded under dim red light and the 

endogenous infrared light source of the camera to capture the dark-adapted pupil size. 

Following at least 5 seconds of recording in dark, the pupil was continuously recorded for 

at least 30 seconds of a light step stimulus. For all sustained PLR, animals were kept in a 

cage for 60 minutes under the light stimulus. Animals were removed from the cage after 
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60 minutes and held in front of the camera for 30 seconds as for the rapid PLR. All pupil 

images presented in the paper were cropped to a fixed square area (generally 100 x 100 

pixels) surrounding the eye using GNU Image Manipulation Program (GIMP). The 

images were made grayscale and then brightness and contrast were adjusted to enhance 

visibility of the pupil and exported as PNG files.  

Data analysis  

Videos were transferred from the camera to a computer as Audio Video Interleave 

(AVI) files and individual frames were taken using VLC media player 

(www.videolan.org/vlc/) and saved in portable network graphics format (PNG). Images 

were taken in the dark, at 5 seconds, and 30 seconds following stimulus onset. Pupil area 

was then quantified manually in ImageJ (http://rsbweb.nih.gov/ij/) software. First, the 

image was enlarged to 300% normal size. Then, the image was converted to grayscale 

and brightness and contrast were adjusted so as to confine the borders of the input 

channel (black  white) to the edges of the pixel intensity histogram. The pupil area was 

measured in pixels using the oval tool in which the 4 cardinal points of the oval were 

touching their respective edges of the pupil. The relative pupil area was calculated using 

LibreOffice Calc or Microsoft Excel in which the area during the light stimulus was 

divided by the area prior to lights onset. For the rapid PLR, the minimum relative pupil 

size of either 5 seconds or 30 seconds after stimulus was used for all genotypes. 

The intensity-response curve was fit using a variable slope sigmoidal dose-

response curve in Graphpad Prism 6. The top and bottom of the fit were constrained to 

1.0 and between 0 and 0.10, respectively, to ensure the EC50 for each genotype was 

represented by similar curves. However, for the RO2 fit, the bottom was not constrained 
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to between 0 and 0.10 because their values converged on a larger number. The sensitivity 

for each genotype was calculated using the same process of fitting each individual 

animal’s data points with a sigmoidal dose-response curve to generate EC50.  

Statistical analysis 

All statistical tests were performed in Graphpad Prism 6. Specific statistical 

comparisons are listed in the figure captions. Because the EC50 data appears to be a 

normal distribution on a log scale (log-normal distribution), all statistical tests and data 

analysis involving EC50 were performed on the log transformed data set.  

Heat map generation 

The photoreceptor contribution heat map was generated by first creating estimated 

pupil size matrices for both the rapid and sustained PLR at every light intensity and time 

for wildtype mice (x axis = time, y axis = intensity). To do so, we applied the equation 

for a one-phase association: 

(1) 𝑌 = 𝑌0 + (𝑃𝑙𝑎𝑡𝑎𝑒𝑢 − 𝑌0) ∗ (1 − 𝑒(−𝐾∗𝑥)) 

In our case, Y is the relative pupil area generated at time, x. For the WT rapid PLR heat 

map, Y0rapid is set to 1 for every light intensity and the Krapid was extracted from the 

wildtype rapid constriction kinetics curve at 100 lux. The Plateaurapid value at each light 

intensity is the rapid PLR value extracted from the WT rapid intensity-response curve fit. 

This allows us to generate a full matrix of WT pupil sizes at every intensity and time by 

knowing the final pupil size (Plateau) and the rate of constriction (K) based on 

experimental determination (Fig. X). This process was used to generate a matrix of 

relative pupil areas with the y-axis being light intensity varying logarithmically (0.001-
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100,000 lux) and the x-axis being time varying linearly from 0 to 30 seconds using a 

custom MATLAB script.  

The matrices generated for the wildtype mice were also done to the photoreceptor 

mutants. In order to determine necessity of a photoreceptor we subtracted rod (Gnat1-/-), 

cone (Gnat2-/-), or melanopsin (Opn4-/-) knockout matrices from the wildtype matrix. 

This yields larger values for genotypes that are more required and also normalizes for the 

overall constriction in wildtype mice at that intensity (i.e. because rods are fully 

necessary at some dim intensities at which WT mice have minimal constriction, the 

necessity value attributed to rods is small despite their absolute necessity at that intensity). 

To determine sufficiency we used ‘rod-only’ (Cnga3-/-; Opn4-/-), ‘cone-only’ (Gnat1-/-; 

Opn4-/-) and ‘melanopsin-only’ (Gnat1-/-; Gnat2-/-) matrices. 

Finally, in order to produce a graphical heat map, the pupil size matrices were 

uploaded to Plotly (https://plot.ly) for heat map generation. Pupil sizes are the z-values of 

the heat map and the z-range was set from 0 to maximal wildtype constriction (1 – 0.09 = 

0.91). 
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Figures 

 

 

 

Figure 3.1: Experimental setup to mimic environmental light.  

(a) Environmental light intensity measured in lux across one day (April 2, 2015) in 

Baltimore, Maryland, USA. The light meter used is unable to measure light intensities 

below 1 lux, indicated with the gray box. Dotted lines refer to the meterological sunrise 

and sunset. Data is fit with a hand-drawn curve for ease of visualization. (b) Mice are 

unanesthetized and restrained by hand under a light bulb with a broad spectrum similar to 

sunlight (c). Breaking down the fraction of light into 50-nm bins for each light source, the 

daylight bulbs are very similar to sunlight across all wavelengths (d), while incandescent 

bulbs lack short wavelengths and are enriched in long wavelengths. Pupils are 

continuously recorded in darkness and light using an infrared video camera. 
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Figure 3.2: Action spectrum of the pupillary light reflex in wild-type mice matches 

rods and/or melanopsin.  

(a) The output spectrum for the LED lights used in this experiment, as reported by the 

manufacturer. Violet LED output spectrum is unknown, as denoted by ‘*’, but is listed as 

395 nm–405 nm. (b) Representative images from an individual wild-type mouse to each 

LED light at roughly equivalent photon flux light intensities (~1014 photons/cm2/sec). (c) 

Dose response relationship of the pupillary light reflex for each light used. Abscissa is 

reported in measured photons/cm2/sec as well as approximate light intensity reaching the 

retina based on the dark-adapted pupil size of 2.5 mm. (d) Sensitivity of the PLR in wild-

type mice to each light based on the measured EC50 and plotted as a normalized 
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sensitivity relative to the highest sensitivity light (black circles are average, gray circles 

from individual mice). Opsin nomograms representing mouse UV cone opsin (365 nm), 

melanopsin (480 nm), rhodopsin (498 nm), and green cone opsin (508 nm) are plotted for 

reference. (e) Maximal sensitivity of the modeled nomogram for each wild-type mouse. 

Nomogram was fit to the data using the least sum of squares method. Data is represented 

by mean ± 95% CI. 
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Figure 3.3: Mutant mouse lines used in this study.  

(a) A table of the mutant mouse lines used in this study with their specific genotype, 

effect on retinal function, and original citation. (b) All mutant mouse lines have normal 
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resting pupil sizes, indicating no gross abnormalities in the PLR circuit at rest. No mouse 

line was significantly different from wildtype (determined by P < 0.05) using a one-way 

ANOVA with Sidak’s post-test.
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Figure 3.4: Rods are required for the rapid PLR.  
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(a) Diagram of the retina labeling the photoreceptors. For experiments in b–d, WT n = 14, 

Opn4-/- n = 8, Cnga3-/- n = 4, Gnat2-/- n = 7, Cone-DTA n = 7, Gnat1-/- n = 6, Rod-DTA n 

= 9. (b) PLR kinetics for a 10 lux 30-s light step (mean ± 95% CI). While Melanopsin 

KO and Cone KO mice have normal kinetics, Rod KO mice have no PLR at all. (c) 

Intensity-response curves of the PLR in each of the photoreceptor mutant mouse lines 

(mean ± 95% CI). The bar on top of the figure denotes the estimated sensitivities of rods 

and cones. (d) Rod mutant animals are the only mutants that display sensitivity (EC50) 

deficits compared to WT (P < 0.0001 for both Gnat1-/- and Rod-DTA). In fact, Cone-

DTA mice are moderately more sensitive than WT (* P = 0.011). Points indicate 

individual mice, line indicates mean. Statistical significance determined using a one-way 

ANOVA with Sidak’s post-test. (e) The PLR to red light (626-nm LED) is identical in 

mice with cones that are more sensitive to red light (Opn1mwred, n = 6) compared to 

littermate WT (n = 5), mean ± 95% CI. (f) Sensitivity (EC50) from the curve fits in e 

shows no difference in between WT and Opn1mwred mice (P = 0.392 by unpaired two-

tailed t test). Points are individual mice, line is mean. (G) Removing rod function 

abolishes the PLR in response to red light (626-nm LED), even in mice with cones with 

enhanced sensitivity to red light. WT n = 7, Opn1mwred n = 8, Gnat1-/- n = 8, Gnat1-/-; 

Opn1mwred n = 4. Light intensity = 5 × 1014 photons/cm2/sec. Statistical significance 

determined using a one-way ANOVA with Sidak’s post-test. 
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Figure 3.5: Both cones and rods are required for the PLR to UV light.  

