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Abstract 

 Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the 

biosynthesis of sterols (cholesterol in humans, and ergosterol in yeasts, fungi and 

trypanosomatid parasites) as well as in protein prenylation. It is inhibited by 

bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. 

Development of bisphosphonates as anti-parasitic compounds targeting ergosterol 

biosynthesis has become an important route for therapeutic intervention. As part of my 

doctoral studies, I determined the X-ray crystallographic structures of complexes of the 

FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three 

bisphosphonates, at resolutions of 1.8 Å, 1.9 Å and 2.3 Å.  Two of the inhibitors, 1-(2-

hydroxy-2,2-bis-phosphono-ethyl)-3-phenyl-pyridinium (300B) and 1-(2,2-bis-

phosphono-ethyl)-3-butyl-pyridinium (476A), co-crystallize with the homoallylic 

substrate, isopentenyl diphosphate (IPP), and 3 Ca
2+ 

ions. A third inhibitor 3-fluoro-l-(2-

hydroxy-2,2-bis-phosphono-ethyI)-pyridinium  (46I), was found to bind two Mg
2+

 ions 

but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically 

driven. Comparison of the structures of LmFPPS and human FPPS provides new 

information for the design of bisphosphonates that will be more specific for LmFPPS 

inhibition. The structure of the LmFPPS-46I homodimer shows that binding of the allylic 

substrate to both monomers of the dimer results in an asymmetric dimer with one open 

and one closed homoallylic site. We propose that IPP binds first to the open site that then 

closes, opening the site on the other monomer that closes after binding the second IPP 

leading to the symmetric, fully occupied FPPS dimer observed in other structures. 
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  Linear 2-alkylaminoethyl-1,1-bisphosphonates are effective agents against 

proliferation of Trypanosoma cruzi--the etiologic agent of American trypanosomiasis 

(Chagas disease)-- exhibiting IC50 values in the nanomolar range against the parasites.  

This activity is associated with inhibition at the low nanomolar level of the T. cruzi 

farnesyl diphosphate synthase (TcFPPS).  X-ray structures and thermodynamic data of 

the complexes TcFPPS with five compounds of this family show that the inhibitors bind 

to the allylic site of the enzyme with their alkyl chain occupying the cavity that binds the 

isoprenoid chain of the substrate.  The compounds bind to TcFPPS with unfavorable 

enthalpy compensated by a favorable entropy that results from a delicate balance between 

two opposing effects: the loss of conformational entropy due to freezing of single bond 

rotations, and the favorable burial of the hydrophobic alkyl chains.  The data suggest that 

introduction of strategically placed double bonds and methyl branches should increase 

affinity substantially. 
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1. Introduction 

Neglected diseases are diseases of poor living conditions and health care 

inequities [1]. Although they account for nearly half the disease burden in developing 

countries, investments in research and development of new drugs, have not prioritized 

this area [2]. Among the most neglected maladies, Chagas disease, Sleeping sickness, 

Malaria, Leishmaniasis and Toxoplasmosis, are the most important since they affect 

thousands of people every year with high morbidity [3, 4]. 

Besides insufficient funding for research related to neglected diseases, the results 

are seldom translated into therapeutic advances, such as new drugs, vaccines or 

diagnostic methods. One reason for this situation is the low market potential payoff for 

the pharmaceutical industry because the affected population has very low income and 

present mostly in developing countries [5]. Chemotherapy has an important role not only 

in the treatment of patients but also in reducing the transmission of parasitic infections. 

There has been limited commercial interest in developing improved therapeutics for these 

diseases even though existing treatments are of limited effectiveness and often highly 

toxic [6, 7]. 

Drug discovery is a long drawn and complex process, starting with the discovery 

of a novel therapeutic target and ending with the finding of an effective clinical candidate, 

spanning several years. This process requires synthesis and evaluation of multiple lead 

compounds for both their potency against targets and side affects on the off-targets.   

Repurposing drugs that are already approved has a huge advantage over the discovery of 
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the new compounds if it can quickly advance into later stage clinical trials in the patient 

population to assess efficacy [8]. 

 

1.1  Parasites and their diseases 

Protozoan parasites belong to four distinct groups: amoebae, flagellates, ciliates 

and sporozoan. They are all single-celled organisms that replicate in the host spreading 

the infection rapidly. Among the many neglected diseases caused by protozoan parasites, 

I worked with enzymes belonging to two parasitic species: Leishmania major and 

Trypanosoma cruzi. As part of my doctoral studies, I characterized the interactions 

between a promising class of drugs, bisphosphonates, and their target, FPPS. 

1.1.1 Leishmania species: Leishmaniasis 

 Leishmaniasis, a parasitic disease caused by any one of the 20 species of 

eukaryotic organisms of the genus Leishmania. The disease exists in three forms: 

cutaneous (CL), visceral (VL) and mucocutaneous (ML). CL, caused by L. major and L. 

mexicana, is predominantly found in Saudi Arabia, Iran, Afghanistan, Pakistan, Peru and 

Brazil, where it affects twelve million people with 1.5 million new cases being reported 

annually. The most severe form is visceral leishmaniasis (also known as kala azar or 

black fever) caused by L. donovani and L. infantum, in which the parasites cause 

hepatosplenomegaly, fever, weight loss and anaemia [9-12]. VL affects people in 

Bangladesh, India, Nepal, Sudan and Brazil.  Incubation period can vary and may reach 

two years, and if left untreated, the disease is fatal in 100% of cases. Leishmaniasis is 

endemic in 88 countries with 350 million people at risk [9-12]. There are more than 12 
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million infected with 2 million new cases of the cutaneous form and half million new 

cases of the visceral form occurring each year. Visceral form of leishmaniasis is 

estimated to have caused more than 50,000 deaths worldwide annually. The disease is 

transmitted through the bite of infected sand flies of the genera Phlebotomus and 

Lutzomyia, which are the most common vectors in the Old and New World respectively. 

Leishmaniasis is mainly a zoonotic disease (with reservoirs in rodents and canines), but, 

in Africa and in the Indian subcontinent visceral leishmaniasis, caused by Leishmania 

donovani, is an anthroponotic disease transmitted from human-to-human by sandflies [9, 

12].  

Leishmania parasites occur in two different forms, extracellular promastigotes 

(infectious form) in the sandfly vector, and intracellular amastigotes (replicative form) 

within the phagolysosomes of human host macrophages, which is the stage responsible 

for the leishmaniasis pathology (Fig. 1). Parasites in this genus are classified into two 

subgenera according to the region of the sandfly gut where colonization and development 

occur: mid and foregut development Leishmania (Leishmania) and Leishmania (Viannia) 

hind gut [13-16].  

Current drug treatments of visceral leishmaniasis suffer from host toxicity, high 

cost, difficulty to administer and drug-resistance development. Pentavalent antimonials 

have been the first-line drugs in the treatment of visceral leishmaniasis for more than 70 

years, except in India due to the extensive development of resistance [9, 14, 16-21]. The 

antifungal drug amphotericin B has become the second-line treatment of visceral 

leishmaniasis, in spite its severe and potentially lethal side effects [19-21]. Lipid 

formulations of amphotericin B with reduced toxicity have been developed and are now 



 4 

the choice of treatment for visceral leishmaniasis in developed countries [19-21]. But, 

due to high cost, this treatment is not an option in most of the countries with endemic 

disease. Although drugs such as miltefosine and paromomycin are in the pipeline with 

promising therapeutic effects, [9, 16, 19-21] unfortunately, they also suffer from 

limitations such as prohibitive cost, toxicity, challenging administration route, lengthy 

treatment schedule and the generation of drug resistance. 
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Figure 1. Life cycle of Leishmania parasite. 

reproduced from: http://www.dpd.cdc.gov/dpdx 
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1.1.1 Trypanosoma cruzi: Chagas disease 

American trypanosomiasis, Chagas disease, is a devastating and potentially life-

threatening illness caused by infection with Trypanosoma cruzi. It is endemic and 

widespread in Latin America, with 11 million chronically infected individuals mainly 

residing in abject poverty in rural areas. It is estimated that 100 million people are at risk 

with 14,000 deaths occurring annually [9, 22]. Recently, the disease has spread to other 

continents such as Europe and USA due to immigration of population initiating a 

“globalization” of Chagas disease [23, 24]. The parasite is most often transmitted to 

humans by the infected faeces of ‘kissing bugs’ (mainly by species belonging to the 

Triatoma, Rhodnius and Panstrongylus genera). The bugs hide in cracked walls of adobe 

houses and come out at night to suck blood. Reservoirs of parasites are present both in 

wild and domestic animals. An individual can also become infected with Trypanosoma 

cruzi through contaminated food [25-27], blood transfusion [28], organ transplantation 

[29], vertical transmission (passed from an infected mother to her child during pregnancy 

or birth) [30] or accidental injection [31].  

The Trypanosoma cruzi life cycle involves stages in reduviid insect vectors and in 

mammalian hosts. In the gut of the vector epimastigotes replicate and differentiate into 

metacyclic trypomastigotes, the infective form of the parasite, which are transmitted to 

the mammalian host. Trypomastigotes enter the host bloodstream and ultimately invade a 

variety of cell types (including cardiac muscle cells) where they undergo differentiation 

into the amastigote form. Intracellular amastigotes differentiate into trypomastigotes that 

are released into the blood and invade other cells or are ingested by the vector during a 

blood meal, continuing the cycle (Fig. 2) [13]. 
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Existing treatments for the Chagas disease is not only lacking in efficacy but also 

fraught with side affects. Benznidazole and Nifurtimox are the only drugs available 

against Chagas disease. Although almost 100% effective if given soon after infection, 

these drugs cause adverse reactions in up to 40% of treated patients, and are ineffective 

against the chronic form of the disease. Therefore there is a pressing need for new and 

better drugs. One problem to consider when designing new drugs against Trypanosoma 

cruzi is that these parasites circulate in the blood in high numbers only during the initial 

acute phase. During the chronic phase, which is thus far incurable, the parasites reside 

intracellularly, mainly in the heart muscle and in the smooth muscle of the digestive tract 

[9, 13, 22, 32]. 
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Figure 2. Life cycle of Trypanasoma cruzi parasite. 

reproduced from: http://www.dpd.cdc.gov/dpdx 

 

 

1.2 Farnesyl Diphosphate Synthase 

Farnesyl pyrophosphate synthase (FPPS) is one of the key enzymes of the 

mevalonate pathway. It catalyzes the committed step in the generation of isoprenoid 

lipids utilized in sterol synthesis and the post-translational modification of proteins 

essential for cell function. Some of these prenylated proteins including Ras and other G-

proteins are involved in signal-transduction pathways and are indispensable for the 

survival of protozoan parasites[33]. In humans, FPPS is the target of bisphosphonates[34].  

Bisphosphonates that block the formation of intermediates along the isoprenoid 

precursor biosynthesis were investigated as possible antiparasitic agents [35], and it was 
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found that they inhibit several non-mammalian species, including protozoan parasites [36, 

37].  

FPPS inhibitors are being used in humans for treating a number of diseases, 

including bone-related disorders characterized by excessive bone resorption, such as 

osteoporosis, and cancer metastasis to bone [34, 38].  These same inhibitors were shown 

to be effective in vivo and in vitro, against infectious diseases caused by Leishmania 

donovani[39], Toxoplasma gondii[40], Trypanosoma brucei[41], Trypanosoma cruzi[42, 

43] and Plasmodium falciparum[44] opening the way for new therapeutic applications of 

existing FPPS inhibitors. These uses are becoming an area of significant patent activity, 

demonstrating growing recognition of the versatility and underdeveloped potential of 

these drugs [38]. 

1.2.1 Mechanism 

 Poulter et. al. have established that the mechanism of FPPS involves a 

ionization-condensation-elimination. They were able to differentiate between the 

competitive displacement mechanisms by substituting hydrogen with the powerful 

electron withdrawing fluorine in the allylic substrate. Kinetic studies with this modified 

analog resulted in no effect on Km. However, the rate of condensation was reduced 1000-

fold with respect to that of the normal reaction[45, 46].  

 Later Laskovics et. al. determined that binding follows an ordered 

sequential mechanism with the allylic substrates DMAPP or GPP binding first and then 

binding of the homoallylic substrate IPP[47]. Their work also indicates that GPP leaves 

the active site after the first condensation reaction before it reenters for the second 1’-4 
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condensation reaction to form the final product FPP. The rate-limiting step at steady state 

is the isomerization of E.Mg
2+

-FPP.Mg-PPi or release of products. The following is the 

summary of the mechanism:  

1) The allylic substrate DMAPP enters the active site along with divalent cations 

2) Following a conformational change, the homoallylic substrate IPP enters 

3) After the first of the two consecutive condensation reactions GPP leaves the 

active site before it re-enters again 

4) FPPS catalyzes a second 1’-4 condensation of GPP and IPP to give the final 

product FPP 

 

1.2.2 Site-Directed Mutational Studies on the Catalytic Residues in FPPS 

Sequence alignment of the sequences of the FPPS enzyme from various bacterial 

species identify 5 major conserved regions: First Aspartate Rich Motif (FARM: residues 

98-102 in LmFPPS: DDXXD), Second Aspartate Rich Motif (SARM: residues 250-254: 

DDXXD), Residues 107-109 RRG, conserved Lysine 254 and basic C terminal. Various 

groups have carried out site-directed mutational studies to determine the effects of 

substitutions at these positions on the kinetic parameters. Song et. al. determined that 

mutants D100A, D101A and D104A of the FARM in yeast species, had only 10
-5

 to 10
-6

 

of the activity of the wild type[48]. In the same study they also showed that the mutations 

D240A and D241A (SARM) drastically reduced the catalytic activity while the D244A 

mutant reduced kcat by 16-fold and increased Km (IPP) by 5-fold and Km (GPP) by 2-fold. 
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In another study Marrero et. al. showed that FPPS mutation D243E in rat liver decreased 

Vmax by 90-fold while mutant D247E (DDYLE) had the same kcat as the wild-type, 

indicating that it may not be involved in catalytic activity[46]. These studies combined 

with the structural studies indicate that the carboxylate moieties of the aspartate residues 

play a vital role in enzyme’s catalytic activity.  

