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Abstract

Rotationally and vibrationally inelastic collision dynamics of several small molecules

are investigated through ab initio calculations of potential energy surfaces (PESs) and

time-independent close-coupling scattering calculations. The scattering resonances in the

collision energy dependent rotationally inelastic cross sections of OH in collisions with

He and Ne, and NH3 in collisions with H2 were computed and analyzed. Both shape

and Feshbach resonances were identified and the prospects for experimentally observing

scattering resonances using Stark decelerated beams of OH radicals were discussed. A new

PES for the interaction between CH3 with different umbrella displacements and a He

atom were computed and the collisional vibrational relaxation of the ν2 mode of CH3 were

studied. The vibrational relaxation rate constant was found to be two orders of magnitude

smaller than the pure-rotational relaxation between two lower levels. Differential cross

sections for the rotationally inelastic scattering of CH3 and CD3 with He, Ar, and H2 were

computed and compared with results of velocity map imaging experiments conducted

by Orr-Ewing and coworkers. In general, good agreement was found between theory

and experiment, confirming the accuracy of our theoretical approach. Also, new sets of

PESs describing the interaction between OH and H2 were computed, and bound-state

calculations and scattering calculations were performed for this system. The computed

dissociation energy of OH–ortho-H2 complex and state-to-state cross sections of OH in

collisions with H2 are in excellent agreement with earlier experimental results.
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Chapter 1

Introduction

1.1 Background

The science of molecular collision dynamics studies the change in chemical properties

of atoms and molecules during the collision process in a microscopic scale, and describes

the relation between the properties of individual molecules and chemical kinetics [1]. The

knowledge of collision dynamics is fundamental in understanding the connection between

the intermolecular forces and the outcome of a collision process [2, 3]. It also permits us to

model and to understand complex real-world kinetics systems in fields such as atmospheric

chemistry [4], combustion chemistry [5], and astrophysics [6].

The interdependence between experiments and theory is characteristic to the study

of collision dynamics [3]. The experimental observables, such as the probability of a

collision (or scattering) event (usually in terms of cross sections) and rate constants, can

only be measured for certain systems and/or internal state transitions. Moreover, these

observables do not provide directly more fundamental properties such as the interaction

between molecules. The theoretical studies, while being able to connect the intermolecular

interaction with the experimental observables, require quality assessment in which the

comparison with the experimental results is a critical part. A well tested theoretical method

can also be used in predicting the behavior of new systems, and thus can either provide

knowledge in properties difficult to measure, or guide the design of experiments.
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Molecular collision processes can be categorized into three broad classes: the elastic

collision in which kinetic energy is conserved, the inelastic collision in which there is a

change of internal energy of the collision partners, and the reactive collision in which a

chemical reaction happens [2]. This dissertation studies the inelastic collisions of atoms and

small molecules. As compared to reactive collisions, fully-quantum dynamics calculations

on inelastic collisions can be easier performed without significant approximation, which

can provide insight into in the understanding of the quantum properties of molecules.

Also, the inelastic collision dynamics can play a role in modeling kinetic systems, given

the dependence of reaction rates on the internal states of reactants.

The crossed molecular beam experiment is the most powerful experimental tool

in the study of molecular collision dynamics [7, 8]. In such experiments two beams of

atoms or molecules are collided together, and the final products, including their angular

and velocity distributions, can be measured. The experimental study of inelastic collisions

is the most difficult of the three classes of collisions [3]. To measure the inelastic cross

sections, the apparatus must at least be able to detect the quantum states of atoms or

molecules. Ideally, the incident beam shall also have a high quantum purity in order to

obtain the most useful information, the state-to-state cross sections. In addition, due to

the densely spaced internal levels of molecules, useful information can only be obtained

with relatively low and narrowly-distributed collision energies.

Significant improvements has been made to crossed molecular beam experiments

since its original development by Herschbach and Lee [7]. On the detection of molecules,

with the development of powerful tunable lasers, spectroscopic detection methods, such as

the laser-induced fluorescence (LIF) and the resonance-enhanced multiphoton ionization

(REMPI) techniques, have been widely used to measure state-resolved cross sections [8, 9].

On the beam preparation, supersonic molecular beam sources [10], and other techniques

including laser photolysis, have been used in preparing a variety of molecular beams of

stable molecules, as well as reactive intermediates. In certain cases, the electrically neutral
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atomic and molecular beams can be further manipulated with appropriately designed

inhomogeneous electromagnetic fields [11]. With these techniques, state-resolved cross

sections or rate constants have been determined for a large number of systems and as a

function of collision energy. Recent examples of such studies include the determination

of fully state-resolved cross sections of the collision between OH and NO [12], and the

observation of a scattering resonance,1 which is a pure quantum phenomenon, in the

collision between O2 and H2 [13].

The velocity map imaging (VMI) technique [14, 15] is another interesting develop-

ment in crossed molecular beam experiments that allows the measurement of the angular

resolved cross section (differential cross section, or DCS) [16–21]. The observation of

state-resolved diffraction oscillations, which is another pure quantum phenomenon, in the

collisions of NO with rare gas atoms by van de Meerakker and coworkers [22] is a recent

example of successful experiments using the VMI technique.

Theoretical investigations of the collision dynamics of a molecular system can take

two paths, by solving either the classical equations of motion with Newtonian mechanics,

or by solving the Schrödinger equation using quantum mechanical methods [1]. Although

in some study quasi-classical methods can provide insights to a system [23], fully quantum

calculations are the standard for small molecules. In this dissertation we use the time-

independent close-coupling method to study the collision dynamics. The details on such

calculations are described in Sec. 1.2.

With either path, the study of collision dynamics requires a the potential energy

surface (PES), or the intermolecular force as a function of the position of atoms. With

modern computational techniques, accurate ab initio PESs are usually used for the inelastic

scattering of small molecules. More information on creating the PESs is described in

Sec. 1.3.1.

In this dissertation, the rotationally inelastic scattering of three molecules, OH,

1Further discussions on scattering resonances can be found in Chapters 2 and 3.

3



NH3, and CH3, with rare gas atoms or the hydrogen molecule as the collision partner is

studied. In addition, the vibrational relaxation of CH3 in collisions with He is investigated.

More background information and the organization of the dissertation is provided in Sec.

1.4. In addition, More specific information can be found in the “introduction” section of

each following chapters.

1.2 Time-Independent Quantum Scattering Calculations

1.2.1 The Close-Coupling Equations

The time-independent close-coupling method is the most widely used fully quantum

treatment of molecular inelastic scattering. The method was first introduced by Arthurs

and Dalgarno [24], and is described further in a number of references [2, 25–27]. In

this section we briefly review the equations of the close-coupling formalism, considering

specifically the rotationally inelastic collision between two rigid molecules.

The Hamiltonian of the system of two molecules in a space-fixed coordination

system can be written, in atomic units, as

Ĥ =− 1
2µ
∇2

R + Ĥint +V (R,ΩBS ,Ω1B ,Ω2B), (1.1)

where µ= m1m2/(m1 + m2) is the reduced mass of the two molecules, R is the Jacobian

vector pointing from molecule 1 to molecule 2, ΩBS = (φ,θ, 0) is the relative orientation

of R to the chosen space frame, Ω1B and Ω2B are the orientation of the molecule-fixed

frames with respect to the body-fixed frame, Ĥint is the internal Hamiltonian of the two

molecules, and V is the interaction energy. As a short-hand notation, we will use Ω to

represent (ΩBS ,Ω1B ,Ω2B) in the rest of the section.

We write the full scattering wave function as the linear combination of angular basis
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functions φi

ΨI (R,Ω) =
1
R



i

Fi I (R)φi (Ω), (1.2)

where I and i are composite indices representing multiple quantum numbers representing

an internal state (usually called a channel) of the system. The close-coupling basis function

φi can be formulated by coupling the total angular momenta of the two molecules, j1 and

j1 to form j12, followed by vector coupling of j12 and the orbital angular momentum L to

form the total angular momentum of the system J :

φi (Ω) =


m1 m2 m12 mL

〈 j1m1, j2m2 | j12m12〉 〈 j12m12, LmL | J M 〉 | j1m1〉 | j2m2〉 |LmL〉 , (1.3)

where | j1m1〉 and | j2m2〉 are the rotational wave function of the two molecules in their

molecule frames, |LmL〉= YLmL
(θ,φ) is a spherical harmonic in the body-fixed frame, and

〈 j1m1, j2m2 | j m〉 is a Clebsch-Gordan coefficient [28]. Depending on the nature of the

molecules, the rotational wave functions may need quantum numbers other than j and m

to describe and take different forms.

Such close-coupling basis functions are eigenfunctions of J . Since collision cannot

induce the change of J , the Hamiltonian will be block diagonalized. Further, there is

no coupling between channels whose internal wave functions have opposite total parity.

Therefore we can solve the Schrödinger equation of the system independently for each J

and parity (usually referred to as a partial wave).

Substitution of Eq. (1.2) into the time-independent Schrödinger equation of the

system ĤΨ(R,Ω) = EΨ(R,Ω) gives

�

− 1
2µ
∇2

R +V (R,Ω)+Hint− E
�



i

Fi I (R)φi (Ω) = 0, (1.4)

where E is the total energy of the collision system, including the internal energies of inde-

pendent molecules and the relative translational energy (or collision energy Ec ). Premulti-
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plying the above equation by another close-coupling basis function φi ′(Ω) and integrating

over Ω yields

�

d 2

d R2
−

Li ′(Li ′ + 1)
R2

+ k2
i

�

Fi ′I (R) =


i

Fi I (R)


φ∗j (Ω)V (R,Ω)φi (Ω)dΩ, (1.5)

where the squared wave vector k2
i equals

k2
i = 2µ(E − ϵi ), (1.6)

with ϵi the internal rotational energy of channel i .

Equation (1.5) can be written in a matrix form [29]

�

I
d 2

d R2
+W(R)

�

F(R) = 0, (1.7)

where I is an identity matrix, and

W(R) = k2− l2(R)−V(R). (1.8)

k and l are diagonal matrices with elements defined previously by ki and Li , respectively.

We now consider the boundary conditions for this collision system. Obviously,

ΨI (R,Ω) shall vanish at a small R well inside the classical forbidden region. Asymptotically,

Ψ(R,Ω) shall take the form of an incoming plane wave and outgoing waves to all the

channels

lim
R→∞

ΨI (R,Ω)∼ e i kI zφI (Ω)+


I ′

e i kI ′R

R
φI ′(Ω) fI ′I (θ,φ). (1.9)

The quantity fI ′I (θ,φ) is called the scattering amplitude. The squared scattering amplitude

is the probability that the incident particles with internal states I will emerge in internal

state I ′ and in a direction defined by θ and φ as a result of the collision.
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1.2.2 Calculation of Experimental Observables

The differential cross section for a transition from state I to I ′ is given by

dσI ′I (θ,φ)
dΩ

=
kI ′

kI

| fI ′I (θ,φ)|2 , (1.10)

and the integral cross section can be expressed as

σI ′I =
 2π

0

 π

0

dσI ′I (θ,φ)
dΩ

sinθdθdφ. (1.11)

In practice, it is most convenient to introduce the scattering matrix S and match the

asymptotic wave function to the boundary condition

lim
R→∞

Fi I (R)∼
1

k1/2
i

h

δi I e−i kI R+ LI π
2 − Si I e i ki R− Liπ

2

i

. (1.12)

The scattering amplitudes for the transition between the initial rotational levels j1m1, j2m2

and the final levels j ′1m′1, j ′2m′2 of the collision partners can then be computed from

f j1 m1 j2 m2→ j ′1 m′1 j ′2 m′2
(θ,φ)

=


J M LL′



j12 j ′12 m12 m′12 m′L

k−1/2
j1 j2

k−1/2
j ′1 j ′2

i L−L′π1/2[J ]
�

[L][ j12][ j ′12]
�1/2 (−1) j1+ j ′1+ j2+ j ′2+L+L′+ j12+ j ′12+m′L

×





j1 j2 j12

m1 m2 −m12









j12 L J

m12 0 −M









j ′1 j ′2 j ′12

m′1 m′2 −m′12





×





j ′12 L′ J

m′12 m′L −M



T J
j1 j2 j12L; j ′1 j ′2 j ′12L′

YL′m′(θ,φ), (1.13)

where [x] = 2x + 1, and T= I−S is called the transmission matrix, (:::) is a Wigner 3- j

symbol, and Yl m is a spherical harmonic [28]. The integral cross section will take a simple
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form

σ j1 j2→ j ′1 j ′2
=

π

k2
j1 j2



J

(2J + 1)


j12 j ′12LL′

1
[ j1][ j2]

|T j ′1 j ′2 j ′12L′; j1 j2 j12L|
2, (1.14)

The thermal rate constant for a transition j1 j2 → j ′1 j ′2 can be computed from the

integral cross section with [1]

k(T ) =
1

kBT

�

8
πµkBT

�
1
2
 ∞

0
Ecσ j1 j2→ j ′1 j ′2

(Ec )e
Ec

kB T d Ec , (1.15)

where kB is the Boltzmann constant, T is the temperature, Ec is the collision energy, and

σ j1 j2→ j ′1 j ′2
(E) is the energy dependent integral cross section.

1.2.3 Solving the Close-Coupling Equations

Since the close-coupling equations emerge in a number of chemical dynamics prob-

lems, the algorithm of solving them has been of great interest prior to 1990. A couple

extensive reviews on this topic has been published [25, 30]. In general, these equations

can be solved with two approaches [25]: By solving the differential equations numeri-

cally (approximate-solution), and by approximate the potential matrix V and solve the

equations analytically (approximate-potential). The approximate-solution algorithms tend

to be more efficient when the integration steps are small, and the approximate-potential

algorithms allow larger steps while achieving acceptable accuracy.

For the rotationally inelastic scattering problems, the interaction potential is usually

characterized by a strongly repulsive wall at small intermolecular separation R, followed

by an attractive well and a slowly-changing, weak long-range interaction as R increases. the

most efficient approach is to use an approximate-solution algorithm at short range, where

V changes dramatically with respect to the R, and an approximate-potential algorithm

at moderate to long range, where a larger integration step could significantly reduce the

computation cost while retaining good accuracy.

For the work described in this dissertation, the HIBRIDON suite of programs [31]
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by Alexander et al. is used to solve the close-coupling equations. HIBRIDON combines

a log-derivative algorithm [32, 33] at short range, and a locally adiabatic Airy function

algorithm [29, 34, 35] at moderate to long range with variable R interval. The algorithm

in HIBRIDON uses an “invariant embedding” [25] technique to improve the numerical

stability. MOLSCAT [36], which is no longer under active development since 1994, is

another popular program suite in solving the close-coupling equations.

Presently, a desktop computer can generally solve a coupled system with ∼ 1000

channels within minutes. Although the actual investigation of a scattering system involves

solving the close-coupling equations for a large number of partial waves and collision

energies, these can be easily and almost evenly distributed to multiple nodes of a computer

cluster without sophisticated parallel algorithms. We do note that solving the close-

coupling equations requires matrix inversion in each step of propagation. For dence

matrices, commonly used inversion algorithms scale approximately as O(N 3). Therefore

the work described in Chapters 4 and 6 involving partial waves with more than 5000

channels require a lot of computation power to solve.

Some of the scattering calculations described in chapters 2, 3, and 8 are also indepen-

dently performed by Ad van der Avoird and coworkers at Radboud University Nijmegen.

In their calculations a renormalized Numerov algorithm [37, 38] is used in solving the

close-coupling equations. Comparison with the Nijmegen results provided an additional

check on our calculations.

1.2.4 Alternative Methods

Many approximation methods exist for the inelastic scattering calculations. The most

successful one is probably the coupled states, or centrifugal decoupling, approximation

[39]. With this approximation, the l2 matrix representing the centrifugal barrier in the

close-coupling formalism is replaced by a constant matrix with an averaged orbital angular

momentum. In this case, the close-coupling equations become block-diagonal in the index
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which is the body-frame projection of the total angular momentum of the molecule, and the

computation effort can be significantly reduced. While the coupled states approximation

is unnecessary for relatively small systems investigated in this dissertation, using in can

sometimes provide more insights of a system [40, 41].

One should also mention here that another approach to the quantum scattering

calculations is the wave packet method, which solves the time-dependent Schrödinger equa-

tion. This approach has certain advantages over the conventional close-coupling method,

particularly in that it scales more favorably to larger systems, and that the calculation

does not need to be repeated for each collision energy. The wave packet method has been

successfully applied to, for example, the ro-vibrational inelastic scattering between two H2

molecules and their isotopomers [42, 43].

1.3 Potential Energy Surfaces

Theoretical studies of the dynamics in molecular collision starts with the PES describ-

ing the interaction between atoms and molecules. For the inelastic collisions of molecules,

the PES is governed by the intermolecular interactions, with contributions from electron

exchange, multipole-multipole electrostatic, induction, and dispersion. The power of

modern computers has enabled the computation of potentials using accurate ab initio

methods, which is almost exclusively used today for small molecules. Several excellent

review articles exist on the computation of intermolecular interactions [44–46]. This

section only describes briefly the theoretical methods relevant to the inelastic scattering

calculations.

1.3.1 Ab initio Calculation of Intermolecular Interactions

The supermolecular approach [44] is most commonly used in dealing with inter-

molecular interactions between small molecules. In this approach the two-body interaction
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is defined as

Eint = EAB − EA− EB . (1.16)

Despite of the simple formula, careful treatment is necessary to obtain high-quality PESs

that could reasonably reproduce experimental cross sections and spectra.

To get the desired accuracy, a highly correlated ab initio method needs to be used in

calculating the energies of the complex and the monomers. The coupled cluster method

with single, double, and (perturbative) triple excitations [CCSD(T)] has been the golden

standard for many systems, and is used in creating PESs through out this dissertation. In

the coupled cluster method, the electronic wave function is defined as [47]

ΨCC = eTΦ0 = (1+T+
1
2

T2 +
1
6

T3 + · · · )Φ0, (1.17)

where Φ0 is a reference Hartree-Fock function, and T= T1+T2+T3+ · · · is the excitation

operator. In the CCSD(T) method, T is truncated to T1 +T2, and the contribution from

triple excitations is treated perturbatively and added to the coupled cluster result. This

method has been shown to incorporate more of the correlation energy than the likely

more expensive configuration interaction method with single, double, and triple excitation

(CISDT), and the fourth-order Møller-Plesset perturbation theory (MP4) [47].

In order to obtain accurate interaction energies, the basis sets for correlated calcu-

lations shall be able to provide a virtual orbital space capable of recovering the majority

of correlation energy [48]. The suite of correlation-consistent polarized valence basis

sets cc-pVnZ, and its augmented version aug-cc-pVnZ with diffuse functions added is

most commonly used with CCSD(T) calculations. In the notation n is a cardinal number

representing the quality of the basis sets (D for double-zeta quality, T for triple-zeta quality,

etc.).

A significant advantage of the correlated-consistent basis sets is its convergence be-

havior in the correlation energy computed with basis sets with increasing n. However, the
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convergence is usually painfully slow, and it is generally difficult to compute a whole PES

with basis sets with higher than quadruple-zeta quality today. Several techniques exist to

solve this problem. The most obvious one is to extrapolate the correlation energies ob-

tained with basis sets of different n, usually to a n−3 dependence [48]. Another commonly

used method is to add mid-bond functions [49, 50]. Most recently, explicitly correlated

coupled cluster methods, in particular the approximation methods CCSD(T)-F12a/b de-

veloped by Werner and coworkers [51–53] have been proved to be cost-effective in creating

accurate non-reactive PESs [54, 55]. However, these methods were found to give incorrect

long range behaviors in certain cases [55].

The consideration of basis-set superposition error (BSSE) is crucial in modeling van

der Waals interactions [47]. In the supermolecule model, when computing the energy of

the complex EAB using a finite basis set, the description of one molecule is improved by the

basis functions of the other molecule (and vise versa). Such effect is absent when computing

the energies of individual molecules. As a result, an artificial attractive contribution to the

interaction energy known as the BSSE may arise. A most commonly used technique to

solve this problem in CCSD(T) calculations is the counterpoise (CP) correction [56, 57],

in which the basis functions of the other molecule are included in computing the energy

of one molecule.

The CCSD(T) method is not suited for all bimolecular inelastic collision problems.

One could expect that such a highly-correlated method not scale very well and cannot be

used for large molecular systems. In some difficult problems, the method is found not

accurate enough [58]. And more importantly, the CCSD(T) method is a single reference

method that cannot be generally used for collisions involving a open shell molecule. These

systems are governed by multiple PESs that are degenerate at large molecular separations

due to the non-zero total electronic spin in the open shell molecule. In some systems,

e.g. the collision of a 2Π molecule and a structureless atom, the two degenerate states

belong to different symmetry groups and the restricted open-shell CCSD(T) method
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can be formally used. In other systems, the use of a multi-reference electronic structure

method is required. To date, an accurate and general multi-reference method for the

computation of intermolecular interactions is not present, and such multi-surface systems

remain challenging in inelastic scattering calculations. A widely used method is the

multi-reference configuration interaction (MRCI) method, on top of the complete active

space multi-configuration self-consistent field (CASSCF) wave functions. However, the

MRCI method is usually limited to double excitations (MRCISD) and cannot retrieve

sufficient correlation energy. Usually the Davidson correction [59] is applied to improve

the correlation energy, but the results are not on par with CCSD(T) ones. In addition, the

MRCI method is not size-extensive and the simple CP correction [56, 57] of the BSSE is

not applicable.

An alternative approach to compute intermolecular interactions is the symmetry-

adapted perturbation theory (SAPT). In addition to the possibility of dealing with larger

molecular systems, the SAPT method can provide directly the contribution to the in-

termolecular potential from different sources (electrostatic, dispersion, etc.) [46]. The

SAPT method is considered less reliable than the supermolecular model in modeling small

molecules since the accurate modeling of induction and dispersion interactions is extremely

challenging. References [60–62] are some excellent review articles on SAPT.

1.3.2 Creating Potential Energy Surfaces

The accuracy of the PES is not totally governed by the accuracy of the ab initio

calculations. In order to be used in scattering calculations, the computed interaction

energies as a function of the internal degrees of freedom of the collision system need to be

fitted to an analytical form. However, for more complicated systems the sampling of all

internal degrees of freedom is difficult. For example, a diatomic–diatomic collision system

will have 6 degrees of freedom, and a grid sampling 10 on each degree of freedom will have

one million geometries. A commonly used approach when studying rotationally inelastic
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collisions is to create reduced dimension PESs, usually by fixing the geometries of the

individual molecules. It has been shown that a reduced-dimension PES computed using the

monomer geometries averaged over ground-state vibrational wave function may provide

a good approximation to the full-dimensional PES [63]. Even with this approach, PESs

for the interaction between a polyatomic molecule and another molecule would still have

too many degrees of freedom for a grid sampling. In that case, the random sampling of

geometries, in combination of a Monte Carlo error estimator [64] to evaluate the sampling

is a useful technique. The random sampling can also be used in creating full-dimensional

PESs [65].

For close-coupling calculations of rotationally inelastic scattering, the interaction

energy is usually evaluated on a grid of R and angles in body-fixed frame. The potential

is then fitted in a form involving spherical harmonics or rotation matrices. Such fitting

form allows us to take advantage of the angular momentum algebra to efficiently evaluate

potential matrix [V in Eq. (1.8)] elements. Below we provide a description of the equation

used in fitting the PES.

We can approximately consider the interaction of the two molecules as the expecta-

tion value of the sum of electrostatic interactions between them

V = 〈ψ1ψ2|V |ψ1ψ2〉=

*

ψ1ψ2

�

�

�

�

�



i j

qi q j r−1
i j

�

�

�

�

�

ψ1ψ2

+

, (1.18)

where ψ1 and ψ2 are the electronic wave functions of the two molecules, qi is the charge

of particle i , and ri j is the distance between particles i and j .

Following Eq. (34) of Ref. [66], we expand r−1
i j in the spherical harmonic series

r−1
i j =



l1 l2 l

Al1 l2 l (ri , r j , R)


m1 m2 m

〈l1m1, l2m2 | l m〉Cl1 m1
( r̂i )Cl1 m1

( r̂ j )C
∗
l m(ΩBS), (1.19)

where ri and r j are coordinates of particles in the space frame, ΩBS = (φ,θ, 0) is the orien-

tation of the body frame with respect to the space frame, and Cl m( r̂ ) is an unnormalized
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spherical harmonic. If the interaction is purely electrostatic with non-penetrating charge

distributions, we can restrict that l = l1 + l2. However, when induction and dispersion is

considered, we should include lower values of l as well for a proper description [66, 67].

In practice, the rotational wave functions of molecules are described in their molecule-

frame coordinates. We transform the spherical harmonics in Eq. (1.19) to molecule frames

with [68]

Cl1 m1
( r̂i ) =



µ1

D l1∗
m1µ1

(Ω1S)Cl1µ1
(ρi ), (1.20)

and

Cl2 m2
( r̂ j ) =



µ2

D l1∗
m2µ2

(Ω2S)Cl1µ2
(ρ j ), (1.21)

where Ω1S = (φ̄1, θ̄1, χ̄1) and Ω2S = (φ̄2, θ̄2, χ̄2) are the relative orientation of the two

molecule frames to the body frame. Hence r−1
i j can be expanded as

r−1
i j =



l1 l2 l

Al1 l2 l (ρ1,ρ2, R)


m1 m2 m

〈l1m1, l2m2 | l m〉

×


µ1µ2

D l1∗
m1µ1

(Ω1S)D
l2∗
m2µ2

(Ω2S)C
∗
l m(ΩBS)Cl1µ1

(ρi )Cl1µ2
(ρ j ). (1.22)

And it is formally correct to expand the potential as

V (R,Ω1S ,Ω2s ) =


l1 l2 lµ1µ2

Bl1 l2 lµ1µ2
(R)ul1 l2 lµ1µ2

(Ω1S ,Ω2S ,ΩBS), (1.23)

with the expansion coefficients

Bl1 l2 lµ1µ2
(R) =



i j

 

ψ∗1(ρ1)ψ
∗
2(ρ2)Al1 l2 l (ρi ,ρ j , R)Cl1µ1

(ρi )Cl1µ2
(ρ j )

×ψ1(ρ1)ψ2(ρ2)dρ1dρ2, (1.24)
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and the angular basis

ul1 l2 lµ1µ2
(Ω1S ,Ω2S ,ΩBS) =



m1 m2 m

〈l1m1, l2m2 | l m〉D l1∗
m1µ1

(Ω1S)D
l2∗
m2µ2

(Ω2S)C
∗
l m(ΩBS). (1.25)

Since V is actually independent of the choice of R̂ (or the space-fixed frame), in

fitting the ab initio potential, we usually align the space-fixed frame to the body-fixed frame

mentioned above. In this frame, only m = 0 terms will contribute to the potential. It

follows that

ul1 l2 lµ1µ2
(Ω1S ,Ω2S ,ΩBS) =



m1

〈l1m1, l2,−m1 | l 0〉D l1∗
m1µ1

(Ω1S)D
l2∗
−m1,µ2

(Ω2S). (1.26)

Equation (1.26) can be further simplified if the system has extra symmetry. For

example, if molecule 2 is a linear molecule in the 1Σ state, its electronic wave function is

cylindrically symmetric, Bl1 l2 lµ1µ2
(R) will be zero unless µ2 = 0. When such symmetry

properties are considered, Eq. (1.26) may be written in a slightly different form, such as

expressing the angular dependence in terms of spherical harmonics.

The Bl1 l2 lµ1µ2
expansion coefficients in Eq. (1.23) can be evaluated from fitting the ab

initio potential, usually by a least-squares fit. Alternatively, we can using the orthogonal

property of the angular basis in Eq. (1.26) and compute the expansion coefficients through

numerical integration. The latter method requires that ab initio calculations be performed

on an angular grid suitable for a numerical quadrature.

A converged scattering calculation usually requires an integration grid on R with

a small spacing. Performing ab initio calculation of the interaction energies at each R

is impractical and generally unnecessary. One can simply spline the fitted expansion

coefficients over R to ensure a smooth variation. Another approach is to spline the ab

initio interaction energies of each molecular orientation and fit them during the course of

solving CC equations. In a study of the OH–HCl PESs Wormer et al. [69] claim that the
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first approach is more efficient.

Solving the CC equations usually requires propagation to a large value of R, at which

the interaction is weak that one can hardly describe it reliably with ab initio calculations.

For systems dominated by multipole-multipole electrostatic interaction at long range, a

distributed multipole analysis of the electron density of individual molecules from ab initio

calculations [70, 71] can be performed, and the expansion coefficients can be expressed

analytically at long range [69]. For other systems, larger expansion coefficients are usually

extrapolated with a R−n dependence, with n either fitted [72] or chosen according to the

spherical harmonic expansion of electrostatic, induction, and dispersion forces [66, 73].

In either case, smaller expansion coefficients are usually damped to zero with a switching

function.

Extrapolation of the PES to the classical forbidden region where the repulsive elec-

tron exchange interaction dominates is considered unreliable. Usually ab initio calculations

are performed to R small enough (i.e., to an R at which the repulsive interaction energy is

much larger than the collision energy) for a converged scattering calculation.

1.4 Organization of the Dissertation

In this dissertation the collisional dynamics of three small molecules, OH, NH3,

and CH3 will be studied. OH and CH3 are unstable free radicals that occur commonly

in combustion, atmospheric processes and interstellar chemistry. These radicals usually

play a key part in many chemical processes, and the study of the interaction between these

species and other molecules will be important in understanding reaction mechanisms and

energy transfer. Experimental and theoretical studies of the collision of free radicals have

been extensively reviewed [9, 74, 75]. NH3 is one of the most import interstellar molecule

and the study of its collisional dynamics is of astrophysical importance [76–79].

The following chapters can be divided into three parts. The first part is primarily

motivated to interpret crossed molecular beam experiments that can be carried out with a

17



Stark decelerator. This technique uses an inhomogeneous electronic field to manipulate

molecular beams. It could help setting up molecular beam experiment with continuously

varying collision energy and a narrow collision energy distribution. This in turn makes

possible the observation of scattering resonances. Scattering resonances arises from short-

lived quasibound states between the collision partners formed during the course of collision

[80]. These resonances are very sensitive to PES’s and are purely quantum effects.

This part contains two chapters. Chapters 2 and 3 describes the resonances in the

state-to-state rotationally inelastic cross sections of the OH–He/Ne and the NH3–H2

systems, respectively. In these chapters we present and analyze the resonances in the two

systems and discuss the requirements for observing them. We show that rich resonance

structures exist in these systems, although the observation would require a very narrow

collision energy distribution in a crossed molecular beam experiment. We hope these

studies would help experimentalists in searching scattering resonances.