(a) Relative sensitivities of the different photoreceptors to light of different wavelengths, 

normalized to rod sensitivity. Note that at most wavelengths, rods are dramatically more 

sensitive than the other photoreceptors, while at UV the S-cones reach rod sensitivity. (b) 

Intensity-response curve of the PLR to UV light (365-nm LED). Melanopsin KO mice 

(blue, n = 4) are identical to WT (black, n = 5) at all light intensities. However, both 

Cone KO2 (green, n = 4) and Rod KO mice (red, n = 5) have sensitivity deficits in the 
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PLR. Mice lacking both rod and cone function (Melanopsin-only 2, gray, n = 2) are even 

more insensitive. Data is mean ± SEM. (c) Sensitivities are quantified as EC50. Statistical 

comparisons are one-way ANOVA followed by Sidak’s post-test. 
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Figure 3.6: Melanopsin is not required for rapid PLR in response to 

environmentally relevant overhead light.  

Rapid PLR determined under three different experimental light conditions. (Left) Blue 

(474-nm) LED light presented to contralateral eye. (Middle) White halogen light 

presented to contralateral eye. (Right) White compact fluorescent light presented 

overhead to both eyes. Statistical significance determined by one-way ANOVA followed 

by Sidak’s post-test. No difference observed when light presented overhead. Control 

(black, Opn4+/-) n = 7 and Melanopsin KO (blue, Opn4-/-) n = 9. 
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Figure 3.7: Rods are the only photoreceptors that are sufficient for the full rapid 

PLR.  
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(a) Multiple mouse lines with rods as the only functional photoreceptors. For the 

experiments in b and c: WT n = 6, Rod-only type 1 (RO1: Cnga3-/-; Opn4-/-) n = 6, Rod-

only type 2 (RO2: Gnat2-/-; Opn4-/-) n = 8, Rod-only type 3 (RO3: Cone-DTA; Opn4-/-) n 

= 5. (b) Intensity-response curve of the PLR in all of the rod-only lines, which are all 

similar to wild-type at all light intensities (mean ± 95% CI). (c) Sensitivity (EC50) in each 

of the mutant lines. No statistical differences were observed between the mouse lines 

(compared to WT, RO1 P = 0.956, RO2 P = 0.340, RO3 P = 0.141 using a one-way 

ANOVA with Sidak’s post-test), although the RO2 line had more variability and trended 

toward lower sensitivity. Line indicates mean. (d, e) Multiple mouse lines with ipRGCs 

as the only functional photoreceptors (melanopsin-only) or a mouse line with cones as the 

only functional photoreceptors (cone-only). For the experiments in d and e: WT n = 9, 

Gnat1-/- n = 10 (6 points replotted from Fig. 3.4), Melanopsin-only type 1 (MO1: Gnat1-/-

; Cnga3-/-) n = 7, Melanopsin-only type 2 (MO2: Gnat1-/-; Gnat2-/-) n = 9, Melanopsin-

only type 3 (MO3: Rod-DTA; Cone-DTA) n = 6, Cone-only (Gnat1-/-; Opn4-/-) n = 6. (d) 

Intensity-response curve of the PLR in all of the melanopsin-only lines and in the cone-

only mouse line (mean ± 95% CI). (f) EC50 in each of the lines. All mutant lines are less 

sensitive than WT (P < 0.001) by >2 log units. Cone-only (Gnat1-/-; Opn4-/-) mice are 

additionally less sensitive than Rod KO (Gnat1-/-) mice (P < 0.001), but no melanopsin-

only line is significantly different from Rod KO (Compared to RKO: MO1 P = 0.201, 

MO2 P = 0.625, MO3 P = 0.591). All statistics are one-way ANOVA with Sidak’s post-

test, line indicates mean. (g) Kinetics of PLR in each of the ‘only’ lines at 100 lux, a light 

intensity at which all lines respond but show differences in magnitude. Rod-only mice 

(RO1) have both fast and relatively sustained kinetics, while cone-only (CO) mice have 

fast but transient responses and melanopsin-only (MO2) mice have slow but sustained 

signaling. Mean ± 95% CI, sample size for each group is same as used in intensity-

response experiments. 
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Figure 3.8: The photoreceptor contribution landscape of the pupillary light reflex. 

(a) Heat map of the PLR as duration and intensity vary. Increasing intensity indicates 

increasing pupil constriction (black = 0 or no constriction, white = 0.91 the maximum 

mean constriction achieved by wildtype mice). Night, dawn/dusk, and daytime light 

intensities indicated by ticks on right side of plot. (b) Heat maps of individual 

photoreceptor contributions. Top to bottom: rod (green), cone (red), melanopsin (blue). 

Each photoreceptor contribution heat map is a combination of necessity (individual 

photoreceptor transduction knockouts) and sufficiency (‘photoreceptor-only’) heat maps. 

Necessity and sufficiency were combined by taking the maximum value of either at each 

point. (c) Merged and colored heat maps of individual photoreceptor contributions from b. 

Green indicates rod contributions. Red indicates cone contributions. Blue indicates 

melanopsin contributions. See Methods for details on heat map generation. 
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Chapter 4 

Rods use a non-conventional retinal 

circuit to drive the pupillary light reflex 

 

 

 

This chapter is based on a manuscript currently in preparation: 

Rupp AC, Ramakrishnan C, Deisseroth K, and Hattar S. A novel rod circuit drives the 

pupillary light reflex.  
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Abstract 

The retina utilizes distinct parallel neural circuits for relaying various features of the 

visual world. Signals from rod photoreceptors are relayed in parallel circuits encoding 

distinct visual information. In all known rod circuits, connexin36 (Cx36)-containing gap 

junctions are required for rod signal transmission to retinal ganglion cells (RGCs), the 

projection neurons of the retina. Here we identify a novel retinal circuit that transmits rod 

signals to RGCs in the absence of Cx36. A subtype of RGCs—intrinsically 

photosensitive retinal ganglion cells (ipRGCs)—receives robust rod light information to 

drive the pupillary light reflex (PLR). However, the rod-driven PLR persists in Cx36-/- 

mice. We use viral circuit tracing to show that rod bipolar cells, which were believed to 

never contact RGCs, make presumptive synaptic contacts with ipRGCs to drive the PLR, 

a circuit that would not require Cx36. This novel circuit has implications for 

understanding information flow in the retina and how different RGC subclasses encode 

the visual world. 
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Introduction 

Precise neuronal circuits mediate the generation of a variety of behaviors from a 

limited number of sensory inputs.  This is widely apparent in the retina, where parallel 

circuits encode distinct features of the visual world13. The output cells of the retina, the 

retinal ganglion cells (RGCs) exist in approximately thirty subtypes, differing in the 

visual information they encode, their presynaptic inputs, and synaptic targets in the 

brain54. This allows a diversity of information about the visual world to be sent to the 

brain from the light absorption patterns of only two classes of classical photoreceptor 

cells, rods and cones.  

To generate their specialized visual responses, each RGC subtype must receive 

unique presynaptic inputs. This is accomplished in part through the diversification of the 

excitatory interneurons—bipolar cells—that connect rods and cones to the RGCs. 

Approximately thirteen bipolar cell types exist with different connection patterns and 

light responses47. Of these thirteen, the most abundant is dedicated to receiving 

exclusively light information from rods, called the rod bipolar cell238; the others receive 

cone input and are referred to as cone bipolar cells. However, while all cone bipolar cells 

directly synapse on RGCs, rod bipolar cells synapse instead on AII amacrine cells that 

then relay their light information to cone bipolar cells and ultimately to RGCs239,240. This 

circuit utilizes connexin36-containing gap junctions between AII amacrine and cone 

bipolar cells241. In agreement, connexin36 knockout mice have no known rod signals in 

RGCs242,243.  

Ultimately, the AII amacrine cell circuit is thought to be important for enhancing 

the signal to noise ratio of rod signals at dim light intensities. However, not all visual 
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functions require precise dim light detection. One major class of RGCs is the intrinsically 

photosensitive retinal ganglion cells (ipRGCs). ipRGCs are unique in that they do not 

require spatial visual information, but instead are dedicated for measuring ambient light 

intensity for subconscious visual functions such as pupillary light reflex and circadian 

photoentrainment70,95,237. Additionally, these functions are relatively insensitive 

compared to the conscious perception of single photons244. Therefore, the presynaptic 

circuits for ipRGCs are likely to be distinct from the conventional circuits mediating 

spatial visual information. 