Linsheng et. al. showed that FPPS mutants R109Q and R110Q in yeast reduced 

the catalytic activity by a factor of 10
6
. In another study, Alison Joly et. al. showed that 

the mutants R112K and R113K in rat FPPS decreased kcat 1000-fold[49]. However these 

mutants had no impact on Km for IPP or GPP. Our structural studies with Leishmania 

FPPS in complex with the bisphosphonate 300B, IPP and Ca
2+

 ions revealed interactions 

between the corresponding arginine residues (R108, R109) and the phosphate moieties of 

the bisphosphonates. 

The role of a conserved lysine residue Lys254 in LmFPPS found in the loop 

following SARM is unclear. Mutant K254A had no effect on Km of either substrate and 

reduces kcat modestly by a factor of 7. Structural studies done in our lab show different 

conformations lysine adopted in the presence and absence of IPP. This lysine interacts 

with the phosphate moiety of the allylic substrate when IPP binds. 

Mutational studies done by Koyama et. al. on another conserved region VI 

(Sequence alignment) showed that the mutants F220A and Q221E displayed 10
5
 and 10

3
 

reduction in the catalytic activity of the FPPS from B. Stearothermophilus[50]. Structural 

studies in the Leishmania FPPS reveal that Phe220 stabilizes IPP. The large decrease in 
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the kcat for the F220A mutant indicates that this Phe is involved in catalysis. They suggest 

that it may be involved in stabilizing the carbocation through cation π-interactions. 

The final region of significance is the C-terminal, which has a high proportion of 

basic amino acids. Among these conserved basic amino acids, mutational studies were 

carried out on Arg295 of the FPPS of B. Stearothermophilus. The mutant R295V 

displayed a kcat similar to the wild type but showed a 3-fold increase in Km for IPP 

suggesting that the C-terminal is involved in the binding of IPP.  
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2. Results and Discussion 

2.1 Structural and thermodynamic basis of the inhibition of Leishmania 

major Farnesyl Diphosphate Synthase by nitrogen containing 

bisphosphonates 

 

 

 

 

 

 

Sections previously submitted as: 

Structural and thermodynamic basis of the inhibition of Leishmania major 
Farnesyl Diphosphate Synthase by nitrogen containing bisphosphonates. 

Acta Crystallography D, 2013 
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Recent studies show that bisphosphonates such as pamidronate and risedronate, 

drugs used in humans in the treatment of osteoporosis[51, 52], are effective against the 

Leishmania parasite both in vitro and in vivo[53, 54]. These bisphosphonates target 

farnesyl diphosphate synthase (FPPS). The shortcomings of the drugs being used for the 

treatment of Leishmaniasis point to a critical need for finding new therapeutic 

compounds. Bisphosphonates are ideal candidates for developing new, more effective 

drugs against Leishmania parasites because of their proven safety in humans. Since the 

sequence identity among the FPPS of L. major, L. infantum, L. donovani and L. mexicana 

is greater than 90% it may be possible to design compounds that inhibit this enzyme in all 

Leishmania strains. In this section, we report thermodynamic data of four nitrogen-

containing bisphosphonate inhibitors binding to L. major FPPS (LmFPPS) as well as the 

structure of three of these complexes (Fig. 3). The structures show that while LmFPPS is 

structurally similar to human FPPS, differences in the catalytic pocket identified in this 

work should open the way for the design of parasite-specific inhibitors. The 

thermodynamic footprint of binding of these inhibitors to LmFPPS, determined by 

isothermal titration calorimetry (ITC), provides additional clues for inhibitor design. In 

addition, the structure of the complex of LmFPPS with the bisphosphonate 3-fluoro-l-(2-

hydroxy-2,2-bis-phosphono-ethyl)-pyridinium (46I) provides the structural insights into 

the ordered sequential mechanism proposed by Laskovics and Poulter[47]. In this 

structure with the two allylic sites occupied, the two empty IPP sites adopt different 

conformations, one open and one closed, suggesting an alternating site mechanism for 

binding of the homoallylic substrate. 
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Figure 3. Bisphosphonates used in this study.  
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2.1.1  Overall Structure of LmFPPS Complexes  

The structures of the complexes of LmFPPS with three bisphosphonate inhibitors 

300B, 476A and 46I were determined by x-ray diffraction at resolution of 1.8 Å, 1.9 Å 

and 2.3 Å respectively. The structures of 300B and 476A also contain the homoallylic 

substrate IPP and three Ca
2+

 ions, and that of 46I contains two Mg
2+

 ions but no IPP 

(Table 1). LmFPPS is a homo-dimer similar to those of FPPS from other species[7, 55, 

56] (Fig. 4a,b). Formation of the dimer buries 5770 A
2 

of accessible surface area. The 

monomers have the typical FPPS fold: a ten-helix bundle with four additional helices 

running perpendicular to the bundle. The two substrate sites, allylic and homoallylic, are 

part of a large connected cavity at the “top” of the helix bundle. In the structures of the 

complexes, the inhibitors occupy the allylic site and the IPP, when present, the 

homoallylic site (Fig. 4c). Three divalent cations and the side-chains of aspartate residues 

from two aspartate rich motifs (DDXXD; residues 98-102 in the first aspartate and 

residues 250-254 in the second aspartate rich motif) coordinate the bisphosphonate atoms 

of the inhibitors bound at the allylic site[7, 57, 58]. The divalent cations at the active site 

are octahedrally coordinated with water molecules and the oxygen atoms of the 

bisphosphonates
13,24,25

. In the structures reported here, the three divalent cations in the 

structures of LmFPPS-300B-IPP and LmFPPS-476A-IPP were determined to be Ca
2+

, 

using anomalous scattering data (Fig. 4d). Although Mg
2+ 

is probably the physiological 

cation[57], Ca
2+

 from the crystallization solution is present in these crystals. 
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Table 1. Structures of LmFPPS complexes: Data collection and Refinement Statistics. 

Crystal 

 

LmFPPS-476A- 

IPP-Ca
2+

 

 

 

LmFPPS-300B-

IPP-Ca
2+

 

 

 

 

LmFPPS-46I-Mg
2+

 

 

Space group P212121 

Cell dimensions 

(Å) 

a = 80.3 

b = 85.7 

c = 106.7 

α=b=γ = 90° 

a = 80.4 

b = 86.0 

c = 107.1 

α=b=γ = 90° 

a=60.2 

b=143.7 

c=194.3 

α=b=γ = 90° 

X-ray Source 
FR-E/Raxis IV FR-E/Raxis IV 

Beam line 31-b 

APS 

Res(Å) 

(HighRes shell) 

50.0-1.8 50.0-1.9 50.0-2.3 

(1.86-1.80) (1.97-1.90) (2.38-2.30) 

Measured 

Reflections 

469,090 400,007 384,740 

Unique 

Reflections 

68,699 58,810 69,237 

I/σ 36.6 (2.4) 32.5 (2.9) 34.2(3.3) 

Completeness 

(%) 

99.8 (99.9) 99.4 (95.3) 91.2(96.5) 

Rmerge (%) 7.0 (54.5) 7.2 (47.3) 10.6(67.5) 

Refinement 

Rcryst (%) 17.8 17.2 22.7 

Rfree 22.9 21.3 28.4 

Monomer in 

ASU 

2 2 4 

Protein atoms 5786 5808 11,474 

Water molecules 693 678 294 

R. M. S. deviations 

Bond length (Å) 0.008 0.010 0.009 

Angle (°) 1.1 1.2 1.6 

B-factor(Å
2
) 

Protein 26.7 22.0 45.5 

Ligand  25.2 19.7 73.8 

H20 36.5 31.9 42.4 
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Figure 4. Structural features of the active site of LmFPPS. 

 (a) Surface representation of the complex with 300B, IPP and three divalent cations. The 

two boxes show the active site in each of the two monomers. (b) Ribbon representation of 

the complex. 300B and IPP are shown as stick models while divalent cations Ca
2+

, are 

shown as spheres. The box shows the active site in one of the monomers. (c) Octahedral 

coordination of the Ca
2+

 is shown as red dashed lines. Water molecules are shown as red 

spheres and Ca
2+

 ions as yellow spheres. Protein backbone and the residues in the active 

site are shown in blue. 300B and IPP are shown as a stick models in white. The blue 

shaded region highlights the allylic site while the homoallylic site is shown as an orange 

shaded region. (d) LmFPPS in complex with 476A, IPP and 3 Ca
2+

. Divalent cations 

were determined to be Ca
2+

 using anomalous scattering data measured at the wavelength 

corresponding to the Ca edge. Water molecules are shown as red spheres and Ca
2+

 ions in 

green. Protein backbone and the residues in the active site are shown in blue. 476A is 

shown as a stick model in white. Residues from the first and second aspartate rich regions 

are shown coordinating Ca
2+

 ions. Density shown around the Ca
2+

 was calculated using 

anomalous scattering data.     
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2.1.2  Interactions of 300B and 476A with LmFPPS   

The bisphosphonate moieties of both 300B and 476A interact with residues in the 

active site in a similar manner (Fig. 5a, b). Their phosphonate moieties accept H-bonds 

from the amino groups of Lys207, Lys264 and the guanidinium of Arg107 and interact 

indirectly through Ca
2+ 

or water molecules with the carboxylates of Asp98, Asp102 and 

Asp250. The carboxylate of Asp99, at hydrogen bonding distance of the Nε and the Nη2 

of Arg107, positions Arg107 to interact with the phosphate of the inhibitor. Deeper into 

the active site, Leu95, Met101 and Phe94 interact with either the alkyl chain of 476A or 

the benzene ring of 300B. The side chain of Gln167, at the end of the active site, is in a 

different conformation in the two structures: it rotates approximately 20° (χ2) to 

accommodate 300B, the bulkier ligand (Fig. 5c). His93, thought to be involved in 

determining the product length[59], is in the same conformation in both complexes (Fig. 

5c). 

The hydroxyl group at the C1-position of 300B makes a hydrogen bond with 

Asp250 (distance 2.9 Å). In contrast to the structure of the Trypanosoma cruzi FPPS 

where the presence of the C1-OH causes disordering of IPP in the active site[6], the IPP 

in the structure of LmFPPS with 300B is well ordered (average temperature factor of 

21.75 Å
2
).  
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Figure 5. Active site of LmFPPS in complex with bisphosphonates. 

(a) LmFPPS in complex with 476A, IPP and 3 divalent cations. Water molecules are 

shown as red spheres and Ca
2+

 in yellow. Protein backbone and the residues in the active 

site are shown in dark green. 476A and IPP are shown in white as a stick model. Residues 

from the first and second aspartate rich motifs are shown coordinating Ca
2+

. Basic amino 

acids Arg108, Arg51 and Lys48 are observed interacting with the diphosphate moiety of 

IPP. (b) Active site of LmFPPS in complex with 300B (white, stick representation), 3 

Ca
2+

 (yellow, spheres) ions and IPP (white, stick representation) and figure is a close up; 

shown in the same orientation as in 3a. (c) Structural alignment of LmFPPS-300B-IPP-

Ca complex (green) with the LmFPPS-476A-IPP-Ca complex (blue). Residues Asp98, 

Asp102 and Asp250 that participate in the ion/bisphosphonate coordination overlapped 

without any conformational difference. Gln167 (red arrow) in the 300B complex (blue) 

rotates 20° (χ2) to accommodate the bulkier ligand, 300B. (d) Active site of LmFPPS in 

complex with 46I (white, stick model), 2 Mg
2+

 ions (green spheres) are shown in the 

same orientation as in 3a. The orange shaded region shows the empty IPP site.  
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2.1.3  Interaction of 46I with LmFPPS 

Although the complex of LmFPPS with 46I crystallizes in the same P212121 space 

group as the other two complexes, its crystals are not isomorphous with the other two. 

Unlike the structures of the complexes with 300B and 476A, which have one dimer in the 

asymmetric unit, the asymmetric unit of the 46I complex contains two dimers. 

Surprisingly, even though IPP was present in the crystallization buffer there is no density 

for IPP in the active sites of any of the four monomers (Fig. 5d). Neither sulfate nor 

phosphate was observed occupying the position of IPP, ions that have been seen to bind 

to this site in other FPPS structures[55].  