The second part of the dissertation describes our work on the CH3 radical. Pre-

viously, the study of the inelastic collisions of a polyatomic free radical has been rare.

Chapter 4 presents our investigations of the vibrational relaxation of CH3 in collisions

with He. This is, to our best knowledge, the first fully quantum study of state-resolved

collisional ro-vibrational energy transfer of a polyatomic molecule.

Inspired by the theoretical work of our group [81], Orr-Ewing and co-workers at the

University of Bristol performed a series of crossed molecular beam experiments measuring

the differential cross sections (DCSs) of CH3 and CD3 in inelastic collisions with various

partners. Chapters 6 and 5 describe respectively the joint theoretical and experimental

study in the rotational energy transfer of methyl radicals in collisions with He, Ar, and

H2/D2. In these studies, we computed new PESs for the corresponding systems and

performed close-coupling calculations. The experimental and theoretical results are in

good agreement, confirming the accuracy of our theoretical approach. The properties of

the PESs and their connections to the propensities in the rotationally inelastic collision
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process are also discussed.

The third part, including Chapters 7 and 8, presents our work on the PESs, bound-

state, and scattering calculations of the OH–H2 system. This work was motivated by a new

experiment carried out in Berlin [82] measuring the fully state-resolved OH–H2 integral

cross sections as a function of collision energy. The calculation is theoretically challenging

in that this is a two-surface problem and the Born-Oppenheimer approximation is broken

down. In Chapter 7, we present two sets of OH–H2 PESs, representing two approaches

of tackling the problem: by direct computation of the non-adiabatic coupling, and by

circumventing the problem through sampling only molecular geometries with certain

symmetry properties. We also performed bound-state calculations and the results are in

excellent agreement with earlier experimental results.

Finally in Chapter 8 we show the computed OH–H2 rotationally inelastic collision

cross sections and compare them with experimental results. While the agreement is

reasonable, the cross sections of this system is very sensitive to the PESs. We also show

extra ab initio calculations to justify our PESs, and discuss the discrepancy between theory

and experiments.
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Chapter 2

Scattering Resonances of OH(X 2Π) in Collisions with

He and Ne

This chapter contains long excerpts of a paper titled “Theoretical studies of the

resonances in state-to-state rotationally inelastic scattering of OH(X 2Π) with helium” by

Koos B. Gubbels, Qianli Ma, Millard H. Alexander, Paul J. Dagdigian, Dick Tanis, Gerrit

C. Groenenboom, Ad van der Avoird, and Sebastiaan Y. T. van de Meerakker, originally

published on J. Phys. Chem. [83], and is presented with permission of the American Institute

of Physics.

The new OH–He potential energy surface, described in Sec. 2.3, was created by our

collaborators at Radboud University Nijmegen. The scattering calculations described in

this chapter were performed by both groups individually.

2.1 Introduction

Measurements of state-to-state cross sections provide important tests of the reliability

of computed potential energy surfaces (PESs) describing the interaction of atoms and

molecules [84]. Cross sections for collision-induced rotational transitions are sensitive

to the anisotropy of the PES. Since non-bonding interactions are relatively weak, the

magnitudes of the cross sections are mostly sensitive to the repulsive part of the PES,

except at very low collision energies. An alternative, spectroscopic approach to gaining
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information on PESs is the determination of the energies of the bound levels of van der

Waals complexes of the collision partners [85, 86]. The energies of the bound levels are

mainly sensitive to the attractive part of the PESs. As we go up higher in the manifold

of these weakly bound levels, the energies of these levels eventually become higher than

the dissociation energy of the complex, and such levels are quasi-bound. These quasi-

bound levels are often described as resonances and can be thought of as a distortion of the

continuum in the collision energy dependence of state-to-state cross sections [2]. In inelastic

scattering, resonances are called shape or orbiting resonances when the quasi-bound levels

involve monomer levels that are the same as in the initial or final level of the collision-

induced transition, or Feshbach resonances when they involve different monomer states

[2, 84]. Due to their sensitivity to the PES, resonances can reveal important information

on the PES [87, 88]. So far, however, resonant structures in scattering cross sections have

been experimentally observed only in exceptional cases [13, 89–92].

The crossed molecular beam technique has been an extremely useful tool for the

determination of state-to-state cross sections, both integral and differential, as well as their

dependence upon the collision energy [93]. The recently developed Stark deceleration

technique, taking advantage of the interaction of polar molecules with time-varying electric

fields, has allowed continuous tuning of the beam velocity [11]. This has facilitated

measurements of the collision energy dependence of state-to-state integral cross sections

down to energies of 70 cm−1 [94]. Moreover, the velocity spread in such decelerated beams

is much smaller than in conventional molecular beams. Thus far, an energy resolution of

≥ 13 cm−1 has been achieved for collisions of OH radicals with rare gas atoms [94–96].

This resolution is mainly limited by the velocity and angular spread of the atomic collision

partner, and is too low to experimentally resolve scattering resonances. A recent study

has shown that the energy resolution can be improved significantly by an appropriate

choice of the beam velocities and interaction angle [97]. When these measures are put into

practice in the laboratory, collision energy resolutions can be obtained that may enable
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the observation of scattering resonances.

Atom-molecule collisions are the simplest type of collision process in which rota-

tionally inelastic transitions can be observed. Early calculations [98, 99] on rotationally

inelastic scattering of N2 molecules with He atoms have shown that resonances occur at

low collision energies, but the experimental verification of these predictions was not yet

possible. Collisions of OH(X 2Π) with rare gases have emerged as paradigms of scattering

of an open-shell molecule with an atom [94, 96, 100–105]. The OH–rare gas systems are

good candidates for the observation and analysis of resonances in rotationally inelastic

collisions because the collision energy can be reduced by Stark deceleration of the OH

beam. Since OH(X 2Π) is an open-shell molecule with orbital degeneracy, the collision

dynamics is governed by two PESs [106], and interesting multi-state dynamics can occur.

Of particular interest for the study of resonances are the OH–He and OH–Ne systems,

since the dissociation energies of these systems are smaller than the rotational level spacings

of the OH radical. The resonance features associated with the various rotational levels

are therefore well separated. The shallow van der Waals wells support only one or two

stretch vibrational levels [107], resulting in a rather simple, yet interesting, analysis of the

resonances. Shape resonances in OH–He collisions were previously analyzed by Dagdigian

and Alexander [104] in a study of elastic depolarization. Bound states of the OH–He

complex have been investigated spectroscopically by Han and Heaven, who identified

complex features as scattering resonances in OH(A)–He [108].

Here, we present a detailed and precise study of scattering resonances in the OH–

He and OH–Ne systems, in order to develop insight into the nature and strength of

the resonances and to assist in the experimental search for such scattering resonances.

For the OH–He system, we have calculated new three dimensional potential energy

surfaces. The collision energy dependence of the relative state-to-state integral scattering

cross sections that are derived from these potentials compares more favorably with recent

experiments [96] than the results from previous calculations. For the correct assessment
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of the resonances, the calculations are performed on a very fine grid of collision energies,

and particular care is taken to converge the calculations to avoid numerical artifacts to be

interpreted as resonant structures.1

We characterize the resonances with various techniques, including the adiabatic

bender model [40, 109] and collision lifetime analysis [110]. We investigate how the

differential cross section for several transitions changes as the collision energy is scanned

through the resonances, and observe dramatic effects.

This chapter is organized as follows: The details of the scattering calculations are

briefly presented in Section 2.2. In Section 2.3 we describe the new three-dimensional

(3D) PESs that are developed for OH–He. Section 2.4 describes our calculations on the

state-to-state scattering cross sections in OH–He collisions. A detailed analysis of shape

and Feshbach resonances is given. Section 2.5 presents similar results for the OH–Ne

system. A discussion of the prospects for observing these resonances in crossed beam

experiments using a Stark decelerator, by either recording the integral or the differential

cross sections, follows in Sec. 2.6.

2.2 Scattering Calculations

The theory of scattering between a molecule in a 2Π electronic state and a struc-

tureless atom is well established [106]. The interaction can be described by two PESs

corresponding to states of A′ and A′′ symmetries. For OH–He, we have constructed new

PESs, which are explained in Sect. 2.3, while for OH–Ne, we used the PESs by Sumiyoshi

et al. [111] Close-coupling calculations were performed both with the HIBRIDON suite

of programs [31], and with a second independent scattering program for open-shell diatom-

1In HIBRIDON the RCUT parameter allows one to drop channels which are open asymptotically but
closed at RCUT. A reasonable large RCUT would reduced the number of channels significantly while
obtaining accurate cross sections. However, in cases where the collision energy lies near (either above or
below) the threshold for one (or more) channels (in other words near the point where a particular asymptotic
state just becomes energetically allowed), accuracy may be lost by dropping channels. In this work (and
all other scattering calculations presented in this dissertation), this channel-dropping mechanism was not
applied.
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Figure 2.1: Energies of the lower rotational levels of OH(X 2Π). The Λ-doublet splitting is exagger-
ated for clarity. The initial level for all scattering calculations is the j = 3/2, F1, f level.

atom scattering described in Ref. [112]. Care was taken to independently check the results

with the two scattering programs and to converge the cross sections. For OH–He the

maximum total angular momentum was J = 100.5–140.5, depending on the collision

energy, and the channel basis consisted of all rotational levels of OH with j ≤ 6.5, while

for OH–Ne the channel basis consisted of all rotational levels with j ≤ 7.5. In this paper,

we calculate cross sections from fully converged close-coupling calculations in order to

study resonances in inelastic collisions between low-lying rotational states of the OH

radical. For reference, the energies of the lower rotational levels of OH(X 2Π) are displayed

graphically in Fig. 2.1.

2.3 Three-Dimensional OH–He Potential

A crucial role in the scattering calculations is played by the interaction potential. In

Ref. [112] a detailed experimental and theoretical study of inelastic scattering between

OH radicals and the rare gas atoms He, Ne, Ar, Kr and Xe was performed. The theoretical

results in that study were shown to be in excellent agreement with experimentally measured

inelastic cross sections. The agreement between theory and experiment was, although still

very good, the worst for the OH–He system. It was believed that this was due to the quality
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of the PES, since for the OH–He system a smaller basis set was used in the calculations

than for the other systems. For this reason, we construct here a new potential for the

OH–He system. We note that in Ref. [112] the experimental resolution was unfortunately

not yet high enough to observe resonances.

In trying to improve the agreement with the experimental results, we first constructed

new 2D PESs for OH–He collisions. This was done by enhancing the basis set for the

coupled-cluster calculations of the interaction energy from the augmented triple-zeta

correlation-consistent basis set (AVTZ) used by Lee et al. [107] to the quintuple-zeta

basis set (AV5Z). We computed the interaction energies with the open-shell single and

double excitation coupled cluster method with perturbative triples as implemented in the

MOLPRO package [113]. The interaction energies were evaluated for 288 geometries on

a two-dimensional grid with 12 Gauss-Legendre points in the Jacobi-angle θ. The OH

bond length was fixed at the vibrationally averaged distance of r0 = 1.8502 a0, whereas

Lee et al. used the equilibrium distance re . The relevant geometry is illustrated in Fig. 2.2.

We included midbond orbitals (3s ,3p,2d ,1 f ,1g ) with the exponents of Ref. [49]. These

midbond functions were centered on the vector R that connects the He atom and the

center-of-mass of the OH molecule, at a distance from the helium atom that is half the

distance of the helium atom to the nearest atom of the OH molecule. Also the counterpoise

correction of Boys and Bernardi was applied [56]. The grid of atom-molecule separations

consisted of 18 points ranging from R = 3a0 to 9a0 at short range and 6 points on an

approximately logarithmic scale up to 25a0 at long range.

As mentioned before, two potential energy surfaces belonging to states of A′ and

A′′ symmetry are involved in the OH–rare-gas atom scattering. The average Vs and half-

difference Vd of these potentials can be expanded in Racah normalized spherical harmonics
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Figure 2.2: Illustration of the OH molecule and the He atom containing the relevant coordinates
as used in the fitting of the OH–He potential. R is the length of the vector R that connects the He
atom and the center-of-mass (Q) of the OH molecule, while θ is the angle between R and the OH
bond vector r (pointing from O to H) of length r . Ra is the length of the vector Ra that connects
the He atom and the H atom, while θa is the angle between Ra and r. Rb is the length of the vector
Rb that connects the He atom and the O atom, while θb is the angle between Rb and −r. The
point X marks the location of the midbond orbitals.

Cl ,m, namely

Vs =
VA′ +VA′′

2
=

lmax∑
l=0

vl ,0(R)Cl ,0(θ, 0),

Vd =
VA′′ −VA′

2
=

lmax∑
l=2

vl ,2(R)Cl ,2(θ, 0), (2.1)

where we included all terms up to lmax = 11. In the long range (R > 10a0), the expansion

coefficients vl ,0(R) were fitted to inverse powers R−n with n ≥ 6, namely

v lr
l ,0(R,θ) =

11∑
n=n0(l )

cl ,n
fn(βR)

Rn
, (2.2)

where we note that the allowed values for n depend on l [114]. For example, for l = 0 we

have n0(l ) = 6 and only even values of n are present, while for l = 1 we have n0(l ) = 7

and only odd values of n are present. From the fitted coefficients we only kept the leading

long-range terms for l = 0 to l = 4. We used the Tang-Toennies damping function [115]

fn(x) = 1− e−x
n∑

k=0

xk

k!
(2.3)
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to damp these five long-range terms in the short range withβ= 0.6a−1
0 . In the short range

(R< 5.5a0), the expansion coefficients vl ,0(R) were fitted to an exponential, namely

v sr
l (R) = sl e

−αl R. (2.4)

The difference between the ab initio interaction energies and the analytic long range and

short range functions was fitted with a reproducing kernel Hilbert space (RKHS) method

[116]. The RKHS parameter m was chosen such that the RKHS fit would decay faster

than the leading long-range term for each l . The RKHS smoothness parameter was set

to 2. For the expansion coefficients of the difference potential, vl ,2(R), no analytic short

range and long range fit was performed, so that everywhere the RKHS method was used.

Using the described procedure, we obtained an accurate fit to the ab initio points. More

details of the fit can be found from the supporting material of Ref. [83], where we provide

a FORTRAN 77 code for the two-dimensional AV5Z potential.

We found that the absolute minimum of the fitted potential is located at θ= 68.7◦,

R= 5.69a0 on the A′ PES, corresponding to an interaction energy of VA′ =−29.8 cm−1.

The minimum potential energy values for θ= 0◦ and θ= 180◦ were found at R= 6.56a0

and R = 6.09a0, giving rise to VA′/A′′ =−27.1 cm−1 and VA′/A′′ =−21.6 cm−1, respectively.

For comparison, we also mention the values obtained by Lee et al. [107], who found

that the absolute minimum of their potential was located at θ= 68.6◦, R= 5.69a0 for A′

symmetry, with an interaction energy of VA′ = −30.0 cm−1. The minimum values for

θ= 0◦ and θ= 180◦ were found at R= 6.54a0 and R= 6.09, giving rise to VA′/A′′ =−27.1

cm−1 and VA′/A′′ = −21.8 cm−1, respectively. The two potentials are seen to give very

similar results for the local and global minima. Moreover, using the new AV5Z potential

for scattering calculations, we found only a very slight improvement in the agreement

with the experimental data.

Therefore, we tried to improve the PES further by taking the vibrational motion of
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the OH radical into account. To this end, we computed the interaction energies of the

OH–He system on a three-dimensional grid. At short and intermediate range we used a

step size of ∆R = 0.25a0 for 3a0 ≤ R≤ 12.5a0 and ∆r = 0.25a0 for 0.75a0 ≤ r ≤ 4.5a0.

For the angle θ we used an equidistant grid of 16 points including 0 and 180◦ with a spacing

of ∆θ = 12◦. At long range we used 4 equidistant points between 14a0 ≤ R ≤ 20a0,

while we used a step size of ∆r = 0.5a0 for 0.75a0 ≤ r ≤ 4.25a0. The distance r = 4.5a0

was also included in the long-range fit. For the angle θ we used an equidistant grid of 9

points with a spacing of ∆θ= 22.5◦. On this grid we computed the interaction energies

with a triple-zeta basis set (AVTZ) and using midbond orbitals with geometry-dependent

exponents [117]. Especially for large r and small R, the electronic structure calculations

did not always converge. Then, we obtained the energy for the corresponding grid point

by means of interpolation or extrapolation from neighbouring grid points.

To perform the fit of the sum interaction potential Vs, we proceed in the following

way. We represent the potential as a sum of three terms, namely

Vs(R,θ, r ) =V sr
s (Ra,θa, r )+V sr

s (Rb ,θb , r )+V lr
s (R,θ, r ), (2.5)

where the different coordinates are defined in Fig. 2.2. This representation is convenient

because the coordinates of the first and second term of Eq. (2.5) are ideally suited to describe

the short-range behavior near the H and O atom, respectively, while the coordinates of

the third term are convenient to describe the long-range behavior. The short-range terms

are fitted by

V sr
s (Ri ,θi , r ) =

l 0
max


l=0

e−βi Ri Pl (cosθi )s
(i)
l

+
l i
max


l=0

k i
max


k=0

n i
max


n=0

Rn
i e−βi Ri Pl (cosθi )r

k e−αi r 3
s (i)l nk , (2.6)

where i = a, b , while Pl (x) are Legendre polynomials corresponding to the functions
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Figure 2.3: A′ potential energy surface. The OH radical lies on the horizontal axis, with the
center-of-mass of the molecule at the origin. The O atom lies left of the origin, the H atom to
the right. For each geometry of the complex, defined by the OH bond length r and the position
(xHe, yHe) of the He atom, the interaction energy is calculated, resulting in contours with the unit
of cm−1. The three plots differ in the OH bond length, namely in panel (a) we have r = 0.75a0, in
panel (b) r = 1.8324a0, and in panel (c) r = 3.00a0.

Cl ,0(θ, 0) of Eq. 2.1. We used the values l 0
max = 1, na

max = 3, ka
max = 8, l a

max = 7, nb
max = 3,

k b
max = 8 and l b

max = 5. The long range term is fitted by

V lr
s (R,θ, r ) =

13


n=6

n−4


l=0

fn(βR)
Rn

Pl (cosθ)cnl (r ), (2.7)

where fn is the damping function of Eq. (2.3). Nonzero values of cnl occur only for even

values of l + n, and then they are given by

cnl (r ) = c0
nl +

3


k=0

r k e−αn r 3
cnl k . (2.8)
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Figure 2.4: A′′ potential energy surface. The OH radical lies on the horizontal axis, with the
center-of-mass of the molecule at the origin. The O atom lies left of the origin, the H atom to
the right. For each geometry of the complex, defined by the OH bond length r and the position
(xHe, yHe) of the He atom, the interaction energy is calculated, resulting in contours with the unit
of cm−1. The three plots differ in the OH bond length, namely in panel (a) we have r = 0.75a0, in
panel (b) r = 1.8324a0, and in panel (c) r = 3.00a0.

We use two different values for αn, namely αn = αI for 6 ≤ n ≤ 9, and αn = αII for

10 ≤ n ≤ 13. For the difference potential Vd similar fit functions are used, only now

the Legendre polynomials Pl (x) are replaced by associated Legendre functions P 2
l (x)

corresponding to the Racah spherical harmonics Cl ,2(θ, 0) of Eq. (2.1), so that all sums

start with l = 2. Moreover, we use l 0
max = 2, na

max = 5, ka
max = 5, l a

max = 6, nb
max = 5, k b

max = 4

and l b
max = 6. The linear and the nonlinear fit parameters were determined by minimizing

a weighted least-squares error.

By evaluating the analytic representation of the potential on the ab initio grid, we

were able to compare the fitted energy values with the ab initio values. We found that
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we only obtained a reliable fit for OH bond lengths r ≤ 3a0. At smaller values of R the

largest relative error of an analytic value compared to an ab initio value for r ≤ 3a0 was

6.67% for the sum potential and 1.10% for the difference potential. At large R, again

considering only r ≤ 3a0, the largest relative error was 3.23 % for the sum potential and

3.32% for the difference potential. We also calculated the average relative error, which

for the sum potential was 0.32% at short range and 0.49% at long range, while for the

difference potential it was 0.04% in the short range and 0.90% in the long range. In Fig. 2.3,

we show two-dimensional contour plots of the fitted OH–He A′ PES for r = 0.75a0,

r = 1.8324a0 and r = 3.00a0, while in Fig. 2.4 the same plots are shown for the fitted A′′

PES. For the equilibrium bond length re = 1.8324a0, our fit of the 3-dimensional potential

is in very close agreement with the PES of Lee et al. [107], as it should, since both PESs

were calculated with the same ab initio method using the same basis set. The absolute

potential energy minimum for r = 1.8324a0 is located at θ = 69.2◦, R = 5.69a0 for A′

symmetry, leading to an interaction energy of VA′ =−30.0 cm−1. The minimum values for

θ= 0◦ and θ= 180◦ were found at R= 6.55a0 and R= 6.09, giving rise to VA′/A′′ =−27.2

cm−1 and VA′/A′′ =−21.7 cm−1, respectively.

To use the three dimensional potential for scattering, we started with the three-

dimensional AVTZ potential, and then subtracted the values of this potential at r = r0 and

added the two-dimensional potential calculated for r = r0 at the AV5Z level. This implies

that the dependence of the intermolecular potential on the most relevant coordinates for

the scattering calculation, namely R and θ, is computed at the AV5Z level for r = r0, while

the variation of the potential with the OH bond length r is taken into account at the

AVTZ level. We solved for the OH vibrational motion in the full 3D potential generated by

taking the intermolecular potential energy V (R,θ, r ) and adding the free OH monomer

potential VOH(r ) [118]. For fixed R and θ this leads to an effectively one-dimensional

problem that can be easily solved by standard numerical methods, such as the discrete

variable representation based on sinc-functions (sinc-DVR) [119]. Taking the resulting
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Figure 2.5: Relative state-to-state inelastic scattering cross sections of OH (X 2Π, j = 3/2, F1, f )
radicals with He atoms. On the vertical axes of the plots, 100 % refers to the total inelastic cross
section. The experimental data points are shown as dots, while the theoretically calculated cross
sections calculated by Lee et al. are included as solid curves, and the results with the adiabatic
potential as dashed curves. Relative cross sections for inelastic collisions populating the (a) j =
3/2, F1, e (black), j = 5/2, F1, e (purple), and j = 5/2, F1, f (orange) states; (b) the j = 1/2, F2, e
(brown) and j = 3/2, F2, f (pink) states; (c) the j = 1/2, F2, f (red) and j = 3/2, F2, e (blue) states;
(d) the j = 7/2, F1, e (green) and j = 7/2, F1, f (cyan) states.

ground state energy for each R and θ and subtracting the v = 0 monomer vibrational

energy in the absence of the He atom then results in an adiabatic two-dimensional PES.

We found, actually, that this adiabatic potential is very similar to the “diabatic” potential

obtained by first calculating the lowest vibrational state of OH in the monomer potential

VOH(r ) and then averaging the interaction potential V (R,θ, r ) over this ground state. The

two methods are expected to give similar results since the vibrational levels of OH are well

separated in energy, so that the weak OH–He interaction gives only a slight admixture of

the higher vibrational states of OH.

The inelastic OH–He cross sections with OH initially in the j = 3/2, F1, f level

were calculated with the adiabatic potential. The results are shown in Fig. 2.5, where the

experimental data of Ref. [112] is also shown, as well as the scattering results obtained with

the potential of Lee et al. [107]. The theoretical data are convoluted with the experimental
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energy resolution. To this end a Gaussian energy distribution is taken with a standard

deviation that is a function of the energy. The value of the standard deviation ranges from

24 cm−1 at low collision energies to 59 cm−1 at the highest collision energies. We note

that the relative cross sections are plotted, rather than the absolute cross sections, because

these relative cross sections are the quantities experimentally measured. More details can

be found in Refs. [94, 112]. We see from Fig. 2.5 that the overall the agreement with

experimental data has improved noticeably with the adiabatic potential.

2.4 OH–He Collisions

2.4.1 State-to-State Integral Cross Sections

For OH–He collisions, the state-to-state scattering cross sections were calculated

with the adiabatic potential described in the previous section. In Fig. 2.6, the energy

dependence of the state-to-state integral cross sections for several transitions out of the

j = 3/2, F1, f level of OH are shown. This level, which is the higher Λ-doublet component

of the ground rotational level (see Fig. 2.1), can be selected with the Stark decelerator

since it is low-field seeking in an inhomogeneous electric field [94]. The cross sections are

computed on a very fine grid of energies to be able to study resonant features in detail.

Away from the resonances, these results are in good agreement with those previously

reported by Kłos et al. [102]. As noted by these authors, there is a propensity for transitions

preserving the total parity. The cross sections are found to be smaller for transitions with

large energy gaps. The initial and final levels of the two transitions shown in Fig. 2.6(a)

have a rather large energy separation (> 100 cm−1), and the total parity is inverted during

the transitions. Hence, the cross sections for these transitions are small.

Resonances can be observed in Fig. 2.6 near the collision energies corresponding

to thresholds for excitation of the OH radical to higher rotational and spin-orbit levels.

Both shape resonances, which appear right above the threshold energies for the final
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Figure 2.6: State-to-state integral cross sections vs. collision energy for transitions out of the OH
j = 3/2, F1, f level in collisions with He. The final levels are indicated for each transition for which
the cross section is plotted.

levels, and Feshbach resonances, which appear near the energies where higher rotational

levels than the considered outgoing channel become open, are present. Except for the

j = 3/2, F1, f → j = 3/2, F1, e and the j = 3/2, F1, f → j = 1/2, F2, f transitions, the

Feshbach resonances are not significant compared with the background continuum. The

j = 3/2, F1, f → j = 3/2, F1, e transition dominates at low collision energies and also gives

rise to shape resonances with cross sections peaking above 10 �A2. However, these shape

resonances occur at collision energies of only a few wavenumbers.

In the following subsections, we analyze the shape resonances in the j = 3/2, F1, f →
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Figure 2.7: (a) State-to-state integral cross sections vs. collision energy for the j = 3/2, F1, f →
j = 5/2, F1, e transition of OH in collisions with He (black line), and the integral cross section
convoluted with Gaussian energy distributions of FWHM of 1 and 5 cm−1 (red and blue lines,
respectively). (b)–(e) Differential cross sections dσ/dΩ of the above transition at several energies
marked as dashed lines with Roman numerals in (a), together with the differential cross sections
convoluted with Gaussian energy distributions as in (a).

j = 5/2, F1, e transition and the Feshbach resonances in the j = 3/2, F1, f → j = 1/2, F2, f

transition. The former transition has a large cross section; the latter transition exhibits

strong resonances that show the largest enhancement compared to the background.

2.4.2 Shape Resonances

Shape resonances result from quasi-bound states of the van der Waals complex formed

by the collision partners at energies just above the threshold for the final level. All integral

cross sections plotted in Fig. 2.6 display shape resonances. In this subsection we analyze

the shape resonances associated with the j = 3/2, F1, f → j = 5/2, F1, e transition since it

has a large integral cross section. Figure 2.7(a) displays these resonances on an expanded
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Figure 2.8: Plots of the OH–He adiabatic bender curves that correlate with the OH j = 5/2, F1, e
level, obtained from close-coupling calculations. Curves are labeled with J (p)

n , where J , p, and n
are the total angular momentum, the total parity of the scattering wavefunction, and the cardinal
index, respectively.

energy scale. Several maxima, with increasing peak width vs. energy, can be observed, as

was also previously found [104] for OH–He and other He-molecule systems [81, 87, 120].

To gain more insight, we employ the adiabatic bender model [40, 109] to analyze the

shape resonances. The method is similar to the previous analysis of OH–He collisions by

Dagdigian and Alexander [104], except that we used a close-coupling channel basis instead

of a coupled-states one. The full Hamiltonian with the inclusion of Coriolis coupling and

only the radial nuclear kinetic energy excluded is diagonalized as a function of R. The

eigenvalues define a set of adiabatic bender potential energy curves, which are labeled by

the total angular momentum J , the total parity p of the scattering wavefunction, and the

cardinal index n of the eigenvalue. In this paper, we will use the symbol J (+)n and J (−)n to

label close-coupling adiabatic bender curves with p =+1 and p =−1, respectively.

Figure 2.8 shows several adiabatic bender curves that correlate with the OH j =

5/2, F1, e level. The curves marked with 5/2(+)1 and 3/2(+)1 are the two lowest lying adiabatic

bender curves, each of which supports only one bound stretch level, with energies of

77.47 cm−1 and 78.15 cm−1, respectively. As J and n increase, the curves move up in

energy and the well depths become smaller. As a consequence, some of the bound levels

become quasi-bound, and for the high lying curves (for example, the 15/2(+)2 curve shown
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Figure 2.9: Phase shifts as a function of collision energy for OH( j = 5/2, F1, e)–He collisions,
obtained from close-coupling adiabatic bender curves described in the text and shown in Fig. 2.8.
Curves are labeled with J (p)

n , where J , p, and n are the total angular momentum, the total parity of
the scattering wavefunction, and the cardinal index, respectively.

in Fig. 2.8) the wells are too shallow to support any quasi-bound levels.

To compute the energies of the shape resonances, we treat the adiabatic bender curves

in conventional one-dimensional scattering problems and calculate the phase shift. We

should be able to observe rapid changes by π, signifying resonances, in the collision energy

dependence of phase shift [2]. Fig. 2.9 shows the phase shift as a function of collision

energy for all the adiabatic bender curves that have such a feature. We see from Fig. 2.9 that

resonances in six adiabatic bender curves contribute to each of the three peaks shown in

Fig. 2.7(a) (labeled as I, II, and III), which occur at 84.8, 87.6 and 91 cm−1, respectively. The

resonance features in Fig. 2.7(a) and Fig. 2.9 match well both in energy and width. Note

that in order to distinguish the phase shift in different adiabatic bender curves, Fig. 2.9(b)

and (c) do not show the whole range of the resonances, and thus the resonant changes in

phase shift shown are less than π.