Here, we investigated the circuits linking rods to ipRGCs. Using viral circuit 

tracing upstream of ipRGCs, we show that rod bipolar cells are presynaptic to ipRGCs. 

We then show that rods are capable of driving the PLR independent of connexin36-

contraining gap junctions, although they require ON bipolar cell function. These results 

indicate that a Cx36-independent ON circuit allows rod signals to reach ipRGCs and 

implicate a direct rod bipolar cell synaptic connection. 

Results 

Anatomical identification of cell types upstream of ipRGCs 

To identify the cell types upstream of ipRGCs, we employed a transsynaptic viral 

tracing strategy to specifically label cells presynaptic to ipRGCs. To do so, we used two 

adeno-associated virus (AAV) injected into the vitreous of a mouse line that expresses 

Cre in ipRGCs (Opn4Cre). The first AAV expresses a wheat germ agglutinin-Flp (WGA-

Flp) fusion protein in the presence of Cre (AAV-DIO-WGA-Flp). WGA is a 

transsynaptic protein that travels retrograde, with some anterograde capacity245 (though 
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ipRGCs do make anterograde connections with dopaminergic neurons in the retina246,247, 

this should be negligible relative to their presynaptic inputs). WGA will carry the Flp 

recombinase to cells upstream of ipRGCs. The second AAV carries a Flp-dependent (fd) 

yellow fluorescent protein (YFP), marking the cells that are Flp+ with YFP (AAV-fd-

YFP) (Fig. 4.1a).  

After injection of both AAVs, we observed a variety of YFP+ cells in the retina 

(Fig 4.1b,c). Importantly, injections of both viruses in wildtype mice lacking Cre never 

produced a fluorescent cell (data not shown), indicating that all cells labeled are specific 

to ipRGCs. The predominant cells were in the ganglion cell layer, representing ipRGCs 

that were infected with both viruses. In addition, the next two most abundant categories 

were Müller glia and a variety of amacrine cells. The robust Müller glia labeling has been 

previously reported to be specific to circuits upstream of ipRGCs127, confirming the 

specificity of our method. Importantly, we never observed labeling of rods and cones and 

only rarely horizontal cells, implying there is limited capacity of the transsynaptic 

transfer of WGA to label cells multiple synapses away from ipRGCs. 

We also observed labeling of bipolar cells, although much fewer than amacrine 

cells. This robust amacrine cell labeling is consistent with previous reports that the M1 

subtype of ipRGCs receives relatively weak excitatory input, but strong inhibitory 

input118. When we quantified the types of bipolar cells labeled, we found that the majority 

were rod bipolar cells (n = 10/12 from 4 mice). A prediction from the conventional circuit 

diagram of the retina is that rod bipolar cell labeling should never be enriched over cone 

bipolar cells because rod signals must always pass through cone bipolar cells before 
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reaching RGCs248. This data suggests that rod bipolar cells may be directly presynaptic to 

ipRGCs. 

This possibility has an anatomical basis, as rod bipolar cells have their synaptic 

terminals deep in the inner plexiform layer (IPL), close to RGC soma and proximal 

dendrites. In fact, when we label rod bipolar cell synaptic release sites using a genetically 

encoded presynaptic marker (Pcp2-Cre; ROSASynaptophysin-tdTomato/+), we find that release 

sites are absent along the axon shaft of rod bipolar cells and are concentrated in an area 

directly apposed to ipRGC somas and proximal dendrites (Fig. 4.2a). 

The possibility has been proposed that M1 ipRGCs in rat receive direct ribbon 

synaptic input from rod bipolar cells on their soma. To test this, we fluorescently labeled 

all postsynaptic densities on ipRGCs by crossing a Cre-dependent Psd95mVenus mouse 

line249 with the Opn4Cre line. Importantly, the Psd95mVenus line expresses a PSD95-

mVenus fusion protein from the endogenous Psd95 locus and cells expressing it are 

electrophysiologically normal249.  

We observed many postsynaptic densities on the soma of M1 ipRGCs, identified 

by their melanopsin immunoreactivity and dendrites that stratify in the outermost IPL. 

However, when we co-stained for presynaptic ribbon synapses (anti-CtBP2) and rod 

bipolar cells (anti-PKCa), we found that colocalization of all three markers did not occur 

above random levels (Fig. 4.2). This suggests that M1 ipRGCs might not receive rod 

bipolar cell ribbon synapses on their soma. However, we cannot rule out the possibility 

that M1 ipRGCs receive non-ribbon input from rod bipolar cells or ribbon input on their 

dendrites or that non-M1 ipRGCs receive direct rod bipolar synapses63,139,250. 
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A Cx36-indepednent rod ON circuit mediates the PLR 

To test if a direct rod bipolar cell to ipRGC circuit is functional, we tested the 

pupillary light reflex (PLR) in mice lacking the conventional rod circuits (Fig. 4.3a). We 

have previously found rod function is required for the PLR at light intensities up to ~10 

lux, as shown in the previous chapter.  

To determine how rod signals reach ipRGCs, we silenced ON bipolar cells, 

including the rod bipolar cell, using a mouse line lacking the TRPM1 cation channel in 

ON bipolar cells (Trpm1-/-)29. Trpm1-/- mice phenocopy the defects in the PLR seen in rod 

transducin knockout mice (Gnat1-/-), with no PLR until the light intensity reaches >10 lux 

(Fig. 4.3b–d). These results show that ON bipolar cells are required for the PLR at light 

intensities at which rods are required for the PLR, indicating that rods use an ON bipolar 

cell to mediate the PLR.  

While the most likely candidate ON bipolar cell is the rod bipolar cell, rod signals 

can also avoid rod bipolar cells by utilizing the secondary rod circuit: utilizing gap 

junctions between rods and cones and traveling along the cone to cone bipolar cell to 

RGCs. We find this possibility unlikely because rod-cone gap junctions vary in a diurnal 

manner are closed during the day131 and all our experiments were performed during the 

day. Additionally, we previously found that a mouse line that lacks cone cell bodies by 

genetic ablation (Cone-DTA)225 and therefore has no ability for rod signals to pass 

through cones had a PLR identical to wildtype (Fig. 3.7b). 

The only remaining conventional rod ON circuit is the primary rod circuit. 

Connexin36-containing gap junctions are required for the primary rod circuit between 

AII amacrine cells and cone bipolar cells (as well in the secondary circuit at rod-cone gap 
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junctions)241. ON RGCs in Cx36-/- mice (also known as Gjd2-/-) have reduced light 

sensitivity with a threshold near cone threshold242,243, consistent with a lack of rod input. 

To test if rods utilize the primary rod circuit to mediate the PLR, we utilized Cx36-/- mice, 

which should have an identical PLR to rod mutant mice and ON bipolar cell mutant mice. 

However, when we tested the PLR in Cx36-/- mice, we found that they were 

almost identical to wildtype, albeit with a slight decrease in sensitivity (Fig. 4.3b–d). 

Cx36-/- mice were ~2-log units more sensitive than mice lacking rod function and ON 

bipolar cell function (Fig. 4.3b–d). These results show that rods are capable of driving the 

PLR using an ON circuit that does not require the AII amacrine circuit or the rod-cone 

gap junction circuit, the two conventional means for rod signals to reach RGCs. In total, 

these results implicate a potential physiological contribution of rod bipolar cell synaptic 

input to ipRGCs. 

Discussion 

Here we identified the rod circuits required for the pupillary light reflex. We have 

provided compelling evidence that rod circuits to ipRGCs are distinct from those for 

conventional RGCs. While rods require ON bipolar cell function for the PLR, they do not 

require the connexin36-containing gap junctions that are presumed to be required for all 

rod ON signal transmission. In combination with our circuit tracing data revealing rod 

bipolar cells presynaptic to ipRGCs, this suggests that rod bipolar cells synapse directly 

with ipRGCs.  

We are currently unable to determine the specific ipRGC subtype that receives 

direct rod bipolar cell input. The M1 subtype of ipRGCs is believed to be the 

predominant contributor to the PLR95,105. Despite M1 cells stratifying in the OFF 
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sublamina of the inner plexiform layer (IPL), all ipRGCs receive almost exclusively ON 

pathway input101,118,251. In addition, ON pathway is required for the rod/cone input to the 

PLR252–254. However, we could not confirm that rod bipolar cell ribbon synapses are 

localized to M1 ipRGC soma, as has been previously proposed123. 

The specific ON pathway components driving ipRGCs in general and the PLR in 

particular has remained a mystery. The ON bipolar cells driving ipRGCs are both 

sensitive and sustained101,118,237,251,255. Very few subtypes of cone ON bipolar cells relay 

sustained input48 and there is sparse cone bipolar input to M1 ipRGCs120–122. In 

combination with the fact that cones are relatively dispensable for the PLR (Fig. 3.4) 

suggests that cone bipolar cells are not the predominant input to ipRGCs. 