 46I contains fluorine in the meta position of the phenyl group of the side-

chain (Fig. 3d). Interactions of the bisphosphonate moiety of 46I with protein residues are 

similar to those seen with the other two ligands but there is, in addition, a hydrogen bond 

formed between the fluorine and Glu167. Unlike the other two structures, only two 

divalent cations (identified as Mg
2+

) are found in the active site, coordinated by the 

conserved residues Asp98, Asp102 and Asp250 (Fig. 5d). Also the residues D98 and 

D102 coordinating the comparable divalent ion in 300B complex are in a different 

conformation in the 46I complex due to the missing divalent cation. Another difference 

involves the coordination of one of the ions (Ca
2+

 in the 300B complex, Mg
2+

 in the 46I-

complex). This ion shows a complete octahedral coordination in the 300B complex 

involving D250, water molecules and the allylic substrate 300B. In contrast, in the 46I 

complex the ion interacts with the ligand 46I indirectly through a water molecule. 
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Figure 6. Structural comparisons of the LmFPPS active site in the presence and absence 

of IPP. 

 (a) Surface representation of the complex with 46I and divalent cations (yellow and blue) 

overlapped on the LmFPPS in complex with 300B, IPP and three divalent cations (red 

and green ribbon representation). Green arrow points to the cleft (opening) in the 

LmFPPS-46I-Mg complex in the absence of IPP. (b) Zoomed-in detail of Figure 6a 

around the helix and the loop containing residues 255 to 274. Conserved residue Lys264 

is seen interacting with the phosphate moiety of the allylic ligand (300B) in the closed 

conformation. In the LmFPPS-46I-Mg complex (yellow) in which the loop adopts the 

partially open conformation, Lys264 is 8.7 Å further away from corresponding residue in 

300B complex (blue). (c) Structural overlap of LmFPPS in the complexes with 300B (red) 

and with 46I (yellow). Residues of the allylic site that have different conformations are 

shown. The inhibitor bound in each complex is shown. Metals are not shown for clarity. 

(d) Structural comparison of the monomers A and B of LmFPPS in complex with 46I. In 

the region around helix containing second aspartate rich motif and the loop 255-274, the 

conserved residue Lys264 is 4 Å further away from the allylic substrate in chain B than in 

chain A.
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2.1.4  Structural effects of IPP binding 

 The presence of IPP in the 300B structure, bound by residues Phe246, Arg108 

and Lys264, introduces significant structural changes compared to the 46I complex. The 

loop that follows the second aspartate rich region (residues 255 to 274) is in a different 

conformation in the two structures (Fig. 6a): it is displaced up to 8.7 Å in the 46I 

complex (Fig. 6b). The closed conformation of the 300B complex is a direct result of the 

interactions of the protein with IPP. For example, closing of the loop due to the presence 

of IPP, brings Lys264, of the loop to interact directly with 300B(Fig. 6b).  

 

2.1.5  Asymmetry in the LmFPPS-46I complex homodimers 

The four monomers (A, B, C and D) in the asymmetric unit of the 46I complex 

crystal are organized into two dimers (AB and CD; rmsd 0.56 Å) but within each dimer 

the monomers show significant differences (rmsd: 1.4 Å), localized in the loop containing 

residues 255-274. For example residue Lys264 of monomer A is 5.6 Å away from the 

closest bisphosphonate oxygen but this residue is 8.0 Å away in monomer B (Fig. 6d). 

Another key difference between the chains of the LmFPPS-46I dimer is in the position of 

the Mg
2+

 coordinated to Asp250. In monomer B (or D), the helix containing the second 

aspartate rich motif and the loop following that helix are in a more open conformation as 

compared to chain A (or C). These changes create a large difference between the two 

monomers in the accessibility of the homoallylic site (see below). 

 We propose that the structure observed in the LmFPPS-46I-Mg complex 

represents a partially open intermediate structure, ready for IPP to enter one of the two 



 24 

active sites, whereas the LmFPPS-300B-IPP-Ca and LmFPPS-476A-IPP-Ca complexes 

adopt the closed conformation after both the allylic and the homoallylic sites become 

occupied.   

 

2.1.6  Cellular Activity of the inhibitors 

Leishmania parasites assume different forms during their life cycle[60]. The 

vectors, blood sucking females of the genus Phlebotous and Lutzonia, ingest the parasites 

while feeding on blood of infected individuals. The parasites are released from the 

ingested macrophages as amastigotes into the stomach of the insect, where they convert 

into motile flagellated promastigotes. This form undergoes binary fission. Once the sand 

fly bites a human, the promastigotes get taken in by the macrophages and revert to the 

amastigote form. Leishmania amastigotes are able to survive the extreme acidic 

conditions of the macrophages, where they multiply. It is this amastigote form that causes 

the disease in the human host.  

Both 300B and 476A were screened against L. donovani strain 

MHOM/ET/67/L82 and for cytotoxicity against skeletal myoblasts (Table 2). Their in 

vitro activity against the Leishmania parasites was about 20 times less active than the 

standard-of-care drug, miltefosine. The compounds are about 10-12 times more active 

against Trypanosoma brucei, but less active against Trypanosoma cruzi, highlighting the 

differences in activity against different species. This diversity in activity is also clear 

from the observation that with L. mexicana amazonensis, the bisphosphonate 

pamidronate produces a parasitological cure in a mouse model of infection, and more 
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lipophilic bisphosphonates have potent activity against malaria parasites in vivo[54]. 

Macrophage in vitro screening showed that the compounds were toxic to the 

macrophages at 10 μg/mL and were not active at 3.3 μg/mL. At this last concentration, 

the intracellular parasites appeared shrunken, with a corrugated surface, preventing an 

assessment of how viable the amastigotes were in the macrophages. Clearly more 

selectivity against LmFPPS is needed and some clues for possible changes in these 

compounds are suggested by comparison of the X-ray structures of the human and 

Leishmania proteins. 

 

Table 2. Cell based assay. 

Axenic in vitro activity against Leishmania donovani  (and other trypanosomatids) and 

cytotoxicity towards the L-6 cell line. The IC50 values are the mean of two independent 

assays and vary less than ±50%. 

  

Compound  Leishmania 

donovani IC50  

M 

Trypanosoma 

brucei IC50  

M 

Trypanosoma 

cruzi IC50 

M 

L-6 IC50 

 

M 

 

300B 

 

9.8 

 

1.03 

 

81.5 

 

65.2 

476A 15.4 0.9 99.3 57.2 

Miltefosine 0.5 - - - 
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2.1.7  Comparison of the LmFPPS and HsFPPS structures 

  In both human and Lm enzymes the divalent cations interact with the 

phosphates of the bisphosphonate, while IPP interacts with residues Lys48 and Arg108 of 

the enzyme. The residues involved in these interactions are conserved between the human 

and L. major proteins, as well as in the FPPSs of other species (Fig. 7a). This is also true 

for residues at the bottom of the pocket, where bulky amino acids, Phe94 and His93 in 

LmFPPS, restrict the length of the allylic product/substrate[61, 62]. In the region of the 

pocket that recognizes the isoprenoid chain, however, there are small but significant 

differences between residues of HsFPPS and LmFPPS. For example, an alanine residue 

that points towards ligand at the bottom of the pocket of HsFPPS (Ala107) is replaced by 

a glutamate (Glu97) that points away from the ligand in LmFPPS, changing the shape of 

the pocket available for inhibitor binding. Another difference, the replacement of Leu129 

in LmFPPS by Asn133 in HsFPPS at the bottom of the active site, can also potentially be 

exploited for the design of inhibitors that show specificity for the parasite enzyme (Fig. 

7b). For example, a new inhibitor with a methyl added to the distal ring of 300B 

compound may exploit the differences between the human and Leishmania enzymes (Fig. 

7c). 
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Figure 7. Structural comparisons between the active site of LmFPPS and Human FPPS. 

(a) LmFPPS in the 300B complex (blue) and HsFPPS in the zoledronate (Zol, 91B) 

complex (dark green) are shown in ribbon representation. While, conserved residues 

His93, Phe94, Asp98, Gln91 and Arg107 (stick models) are in the same conformation, 

Gln167 in 300B has a different conformation to accommodate the bulkier ligand. The 

ligands 300B (white) and Zol (light green) are shown as stick models. (b) Deeper in the 

allylic pocket two residues are different between the two molecules: Glu107 (dark blue, 

chain A) and Leu129 (light blue, chain B) of LmFPPS are replaced in HsFPPS by Ala97 

(green, chain A) and Asn133 (orange, chain B). (c) Allylic site shown with a proposed 

inhibitor with a methyl group added to 300B. The relation of the methyl group to the 

nearest residues is shown in red dotted lines. The other monomer of the molecule is 

shown in green. Residues Leu129 and Asn133 from monomer B are shown as green stick 

models while Met101 is shown as a blue stick model. 
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2.1.8  Entropy driven ligand binding  

The binding energetics of four inhibitors to LmFPPS: 46I, 300B, 476A and 91B 

(zoledronate) were measured using Isothermal Titration Calorimetry (ITC). The data 

show that in all cases binding is entropy driven. The reactions are endothermic (ΔH > 0; 

Table 3, Fig. 8) with Kds in the range 28.0 – 342.5 nM. The entropies of binding are in 

the range of 41.2-45.2 cal/K/mol (-T∆S between -12.4 and -13.6 kcal/mol), similar to 

those reported previously for other cationic side-chain-containing bisphosphonates 

binding to T. brucei FPPS[63]. The smaller ligands 46I and 91B bind more tightly than 

do the larger ligands, 300B and 476A.  Also, 91B binds five-fold less tightly with a Kd of 

150 nM to the HsFPPS than to the LmFPPS[58]. In the case of 300B, the reduced affinity 

results from a binding enthalpy that is more unfavourable than those of the other 

inhibitors. This may be a consequence of the increased difficulty in accommodating this 

larger compound within the binding site. Interestingly entropic contribution to the 

binding of 300B is more favourable than of 476A’s binding. We believe this is due to the 

combination of two forces opposing each other: 1) loss of conformational entropy due to 

freezing of single bonds in the bisphosphonate, more so in 476A than in 300B. 2) Release 

of larger number of water molecules, which previously formed a clathrate around the 

bisphosphonates.   
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Table 3. ITC Studies on the binding of Bisphosphonates to LmFPPS. 

 

Inhibitor 

ΔG 

(kcal/ mol) 

ΔH 

(kcal/mol) 

-TΔS 

(kcal/mol) 

1/Ka 

(nM) 

*LmFPPS Ki 

(nM) 

 

91B -10.4 

 

3.15 ± 0.04 

 

-13.6 28.0 ± 9.1 

 

11 

 

46I -9.5 

 

3.56 ± 0.05 

 

-13.1 119.5 ± 23.4 

 

50 

 

300B -8.9 

 

4.42 ± 0.07 

 

-13.3 342.5 ± 55.9 

 

9 

 

476A -9.2 

 

3.16 ± 0.07 

 

-12.4 198.6 ± 57.8 

 

N.D. 
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Figure 8. Thermodynamic analysis of LmFPPS binding. 

(a, b ,c ,d) Isotherms of inhibitors 91B (a), 46I (b), 300B (c) and 476A (d) to LmFPPS. 

Top panels display the heat evolved for each injection and the bottom panels shows the 

integrated heats of injection. The right panel shows chemical formulae. All the curves are 

fitted to a one-binding site per monomer model. 
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2.1.9  Mechanistic Insights  

Before this work, the coordinates of 55 complexes of FPPSs of diverse species had been 

deposited in the PDB.  None of these had only the homoallylic site occupied, probably 

indicating that the allylic substrate binds first to the dimer. Reinforcing this hypothesis, 

the structure of the LmFPPS dimer complex with 46I has the allylic sites occupied while 

the homoallylic sites are empty. Notably, it is only in the 46I complex that the dimers are 

not symmetrical: in each dimer, the homoallylic site of one of the monomers is 

significantly more open than that of the other monomer. The differences are mainly 

localized in the loop spanning residues 255 to 274 (Fig. 5b, Fig. 9). The open monomers 

(B and D) provide a clear path for the IPP substrate to reach its binding site. In contrast, 

the other monomers (A and C) would require changes in their structures in order to allow 

IPP to reach its binding site.  The complex structure of GgFPPS-DMAPP and GgFPPS-

GPP (PDB id IUBW and IUBY) in the absence of IPP have a conformation comparable 

to the ‘open’ one observed in LmFPPS-46I strengthening the point that this conformation 

exist and is relevant for the natural substrates.  This observation provides structural 

insight into the ordered binding proposed by Laskovics and Poulter[47]: both allylic sites 

are occupied first, resulting in an asymmetric structure with one of the monomers in a 

conformation ideally suited to accept IPP. Binding of IPP to that monomer results in a 

conformational change that opens the homoallylic site of the other monomer, which 

closes after binding the second IPP[47]. These changes would result in the symmetric 

dimer observed in all previous complexes, when both allylic and homoallylic sites 

occupied.   
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Figure 9. Mechanism of substrate binding to the LmFPPS dimer. 