It is also interesting to compare the differential cross sections for collision energies

on and off a resonance. Figures 2.7(b)–(e) display differential cross section for several

energies marked in Fig. 2.7(a) with Roman numerals. The center of the two major peaks

are marked as I and II, while III and IV correspond to non-resonant energies. We observe

significant backward scattering for energies I and II, likely because of an increased time

delay of collision due to the formation and decay of quasi-bound levels of the van der Waals

complex. Backward peaks are insignificant for energies III and IV. We will further discuss
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Figure 2.10: (a) State-to-state integral cross section vs. collision energy for the j = 3/2, F1, f →
j = 1/2, F2, f transition of OH in collisions with He (black line), and the integral cross section
convoluted with Gaussian energy distributions with FWHM of 1 (red line) and 5 cm−1 (blue line).
(b)–(j) Differential cross sections dσ/dΩ of the above transition at several energies marked as dashed
lines and Roman numerals in (a), together with the convoluted differential cross sections with
Gaussian energy distribution as in (a).

this topic in the next subsection.

2.4.3 Feshbach Resonances

In Feshbach resonances, quasi-bound levels of the collision complex associated with

a given rotational level dissociate to yield the molecule in a lower-energy rotational level.

We consider here Feshbach resonances associated with the j = 3/2, F1, f → j = 1/2, F2, f

transition. This transition was chosen for detailed study since the resonance features show
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Figure 2.11: Partial cross sections vs. collision energy for the j = 3/2, F1, f → j = 1/2, F2, f
transition of OH in collisions with He for total angular momentum J ≤ 11/2. The dotted vertical
lines denote the computed energies of the van der Waals stretch levels supported by the close-
coupling adiabatic bender curves.

a ca. 4-fold increase over the continuum background (see Fig. 2.6). Figure 2.10(a) displays

these resonances on an expanded energy scale.

It is seen that a rich set of Feshbach resonances exists in a collision energy range of

several cm−1 below the energetic threshold for opening of the F2, j = 3/2 level at 188 cm−1.

Figure 2.11 displays the contribution to the integral cross section for the j = 3/2, F1, f →

j = 1/2, F2, f transition from various values of the total angular momentum J (partial

cross sections). The individual partial cross sections exhibit one or more peaks, and their

energies shift toward higher collision energy as J increases. For J ≥ 13/2, no significant

resonances can be found in the energy dependence of partial cross sections.

We performed an adiabatic bender analysis similar to that described in subsection

2.4.2. We calculated adiabatic bender potentials by diagonalizing the Hamiltonian ex-

pressed in a close-coupling channel basis. Since all possible values of l (the orbital angular

momentum of the van der Waals complex) are included in the channel basis, there are
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multiple adiabatic bender curves for each value of J . These adiabatic bender curves look

similar to those shown in Fig. 2.8 and are not plotted here. The energies of the van der

Waals stretch levels supported by these curves were derived using a fixed step-size discrete

variable representation (DVR) method [121, 122]. To treat levels that might be quasi-

bound, an infinite barrier was placed at the maximum of the centrifugal barrier on each

adiabatic bender potential. For curves associated with large J , this approximation will lead

to calculated energies higher than they should be and could lead to significant error. These

computed energies are shown as dotted lines in Fig. 2.11. There is a reasonable match

between the energies of the resonances and of the bend-stretch levels, especially for small J .

Fig. 2.10(b)–(j) display the differential cross section for the OH j = 3/2, F1, f →

j = 1/2, F2, f transition at several energies marked on Fig. 2.10(a) with Roman numerals.

The energies at I and IX are not at a resonance, and the differential cross sections show

little backward scattering, while II – IV correspond to resonance energies, for which some

backward scattering can be observed. The shapes of the differential cross sections are quite

different at resonance energies compared to collision energies away from the resonances.

A simple way to analyze the resonances and to qualitatively explain backward scatter-

ing appearing in differential cross sections is to calculate the collision lifetime, which is the

difference between the time that the collision partners spend in each other’s neighborhood

with and without the interaction [110, 123, 124]. For a direct comparision with the partial

cross sections shown in Fig. 2.11, we compute the collision lifetime from initial state γ to

final state γ ′ for individual total angular momenta J , defined as

∆t J
γγ ′(E) =Re



−i ħh


l , p,l ′, p ′
δp p ′

�

S J
γ ,γ ′,l ,l ′

�∗ d S J
γ ,γ ′,l ,l ′

d E



 (2.9)

where l , p and l ′, p ′ denotes the orbital angular momentum and parity of initial and final

levels, respectively, and S J
γ ,γ ′,l ,l ′ denotes S-matrix elements for total angular momentum J

from close-coupling calculations. The lifetimes vs. J for the j = 3/2, F1, f → j = 1/2, F2, f
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Figure 2.12: Collision lifetime∆t J (E) as a function of collision energy for the OH j = 3/2, F1, f →
j = 1/2, F2, f transition in collisions with He, as defined in Eq. (2.9) of the text, for total angular
momenta J = 1/2 – 11/2.

transition are plotted in Fig. 2.12. Clearly, the resonance peaks in Fig. 2.11 are well

reproduced, with collision lifetimes of a few picoseconds. The most intense resonance

peak lies at 186.4 cm−1, which was largely due to the J = 9/2 partial cross section. From

Fig. 2.12 we see that the corresponding lifetime is about 6 ps. We can compare this collision

lifetime with the rotational period of the OH–He van der Waals complex. We estimate

the rotational constant of the complex to be 0.32 cm−1 from the expectation value of 1/R2

computed with the wave function obtained from the DVR method on the lowest lying

J = 9/2 adiabatic bender curve. This corresponds to a rotational period 14.9 ps, assuming

l = 3.

We thus conclude that the collision lifetime has the same order of magnitude as

the rotational period of the OH–He complex. It is therefore not surprising to observe

significant backward scattering at some resonance energies. At off-resonance energies the

collision lifetime will be≪ 1 ps, which is much smaller than the OH–He rotational period.
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Figure 2.13: State-to-state inelastic scattering cross sections of OH (X 2Π, j = 3/2, F1, f ) radicals
with Ne atoms as a function of the collision energy. The final states of the transitions are labelled
on the curves.

Hence, backward scattering is expected to be barely observable.

2.5 OH–Ne Collisions

To describe the interaction between OH and Ne, we used the PES of Sumiyoshi et

al. [111]. This PES was calculated using an explicitly correlated, spin-unrestricted coupled-

cluster approach [UCCSD(T)-F12b] with a quintuple-zeta basis set (AV5Z). Although

Sumiyoshi et al. calculated a three-dimensional potential, we used in Ref. [112] their
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interaction potential evaluated at the equilibrium distance re = 1.832a0 for the scattering

calculations, so that no effect of the OH vibrational motion was included. In that reference

it was shown that this procedure already gives excellent agreement between theory and

high-precision scattering experiments for OH–Ne collisions. Since we found in Section

2.3 that the vibrational motion of OH can be of quantitative influence, we also calculated

an adiabatic potential from the three-dimensional potential of Sumiyoshi et al. in the same

way as we did for OH–He. The resulting adiabatic potential was found to improve slightly

the excellent agreement with the experimental results for the scattering of OH and Ne.

In the present study, we use the adiabatic potential throughout and compute the cross

sections on a much finer grid than in the study by Scharfenberg et al. [112] in order to study

scattering resonances. In Fig. 2.13 we show the energy dependence of state-to-state integral

cross sections for collisions of the OH radical with Ne atoms, where the OH radicals are

initially in the j = 3/2, F1, f level. Overall, the behavior of the inelastic cross sections as a

function of energy is rather similar to what was observed for the OH–He system in Section

2.4. For example, we again observe a propensity for transitions preserving the total parity.

However, in the OH–Ne system none of the channels appears to have particularly strong

Feshbach resonances, as was the case for the j = 3/2, F1, f → j = 1/2, F2, f transition

of the OH–He system. The most pronounced resonant features observed for OH–Ne

collisions are shape resonances in the j = 3/2, F1, f → j = 5/2, F1, f transition. In Fig. 2.14

we show these shape resonances in more detail.

Looking closely at Fig. 2.14, we see several resonance peaks that correspond to

an increase in the cross section by about a factor of two compared to the nonresonant

energies. A relatively strong resonance occurs at a collision energy of 99.23 cm−1; this

resonance increases the cross section by a factor of four compared to the background. The

latter resonance is indicated by the Roman numeral V. The main contributions to this

resonance originate from partial cross sections with total angular momenta of J = 37/2

and J = 39/2. In Fig. 2.14, we also show the differential cross sections for several energies
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Figure 2.14: (a) Integral cross section for collisions of OH radicals with Ne atoms as a function of
the collision energy. The initial state of the OH radical is the j = 3/2, F1, f state and the final state
is the j = 5/2, F1, f state. The blue curve shows the theoretical results without any convolution, the
red curve shows the integral cross section convoluted with a Gaussian energy distribution having a
FWHM of 1 cm−1, while for the green curve a FWHM of 5 cm−1 was used. At the collision energies
designated with the Roman numerals I-VI, differential cross sections were calculated, shown in
panels (b) to (g). Again the blue curves are not convoluted, while for the red curves a FWHM of 1
cm−1 was used, and for the green curves a FWHM of 5 cm−1 At the scattering resonances (I, III
and V), strong backscattering is observed.

that are marked by Roman numerals in panel (a). For the resonances at collision energies

of 86.83, 94.90 and 99.23 cm−1, the cross sections are shown in the panels (b), (d) and

(f). In these plots, large amplitudes for backscattering are observed. To compare, the

differential cross sections were also calculated away from the resonances at the energies

93.00, 98.00 and 101.00 cm−1, and the results are shown in the panels (c), (e) and (g). In the

case of nonresonant scattering, the observed backscattering is significantly reduced. The

differential cross sections at these resonances look similar to those at the shape resonances

for the j = 3/2, F1, f → j = 5/2, F1, e transition of the OH–He system (see Fig. 2.7), where
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also an increase in backscattering was found. With a measurement of the differential cross

sections, the strong increase and decrease in the backscattering might help in experimentally

identifying the shape resonances at 94.90 and 99.23 cm−1. However, we note that one must

be careful with identifying the backscattering signal with resonances in the cross section.

Namely, in Fig. 2.14(a) also less pronounced resonances are seen, and not all of them have

such a strong backscattering signal as the strongest resonances I, III and V. Moreover, closer

to the threshold of the j = 3/2, F1, f → j = 5/2, F1, e transition significant backscattering

is observed away from the resonances.

2.6 Discussion

The experimental observation of resonance structures as discussed in this paper

would comprise a very detailed test for the calculated PESs and scattering calculations on

these PESs. The Stark deceleration technique provides a source of state-selected molecules

with a tunable velocity and narrow velocity distribution. This technique enables state-

to-state scattering experiments in which the collision energy can be precisely tuned over

a wide range with a high collision energy resolution. Yet, the observation of scattering

resonances requires an energy resolution that has not yet been achieved in this type of

experiments. In this section, we analyze the collision energy resolution required to observe

resonance features in either the state-to-state integral or the differential cross sections for

OH–He and OH–Ne collisions. We discuss the requirements on the beam velocity and

angular distributions, and discuss the feasibility of obtaining these distributions.

Referring back to Figs. 2.7, 2.10, and 2.14, the most prominent resonance struc-

tures are found for OH–He in the j = 3/2, F1, f → j = 3/2, F1, e , j = 3/2, F1, f →

j = 5/2, F1, e and the j = 3/2, F1, f → j = 5/2, F2, f transitions. For OH–Ne collisions

the j = 3/2, F1, f → j = 5/2, F1, f channel is of most relevance. To simulate what would

be observed in a molecular beam scattering experiment, the integral cross sections in

Figs. 2.7, 2.10, and 2.14 are convoluted with Gaussian collision energy distributions of
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Figure 2.15: Inelastic scattering cross section for the j = 3/2, F1, f → j = 3/2, F1, e channel in
collisions of OH radicals with He atoms, showing Feshbach resonances that correspond to the
opening of the j = 5/2, F1 rotational levels of OH. The theoretical curve is convoluted with
Gaussian energy distributions with FWHM of 0.5 cm−1, 1 cm−1, 2 cm−1, and 5 cm−1. The upper
four curves have been given a vertical offset for reasons of clarity.

1 and 5 cm−1 full width at half maximum (FWHM). In Fig. 2.15, the resonance struc-

ture at collision energies around 85 cm−1 for the j = 3/2, F1, f → j = 3/2, F1, e channel

in OH–He collisions is shown. This scattering channel displays a number of Feshbach

resonances, corresponding to the opening of the j = 5/2, F1 channels, that are grouped

within a relatively narrow range of collision energies. The theoretical curve is convoluted

using 0.5, 1, 2, and 5 cm−1 (FWHM) energy distributions. We will use this scattering

channel as a benchmark to establish the energy resolution required in the experiments to

observe signatures of scattering resonances. Scattering resonances are partially resolved

for energy resolutions of ≤ 1 cm−1. When a resolution between 1 and 2 cm−1 is achieved,

some of the resonance structure is resolved, while for resolutions of 5 cm−1, most of the

resonance structure has disappeared. In these cases, at best only a broad peak is observed

in the integral cross section.

For given beam velocity and angular spread, the collision energy distribution is

a function of the collision energy; the highest resolutions are obtained for the lowest

collision energies. We can estimate the beam parameters required to reach collision energy

distributions of≤ 2 cm−1 at a collision energy of 85 cm−1 for collisions of Stark-decelerated

OH radicals with He atoms, i.e., to (partially) resolve the scattering resonances shown
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in Fig. 2.15. We assume a beam intersection angle of 45◦ and choose the velocities of the

He and OH beams such that the relative velocity vector is perpendicular to the He atom

velocity vector. In this geometry, the collision energy distribution is almost independent

of the He atom beam velocity spread [97]. A collision energy of 85 cm−1 is reached for

He and OH velocities of 790 m/s and 1120 m/s, respectively. In the chosen geometry, the

most critical parameter that determines the collision energy resolution is the distribution

in beam intersection angles ∆φ. If we assume extremely well collimated beams such that

∆φ = 10 mrad (corresponding to 0.6◦), a velocity spread of the OH radicals of 5 m/s

results in a collision energy resolution of 1.9 cm−1.

Experimentally, the most challenging requirement is the angular spread of both

beams. Multiple collimation slits for both the OH and He beams are required to reach the

required angular spreads. The required He atom velocity can be obtained using a cryogenic

source that is maintained at a temperature of 60 K, and the required OH velocity can be

produced using the Stark decelerator. The required velocity spread for the OH radicals can

be obtained using the Stark decelerator, either by choosing the appropriate phase angle in

the decelerator [11], or by additional phase-space manipulation techniques [125]. For the

OH–Ne system, even more stringent requirements apply to the beam distributions due to

the higher reduced mass for this system. Beam speeds of 664 m/s and 470 m/s for the OH

radical beam and Ne atom, respectively, will result in a collision energy of 85 cm−1 using

a beam crossing angle of 45◦. For the velocity and angular distributions used above for

OH–He, a collision energy distribution of 2.1 cm−1 is obtained.

The signatures of scattering resonances can also be inferred from differential cross

sections. State-to-state differential cross sections can be measured using the velocity map

imaging technique, that provides the full angular and velocity distribution of the scattered

molecules. Alternatively, information on the differential cross section may be obtained

via Doppler profile measurements of the scattered molecules. The backward scattered

components that appear in the differential cross sections when a resonance is accessed

47



offers interesting prospects to reveal the existence of resonances. As the collision energy

is tuned over a group of scattering resonances, the presence of these resonances can in

principle be inferred from the measured product flux at backward scattering angles. In Figs.

2.7, 2.10, and 2.14, the differential cross sections are shown at collision energies near and at

the resonances, convoluted with Gaussian collision energy distributions of 1 and 5 cm−1

full width at half maximum (FWHM). In particular for the j = 3/2, F1, f → j = 5/2, F1, f

channel in OH–Ne, a significant scattering intensity at backward scattering angles remains,

even for a collision energy resolution as high as 5 cm−1. In the integral cross section,

no signature of the scattering resonances is observable at these energy resolutions. In

these cases, it may be favorable to experimentally explore the existence of resonances via

measurements of differential cross sections instead of integral cross sections.

The examples treated above show that collision energy resolutions in the 1–2 cm−1

range, although very challenging experimentally, should allow for the observation of both

shape and Feshbach resonances in the integral cross sections for inelastic collisions between

OH radicals and He or Ne atoms. The OH radical is an excellent candidate in these

experiments, as a sensitive detection scheme, appropriate for ion imaging, has recently

been developed for this species [126]. In addition, the relatively large rotational spacing

of the molecular levels results in a molecular beam pulse with less initial population in

excited rotational states, and therefore a packet of Stark-decelerated OH radicals with a

high state purity. This facilitates the sensitive and background free detection of scattering

products and enables the implementation of beam collimators that improve the angular

and velocity spreads of the beams at the cost of particle densities. The disadvantage of the

large rotational spacing, however, is the relatively high energies of the energetic thresholds

for inelastic scattering, and corresponding relatively high collision energies at which

scattering resonances appear. In this respect, the inelastic scattering of OD radicals or ND3

molecules with He and Ne atoms will be interesting candidates for studying scattering

resonances as well, reducing the energy for the lowest lying threshold to 42 cm−1 and 14
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cm−1, respectively. To reach a collision energy resolution ≤ 2 cm−1 at these energies will

relax the requirements on the velocity and angular spreads of both beams.

2.7 Conclusions

We have presented detailed calculations on scattering resonances in the rotationally

inelastic scattering of OH radicals with He and Ne atoms. For OH–He, we have developed

new 3D ab initio potential energy surfaces, and the inelastic scattering cross sections

that are derived from these surfaces compare favorably with recent experiments. We

have identified numerous scattering resonances, of both the shape and Feshbach types,

in the integral cross sections. We have analyzed these resonances using the adiabatic

bender model and computed collision lifetimes. We observe dramatic changes in the

differential cross sections at the resonances, showing in selected cases a forward-backward

peaking of the scattered flux. The analysis of scattering resonances presented here will

be indispensable in the experimental search for such resonances in, for instance, crossed

beam scattering experiments using Stark-decelerated molecular beams. To experimentally

observe signatures of resonances in the integral cross sections and to partially resolve

individual resonances, a collision energy resolution of ≤ 2 cm−1 is required. Obtaining

energy resolutions ≤ 2 cm−1 mainly requires highly collimated molecular beams, which

appears challenging. Alternatively, signatures of scattering resonances may be found in

the differential cross sections. The selective detection of scattered molecules at backward

scattering angles may facilitate the identification of resonances if the collision energy

resolution is not sufficient to resolve them in the integral cross sections.
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Chapter 3

Scattering Resonances of NH3 in Collisions with H2

and D2

This chapter contains long excerpts of an unpublished manuscript titled “Resonances

in rotationally inelastic scattering of NH3 and ND3 with H2” by Qianli Ma, Ad van der

Avoird, Paul J. Dagdigian, Millard H. Alexander, and Sebastiaan Y. T. van de Meerakker.

3.1 Introduction

The resonance is one of the most interesting phenomena in molecular scattering

and has been of great interest to both experimentalists and theoreticians [2, 84, 127, 128].

In inelastic scattering, a resonance originates from a quasibound level produced during

the course of a collision [80, 129], and usually appears as a distortion of the continuum in

the collision energy dependence of cross sections [2]. The resonances are called shape or

Feshbach resonances, depending on whether the quasibound level is associated with the

same monomer levels as the initial of final levels of the collision-induced transition [84].

An accurate potential energy surface (PES) is the foundation for the theoretical study

of the dynamics in a collision system. Unlike the bound state of the van der Waals complex

of the collision partners that depends mostly upon the attractive part of the PES, the

quasibound levels are sensitive to both the repulsive and the attractive part of the PES. Due

to this sensitivity, the measurement of scattering resonances can provide a strong validation

50



of the PES [87, 88]. The PES can then be reliably used in further theoretical investigations

of the system and in calculating the rate coefficients and other useful quantities difficult or

impossible to measure.

The observation of scattering resonances requires low collision energies with high

energy resolution in crossed molecular beam experiments, as well as a high state purity

of the collision partners [55, 83, 130]. In a few studies, scattering resonances have been

observed in collisions between atoms [89–91], and in the reactive F+HD→ HF+D

system [92]. Recently, Chefdeville et al. observed both shape and Feshbach resonances

in the inelastic scattering of O2 by H2 [13]. In that experiment, the authors used Even–

Lavie pulsed valves [131] to cool the molecular beams and were able to measure the cross

sections of the n = 1, j = 0→ n = 1, j = 1 transition of O2 in collision with para-H2 at

collision energies between 3.7 and 20 cm−1. To our best knowledge, this work is the only

unambiguous observation of resonances in inelastic scattering of molecules to date.

For molecules having dense rotational level structure (such as the Λ-doublets of OH

and the inversion doublets of NH3), and/or multiple nuclear spin symmetry, cooling down

the molecular beam alone cannot produce a beam with a dominant population in the lowest

level. For these molecules, the Stark deceleration technique [11, 94] can be a promising

tool in producing cold molecular beams for the measurement of scattering resonance since

it can also act as a state selector. Inspired by this technique, our groups have investigated

theoretically the resonances in the OH–He/Ne and the NH3–He systems using state-of-

the-art PESs [55, 83]. We have illustrated that both these systems show significant shape

and Feshbach resonances. The observation of the resonances in these systems would

require a ∼ 1cm−1 resolution in the collision energy, which is very challenging at present.

Rotationally inelastic scattering of NH3/ND3 with H2 has received considerable

interest in the past [72, 132–136], primarily because of its astrophysical importance [76–

79]. These studies mostly focused on collisions out of the ground rotational level of

para-NH3, which is not suitable for Stark deceleration. Strong resonance peaks do appear
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Figure 3.1: Rotational level diagrams of (a) para-NH3 and (b) ND3 (E nuclear spin modification).
The level 11− can be selected with a Stark decelerator and is labeled in red. The inversion doublets
of ND3 cannot be distinguished in the diagram due to the small inversion splitting.

in the computed energy dependence of state-to-state cross sections (Fig. 2 for Ref. [72]).

In the present work, we study in detail the resonances in the state-to-state cross

sections of NH3 and ND3 out of the rotational state suitable for Stark deceleration (11−,

see Sec. 3.2 for the notation of the rotational levels) in collisions with H2, using the PES

computed by Maret et al. [72]. We will show that this system has strong and broad

resonance peaks along with relative large state-to-state cross sections, and these resonances

are particularly suitable for crossed molecular beam studies.

This chapter is organized as follows: In Sec. 3.2 we briefly present the theory for

rotationally inelastic scattering between a symmetric top and a 1Σ molecule, and describe

our scattering calculations. In Sec. 3.3 we introduce the PESs we used in our calculations.

We present in Sec. 3.4 our results on the scattering resonances and show that they are

shape or Feshbach resonances. We also analyze the resonances using various techniques,

including the adiabatic bender model [40, 109] and the scattering wave function analysis

[55]. A discussion in Sec. 3.5 concludes the chapter.
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3.2 Scattering Calculations

We label the rotational levels of the NH3 and ND3 symmetric top molecules with the

notation j k±, where j is the total angular momentum of the molecule, k is the projection

of j on the C3 axis, and ± is the umbrella inversion symmetry. Similar to the methyl

radicals discussed in detail in Chapter 5, the NH3 and ND3 molecules have respectively

two (para and ortho) and three (E , A1, and A2) nuclear spin modifications that do not

interconvert during inelastic scattering. The initial level suitable for Stark deceleration

(11−) belongs to the para or E nuclear spin symmetry, which includes all rotation levels

with k not a multiple of 3. For reference, we show in Fig. 3.1 the lower rotational levels of

para-NH3 and ND3 (E nuclear spin symmetry).

The quantum theory of inelastic collisions between a symmetric top molecule

and a molecule in a 1Σ electronic state can be found in Chapter 6 and several previous

papers [133–135, 137]. As in these studies, we approximate the inversion doublets wave

functions of NH3/ND3 as a combination of rigid rotor wave functions with | j k mϵ〉 =

2−1/2[| j k m〉+ϵ | j k ,−m〉]. The umbrella inversion symmetry equals to−ϵ(−1) j . Previous

investigations of the inelastic scattering in the NH3/ND3–He systems [55, 138] showed

that this approximation gives excellent relative cross sections by comparison with a more

elaborate model including the umbrella vibration–inversion coordinate.

Close-coupling calculations were performed both with the HIBRIDON suite of

programs [31] and with a second independent scattering program described in Ref. [112].

Care was taken to independently check the results with the two scattering programs and

to converge the cross sections. We include in the close-coupling channel basis all para

rotational levels of NH3 with j ≤ 6, or E rotational levels of ND3 with j ≤ 7. For the

collision with para-H2, the j = 0 and j = 2 levels of H2 are included; for ortho-H2, only the

j = 1 level is included. The maximum total angular momentum in the calculations was

J = 20, which gives inelastic cross sections converged to at least 0.1�A2 for total energies <
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70 cm−1. For NH3, we adopted rotational constants B = 9.9402cm−1 and C = 6.3044cm−1.

while for ND3 we used B = 5.1420cm−1 and C = 3.1170cm−1. We assume the inversion

splitting is the same for all inversion doublets and equals to 0.7903 and 0.053cm−1 for NH3

[139] and ND3 [140, 141], respectively.

3.3 Potential Energy Surface

In describing the interaction between NH3 and H2 we use a coordinate system

defined in Ref. [135]. In this system the Jacobian vector R lies along the space-fixed frame

z axis, and the rotations from the molecule frames of NH3 and H2 to this space-fixed frame

are defined by the Euler angles (0,−θ1,−φ1) and (φ2,θ2, 0), respectively. The interaction

potential can be expanded either in a “space-frame expansion”

V (R,θ1,φ1,θ2,φ2) =


l1 l2 lµ1

Vl1 l2 lµ1
(R)



m1

〈l1m1, l2,−m1 | l 0〉

×D l1∗
m1µ1

(0,−θ1,−φ1)D
l2∗
−m1,0(φ2,θ2, 0), (3.1)

or a “body-frame expansion”

V (R,θ1,φ1,θ2,φ2) =


l1 l2 lµ1

Vl1 l2µ1 m1
(R)

×D l1∗
m1µ1

(0,−θ1,−φ1)D
l2∗
−m1,0(φ2,θ2, 0). (3.2)

In the above equations, Vl1 l2 lµ1
and Vl1 l2µ1 m1

are expansion coefficients, 〈l1m1, l2,−m1 | l 0〉

is a Clebsch-Gordan coefficient, and D l
mµ are rotation matrices [28]. Another frequently

adopted angular expansion of the PES [142] uses a different set of angles to define the

orientation of the molecules, but is practically equivalent to the space-frame expansion

above.

For the collision between NH3 with H2, we used a CCSD(T)/aug-cc-pVDZ PES with
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corrections from CCSD(T)/CBS calculations created by Maret et al. [72]. We obtained

from the authors the potential fitted both in Eq. (3.1) and Eq. (3.2), and used both in

our scattering calculations. Because the sensitivity of resonances to the PES, the two

expansions give slightly different resonance structures. Given that the fitted potential

using Eq. (3.1) has smaller root mean squares (RMS) compared with the ab initio potential

when similar numbers of terms in the two angular expansions are used and the evaluation

of coupling matrix elements is easier with Eq. (3.1), we recommend using the space-frame

expansion of the PES in scattering calculations.

To describe ND3–H2 collisions, the NH3–H2 PES needs to be modified because the

center of mass is at a different location in NH3 amd ND3. We define the shift of the center

of mass as δCOM. From the NH3 geometry used in computing interaction energies in Ref.

[72] (rNH = 1.9512a0, ∠HNH = 107.38◦), we calculate that δCOM = 0.088530a0.

The ab initio calculation for the NH3–H2 potential was performed on a grid of 29 R’s,

and the same set of 3000 and 1000 orientations for each R were used for the CCSD(T)/aug-

cc-pVDZ and CCSD(T)/CBS calculations, respectively. To obtain a set of of ND3–H2

interaction energies suitable for developing a PES, we compute for each of the θ1 used in

the NH3–H2 calculation a corresponding θ′1 for ND3–H2 by

θ′1 = arccos
R′2 +δ2

COM−R2

2δCOMR′
, (3.3)

where R′ are the intermolecular distance chosen to fit the ND3–H2 PES, and R is the

corresponding intermolecular distance for NH3–H2 calculated from

R=−δCOM cosθ1 +
q

R′2−δ2
COM sin2θ1. (3.4)

These equations were obtained from trigonometric considerations.

We used these relations to transform the orientations (θ1,φ1,θ2,φ2) for NH3–H2

to (θ′1,φ1,θ2,φ2) for ND3–H2 for each R′ (from the same R grid used in the NH3–H2
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Figure 3.2: Comparison between the larger expansion coefficients Vl1µ1 l2 l (as defined in Eq. (8) of
Ref. [137]) as a function of intermolecular distance R, of the NH3–H2 PES described in Ref. [135]
(dashed lines) and the ND3–H2 PES described in the present work (solid lines).

calculations), and estimated the interaction energy for that geometry by splining the R

dependence of NH3–H2 interaction energies at this orientation. We then fit the ND3–H2

interaction energies using the same technique as in described in Ref. [72] to obtain a PES.

Figure 3.2 shows the comparison of the larger angular expansion coefficients as a

function of R between the original NH3–H2 PES and the fitted ND3–H2 PES. We see

that the two PESs are quite similar, with three of the five larger expansion coefficients

virtually identical and the other two showing slight differences. This is not unreasonable

given the small shift in the COM. The two expansion coefficients showing differences

have significant contributions from multipole-multipole electrostatic interactions, with

V1023 associated with the NH3/ND3-dipole–H2-quadrupole interaction, and V2024 the

quadrupole-quadrupole interaction [66].
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3.4 Results

3.4.1 Collisions between NH3 and para-H2

Overview of the Resonances

We first show in Fig. 3.3 the energy dependence of the state-to-state integral cross sec-

tions for transitions from the 11− initial level at collision energies below 70 cm−1. At these

energies, H2 cannot be collisionally excited. In this energy range, the transition between

the inversion doublets (11−→ 11+) dominates and shows rich resonance structure, with

both broad and sharp peaks. Because of the deep well of the NH3–H2 PES (De = 267cm−1

[72]), we do not observe clearly groups of resonances associated with the opening of a

particular channel, as appears in molecule–rare gas systems [55, 83]. We will show in Sec.

3.4.1 that the resonances seen in Fig. 3.3 are indeed Feshbach resonances. The broad peaks

of a few wavenumbers in width and intensity more than 3 times the background inelastic

cross sections are particularly promising for observation in a crossed beam experiment.

The 11−→ 21+ transition also shows several resonances with magnitudes double

the background cross section. As will be analyzed in Sec. 3.4.1, these are shape resonances
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originating from the quasibound states associated with the final level 21+. Similar to

the 11−→ 21+ transition, the 11−→ 21− transition also has a few shape resonances at

similar collision energies, though smaller in magnitude. The resonances in the 11−→ 22±

transitions have contributions from both shape and Feshbach resonances caused by the

quasibound states associated with the 21± levels.