In total, we believe the available evidence indicates the most likely input is the 

rod bipolar cell without the use of their conventional downstream circuits. While rod 

bipolar cells relay sustained light information, the AII amacrine cells are relatively 

transient40. This transient signaling of AII amacrine cells, coupled with our Cx36-/- PLR 

data showing only a minor deficit in sensitivity, indicate that the primary rod pathway is 

not required for the PLR, although it may be involved specifically at very dim light 

intensities255. Rod bipolar cells avoiding the AII circuit to directly synapse on ipRGCs 

would facilitate their role in sustained ambient light detection. While synaptic input to 

conventional RGCs relaxes toward baseline within seconds, rod input to ipRGCs 

produces spiking up to 10 hours237. This indicates that rods must utilize a remarkably 

sustained circuit to reach ipRGCs that is distinct from rod circuits to conventional RGCs. 

Interestingly, mice lacking both the primary and secondary rod pathways and 

cone function (Cx36-/-; Gnat2-/-) still retain rod responses in the dorsal lateral geniculate 
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nucleus (dLGN)256. The dLGN is known to receive projections from the non-M1 

ipRGCs99, indicating non-conventional rod circuits may be broadly utilized. We 

hypothesize that this direct rod bipolar cell to ipRGC circuit would be especially useful 

for encoding ambient light intensity for many aspects of vision. 
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Methods 

Animal husbandry 

C57Bl/6 x Sv129 hybrid mice were used in all experiments and were housed 

according to guidelines from the Animal Care and Use Committee of Johns Hopkins 

University. Male and female mice age 2–8 months were housed in plastic translucent 

cages with steel-lined lids in an open room. Ambient room temperature and humidity 

were monitored daily and tightly controlled. Food and water were available ad libitum. 

All mice were maintained in a 12hr:12hr light-dark cycle of ~500 lux for the entirety of 

their lives.  

Molecular cloning and virus production 

The AscI site in pAAV-Ef1a-DIO eYFP construct was changed to SpeI restriction 

site using overlapping PCR and then cut with SpeI and NheI for the vector backbone.   

The mCherry-IRES-WGA-Flpo was PCR amplified with SpeI and NheI sites and inserted 

into the mutated AAV-Ef1a-DIO backbone by quick ligase (from NEB). The clones were 

completely sequence verified. pAAV-Ef1a-fd-YFP has been described previously257. 

Both constructs were packaged at the UNC Vector Core.  

Viral circuit tracing 

Mice were anesthetized by intraperitoneal injection of avertin (2, 2, 2-

Tribromoethanol) and placed under a stereo microscope. 0.5–1 μl of both AAV8-Ef1a-

DIO-mCherry-IRES-WGA-Flp and AAV5-Ef1a-fd-YFP was mixed on a piece of 

Parafilm and drawn into a 10-μl microcapillary tube (Sigma P0674) that had been pulled 

to a needle (Sutter Instruments, Model P-2000). The loaded needle was then placed in the 
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holster of a pico-injector (Harvard Apparatus PLI-90). The needle punctured the eye 

posterior to the ora serrata and air pressure was used to drive the viral solution into the 

vitreous chamber of the eye to ensure delivery specifically to the retina. Mice recovered 

from surgery on a heating pad until they woke from anesthesia.  

Immunofluorescence 

All mice were euthanized by intraperitoneal injection of avertin and cervical 

dislocation. For viral tracing experiments, mice were euthanized at least 4 weeks 

following injection. For whole mount images, retinas were fresh dissected in PBS, fixed 

in 4% paraformaldehyde (PFA), rinsed in PBS, and stained overnight in primary antibody 

solution. For retina sections, eyes were removed, rinsed in PBS, fixed in 4% PFA, rinsed 

again, then placed overnight in 30% sucrose at 4 °C. Eyes were then embedded in OCT 

(Tissue-Tek) on dry ice and stored at -20 °C or -80 °C overnight. Eyes were then 

sectioned at 10 or 20 μm on a cryostat. After drying onto slides overnight, retina sections 

were briefly rinsed in PBS and then subjected to the same immunofluorescence protocol 

as whole mount retinas. 

Primary antibodies include chicken anti-GFP (Abcam ab13970), mouse IgG2a 

anti-PKCa (Sigma P5704), rabbit anti-OPN4 (Advanced Targeting Systems AB-N38), 

and/or anti-CtBP2 (BD Transduction Laboratories 612044), overnight in 4% goat serum 

at 4 °C. Retinas were then rinsed in PBS and stained for 2 hours at room temperature in 

secondary antibody solution containing goat anti-rabbit 405 (Life Technologies A31556), 

goat anti-chicken 488 (Life Technologies A11039), goat anti-rabbit 488 (Life 

Technologies A11034), goat anti-mouse IgG2a 546 (Invitrogen A21133), and/or goat 
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anti-mouse IgG1 647 (Life Technologies A21240) before mounting on a slide with 

Fluoromount (Sigma) with or without DAPI. All antibodies were used at 1:1000. 

Confocal microscopy and image processing 

Slides were imaged on either a Zeiss LSM 700 confocal microscope or a Zeiss 

LSM 510 META confocal microscope with 63× oil or 20× air objectives. z-stack images 

were subjected to a z-stack of 0.53 µm spacing at 63× or 1.00 µm at 20× covering the 

entire ganglion cell layer, inner plexiform layer, and inner nuclear layer. Images were 

then loaded into FIJI (http://fiji.sc) and background subtracted and brightness and 

contrast was adjusted before preparing figures.  

Pupillometry 

All mice were dark-adapted for at least 30 minutes prior to any experiments and 

all PLR experiments were performed between Zeitgeber times (ZT) 2 and 10. Mice were 

restrained manually under a 10-, 13-, or 23-Watt compact fluorescent light bulb (GE 

Daylight FLE10HT3/2/D or Sylvania Daylight CF13EL and CF23EL) with a color 

temperature of 6500 K to simulate natural sunlight. The light intensity was measured 

using a light meter (EXTECH Foot Candle/Lux Light Meter, 401025) at the surface on 

which the mouse was held. The light meter was initially calibrated by EXTECH using a 

Tungsten 2856 K light source; because our experiments used a fluorescent bulb of 6500 

K, all measured light intensities reported here may vary by 0.92–1.12 times the actual 

light intensity. Light intensity was adjusted by a combination of altering the distance of 

the light bulb(s) from the mouse and/or applying neutral density filters (Roscolux). The 

light meter is incapable of detecting light intensities below 1 lux, so one neutral density 

filter cutting the light intensity by 12.5% was applied to the bulb to estimate 1-log unit 
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decreases in illumination below 1 lux. Light intensities above 500 lux required the use of 

multiple light bulbs. 

Videos of the eye were taken using a Sony Handycam (DCR-HC96) mounted on 

a tripod a fixed distance from the mouse. Manual focus was maintained on the camera to 

ensure that only one focal plane existed for each mouse and that therefore variable 

distance from the camera should not contribute to differences in relative pupil area 

throughout the video. Pupil size was first recorded under dim red light and the 

endogenous infrared light source of the camera to capture the dark-adapted pupil size. 

Following at least 5 seconds of recording in dark, the pupil was continuously recorded for 

at least 30 seconds of a light step stimulus. All pupil images presented in the paper were 

cropped to a fixed square area (generally 100 x 100 pixels) surrounding the eye using 

GNU Image Manipulation Program (GIMP). The images were made grayscale and then 

brightness and contrast were adjusted to enhance visibility of the pupil and exported as 

PNG files.  

Data analysis  

Videos were transferred from the camera to a computer as Audio Video Interleave 

(AVI) files and individual frames were taken using VLC media player 

(www.videolan.org/vlc/) and saved in portable network graphics format (PNG). Images 

were taken in the dark, at 5 seconds, and 30 seconds following stimulus onset. Pupil area 

was then quantified manually in ImageJ (http://rsbweb.nih.gov/ij/) software. First, the 

image was enlarged to 300% normal size. Then, the image was converted to grayscale 

and brightness and contrast were adjusted so as to confine the borders of the input 

channel (black  white) to the edges of the pixel intensity histogram. The pupil area was 
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measured in pixels using the oval tool in which the 4 cardinal points of the oval were 

touching their respective edges of the pupil. The relative pupil area was calculated using 

LibreOffice Calc or Microsoft Excel in which the area during the light stimulus was 

divided by the area prior to lights onset. The minimum relative pupil size of either 5 

seconds or 30 seconds after stimulus was used for all genotypes. 

The intensity-response curve was fit using a variable slope sigmoidal dose-

response curve in Graphpad Prism 6. The top and bottom of the fit were constrained to 

1.0 and between 0 and 0.10, respectively, to ensure the EC50 for each genotype was 

represented by similar curves. The sensitivity for each genotype was calculated using the 

same process of fitting each individual animal’s data points with a sigmoidal dose-

response curve to generate EC50.  