Purple and green shaded regions correspond to the two monomers of the FPPS 

homodimer. In each monomer, the allylic site is shown as a yellow shaded region and the 

homoallylic site is in red. Blue spheres represent empty divalent cation sites while the 

yellow spheres represent the occupied cation sites. The loop 255-274 is shown as either 

purple or green cylinders. (a) Apo structure (E1) with none of the sites occupied and with 

the conformation of the loop is either be open or closed. The movement of the loop is 

indicated by a red curve. (b) Partially open form (E2) in which DMAPP and two divalent 

cations occupy the allylic sites of each monomer. The loop 255-274 is in a more open 

conformation in one monomer (purple cylinder) than in the other monomer (green 

cylinder). This partially open conformation corresponds to that of the LmFPPS-46I-Mg 

complex. (c) The asymmetry of the conformations of the loop in the two monomers (E3) 

suggests that IPP and a third divalent cation bind to one of the monomers causing a 

conformational change priming for the entry of the second IPP molecule. (d) Closed form 

(E4) as seen in the LmFPPS-300B-IPP-Ca and LmFPPS-476A-IPP-Ca complexes where 

the allylic, the homoallylic and the 3 divalent cation sites are fully occupied and the 

residues in the loop 255-274 are in the closed conformation.
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2.2 Design, Synthesis, Calorimetry and Crystallographic analysis of 2-

Alkylaminoethyl-1,1-Bisphosphonates as inhibitors of Trypanosoma 

cruzi Farnesyl Diphosphate Synthase 
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 Design, Synthesis, Calorimetry and Crystallographic analysis of 2-Alkylaminoethyl-1,1-
Bisphosphonates as inhibitors of Trypanosoma cruzi Farnesyl Diphosphate Synthase. 

                              J Med Chem. 2012 Jul 26;55(14):6445-54.  
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American trypanosomiasis (Chagas disease) is a major parasitic disease that affects 

millions of individuals world-wide[64, 65]. T. cruzi, the etiologic agent of American 

trypanosomiasis, has a complex life cycle in which it passes from a blood-sucking 

Reduviid insect vector to mammals[66]. It multiplies in the insect gut as an epimastigote 

form and is spread as a non-dividing metacyclic trypomastigote from the insect feces by 

contamination of intact mucosa or of wounds produced by the blood-sucking activity of 

the vector. In the mammalian host, the parasite proliferates intracellularly in the 

amastigote form and is subsequently released into the blood stream as a non-dividing 

trypomastigote.[66] In humans, spread of Chagas disease can also take place via the 

placenta or by blood transfusion.[67, 68] The occurrence of American trypanosomiasis in 

countries where the disease is not endemic has been attributed to the second 

mechanism.[67, 68] Chemotherapy for this neglected disease, based on old and 

empirically discovered drugs, is not very effective.[69] Thus, it is critical that we develop 

new safe drugs based on knowledge of the biochemistry and physiology of the 

microorganism. 2-alkylaminoethyl-1,1-bisphosphonates have emerged as a new avenue 

for the development of compounds active against Chagas disease. 

 Bisphosphonates of general formula 1 (Fig. 10) are metabolically stable 

pyrophosphate (2) analogues in which a methylene group replaces the oxygen atom 

bridge between the two phosphorus atoms of the pyrophosphate moiety. Substitution at 

the carbon atom with different side chains has generated a large family of 

compounds.[70-73] Bisphosphonates became compounds of pharmacological importance 

since calcification studies were done more than 40 years ago.[74-76] Currently, several 
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bisphosphonates (Fig. 10) such as pamidronate (3), alendronate (4), risedronate (5), and 

ibandronate (6) are in clinical use for the treatment and prevention of osteoclast-mediated 

bone resorption associated with osteoporosis, Paget's disease, hypercalcemia, tumor bone 

metastases, and other bone diseases. 

Selective action on bone is based on binding of the bisphosphonate moiety to 

bone mineral.[43] It has been postulated that the parasite’s acidocalcisomes, organelles 

equivalent in composition to the bone mineral, may accumulate bisphosphonates and 

facilitate their antiparasitic action.[43] In the case of bone, bisphosphonates act by a 

mechanism that leads to osteoclast apoptosis.[77] The site of action of 

aminobisphosphonates has been narrowed down to the isoprenoid pathway and, more 

specifically, to inhibition of protein prenylation.[78] Within the isoprenoid pathway, 

farnesyl pyrophosphate synthase (FPPS; also called farnesyl diphosphate synthase) was 

identified as the main target of bisphosphonates.[55, 58, 79-82] FPPS catalyses two 

consecutive 1´-4 condensation reactions between an allylic  (DMAPP or GPP) and a 

homoallylic substrate (IPP) to give a final product FPP. These reactions constitute the 

two committed steps in the biosynthesis of farnesyl pyrophosphate. In the first step it 

catalyzes the 1´-4 condensation of one molecule of IPP (homoallylic substrate) and one 

molecule of DMAPP (allylic substrate) to give GPP. In the second step it condenses one 

molecule of GPP and one molecule of IPP. Inhibition of the enzymatic activity of FPPS 

blocks farnesyl pyrophosphate and geranylgeranyl pyrophosphate formation, compounds 

which are required for the post-translational prenylation within osteoclasts of small 

GTPases such as Rab, Rho and Rac.[83] 
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Figure 10. General formulas and chemical structures of pyrophosphate and 

bisphosphonates. 

1-general bisphosphonate; 2-pyrophosphate; 3-6-representative FDA-approved 

bisphosphonates clinically employed for different bone disorders: 3, palmidronate; 4, 

alendronate; 5, residronate; 6, ibandronate. 

Besides their effectiveness in long-term treatment of bone disorders, 

bisphosphonates exhibit a wide range of biological activities that include, in addition to 

stimulation of γδ T cells of the immune system,[84]
 
antibacterial,[85] herbicidal,[86] 

antitumor[87-90] and antiparasitic activities.[35, 39, 91-93] 

In vivo assays showed that risedronate can significantly increase survival of T. 

cruzi-infected mice[42].
  
Besides being effective growth inhibitors of T. cruzi in in vitro 

and in vivo assays without toxicity to the host cells[43], bisphosphonates were found to 

be also effective against pathogenic trypanosomatids other than T. cruzi.  Those include 

T. brucei rhodesiense, Leishmania donovani, and L. mexicana as well as apicomplexan 

parasites such as Toxoplasma gondii and Plasmodium falciparum.[40, 92-99] These 

results point to bisphosphonates as potential candidates for chemotherapy of a range of 

neglected infectious diseases. They have the advantage, among other favorable 

characteristics, that they are relatively inexpensive and easy to synthesize.  Furthermore, 
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one may assume a low toxicity for bisphosphonate-containing drugs considering that 

many bisphosphonates are FDA-approved drugs that have been widely used for many 

years in the long-term treatment of bone disorders.   
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Figure 11. Bisphosphonate drugs used in this study. 

[2-(n-propylamino)ethane-1,1-diyl]bisphosphonic acid (BR25 = 10);  [2-(n-

pentylamino)ethane-1,1-diyl]bisphosphonic acid (BR6 = 11); [2-(n-hexylamino)ethane-

1,1-diyl]bisphosphonic acid (BR18 = 12); [2-(n-heptylamino)ethane-1,1-

diyl]bisphosphonic acid (BR11 = 13[95, 97, 99]); [2-(cyclohexylamino)ethane-1,1-

diyl]bisphosphonic acid (BR28 = 14).  

 

 We studied both structural and thermodynamic interactions of five 2-

alkylaminoethyl-1,1-bisphosphonates with T. cruzi FPPS (TcFPPS; Fig. 11).  The 

structures show that the inhibitors bind to the allylic site of the enzyme with the 

phosphates of the bisphosphonates coordinating three Mg
2+

 ions that bridge the 

compound to the enzyme in a manner similar to that observed for the physiological 

substrates[45, 47, 100]. The alkyl chains of the inhibitors bind within a long cavity 
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normally occupied by the isoprenoid chain of the allylic substrate (Fig. 12).  The 

inhibitors bind to TcFPPS with high affinity despite having unfavorable enthalpy of 

binding.  The favorable entropy that results from burying the hydrophobic alkyl chain is 

the main binding driving force. 

   Although several bisphosphonate families have been shown to inhibit the 

trypanosomal FPPS, the lack of pharmacokinetic studies on these compounds suggests 

that it is still important to expand the number of compounds in the pipeline, especially 

with compounds of high affinity. 
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Figure 12. Electrostatic map of Allylic and Homoallylic site in TcFPPS. 

The allylic site is the part of the active site occupied by Mg and the bisphosphonate 10. 

The Homoallylic site is occupied by IPP. Magnesiums are shown in CPK model while 

the ligands 10 (BR25) and IPP are shown as a stick model. The surface shows positive 

potential as blue and negative as red. 
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The structural and thermodynamic information presented here provides the basis for the 

design of novel, more effective compounds for the treatment of Chagas disease. In 

particular, new inhibitors with strategically placed double bonds and methyl-group 

branches are predicted to have significantly increased affinity. 

 

2.2.1 Structure of the inhibitor complexes 

Like the FPPS from other species, including humans, [58, 101] the farnesyl 

diphosphate synthase of T. cruzi (TcFPPS) is a physiological homodimer (monomers A 

and B). The structures of TcFPPS in complex with five bisphosphonates BR25, BR6, 

BR18, BR11 and BR28 (resolutions between 2.01 Å and 3.0 Å; Table 1) each contained, 

in addition, 3 divalent cations (Mg
2+

) and isopentenyl pyrophosphate (IPP) or SO4
-2

 

(BR11-TcFPPS complex has SO4
-2

). Crystals of the complexes belong to space group 

P6122; four of the complexes have an average cell dimension of 392 Å along c-axis, 5 Å 

shorter than the equivalent dimension in the apo structure[7] (Table 3) indicating that the 

structures of the complexes pack more compactly than that of the apo enzyme. 
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Table 4. Structures of TcFPPS complexes: Data collection and Refinement Statistics. 

Crystal 

TcFPPS+ 

IPP+ 

BR6 + Mg2+ 

TcFPPS+ 

IPP+ 

BR11+ 

Mg2+ 

TcFPPS + 

IPP+ 

BR18+ 

Mg2+ 

TcFPPS+ 

IPP+ 

BR28+ 

Mg2+ 

TcFPPS+ 

IPP+ 

BR25+ 

Mg2+ 

Space group P6122 

Cell 

dimensions(

Å) 

a = 57.9; b = 57.9; c = 392.4 

a = 103.2  

b = 103.2  

c = 386.6  

X-ray 

Source 

BNL-X6a BNL-X6a BNL-X6a BNL-X6a BNL-X6a 

Res(Å)   50.0-2.1 50.0-2.01 50.0-2.65 50.0-3.05 50.0-2.35 

Unique 

Reflections 

22,705 27,252 12,287 7,407 49,874 

I/σ 23.6(4.3) 34.3(6.2) 38.0(7.8) 46.9(16.8) 26.6(2.2) 

Completenes

s (%) 

93.2 (98.2) 97.8(98.7) 95.7(99.8) 87.8(90.3) 96.0(93.7) 

Rmerge (%) 11.3(50.9) 8.0(34.6) 10.5(47.3) 6.9(14.3) 9.0(52.0) 

Refinement 

Rcryst (%) 22.1 20.3 23.6 23.1 22.0 

Rfree 
28.4 26.7 30.7 29.6 28.5 

Monomer in 

ASU 

1 1 1 1 3 

Total Atoms 3,037 3,205 2,960 2,916 9,014 

Protein 

atoms 

2,900 2,900 2902 2854 8701 

Water 

molecules 

89 256 23 3 161 

R.m.s deviations 

Bond length 

(Å) 

0.021 0.02 0.008 0.007 0.009 

     Angle (°) 1.82 1.83 1.13 0.97 1.21 

B-factor(Å
2
) 

Protein 31.14 28.33 51.53 46.81 33.36 

Allylic 36.23 27.25 40.18 47.54 29.54 

Homoallylic 58.19 59.30 51.17 49.13
*
 44.72 

H20 35.01 35.59 34.12 26.10 30.51 

                                            *Occupancy :  0.6 
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The structures were determined by direct refinement or by molecular replacement 

(complex BR25-TcFPPS) using the structure of the Trypanosoma cruzi FPPS in complex 

with alendronate and IPP (1YHM).  After initial refinement, 2Fo-Fc maps showed 

excellent density for the bound inhibitors in the region corresponding to the allylic site. In 

the homoallylic site, electron density for IPP is seen in four structures – BR25, BR6, 

BR18 and BR28; in BR11 a SO4
-2

 ion occupies the homoallylic site.  

In all cases, three Mg
2+

 ions bridge the phosphates of the inhibitors to the protein.  

The conserved aspartate residues of the two-aspartate rich motifs DDXXD (first aspartate 

rich motif: FARM, residues 98-102; second aspartate rich motif: SARM, residues 250-

254) bind three divalent cations (Mg
2+

) that are in turn coordinated by the phosphate 

backbone of the bisphosphonates  (Fig. 13a; BR6).   The IPP is bound to the enzyme by 

interacting directly with arginine residues (Arg51, Arg108, and Arg360 (Fig. 13b). The 

conserved RRG sequence (residues 107-109) of the loop following the FARM region and 

residues GK (263 and 264) in the loop following the SARM region are in the 

conformations usually seen in the closed form of the enzyme with both the allylic and 

homoallylic sites occupied. In all five structures the bisphosphonate, occupies the allylic 

site, and interacts with 3 divalent Mg
2+

 ions. Ligand waters complete the octahedral 

coordination of the ions. 