The relative magnitudes of the state-to-state cross sections are significantly different

for the NH3–H2 and NH3–He systems. In particular, the transition to the 21+ level is

much stronger when the collision partner is H2. This can partly be explained with the

differing anisotropies of the PESs. In collisions of NH3 with H2( j = 0), the V1001 and V3003

terms directly couple the 11− and 21+ levels, while V2002 term directly couples the 11−

and 21− levels. These three coefficients in the NH3–H2 PES are comparable in magnitude

at moderate to large intermolecular distances. For the NH3–He PES, the V10 and V30 terms

have significantly smaller magnitudes than the V20 term (see Fig. 3 of Ref. [55]), giving

rise to smaller 11−→ 21+ cross sections. Further, with H2( j = 2) in the close-coupling

channel basis, expansion terms with l2 > 0 can affect the cross sections. Such anisotropies

are absent from the NH3–He system.

Feshbach Resonances in the 11−→ 11+ Transition

To understand the resonances in the 11− → 11+ transition, we plot in Fig. 3.4

the contributions to the integral cross section (partial cross sections) from each partial

wave, distinguished by the total angular momentum J and the parity. We can observe

several series of resonance structures consisting peaks of similar shape and shifting to

higher collision energies as J increases. We expect that peaks within a given series are

resonances arising from quasibound states associated with a same rotational level of NH3.

As J increases, the corresponding orbital angular momentum L increases, which leads to a

higher centrifugal barrier and a higher quasibound state energy.

To investigate the origin of the resonances, we performed an adiabatic bender analysis
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similar to that described in Sec. 2.4.3. Here, we diagonalize the Hamiltonian exclusive of

the nuclear kinetic energy for a given partial wave to obtain adiabatic bender curves. The

energies of the van der Waals stretch levels supported by those curves are computed using

a discrete variable representation (DVR) method [121, 122].

We display the derived adiabatic bender curves and quasibound level energies for

the J = 6, + parity partial wave in Fig. 3.5 as an example. We see that the stretch levels

supported by the adiabatic bender curves associated with the NH3 22± levels, at 8.30,

15.71, and 22.30cm−1 (red vertical lines in Fig. 3.4), are in reasonable agreement with the

positions of the sharp resonance peaks that appear on the energy dependence of partial

cross sections for this partial wave (the upper solid green curve in Fig. 3.4). The two lower

stretch levels associated with the NH3 21± levels, 19.49 and 26.44cm−1 (blue vertical lines

in Fig. 3.4), agree with the positions of the broad resonance peaks. These results suggest

that both the sharp and broad resonance peaks shown is Fig. 3.4 are Feshbach resonances,

with the sharp peaks originating from quasibound states associated with the NH3 22±

level and the broad peaks from the 21± level.

One of the adiabatic bender curves in Fig. 3.5 has a bound stretch level at 33.18cm−1,

at which no resonance appears in Fig. 3.4. A close look reveals that this adiabatic bender

curve has avoided crossings with other curves, including those associated with a different

NH3 level. This is an example of the limitations of the adiabatic bender model. Near

an avoided crossing, the scattering wave function would change dramatically, and the

separation of radial and angular functions, as assumed in the adiabatic bender model, would

no longer be a good approximation. Such a phenomenon is analogous to nonadiabatic

effects [143] in electronic structure theory. As shown in Fig. 3.5, the NH3–H2 adiabatic

bender curves have well depths comparable or greater than the rotational level separation,

and the adiabatic bender analysis is particularly vulnerable to these avoided crossings.

An alternative method of studying the Feshbach resonances is to examine the contri-

butions to the radial scattering wave functions by the close-coupling channels originating
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from various monomer rotational levels [55]. We plot in Fig. 3.6 such contributions to

the squared scattering wave function of the j = 6, + parity partial wave at three collision

energies. We note that each NH3 rotational level may give rise to several channels with

different orbital angular momentum L, and we have summed up their contributions.

The three energies considered in Fig. 3.6 are close to each other, but the scattering

wave functions are quite different. Fig. 3.6(a) corresponds to a collision energy where a

broad resonance peak occurs. We see clearly the 21− channels has a dominating amplitude

in the region of the van der Waals well, showing that the broad resonance peak is a

Feshbach resonance associated with the 21− level of NH3. Fig. 3.6(b) represents a collision

energy at which there is a sharp resonance peak. The major contributors to the scattering

wave functions here are the 22+ and 22− channels, and those channels are responsible

for this Feshbach resonance. Fig. 3.6(c) shows the scattering wave functions at an off-

61



0.0 0.2 0.4 0.6 0.8 1.0
θ / degree

0.0

0.2

0.4

0.6

0.8

1.0

d
σ
/
d
Ω

/Å
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para-H2 j = 0 at several collision energies, labeled on each panel.

resonance energy, and we see the magnitudes of the wave functions are small and there is

no dominating channel.

We see that the two techniques for analyzing the resonances agree on the origin of the

resonances. The scattering wave function analysis, while slightly more computationally

demanding, does not suffer from avoided crossings in the adiabatic bender analysis. We

performed the wave function analysis on other major resonance peaks and found that

these are primarily Feshbach resonances. We conclude that the broad resonance peaks

arise from the 21± levels of NH3, and the sharp peaks from the 22± levels. How these

two levels lead to different widths and magnitudes of the Feshbach resonances remains

unclear. We do note that the 11−→ 21± transitions have larger cross sections than the

11−→ 22± transitions, despite a larger energy gap. This indicates a stronger coupling

between 11− and 21± levels.

We also computed the differential cross sections (DCSs) at several resonance and

off-resonance energies; these are shown in Fig. 3.7. The pattern of increased backward

scattering at energies close to a resonance, as we found for the OH/NH3–rare gas systems
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[55, 83], is less clear for NH3–H2 collisions. Figures 3.7(a) and (c) show DCSs at energies

close to sharp resonance peaks, and we see significant backward scattering as expected.

Backward scattering is even dominating at a collision energy of 4.265cm−1, corresponding

to the first sharp resonance peak shown in Fig. 3.3. Figures 3.7(b) and (d) correspond

to energies at which there is a broad peak, and an off-resonance energy, respectively.

Surprisingly, we see strong backward scattering at the off-resonance energy but not the

near-resonance energy. We do note that the differential cross sections are not from the

J = 6, + parity partial wave alone and there are significant contributions and interferences

involving other partial waves.
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Shape Resonances in the 11−→ 21+ Transition

In this section we analyze the resonance structure shown in the energy dependent

11−→ 21+ cross section. Although not as dramatic as the resonances in the 11−→ 11+

transition, the resonances in this transition have a relatively simple structure, and these

moderately broad resonance peaks at slightly higher collision energies may facilitate the

observation of resonances in molecular beam experiments.

We first show the partial cross sections for this transition in Fig. 3.8. We see the

contribution to the resonance peaks is quite different from those shown in Fig. 3.4. Namely,

each of the the three peaks at collision energies of ∼ 40, 50, and 60cm−1 has contributions

from several partial waves. The three peaks have increasing width as the energy increases.

These are typical characteristics of a shape resonance [83, 104, 120]. This resonance

structure, however, is distinguished from that observed in the NH3–He and OH–He

systems by the rapid increasing background cross section and the large spacing between

resonance peaks. The large spacing is a direct consequence of the small reduced mass of

the system and large centrifugal barriers.

To confirm the origin of these resonances, we again applied the adiabatic bender

model used in Sec. 3.4.1. The adiabatic bender curves look similar to those shown in

Fig. 3.5 and are not shown here. After computing the adiabatic bender curves, we treat

them as in a conventional one-dimensional scattering problem and compute the phase

shift as a function of collision energy. A rapid increase of the energy dependent phase

shift by π indicates a scattering resonance [2]. We plot in Fig. 3.9 the phase shifts for

all adiabatic bender curves associated with the 21+ level with 6≤ J ≤ 9 that give rise to

such changes in phase shift. We see clearly for each of the curve shown in Fig. 3.9 that

the energy dependent partial cross section for the corresponding partial wave (Fig. 3.8)

shows a resonance peak at a similar collision energy. Further, the widths of the resonances

match those for the change of phase shift by π. This confirms that the resonances in the

11−→ 21+ transition are shape resonances caused by quasibound states associated with
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the final level of the transition.

We note that there are four rotational levels below the 21+ level and the adiabatic

bender curves related to that level have large cardinal indices. There are many avoided

crossings between the adiabatic bender curves that makes such phase shift analysis difficult

and inaccurate. For this particular case, we found such analysis satisfactory.

3.4.2 Collisions between NH3 and ortho- and Normal H2

We show in Fig. 3.10 the collision energy dependence of the state-to-state cross

sections out of the 11− level of NH3 in collisions with ortho-H2 in the j = 1 rotational

level. We see the 11−→ 11+ transition dominates at the collision energies considered, and
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the cross section for this transition is considerably larger than the corresponding transition

for collision with H2 j = 0, displayed in Fig. 3.3. Unlike H2 j = 0, the j = 1 level can

polarize as it approaches the collision partner; the form of the j = 1 rotational wave

function allows access to regions of the PES that are anisotropic in θ2 and φ2 (or l2 > 0).

Only l2 = 0 terms in the angular expansion [see Eq. (3.1)] of the PES directly couple

channels in collisions with H2 j = 0, while many of the larger expansion coefficients have

l2 > 0. A similar enhancement in cross sections for collisions of ortho-H2, as compared to

those for para-H2 has also been found in other molecule–H2 inelastic collisions [144, 145].

We also see that the energy-dependent 11−→ 11+ cross section plotted in Fig. 3.10

displays many, overlapping resonances. This contrasts with the much smaller number of

mostly resolved resonances seen for collision of H2 j = 0 (Fig. 3.3). The binding energy

for NH3–H2( j = 1) is expected to be much larger than for NH3–H2( j = 0) since the PES

for the former includes l2 > 0 terms in the PES. This is similar to other molecule–H2

systems in which the binding energy of the complex is significantly lower in energy for

ortho-H2 than for para-H2 [146–150]. Thus, there are more bound, and quasi-bound, levels

associated with NH3–H2( j = 1) than with NH3–H2( j = 0), and the resonance structure
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in the cross section for the 11−→ 11+ transition is much more complicated for collision

with H2 j = 1 than for j = 0. We have not carried out a detailed analysis of the resonances

seen in Fig. 3.10.

The shape resonances in the cross sections for the 11−→ 21± transitions in collision

with H2 j = 1 are small in magnitude relative to the non-resonant background, as compared

to those when H2 j = 0 is the collision partner. For the 11−→ 22± transitions, the shape

and Feshbach resonances associated with the 21± levels overlap and are small in magnitude

(see Fig. 3.10). We expect that the resonances in these transitions would be difficult to

observe in crossed beam experiments.

Normal hydrogen has an ortho to para ratio of 3:1. We plot in Fig. 3.11 the cross

section for the NH3 11− → 11+ transition in collision with para-, ortho-, and normal

H2. Because of the larger nuclear spin statistical weight and the larger cross section, the

resonance structures for NH3–normal H2 (black lines in Fig. 3.11) is almost the same as

for NH3–ortho-H2 (blue lines in Fig. 3.11).

To estimate the feasibility of observing these resonances in molecular beam experi-

ments, we plot also in Fig. 3.11 the cross sections for the 11−→ 11+ transition of NH3 in
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Figure 3.12: State-to-state integral cross sections as a function of collision energy for transitions
from the 11− level of ND3 in collision with para-H2 ( j = 0). The final levels are indicated for each
transition for which the cross section is plotted.

collisions with para-, ortho-, and normal H2, convoluted with Gaussian collision energy

spreads of two different widths. We see that with a 2cm−1 energy resolution, the sharp

resonance peaks disappear, but the broad resonance peaks are still resolved. However,

with an energy spread of 5cm−1, only relatively week oscillatory structures corresponding

to the broad resonance peaks are left. Such structures would be difficult to observe in

experiments.

The best prospect for observing resonances in NH3–H2 collisions is with para-H2.

When ortho-H2 or normal H2 is the collision partner, only two broad peaks are prominent,

but the magnitudes of these peaks are relatively small compared with the background

non-resonance cross sections.

3.4.3 Collisions between ND3 and H2

The ND3 molecule has a smaller inversion splitting, and is easier to manipulate

with a Stark decelerator. Accordingly, we investigate resonances in ND3–H2 collisions in

this subsection. We present in Fig. 3.12 state-to-state integral cross sections as a function

of collision energy for transitions from the 11− level of ND3 in collisions with para-H2

j = 0. We notice that there are dramatic resonance structures in the cross section for
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the 11− → 11+ transition. Similar to the para-NH3–para-H2 system, the broad peaks

are Feshbach resonances associated with the 21± levels of NH3, while the sharp peaks

Feshbach resonances associated with the 22± levels. Although the NH3–H2 and ND3–H2

PESs are quite similar, the ND3 rotational levels are more closely spaced. As a result, the

ND3 22± and 21± levels become open at a lower collision energies; this in turn lowers

the energies of the quasibound levels associated with these levels relative to the energy

of the initial 11− level. It is therefore reasonable to see the resonance peaks appear at

lower collision energies. Also, two higher inversion doublets, 32± and 31±, open at ∼ 45

and ∼ 51cm−1, respectively. Quasibound states associated with these levels also give rise

to weaker resonance peaks in the plotted collision energy range, making the resonance

structure more complicated.

The propensities for various transitions are generally the same for NH3–H2 and

ND3–H2, consistent with the similarity of the PESs. However, the resonances in the

11−→ 21± and 11−→ 22± transitions of ND3 show significant overlap and would be

difficult to observe cleanly in crossed beam experiments. We will not show a detailed

analysis of these resonances here.

3.5 Discussion

In this chapter, we have presented calculations and analysis of resonances in rotation-

ally inelastic scattering of NH3 and ND3, in the 11− initial level, with H2 j = 0 and j = 1.

The large width of many resonances and relatively large resonance contributions to the

cross sections, particularly for the 11−→ 11+ transition of NH3 or ND3 with para-H2,

make the observation of resonances in this system very promising in molecular beam

experiments. The observation of multiple resonance peaks in these systems requires a

∼ 2cm−1 collision energy resolution in a crossed beam experiment. While the requirement

is comparable with that for the OH–He/Ne and NH3–He systems [55, 83], the resonances

in the present system are more prominent, and the cross sections are larger.
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Figure 3.13: State-to-state integral cross section as a function of collision energy out of the 11− level
of para-NH3 in collisions with ortho-D2 ( j = 0). The final levels are indicated for each transition
for which the cross section is plotted.

In addition to H2, we have also considered D2 as the collision partner. We found in

this case that the resonance structures are complicated, with significant overlapping between

resonances associated with different asymptotic rotational levels. (The energy dependence

of the cross sections are plotted in Fig. 3.13). The reduced mass of NH3–D2 is almost twice

that of NH3–H2. Thus, the zero-point energy of the former complex would be smaller,

and the NH3–D2 would support more bound and quasi-bound levels, including some

levels with stretch quantum number greater than 0. Consequently, Feshbach resonances

arising from quasi-bound levels associated with higher NH3 levels will appear at a lower

energy and overlap significantly. In addition, the experimental method for ortho→para

conversion of H2 to form clean samples of H2 j = 0 does not work well for D2. For these

reasons, D2 is not an ideal candidate for the study of resonances in this system.

The ground level (00+) of NH3 is not suitable for Stark deceleration. Nevertheless,

we find that NH3–H2 cross sections for transitions from that level, particularly for the

00+→ 10+ transition, also display interesting resonance structures with both broad and

sharp resonance peaks. There energy-dependent cross sections are presented in Fig. 3.14.

The resonances in inelastic scattering have strong connections to the PES of the

given system. The current study uses a PES developed by Maret et al. [72]. The ab initio
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calculations for the reference PES are only at CCSD(T)/aug-cc-pVDZ level, and those for

the correction PES are extrapolated from CCSD(T)/aug-cc-pVDZ and CCSD(T)/aug-cc-

pVTZ calculations. To check the accuracy of the PES, we have performed CCSD(T)-F12a

calculations [51, 53] with the aug-cc-pVTZ basis using Molpro [151] for 3000 geometries

at R = 5a0 and fitted the interaction energies using the same angular expansion as the

Maret et al. PES. We found that all the ten expansion coefficients with the largest absolute

values differ by less than 1% from those in the Maret et al. PES. Therefore, we believe

the PES used in this study has good accuracy for the computation of cross sections and

resonance structures.
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Chapter 4

Vibrational Relaxation of CH3 in Collisions with He

This chapter contains long excerpts of a paper titled “Theoretical study of the

vibrational relaxation of the methyl radical in collisions with helium” by Qianli Ma, Paul

J. Dagdigian, and Millard H. Alexander, originally published on J. Chem. Phys. [152], and

is presented with permission of the American Institute of Physics.

4.1 Introduction

Collisional vibrational energy transfer is fundamental to many processes in chemistry,

including thermalization of non-equilibrium vibrational state distributions and relaxation

of energized molecules in unimolecular reactions. Modern laser methods have revolu-

tionized the experimental study of vibrational energy transfer [153–159]. Theoretical

calculations, both quantum scattering calculations and semiclassical trajectory studies, can

predict cross sections and rate constants for vibrationally inelastic collisions. In the case of

collisions of diatomic molecules with atoms, fully quantum scattering calculations with all

degrees of freedom have been carried out only for a few exemplary systems [122, 160–163].

Theoretical studies of collisional vibrational energy transfer have emphasized the

study of the relaxation of highly energized polyatomic molecules because of the role

of this process in unimolecular reactions. Examples are the work by Lendvay, Schatz,

and Harding on the relaxation of SO2 by Ar [164], the work of Oref and Bernshtein on
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benzene–Ar and azulene–Ar [165, 166], and the work of several groups on the relaxation

of pyrazine in collisions with CO and CO2 [167, 168]. Because of the large number

of ro-vibrational levels that are energetically accessible, there have been few quantum

scattering calculations on ro-vibrational relaxation of polyatomic molecules. Only by

eliminating the rotational degrees of freedom, and using approximate models such as the

infinite-order-sudden approximation, have earlier authors been able to model collisional

vibrational relaxation of polyatomics. Examples include a colinear quantum model by

Schatz and Lendvay [169] in treating CS2–He vibrational energy transfer, a breathing

sphere approximation by Ivanov, Grebenshchikov, and Schinke [170] on O3–Ar, zero-

impact parameter calculations by Christoffel and Bowman [171] on HCN/HNC–Ar,

time-dependent wave packet calculations by Valero and Kroes [172], and vibrational close-

coupling, infinite-order sudden quantum-scattering calculations by Clary et al. [173, 174].

Our focus here is the relaxation of the umbrella vibrational motion of the methyl

radical, with full retention of the rotational degrees of freedom. Several experimental

studies of the collisional vibrational relaxation of the methyl radical have been reported

[175–179]. In some cases, vibrational relaxation was investigated while determining the

nascent internal state distribution of methyl radicals, either CH3 or CD3, produced in

photolysis or chemical reaction [176, 180–183]. In a previous study, our group carried out

a theoretical investigation of purely rotationally inelastic collisions of the methyl radical

with He [81]. In that study, a potential energy surface (PES) for the interaction of CH3

with He was computed using a restricted open-shell coupled-cluster method with inclusion

of all single, double, and (perturbatively) triple excitations [RCCSD(T)]. The geometry

of the CH3 radical was held fixed at the planar trigonal lowest-energy structure [81, 184].

Full close-coupling quantum scattering calculations were then carried out to determine

state-to-state integral cross sections, as well as thermal rate constants, for rotational energy

transfer.

The methyl radical has four vibrational modes. The lowest-frequency mode (at 606.5
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cm−1) is the ν2 out-of-plane bending mode [185], usually referred as the “umbrella” mode.

Here we extend our earlier work [81] to the ro-vibrational relaxation of the ν2 mode. The

umbrella mode has been found to be excited in methyl formed in the photolysis of methyl

halides and in some chemical reactions producing methyl [176, 177, 180–183, 186]. The

lowest-frequency mode is often considered to be the “gateway” for the overall collisional

relaxation of a molecule [187].

This chapter is organized as follows: Section 4.2 describes construction of a 4-

dimensional PES to describe the interaction of a methyl radical undergoing umbrella

vibrational motion with a He atom, and, then, the averaging over the vibrational coordinate

in a given ν2 level. Section 4.3 describes the level structure of CH3 and the technical details

of the scattering calculation. In Sec. 4.4 we report calculated cross sections and rate

constants, and analyze the dynamics of the relaxation of the v2 = 1 umbrella vibrational

mode. The other vibrational modes of CH3 are assumed to remain in their ground state.

A discussion and comparison with experimental results concludes the paper.

4.2 Potential Energy Surface

We employ the body-frame coordinate system shown in Fig. 1 of Ref. [81] to describe

the location of the He atom relative to the methyl radical. The center of mass of CH3 is

located at the origin, with the z axis defining the C3 symmetry axis. The x axis lies along

one of the C–H bonds. The orientation of the He atom with respect to the center-of-mass

of CH3 is described by the spherical polar coordinates R, θ, andφ. Following the study by

Yamada, Hirota, and Kawaguchi [188] of the ν2 bands of methyl, the umbrella vibrational

coordinate Q is defined as the perpendicular distance of the carbon atom from the plane

containing the three hydrogen atoms.

As in our earlier study of pure rotational energy transfer in CH3 [81], to determine

the PES we used restricted coupled-cluser calculations with full inclusion of single and

double excitations and the perturbative inclusion of triplet excitations [189–191]. We used
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the aug-cc-pVQZ correlation-consistent basis sets [192], with the addition of bond func-

tions [49, 50] located at the mid-point of the Jacobian vector R. A conterpoise correction

[57] was used to correct for basis-set superposition error. All ab initio calculations were

done with the Molpro 2010.1 suite of programs [113].

The CH3–He PES was computed on a four-dimensional (R, θ, φ, and Q) grid

delimited by 19 values of R [R (in bohr) = 3.5–10 in steps of 0.5; 11, 12, 13, 15 and 20],

10 values of θ [θ= 0–90◦ in steps of 10◦], 7 values of φ [φ= 0–60◦ in steps of 10◦], and

11 values of Q [Q (in bohr) = −0.94–0.94 in steps of 0.094]. For θ = 90◦ only points

with non-negative Q are unique and for θ= 0◦ all values of φ are equivalent. Interaction

energies for other values of (θ,φ) can be obtained by symmetry. The total number of

(nonequivalent) nuclear geometries is 12711.

From these points, we obtain three-dimensional (R, θ, φ) vibrationally averaged

PESs by integrating over the vibrational wave functions χv(Q) of the umbrella mode

(which we assume to be real), namely

Vv′v(R,θ,φ) =


χv′(Q)V (R,θ,φ,Q)χv(Q)dQ (4.1)

where Q designates the umbrella coordinate. Even when constrained to C3v symmetry, as

the CH3 molecule bends out of planar geometry the C–H bond length increases signifi-

cantly, a manifestation of the transition from s p2 to s p3 hybridization [193]. To account

for this effect, in the determination of the wave functions for the CH3 vibrational mo-

tion we used an umbrella potential obtained by similar CCSD(T) calculations with, at

each value of Q, minimization of the energy with respect to the C–H bond length. The

importance of a proper description of the C–H stretch is illustrated by Fig. 4.1, which

shows the comparison of the CH3 umbrella potential from our ab initio calculation with a

C–H bond length fixed at the equilibrium planar value and varying at each Q, and that

derived from experiment by Yamada, Hirota, and Kawaguchi [188]. The agreement with
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Figure 4.1: Potential energy of CH3 as a function of the umbrella displacement Q. The red line
shows the experimentally derived curve of Yamada, while the black line shows the potential from
our ab initio calculations with optimized C–H bond length for each umbrella displacement as
described in the text. The blue dashed line shows the potential calculated with a fixed C–H bond
length of 2.037 bohr. The horizontal lines indicate the positions of the lower experimental (red)
and calculated (black) vibrational levels.

experiment is far better when the C–H bond length is allowed to relax.

A simplified treatment restricts the motion of the three H nuclei to the Q coordinate,

with the Hamiltonian

Ĥ =− 1
2µu

d 2

dQ2
+Vu(Q), (4.2)

where Vu(Q) is the umbrella potential described in the previous paragraph, and the reduced

mass is [188]

µu = 3mHmC/(3mH + mC). (4.3)

As shown in Fig. 4.1, the calculated energies of the lower ν2 levels estimated with our

umbrella potential energy curve match well with experiment. The calculated v2 = 1← 0

band origin is 623.02 cm−1, This differs by less than 3% from the experimental value of

606.45 cm−1 [188].

The positions of the levels and the ν2 wave functions determined by this one-

dimensional treatment agree extremely well with the predictions based on a more rigorous

treatment of the umbrella motion [194], developed in the study of the NH3–Ar van der

Waals complex. In this work, the kinetic energy term in the Hamiltonian for umbrella
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motion is expressed through a moment of inertia that depends on the inversion (umbrella)

coordinate.

We follow Green [195] in expanding each vibrationally-integrated Vv′v(R,θ,φ) po-

tential energy surface (with v′, v≤ 3) in terms of spherical harmonics

Vv′v(R,θ,φ) =


λµ

V λµ
v′v (R) (1+δµ0)

−1
�

Yλµ(θ,φ)+ (−1)µYλ,−µ(θ,φ)
�

. (4.4)

Equation (4.4) can be equivalently written as

Vv′v(R,θ,φ) =


l1µ1≥0

V λµ
v′v (R)(2−δµ0)

�

2λ+ 1
4π

�

1
2

dλµ0(θ1)cosµφ. (4.5)

where d j
m′m(θ) is a reduced rotation matrix and is real. Since the umbrella motion preserves

C3 symmetry, the angular expansion coefficients V λµ
v′v (R) vanish except whenµ is a multiple

of 3 [81]. Further, the interaction potential has the additional symmetry

V (R,θ,φ,Q) =V (R,π−θ,φ,−Q), (4.6)

and the symmetry of the wave function for the umbrella mode with respect to reflection

through Q = 0 is equal to the parity of the vibrational quantum number. It follows that



χv′(Q)V (R,π−θ,φ,Q)χv(Q)dQ

=(−1)v+v′


χv′(Q)V (R,θ,φ,Q)χv(Q)dQ (4.7)

With Eqs. (4.4) and (4.7), and the fact that Yλµ(π−θ,φ) = (−1)λ+µYλµ(θ,φ), we conclude

that the only non-vanishing expansion coefficients are those for which

(−1)λ+µ = (−1)v
′+v. (4.8)
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Figure 4.2: Dependence of the vibrational coupling potential V10(R,θ,φ) of CH3–He defined
in Eq. (4.1) on the orientation (θ,φ) of the He atom with respect to the CH3 molecule for an
atom-molecule separation R= 6 bohr.

In the angular expansion of the CH3(v)–He PES we included 12 terms with µ= 0,3,6,9,

and λ≤ 9 for even λ+µ and λ≤ 10 for odd λ+µ. The choice of λ andµ is also constrained

by Eq. (4.8).

Figure 4.2 presents a contour plot of the V10 coupling PES at R= 6 bohr. To assess

the quality of the fit, we note that the root mean square deviation of the fit to the V1,0

coupling potential at R = 6 bohr is 0.516 cm−1. The V10 PES is antisymmetric about

θ= 90◦, because of the differing symmetries of the v= 0 and 1 wave functions with respect

to reflection through Q = 0. As a consequence, there is no isotropic term in this expansion

of the PES, since λ = 0,µ = 0 does not satisfy Eq. (4.8) for coupling between an even

and odd v vibrational level. The overall sign of this off-diagonal coupling depends on

the relative phases of the v= 0 and v= 1 umbrella wave functions and is arbitrary. The

results of the scattering calculations will be invariant with this choice of the phase provided

that a consistent set of vibrational wave functions is used to compute all the off-diagonal

coupling PESs. We can also see that the coupling potential is roughly 1/8 of the magnitude
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10 (R) [defined in Eq. (4.4)] on the

CH3–He separation R. The gray dashed line indicates zero.

of the v= 0 vibrationally elastic CH3–He PES [V00(R,θ,φ)] at the same atom-molecular

separation (see Fig. 3 of Ref. [81]), depending on the helium location considered.

To investigate further the anisotropy of the coupling potential, we present in Fig. 4.3

the dependence on the atom-molecule separation R of the larger angular expansion co-

efficients V λµ
10 (R) for the v = 0–1 coupling. Under thermal conditions, the range of R

accessible is governed by the isotropic term in the vibrationally-diagonal PES, V 00
vv . This

can be easily estimated from Fig. 4 of Ref. [81]. Over this range of R, V 10, V 30, and V 43

are the largest anisotropic terms in the V10 PES. The dependence of these three terms on θ

and φ is

V 10
10 (R,θ,φ)∼ Y1,0(θ,φ)∼ cosθ. (4.9)

V 30
10 (R,θ,φ)∼ Y3,0(θ,φ)∼ 5cos3θ− 3cosθ, (4.10)

and

V 43
10 (R,θ,φ)∼

�

Y4,3(θ,φ)+Y4,−3(θ,φ)
�

∼ cosθ sin3θ cos3φ. (4.11)

The first term reflects the antisymmetry, with respect to θ of the V10 PES, which is due

(as we have mentioned) to the differing parities of the v= 0 and v= 1 vibrational levels.
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The second term reflects the line of maxima at θ∼ 65◦ and minima at θ∼ 115◦. The third

term reflects the localization of these extrema at φ= 0◦, 120◦, 240◦ and 360◦.

The anisotropy of the V10 vibrational coupling potential is very different from that

of the vibrationally-diagonal V00 PES which governs collision-induced rotational energy

transfer within a vibrational manifold, discussed in Ref. [81]. The largest anisotropic term

of the V00 PES is V 33
00 , which depends on both θ and φ. As we will see in Sec. 4.4, this

difference ultimately leads to very different propensity rules for rotational transitions in

vibrationally inelastic collisions.

We have determined all the CH3(ν2) vibrational coupling PESs for v,v′ ≤ 3. We will

give a brief description of these terms here. First, we consider the vibrationally-diagonal

v= v′ ≥ 1 PESs which govern pure rotational transitions of CH3(v≥ 1) with He. These

averaged PESs show little difference with the V00 PES, but are increasingly less repulsive as

v increases when θ approaches 0◦ or 180◦. This corresponds to approach of the He atom

from below or above the CH3 plane containing the CH3 molecule.