Statistical analysis 

All statistical tests were performed in Graphpad Prism 6. Specific statistical 

comparisons are listed in the figure captions. Because the EC50 data appears to be a 

normal distribution on a log scale (log-normal distribution), all statistical tests and data 

analysis involving EC50 were performed on the log transformed data set.  
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Figures 

Figure 4.1: Transsynaptic circuit tracing reveals rod bipolar cells upstream of 

ipRGCs.  



 136 

(a) We employed an adeno-associated viral (AAV) circuit tracing strategy involving 

injection of two AAVs into the vitreous of melanopsin-Cre mice (Opn4Cre): (1) AAV 

carrying a Cre-dependent expression of WGA-Flp (AAV-DIO-WGA-Flp) and (2) AAV 

carrying a Flp-dependent YFP (AAV-fd-YFP). WGA-Flp will only be expressed in 

ipRGCs and will be carried retrograde to cells upstream, which will be labeled with YFP. 

(b) Example images of YFP+ cells stained with anti-GFP antibody to enhance the signal. 

Most signal is present in the ganglion cell layer, though many cells in the inner nuclear 

layer are also labeled. We never observed cells in the photoreceptor layer labeled; the 

green signal in the outer nuclear layer is the processes of Müller glia. Scale bar = 50 μm. 

(c) Quantification of the cell types labeled from 8 regions of 3 retinas. (d) 

Immunofluorescence image of a single z plane through the inner nuclear layer for rod 

bipolar cells (anti-PKCa, magenta) reveals that most YFP+ (green) bipolar cells are rod 

bipolar cells (magenta boxes, zoomed images to right), with some cone bipolar cells 

labeled (gray boxes, zoomed images to left). Again, the other YFP signal that is not 

boxed in is from Müller glia and one horizontal cell. Scale bar on main image = 50 μm, 

on the zoomed images = 5 μm.  
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Figure 4.2: Using genetically labeled pre- and postsynapses to identify ipRGC 

synaptic input locations.  

(a) Labeling rod bipolar cell presynapses with Pcp2-Cre; ROSASynaptophysin-tdTomato/+ (Syp-

tdTomato, magenta) shows that rod bipolar cell release sites are deep in the IPL near 

RGC soma and proximal dendrites. Immunofluorescence for ipRGCs (anti-OPN4, green) 
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shows that rod bipolar cell release sites are near ipRGC soma and proximal dendrites. (b) 

Immunofluorescence of an OPN4-PSD95mVenus retina (Opn4Cre/+; PSD95mVenus/+), 

stained for presynaptic bipolar cell ribbon synapses (anti-CtBP2, magenta) and rod 

bipolar cells (anti-PKCα, cyan), M1 ipRGCs (anti-OPN4, blue), and raw 

immunofluorescence from PSD95-mVenus (green). Yellow arrow indicates presumptive 

synaptic contact between a rod bipolar cell ribbon synapse and an ipRGC PSD. (c) 

Quantification of the fraction of postsynaptic densities on M1 ipRGC soma that are 

apposed to a rod bipolar cell (RBC) presynaptic ribbon synapse. Control experiments 

rotating the presynaptic channel (PKCα and CtBP2) 90° left or right reveals that rod 

bipolar cell ribbon inputs to M1 ipRGC soma does not occur above random levels. Scale 

bars = 5 μm. 
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Figure 4.3: A non-conventional rod circuit drives the PLR.  

(a) Cartoon depicting the potential rod ON circuits in the retina. The primary (1°) and 

secondary (2°) rod circuits (right) require Trpm1 function in ON bipolar cells and Cx36 

function in rod-cone gap junctions and AII amacrine cell-cone bipolar cell gap junctions. 

However, a direct rod bipolar cell to RGC circuit would only require Trpm1, but not 

Cx36. (b) Representative images of WT, Cx36-/-, Trpm1-/-, and Gnat1-/- mice at 10 lux. (c) 

Intensity-response curve of the PLR for different retinal mutant mouse lines: WT (black, 

n = 6), Cx36-/- (green, n = 5), Trpm1-/- (dark blue, n = 3), Gnat1-/- (red, n = 6, replotted 

from Fig. 3.4). All data are mean ± 95% CI and fit with a sigmoidal dose-response curve. 

(d) Sensitivity (EC50) of the different lines, with a point for every mouse and a line at the 

mean. Statistical comparisons are one-way ANOVA followed by Sidak’s post-test. 
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Chapter 5 

Distinct ipRGC subtypes mediate acute 

and circadian regulation of body 

temperature 

 

 

 

This chapter is based on a manuscript currently in preparation: 

Rupp AC, Altimus CM, Fernandez DC, and Hattar S. Distinct ipRGC subpopulations 

mediate light’s acute and circadian effects on body temperature. 
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Abstract 

Abnormal light environments negatively impact human alertness, mood, and cognition by 

acutely disrupting physiological processes and misaligning circadian rhythms. A small 

population of retinal neurons, intrinsically photosensitive retinal ganglion cells (ipRGCs), 

has been implicated in both light’s acute and circadian regulation of many processes, 

including mood, cognition, and body temperature. We show here that ipRGCs 

accomplish this by utilizing distinct genetic subpopulations for either light’s acute or 

circadian regulation of body temperature. Mice with genetic ablation of ipRGCs that 

express Brn3b display normal circadian photoentrainment of body temperature, but no 

acute body temperature decrease in response to light. Conversely, chemogenetic 

activation of Brn3b-positive retinal cells alone drives acute body temperature decreases. 

We also confirm that acute and circadian regulation utilize distinct coding mechanisms; 

acute regulation requires melanopsin phototransduction but circadian photoentrainment 

does not. Our results provide a cellular basis for using light to promote cognition and 

alertness while avoiding circadian disruption.  
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Introduction 

Many essential functions are influenced by light both indirectly through alignment 

of circadian rhythms (photoentrainment) and acutely by a direct mechanism8–10,12,258. 

Dysregulation of the circadian system by abnormal lighting conditions has many negative 

consequences, which has motivated decades of work to identify the mechanisms of 

circadian photoentrainment259. In contrast, it has only recently become apparent that light 

exposure can also acutely influence human alertness, cognition, and physiology260. As a 

result, there is a developing awareness of light quality in everyday life180. It is therefore 

essential to human health and society to elucidate the circuitry and coding mechanisms 

underlying light’s acute effects.  

Circadian photoentrainment is coordinated by relay of light information from 

intrinsically photosensitive retinal ganglion cells (ipRGCs) of the retina to the master 

circadian pacemaker, the suprachiasmatic nucleus (SCN)95–97,261. ipRGC genetic ablation 

results in normal circadian rhythms that ‘free-run’ with respect to the light/dark cycle95–97, 

suggesting the SCN is normal but does not receive light information. Further, ablation of 

all ipRGCs except those that project to the SCN results in normal circadian 

photoentrainment105. ipRGCs seem to use redundant light-detection mechanisms to 

support photoentrainment, relaying light information from either indirect synaptic input 

from the rod/cone photoreceptors85,86,178,228,262 or from their endogenous melanopsin 

phototransduction cascade73,77,88,89,263. 

In addition to their role in circadian photoentrainment, ipRGCs have been 

implicated in some aspects of acute light responses. Genetic ablation of ipRGCs or their 

melanopsin phototransduction cascade blocks or attenuates the acute effects of light on 
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sleep8–10 and mood12. This dual role of ipRGCs in circadian and acute light responses 

suggests they may share a common circuit mechanism. However, the circuit basis for 

ipRGCs in the acute effects of light has yet to be identified. Further, ipRGCs project 

broadly in the brain beyond the SCN83,84,102,264 and are comprised of multiple 

subpopulations with distinct genetic, morphological, and electrophysiological 

signatures98,99,102, raising the possibility that distinct subpopulations mediate acute and 

circadian roles of ipRGCs62,105. 

There are multiple potential models for how ipRGCs mediate both the acute and 

circadian effects of light, including (1) ipRGCs mediate both acute and circadian light 

responses through their innervation of the SCN, (2) ipRGCs mediate circadian 

photoentrainment through the SCN, but send collateral projections elsewhere in the brain 

to mediate acute light responses, or (3) the subpopulation(s) of ipRGCs that project to the 

SCN for circadian regulation are distinct from the subpopulation(s) that projects 

elsewhere to mediate acute light responses. To date, a role for the SCN in both acute and 

circadian responses has predominated265,266. However, it has been controversial due to 

complications associated with SCN lesions267 and alternative models proposing a role for 

direct ipRGC input to other central targets9,10,265,267,268 (with no reference to whether those 

are collateral projections from SCN-projecting ipRGCs). Here, we sought to address the 

question of how environmental light information—through ipRGCs—mediates both the 

circadian and acute regulation of behavior and physiology. To do so, we investigated the 

ipRGC subpopulations and coding mechanisms that mediate acute body temperature and 

activity regulation by light.  
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Results 

To identify mechanisms of acute physiological regulation by light, we maintained 

mice on a 12-hr/12-hr light/dark cycle and then presented a 3-hr light pulse two hours 

into the night (Zeitgeber time 14, ZT14) while measuring core body temperature and 

general activity simultaneously (Fig. 5.1a). The nocturnal light pulse paradigm is well-

established for studying acute regulation of sleep and wheel-running activity8,9,258,269. We 

focused on body temperature because of its critical role in cognition and alertness270,271, 

sleep induction and quality272, metabolic control273, and circadian resetting94.  