Structural alignment of the four complexes with n-alkyl chains shows that the 

phosphate backbones of the bisphosphonates interact with the same residues of the 

protein, located near the top of the active site (Fig. 13c; Fig. 14a). However, deeper into 

the active site there are a small number of significant differences (Fig. 14b). In the BR18 
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and BR11 complexes, Tyr94 and Gln167 both move to accommodate the 

bisphosphonates with the longer alkyl chains. In the complex with BR11, the 

bisphosphonate with the longest alkyl chain, the end of the inhibitor bound to monomer 

A is at a distance of 3.5 Å from Ile 129 from monomer B. This additional favorable van 

der Waals interaction contributes to the tighter binding of BR11 (Table 5) in comparison 

to the slightly shorter BR18 (one fewer carbon).   

It was proposed in earlier studies that His93 and Tyr94 (TcFPPS numbering) form 

the “floor” of the allylic site and determine the maximum length of the allylic substrates 

that can bind to the enzyme[102] and by extension the length of the inhibitors. The 

complexes BR11-TcFPPS and BR18-TcFPPS show that Tyr94 adopts a different 

conformation to accommodate longer alkyl chains (Fig. 14b). Earlier studies with avian 

FPPS revealed that when Phe112 and Phe113 (equivalent to His93 and Tyr94 of TcFPPS) 

were replaced by residues with smaller side chains (Ala and Ser respectively), the 

mutated enzyme produced geranyl geranyl diphosphate (20 carbons)[57]. Also, in some 

species, geranyl geranyl diphosphate synthases contain smaller amino acids such as 

serine or threonine in the position equivalent to TcFPPS Tyr94 indicating that Tyr94 may 

be important in determining final product length[61].  These observations point to His93 

and Tyr94 of chain A and Ile129 of the B chain as the residues that determine maximum 

permissible alkyl chain length.  
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2.2.2 Comparison of the BR28-TcFPPS and BR25-TcFPPS complexes 

In the BR28-TcFPPS structure, the cyclohexyl moiety adopts a chair 

conformation.  Structural alignment of the BR28-TcFPPS and BR25-TcFPPS complexes 

shows that packing of BR28 to the enzyme is not as tight as that of BR25. Also, residue 

Gln167, one of the conserved residues in α-helix F, adopts a different conformation in the 

two complexes (Fig. 13d.).  The same is true about another conserved residue, Tyr211: in 

BR28 its hydroxyl points away from bisphosphonate moiety.  Interestingly, in the BR28 

complex Tyr211 points towards the isoprenyl chain of the bound IPP and, as a result, it 

affects the IPP conformation.  
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Figure 13. Binding of bisphosphonates in various complexes of TcFPPS. 

(a) TcFPPS in complex with 11(BR6), IPP and 3 divalent cations. Water molecules are 

shown as red spheres and Mg
2+

 in white. Protein backbone and residues of the active site 

are shown in green color. 11(BR6) and IPP are shown in cream color. Residues from the 

FARM and SARM are shown coordinating with Mg
2+

 ions. The basic amino acids 

Arg360 and Arg51 are observed to interact with the diphosphate moiety of IPP. (b) 

Homoallylic site of TcFPPS in complex with 11(BR6) (cream) and IPP (cream). IPP 

interacts with the basic amino acids Arg51 and Arg360. Arg107 and Arg108, from the 

loop after first aspartate rich region, interact with the inhibitor in the allylic site 

(11;BR6). (c) Structural overlap of the four BPs with n-alkyl chains (10-13) in complex 

with TcFPPS + Mg
2+

 + IPP (green). (d) Structural overlap of TcFPPS in complex with 10 

(BR25) (green) and with 14 (BR28; magenta). Residues in the TcFPPS-BR25 complex 

are shown in green color and those of TcFPPS-BR28 complex in magenta. Key 

differences in the conserved interactions of the ligands with residues of the active site are 

shown. 
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2.2.3 Inhibitor Affinities 

Bisphosphonates derived from fatty acids have become interesting potential 

antiparasitic agents, especially 2-alkylaminoethyl derivatives, which were shown to be 

potent growth inhibitors of the most clinically relevant form of T. cruzi with IC50 values 

in the nanomolar range against the target enzyme[95, 98]. Compounds BR6−BR28 are 

representative members of the 2-alkylaminoethyl family of bisphosphonates, which have 

proven to be far more efficient growth inhibitors of trypanosomatids than their parent 

drugs 1-hydroxy-, 1-alkyl-, and 1-amino-bisphosphonates such as compounds 7, 8 and 9 

(Fig. 15).[96, 98, 99] Compounds BR6−BR28 inhibit the enzymatic activity of TcFPPS 

with IC50 nM, 13 nM, respectively (Table 5).[97]  

 

2.2.4 Thermodynamic Data 

The interactions of TcFPPS with 2-alkylaminoethyl bisphosphonates BR6, BR25, 

BR11 and BR18 were studied by isothermal titration calorimetry at 28 °C. (ITC data for 

reversible binding of BR28 to TcFPPS could not be obtained.) The four compounds with 

n-alkyl chains, bind to the target enzyme with a positive, unfavorable enthalpy change 

(Fig. 16; Table 5), in agreement with previous studies with other bisphosphonates[6].  

This unfavorable enthalpy is compensated by large favorable entropy that is itself 

determined by the difference between to opposite effects. As the inhibitor molecules bind, 

the single bond rotations around the C—C bonds of the alkyl chain become frozen in the 

complex resulting in a loss of conformational entropy that becomes larger as the number 

of carbons in the alkyl chain increases.  At the same time, the favorable entropy from the 
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burial of the hydrophobic alkyl chain also increases with chain length, resulting in a very 

fine balance between these two effects. The values of the unfavorable binding enthalpy 

also vary significantly among the inhibitors. BR18 is the most unfavorable by 1.5-2.0 

Kcal/mol.  
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Figure 14. Allylic site binding of inhibitors in various TcFPPS-Bps complexes. 

(a) TcFPPS in complex with 11 (BR6) and 3 divalent cations. Water molecules are 

shown as red spheres, Mg
2+

 in white.  The TcFPPS protein backbone and some residues 

in the active site are shown in green color. 11 is shown as a stick model in green color. 

Residues from the first and second aspartate rich regions are shown coordinating the 

Mg
2+

 ions. (b) Structural overlap of TcFPPS in complex with four n-alkyl chain 

bisphosphonates BR6, BR25, BR11 and BR18. Residues His93, Tyr94, Ile129 (monomer 

B) at the “bottom” of the allylic site are shown. Monomer A of the TcFPPS-BR6 

complex is shown in green, the TcFPPS-BR11 complex in pink, TcFPPS-BR18 complex 

in brown, TcFPPS-BR25 complex in violet while monomer B is shown in red, cyan, 

yellow and blue respectively. The distance between the terminal carbon of the longest 

bisphosphonate BR11 and Ile 129 of monomer B is 3.5 Å. 

   

    

The high affinity of BR28 (IC50 13 nM) can be rationalized based on the same arguments.  

TcFPPS binds BR28 in a manner similar to BR25, suggesting that it would have a similar 

enthalpy of binding (not measured), although somewhat more unfavorable due to changes 

in the conformations of Gln167 and Tyr211 described above.  However, BR28 buries a 

large hydrophobic surface without the loss of conformational entropy of the n-alkyl chain 
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experienced by the other inhibitors: the conformational flexibility of the ring is highly 

restricted even in the unbound state.   

 

Figure 15. Chemical structures of representative bisphosphonic acids derivatives. 

 

Furthermore, binding in the more stable chair conformation not only reduces the 

loss of entropy but also avoids the enthalpic penalty of binding the less favorable boat 

conformation. 

The inhibition data (IC50) of bisphosphonates BR6, BR25, BR11 and BR18 

against TcFPPS are in excellent agreement with the Kd’s obtained in the ITC experiments 

(Table 5). These results and the structural data taken together indicate that inhibition 

results from binding of these inhibitors to the allylic portion of the catalytic site of the 

enzyme. It is likely that other closely related bisphosphonates that effectively inhibit the 

enzymatic activity of TcFPPS also do so by binding to the allylic site.[98] The data for 

BR11 can also be fit using two different sites per dimer (see Fig. 16 and Table 5 and their 

footnotes). This is similar to previous data on other nitrogen-containing 

bisphosphonates[6]. One reason for this behavior of BR11 may be its size. Like some of 
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the other large bisphosphonates, binding of BR11 to one site of the dimer, modifies the 

affinity of the other monomer. 

 

2.2.5 Towards the design of new bisphosphonate TcFPPS inhibitors 

As mentioned above, binding of these inhibitors is enthalpically unfavorable.  The 

favorable entropy, which dominates the favorable free-energy, results from a delicate 

balance two opposing effects: the unfavorable loss of conformational entropy, due to 

freezing of single bond rotations of the inhibitor (and binding site side chains), and the 

favorable increase of entropy associated with burial of the hydrophobic alkyl chains.  

With the shortest compound, n-propyl, the balance produces the tightest binding of the 

 

Table 5. ITC Studies on the binding of bisphosphonates to TcFPPS. 

 

Lig 

Carbons in 

n-alkyl 

ΔG 

(kcal/ 

mol) 

ΔH 

(kcal/mol) 

ΔS 

(cal/m

ol/K) 

1/Ka 

(nM) 

IC
*

50 

(nM) 

BR25 3 -10.43 6.35 ± 0.07 56.1 25.0 ± 6.3 38.0 

BR6  

 

5 -8.15 5.22 ± 0.11 44.7 1030 ±170 1840 

BR18  6 -8.72 7.87 ± 0.11 55.4 400 ± 63 490 

BR11  7 -9.88 5.65 ± 0.09 

†
(6.39 ± 0.36; 

 4.62 ± 0.44) 

51.9 58.8 ± 20.4 

†
(10.2 ± 7.3; 

38.3 ± 11.2) 

58.0 

*IC50 were calculated before[97]  †Values calculated using 2-site model.
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Comparison of the structure of the BR11-TcFPPS complex with the previously 

determined structure of the chicken FPPS (GgFPPS) in complex with GPP (geranyl 

pyrophosphate) provides crucial information for guiding the design of improved 

inhibitors: the N1 of BR11 occupies the same position in the binding site as the C1 of the 

isoprenyl chain GPP (Fig. 17) and the rest of the chains align up to the C6 of BR11 that 

overlaps with C7 of the GPP.  C7 of GPP is a tertiary carbon with two methyl groups 

while the equivalent carbon of BR11 (C6) has only one methyl. The terminal methyl of 

BR11 occupies a position series.  Increasing the length of the alkyl chain to pentyl or 

hexyl reduces the affinity by over an order of magnitude.  This change seems to imply 

that by the addition of two or three methylenes, the increase in the loss of conformational 

entropy is greater than the additional entropy gain due to burial of the longer chain (more 

so for the pentyl than for the hexyl).  This tendency is reversed when the n-alkyl chain is 

seven carbons long (BR11 vs. BR18, Table 5).  This observation suggests that increasing 

the alkyl chain further could generate compounds with higher affinity.  However, analysis 

of the structure of the complex of TcFPPS with the n-heptyl inhibitor shows that 

increasing the n-alkyl chain past seven carbons would result in clashes with residues of 

the enzyme: in any of its possible positions the eighth carbon would clash with either 

Tyr94, His93, or Ile129 of chain B. 
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Figure 16. ITC studies of N-Bps and TcFPPS binding. 