The anisotropy of the V21 PES is similar to that of the V10 PES, discussed above,

although the magnitude of the potential is slightly larger. Thus, we could expect similar

rotational propensities for v= 1→ 2 as compared to v= 0→ 1 transitions. The V20 PES

is much smaller (∼ 1/10) than those for ∆v = ±1 coupling. This V20 PES has a small

isotropic V 00
20 term, while the major contribution to the anisotropy comes from the V 40

20 ,

V 53
20 , and V 22

20 terms. However, since the magnitude of V20 is so small, we anticipate that

∆v=±2 vibrationally-inelastic collisions will be induced by successive∆v=±1 coupling.

Contour plots, as well as the dependence upon R of the expansion coefficients for the

coupling PESs described above, are available in the supplementary material of Ref. [152].

4.3 Scattering Calculations

Based on the PES described in the preceding section we have carried out full close-

coupling calculations to compute cross sections and rate constants for CH3 v = 1→ 0
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ro-vibrational relaxation.

Since we treat the CH3 molecule as a symmetric top regardless of the value of the

umbrella displacement Q, we can express the rotational part of the wave function as [195]

|nk mϵ〉= [2 (1+δk0)]
−1/2 (|nk m〉+ ϵ |n,−k m〉) , (4.12)

where n is the rotational angular momentum, and k and m are the the body-frame and

the space-frame projections, respectively, of n. The symmetry index ϵ is restricted to

+1 for k = 0, but can take on values of ±1 for k > 0. Although the methyl radical has

a total electronic spin of S = 1/2, the spin-rotation and hyperfine interactions are very

small [196]. Consequently, as in our earlier treatment of pure rotational energy transfer in

collisions of CH3 with He [81], we will neglect the spin of CH3 in our treatment of the

dynamics.

The nuclear permutation symmetry of the three protons imposes a further restric-

tion: the overall wave function, including the vibrational wave function for the umbrella

motion, must be antisymmetric with respect to permutation of the hydrogen nuclei. The

ortho-labelled nuclear spin modification includes projection levels with k equal to a multi-

ple of 3 (i.e. k = 0,3,6, ...), and ϵ= (−1)n+v [81, 197, 198]. In particular, for k = 0 the only

possible value of ϵ is +1, hence levels with (−1)n+v =−1 are absent in the k = 0 stack. The

para levels include all rotational levels with k not a multiple of 3 (i.e. k = 1,2,4,5,7,8, ...),

and both values (±1) are allowed for ϵ. Thus, there are roughly four times as many para

levels as ortho ones. The nuclear statistical weights of the ortho and the para levels are 4

and 1, respectively.

Figure 4.4 presents a level diagram for the low-lying v= 0 and 1 rotational levels. The

rotational energies were computed using a rigid rotor symmetric top Hamiltonian. The

rotational constants for the individual umbrella-mode vibrational levels and their energies

are taken from spectroscopic studies [188, 199]. We used these ro-vibrational energies
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quantum number n. The body-frame projection quantum number k appears at the top of each
column. Note that for k = 0 only rotational levels with parity equal to (−1)v are present.

in our scattering calculations. For simplicity, we will designate the v, n ro-vibrational

levels as nk for v = 0 and n†
k for v = 1. Since we will not consider explicitly transitions

into or out of levels with v> 1, we do not need to introduce a simplified notation for the

ro-vibrational levels with v> 1.

The HIBRIDON suite of programs [31] was employed to compute the vibrationally

elastic and inelastic cross sections. In the investigation of rotationally inelastic, but vibra-

tionally elastic, scattering, we include only rotational channels in the particular vibrational

manifold of interest, following procedures described in Ref. [81]. For rotationally inelastic

scattering in vibrational manifold v, we used the vibrationally averaged PES [v′ = v in

Eq. (4.1)].

We then treat scattering inelastic in both the rotational and umbrella degrees of

freedom of CH3. Because the state-to-state vibrationally inelastic cross sections were on

82



the order of 10−3 Å2 or even smaller, we wanted to ensure a precision of better than∼ 10−5

Å2. To do so, we expanded the channel basis to include all ro-vibrational levels up to

a specified maximum energy. At the highest energy considered (2500 cm−1), the basis

included all v≤ 3 rotational levels with energy less than 3650 cm−1, and all total angular

momenta J ≤ 150.5. The calculations for ortho and para CH3 at this energy required 3141

and 6291 channels, respectively.

As might have been anticipated, long-range collisions are too weak to promote

vibrational relaxation. Consequently, the maximum total angular momentum J required

for convergence is much smaller than that for purely rotationally inelastic collisions.

4.4 Results

4.4.1 Rotationally Inelastic Collisions

In our earlier study of purely rotationally inelastic scattering of CH3(v= 0) by He

[81], we found a strong propensity for ∆k =±3 transitions, a consequence of the large

V 33
00 term in the expansion of the coupling potential. We first consider here the effect of

the CH3 umbrella vibration on the PES for collision-induced rotational transitions. The

vibrationally averaged PES for CH3 [V00(R,θ,φ), see Figs. S1 and S2 of the supplementary

material of Ref. [152]] is very similar to the rigid CH3–He PES reported in Ref. [81], except

for a slightly less repulsive interaction at θ∼ 0◦ or 180◦. The cross sections computed with

the vibrationally averaged PES are virtually identical (within 1%) with those obtained

with the rigid CH3–He PES. Thus, inclusion of the CH3 umbrella motion affects little the

dynamics of rotationally inelastic but vibrationally elastic collisions.

The CH3(v = 1)–He PES [V11(R,θ,φ), see Figs. S3 and S4 of the supplementary

material of Ref. [152]] is very similar to both the rigid and V00 PESs. However, the

rotational level structure in v= 1 CH3 is slightly different than that for v= 0, because in

the k = 0 stack only even n rotational levels are allowed for v= 0 but only odd n for v= 1
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/Å

2

(b) initial level: 00 (ortho, v = 0)

20

33

53
66

99 43 (small)

Figure 4.5: Larger state-to-state integral cross sections as a function of collision energy for rotational
transitions out of the lowest ortho level of (a) v2 = 1 and (b) v2 = 0 CH3 in collisions with He. The
final levels are labeled on each curve.

(see Sec. 4.3).

To illustrate the effect of the difference in the rotational structure of the v= 0 and

v= 1 vibrational manifolds, we show in Fig. 4.5 the collision energy dependence of the

state-to-state cross sections for rotational transitions out of the 1†
0 level and the 00 level of

CH3, the lowest rotational levels in each manifold. The two panels of Fig. 4.5 are quite

similar, most noticeably the energy dependence of the large cross sections for transitions

to the n = 3, k = 3 state. However, we observe that the cross section for the 1†
0 → 3†

3

transition is about 20% smaller than that for the 00→ 33 transition. Additionally, the cross

section for the 1†
0→ 4†

3 transition is much larger than that for 00→ 43. These differences

are a direct consequence of the changes in the rotational level structure. The largest angular

expansion coefficient for the v= 1 averaged PES (V 33
11 ) couples the ground 1†

0 level with
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two levels, 3†
3 and 4†

3. For CH3(v = 0), the comparable term (V 33
00 ) couples the ground

00 level only with the 33 level. Although, the V 33
11 term couples the 1†

0 level with both

the 3†
3 and 4†

3 levels, the energy gap for the transition to the latter state is larger (Fig. 4.4).

Consequently, we see in Fig. 4.5(a) that the 1†
0→ 3†

3 cross section is larger than the 1†
0→ 4†

3

cross section.

Figure 4.6 shows the final-state distributions for collisions out of two ortho levels

of CH3(v = 1) at a collision energy of 300 cm−1. The two levels are choosen so that

Fig. 4.6 is comparable to Fig. 8 in Ref. [81]. The largest cross sections out of the 6†
6 level

involve ∆k =−3, while those out of 7†
0, ∆k =+3. These transitions result from direct

coupling between the initial and final levels by the dominant V 33
11 term. The change in level

structure of the k = 0 stack does not significantly affect the∆k =±3 collisional propensity.

The cross sections for transitions out of the 7†
0 level are significantly larger than those for

transitions out of the 6†
6 level. This result is consistent with what we found for rotationally

elastic transitions out of the 66 and the 60 levels for rigid CH3 [81]. The transitions out of

the 6†
6 level to the 4†

3 and 3†
3 levels have larger energy gaps than the transitions out of the 7†

0

level to the 7†
3 and 8†

3 levels, and the latter set of transitions are coupled more strongly by
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the dominant V 33
11 term (see Sec. V.A of Ref. [81]).

As we have seen here, the differing parities of the non-vanishing rotational levels

in k = 0 stack of the v = 0 and v = 1 vibrational manifolds (Fig. 4.4) is responsible for

differences in the rotationally inelastic scattering of ortho-CH3 in these two vibrational

manifolds. In contrast, for the para nuclear spin modification the level structure in v= 0

and v= 1 is very similar. Consequently, the rotationally inelastic scattering of para-CH3 in

these two vibrationally manifolds is very similar (not shown here) to that of rigid para-CH3,

shown in Ref. [81].

4.4.2 Vibrationally Inelastic Collisions

We now consider v = 1→ 0 ro-vibrational relaxation of CH3. Since the number

of levels is quite large, we first present results for the rotationally-summed vibrational

relaxation cross sections, defined as

σvib
nk

=


n′k ′
σn†

k
→n′

k′
. (4.13)

Here the sum extends over all energetically accessible rotational levels in the ground

vibrational level.

We plot in Fig. 4.7 the collision energy dependence of these rotationally-summed

vibrational relaxation cross sections for a number of ortho and para rotational levels,

representing a range of values of n and k. We observe similar magnitudes of the cross

sections for ortho and para levels with similar n and k, for example the ortho 7†
0 and para 7†

1

levels. However, the vibrational relaxation cross sections have a different collision energy

dependence than the cross sections for collision-induced rotational transitions. The former

show a roughly linear increase with collision energy. Because of the large vibrational

energy spacing, collisions at low energy are close to the adiabatic limit, so that the cross

section for vibrational relaxation will be small [2]. As the collision energy increases, the
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degree of nonadiabaticity increases, with a corresponding growth in the cross section,

which appears as an approximately linear dependence upon the collision energy.

A particularly interesting feature in Fig. 4.7 is the large variation in the vibrational

relaxation cross sections for different initial rotational levels. To visualize better the

dependence on initial level of the vibrational relaxation cross section, we plot in Fig. 4.8

these cross sections for a large range of rotational levels in v= 1 at a collision energy of

300 cm−1. We observe, except, perhaps, for the highest rotational level considered, an

increase as the degree of rotational excitation increases, and, for a given n, a decrease as the

body-frame projection k of n increases. This qualitative behavior appears to be unchanged

for collision energies greater than ∼ 200 cm−1.

To probe this dependence in more detail, as well to investigate the role of angular
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momentum in vibrational relaxation, we present in Fig. 4.9 a bar plot of the state-to-state

cross sections at 300 cm−1 collision energy for ro-vibrationally inelastic transitions out of

two exemplary initial levels of para-CH3, 5†
1 and 5†

5. Although these levels have the same n,

their vibrational relaxation cross sections at 300 cm−1 differ by ∼ 50% (see Fig. 4.8).

As in the case of purely rotationally inelastic transitions within the v = 0 mani-

fold [81], there appear strong propensities in the rotational distribution of the scattered

molecules. In the pure rotational case, we interpreted these in terms of the strength of

the coupling between the initial and final states and the magnitude of the energy gap.
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Interpretation is more complicated for the propensities revealed in the much less efficient

rovibrational transitions seen in Fig. 4.9. Certainly, the large magnitude of the 5†
1→ 81

cross section seen in the left panel can be attributed to the dominance of the V 30
10 term

in the expansion of the coupling potential. However, the cross section for the 5†
5 → 85

transition, which is similarly coupled by the V 30
10 term, is much smaller. This may par-

tially due to the slightly larger energy gap for the 5†
5→ 85 transition compared to that for

5†
1→ 81. We found that the strength of coupling, estimated from the magnitude of the

matrix elements of the V 10
30 term of the potential in body frame, is significantly larger for

the 5†
1→ 81 transition. However, it is only within the first Born approximation that one

can unambiguously correlate the size of a cross section to the magnitude of the potential

matrix element between the initial and final state. Here, the weak vibrationally-inelastic

coupling between a given n†
k and n′k ′ level will be at least partially masked by the very

strong, purely rotational couplings in both the v= 1 and v= 0 vibrational manifolds.

Finally, we examine the n dependence of the vibrational relaxation cross section. For

a given value of k, this cross section generally increases with increasing n (see Fig. 4.8). The

variation in the energy gap for important state-to-state transitions is an important factor

contributing to this n dependence. As an example, we consider levels in the k = 1 stack.

As discussed above, the n†
1 → (n + 3)1 transitions coupled by V 30

10 term make significant

contributions to the vibrational relaxation cross sections for levels in this stack. For these

transitions the energy gaps starts at −434 cm−1 for n = 1, decreases to −256 cm−1 for

n = 4,−9 cm−1 for n = 8, and changes sign for n = 9 (+54 cm−1). This trend of decreasing

energy gaps is in good agreement with the n dependence of the total cross section. Also, for

low-lying rotational levels, a ∆n, ∆k transition coupled by the V 30
10 or V 43

10 term generally

has a smaller energy gap as the initial rotational angular momentum n increases. As we

will discuss in Sec. 4.4.3, high-energy rotational levels where the relaxation efficiency

does not correlate as straightforwardly with the energy gap are unlikely to be populated

significantly at room temperature and below.
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4.4.3 Rate Constants for Vibrational Relaxation

Rate constants for vibrational relaxation at a given translational temperature Tt

for individual CH3(v = 1) rotational levels were computed from the collision energy

dependence of the vibrational relaxation cross sections [1]:

kvib
nk
(Tt) =

�

8

πµ (kBTt)
3

�1/2 ∞

0
Ecσ

vib
nk
(Ec )e

−Ec/kB Tt d Ec , (4.14)

where kB is the Boltzmann constant.

The computed relaxation rate constants for different initial levels at Tt = 298 K range

from ∼ 3− 9× 10−12 cm3 molecule−1 s−1. A table of these state-resolved rate constants is

presented in Table SI of the supplementary material of Ref. [152]. The relative dependence

on initial rotational and projection quantum number is strikingly similar to that of the

vibrational relaxation cross sections at a collision energy of 300 cm−1 (see Fig. 4.8 and Fig.

S9 of the supplementary material of Ref. [152]). This similarity is consistent with the

parallel energy dependence of the vibrational relaxation cross section from different initial

levels (see Fig. 4.7).

The thermal (averaged over initial rotational levels and summed over final rotational

levels) vibrational relaxation rate constant for a thermal distribution of rotational levels in

vibrational manifold v is given by

kvib(Tt,Tr) =



n,k
gnk

wnk
kvib

nk
(Tt)e

−Enk
/kB Tr



n,k
gnk

wnk
e−Enk

/kB Tr
(4.15)

where Tr is the rotational temperature, and gnk
, wnk

, and Enk
are the rotational degeneracy,

nuclear statistical weight, and energy, respectively, of the level nk . Although all the

quantum numbers refer here to v = 1, for simplicity we have suppressed the dagger

superscripts. As discussed in Sec. 4.3, there are roughly four times as many para levels as
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Figure 4.10: Dependence on the rotational and translational temperature of the rotationally-summed
vibrational relaxation rate constant for CH3(v= 1) in collisions with He upon the translational
and rotational temperature. The black line assumes equal translational and rotational temperature
(Tt = Tr); the red line assumes Tt = 298 K as Tr is varied; and the blue line assumes Tr = 298 K
while Tt is varied. The rate constants at selected temperatures are also listed in Table SII of the
supplementary material.

ortho levels. In contrast, the nuclear statistical weights wnk
favor the ortho levels. These

two preferences thus cancel each other out so that the thermal vibrational relaxation rate

constants are similar in size for the two nuclear spin modifications.

In evaluating the thermally averaged vibrational rate constant in Eq. (4.15), we

included all levels with Enk
≤ 1900 cm−1 (see Fig. 4.4). For levels of higher energy, con-

vergence of the integral over translational energy in Eq. (4.14) requires calculations at

total energies so large that the number of channels required renders the calculations com-

putationally infeasible with available computational resources. However, exploratory

calculations confirm that levels with internal energies greater than 1900 cm−1 will make

only a small contribution to the vibrationally inelastic rate constants at room tempera-

ture. Our calculated room-temperature (Tt = Tr = 298 K) thermally-averaged vibrational

v = 1→ 0 relaxation rate constant equals 5.4× 10−12 cm3 molecule−1 s−1. We estimate

that we can compute the thermally vibrational relaxation rate constant with reasonable

accuracy (ca. 10%) within our model up to temperatures less than or equal to 450 K.

We have computed the temperature dependence of the thermal vibrational rate

constant [Eq. (4.15)] under various assumptions about the translational and rotational
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temperatures. Figure 4.10 displays these calculated rate constants. For relaxation in a cell

where Tt = Tr, the rate constant increases monotonically with temperature.

To investigate the effects of translational and rotational temperatures separately,

we also show the dependence of the thermal vibrational relaxation rate constants upon

either the rotational or translational temperature with the other fixed at 298 K. As the

translational temperature increase, the distribution of collision energies shifts to higher

values. Since the vibrational relaxation cross sections for individual CH3(v2 = 1) rotational

levels increase almost linearly with collision energy (see Fig. 4.7), the vibrational relaxation

cross section with Tr fixed at 298 K is seen in Fig. 4.10 to increase significantly with the

translational temperature. The temperature dependence is nearly the same as when both

temperatures are assumed equal. This implies that the collision energy dependence of the

vibrational relaxation cross section, summed over final rotational quantum number is very

similar. This is indeed the case (Fig. 4.7).

By contrast, the vibrational rate constant obtained with Tt fixed at 298 K has a

much weaker dependence on the rotational temperature. We see that the low-temperature

limit of this rate constant equals ∼ 3× 10−12 cm3 molecule−1 s−1, or approximately the

room-temperature rate constants for the lowest rotational levels (see Fig. 4.14). Some

numerical values of the rate constants shown in Fig. 4.10 are listed in Table SII of the

supplementary material of Ref. [152].

To determine precise rate constants at sub-Kelvin temperatures, where the presence

of resonances makes the energy dependence of the cross sections irregular, would require

a finer grid in energy than we have used. At temperatures higher than ∼ 500 K, the

determination of precise rate constants will require cross sections at even higher total

energy and the inclusion of more vibrational levels in the channel basis, beyond the range

of currently feasible quantum close-coupling calculations.

92



4.5 Discussion

In this study, we have extended earlier calculations [81] of the CH3–He PES to in-

clude multiple values of the umbrella coordinate (ν2). Subsequent averaging over products

of vibrational wave functions for the umbrella mode allowed us to determine state-to-state

relaxation cross sections between the first-excited and ground umbrella states of CH3. The

dominant anisotropies in the PES which couples these two vibrational manifolds are anti-

symmetric with respect to reflection in the CH3 plane and have a large three-fold repulsive

anisotropy due to the equilateral positioning of the three H atoms. These two anisotropies

give rise to a strong propensity for collision-induced ro-vibrational transitions involving

∆k = 0,±3. Additionally the vibrational relaxation cross sections are found to have a

strong dependence on the degree of rotational excitation of the v2 = 1 vibrationally excited

CH3, as well as on the body-frame orientation of the initial rotational level. Preferential

ro-vibrational relaxation occurs for molecules that are cartwheeling (k = 0) rather than

pinwheeling (k ∼±n) with respect to the principal axis of the molecule.

We predict a room-temperature rate constant for relaxation of the v2 = 1 vibrational

level of 5.4 × 10−12 cm3 molecule−1 s−1 (see Sec. 4.4.3). This is almost two orders of

magnitude smaller than the rate constants for rotational relaxation within both the v2 = 0

and 1 vibrational manifolds, which equal ∼ 2.0× 10−10 cm3 molecule−1 s−1 for the lower

rotational levels (see Sec. 4.4.1 and Ref. [81]). The overall anisotropy of the CH3–He

interaction is changed little upon excitation of the umbrella mode. Thus the coupling

between different vibrational states of the umbrella mode is weak, compared to the coupling

within a vibrational manifold.

Several experimental investigations have addressed the collisional vibrational re-

laxation of CH3. Callear and van den Bergh [175] (CvB) followed the concentration of

the ground vibrational level of methyl through UV absorption after broadband flash

photolysis of Hg(CH3)2. They estimated that 85% of the radicals are formed vibra-
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tionally excited and determined a room-temperature vibrational relaxation rate constant

of 8(±2)× 10−13 cm3 molecule−1 s−1 for collisions with He. They suggested that this

relaxation corresponds to the collisional decay of the umbrella-excited levels.

Baughcum and Leone [177] investigated the internal excitation of the CH3 radical

in the 248 nm photolysis of Hg(CH3)2 and deduced that it possessed considerable ν2

and ν3 excitation. They also determined the nascent vibrational state distribution of ν3

levels. Donaldson and Leone [178] employed infrared fluorescence detection to investigate

relaxation of CH3(ν3) levels in collisions with He. For this process they determined a

relaxation rate constant of 2.6(±0.5)× 10−13 cm3 molecule−1 s−1.

Rudolph, Hall, and Sears [179]measured vibrational relaxation rate constants of CD3

produced in the 193 nm photolysis of acetone-d6 and compared these with the correspond-

ing rate constants for CH3. They observe that the collisional filling of the CD3 ground

vibrational level in the photodissociation of acetone-d6 is significantly slower than the

corresponding filling [175] of CH3 in the photodissociation of Hg(CH3)2. It is expected

[187] that the V → R,T relaxation probabilities should increase as the energy of the lowest

excited level decreases. Since the lowest vibrational level in the perdeteurated isotopomer is

lower in energy, we expect that relaxation of CD3 would be faster, contrary to the reported

relaxation measurements. This could be due to differences in the ro-vibrational spacings in

the two isotopomers or to the role of V →V relaxation in the experiment, where higher

umbrella levels are produced initially.

Our computed room-temperature rate constant for the collisional relaxation of CH3

in collisions with He is significantly larger than the relaxation rate constant reported by

CvB [175]. The discussion in the preceding two paragraphs raises the possibility that the

measurement of CvB does not pertain specifically to the relaxation of CH3(v2 = 1). In

addition, our neglect of zero-point motion in the other vibrational degrees in methyl, and

the neglect of vibrational inelasticity associated with all modes except for the umbrella

motion, could introduce some error. In particular, since the v4 = 1 vibrational level lies
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only 790 cm−1 above the v2 = 1 vibrational level, excitation of the v4 = 1 level could

occur at the higher collision energies which contribute to the relaxation rate constant for

CH4(ν2).

To our knowledge, there have been no prior investigations, either quantum or

classical, of state-resolved ro-vibrational relaxation of a polyatomic. We have demonstrated

here that it is now possible to carry out high quality quantum simulations of the ro-

vibrational relaxation of CH3 (or, for that matter, other small hydride radicals). We

encourage new studies of the relaxation of the umbrella mode in this molecule, to test

the accuracy of these theoretical simulations. Also, our work can serve as a valuable

benchmark for the calibration of more approximate treatments of the dynamics of ro-

vibrational relaxation.
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Chapter 5

Rotational Inelastic Scattering of Methyl Radicals with

He and Ar

This chapter contains excerpts of a paper titled “Rotationally inelastic scattering of

CD3 and CH3 with He: comparison of velocity map-imaging data with quantum scattering

calculations” by Ondřej Tkáč, Alan G. Sage, Stuart J. Greaves, Andrew J. Orr-Ewing,

Qianli Ma, Paul J. Dagdigian, and Millard H. Alexander, originally published on Chem.

Sci. [200] under a Creative Commons Attribution 3.0 Unported License.

This chapter contains excerpts of an unpublished manuscript titled “Rotationally

inelastic scattering of methyl radicals with Ar and N2”, by Ondřej Tkáč, Qianli Ma, Martin

Stei, Andrew J. Orr-Ewing, and Paul J. Dagdigian.

The experimental work described in this chapter was carried out by our collaborators

at the University of Bristol.

5.1 Introduction

The methyl radical (CH3) is a planar symmetric top molecule of particular interest in

combustion chemistry [5, 201], material chemistry [202, 203], and astrophysics [204–207].

The study of the interaction between CH3 and other atoms or molecules could extend

our knowledge of molecular interactions beyond the well documented atom-diatomic

molecule interactions.
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The inelastic scattering of labile free radicals using molecular beams and laser spec-

troscopic techniques was reviewed in the mid 1990’s [9, 74, 208]. However, considerable

advances have been made since then using methods such as ion imaging [14] and velocity

map imaging (VMI) [15] with laser spectroscopic detection of the final levels. Most of

these experimental studies have concentrated on scattering dynamics of diatomic radicals,

with spectroscopic probes used to measure state-resolved integral cross sections (ICSs), and

more recently differential cross sections (DCSs). The most extensively studied free radicals

have been NO [18, 23, 209–221] and OH [96, 97, 100, 103, 222–226], the latter because

of its important role in atmospheric chemistry, astrochemistry and combustion. Sarma

et al. [227] recently used VMI to obtain fully quantum-state-specified product angular

distributions for OH scattered by He and Ar.

Nevertheless, measurements of DCSs for inelastic scattering of free radicals other

than NO and OH are rare, and to the best of our knowledge have not been reported for

reactive radicals larger than these diatomics. Macdonald and Liu [228, 229] and Lai et al.

[230] examined the inelastic scattering of the linear triatomic NCO radical with He and Ar,

respectively, but concentrated on ICSs for spin-orbit conserving and spin-orbit changing

collisions. ICSs have also been reported for rotationally inelastic collisions of NH2 with He

[231]. Greater attention has been paid to the inelastic scattering of closed-shell triatomic

and polyatomic molecules, as illustrated by determinations of DCSs for scattering of

ammonia [232–234] and deuterated ammonia [17]with rare gases and molecular hydrogen,

and for water with helium [20] and hydrogen [21].

Along with advances in experimental techniques, there have been many quantum

scattering calculations of ICSs, and also DCSs, employing high-quality potential energy

surfaces (PESs). These have mostly concerned collisions of diatomic and stable polyatomic

molecules [19–21, 96, 97, 100, 103, 214, 217, 220, 223–226, 232]. A recent article by

Dagdigian [27] reviewed collisional energy transfer calculations for small hydrocarbon

intermediates, and highlighted computational studies of integral cross sections (ICSs) for
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collisions of methylene (CH2) [235, 236] and methyl radicals [81, 152]. The pathways for

energy transfer in collisions of a polyatomic are more complicated than for collisions of a

diatomic molecule. There is only one type of anisotropy in an atom-diatom interaction,

namely the difference in interaction energy for end-on vs. side-on approach. By contrast,

for collisions of a nonlinear polyatomic molecule there are two types of anisotropies,

corresponding to approach of the collision partner in or perpendicular to the molecular

plane.

Dagdigian and Alexander [81] recently used quantum scattering calculations to in-

vestigate rotational energy transfer of methyl in collisions with a helium atom through

quantum scattering calculations on a computed PES. This PES was calculated with a

coupled-cluster method that includes all single and double excitations, as well as perturba-

tive contributions of connected triple excitations [RCCSD(T)]. Because of the anisotropy

of the PES due to the repulsion of the He atom by the three H atoms on methyl, a strong

propensity was found for ∆k =±3 transitions, where k is the body-frame projection of

the rotational angular momentum n.

In the present work, DCSs for collisions of CH3 and CD3 with He and Ar are

experimentally determined through the use of crossed molecular beam (CMB) and VMI

methods. The measured DCSs are compared with quantum scattering calculations that

use a previously published CH3–He PES [81, 152], and a newly-computed CH3–Ar PES.

Comparison between experiment and theory at the level of state-resolved DCSs critically

tests the influence of both short-range repulsive and long-range attractive intermolecular

interactions. Anticipating this comparison, excellent agreement is found between the

measured and computed state-to-state DCSs, thus providing important confirmation on

the accuracy of the computed PESs. We also compare the ICSs and DCSs for the collision

of CD3 with He and Ar, and discuss the connection between the PESs and scattering

dynamics.

This chapter is organized as follows: Sections 5.2.2 and 5.2.3 present, respectively,
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a brief description of the rotational levels of CH3 and CD3, specifically the different

nuclear spin modifications, and the spectroscopic intricacies of the detection scheme.

Section 5.2.4 describes the details in creating the CH3–Ar PES. Section 5.2.5 describes

the close-coupling scattering calculations. Sections 5.3.1–5.3.3 present and compare the

measured and theoretical cross sections for the CD3–He, CH3–He, and CD3–Ar collisions,

respectively. Discussion and conclusions sections then follow.

5.2 Method

5.2.1 Experimental Apparatus

Measurement of DCSs for the inelastic scattering of CD3 with He and Ar used a

compact crossed molecular beam apparatus with VMI. Details of the apparatus and the

analysis of the experimental images is described in Ref. [200] and will not be shown here.

5.2.2 Rotational Levels of CH3 and CD3

In this subsection, we briefly describe the rotational levels of the CH3 and CD3

radicals, and their nuclear spin symmetries. The rotational energies for the lower levels

of CH3 and CD3 are plotted in Fig. 5.1 and are described below. The methyl radical is an

oblate symmetric top, with rotational quantum numbers n and body-frame projection k.

Because the three H(D) atoms are equivalent, the ground vibronic state of CH3 has two

nuclear spin modifications, labelled ortho and para [81]. The ortho levels have nuclear spin

symmetry A1 and include rotational levels for which k is a multiple of 3 (k = 0,3,6, . . . ). In

particular, the rotational levels with k = 0 and odd n do not exist for the ground vibronic

state. The para levels have nuclear spin symmetry E and include all rotational levels for

which k is not a multiple of 3 (k = 1,2,4,5, . . . ).

There are three nuclear spin modifications in CD3. The A1 nuclear spin functions

are those with rotational levels with k = 0 and odd n and with levels for which k is a
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Figure 5.1: Rotational energy level diagrams for the ground vibrational level of the X̃ 2A′′2 electronic
state of (a) CH3 and (b) CD3. Levels are labelled by n and (subscript) k. The color coding identifies
the different nuclear spin modifications.

multiple of 3. The A2 nuclear spin functions correspond to rotational levels with even

n and k = 0, and also with levels for which k is a multiple of 3. Thus, rotational levels

with k = 3,6, . . . are doubly degenerate (A1 and A2). Finally, the E nuclear spin functions

include all levels for which k is not a multiple of 3.