Body temperature photoentrains to the light/dark cycle with peaks during the 

night and troughs during the day (Fig. 5.1b,d). Both rodents and humans utilize ocular 

light detection to acutely adjust body temperature in response to a nocturnal light 

pulse274,275, though how this body temperature change is initiated by the retina and 

relayed to the brain is unknown. When we presented wildtype mice with a nocturnal light 

pulse, we observed a decrease in both body temperature and general activity compared to 

the previous night. Further, the decrease in body temperature and activity was sustained 

for the entire 3-hr stimulus, with moderate rundown (Fig. 5.1c,e). Interestingly, we found 

a positive correlation between the magnitude of body temperature and activity reductions 

(Fig. 5.1f), suggesting they may share at least some common mechanisms. 

We observed that acute body temperature regulation only occurred at relatively 

bright light intensities (>500 lux) (Fig. 5.2). This, in combination with previous reports 

that body temperature regulation is most sensitive to short-wavelength light275, suggest it 

may be mediated by melanopsin phototransduction in ipRGCs because melanopsin is 

most sensitive to blue light and ipRGC phototransduction is relatively insensitive 
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compared to rods and cones79,244,276. To test this, we measured body temperature and 

activity in mice lacking either functional rods and cones (melanopsin-only: Gnat1-/-; 

Gnat2-/-) or lacking melanopsin (melanopsin KO: Opn4-/-). Both genotypes 

photoentrained their body temperature (Fig. 5.3a,b), with an amplitude indistinguishable 

from wildtype (Fig. 5.3c). However, we found that acute body temperature decrease to a 

nocturnal light pulse was present in melanopsin-only mice (Gnat1-/-; Gnat2-/-) (Fig. 

5.3d,e), but absent from melanopsin knockout mice (Opn4-/-) (Fig. 5.3f,g). This indicates 

that melanopsin is critical for light’s ability to drive acute body temperature decreases, as 

it is for acute sleep induction8–10. 

Importantly, this impaired thermoregulation in melanopsin knockout mice is not a 

consequence of altered general activity, because simultaneous general activity 

measurements revealed that melanopsin knockout mice reduce their activity in response 

to light (Fig. 5.4). Light’s acute effects on wheel-running activity appears to involve 

conscious visual perception277, while ipRGCs are largely regulate non-spatial vision, 

suggesting that rod/cone light information through other RGC types can regulate activity. 

In summary, these results indicate that ipRGCs, using their melanopsin phototransduction 

cascade, are the only retinal cells that are necessary and sufficient for light’s acute effects 

on body temperature. 

ipRGCs comprise multiple subtypes with distinct gene expression profiles, light 

responses, and central projections98, prompting us to ask which subtypes mediate acute 

thermoregulation. Brn3b(+) ipRGCs project to many structures including the olivary 

pretectal nucleus (OPN) and dorsal lateral geniculate nucleus (dLGN), but largely avoid 

the SCN105. In contrast, Brn3b(–) ipRGCs project extensively to the SCN and 
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intergeniculate leaflet (IGL), while avoiding the OPN and dLGN105 (Fig). Ablation of 

Brn3b(+) ipRGCs using melanopsin-Cre and a Cre-dependent diphtheria toxin knocked 

into the Brn3b locus (Brn3b-DTA: Opn4Cre/+; Brn3bDTA/+) removes virtually all ipRGC 

input to brain areas aside from the SCN and IGL, and these mice retain circadian 

photoentrainment of wheel-running activity105.  

When we measured body temperature in Brn3b-DTA mice, we found that their 

body temperature was photoentrained with a similar amplitude to controls (Fig. 5.5a–c). 

However, despite the presence of melanopsin in Brn3b-DTA mice, they did not acutely 

decrease body temperature in response to a nocturnal light pulse (Fig. 5.5f,g). Importantly, 

melanopsin heterozygous control mice (Opn4Cre/+) displayed a normal body temperature 

decrease in response to a nocturnal light pulse (Fig. 5.5d,e). Furthermore, Brn3b-DTA 

mice retained acute activity suppression by light, though the magnitude was reduced 

compared to controls (Fig. 5.6). This finding supports our the previous results in 

melanopsin knockout mice that non-ipRGC cells are capable of contributing to light’s 

effects on general activity. These results demonstrate that Brn3b-positive ipRGCs are 

required for acute body temperature regulation by light, revealing that light information 

to the SCN is sufficient for circadian photoentrainment of body temperature, but not its 

acute regulation.  

This suggests that there are two functionally distinct populations of ipRGCs that 

regulate the same physiological function: (1) Brn3b-negative ipRGCs that project to the 

SCN to mediate circadian photoentrainment of body temperature and (2) Brn3b-positive 

ipRGCs that project elsewhere in the brain to mediate acute thermoregulation. To test if 

Brn3b-positive ipRGCs are sufficient for acute thermoregulation, we expressed a 
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chemogenetic activator in Brn3b(+) RGCs (Fig. 5.7a, Brn3bCre/+ with intravitreal AAV2-

hSyn-DIO-hM3D(Gq)-mCherry, we refer to these mice as Brn3b-hM3D(Gq)). This 

technique allows us to acutely activate the Brn3b(+) RGCs with the DREADD agonist 

clozapine N-oxide (CNO). We found that after intravitreal viral delivery, many RGCs 

were infected, including melanopsin-expressing ipRGCs (Fig. 5.7a).  

Importantly, all Brn3b-hM3D(Gq) mice photoentrained to a normal light/dark 

cycle (Fig. 5.7b). Following CNO administration at ZT14 to depolarize the Brn3b-

positive RGCs, we observed a robust decrease in body temperature (Fig. 5.7d) compared 

to PBS injection the previous night (Fig. 5.7c,e) that lasted at least 6 hours. Importantly, 

nocturnal CNO administration had no significant effect on wildtype body temperature 

(Fig. 5.8). Together, these results demonstrate that Brn3b-positive ipRGCs mediate the 

acute effects of light on body temperature and activity though extra-SCN projection(s), 

while Brn3b-negative ipRGCs mediate circadian photoentrainment by projections to the 

SCN and/or IGL. 

Discussion 

We show here that for the same physiological outcome, the acute effects of light 

are relayed through distinct circuitry from that its circadian photoentrainment, despite 

both processes using the same class of retinal neurons. Our results indicate that ipRGCs 

can be genetically and functionally segregated into Brn3b(+) ‘acute’ cells, and Brn3b(–) 

‘circadian’ cells. Because Brn3b(+) cells largely avoid the SCN, and Brn3b(–) cells 

preferentially target the SCN, our results discount a critical role for the SCN in acute light 

responses, and instead implicate direct ipRGC projections to other brain areas84.  
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The areas that mediate the acute effects of light on physiology are essentially 

completely unknown. There are many candidate areas that both receive direct ipRGC 

innervation and have been documented to be involved in light’s acute effects on 

physiology, including the preoptic area278,265, the ventral subparaventricular zone279, and 

the pretectum/superior colliculus280. Aside from the SCN, ipRGC projections to the 

median (MPO) and ventrolateral preoptic (VLPO) areas have been the most widely 

supported. The preoptic areas are involved in sleep and body temperature regulation278,281 

and are activated by an acute light pulse10. However, ipRGC projections to these areas are 

sparse84,264, suggesting their activation by light may be indirect. In contrast, the superior 

colliculus and pretectum receive robust innervation from ipRGCs83,84,99,264 and lesions in 

these areas block light’s acute effects on sleep280. However, these lesions were rather 

large and could have indirect consequences on sleep regulation. It is also possible (and 

perhaps probable), that multiple direct ipRGC target regions are involved, with distinct 

areas mediating distinct physiological responses responses. Future studies silencing each 

retinorecipient target while activating Brn3b(+) ipRGCs will be necessary to tease apart 

the downstream circuits mediating light’s acute effects on physiology. 

An alternative hypothesis is that direct ipRGC projections to a single area that 

controls body temperature is the primary and critical step for all acute responses to light 

that are mediated by ipRGCs. In support of this, changes in body temperature and heat 

loss can directly influence sleep induction272. This change in sleep is presumably 

causative of many of the documented effects of light on general locomotor activity258. 

Further, core body temperature can acutely regulate cognition and alertness270,271. It is 
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therefore possible that ipRGCs can have widespread influence on an animal’s basic 

physiology and cognitive function simply by regulating body temperature. 