(a) BR6. (b) BR18. (c) BR25. (d) BR11. BR11 can be fit either as two identical sites (one 

per monomer; red) or as two different sites (two per dimer; blue). 
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between the positions occupied by the two GPP methyls, rendering this portion of BR11 

less complementary to the binding site.  Adding a methyl group to the C6 of BR11 is 

likely to result in a better inhibitor. The same is true of the C3 methyl of GPP: adding a 

methyl group at the C2 of BR11 can fill this pocket.  Furthermore, the bound 

conformation of BR11 is compatible with the double bonds of GPP, suggesting that 

introducing double bonds at C1 and C5 of BR11 will freeze the compound in the bound 

conformation.  This modification would reduce the loss of conformational entropy 

without affecting the binding enthalpy.  The resulting compound with a 2,6-dimethyl-1,5-

diene would be an excellent mimic of the bound GPP; however it would contain a labile 

enamine functionality that renders the compound too unstable to be considered a useful 

inhibitor. These observations point to a 2-alkylaminoethyl-1,1-bisphosphonate with an 

(E)-2-2,6-dimethylhepta-2,5-diene chain (compound 21, Fig. 18) as a highly promising 

lead compound for the next generation of bisphosphonate TcFPPS inhibitors (Fig. 17b; 

Fig. 18). Molecular modeling using MOE (Molecular Operating Environment, Chemical 

computing group; Quebec, Canada) showed that the 2,5 diene chain can bind the enzyme 

in a conformation that still mimics that of the bound geranyl diphosphate. It appears that 

the affinity of BR25 can also be improved by an equivalent modification. Replacement of 

the propyl chain by an isobutyl-2-ene (compound 20, Fig. 18) would result in a 

compound that binds the enzyme mimicking DMAPP. In addition, the compounds 

equivalent to 20 and 21 but lacking the double bond at the 2- positions may also show 

high affinity for the enzyme. 
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Figure 17. Overlap of GPP and BR11 (13) 

a) Allylic site of BR11-TcFPPS complex. BR11, amino acids are shown in stick 

representation (pink). Portion of the 2mFo-DFc electron density corresponding to the 

inhibitor BR11 is shown in grey color. b) Structural overlap of BR11-TcFPPS complex 

with the chicken FPPS-GPP complex (PDB: 1UBW). TcFPPS is shown in ribbon model 

(green). The ligands BR11 (pink) and GPP (blue) in stick representation. The chicken 

FPPS is not shown in the figure, only it’s GPP. 
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Figure 18. New proposed bisphosphonates. 
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3. Methods 

3.1  Experimental Procedures: LmFPPS project 

3.1.1  Cloning, Expression And Purification 

  LmFPPS was cloned and expressed as reported previously[103]. Briefly, 

DNA coding for LmFPPS (with an N-terminal His-Tag and a thrombin cleavage site) was 

cloned into a pET28a vector (Novagen). BL21(DE3) E. coli cells transformed with this 

plasmid were grown in LB medium until they reached an OD600 of 0.8 and were then 

induced with 0.1 mM IPTG at 37 
o
C. Cells were harvested 3h after induction and were 

washed in buffer A (50 mM NaH2PO4 pH 8.0 300 mM NaCl, 10 mM imidazole, 1 mM 

TCEP). After the cells were broken with a micro-fluidizer, the lysate was centrifuged for 

30 minutes at 12000 rpm, and the supernatant loaded onto a HisTrap Ni
2+

 chelate affinity 

column equilibrated with buffer A. Protein was eluted using a linear gradient of 0-100% 

of buffer B (50 mM NaH2PO4 pH 8.0 300 mM NaCl, 500 mM imidazole, 1 mM TCEP). 

The poly-histidine tag was cleaved by digestion with thrombin, and the sample loaded 

onto an anion exchange column (binding buffer: 20 mM Tris pH 8.2, 50 mM NaCl, 1 

mM TCEP) and eluted with 20 mM Tris pH 8.2, 1 M NaCl, 1 mM TCEP. The eluate was 

further purified through a second round of nickel affinity chromatography, collecting the 

flow through. The protein was dialyzed against 20 mM Tris pH 8.2, 150 mM NaCl, 1 

mM TCEP and concentrated to 15 mg/mL. 
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Figure 19. SDS page gel and size exclusion chromatography. 
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3.1.2  Crystallization 

 After identifying crystallization conditions using an incomplete factorial set with 

600 nL hanging drops[104], crystals for use in data collection were grown by vapor 

diffusion using a 1:1 ratio of the protein and reservoir solutions (15-25 % PEG 3350, 0.1-

0.2 M calcium acetate and 0.1 M MES sodium salt, pH 6.5). The protein complex 

solution used for co-crystallization contained LmFPPS at 12.5 mg/ml, 250 μM of the 

inhibitor, 250 μM IPP and 1 mM MgCl2. Crystals belonging to the orthorhombic space 

group P212121 appeared within 1-2 days (Fig. 20). Crystals of 300B and 476A had the 

same cell dimensions, but the cell of the 46I complex was significantly larger (Table 1.). 

 

3.1.3  Data Collection  

 Crystals, cryo-protected in mother liquor, were flash frozen at 100 K. Diffraction 

data for the 300B and 476A complexes were collected in-house using an FRE X-ray 

source with an Raxis IV detector, and for the LmFPPS-46I-Mg complex at beam line 

31A of the Advanced Photon Source (APS). Data were processed and scaled with the 

HKL 2000 suite[105] (Table 1, Fig. 21).  
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Figure 20. Crystals of 476A-LmFPPS complex. 
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Figure 21. X-ray diffraction pattern of the LmFPPS-476A complex. 

 

3.1.4  Structure Determination and Refinement  

 The LmFPPS structure was determined by molecular replacement with the 

program Amore[106] using the coordinates of the FPPS from Trypanosoma cruzi (1YHK; 

60% sequence identity[7]) as the search model. After changing the sequence to that of the 

LmFPPS with the program O[107], iterative cycles of refinement and rebuilding were 

carried out with REFMAC5[108-110] and COOT[111]. Progress of the refinement was 

monitored by following the R-value and the R-free, calculated with 5% of the reflections. 

The overall quality of the final model was assessed by using the programs 

PROCHECK[112] and WHATIF[113, 114]. Visualization, analysis and figure 
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preparation were carried out with MolScript[115] and PyMOL (The PyMOL Molecular 

Graphics System, Version 1.5.0.1 Schrödinger, LLC). 

 

3.1.5  Isothermal Titration Calorimetry  

Binding of LmFPPS to four ligands: 1-(2-hydroxy-2,2-bis-phosphono-ethyl)-3-

phenyl-pyridinium (300B); 1-(2,2-bis-phosphono-ethyl)-3-butyl-pyridinium (476A); 3-

fluoro-l-(2-hydroxy-2,2-bis-phosphono-ethyl)-pyridinium (46I) and 1-hydroxy-2-

imidazolyl-ethylidene-1,1-bisphosphonate monohydrate (91B; zoledronate)[6], was 

studied by isothermal titration calorimetry using a VP-ITC instrument (Microcal Inc, 

Northampton, MA). For these experiments the protein was diluted to 25 μM (based on 

the monomer MW) in a buffer containing 25 mM Hepes pH 7.5, 1 mM TCEP, 300 mM 

NaCl and 5 mM MgCl2. Ligand solutions were prepared in the same buffer at a 

concentration of 250 μM. 1.4 mL of protein in the sample cell was titrated with 24, 10 μL 

injections after an initial 2 μL injection. The heat evolved at 28 °C after each ligand 

injection was obtained by integration of the calorimetric signal after subtracting the 

average heat of dilution. The data were analyzed with the Origin-5.0 software and fitted 

to a single binding site per monomer. (Table 3.) 

 

3.1.6  Activity against L. donovani axenic amastigotes            

Amastigotes of L. donovani strain MHOM/ET/67/L82 were grown in axenic 

culture at 37 °C in SM medium[116] at pH 5.4 supplemented with 10% heat-inactivated 
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fetal bovine serum under an atmosphere of 5% CO2 culture medium 

with 10
5
 amastigotes from axenic culture with or without a serial drug dilution were 

seeded in 96-well microtitre plates. Serial drug dilutions of seven 3-fold dilution steps 

covering a range from 90 to 0.123 μg/mL were prepared. After 72 h of incubation the 

plates were inspected under an inverted microscope to evaluate growth of the controls 

under sterile conditions. 10 μL of Alamar Blue (12.5 mg resazurin dissolved in 100 mL 

distilled water) [117] were added to each well and the plates incubated for another 2 h. 

Plates were read with a Spectramax Gemini XS microplate fluorometer (Molecular 

Devices Cooperation, Sunnyvale, CA, USA) using an excitation wave length of 536 nm 

and an emission wave length of 588 nm. Data were analyzed using the software Softmax 

Pro (Molecular Devices Cooperation, Sunnyvale, CA, USA). Decrease of fluorescence 

(reporting inhibition) was expressed as percentage of the fluorescence of control cultures 

and plotted against the drug concentrations. IC50 values were calculated from the 

sigmoidal inhibition curves(Table 2.). 

 

3.1.7  Activity against L. donovani intracellular amastigotes: macrophage assay  

 Mouse peritoneal macrophages (4 x 10
4
 in 100 µL RPMI 1640 medium with 10% 

heat-inactivated FBS) were seeded into wells of Lab-tek 16-chamber slides. After 24 hrs 

1.2 x 10
5
 amastigote Leishmania donovani in 100 µL were added. The amastigotes were 

taken from an axenic amastigote culture grown at pH 5.4. Four hours later the medium 

containing free amastigote forms was removed and replaced by fresh medium. Next day, 

the medium was replaced by medium containing different compound dilutions. Parasite 
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growth in the presence of the drug was compared to control wells. After 96 hours of 

incubation the medium was removed and the slides fixed with methanol for 10 min 

followed by a staining with a 10% Giemsa solution. Control cultures and the ones 

exposed to the serial drug dilutions of infected and non-infected macrophages were 

counted. Infection rates were determined and the results expressed as the reduction in 

parasite burden compared to control wells, and the IC50 calculated by linear regression 

analysis. 

 

3.2  Experimental Procedures: TcFPPS Project 

3.2.1  Synthesis of inhibitors 

Compounds BR6–BR28 were synthesized as reported before[97]. In brief; they 

were prepared using tetraethyl ethenylidene bisphosphonate as a Michael acceptor,[118] 

which in turn was prepared from tetraethyl methylenebisphosphonate in two steps 

according to a slightly modified Degenhart protocol[119]. The compound was reacted 

with the corresponding n-alkylamine via a 1,4-conjugated addition reaction to yield the 

respective Michael adducts. Once these synthetic precursors were at hand, they were 

hydrolyzed with bromotrimethylsilane in methylene chloride[120] to afford the free 1,1-

bisphosphonic acids (10–14). The purity of the compounds assessed by elemental 

analysis was greater than 98%[97]. 
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3.2.2 Cloning, Expression and Purification 

TcFPPS was cloned and expressed as reported before[121]. Briefly, DNA coding 

for TcFPPS with an N-terminal His-Tag and a thrombin cleaveage site was cloned into a 

pET28a vector (Novagen). BL21(DE3) E. coli cells transformed with this plasmid were 

grown in LB medium until they reached an OD600 of 0.8 and induced with 0.1 mM IPTG 

at 37.0 
o
C. The cells were harvested 3h after induction, washed in buffer A (50 mM 

NaH2PO4 pH 8.0 300 mM NaCl, 10 mM imidazole, 1 mM TCEP; TCEP: tris(2-

carboxyethyl) phosphine hydrochloride), and broken with a microfluidizer.  The lysate 

was centrifuged for 30 mins at 12000 rpm and the supernatant was loaded onto a HisTrap 

Ni
2+ 

chelate affinity column equilibrated with buffer A. The protein was eluted using a 

linear gradient of 0-100% of buffer B (50 mM NaH2PO4 pH 8.0 300 mM NaCl, 500 mM 

Imidazole, 1 mM TCEP). The His-tag was cleaved by digestion with thrombin and the 

sample was loaded into an anion exchange column (binding buffer: 20 mM Tris pH 8.2, 

20 mM NaCl, 1 mM TCEP) and eluted with 20 mM Tris pH 8.2, 1 M NaCl, 1 mM TCEP. 

The protein, which was more than 95% pure as seen by SDS page gel, was dialyzed 

against 20 mM Tris pH 8.2, 150 mM NaCl, 1 mM TCEP and concentrated to 12 mg mL
-1

.  

 

3.2.3 Crystallization 

Crystals used for data collection were grown by vapor diffusion with the protein 

and the mother liquor in a 1:1 ratio. The reservoir consisted of 100 mM sodium acetate, 

pH 4.6–5.2, 200 mM ammonium sulfate, and 2–10% PEG 4K. Crystals, which appear 

within 1-2 days, belong to the hexagonal space group P6122. The protein (12.5 mg/ml) 
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inhibitor solution used for co-crystallization contained 250 μM inhibitor, 250 μM IPP and 

1 mM MgCl2. 

 

3.2.4 Data Collection 

Diffraction data of all the TcFPPS complexes were collected at beamline X6A of 

the NSLS, Brookhaven National Laboratory. Diffraction data collected from a single 

frozen crystal (100 K) were processed and scaled using the HKL 2000 suite[105] (Table 

4).  

 

3.2.5 Structure Determination 

The structures of the complexes of TcFPPS with compounds BR11, BR18, BR6 

and BR28 were determined by direct refinement of the coordinates of the FPPS from 

Trypanosoma cruzi (1YHM)
[7]

 with the program REFMAC5[108, 109, 122] of CCP4 

suite.  The structure of BR25 was determined by molecular replacement using the 

program AMoRe[106] (search molecule PDB id 1YHM). 

 

3.2.6 Model Building and Refinement 

The initial model was refined using REFMAC5 and rebuilt during refinement 

with the program COOT[111]. The R-value and the R-free, calculated with a cross 

validation set containing 5% of the reflections, were used to monitor progress of the 

refinement. The overall quality of the final model was assessed using the programs 
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PROCHECK[112] and WHATIF[113, 114].  Atomic coordinates and structure factors for 

the complexes TcFPPS+BR25, TcFPPS+BR6, TcFPPS+BR18, TcFPPS+BR11 and 

TcFPPS+BR28 have been deposited in the Protein Data Bank with accession codes 

4DWB, 4DXJ, 4DWG, 4EIE and 4DZW respectively. Structure figures were generated 

using molscript[115] and pymol (The PyMOL Molecular Graphics System, Version 

1.5.0.1 Schrödinger, LLC). Models of the proposed new inhibitors were built using MOE 

(Molecular Operating Environment, Quebec, Canada). 

 

3.2.7 Isothermal Calorimetry 

ITC experiments were performed with TcFPPS and each of five ligands: BR6, 

BR25, BR18, BR11 and BR28. The protein was diluted to a concentration of 29 μM (in 

monomers) in a buffer containing 25 mM Hepes pH 7.5, 1 mM TCEP, 300 mM NaCl, 2 

mM MgCl2. The ligands were prepared in the same buffer at a concentration of 250 μM. 