5.2.3 Initial State Distribution of CD3 and the REMPI Detection

(2+ 1) REMPI detection of inelastically scattered CD3 or CH3 radicals used the

well-established scheme of excitation via the 00
0 band of the 4p2A′′2 ← X̃ 2A′′2 transition

[237, 238]. Determination of rotational level populations in the incident radical beam

required comparison of experimental REMPI spectra with spectra simulated using the

PGOPHER program [239]. The simulation incorporated the effects of nuclear spin
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statistics of the three equivalent H or D atoms. The procedures used are described in the

supplementary materials of Ref. [200]. The distribution of methyl radicals in the beam

correspond to a rotational temperature of∼ 15K, and relative populations of the rotational

levels were presented in Table 1 of Ref. [200]. The ro-vibrational levels of the excited

electronic state are predissociated, resulting in broader linewidths and poorer detection

efficiencies for the CH3 isotopologue than for CD3. Therefore, the work presented here

concentrates on the inelastic scattering of CD3.

The REMPI spectral lines for methyl are resolved in the n rotational quantum num-

ber, but not in the k projection quantum number, and the k projection levels of a given n

contribute differently to different ∆n spectroscopic branches. We denote the unresolved

nk1
, nk2

, · · · levels associated with a particular spectroscopic transition by nk1k2··· and recog-

nize that these levels all contribute to the measured DCSs. The relative contributions of

the different k levels were determined by PGOPHER calculation of 2-photon line strength

factors.

5.2.4 Potential Energy Surface

Since the center of mass of methyl is at the carbon atom, a same PES can be used for

the scattering calculations of CH3–He/Ar and CD3–He/Ar. For the collisions of methyl

with He, a previously computed PES [81] was used. For the collisions with Ar, we created

a new ab initio PES. The details of this PES is presented below.

Similar to the treatment of CH3–He, we describe the geometry of the CH3–Ar rigid

rotor complex by three coordinates, the intermolecular separation R, and two angles θ

and φ. The two angles corresponds to the polar and azimuthal angle of the position of Ar

in the CH3 molecule-fixed frame.1 This coordinate system is illustrated in Fig. 1 of Ref.

1The theory for the rotationally inelastic collision of a symmetric top and a linear molecule in 1Σ state
described in Chapter 6 can also be applied for the present system. This is achieved by ignoring the θ2 and
φ2 coordinates, and setting l2 = 0. The variables, R, θ, and φ in this work is equivalent to R, θ1, and φ1
defined in Chapter 6, respectively.
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[81]. As in the CH3–He case, the potential can be expanded with2

V (R,θ,φ) =


l1,µ1≥0

Vl1µ1
(R)

�

Yl1µ1
(θ,φ)+ (−1)µ1Yl1,−µ1

(θ,φ)
�

. (5.1)

The three-fold symmetry of CH3 requires that µ1 be a multiple of 3, and the planar

geometry of CH3 requires that l1 +µ1 be even [81].

We performed the explicitly correlated restricted coupled-cluster calculations with

inclusion of single, double, and (perturbative) triple excitations [RCCSD(T)-F12a] [51–53]

for the CH3–Ar PES. We employed the augmented correlation-consistent basis set aug-cc-

pVTZ (aVTZ) [240, 241]. A counterpoise correction was applied to correct for basis-set

superposition error [56, 57]. All calculations were carried out with the MOLPRO 2012.1

suite of programs [151]. To check the accuracy of the ab initio calculations, we performed

additional calculations on 10 random orientations each at 7 atom-molecule distances. We

found the RCCSD(T)-F12a/aVTZ method gives interaction energies closer to the CBS

limit [extrapolated from conventional RCCSD(T) calculations with the aVDZ, aVTZ, and

aVQZ basis sets] at short to moderate R compared with the RCCSD(T)/aVQZ calculation

with a mid-bond function [49, 50] added to the basis set. In addition, the former method

is less computationally demanding.

The CH3–Ar interaction energies were determined on a three-dimensional grid. The

R grid includes 33 R’s (3.5 to 9a0 in steps of 0.25a0, 9.5, 10, 11, 12, 13, 14, 15, 16, 18, and

20a0). The θ grid contains 11 values from 0◦ to 90◦ defined by cosθ= 0 to 1 in steps of

0.1. The φ grid contains 7 values ranging from 0◦ to 60◦ in steps of 10◦. The total number

2Equation (5.1) can be written alternatively, in terms of the reduced rotation matrix [28], as

V (R,θ,φ) =


l1µ1≥0

Vl1µ1
(R)(2−δµ10)

�

2l1 + 1
4π

�
1
2

d l1
µ10(θ1)cosµ1φ.

It can be shown that the relation between the V coefficients and the B coefficients defined in Chapter 6 is
given by

Bl1µ1
(R,θ1,φ1) =π(1+δµ10)Vl1µ1

(R,θ1,φ1).

The above equation is only valid for the collisions between a symmetric top and a structureless atom.
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Figure 5.2: Dependence of the CH3–Ar potential energy (in cm−1) on the orientation (θ,φ) at
R= 6.75a0.

of geometries for which the interaction potential was computed was 2541. For all the

computations, C–H bond length is fixed at r0 = 1.078 Å, which in the equilibrium bond

length from CCSD(T)/aug-cc-pVQZ calculations [81].

In fitting the PES, we used all symmetry-allowed (l1,µ1) terms with l1 ≤ 12. The

ab initio points were fitted with this 19-term angular basis using the least-squares method.

The quality of the fit is good. For all R> 4.5a0, the RMS of the fit is less than 1% of the

absolute value of ab initio interaction energies averaged over the 77 orientations. At long

range, the four larger terms B00, B33, B20, and B40 are extrapolated to AR−n, with A and

n determined from the fitted coefficients at R = 18a0 and 20a0. The n obtained for the

four terms are 6.36, 6.29, 7.92, and 7.35, respectively. The expansion coefficients for the

isotropic term is much larger (by at least 20 times, at R = 20a0) than other terms at large R.

R−6.36 dependence is a reasonable approximation to the isotropic term of the dispersion

interaction (c6R−6 + c8R−8 + · · · [73]), confirming that the CCSD(T)-F12a interaction

energies have a reasonable long-range behavior. All other terms were damped to zero

beyond R = 20a0. The fitted coefficients was switched to long range ones with a switching

function centered at R= 18a0 to ensure their smoothness over R.
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Figure 5.3: Dependence of the larger expansion coefficients vl1µ1
[defined in Eq. (5.1)] on the

CH3–Ar separation R.

Figure 5.2 shows a contour plot of the PES at R= 6.75a0. Similar to the CH3–He

PES (Fig. 3 in Ref. [81]), the CH3–Ar PES has a three-fold symmetry about φ, with

maximum repulsion at orientation near the location of the hydrogen atoms. The potential

is most attractive when Ar is in the plane of CH3 bisecting a C–H–C angle. The global

minimum of the CH3–Ar PES is at R = 7.13a0, θ = 90◦, φ = 60◦, with a dissociation

energy De = 120.1 cm−1. Different from the CH3–He PES, at R = 6a0 the CH3–Ar

potential is repulsive for all orientations. The latter PES has a global minimum at a smaller

R (6.52a0) with a much smaller De (27.0 cm−1) [81].

We show in Fig. 5.3 a plot of the larger expansion coefficients Vl1µ1
as a function of

the CH3–Ar separation. Similar to the CH3–He PES (Fig. 4 of Ref. [81]), the isotropic V00

term dominates at moderate to long range, and the V33 and V20 terms are largest isotropic

terms at short to moderate range. In fact, the anistropic properties of the two PESs are

almost identical. The major difference lies at the larger magnitudes of the expansion

coefficients (or stronger interactions), and slightly larger atom-molecule separation at

which the minimum in the V00 term occurs, for the CH3–Ar PES.
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Figure 5.4: Integral cross sections for transitions out of the lowest CD3 levels of each nuclear spin
symmetry in collisions with Ar at a collision energy of 440 cm−1.

5.2.5 Quantum Scattering Calculations

We used the HIBRIDON suite of programs [31] to carry out fully quantum, close-

coupling, state-resolved differential cross sections for collisions of methyl with He and Ar.

Rotational energies of CD3 were computed with a rigid rotor symmetric top Hamiltonian

using spectroscopic studies by Sears et al. [242]. Spin-rotation splitting and hyperfine

splittings were ignored. Rotational levels whose energies were less than 1100 cm−1 for CH3–

He, and 1000 cm−1 for CH3–Ar were included in the channel basis, and the calculations

included total angular momenta J ≤ 130ħh. The convergence of the cross sections were

carefully checked.3 Since the CH3/CD3 incident beam contained several rotational levels,

and the k quantum number is not resolved in REMPI spectra, the computed DCSs were

weighted over initial levels with n ≤ 3 according to a Boltzmann distribution described in

Sec. 5.2.3 and over final levels according to the 2-photon line strengths factor for the given

detection line.

For a comparison with the ICSs of the CD3–Ar and CD3–He collisions, we present

in Fig. 5.4 computed state-resolved ICSs for transitions out of the 00 (A2 nuclear spin

symmetry), 10 (A1 symmetry), and 11 (E symmetry) levels of CD3 in collisions with Ar at

a collision energy of 440 cm−1. We notice the propensities of the transitions are almost

identical to that for the CD3–He collisions (Fig. 5 of Ref. [243]). For both 00 and 10 initial

3The CD3–Ar system has a much larger reduced mass than CD3–He. The integration steps in solving
the CC equations need to be smaller for the former system to get converged cross sections.
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levels, the largest cross section is found for the transition to the 33 level, and for the 11

initial level to the 22 and 44 levels. All these transitions are directly coupled by the V33 term

of the PES. Comparing with the CD3–He PES, the relative magnitude of the V20 term

is slightly larger in the CD3–Ar PES. However, we do not observe significant changes in

the relatively small cross sections for ∆k = 0 transitions, enabled by V20 and other µ1 = 0

terms. The larger CD3–Ar ICSs shown in Fig. 5.4 are approximately twice the CD3–He

ICSs for the same transition. This is consistent with the stronger interaction between CD3

and Ar.

5.3 Results

5.3.1 DCSs for CD3–He Collisions

The CD3–He collision energy was calculated to be 440±35 cm−1, from the measured

beam velocities. Figure 5.5 displays the determined DCSs for final levels n′ = 2–4, while

Fig. 5.6 presents the DCSs for n′ = 5–9. In both figures, the unresolved k ′ projections are

specified for each n′-resolved DCS. Also shown in Figs. 5.5 and 5.6 are theoretical DCSs.

The experimental DCSs are not shown for θ < 30◦ for final levels with n′ = 2 and 3 and

for θ < 20◦ for final levels with higher n′ because of contributions to these angles from

unscattered radicals in the parent beam, as discussed above. The calculated DCSs show pro-

nounced diffraction oscillations in this strongly forward scattered region. Unfortunately,

even with greater initial state purity the angular resolution of the experiments would be

insufficient to resolve these structures clearly. The experimental angular resolution is

limited by the velocity and angular spreads of the two molecular beams. For the current

experiments on the CD3–He system, this angular resolution ranges varies from 3 to 16◦

depending on the scattering angle.

For quantitative comparison with the theoretical calculations, the experimental

angular distributions are normalized by scaling the experimental value at a 90◦ scattering
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Figure 5.5: DCSs for inelastic scattering of CD3 radicals by He at a collision energy of 440±35 cm−1

into final rotational levels n′ = 2–4. The REMPI line employed for detection is indicated, along
with the range of k ′ projection levels contributing to the scattering. Red curves: DCSs determined
from the measured images; black curves: theoretical DCSs. The method of normalization of the
experimental DCSs is described in the main text.
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Figure 5.6: DCSs for inelastic scattering of CD3 radicals by He at a collision energy of 440±35 cm−1

into final rotational levels n′ = 5–9. The REMPI line employed for detection is indicated, along
with the range of k ′ projection levels contributing to the scattering. Red curves: DCSs determined
from the measured images; black curves: theoretical DCSs. The method of normalization of the
experimental DCSs is described in the main text.

108



angle for levels with n′ ≤ 4, or 180◦ for higher n′ states, to match the theoretical value at

that angle. These choices correspond to angles with adequate experimental signal levels.

The error bars associated with the experimental DCSs were determined by combining the

standard deviation determined from comparison of several (typically 3) measured images

for a single final state with the uncertainty introduced by application of the density-to-

flux transformation. The latter factor was quantified by comparing DCSs extracted from

the two halves of the image separated by the relative velocity vector (which should be

symmetric after perfect transformation). The theoretical DCSs reproduce satisfactorily

all the features of the measured DCSs to within the experimental uncertainty. The n′-

dependent DCSs are a sensitive probe of both attractive and repulsive parts of the potential.

The near quantitative agreement for all final n′ levels confirms the high quality of the

calculated ab initio PES [81] and to the accuracy of the close-coupling treatment of the

scattering dynamics.

5.3.2 DCSs for CH3–He Collisions

The collision energy of 425±35 cm−1 for inelastic scattering of CH3 radicals (seeded

in excess Ar) with He is the same as for the scattering of CD3 by He. The spectroscopic

lines for CH3 are also not resolved in the k projection quantum number, although the

spacings between the lines detecting different k levels of the same n are larger than for CD3.

In addition, the CH3 REMPI transitions are more broadened by predissociation of the

intermediate Rydberg state, which lowers the detection efficiency. Consequently, velocity

map images for CH3 scattering were recorded only for the three strongest spectroscopic

lines.

The DCSs derived from the density-to-flux transformation and normalized to the

theoretical DCSs are presented in Fig. 5.7. In two of the panels in Fig. 5.7, experimental

DCSs derived from images accumulated on different days are compared. We see that these

DCSs lie almost entirely on top of each other, which demonstrates excellent reproducibility.
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Figure 5.7: DCSs for inelastic scattering of CH3 radicals by He at a collision energy of 425± 35
cm−1 into final rotational levels n′ = 2,3. The REMPI line employed for detection is indicated,
along with the range of k ′ projection levels contributing to the scattering. Panels (b) and (c) also
compare experimental DCSs for repeat measurements made on different days to demonstrate the
reproducibility of the experimental determinations.

Figure 5.7 also compares these experimental DCSs with theoretical calculations. There

is an agreement for the n′k ′ = 3123 and 21 final levels, except for small angle scattering.

However, the experimental DCS for scattering into n′k ′ = 2012 does not agree with the

comparable theoretical DCS, computed under the assumption that the probe laser excites

all three k ′ projection levels. Careful examination of the 2-photon transition wavenumbers

reveals that these lines are separated by more than their widths. If we assume that the

k ′ = 2 level was preferentially excited, then we obtain good agreement of the computed

DCS [green curve in Fig. 5.7(b)] with the experimental DCS.

5.3.3 DCSs for CD3–Ar Collisions

Higher mass of Ar atom and lower velocity of the Ar beam with respect to He results

in smaller mean collision energy Ecol = 330± 25 cm−1. The derived DCSs are shown in

Figs. 5.8 and 5.9 where they are compared with theoretical DCSs from the close-coupling

scattering calculations. For quantitative comparison with the theoretical calculations, the
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Figure 5.8: DCSs for inelastic scattering of CD3 radicals by Ar at a collision energy of 330± 25
cm−1 into final rotational levels n′ = 2,3. Red curves: DCSs determined from the measured VMI
images; cyan curves: theoretical DCSs. The REMPI line employed for detection is indicated.

Figure 5.9: DCSs for inelastic scattering of CD3 radicals by Ar at a collision energy of 330± 25
cm−1 into final rotational levels n′ = 4,5. Red curves: DCSs determined from the measured VMI
images; cyan curves: theoretical DCSs. The REMPI line employed for detection is indicated.
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experimental DCSs were normalized by scaling the experimental value at a scattering angle

of 90◦ to match the theoretical value at the same angle. The CD3 molecules are almost

exclusively scattered into the angular region θ≤ 60◦ in collisions with Ar for all measured

final levels with final rotational angular momentum up to n′ = 5.

5.4 Discussion

The agreement between the experimental and theoretical DCSs for scattering of

methyl with He and Ar lends considerable confidence to the quality of the theoretical

treatment outlined in Secs. 5.2.4 and 5.2.5. We can therefore derive insights into the

scattering dynamics not only from comparison with experiment, but also by analysis of

the calculated, fully state resolved DCSs.

For the collision of both CD3 and CH3 with He, the angular distributions for

transitions into n′ = 2–4 (averaged over k ′) where the degree of translational to rotational

energy transfer is small peak in the forward hemisphere, whereas those with n′ ≥ 5 (i.e.,

intermediate to large energy transfer) are predominantly sideways and backwards scattered.

For the collision of CD3 with He, the degree of backward scattering increases steadily

with increasing n′, and hence with ∆n, because the initial levels of CD3 populated have

mostly n = 1 (Table 1 of Ref. [200]). When Ar is the collision partner, CD3 molecules

are almost exclusively scattered into the angular region θ≤ 60◦. The weak sideways and

backward scattering is slightly enhanced for larger ∆n collisions.

Similar behaviour is observed in the inelastic scattering of atoms such as He with

diatomic molecules [19, 244, 245], and reveals that low impact parameter collisions are

necessary for large changes in the rotational angular momentum. Classically, the rotational

angular momentum of the molecule is induced by a torque that acts on the molecule for

the duration of the collision [187]. The magnitude of the torque is proportional to the

gradient of the intermolecular potential, which is largest at short range.

There are subtle differences in the shapes of the DCSs obtained for CD3 detection in
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Figure 5.10: Theoretical state-to-state CH3/CD3–He inelastic DCSs out of the level nk = 11 into
levels with n′ = 4, at a collision energy of 4400 cm−1.

a single n′ level via different spectroscopic transitions. For example, the DCSs for n′ = 4,

obtained from measurements using the S(4), P(4) and O(4) REMPI lines, for both CD3–He

(Fig. 5.5) and CD3–Ar (Fig. 5.9), differ slightly in shape. The three transitions probe

respectively k ′ projections 0–2, 1–3, and 0–4. Changes in the scattering dynamics leading

to population of different k ′ sub-levels for a given n′ level can be explored by examination

of the true state-to-state DCSs obtained from the QM scattering calculations. Figures

5.10 and 5.11 compare the computed DCSs for CD3/CH3–He and CD3–Ar, respectively,

for scattering from the initial state nk = 11 into the n′ = 4, k ′ = 1, 2 and 4 final levels.

While the DCSs show significant variation with k ′ when He is the collision partner, such

variation is more subtle for the CD3–Ar system.

We now compare the difference in the collision dynamics between the CD3–He

and CD3–Ar systems. Figure 5.12 shows computed DCSs for inelastic scattering of CD3

out of the nk = 10 initial level into 33 and 50 final levels with both and Ar and He as

collision partners at the same collision energy of 440 cm−1. We find the computed DCSs

for the CD3–Ar system at a collision energy of 440 cm−1 are not much changed from those

obtained 330 cm−1. This is not unreasonable considering the steep repulsive wall in the
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Figure 5.11: Theoretical state-to-state CD3–Ar inelastic DCSs out of the level nk = 11 into levels
with n′ = 4, at a collision energy of 330 cm−1.

Figure 5.12: (a)-(b) Computed state-to-state DCSs and (c)-(d) corresponding partial cross sections
for inelastic scattering of CD3 out of the 10 rotational level into 33 and 50 final levels in collisions
with Ar and He at a collision energy of 440 cm−1. The DCSs for CD3–Ar were normalized to the
same maximum value as the CD3–He DCS.

CH3–Ar PES.

We see from Fig. 5.12 that the spacings of the diffraction oscillation evident at small

scattering angles are smaller for the CD3–Ar system than for CD3–He because of the

larger mass of the collider Ar and the larger impact parameter [22]. In a simplified hard-
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sphere model, the spacing of the differential oscillations ∆θ in atom-molecular collisions

is approximately given by π/(k b ) [246], where k is the wavenumber and would be smaller

for a collision system with a larger reduced mass under a same collision energy.

The most striking difference between the CD3–Ar and CD3–He DCSs is the much

greater propensity for forward scattering for the former. Indeed scattering into angles

θ < 90◦ dominates the measured and computed DCSs, whereas for collisions of CD3 with

the lighter He atoms the scattering extended across the full range of angles up to 180◦, as

demonstrated in Fig. 5.12(a), and peaked in the sideways or backward directions for n′ ≥ 4

[Fig. 5.12(b)]. The origin of these differences lies in the PESs that governs the scattering

dynamics.

To better visualize the differences between the CH3–He and CH3–Ar PESs, we plot

in Fig. 5.13 the dependence of the potential averaged over θ upon R and φ, shown as

contours on the plane containing the CH3 molecule. In the plots, a C–H bond is aligned

with the positive direction of the x axis. The green contour corresponds to the 440 cm−1,

which equals to the collision energy. From Fig. 5.13 we see that the CH3–Ar PES has

a steeper repulsive wall. Also, we can see from Fig. 5.13 that the CH3–Ar PES is more

attractive at larger atom-molecule separation (the global minima for the CH3–He and

CH3–Ar PESs are 27 and 120 cm−1, respectively), and the gradient of the potential in

the attractive regions of the PES is larger. This indicates that the attractive forces will be

stronger for this heavier, more polarizable collider than for the methyl radical–He system.

In addition, the duration of a collision is longer for the heavier Ar collider, because of

the smaller relative velocity than for light He. The transfer of the angular momentum

is classically directly proportional to the duration of the collision and to the gradient of

the potential [247]. Consequently, the long-range attractive parts of the CD3–Ar PESs

will be more important for changing the CD3 rotational angular momentum than for the

CD3–He system. Glancing collisions at large impact parameters that sample the attractive

part of the potential can induce significant changes in the rotational angular momentum
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Figure 5.13: Contour plots showing the variation of the (a) CH3–Ar and (b) CH3–He interaction
energies averaged over φ on the plane containing the CH3 molecule. The PESs for CH3–Ar and
CH3–He were described in Sec. 5.2.4 and Ref. [81], respectively. The green contour represents
440 cm−1, which is the collision energies used in this work comparing the CH3–Ar and CH3–He
DCSs.

and contribute to the small-angle scattering. Collisions of CD3 with He are dominated by

repulsive interactions and have relatively broad DCSs.

Figure 5.12(c, d) compare partial cross sections for 10 to 33 and 50 transitions for both

collision partners. The partial cross sections (PCSs) report the contributions to the ICS

from each value of J . Since the initial and final rotational quantum numbers n and n′ of

the transitions are small compared with the orbital angular momentum L, we can compute

the classical impact parameters b assuming L≈ J . Thus the PESs give information about

the range of b contributing to a particular transition. The inelastic scattering occurs to

much larger impact parameters for Ar as a collision partner than for He: the maxima in the

PCSs for the 10 to 50 transition occur for b = 2.3a0 and 5.5a0 for He and Ar, respectively.

It is interesting to inquire whether two distinct nk → n′k ′ transitions for CD3–Ar and

He that happen to occur over the same range of impact parameters lead to similar DCSs.

Figure 5.14 shows computed state-to-state DCSs and the corresponding PCSs for one such

example. In this case, the 10 → 33 transition for CD3–He and the 10 → 63 transition

for CD3–Ar are compared. The two transitions occur over the same range of impact
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Figure 5.14: (a) Computed state-to-state DCSs and (b) corresponding partial cross sections for
inelastic scattering of CD3 with He for the 10 to 33 transition, and with Ar for the 10 to 63 transition
at a collision energy of 440 cm−1. The DCS for CD3–Ar was multiplied by factor of 4 to assist the
comparison.

parameters, which peak at around 4.5a0. The resulting DCSs are indeed very similar.

Note that the DCS for CD3–Ar was multiplied by a factor of 4 for the purposes of the

comparison, and that both transitions involve ∆k = 3. According to our calculations,

the lowest final rotational level produced by collisions of CD3 (10) with Ar at a collision

energy of 440 cm−1 for which backward scattering dominates is n′k ′ = 83. For CD3 (10)

with He, it is n′k ′ = 50. The maximum in the PCS distribution for this CD3–Ar transition

is at an impact parameter of b = 2.5a0.

5.5 Conclusions

Experimentally determined differential cross sections for the rotationally inelastic

scattering of methyl radicals by He and Ar compare very favorably with theoretical

predictions obtained from close-coupling scattering calculations on ab initio potential

energy surfaces. The experimental measurements are resolved at the level of the final

rotational angular momentum of the CD3 radical (n′) but are averaged over some or all of
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the final k ′ levels corresponding to projection of the angular momentum on the symmetry

axis of the radical.

The results from close-coupling scattering calculations can be examined at the full

state-to-state level to examine trends in the scattering dynamics that depend on the magni-

tudes of the collision-induced changes ∆n and ∆k. The scattering calculations also reveal

pronounced diffraction oscillations at scattering angles θ < 45◦ that are averaged out under

the experimental conditions.

The flux of CD3 scattered by Ar peaks strongly in the forward direction, with little

or no amplitude at θ > 60◦ for the final states n′ = 2–5 probed. This behavior contrasts

with the broad angular scattering observed in CD3–He collisions. The PES of the latter

system has a less steep repulsive wall and a shallower well. The greater propensity for

forward scattering in the case of CD3–Ar is a consequence of the greater importance of long-

range attractive interactions which induce changes in the rotational angular momentum

of the CD3 even for glancing (large impact parameter) collisions. In contrast to CD3–

He scattering, the DCSs for CD3–Ar at our chosen collision energy show only a weak

dependence on the final values of n′ and k ′ quantum numbers.
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Chapter 6

Rotationally Inelastic Scattering of Methyl Radicals

with H2 and D2

This chapter contains long excerpts of a paper “Differential and integral cross sections

for the rotationally inelastic scattering of methyl radicals with H2 and D2” by Ondr̆ej Tkác̆,

Qianli Ma, Cassandra A. Rusher, Stuart J. Greaves, Andrew J. Orr-Ewing, and Paul J.

Dagdigian, originally published on J. Phys. Chem. [137], and is presented with permission

of the American Institute of Physics.

6.1 Introduction

The potential energy surface (PES) is a key theoretical concept in the field of molec-

ular reaction dynamics [248]. Modern quantum chemistry provides methods to compute

ab initio PESs within the Born-Oppenheimer approximation, while measurement of state-

to-state differential cross sections (DCSs) provide an excellent experimental test of the

accuracy of the PES since the DCSs are sensitive to both attractive and repulsive parts of

the potential [2]. The accuracy of a computed PES can hence be tested by comparing theo-

retical DCSs, calculated from quantum scattering theory, with experimentally measured

DCSs. If theory and experiment are found to be in good agreement, robust deductions can

be drawn about the collision dynamics, including the relationship between experimental

measurables (e.g. angular distributions and state propensities) and features of the PES
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controlling the collision dynamics.

We focus here on DCSs involving the inelastic scattering of methyl radicals with

molecular hydrogen. Studies of collisions of several important species (e.g. H2O, OH,

NH3, and CH3) with molecular hydrogen are motivated by astrophysical applications,

because of the high abundance of H2 in the universe. Collisions involving methyl radicals

are of particular interest for the hydrocarbon chemistry of the atmospheres of the outer

planets in the solar system [204–206], as well as Titan [207]. Methyl radical chemistry

is important in the combustion of hydrocarbons [5, 201] and chemical vapor deposition

of diamond films [202, 203]. In addition, methyl radicals may be an integral part of a

catalytic cycle for partial oxidation of methane to formaldehyde or methanol for chemical

feedstocks [249].

From a theoretical perspective, accurate close-coupling DCSs for methyl scattering

are computationally tractable for collisions involving the H2 or D2 molecule because

their large rotational constants (BH2
= 60.853 cm−1 and BD2

= 30.443 cm−1) [250] mean

that only a few rotational levels of the collision partner need to be included in quantum

scattering calculations. Although D2 has the same mass as a He atom, collisions involving

the diatomic molecule can change the internal state of both collision partners, along

with the relative kinetic energy. Comparison of inelastic DCSs for collisions of methyl

radicals with He, H2, and D2 might therefore distinguish the consequences of the additional

molecular rotational degrees of freedom from purely mass related effects.

The inelastic scattering of labile free radicals was extensively reviewed in the mid

1990s [9, 74, 208], with a focus on state-resolved integral cross sections (ICSs). Since

then, experimental studies using velocity map imaging (VMI) [14, 15] and laser spec-

troscopic detection have revolutionized measurement of state-resolved DCSs, for which

the most extensively studied molecules are the NO [19, 23, 214–216, 218–221] or OH

[96, 100, 103, 112, 222–226] diatomic radicals. To date, the only reported measurement

of DCSs for inelastic scattering of polyatomic free radicals is our recent study of methyl
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radical scattering by He (Chapter 5). We found excellent agreement between experimental

measurements and DCSs calculated using the recent PES of Dagdigian and Alexander

[81]. The inelastic scattering of closed-shell polyatomic molecules is more extensively

illustrated by determinations of DCSs for scattering of ammonia [232–234] and deuterated

ammonia [17, 138] with rare gases and molecular hydrogen, and for water with helium

[20] and hydrogen [21]. The rotationally inelastic scattering of deuterated methyl radicals

and ammonia in collisions with helium were recently compared, using close-coupling

quantum-mechanical scattering calculations performed with accurate ab initio PESs [243].

Dagdigian’s review of quantum scattering calculations of collisional energy transfer

in small hydrocarbon intermediates provides a current perspective on polyatomic radical

scattering [27] and highlights studies involving methylene (CH2) [235, 236] and methyl

[81, 152]. The energy transfer dynamics for a polyatomic species like the methyl radical

are more complicated than for collisions of a diatomic molecule with an atom. In the latter

case, the cylindrical symmetry limits the anisotropy to that associated with the polar angle

away from the molecular axis. In contrast, for collisions of methyl radicals, anisotropies

must be considered that are associated with the polar angle (away from the C3 symmetry

axis) and the azimuthal angle about this axis.

In the work reported here, DCSs for collisions of CH3 and CD3 with H2 and D2

were experimentally determined using crossed molecular beam (CMB) and VMI methods.

However, we concentrate on the DCSs for collisions of CD3 since only a few CH3 levels

can be cleanly detected because of predissociation of the excited-state used for spectroscopic

detection. We compare the measured DCSs with results from quantum close-coupling

scattering calculations performed using a newly computed ab initio PES.
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Figure 6.1: Body-frame coordinate system to specify the geometry of the CH3–H2 complex. The
Jacobian R vector lies along the z axis. The CH3 and H2 molecule-frame axes are denoted by (x ′,
y ′, z ′) and (x ′′, y ′′, z ′′), respectively.