Despite their criticality for body temperature regulation by light, neither 

melanopsin nor Brn3b(+) ipRGCs were absolutely required for general activity 

suppression. This is consistent with previous findings that melanopsin is only partially 

required for wheel-running suppression269. This indicates that rods and cones can drive 

activity suppression through either conventional RGCs or Brn3b(–) ipRGCs. Because 

wheel-running activity suppression by light involves visual cortex277 and ipRGCs largely 

regulate subcortical processes69, it is most likely that activity regulation by light involves 

a combination of input from both ipRGCs and conventional RGCs. 

Together, our identification of the photopigment and the retinal circuits mediating 

acute body temperature and general activity regulation will facilitate better methods to 

promote or avoid human alertness and cognition at appropriate times of day260. Our 

results support many recent efforts to capitalize on the specific light-detection properties 

of melanopsin180, such as its insensitivity and short-wavelength preference, to promote or 

avoid its activation at different times of day. However, this approach has been 

problematic because acute activation of melanopsin to promote attention has the 

unintended effect of shifting the circadian clock, thereby making subsequent sleep 

difficult263. Our identification that the Brn3b-positive ipRGCs specifically mediate light’s 

acute effects on body temperature provides a cellular basis for developing targeted 

methods for promoting acute alertness, while minimizing circadian misalignment. 
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Methods 

Animal husbandry 

C57Bl/6 x Sv129 hybrid mice were used in all experiments and were housed 

according to guidelines from the Animal Care and Use Committee of Johns Hopkins 

University. Male and female mice age 2–8 months were housed in plastic translucent 

cages with steel-lined lids in an open room. Ambient room temperature and humidity 

were monitored daily and tightly controlled. Food and water were available ad libitum. 

All mice were maintained in a 12hr:12hr light-dark cycle for the entirety of their lives 

with a light intensity around 500 lux during the day.  

Telemetry 

Each mouse was housed individually and implanted with a telemetric probe in the 

peritoneal cavity to monitor core body temperature and activity remotely in continuous 1- 

or 2-min bins (Respironics/STARR Life Sciences G2 E-Mitter and ER-4000 

energizer/receiver). Data was collected using VitalView data acquisition system. All 

experiments were conducted at least 10 days after surgery. Brn3b-DTA general activity 

recordings utilized infrared beam detectors and data was collected in 10-min bins. 

Statistical analysis 

All statistical tests were performed in Graphpad Prism 6. Specific statistical 

comparisons are listed in the figure legends.  

Viral infection 

Mice were anesthetized by intraperitoneal injection of avertin (2, 2, 2-

Tribromoethanol) and placed under a stereo microscope. 1 μl AAV-DIO-hM3DGq-
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mCherry (4.6 x 1012 viral particles/ml, Roth lab, UNC Vector Core) was placed on a 

piece of Parafilm and drawn into a 10-μl microcapillary tube (Sigma P0674) that had 

been pulled to a needle (Sutter Instruments, Model P-2000). The loaded needle was then 

placed in the holster of a pico-injector (Harvard Apparatus PLI-90). The needle 

punctured the eye posterior to the ora serrata and air pressure was used to drive the viral 

solution into the vitreous chamber of the eye to ensure delivery specifically to the retina. 

Mice recovered from surgery on a heating pad until they woke from anesthesia. All 

experiments and confocal imaging were done at least 3 weeks following viral injection. 

CNO was delivered intraperitoneally at a concentration of 1 mg/kg, dissolved in PBS. 

Confocal microscopy 

Mice that had been infected with the AAV were anesthetized with avertin and 

then euthanized using cervical dislocation. The eyes were removed and the retinas were 

dissected in PBS and then fixed in 4% paraformaldehyde for 1–2 hours on ice. The 

retinas were then washed in PBS at least three times before either mounting on a 

microscope slide (Fisher) in Fluoromount (Sigma) with DAPI (2-(4-amidinophenyl)-1H-

indole-6-carboxamidine) or preparing for immunofluorescence. Immunofluroescence was 

performed in 4% goat serum with antibody concentrations as follows: rabbit anti-

melanopsin 1:1000 (Advanced Targeting Systems) and goat anti-rabbit 488 1:1000. 

Images were taken on a Zeiss LSM 710 confocal microscope using a 20X objective. 

After imaging, images were background subtracted, and brightness and contrast were 

adjusted in FIJI (http://fiji.sc) for the image presented in the chapter. 
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Figures 

 

Figure 5.1: Mice use light information to both photoentrain and acutely regulate 

body temperature.  

(a) Experimental paradigm depicting a 3-hr light pulse two hours into the subjective night 

(Zeitgeber time 14, ZT14) while simultaneously measuring core body temperature and 

general activity (ambulations). For all experiments using a nocturnal light pulse, light 

intensity is 500 lux. All data in this figure is n = 15 animals. (b) Mice photoentrain body 

temperature to a 12-hr/12-hr light dark cycle and acutely decrease body temperature in 

response to light at night. (c) A magnified view of the nocturnal light pulse relative to the 

body temperature at time of light pulse to show the rapid and sustained decrease in body 

temperature. Body temperature is significantly lower than previous night control (P < 

0.001) by repeated measures two-way ANOVA followed by Sidak’s post-test. For b and 

c, line is mean and shading represents standard deviation. (d) Simultaneous general 

activity measurements display robust photoentrainment of activity and acute regulation of 

activity in response to nocturnal light. (e) A magnified view of the nocturnal light pulse 

to show the rapid and sustained decrease in activity (black) compared to previous control 
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night (gray). Activity is significantly lower than previous night control (P < 0.001) by 

repeated measures two-way ANOVA followed by Sidak’s post-test. For d and e, line is 

mean. (f) A significant correlation between body temperature reduction and activity 

suppression was observed across animals. Pearson’s correlation coefficient R = 0.599 (P 

= 0.018). 

  



 154 

  

 

Figure 5.2: Light intensity-dependence of acute body temperature decrease. 

(a) The same experimental paradigm as in Fig. 5.1, except animals were subjected to 

different light pulse intensities at night, while being maintained on constant bright light 

during the day. (b) Multiple nocturnal light pulse intensities (1, 10, 100, 1000 lux) in 

wildtype mice (n = 4, mean) results in a light intensity-dependent decrease in body 

temperature. (c) Quantification of the mean body temperature during the 3-hr light pulse 

from b shows an intensity-dependent decrease in body temperature by the main effect of 

light intensity in a two-way repeated measures ANOVA (P = 0.010). Data is mean and 

standard deviation and fit with sigmoidal dose-response curve. 
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Figure 5.3: Melanopsin is both necessary and sufficient for acute thermoregulation 

by light. 

(a,b) Body temperature was monitored continuously in melanopsin-only (Gnat1-/-;Gnat2-

/-, n = 12) and melanopsin knockout (Opn4-/-, n = 6) mice and a single light pulse was 

applied at ZT14. Both lines photoentrain with (c) a similar diurnal amplitude of body 

temperature. (d) Acute body temperature decrease in melanopsin-only mice relative to 

body temperature at start of light pulse. (e) Mean body temperature during 3-hr light 

pulse compared to previous night control at same Zeitgeber time. (f) Acute body 

temperature decrease in melanopsin knockout mice relative to body temperature at start 

of light pulse. (g) Mean body temperature during 3-hr light pulse compared to previous 

night control at same Zeitgeber time. 
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Figure 5.4: Acute activity regulation is intact in melanopsin knockout mice. 

(a–f) All genotypes tested show robust photoentrainment of general activity (a,c,e) and 

acute reduction in activity (b,d,f: colored lines) compared to a previous night’s control 

(gray line). Data is presented as mean, wildtype n = 15, melanopsin-only n = 12, 

melanopsin knockout n = 6. Statistics are repeated-measures two-way ANOVA, P value 

indicates a significant effect of light on activity compared to the previous night.  
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Figure 5.5: Brn3b-positive ipRGCs are required for acute body temperature 

decrease by light. 

(a,b) Continuous measurement of body temperature in control mice (Opn4Cre/+, n = 8) 

and Brn3b-DTA mice (Opn4Cre/+;Brn3bDTA/+, n = 7) across 48 hr of a light/dark cycle. (c) 

Diurnal amplitude (difference in mean body temperature during night and day) in both 

control and Brn3b-DTA mice. (d–g) Change in body temperature in (d,e) control and 

(f,g) Brnb-DTA mice during the nocturnal light pulse relative to the body temperature at 

the beginning of the light. In e,g, mean body temperature across the 3-hr light pulse is 

reported. All data is mean and standard deviation. Statistical test in c is unpaired two-

tailed t-test; statistical tests in e,g are paired two-tailed t-tests.  
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Figure 5.6: Acute activity suppression in Brn3b-DTA mice. 