1.3 mL of protein in the sample cell were titrated with twenty five 10 μl injections. The 

data were analyzed with the Origin-5.0 software and fitted to a single binding site per 

monomer. (A two-site per dimer was also used for BR11.) (Table 5.) 
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4. Appendix I: Genetic Engineering of the protein LmFPPS 

to produce a mixture of GPP and FPP 
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4.1 Introduction 

Farnesyl Pyrophosphate Synthase is an enzyme of the mevalonate pathway, a 

metabolic pathway that takes Acetyl-CoA from the citric acid cycle to synthesize 

isoprenoids. FPP Synthase takes two 5-carbon molecules, isoprenyl pyrophosphate (IPP) 

and dimethylallyl pyrophosphate (DMAPP), and in a two-step condensation process 

produces farnesyl pyrophosphate (FPP), a 15-carbon molecule[45]. Geranyl 

pyrophosphate (GPP) is a 10-carbon molecule product of the first condensation that 

quickly gets condensed with another IPP to become FPP. FPP is further used in several 

different metabolic pathways, including membrane and steroid synthesis. 

One key motif that is found in all of the FPP synthases is DDXX(XX)D, where X 

is any amino acid. Depending on the species, there can be two residues between the 

aspartates (eukaryotic FPP synthases), or four residues (bacterial FPP synthases). In 

addition, all eukaryotic FPP synthases have two aromatic amino acids at fourth and fifth 

positions before the first aspartate rich motif (FARM) DDXXD. Similarly, bacterial FPP 

synthases have one aromatic amino acid at the fifth position before DDXXXXD motif. 

Our group recently determined the structure of the wild type Leishmania major 

FPPS, and based on its crystal structure, residues were identified around the active site 

which, when mutated to a bulky amino acid, could inhibit the production of FPP and 

force the reaction to stop at the production of GPP. FPP, being a 15-carbon molecule, is 

longer than GPP, and if the tunnel where both GPP and FPP bind is shortened, the 

formation of FPP could be diminished simply because the active site is not long enough 

to accommodate a 15-carbon molecule, in turn stopping the catalysis at the production of 
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GPP. Four such residues were proposed: Leu129, Asn126, Thr164 and Glu97. We 

hypothesized that each residue, if mutated to bulky amino acid, would form a cap in the 

middle of the tunnel and shorten the length of the active site. 

In addition, we designed an insertion mutant with two extra residues in between 

the aspartates residues of the first aspartate rich motif (FARM). Narita et al. have 

previously demonstrated with Bacillus stearothermophilus FPPS that it is possible to alter 

the product specificity (convert FPPS into GPPS) by mutating the non-aromatic amino 

acid at 4
th

 position before DDXXXXD motif into an aromatic amino acid[59]. To see 

whether this is also applicable to eukaryotic FPPS, we decided to test whether it is 

possible to convert L. major FPPS (which already has aromatic amino acids at 4
th

 and 5
th

 

position before DDXXD motif) into GPPS by inserting two residues in between its 

DDXXD motif. 

 

4.2 Experimental Procedures and Materials 

4.2.1 Materials 

14
C labeled Isopentenyl pyrophosphate was custom ordered from PerkinElmer 

(Waltham, MA). TLC plates were ordered from Whatman (Florham Park, NJ). DMAPP, 

IPP and GPP were purchased from Sigma-Aldrich. 
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4.2.2 Cloning and design of mutants 

 L. major FPPS was cloned into a pET-28a vector as described previously[103]. 

Briefly, DNA coding for LmFPPS (with an N-terminal His-Tag and a thrombin cleavage 

site) was cloned into a pET28a vector (Novagen). All mutants were generated using the 

QuikChange site-directed mutagenesis kit (Strategene). Forward and reverse primers for 

the mutations are in the Table 6. The PCR products were used to transform GC5 cells for 

storage and to BL21 for expression. Isolated plasmid DNA from transformed colonies 

was sequenced.   
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Primer 

name 
Sequence (5’-3’) 

L129F_F CCATCAATGACGGTTTCATTCTGCTGGCC 

L129F_R GGCCAGCAGAATGAAACCGTCATTGATGG 

L129Y_F CCATCAATGACGGTTACATTCTGCTGGCCTG 

L129Y_R CAGGCCAGCAGAATGTAACCGTCATTGATGG 

L129W_F GCCATCAATGACGGTTGGATTCTGCTGGCCTGG 

L129W_R CCAGGCCAGCAGAATCCAACCGTCATTGATGGC 

T164F_F GACGTCGATCTCACTACCTTTATTGGTCAGCTGTACGAC 

T164F_R GTCGTACAGCTGACCAATAAAGGTAGTGAGATCGACGTC 

T164W_F CGTCGATCTCACTACCTGGATTGGTCAGCTGTAC 

T164W_R GTACAGCTGACCAATCCAGGTAGTGAGATCGACG 

T164Y_F GACGTCGATCTCACTACCTATATTGGTCAGCTGTACGAC 

T164Y_R GTCGTACAGCTGACCAATATAGGTAGTGAGATCGACGTC 

E97F_F GGCCCACTTCCTTGTGTTTGACGACATCATGGACC 

E97F_R GGTCCATGATGTCGTCAAACACAAGGAAGTGGGCC 

E97W_F CCCACTTCCTTGTGTGGGACGACATCATGG 

E97W_R CCATGATGTCGTCCCACACAAGGAAGTGGG 

E97Y_F GGCCCACTTCCTTGTGTATGACGACATCATGGACC 

E97Y_R GGTCCATGATGTCGTCATACACAAGGAAGTGGGCC 

N126W_F CAGGTGGCCATCTGGGACGGTCTCATTCTG 

N126W_R CAGAATGAGACCGTCCCAGATGGCCACCTG 

N126Y_F CGCAGGTGGCCATCTATGACGGTCTCATTC 

N126Y_R GAATGAGACCGTCATAGATGGCCACCTGCG 

MD101insPS_

F 
CTTGTGGAGGACGACATCCCGAGCATGGACCACAG 

MD101insPS_

R 
CTGTGGTCCATGCTCGGGATGTCGTCCTCCACAAG 

 

Table 6. List of primers used in generating LmFPPS mutants. 
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4.2.3 Expression and Purification 

LmFPPS was expressed as reported previously[103]. Briefly, plasmid DNA was used to 

transform E. coli BL21(DE3) cells. BL21(DE3) E. coli cells transformed with this 

plasmid were grown in LB medium until they reached an OD600 of 0.8 and were then 

induced with 0.1 mM IPTG at 37 
o
C. Cells were harvested 3h after induction and were 

washed in buffer A (50 mM NaH2PO4 pH 8.0 300 mM NaCl, 10 mM imidazole, 1 mM 

TCEP). After the cells were broken with a micro-fluidizer, the lysate was centrifuged for 

30 minutes at 12000 rpm, and the supernatant loaded onto a HisTrap Ni
2+

 chelate affinity 

column equilibrated with buffer A. Protein was eluted using a linear gradient of 0-100% 

of buffer B (50 mM NaH2PO4 pH 8.0 300 mM NaCl, 500 mM imidazole, 1 mM TCEP). 

The poly-histidine tag was cleaved by digestion with thrombin, and the sample loaded 

onto an anion exchange column (binding buffer: 20 mM Tris pH 8.2, 50 mM NaCl, 1 

mM TCEP) and eluted with 20 mM Tris pH 8.2, 1 M NaCl, 1 mM TCEP. The eluate was 

further purified through a second round of nickel affinity chromatography, collecting the 

flow through. The protein was dialyzed against 20 mM Tris pH 8.2, 150 mM NaCl, 1 

mM TCEP and concentrated to 15 mg/mL. 

 

4.2.4 Radioactive Assay of Mutant LmFPPS 

Six 350 μl reaction mixtures were prepared, each containing increasing amount of 

DMAPP: 1 mM, 5 mM, 25 mM, 50 mM, 100 mM and 400 mM. Each reaction mixture 

contained 100 mM Tris-HCl, pH 7.5, 1 mM MgCl2, 1 mM TCEP and 100 μM IPP. The 

mixtures were placed on 25 °C. 50 μl was taken from each reaction mixture for the 0-
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minute time point and hydrolyzed with 10 μl of 6 M HCl. Reactions were initiated by 

adding 350 ng of enzyme. 50 μl was taken out every 1 minute and hydrolyzed. 50 μl 

samples were neutralized subsequently with 10 μl of 6 M NaOH. The samples were then 

mixed with saturated butanol, and then with saturated NaCl to extract the hydrolyzed 

products. 500 μl was taken from each butanol layer and mixed with scintillation cocktail 

for counting. 

 

4.2.5 TLC Analysis of the Products 

500 μl reaction mixtures were prepared, each containing 200 mM Tris, pH 8.0, 10 

mM MgCl2, 1 mM TCEP, 100 μM 
14

C-IPP, 50 μM DMAPP, and 140 μg of 

corresponding enzyme. The mixtures were initially incubated at 37°C for 3 hours, and 

afterwards 1 μl of Bacterial Alkaline Phosphatase (150 U/μl) were added to the mixtures 

and further incubated overnight. They were then extracted with 2 ml of hexane, and the 

hexane layers were concentrated until the volume was down to about 100 μl. The 

concentrated extracts were then blotted on TLC plate, along with standard geraniol and 

farnesol. The plate was run in benzene:ethyl acetate (4:1) solvent and developed with 

iodine vapor. Radio-labeled solution was blotted on iodine spots for geraniol and farnesol 

standards to visualize the spots in phosphorimager. The plate was then exposed to 

phosphorimager screen and subsequently analyzed. 
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4.2.6 Crystallization of Mutant LmFPPS 

Crystals of mutant LmFPPS Thr164Tyr and Glu146Tyr FPPS were grown by 

hanging drop vapor diffusion at 20 C with 1 mL reservoirs buffer consisting of 0.1 M 

MES-sodium salt, 15-25% PEG 8000 and 0.1-0.2 M calcium acetate. Each drop 

contained 1 μl of reservoir solution and 1 μl of protein mixture at a concentration of 12 

mg/ml in 50 mM Tris pH 8.0, 150 mM NaCl, 1 mM TCEP buffer with 0.4 mM IPP, 1 

mM MgCl2 and 0.4 mM of 476A.  

 

4.2.7 Data collection and structure determination 

Data from the FPPS mutant crystals were collected with a FR-e generator (Rigaku) 

as the source of X-rays on an R-AXIS IV image plate detector at the X-ray facility of the 

Department of Biophysics and Biophysical Chemistry of the Johns Hopkins University 

School of Medicine (Table 7). Data were indexed, integrated and scaled using HKL 2000 

Suite. Structures were determined by Fourier synthesis using the Leishmania major 

farnesyl diphosphate synthase in complex with 476A as initial model. Model building 

and refinement were carried out iteratively using the programs COOT and REFMAC. 

Refinement statistics for both datasets are given in Table 7. 

 

4.2.8 Small/wide-angle X-ray Scattering (SAXS/WAXS) of Leu129Trp LmFPPS.  

Wild type and Leu129Trp LmFPPS x-ray scattering data were collected at the 

National Synchrotron Light Source BNL beamline X9 to assess the structural basis of the 
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differences in enzymatic activity.  Scattering intensity data were collected at 4 mg/ml in 

buffer Y in triplicates and averaged after normalization and buffer extraction[123]. Data 

analysis was performed using the ATSAS software suite. Data was processed with the 

program PRIMUS[124] and regularized using GNOM[125, 126]. Calculated scattering 

plots from CRYSOL[127] using the wild type LmFPPS showed excellent agreement with 

crystallographic structure. The low resolution envelopes of Leu129Trp LmFPPS and wt 

LmFPPS were reconstructed from the scattering data ab initio using the promas 

DAMMIN[128] and DAMAVER[129]. Ten independent runs were averaged with the 

program DAMAVER.  
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Table 7. Data Collection and Refinement Statistics of the LmFPPS mutants 

Crystal 
T164Y + 

476A + IPP 

T164W + 

476A + IPP 

E97Y + 

476A + IPP 

Space group P212121 P21 P212121 

Cell dimensions a = 80.5 Å a = 58.9 Å a = 80.7 Å 

 

          b = 85.9 Å            b = 79.9 Å           b = 86.1 Å 

 c = 107.2 Å c = 81.2 Å  c = 107.4 Å 

         α=b=γ = 90°    α=b=γ = 90°   α=b=γ = 90° 

Data Collection Statistics 

X-ray Source FRE-Raxis IV FRE-CCD Saturn FRE-CCD Saturn 

Wavelength(Å) 1.54 1.54 1.54 

Resolution(Å) 50.0-1.85 50.0-2.1 50.0-2.05 

(HighRes shell)
a
 (1.92-1.85) (2.18-2.10) (2.09-2.05) 

Measured Reflect. 412,194 123,691 201,477 

Unique Reflections 63,800 38,828 43,443 

I/σ 32.2 (2.5) 26.1 (5.3) 19.92 (3.84) 

Completeness (%) 99.2 (92.8) 92.1 (57.8) 90.6 (78.7) 

Rsym (%)
b
 8.0 (46.4) 7.2 (21.7) 7.7 (24.1) 

Refinement 

Rcryst 0.196 0.184 0.229 

Rfree 0.2295 0.238 0.307 

R.m.s deviations & Number of atoms 

Bond length (Å) 0.008 0.009 0.016 

Angle (°) 1.044 1.165 1.821 

Monomer in ASU 2 2 2 

Total Atoms 6603 6387 5832 

Protein atoms 5812 5848 5772 

Water molecules 701 448 449 

a
Data in parentheses belong to the outer resolution shell. 

b
Rmerge=∑hkl∑J|IJ-<I>|/∑hkl∑J IJ where <I> is the mean intensity of J observations 

from a reflection hkl and its symmetry equivalents. 
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4.3 Results 

4.3.1 Kinetics Assay 

After the enzymatic reaction with DMAPP and IPP as substrates, HCl is added to 

hydrolyze the pyrophosphates of the products FPP and GPP, subsequently converting 

them into farnesol and geraniol, respectively. However, as both DMAPP and IPP are acid 

stable and do not get hydrolyzed into alcohols. Hence, only the hydrolyzed products are 

extracted into the hexane layer and are detected by the scintillation counter. 
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Figure 22. Kinetic studies of the three mutants T164F, T164W and T164Y. 