6.2 Method

6.2.1 Experimental Apparatus

Measurement of the DCSs for the inelastic scattering of CD3 with H2 and D2 used

a CMB instrument with VMI. The final levels of CD3 were detected with the resonance-

enhanced multiphoton ionization (REMPI) technique. Details of the apparatus are de-

scribed in Ref. [137] and will not be presented here.

The rotational levels of CD3, as well as the details on the REMPI detection of CD3,

are described in Sec. 5.2.

6.2.2 Potential Energy Surface

The geometry of the CH3–H2 rigid-rotor complex can be described by five coordi-

nates, similar to those used in earlier work by Rist et al. on the NH3–H2 system [135].

These include the intermolecular separation R and four angles (θ1, φ1) and (θ2, φ2) de-
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scribing the orientations of the CH3 and H2 collision partners, respectively, relative to the

Jacobian vector R connecting the two molecules. This body-frame coordinate system is

illustrated in Fig. 6.1.

Following the derivation in Sec. 1.3.1, we can expand the angular dependence of the

CH3–H2 PES as:

V (R,Ω1S ,Ω2s ) =


l1 l2 lµ1µ2

Bl1 l2 lµ1µ2
(R)



m1 m2 m

〈l1m1, l2m2 | l m〉

×D l1∗
m1µ1

(Ω1S)D
l2∗
m2µ2

(Ω2S)C
∗
l m(ΩBS), (6.1)

where the B terms are radial expansion coefficients, with

Bl1 l2 lµ1µ2
(R) =



i j

 

ψ∗1(ρ1)ψ
∗
2(ρ2)Al1 l2 l (ρi ,ρ j , R)Cl1µ1

(ρi )Cl1µ2
(ρ j )

×ψ1(ρ1)ψ2(ρ2)dρ1dρ2. (6.2)

Since V is independent of the choice of the space frame, we align the space frame with the

body frame (i.e., we align R along the space frame z axis). In this case, only m = 0 terms

contribute to the potential. Also, only µ2 = 0 terms contribute since the electronic wave

function of H2 is cylindrically symmetric. From Fig. 6.1 we define the orientation between

CH3 and H2 with four angles: ΩB1 ≡ (φ1,θ1, 0) defines the Euler angles to rotate the the

CH3 molecule frame to the body frame, and Ω2B ≡ (φ2,θ2, 0) that rotates the body frame

to the H2 molecule frame. The third Euler angles can be zero here because structures in

the target frames (R and the H2 molecule) are cylindrically symmetric. Note that it is not

correct to assume the body frame can be rotated to the CH3 molecule frame with the third
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Euler angle be zero. With these considerations, we can rewrite Eq. (6.1) as

V (R,θ1,φ1,θ2,φ2) =


l1 l2 lµ1

Bl1 l2 lµ1
(R)

×


m1

〈l1m1, l2,−m1 | l 0〉D l1∗
m1µ1

(0,−θ1,−φ1)D
l2∗
−m1,0(φ2,θ2, 0).

(6.3)

The expansion coefficient is related to that defined by Eq. (14) of Ref. [135] by

Bl1 l2 lµ1
(R) = (−1)l1+l2[l ]−

1
2 ul1 l2 lµ(R). (6.4)

Symmetry considerations restrict the allowed terms in Eq. 6.3. The three-fold

symmetry of CH3 requires that µ1 be a multiple of 3. The potential is invariant to

exchange of the hydrogen nuclei in H2, hence l2 must be even. Since V is real, it can be

shown that

Bl1 l2 lµ1
(R) = (−1)l1+l1−l+µ1B∗l1 l2 l ,−µ1

(R). (6.5)

Since V must be invariant to reflection of H2 through the x z plane of the CH3 molecule

frame, we have

Bl1 l2 l ,−µ1
(R) = (−1)l1+l2+l+µ1Bl1 l2 lµ1

(R). (6.6)

Equations (6.5) and (6.6) imply that the B coefficients in Eq. (6.3) are real. In addition, V

is invariant to reflection of H2 through the xy plane of the CH3 molecule frame since CH3

is planar. It can be shown that this property restricts l2 + l +µ1 to be even. The potential

should also be invariant with respect to inversion of all coordinates; this parity invariance

restricts the l1 + l2 + l to even values [135]. However, this symmetry can be broken for

the interaction of a nonlinear molecule with a diatomic [65, 251].

Substituting Eq. (6.6) into Eq. (6.3) and resolving the rotation matrix elements in Eq.

(6.3) into products of complex exponentials and reduced rotation matrix elements, d j
m′m
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[68], we obtain

V (R,θ1,φ1,θ2,φ2) =


l1 l2 l ,µ1≥0

Bl1 l2 lµ1
(R)(1+δµ10)

−1


m

〈l1m, l2,−m | l 0〉

×
�

e−iµ1φ1 d l1
µ1 m(θ1)+ (−1)l1+l2+l+µ1 e iµ1φ1 d l1

−µ1,m(θ1)
�

e−i mφ2 d l2
−m,0(θ2). (6.7)

The PES was fitted with a modified version of Eq. (6.7)

V (R,θ1,φ1,θ2,φ2) =


l1 l2 l ,µ1≥0

Cl1 l2 lµ1
(R) t̄ (θ1,φ1,θ2,φ2), (6.8)

with

t̄ (θ1,φ1,θ2,φ2) =
1

2π

�

[l1][l2]
2

�
1
2 

m≥0

(1+δm0)
−1 〈l1m, l2,−m | l 0〉d l2

−m,0(θ2)

×
�

cos(µ1φ1 + mφ2)d
l1
µ1 m(θ1)+ (−1)l1+l2+l+µ1 cos(µ1φ1−mφ2)d

l1
−µ1,m(θ1)

�

, (6.9)

where [x] = 2x + 1, and

Cl1 l2 lµ1
(R) =

4π
1+δµ10

�

2
[l1][l2]

�
1
2

Bl1 l2 lµ1
(R). (6.10)

The angular expansion in Eq. (6.9) is normalized so that the significance of individual

terms can be evaluated directly.

We performed the explicitly correlated restricted coupled-cluster calculations with

full inclusion of single and double excitations and perturbative inclusion of triple ex-

citations [RCCSD(T)-F12a] [51, 53] of the CH3–H2 PES. We employed the aug-cc-

pVTZ correlation-consistent basis sets [192, 240], with aug-cc-pVTZ/MP2FIT and cc-

pVTZ/JKFIT as the density fitting basis and the resolution of identity basis, respectively

[252, 253]. A counterpoise correction was applied to correct for basis-set superposition

error [57]. All calculations were carried out with the MOLPRO 2010.1 suite of programs
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[113].

The CH3–H2 interaction energies were determined on a five-dimensional grid of

33 values of the intermolecular separation R [R (in a0) = 3–8 in steps of 0.25; 8.5, 9, 9.5,

10, 11, 12, 13, 14, 15, 16, 18, 20]. The interaction energy was computed over a random

angular grid [254] of 1,600 orientations, consisting of uniform distributions of both cosθ1

and cosθ2 over [−1,1] and both φ1 and φ2 over [0,2π]. The total number of nuclear

geometries for which the interaction potential was computed was 52,800. The interaction

energies for an additional 1,400 orientations at R = 5a0 were also computed to choose

statistically important terms in Eq. (6.9) to be used in the final fit.

These (l1, l2, l ,µ1) terms were chosen by the following method. We first performed

a least-squares fit of the 3000 geometries at R = 5a0 to a large 418-term angular basis

consisting of all symmetry-allowed terms with l1 ≤ 12 and l2 ≤ 6 to obtain estimated

expansion coefficients for all these terms. We started from a minimal angular basis with

only the isotropic term, fit the ab initio points, and computed the estimated fitting error

ei with a Monte Carlo error estimator1 [254]. We then iteratively added terms whose

estimated expansion coefficients have an absolute value greater than 8ei , and recomputed

1To estimate the expansion error, we first calculate the overlap S matrix with elements

Si j =
16π2

N

N


k=1

t̄ ∗i (α̂k ) t̄
∗
j (α̂k ),

where N is the number of orientations used in the fit, i and j are indices of the expansion terms, and α̂k
represents (θ1,φ1,θ2,φ2) for the k-th orientation. The norm of the inverse S matrix can be used as an
indicator whether the angular sampling is sufficient. A good angular sampling should give ||S−1|| ∼ 1. ||S−1||
can be estimated with

||S−1|| ≈min(λi )
−1,

where λi represents the eigenvalues of the S matrix. The estimated expansion error is given by

ei ≈
s

16π2

N
σ ||S−1||[1−ρ(n,N )]−

1
2 ,

with

ρ(n,N ) =
|(||S−1||n− 1)|

N
.

In the above equations, n is the number of terms in the expansion, and σ is the root mean squares (RMS)
from a least squares fit.

126



ei with this new angular basis until no extra terms could be included with this criterion.

The total number of terms included was 55. Unlike several other PESs describing the

interaction of a symmetric or an asymmetric top with a linear molecule [65, 255], all

terms in our PES have even l1 + l2 + l , and none of the odd l1 + l2 + l terms is statistically

important.

The ab initio points were fitted using this 55-term angular basis and the least-squares

method. The root mean squares (RMS) of the fit [65] increases with decreasing R but is

< 0.1% of the average of the absolute value |V | of the potential for R≥ 4.75a0 (|V |= 2500

cm−1). Using the Monte Carlo error estimator [254], we found the norm for our randomly

generated orientations and angular basis is 1.52. A value of close to 1 indicates sufficient

angular sampling.

Figure 6.2 presents a plot of the larger expansion coefficients as a function of the

intermolecular separation R in the region of the van der Waals well. For the terms involving

the interaction with spherically averaged H2 (i.e. l2 = 0), shown in the upper panel of Fig.

6.2, the largest coefficients are the same as for CH3–He [81], namely (l1,µ1) = (3,3) and

(2,0). These reflect the leading anisotropies involving approach of the collision partner

within and perpendicular to the plane of the methyl radical, as discussed previously for

CH3–He [81]. The lower panel of Fig. 6.2 displays the larger coefficients with l2 = 2,

which reflect the molecular nature of the collision partner. The plotted coefficients are

direct analogs of the l2 = 0 coefficients plotted in the upper panel, namely (l1,µ1) = (0,0),

(3,3), (2,0), and (5,3), with l = l1 + l2.

The global minimum of the PES has De = 99.0 cm−1, at a geometry of R= 6.57a0,

θ1 = 0◦, θ2 = 0◦ (the φ angles are meaningless here). The H2 molecule thus lies along the

C3 axis of the methyl radical above (or below, by symmetry) the molecular plane. The

well depth De is thus significantly larger than that for CH3–He (27.0 cm−1 [81]). The

equilibrium geometry differs from that of the global minimum for CH3–He [81], for

which the He atom lies in the molecular plane and bisects two C–H bonds.
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Figure 6.2: Dependence of the larger expansion coefficients [defined in Eq. (6.8)] upon the CH3–H2
separation R. Upper panel: coefficients with l2 = 0 (and hence l = l1); lower panel: coefficients
with l2 = 2. The expansion coefficients are the same for the interaction of CH3 or CD3 with D2
since the centers of mass of the hydrogen molecule and methyl radical do not change under isotopic
substitution.

Figure 6.3 presents contour plots of the dependence of the potential upon the orienta-

tion of the methyl radical for two orientations of H2 for R = 6.5a0. For θ2 = 0◦ (left-hand

panel of Fig. 6.3) the CH3 orientation for the most attractive interaction is the same as

that of the global minimum. In this case the maximum repulsion occurs for θ1 = 90◦

and φ1 = 0◦, 120◦, 240◦; this corresponds to approach of one end of the H2 molecule in

the CH3 plane toward one of the C–H bonds. The right-hand panel of Fig. 3 displays

a contour plot of the potential for θ2 = 90◦, φ2 = 0◦. In this case, the most attractive

CH3 orientation (θ1 = 90◦ and φ1 = 60◦, 180◦, 300◦) corresponds to approach of the center

of the H2 molecule in the molecular plane and bisecting two C–H bonds, with the H2
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internuclear axis lying perpendicular to the CH3 plane. The new PES can be used without

modification in scattering calculations on CD3–H2 and CD3–D2 collisions since the centers

of mass are unaffected for both molecules upon isotopic substitution.

6.2.3 Quantum Scattering Calculations

State-to-state DCSs and ICSs for collisions of CD3 with H2 and D2 were calculated us-

ing the HIBRIDON suite of programs [31] and the PES described in Sec. 6.2.2. Rotational

energies for CD3 were computed with a rigid rotor symmetric top Hamiltonian using

rotational constants from spectroscopic study by Sears et al. [242]. Separate calculations

were carried out for each nuclear spin modification of both CD3 and H2/D2 since they are

not interconverted in molecular collisions. The close-coupling channel basis consisted of

CD3 rotational levels whose energies were less than 960 cm−1 and H2/D2 rotational levels

with j2 ≤ 2, and the calculations included total angular momenta J ≤ 100. Convergence of

the DCSs to within ∼ 5% was checked with respect to the size of the rotational basis and

the number of partial waves in the calculation. The scattering calculations used up to 5366

channels.

For the collision between CH3 and H2, the close-coupling basis can be written as

|J M j1kϵ j2 j12L〉= [2(1+δk0)]
− 1

2 (|J M j1k j2 j12L〉+ ϵ |J M j1,−k , j2 j12L〉) , (6.11)

where

|J M j1k j2 j12L〉=


m1 m2 m12 mL

〈 j1m1, j2m2 | j12m12〉 〈 j12m12, LmL | J M 〉

× | j1k m1〉 | j2m2〉 |LmL〉 . (6.12)

In Eq. (6.12), | j1k m1〉 is a symmetric top wave function in the CH3 molecule frame, | j2m2〉

is the rotational wave functions of H2 in its molecular frame, and |LmL〉 is the wave function
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for end-over-end rotation of the CH3–H2 complex. CH3 rotational wave functions with

proper inversion symmetries are expressed as [195]

| j1k m1ϵ〉= [2(1+δk0)]
− 1

2 (| j1k m1〉+ ϵ | j1,−k , m1〉) . (6.13)

The close-coupling potential matrix elements can be computed from

〈J M j ′1k ′ϵ′ j ′2 j ′12L′|V |J M j1kϵ j2 j12L〉

=


l1 l2 lµ1≥0

Bl1 l2 lµ1
(R)(1+δµ10)

−1 [(1+δk ′0)(1+δk0)]
− 1

2 (−1)J+l1−l2+ j1− j2+ j ′12−L−L′−k−µ1

× 1
2

�

1+ ϵ′ϵ(−1) j ′1+ j1+l2+l+µ1
�

�

[ j ′1][ j ′2][ j ′12][L
′][ j1][ j2][ j12][L][l ]

�
1
2

×





j ′2 l2 j2

0 0 0









L′ l L

0 0 0











j12 L J

L′ j ′12 l





























j1 j2 j12

j ′1 j ′2 j ′12

l1 l2 l























×









j ′1 l1 j1

−k ′ µ1 k



+ ϵ′ϵ





j ′1 l1 j1

k ′ µ1 −k





+ϵ′




j ′1 l1 j1

k ′ µ1 k



+ ϵ





j ′1 l1 j1

−k ′ µ1 −k







 , (6.14)

where (:::), {:::}, and {.........} are Wigner 3- j , 6- j , and 9- j symbols, respectively [28].

Since the CD3 incident beam contained several rotational levels, DCSs for formation

of a specific final rotational level nk were determined by weighting the computed state-to-

state DCSs at the experimental collision energy by the experimentally determined incident

beam rotational level populations presented in Table 1 of Ref. [200]. Since the k projection

number is not resolved in the REMPI spectra, computed DCSs for comparison with the

experimental measurements were weighted according to the 2-photon line strengths factors

for the given detection line. We assume the H2/D2 incident beam contains a statistical

mixture of j2 = 0 and 1 rotational levels and did not consider initial levels with j2 ≥ 2. The
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Figure 6.3: Dependence of the potential energy (in cm−1) on the orientation (θ1,φ1) of the methyl
radical for two orientations (θ2,φ2) of the H2 collision partner for an intermolecular separation
R= 6.5a0. The φ2 angle is meaningless in the left-hand panel, with θ2 = 0◦.

only j2-changing transition included in our DCS calculations was j2 = 0→ 2. Including

both the j2 = 0→ 0 and j2 = 0→ 2 transitions changes the averaged DCSs by < 10%

(except for θ < 20◦, an angular range obscured by the incident beam) compared to including

j2 = 0→ 0 transitions alone. We expect the DCSs of other j2-changing transitions to be

even less significant due to larger energy gaps.

6.3 Results

6.3.1 Integral Cross Sections

In previous work [27, 81, 138], our group examined propensities caused by the

leading angular expansion coefficients of the PES in the ICSs for CH3 and CD3 transitions

induced by collision with He. We briefly explore here these propensities for collisions of

CD3 with D2. Figure 6.4 presents computed state-resolved ICSs for collision of the CD3 10

level, the lowest level of A1 nuclear spin modification, with the D2 j2 = 0 and 1 rotational

levels for which j2 is the same after the collision. These cross sections were calculated for a
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Figure 6.4: ICSs for transitions out of the CD3 10 level (the lowest level of the A1 nuclear spin
modification) in collisions with D2 at a relative translational energy of 640 cm−1. The rotational
level of the collision partner is j2 = 0 (upper panel) and j2 = 1 (lower panel). The initial level is
indicated with an open square. Since the cross sections for transitions to CD3 high n levels are
small, the plots show cross sections for final levels with n′ ≤ 10.

collision energy of 640 cm−1. ICSs for transitions out of the lowest rotational levels of the

A2 and E nuclear spin modifications can be found from the supplementary materials of

Ref. [137].

We see in Fig. 6.4 that for most CD3 transitions the ICSs for j2 = 1 are only slightly

larger than for j2 = 0. The major exception is for the 10→ 30 transition, for which the

cross section for j2 = 1 is ∼ 70% larger than for j2 = 0, and this increase is seen in DCS for

θ≤ 45◦. In some other molecule–H2 systems, e.g. OH–H2 [144], H2O–H2 [145], NH3–H2

[72], the cross sections for the j2 = 1 initial level are much larger than for j2 = 0. In these

systems, the collision partners of H2 have nonzero dipole moments so that the leading

electrostatic term is the dipole-quadrupole interaction. This interaction corresponds to
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Figure 6.5: Newton diagrams for inelastic scattering of CD3 with (a) D2 and (b) H2. The Newton
spheres are drawn for inelastic scattering of CD3 from the initial state nk = 00 to the final state
n′k ′ = 20, which corresponds to an energy transfer of ∆E = 29.0 cm−1 and for ∆ j2 = 0 and j2 = 0
to j ′2 = 2 transitions between rotational levels of D2 and H2.

the {l1 l2 l}= {1,2,3} terms and could contribute to the cross sections for the j2 = 1 but

not j2 = 0 initial level. Since methyl has no dipole moment, this interaction is missing for

CD3–H2/D2. For both these systems, the transitions with the largest cross sections are to

the 33 and 30 levels; the same propensities were found for collisions with He [138]. These

final levels are directly coupled by the (l1,µ1) = (3,3) and (2,0) terms, respectively, of the

PES.

6.3.2 Differential Cross Sections

Newton diagrams for inelastic scattering of CD3 with D2 and H2 are shown in

Fig. 6.5 and illustrate the laboratory frame velocities of CD3 [v(CD3) = 550± 30ms−1],

D2 and H2 [v(D2 = 2090± 210ms−1 and v(H2) = 2950± 320ms−1], and the pre- and

post-collision center-of-mass (CM) frame velocities of the methyl radical u(CD3) and

u ′(CD3), respectively. The CM-frame scattering angle θ is defined as the angle between the

CM-frame velocities of CD3 before and after a collision. The displayed Newton spheres

correspond to a CD3 transition from initial level nk = 00 into final level n′k ′ = 20, with an
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associated energy transfer of∆E = 29 cm−1, and to∆ j2 = 0 and j2 = 0→ j ′2 = 2 transitions

between rotational levels of D2 and H2.

Collision energies for inelastic scattering of CD3 with D2 and H2 were 640± 60 and

680± 75 cm−1, respectively. Raw images for detection of CD3 after collision with H2 and

D2 can be found from Ref. [137] and its supplementary materials. In most cases, more than

one spectroscopic branch was probed for a given final n′, giving different contributions

of the unresolved k ′ projections with weighting according to the 2-photon line strength

factors.

The Newton diagrams shown in Fig. 6.5 demonstrate that the Newton spheres for

the rotational transition of D2 from j2 = 0 to j ′2 = 0 and 2 would not be distinguishable in

the measured images. Comparison of measured images for H2 as a collision partner with

the Newton diagram indicates that transitions involving rotational excitation of H2 in a

collision do not contribute significantly to the scattering, as also found in the scattering

calculations (see Sec. 6.2.3). DCSs are different for a given final level n′ of CD3 but different

changes of the H2 and D2 rotational angular momentum; however, it is not possible to

separate these types of Newton spheres from the measured images. The reason is that the

experimental images result from superposition of many Newton spheres differing slightly

in the magnitude and direction of the initial velocities of the collision partners and these

Newton spheres are not perfectly concentric.

The recorded images were corrected with the density-to-flux transformation in order

to derive the DCSs. Figure 6.6 displays the determined DCSs for CD3–D2 for final levels

n′ = 2–4, while Fig. 6.7 presents the DCSs for n′ = 5–7. Also plotted in Figs. 6.6 and 6.7

are the theoretical DCSs. The experimental and calculated DCSs for the CD3–H2 system

are shown in Fig. 6.8 for final levels n′ = 2–4 and in Fig. 6.9 for n′ = 5–8. For quantitative

comparison with the theoretical calculations, the experimental DCSs were normalized

by scaling the experimental value at 60◦ scattering angle to match the theoretical value

at that angle. Since the scattering is mainly into the backward hemisphere for large ∆n
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Figure 6.6: Experimental (red) and theoretical (black) DCSs for inelastic scattering of CD3 radicals
by D2 at a collision energy of 640± 60 cm−1 into final rotational levels n′ = 2–4. The REMPI line
employed for detection is indicated, along with the range of k ′ projection levels contributing to the
scattering. The method of normalization of the experimental DCSs is described in the main text.

transitions, the DCSs for the R(7) and P (8) lines for collision with H2 were normalized at

90◦.

The experimental DCSs are not shown for θ < 30◦ for final levels with n′ = 2 and

3 and for θ < 20◦ for final levels with higher n′ because of contributions to these angles

from unscattered radicals in the parent beam. The calculated DCSs show pronounced

diffraction oscillations in this strongly forward scattered region, but the angular resolution

of the experiments is insufficient to resolve these structures clearly, even with greater initial

state purity. The angular resolution is limited by the velocity and angular spreads of the
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Figure 6.7: Experimental (red) and theoretical (black) DCSs for inelastic scattering of CD3 radicals
by D2 at a collision energy of 640± 60 cm−1 into final rotational levels n′ = 5–7. The REMPI line
employed for detection is indicated, along with the range of k ′ projection levels contributing to the
scattering. The method of normalization of the experimental DCSs is described in the main text.

two molecular beams, and for the current experiments on the CD3 + D2/H2 systems,

varies from 3◦ to 18◦ depending on the scattering angle [200].

The error bars associated with the experimental DCSs were determined by com-

bining the standard deviation determined from comparison of several measured images

for a single final state with the uncertainty introduced by application of the density-to-

flux transformation. The latter factor was quantified by comparing DCSs extracted from

the two halves of the image separated by the relative velocity vector (which should be

symmetric after perfect transformation).

There is generally quantitative agreement between the (normalized) experimental

and computed DCSs, although some small discrepancies are evident for scattering angles

< 45◦ for some probe transitions with n′ ≤ 4. Here, the experimental DCSs are slightly

larger than the computed DCSs, which could be a consequence of our limited experimental
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Figure 6.8: Experimental (red) and theoretical (black) DCSs for inelastic scattering of CD3 radicals
by H2 at a collision energy of 680± 75 cm−1 into final rotational levels n′ = 2–4. The REMPI line
employed for detection is indicated, along with the range of k ′ projection levels contributing to the
scattering. The method of normalization of the experimental DCSs is described in the main text.

angular resolution or imperfect background subtraction. There may also be contributions

to the scattering signals from initial levels with higher initial n present at low density in

our ∼ 15K beam, because elastic scattering events will give strong forward scattering with

high integral cross sections. The only significant differences between the experimental and

computed DCSs are for detection of some high-n′ final rotational levels, in particular via

the S(5) and S(6) lines in collisions with D2 and the R(5) and S(5) lines in collisions with

H2. Even for these cases, there is satisfactory qualitative agreement between the shapes of

the experimental and computed DCSs.
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Figure 6.9: Experimental (red) and theoretical (black) DCSs for inelastic scattering of CD3 radicals
by H2 at a collision energy of 680± 75 cm−1 into final rotational levels n′ = 5–8. The REMPI line
employed for detection is indicated, along with the range of k ′ projection levels contributing to the
scattering. The method of normalization of the experimental DCSs is described in the main text.

6.4 Discussion

Although the focus of our study is on inelastic scattering, the collision of a methyl

radical with molecular hydrogen can also follow a reactive pathway. However, the vibra-

tionally adiabatic barrier height on the potential energy surface for reactive formation of

methane and atomic hydrogen has been computed to be 3847 cm−1 [256]. This energy

barrier is much higher than the collision energy in our experiments and calculations so

the reactive path is closed. Moreover, the PES was computed with the assumption of rigid

molecular geometries. Our comparisons of experimental and computed DCSs therefore

test the quality of the ab initio PES and the accuracy of the scattering calculation methods

in regions of the global PES below the transition state for reaction.

For both D2 and H2 as collision partners, the measured images and the corresponding

DCSs directly reveal the dependence of the scattering upon CD3 final rotational angular
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momentum n′. The DCSs peak in the forward hemisphere for n′ = 2–4 and shift more

to sideways and backward scattering for n′ = 5. For n′ = 6–8, the DCSs are dominated

by backward scattering. A similar trend was observed for scattering of methyl radicals

with He, and we discussed the origins of this behavior in terms of partial cross sections

(or impact-parameter dependence of the scattering) in a recent paper [200]. DCSs were

measured for different spectroscopic branches to probe a given methyl rotational level n′,

but a different subset of the k ′-projection quantum numbers. These DCSs differ, especially

for n′ = 5, demonstrating the sensitivity of scattering to the k ′ value, even if it is not fully

resolved in the current experiments.

With inspection of Figs. 6.6–6.9, we see that there are a few clear differences between

DCSs measured for H2 and D2 as collision partners with CD3, the most apparent being

that the DCSs for the CD3–D2 system decrease more sharply from a maximum at small

scattering angles towards larger angles. In view of the good agreement between the experi-

mental and computed DCSs, we can compare in detail computed state-resolved DCSs for

the two systems. It should be noted that we have no clear experimental information on

the rotational inelasticity of the D2/H2 collision partner.

Figure 6.10 compares the DCSs for transitions from the CD3 10 rotational level, the

lowest level of A1 nuclear spin modification, into selected final levels in collisions with D2

and H2 at relative translational energies of 640 and 680 cm−1, respectively. State-to-state

ICSs corresponding to the DCSs plotted in Fig. 6.10 are displayed in Fig. 6.6 for D2 as a

collision partner. DCSs for transitions involving other final levels and for collisions out of

the 00 and 11 rotational levels, the lowest levels of the A2 and E nuclear spin modifications,

respectively, can be found online from the supplementary materials of Ref. [137].

We see in Fig. 6.10 that DCSs for the same transitions have a similar angular de-

pendence for the D2 and H2 collision partners. For final levels n′ ≤ 4, the DCSs for the

D2 collision partner are larger for small angles, while the DCSs for H2 extend to larger

scattering angles than do the DCSs for D2. For intermediate states (n′ = 5 and 6), the
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Figure 6.10: Computed state-to-state DCSs for inelastic scattering of CD3, initially in the 10
rotational level, with D2 (red) and H2 (blue) into selected final rotational levels at collision energies
of 640 and 680 cm−1, respectively. The left and right panels are DCSs for which the initial rotational
level j2 of the collision partner equals 0 and 1, respectively, and is the same after the collision.

DCSs for D2 are dominated by sideways scattering with peaks around θ∼ 90◦, whereas

the DCSs for H2 are shifted more to backward hemisphere. The DCSs for higher final

levels are dominated by backward scattering for both collision partners as demonstrated in

Fig. 6.10 by DCSs for the 70 final level. We notice that the CD3–D2 DCSs are very similar

for the D2 j2 = 0 and 1 initial rotational levels. The DCSs for the j2 = 0→ 2 transition (not

plotted) are in general more backward scattered for H2 than for D2 for small ∆n changes

(n′ ≤ 5) and have the same angular dependence for larger ∆n changes. In addition, for a

given CD3 transition, the ratio of the ICSs for the j2 = 0→ 2 to the j2 = 0→ 0 transition is
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Figure 6.11: Computed state-to-state DCSs for inelastic scattering of CD3 from the 11 rotational
level into various final rotational levels in collisions with D2 (red) and He (blue) at a collision energy
of 640 cm−1. The solid and dashed red curves are CD3–D2 DCSs for which the initial rotational
level j2 of the D2 collision partner equals 0 and 1, respectively, and is the same after the collision.
In panel (a), the j2 = 1→ 1 DCS has been multiplied by a factor of 1/3.

much smaller for the H2 collision partner than for D2; this is presumably due to the larger

energy gap for ∆ j2 = 2 transition in H2. The PESs for CD3–D2 and CD3–H2 scattering

are identical, so observed differences in DCSs must be attributed to the effects of different

masses of the collider, and any associated changes to the quantized rotational energy levels

of H2 and D2.

Conversely, collisions of CD3 with D2 and He have the same reduced mass, but are

governed by different PESs. A further difference between He and D2 collision partners is

that D2 has a rotational degree of freedom, so can be rotationally excited or de-excited in a

collision, and collisions can also occur with an initially rotationally excited molecule. In

our experiments (present work and Ref. [200]), the D2 molecular beam has a larger mean

speed than does the He beam [because of the larger heat capacity ratio for a monatomic
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gas (γ = 5/3) than for a diatomic gas (γ = 7/5)]. To make a clear comparison of these

two systems, we have calculated CD3–He DCSs at the same collision energy (and hence

relative velocity) as the present experiments on CD3–D2. Figure 6.11 presents computed

DCSs for selected transitions from the 11 rotational level, the lowest level of the E nuclear

spin modification, for CD3 in collisions with D2 and He at a collision energy of 640 cm−1.

Each DCS depicted represents an example of a transition directly coupled by one of the

largest expansion coefficients of the PES for the CD3–He system (see Fig. 3 in Ref. [81]).