(a,b) Control mice (Opn4Cre/+, n = 3) display acute activity suppression in response to a 

light pulse at night. (c,d) Brn3b-DTA mice (Opn4Cre/+;Brn3bDTA/+, n = 4) also display a 

decrease in activity in response to a nocturnal light pulse. (e) The activity suppression 

amplitude is decreased in Brn3b-DTA mice compared to controls. All data is mean and 

error is standard deviation. Statistical tests in b,d are paired two-tailed t-tests, statistical 

test in e is unpaired two-tailed t-test.  
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Figure 5.7: Chemogenetic activation of Brn3b(+) RGCs is sufficient for sustained 

body temperature decrease. 

(a) Intravitreal delivery of AAV2-hSyn-DIO-hM3D(Gq)-mCherry into Brn3bCre/+ mice 

and subsequent infection and expression in ipRGCs labeled by melanopsin 

immunofluorescence. (b) Continuous monitoring of body temperature during a light/dark 

cycle, with injections of PBS or CNO on subsequent nights, depicted with dotted lines (n 

= 8). (c,d) Close-up view of relative change in body temperature following (c) PBS 

(gray) or (d) CNO (red) injection. Data is represented as mean and error as standard 

deviation. (e) CNO elicits a significant reduction in body temperature over 6 hr compared 

to PBS injection. Statistical test is paired two-tailed t-test.  
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Figure 5.8: CNO has no measureable effect on wildtype body temperature. 

(a) Wildtype (n = 9) body temperature during a light/dark cycle, with PBS injection and 

CNO injection at ZT14 on subsequent nights. (b) Change in body temperature after PBS 

injection relative to body temperature at injection time. (c) Change in body temperature 

after CNO injection relative to body temperature at injection time. Data in a–c is mean 

and error is standard deviation. (d) Change in body temperature after either PBS injection 

or CNO injection. Statistical test is paired two-tailed t-test.  
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Chapter 6 

Concluding remarks 
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In this thesis, I have provided evidence that the mammalian pupillary light reflex (PLR) 

is driven rapidly by activation of rod photoreceptors, with minimal contribution from the 

intrinsic iris muscle, cone photoreceptors, or melanopsin phototransduction until bright 

light intensities. I also provide evidence that rods can utilize a non-conventional circuit in 

the retina to relay signals to ipRGCs for the PLR. While these studies provide a picture of 

how the rapid PLR occurs under dark-adapted conditions, I do not mean to imply that 

PLR is solved and there will be no more studies. On the contrary, I hope this thesis will 

open the door to more detailed and broader studies of the PLR.  

The questions remaining in the PLR 

By all accounts we are in a new era of neuroscience research. At a steady pace, 

new tools and technologies are becoming available to specifically silence, activate, or 

modulate any cell type of interest in a behaving animal. In this thesis, I had the fortune of 

access to dozens of mouse lines and tools to control rod, cone, or melanopsin-cell 

function. No longer do we need to design stimuli that will selectively modulate one 

neuron or rely on imprecise ablations or non-specific drugs. Therefore, I hope that similar 

approaches can be useful in future studies of the PLR where many open questions remain. 

Perhaps the most important question remaining is the precise central circuitry of 

the PLR. In Chapter 2, I identified that the Brn3b-positive ipRGCs drive the PLR using 

an asymmetric brain circuit. However, I have no data implicating the anatomical basis for 

this asymmetry. In fact, relatively little is known about the precise PLR circuits in the 

brain in general. The majority of studies of the PLR circuit occurred at a time in which 

only rudimentary circuit tracing and cell activating/silencing technologies existed. These 

studies were invaluable in providing a general map of the PLR circuit, but we still lack a 
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precise understanding of the relative importance of each brain region and whether there 

are functional subdomains within these brain regions. Especially lacking is how signals 

converge and diverge along the circuit and how the other areas of the highly 

interconnected visual system modulate them. The application of genetic tools to gain 

access to the cells specific to the PLR circuit will refine our currently rough knowledge.  

Also in Chapter 2, I showed that despite intrinsic photosensitivity in the mouse 

iris muscle, it does not contribute to the PLR. The non-mammalian vertebrate iris muscle 

has been most widely studied for the intrinsic PLR by removing it from the eye and 

placing it in a dish. Because its in vitro response is so robust, most studies have widely 

assumed that the neural mechanisms of the PLR in these species are of negligible 

importance. In support of weak neuronal input, studies of the consensual PLR in non-

mammalian vertebrates have shown that it is incredibly weak and insensitive. However, 

the results in this thesis that in vitro functionality is not a precise predictor of in vivo 

function and the bilateral asymmetry in the neuronal circuit will force a reexamination of 

the contributions of the intrinsic and neural mechanisms of the PLR in non-mammalian 

vertebrates. 

In Chapter 3, I showed that rods are the predominant mediators of the PLR. 

However, I should note that I have only studied the rapid PLR under dark-adapted 

conditions. This was primarily because dark adaptation simplifies the situation by putting 

each photoreceptor in its resting state and allows me to compare my data to previous 

studies that have overwhelmingly used dark-adapted conditions. However, there are 

numerous studies that indicate that the PLR in light-adapted conditions is distinct from 

that under dark adaptation. Rapid changes in pupil size when there is a bright background 
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appear to be driven instead by cones168. In fact, even the static pupil size appears to use 

distinct photoreceptive mechanisms than the rapid changes in pupil size165. Recent 

evidence from Bill Keenan in our lab suggests that melanopsin phototransduction, while 

dispensable for the rapid PLR, is critical for the static PLR. Identifying the diversity of 

situations in the environment in which rods, cones, or melanopsin predominate is critical 

to understand how the PLR occurs across the day. 

Lastly, in Chapter 4, while I have provided evidence that a non-conventional 

retinal circuit is sufficient to relay rod signals for the PLR, there is still substantial 

uncertainty about what retinal circuits predominate for the PLR under normal conditions. 

This is because we have no clear picture of (1) the full catalog of retinal circuits that 

reach ipRGCs and (2) a way to specifically activate or silence them. Even among ipRGCs, 

it is not clear which subtypes are required for the PLR. It is clear that the Brn3b-positive 

ipRGCs are required, but this encompasses every subtype from M1–M5. At least M1 and 

M2 ipRGCs project to the OPN84,102,282, and the complete projections of M3, M4, and M5 

are unknown and may include the OPN as well. Given that these different subtypes each 

likely receive very different input from the inner retina99,101, it is likely that many retinal 

circuits all independently drive the PLR under normal conditions. Emerging cell type-

specific circuit-tracing technologies such as G-deleted rabies283 will be invaluable in 

determining the specific ipRGC subtypes that project to the OPN and their upstream 

circuits. 

The pupillary light reflex as a model visual behavior 

A complete knowledge of the function of the nervous system requires reliable 

functional outputs. Arguably the most ideal situation is an awake and behaving subject 
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that reports its own sensations and perceptions following some experimental perturbation. 

However, for both technical and ethical reasons, this is generally not practicable. Instead, 

the gold standard of laboratory research is a reliable behavioral assay in a model 

organism. 

However, to date, most behavioral assays are far from ideal. For instance, many 

assays are subjective such as those that require an experimenter to score a behavior, are 

indirect measures of functional outputs such as assays of complex emotions or cognitive 

functions, are impractical due to requiring extensive animal training, or are only quasi-

quantifiable. Until these difficulties are overcome, in vivo investigation of the nervous 

system of model organisms will face debates and uncertainties. 

On the other hand, the PLR requires no animal training, is a direct physiological 

readout of the system you intend to study, is rapid, inexpensive, can be monitored in real 

time, and is highly quantitative. With this in mind, I propose that the PLR be used as a 

model behavior for detailed studies of the nervous system. The effects of altering specific 

circuits can be tested almost immediately and most importantly can be clearly quantified 

compared to other circuit alterations.  

Additionally, the PLR encompasses many different levels of nervous system 

function, including sensory detection and adaptation, brain circuits, cortical modulation, 

circadian modulation, peripheral nervous system function including para- versus 

sympathetic activation, and even smooth muscle function. Therefore, many questions can 

likely be addressed within a subsystem in the PLR. 

One counterpoint that I anticipate is that to study say, depression, one has to study 

the circuits involved in depression, not the PLR. And because the PLR is less socially and 



 166 

clinically important than depression, we should not be wasting our limited time and 

resources understanding a relatively dispensable function. Therefore, imperfect 

behavioral assays are simply the reality of studying complex neural functions and should 

not be discarded for studying a less important easy question. First, I do not suggest we 

stop studying depression. But most importantly, I believe the PLR can act as a model 

behavior in that it can provide general insights of nervous system function. 

The vast majority of our basic understandings of the nervous system have come 

from studying relatively obscure functions. Just think of the Aplyssia gill withdrawal 

reflex, C. elegans chemotaxis, or innervation of the Drosophila neuromuscular junction. 

Here, the PLR offers the opportunity to study a mammalian behavior with practical 

simplicity but functional and anatomical complexity that can yield insights reaching far 

beyond its study.  
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