Amount of product formed by the three mutants and the wildtype LmFPPS from 

substrates DMAPP and IPP. The amount of products formed by T164Y mutant is more 

than twice the amount of products formed by the wild type LmFPPS. Both T164F and 

T164W mutants are inactive. 

 

We first observed the initial reaction rates of the three Thr164 mutants by 

carrying out the reaction with 100 µM IPP and 50 µM DMAPP. Out of the three mutants 

Thr164Phe, Thr164Trp and Thr164Y, only Thr164Tyr mutant was active (Fig. 22). 

However, ‘counts per minute’ do not tell us what kind of product the mutant produced. 

Since the substrates were IPP and DMAPP, the reaction could have stopped at the 

formation of GPP, or the enzyme could have converted all the substrates to FPP. 

We performed another experiment to find out whether Thr164Tyr mutant can 

produce FPP or not. We conducted another kinetics assay with 100 µM IPP and 50 µM 

GPP to limit FPP as the only possible product. The result showed a linear increase in 
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counts for Thr164Tyr mutant (Fig. 23), indicating that Thr164Tyr mutant produces FPP. 

In addition, the amount of FPP formed by Thr164Tyr mutant was more than two times 

greater than the amount of FPP formed by the wild type LmFPPS. 

We further performed Michaelis-Menten kinetics assay for Thr164Tyr and the 

wild type, with IPP and DMAPP as substrates. The graph showed that although KM for 

both enzymes were almost identical, Vmax of the mutant (166.312 cpm/min) was about 42% 

greater than that of the wild type (117.504 cpm/min) (Fig. 22.). The result shows that the 

Thr164Tyr mutant is in fact more efficient than the wild type in synthesizing FPP from 

IPP and DMAPP. 
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Figure 23. Michaelis-Menten Kinetics data for the mutant T164Y and wild type LmFPPS 

KM for both the mutant and wild-type is in the same range. On the other hand, vmax for 

T164Y is 166.312 CPM/min, 42 % greater than Vmax for the wild type (117.504 

CPM/min). 

 

4.3.2 Thin Layer Chromatography 

Results from the kinetic assays revealed that Thr164Tyr mutant is capable of 

producing FPP, and also do it more efficiently than the wild type. However, they still do 

not tell us about whether the mutant can produce only FPP, or a mixture of FPP and GPP. 

In order to find out, we hydrolyzed the product from enzymatic reactions and blotted the 

solution on TLC plate. The result showed two distinct spots on Thr164Tyr mutant lane. 

CPM/min 

µM DMAPP 

T164Y 

Wild type 
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The two spots corresponded to the two standard spots (geraniol and farnesol), indicating 

that Thr164Tyr mutant is capable of synthesizing GPP as well as FPP. As expected, the 

wild type only produced FPP as product, which can be seen from the TLC plate with only 

one spot visible that corresponds to farnesol (Fig. 24).  
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Figure 24. TLC analysis of the hydrolyzed products obtained from the mutant T164Y and 

wt-LmFPPS. 

Phosphorimager scan of the TLC plate with hydrolyzed products obtained from the 

mutant T164Y and the wild type LmFPPS. Two spots, each corresponding to geraniol 

and farnesol, are visible on both T164Y lanes. This proves that T164Y mutant can 

synthesize both FPP and GPP as products. The spots on the TLC plate were first 

visualized with iodine vapor. Since stock geraniol and farnesol are not radio-labeled, we 

blotted a small amount of 
14

C-labeled IPP on the two standards, after they were 

visualized with iodine. 
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We further expanded the experiment to cover all the mutants that were prepared 

(Fig. 25). No spots were visualized on Thr164Phe, Thr164Trp – as expected from the 

kinetics assay results – and insertion mutant. In addition, we observed that all Glu97 and 

Asn126 mutants behaved like the wild type, producing FPP as the only product (Fig. 25). 

From this analysis we can conclude that out of all the LmFPPS mutants studied, only 

Thr164Tyr showed activity towards the production of both FPP and GPP. 
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Figure 25. TLC analysis of the products obtained from all the mutants used in the study. 

Phosphorimager scan of the TLC plate with hydrolyzed products obtained from all 

mutants and the wild type LmFPPS. T164Y is the only mutant that has two spots visible 

at geraniol and farnesol. Other mutants show no visible spots (T164F, T164W and 

insertion), or look like the wild type with only one spot visible at farnesol (E97 and N126 

mutants). 
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4.3.3 Crystallography 

From the thirteen mutants originally constructed, we crystallized three mutants: 

Glu97Tyr, Thr164Trp and Thr164Tyr. The crystals formed when the reservoir contained 

20 – 25 % PEG 8000, 100 – 200 mM Ca acetate, and 100 mM MES NaCl pH 6.5. Wild 

type LmFPPS was crystallized with IPP and the inhibitor 300B in the active site, but the 

mutants were crystallized with IPP and the inhibitor 476A since 476A is longer than 

300B and thus can have closer interaction with the mutated residues at the bottom of the 

active site. Both Glu97Tyr and Thr164Tyr mutants crystallized in primitive orthorhombic 

space group (P212121), with unit cell dimensions of a ≈ 80.6 Å, b ≈ 86 Å, c ≈ 107 Å, and 

α=β=ϒ= 90°. The crystal of Thr164Trp had primitive monoclinic space group (P21), with 

unit cell dimensions of a ≈ 59 Å, b ≈ 80 Å, c ≈ 81 Å, and α=β=ϒ= 90°. We refined 

Thr164Tyr to 1.85 Å, Thr164Trp to 2.1 Å and Glu97Tyr to ~ 2.05Å (Table 7). 
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5. Appendix II: Expression, Purification and 

Thermodynamic studies of Trypanosoma Cruzi Solanesyl 

Diphosphate Synthase  
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5.1 Experimental Procedures 

5.1.1  Cloning, expression and purification 

  TcSPPS was cloned and expressed after pruning first 8 residues as reported 

previously[130]. Briefly, DNA coding for TcSPPS (with an N-terminal His-Tag and a 

thrombin cleavage site) was cloned into a pET28a vector (Novagen). BL21(DE3) E. coli 

cells transformed with this plasmid were grown in LB medium until they reached an 

OD600 of 0.8 and were then induced with 0.1 mM IPTG at 37 
o
C. Cells were harvested 3h 

after induction and were washed in buffer A (50 mM NaH2PO4 pH 8.0 300 mM NaCl, 10 

mM imidazole, 1 mM TCEP, 10% glycerol). After the cells were broken with a micro-

fluidizer, the lysate was centrifuged for 30 minutes at 12000 rpm, and the supernatant 

loaded onto a HisTrap Ni
2+

 chelate affinity column equilibrated with buffer A. Protein 

was eluted using a linear gradient of 0-100% of buffer B (50 mM NaH2PO4 pH 8.0 300 

mM NaCl, 500 mM imidazole, 1 mM TCEP, 10% glycerol). The poly-histidine tag was 

cleaved by digestion with thrombin, and the sample loaded onto an anion exchange 

column (binding buffer: 20 mM Tris pH 8.2, 50 mM NaCl, 1 mM TCEP, 10% glycerol) 

and eluted with 20 mM Tris pH 8.2, 1 M NaCl, 1 mM TCEP and 10% glycerol. The 

eluate was further purified through a second round of nickel affinity chromatography, 

collecting the flow through. The protein was dialyzed against 20 mM Tris pH 8.2, 150 

mM NaCl, 1 mM TCEP, 10% glycerol and concentrated to 10 mg/mL. Protein when run 

through Gel exclusion column S-200 it comes of as a monodisperse dimer. 
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Figure 26. Size exclusion chomatography of the purification of the TcSPPS. 

 

5.1.2  Crystallization attempts 

 A full search of crystallization conditions was carried out using an incomplete 

factorial set of conditions[104]. Initial hits were seen in the condition 200 mM Na Citrate 

pH 5.5, 16% w/v PEG 8000.  The crystal diffracted to approximately 6 Å and they were 

obtained using the microseeding technique. The protein (10 mg/ml) solution used for 

crystallization contained 25 mM Na citrate pH 5.0, 25 mM NaCl, 10% glycerol, 1 mM 

TCEP.  
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Figure 27. Crystals of TcSPPS. 

 

5.1.3  Isothermal Titration Calorimetry  

Binding of TcSPPS to the bisphosphonates: BR6, BR25, BR18, BR11 and BR28 

were studied by isothermal titration calorimetry using a VP-ITC instrument (Microcal Inc, 

Northampton, MA). For these experiments the protein was diluted to 25 μM (based on 

the monomer MW) in a buffer containing 25 mM Hepes pH 7.5, 1 mM TCEP, 300 mM 

NaCl, 10% glycerol and 5 mM MgCl2. Ligand solutions were prepared in the same buffer 

at a concentration of 250 μM. 1.4 mL of protein in the sample cell was titrated with 24, 

10 μL injections after an initial 2 μL injection. The heat evolved at 28 °C after each 

ligand injection was obtained by integration of the calorimetric signal after subtracting 

the average heat of dilution. The data were analyzed with the Origin-5.0 software and 

fitted to a single binding site per monomer. 
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Figure 28. Isothermal calorimetry studies of BR6 and TcSPPS binding. 
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6. Appendix III:  Purification and thermodynamic studies of 

the interaction between Nav1.5 Channel C-terminal Domain 

and Calmodulin 
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6.1 Experimental Procedures 

6.1.1  Cloning, expression and purification 

The C- terminus of the alpha isoform of the Nav1.5 channel, accession number 

NP_001092874, amino acids 1782-1929 (CtNav1.5) was inserted into the PGEX-6-P1 

vector, which contains a GST tag, to express the fusion protein. The plasmid was co-

transformed with calmodulin (CaM) previously inserted into another plasmid pET 24b. 

After expression, the CtNav1.5/CaM complex was purified using affinity chromatography 

to bind the GST fusion protein to GST resin and eluted using reduced glutathione. The 

size of the fusion protein GST+CtNaC is 45 kDa, that of GST is 27 kDa and that of CaM 

16 kDa.  

After initial elution of around 15 mg of protein per 4 L culture, the pellet was 

washed overnight and resolubilized material was subjected to another step of affinity 

purification with glutathione to recover 15 more mg of protein. A total of 30 mg of GST-

CtNaC/CaM was recovered from 4 L. 0.3 mg of precission protease was added to the 

GST-CtNaC/CaM per 10 mg of protein. The protein was dialyzed overnight against 50 

mM Tris pH 7, 1 mM DTT. The next day, protein was loaded onto a SourceQ column 

using mixtures of 50 mM Tris pH 7, 1 mM DTT as buffer A and 50 mM Tris pH 7, 1 mM 

DTT, 1 M NaCl as buffer B. The column was equilibrated with 5% buffer B and 95% 

buffer A. The protein was loaded and the column was washed with 2 column volumes of 

5% buffer B. A gradient of 5% to 10% buffer B over 2 CV was run over the column.  
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Next, a gradient of 10% to 35% buffer B was run over 20 CV. Lastly, a gradient of 35% 

to 100% buffer B was run over 2 CV. 
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6.1.2  Isothermal calorimetric studies 

Binding of Nav1.5 to CaM was studied by isothermal titration calorimetry using a 

VP-ITC instrument (Microcal Inc, Northampton, MA). For this experiment the protein 

was diluted to 75 μM (based on the monomer MW) in a buffer containing 10 mM 

Na2HPO4 pH 7.4, 2 mM K2HPO4, 1 mM TCEP, 137 mM NaCl, 2.7 mM KCl, 10% 

glycerol and 5 mM MgCl2. CaM was prepared in the same buffer at a concentration of 1 

mM. 1.4 mL of protein in the sample cell was titrated with 24, 10 μL injections after an 

initial 2 μL injection. The heat evolved at 27 °C after each ligand injection was obtained 

by integration of the calorimetric signal after subtracting the average heat of dilution. The 

data were analyzed with the Origin-5.0 software and fitted to a single binding site per 

monomer. 
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Figure 29. ITC studies of Nav1.5 and CaM binding. 
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