For the D2 collision partner, DCSs are presented for initial rotational levels j2 = 0 and 1,

with no collision-induced change in j2. DCSs for a wider range of CD3 initial and final

rotational levels can be found online from the supplementary materials of Ref. [137]. The

DCSs for initial j2 = 1 of D2 are often larger, in particular in the forward direction [note

the scaling of the j2 = 1→ 1 DCS in Fig. 6.11(a)].

The CD3–D2 DCSs show similar propensities for changes in the CD3 rotational

quantum numbers n and k as for CD3–He collisions [200]. For small changes ∆n in the

rotational angular momentum, the DCSs for ∆k = 0 transitions have fairly sharp forward

peaks and broad, lower intensity peaks in the backward hemisphere [Fig. 6.11(a)]. These

transitions are enabled mainly by the (l1,µ1) = (2,0) terms, in a similar fashion to the role

of the V20 term for CD3–He [138]. The ∆k ≠ 0 transitions for small ∆n changes display

broad DCSs extending over the entire angular range, with oscillations for angles θ≤ 45◦

[Fig. 6.11(b)]. Such transitions involve direct coupling through the (l1,µ1) = (3,3) terms,

in analogy to the role of the V33 term for CD3–He [138]. The∆k = 1 transitions for the E

nuclear spin modification, e.g. the 11→ 32 transition in panels (b), have DCSs very similar

in shape to those for ∆k = 3 transitions for A1 and A2 levels, e.g. the 00→ 33 transition.

As discussed in detail previously for CD3–He [81, 138, 200], these ∆k ̸= 0 transitions for

E levels are also enabled by the (l1,µ1) = (3,3) terms. For transitions with larger changes

in the rotational quantum number n, the DCSs shift toward the backward hemisphere, as

can be seen in the comparison of experimental and computed DCSs displayed in Figs. 6.7
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and 6.9 for D2 and H2 collision partners, respectively.

6.5 Conclusions

The experimental measurements reported here of inelastic scattering of CD3 radicals

with H2 and D2 molecules represent the first DCSs obtained for collisions of a polyatomic

radical with a diatomic molecule. We have compared these experimental DCSs with the

outcomes of close coupling quantum-mechanical calculations performed using a newly

determined ab initio PES computed at the RCCSD(T)-F12a level of theory. We find

good agreement between the experimental and calculated DCSs, with the exception of

scattering into the n′ = 5 and 6 levels of CD3, as probed by the S(5) and S(6) REMPI lines

in collisions with D2 and the R(5) and S(5) lines in collisions with H2. This agreement

suggests that the PES and the scattering calculations provide an accurate description of

the interaction of CD3 with these diatomic molecules, at least at energies around 600–700

cm−1 corresponding to our experimental conditions.

The DCSs for inelastic scattering of CD3 with H2 and D2 peak in the forward

hemisphere for n′ = 2–4 and shift more to sideways and backward scattering for n′ = 5.

As the energy transfer in a collision increases, the DCSs are increasingly dominated by

backward scattering (n′ = 6–8). This same behavior is recognized for inelastic scattering

of diatomic and polyatomic molecules and it is also consistent with our prior report

[200] of inelastic scattering of CD3 with He. DCSs for a given nk → n′k ′ transition show

similar angular dependences for D2 and H2 as collision partners. Since CD3–D2 and

CD3–H2 interactions are described by the same PES, small differences between DCSs or

ICSs for D2 and H2 collision partners can be attributed to mass effects, or, in the case

of transitions involving a change in the rotational angular momentum of the diatomic

collider, to mass-related changes in the quantized energy level structure.

We also computed rotational-level resolved integral cross sections for collision of

CD3 with D2 and H2. The ICSs for inelastic scattering of CD3 with D2 and H2 j2 = 1 are
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larger than for j2 = 0, indicating that an initially rotating D2 or H2 molecule increases

the probability of a given CD3 transition. The ratio of ICSs for j2 = 0→ 2 to j2 = 0→ 0

transitions in the diatomic, for a particular change in the CD3 angular momentum, is

much smaller for H2 than for D2 because of the larger energy gap between rotational levels

of the lighter isotopologue. CD3–D2 DCSs are very similar for collisions with D2 initially

in j2 = 0 and 1 rotational levels.

We also compared the DCSs for CD3–D2 with CD3–He measured previously [200].

Comparison of these systems is interesting because they have the same reduced mass, but

the scattering dynamics of CD3 with D2 and He is governed by different PESs, and thus

the forces acting between the collision partners. For example, the global minimum of

the CD3–D2 PES has De = 99.0 cm−1, which is significantly larger than for CD3–He

[27.0 cm−1 (Ref. [138])]. The equilibrium geometry for CD3–D2 is R= 6.57a0, θ1 = 0◦,

θ2 = 0◦. The D2 molecule thus lies along the C3 axis of the methyl radical as opposed to

the equilibrium geometry of the global minimum for CD3–He, for which the He atom

lies in the molecular plane and bisects two C–H bonds at R= 6.52a0.

When comparisons are made between computed DCSs for CD3–D2 and CD3–He

scattering at the same collision energy, we find a similar dependence on scattering angle.

This observation is particularly the case for transitions directly coupled by terms represent-

ing the three-fold anisotropy associated with the azimuthal angle about the C3 symmetry

axis of the radical. The ICSs for CD3–He and CD3–D2, in which the D2 is in an initial

level with j2 = 0, are of comparable magnitudes.
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Chapter 7

OH–H2 Potential Energy Surfaces and Bound States

This chapter contains long excerpts of an unpublished manuscript titled “The inter-

action of OH(X 2Π) with H2: Ab initio potential energy surfaces and bound states”, by

Qianli Ma, Jacek A. Kłos, Millard H. Alexander, Ad van der Avoird, and Paul J. Dagdigian.

The majority of the ab initio calculations in this work were performed by Jacek A.

Kłos.

7.1 Introduction

There has been considerable interest in the dynamics of the OH–H2 system. One

important reason is that the OH+H2→H2O+H reaction is one of the simplest four-

atom reactions [127, 257]. The OH(X 2Π)–H2 system is also of astrophysical importance

[258, 259].

Loomis and Lester have stabilized the weakly-bound OH(X 2Π)· · ·H2/D2 complexes

[260], reporting binding energies of, for H2, 54 cm−1 and, for D2, > 66 cm−1, which

they assigned to the OH–ortho-H2 and OH–para-D2 complexes, respectively [261]. Sub-

sequently, Lester and coworkers have observed and analyzed the rotational structure of

these complexes [262–264].

Andresen et al. [265, 266] first determined relative inelastic cross sections of OH

j = 3/2 F1 (with equal populations in both Λ-doublet levels) in collisions with H2 and D2.

145



Later, Schreel and ter Meulen [144] measured Λ-doublet resolved inelastic cross sections

for OH–H2, using an electrostatic hexapole as a state selector for OH. Recently Kirste et

al. [96] used a Stark decelerator [267] to measure the energy dependence of inelastic cross

sections for transitions out of the upper j = 3/2 F1 Λ-doublet level in collisions with D2.

Here we report two accurate sets of OH(X 2Π)–H2 potential energy surface (PESs)

for the study of both bound states and inelastic collisions. Because of its orbital degeneracy,

two potential energy surfaces (PESs) are needed to describe the interaction of OH with a

closed-shell collision partner [268].

To treat the dynamics of the OH–H2 system, it is most convenient to describe the

interaction of the collision partner with the two (Λ = ±1) components of the Π state

of OH. Here, Λ = ±1 is the body-frame projection of the electronic orbital angular

momentum. These “definite-Λ" states are linear combinations of Cartesian basis functions,

|Πx〉 (with electronic occupancy . . .πxπ
2
y ) and |Πy〉 (with electronic occupancy . . .π2

xπy ).

The Cartesian states are eigenfunctions of the operator corresponding to the reflection of

the spatial coordinates of all the electrons in a plane through the OH axis.

In this Cartesian basis, the wave functions for the supermolecular system of OH and

a structureless atom are eigenfunctions of the same reflection operator, and correspond to

two states of differing reflection symmetry (A′ and A′′). The electronic energies of these

two states correspond to interaction potentials which are conventionally labeled VA′ and

VA′′ . In the definite-Λ basis, the matrix of the electronic Hamiltonian is a full 2× 2 matrix,

with matrix elements which are the sum and difference of VA′ and VA′′ [106].

In general the tetratomic OH–H2 system is nonplanar. There will be still two

electronic states, which we can express as linear combinations of the two Cartesian basis

functions |Πx〉 and |Πy〉. The matrix of the electronic Hamiltonian can be diagonalized

in this “diabatic" basis, at each geometry, by a rotation of the adiabatic wave functions

through a single “mixing angle".

Two strategies have been previously employed to treat this: The first is to sample
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only OH–H2 geometries that have a plane of symmetry, in which case the wave functions

for the two electronic states have differing reflection symmetries. This allows the two

PESs, which correspond to the lowest states of A′ and A′′ symmetry, to be calculated

separately using conventional quantum chemical approaches. This strategy was adopted

by Kochanski and Flower (KF) [269], who used self-consistent field (SCF) calculations

with a perturbation theory approximation to include electron correlations, and later by

Miller et al. (MCKW) [148] in coupled electron pair approximation (CEPA) calculations.

Alternatively, one can obtain the mixing angle directly in the ab initio calculations.

This strategy was implemented by Offer and van Hemert (OvH) [268], using the multi-

configuration self-consistent field (MCSCF) method with corrections for the dispersion

interaction.

The PESs mentioned above have been tested by comparison with experimental

studies of rotationally inelastic scattering and the determination of OH–H2 bound-states.

Both the KF and MCKW PESs gave state-to-state inelastic cross sections in good agreement

with the experiments by Andresen et al., although the agreement was better for cross

sections in which OH remains in its initial (F1) spin-orbit manifold [148, 270, 271]. Cross

sections computed from the OvH PESs agree well with the later scattering experiments of

Schreel and ter Meulen [144, 272]. The KF and MCKW PESs predict dissociation energies

(D ′′0 ) of the OH–ortho-H2 complex of 42.2 and 85.4 cm−1, respectively [148, 273]. These

numbers are only in semi-quantitative agreement with the experimental value of 54 cm−1

[261].

It is probable that these disagreements reflect inaccuracies in the PESs, either because

the ab initio calculations sampled a small number of geometries, or because of a simplistic

(by today’s standards) treatment of electron correlation.

The two strategies mentioned above have their own shortcomings. In the first

approach one samples very limited number of orientations. The second tack requires

ab initio methods that can compute excited-state energies accurately, which is less cost-
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effective. In this paper, we present two high-quality sets of OH–H2 PESs, one based on

a multi-reference configuration interaction [MRCISD+Q(Davidson)] method and the

other based on an explicitly correlated coupled cluster method with single-, double-, and

(pertubatively) triple-excitations [CCSD(T)-F12a].

This chapter is organized as follows: We present in Sec. 7.2 the theory for the

analytical expansion of the OH–H2 PESs in a definite-Λ basis. In Sec. 7.3 we describe our

treatment in developing the PESs. We show that despite its incomplete angular sampling,

the CCSD(T) PESs are more accurate. Features of the PESs and comparison with previous

PESs are also illustrated in Sec. 7.3. We present bound-state calculations for the OH–H2

complex with our PESs in Sec. 7.4. A discussion in Sec. 7.5 concludes this paper.

7.2 Theory

The theoretical framework for the PESs describing the interaction of a diatomic

molecule in a 2Π electronic state, like OH(X 2Π), and another diatomic molecule in a 1Σ

electronic state has been described previously [69, 268, 270]. In this section we summarize

and clarify the previous treatments. More technical details on the theory can be found in

Appendix A.

7.2.1 Interaction Potential

We use the coordinate system of Fig. 7.1 to describe the OH–H2 system. The OH

moiety lies in the X Z plane. We shall keep the OH and HH bond distances frozen. The

interaction then depends on the two polar angles θO and θH, the azimuthal angleφH of the

HH moiety, and the distance R between the centers-of-mass of the OH and HH moieties.

We define the orientation of the OH so that θO = 0 corresponds to the H-atom of the OH

pointing toward the H2 moiety.

To intuit a suitable expansion for the interaction potential, we write the wave func-

tion for the OH–H2 system as a product of a definite-Λ function on OH multiplied by the
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Figure 7.1: The definition of the coordinate system describing the interaction between OH and
H2. The OH moiety lies in the X Z plane, with θO = 0 corresponding to the H-atom of the OH
pointing toward the H2 moiety.

non-degenerate wave function for H2 in its 1Σ+ electronic ground state, namely

ΨOH(Λ)−H2
≡ |Λ〉=ψΛψH2

As discussed in Appendix A, we follow earlier work on the interaction between a

2Π molecule and a closed shell atom [106]. For the more general case of a 2Π molecule

and a closed shell diatom the elements of the 2× 2 matrix of interaction potential in the

definite-Λ basis can be expressed in the body frame (BF) expansion

VΛ′,Λ(R,θO,θH,φH) =


l1 l2 l

V (Λ′−Λ)
l1 l2 l (R)



m

〈l1m, l2,−m | l 0〉

× d l1
m,Λ′−Λ(θO)D

l2∗
−m,0(φH,θH, 0), (7.1)

where 〈l1m1, l2m2 | l m〉 is a Clebsch-Gordan coefficient, and d l
m,m′ and D l

m,m′ are reduced

and full Wigner rotation matrices [28]. This equation is equivalent to Eq. (27) of Wormer

and co-workers [69] under the assumption that the OH molecule lies in the X Z plane.

Rist, Alexander, and Valiron have shown [135] that the symmetry of the Hamiltonian
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with respect to inversion of all the coordinates

P̂ ≡ {θO,θH,φH,Z}→ {π−θO,π−θH,π+φH,−Z}, (7.2)

restricts (l1 + l2 + l ) to even values. Wormer and co-workers have used time-reversal

invariance of the Hamiltonian to make the same argument [69]. Also, the potential must

be symmetric with respect to interchange of the two identical H atoms. This forces l2 to

be even.

7.2.2 Diagonal (Λ′ =Λ) Matrix Elements

Since the Hamiltonian is invariant with respect to the chirality of a rotation around

R⃗, the summation over m in Eq. (7.1) must be independent of the sign of m. Consequently,

we can restrict the sum over m to positive semi-definite values and use a symmetry property

of the Clebsch-Gordan coefficient to write the diagonal matrix elements Vd as

Vd =


l1 l2 l

V (0)
l1 l2 l (R)



m≥0

〈l1m, l2,−m | l 0〉 (1+δm0)
−1

×
�

e−i mφH +(−1)l1+l2−l e i mφH
�

d l1
m0(θO)d

l2
−m,0(θH), (7.3)

Since for the diagonal potential the sum is limited to even values of (l1 + l2 + l ),

the electronic Hamiltonian will be invariant with respect to a reflection in the X Z plane

in Fig. 7.1 (φH → −φH). Under this constraint the sum of exponentials in Eq. (7.3) is

proportional to cos(mφH), which allows us to write Vd as

Vd =


l1 l2 l

V (0)
l1 l2 l (R)



m≥0

〈l1m, l2,−m | l 0〉 (2−δm0)

× d l1
m0(θO)d

l2
−m,0(θH)cos(mφH). (7.4)

Since the diagonal elements of a Hermitian matrix must be real, and since all the terms
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in this equation except the V (0)
l1 l2 l expansion coefficients are real, it follows that the these

coefficients must also be real.

7.2.3 Off-Diagonal (Λ′ ̸=Λ) Matrix Elements

The reader can easily deduce from the work of Wormer and co-workers [69] [see

their Eqs. (30) and (31)] that the V expansion coefficient of Eq. (7.1) obey the symmetry

relation

V (−2)
l1 l2 l (R) = (−1)l1+l2+l V (2)

l1 l2 l (R). (7.5)

Because the off-diagonal matrix elements of the Hamiltonian must be Hermitian, Eq. (7.5)

implies that the V (±2)
l1 l2 l (R) expansion coefficients must be real.

We designate the off-diagonal VΛ′=1,Λ=−1(R,θO,θH,φH) PES as Vo,

Vo =


l1 l2 l

V (2)
l1 l2 l (R)



m

〈l1m, l2,−m | l 0〉 e−i mφH d l1
m2(θO)d

l2
−m,0(θH), (7.6)

7.2.4 Restriction on (l1 + l2 + l )

As discussed already, the requirement of inversion symmetry and time reversal

invariance forces the sum (l1+ l2+ l ) expansion indices to be even [135]. Strictly speaking,

however, this is limited to the expansion of the Coulomb interaction r−1
i j . The interaction

of linear molecule in a Π electronic state with a closed-shell diatomic exhibits the same

lowering of an underlying symmetry as the interaction of a non-linear triatomic with a

closed-shell diatomic. Consequently, the question of the role of (l1 + l2 + l )=odd terms

applies to the angular expansion of the intermolecular interaction involving non-linear

triatomic molecules [65, 251].

Green [251] has investigated various model potentials for interactions involving a

non-linear molecule. He concluded that odd (l1 + l2 + l ) terms “cannot be excluded on

the grounds of the underlying symmetry of space itself”. Consequently, in fitting our ab
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initio interaction energies, we did include the flexibility of both even and odd values of

(l1 + l2 + l ) for the off-diagonal matrix elements.

7.2.5 Normalization

The individual {l1, l2, l} basis functions in the expansions in Eqs. (7.3) and (7.6) are

not normalized with respect to integration over θO, θH, and φH. Comparable expansions

in orthonormal bases are

Vd = (8π)−1/2


l1 l2 l

Bl1 l2 l (R)[(2l1 + 1)(2l2 + 1)]
1
2

×


m≥0

〈l1m, l2,−m | l 0〉 (2−δm0)
1/2d l1

m0(θO)d
l2
−m,0(θH)cos mφH, (7.7)

and

Vo =(8π)
−1/2



l1 l2 l

Fl1 l2 l (R)[(2l1 + 1)(2l2 + 1)]
1
2

×


m

〈l1m, l2,−m | l 0〉 e−i mφH d l1
m0(θO)d

l2
−m,0(θH). (7.8)

Examination of the magnitude of these Bl1 l2 l and Fl1 l2 l coefficients will provide the most

meaningful insight into the importance of individual terms. Note that the earlier treat-

ment of collisions between a 2Π molecule and a structureless atom [106, 274] used an

unnormalized basis.

7.2.6 Adiabatic and Quasi-Diabatic Bases

Ab initio calculations give electronically adiabatic states. For a four-atom 2Π–1Σ+

system in geometries in which there is a reflection plane that lies in the X Z or Y Z plane, the

electronic wave functions will belong to different irreducible representations A′ and A′′ in

Cs symmetry. We will designate these states as |Πx〉 and |Πy〉, in which the Cartesian index

designates the singly-filled π lone-pair orbitals on the OH molecule, i .e . |Πx〉 ∼ π1
xπ

2
y
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and |Πy〉 ∼ π2
xπ

1
y . Because these two Cartesian states belong to different irreducible

representations, they are not mixed by the OH–H2 interaction. In these geometries, the

Cartesian states are then the electronically adiabatic states and and their energies, the

electronically adiabatic energies.

Consider now an arbitrary OH–H2 geometry, in which there are no symmetry

elements save the identity operator (C1 symmetry). In an ab initio calculation it is possible

to rotate the orthogonal π molecular orbitals so that one lies in the X Z plane and the

other, perpendicular to this plane. In our specific application, the molecular orbitals from

a complete active space, self-consistent field (CASSCF) calculation are rotated to achieve

maximum overlap with the CASSCF orbitals for the OH–H2 system at the same geometry

except for φH = 0.

We use these rotated orbitals to define two state functions π1
xπ

2
y and π2

xπ
1
y . These

will be mixed by the Hamiltonian. Diagonalization will give rise to two electronically

adiabatic states, which we designates as |u〉 (upper) and |l 〉 (lower). These are 2× 2 linear

transformations of the two Cartesian states, namely





|u〉

|l 〉



=





cosχ sinχ

− sinχ cosχ









|Πx〉

|Πy〉



=CT





|Πx〉

|Πy〉



 , (7.9)

where χ is the so-called “mixing angle”. This latter depends on the OH–H2 geometry, just

as the potential energy surfaces.

The 2× 2 basis in terms of the rotated π orbitals defines what are called “quasi-

diabatic" states (or, more simply, “diabatic" states) [143, 275]. In this diabatic basis the

153



matrix of the interaction Hamiltonian is [69, 268]





Vx x Vxy

Vy x Vyy



=C





Vu 0

0 Vl



CT

=





Vucos2χ +Vl sin2χ 1
2 (Vu −Vl ) sin2χ

1
2 (Vu −Vl ) sin2χ Vusin2χ +Vl cos2χ



 , (7.10)

where Vq ′q is a shorthand notation for 〈Πq ′ |Ĥi nt |Πq〉, and Vl and Vu are the adiabatic

interaction energies. This equation should be compared to Eq. (3) of Ref. [268], which

gives the relation between the definite-Λ diabatic and adiabatic states.

As with the one-electron molecular orbitals, the definite-Λ states are linear combina-

tions of the Cartesian states, namely

|Π±1〉=∓2−
1
2 (|Πx〉± i |Πy〉), (7.11)

Wormer and co-workers have shown (see Eq. (4) of Ref. [69]) that in the definite-Λ basis

the diagonal potential is

Vd =
1
2
(Vl +Vu), (7.12)

and the off-diagonal potential is

Vo =
1
2
(Vl −Vu)(cos2χ − i sin2χ ). (7.13)

For any OH–H2 geometry in which the XZ plane is a plane of reflection symmetry

Vxy and Vy x vanish. For these geometries, the diagonal potentials are identical to the

adiabatic potentials Vl and Vu , and it follows that

Vd =
1
2
(Vyy +Vx x), (7.14)
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and

Vo =
1
2
(Vyy −Vx x). (7.15)

Equations (7.14) and (7.15) are equivalent to the “sum” and “difference” PESs usually used

in describing the interaction between a 2Π atom and a structureless atom [106, 107, 274].

7.2.7 Symmetry Restrictions

The symmetry of the potential with respect to interchange of the two hydrogen atoms

and to reflection in the X Z plane (Fig. 7.1) allows us to restrict the ab initio calculations

to a subspace of the complete coordinate space grid. As a consequence, in the ab initio

calculation of the potential energy surfaces, we can restrict ourselves to the subspace

0≤ θH ≤π/2 and 0≤φH ≤π.

7.2.8 Limiting Geometries

When the OH molecule lies along the Z axis, θO = 0 or π. The two adiabatic

potential energies, Vl and Vu , will obviously be independent of φH.

When the H2 molecule is in the X Z plane, i.e.,φH = 0, or θH = 0 orπ, |Πx〉 and |Πy〉

will be symmetric and antisymmetric to reflection in the X Z plane. Since the identification

of Vl and Vu with Vx x and Vyy is different for θH = 0 and π, we have χ = 0 and π/2 for

these two values of θH. For both cases, the off-diagonal potential Vo is real.

When the OH molecule lies along the Z axis, the OH–HH system is always planar.

However, the CASSCF orbitals are rotated to achieve maximum overlap with those from

a calculation in which the X Z plane (Fig. 7.1) defines the plane of reflection symmetry.

Because the system is planar, there is no additional coupling between the two states. In the

case where θO = 0 the mixing angle χ is equal to φH, while for θO = π we have χ =−φH

[69, 268].

Finally, in linear geometries (both polar angles 0 or π), the degeneracy of the two Π

states of OH is not lifted. The two adiabatic states of the complex are degenerate.
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7.3 Potential Energy Surfaces

7.3.1 MRCI Calculations

We used the MOLPRO program suite [151] to determine the two lowest adiabatic

energies of the OH–H2 complex, El and Eu , as well as the mixing angle χ . For each

geometry, we first performed a CASSCF calculation, with 1 core orbital and 7 active

orbitals, and the augmented correlation-consistent polarized quadruple zeta (aug-cc-pVQZ)

basis [240]. As discussed in Sec. 7.2.6, the resulting orbitals were rotated to maximize the

overlap with CASSCF orbitals from a calculation with φH = 0 and the other coordinates

unchanged.

With configuration state functions built from these diabatic orbitals, we then per-

formed an internally-contracted, multi-reference configuration interaction calculation

including all single and double excitations (IC-MRCISD) to determine the two adiabatic

energies. The CI calculation included 7 active orbitals and 210 external orbitals. We used

the cluster corrected energies of Davidson [59]. These MRCI calculations were carried out

on a four-dimensional grid (R, θO, θH), and φH (Fig. 7.1).

We assumed that the OH and HH bond distances remain fixed at the average value of

r in the v=0 vibrational levels (1.8509a0 for OH [276] and 1.448736a0 for H2 [277]). The

MRCISD method is not size-extensive, i.e., the calculated energy of the OH–H2 complex

does not precisely equal the sum of the energies of OH and H2 when the distance R goes

to infinity. Therefore, we obtained the interaction energy at a given geometry from the

expression

VMRCI(R,Ω) = EMRCI(R,Ω)− EMRCI(R= 100a0,Ω) (7.16)

where Ω denotes the three angles. Finally, the quasi-diabatization procedure in MOLPRO

was used to compute χ (R,Ω) from analysis of the CI coefficients [278, 279].

The angular grid included 845 orientations, with 11 values of θO defined by cosθO =
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−1 to 1 in steps of 0.2, 6 values of θH defined by cosθH = 0 to 1 in steps of 0.2, and 13

values ofφH from 0 to π in steps of π/12. This choice of grid provides a uniform sampling

of the differential solid angle sinθ1dθ1 sinθ2dθ2 dφ2 [254]. The OH–H2 distance was

spanned by 32 values of R ranging from 3.5a0 to 16a0.

We found that the angular dependence of the computed interaction energy is not

smooth beyond R= 16a0. We discarded 112 of the 27456 points, corresponding to small

values of R, for which there was unacceptable scatter in the calculated values of Vo.

7.3.2 CCSD(T) Calculations

We also carried out restricted explicitly correlated coupled-cluster calculations with

all single- and double-, and (perturbatively) triple-excitations [RCCSD(T)-F12a] [51, 53].

The advantage of a coupled-cluster method is that one can recover more of the correlation

energy. The disadvantage is that it is difficult to determine the energy of the second

adiabatic state, except in high-symmetry geometries where the wave functions for the two

states belong to different irreducible representations.

We performed RCCSD(T)-F12a calculations with the augmented correlation-

consistent triple-zeta basis [240, 252, 253] supplemented with mid-bond functions

(3s3p2d2 f 1g1h) at the following high-symmetry OH–H2 geometries: (1) φH = 0 or

180◦, and a grid including 11 values of θO (0◦,20◦, 40◦, 60◦, 80◦, 90◦, 100◦, 120◦, 140◦, 160◦,

and 180◦) and 7 values of θH (0◦, 22.5◦, 30◦, 45◦, 60◦, 67.5◦, and 90◦); (2) φH = 90◦, θO = 0◦

or 180◦, and θH with each of the 7 values listed above; and (3) φH = 90◦, θH = 0◦ or 90◦,

and θO with each of the 11 values listed above excluding 0◦ and 180◦. This choice of angles

gives rise to 186 orientations, of which 131 are unique.

For all these geometries the existence of a plane of symmetry allows us to determine

RCCSD(T) energies for the lowest states of both A′ and A′′ symmetry. These energies

correspond to Vx x and Vyy depending on the chosen plane of symmetry. The potential in

the definite-Λ basis was computed with Eqs. (7.14) and (7.15). The grid in the OH–HH
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distance consisted of 39 values ranging from 3.5a0 to 30a0.

We used the scaled triples correction as implemented in MOLPRO [151]. In these

RCCSD(T) calculations we used the counterpoise method to estimate the basis set super-

position error (BSSE) [57], in which we subtract the energies of the fragments computed

in the (supermolecular) atomic orbital basis. The interaction energy is

VCCSD(T)(R,Ω) = E (OH−HH)
CCSD(T) (R,Ω)− E (OH)

CCSD(T)(R,Ω)− E (HH)
CCSD(T)(R,Ω). (7.17)

7.3.3 Fitting the Potential Energy Surfaces

The phase of the CI wave functions is not defined uniquely in the CI calculation.

Consequently the signs of the the mixing angleχ as well as of the real and/or imaginary part

of the off-diagonal potential may vary inconsistently from point to point. To compensate

for this uncertainty in sign, we first fitted our CCSD(T) ab initio potential to a small set of

angular basis functions. This fitted potential was then used to resolve ambiguities in the

signs of the MRCI off-diagonal potentials. Manual inspection confirmed smoothness in the

off-diagonal PES. Unfortunately, for a few geometries, Vo is very close to zero (|Vo|< 0.05

cm−1), preventing the determination of a consistent sign for these points.

The fitting procedure was as follows: We first set upper limits of 9 and 6 for, respec-

tively, l1 and l2. The subsequent expansion contains 126 terms for Vd and 198 terms for

Vo. We then carried out a least-squares fit of the sign-corrected MRCI interaction energies

at R= 5a0 (a point in the repulsive region of the PES where we don’t anticipate that the

important expansion coefficients will be changing sign) to Eqs. (7.7) and (7.8). All terms

with expansion coefficients of absolute value greater than 1.5 cm−1 were retained. This

corresponds to 39 terms for Vd and 15 terms for Vo. In the latter case, 3 of the terms have

odd values of (l1 + l2 + l ).

We used this (39/15)-term fitting scheme and Eqs. (7.7) and (7.8) to fit both the MRCI

and the CCSD(T) PESs. Figure 7.2 displays the root-mean-square (RMS) deviation of the
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Figure 7.2: Root mean squares (RMS) as a function of intermolecular distance between the fitted
potential and the ab initio potential for the MRCI and CCSD(T) PESs.

fits to Vd and Vo as a function of R.

Overall, we see the fit is good, and the RMS is well below 1 cm−1 for R≥ 6a0. Because

the off-diagonal potential is overall smaller in magnitude, the RMS for Vo is smaller. We

will discuss this further in Sec. 7.3.5.

At short range, Vd of the CCSD(T) potential has a larger RMS. This is reasonable

since the terms we used in the fit were optimized for the MRCI PESs. For Vo and Vd at

long range, the CCSD(T) PESs have smaller RMS. The RMS for the MRCI PESs generally

remains a constant (0.05∼ 0.1 cm−1) for R≥ 8a0. This is a measure of the precision of our

MRCI calculations.

To estimate the systematic error of the CCSD(T) PESs due to the restriction of the

angular sampling to high symmetry points, we also created a test Vd and Vo PES using

only the MRCI points whose molecular geometry has a plane of symmetry [referred to in

the following as the MRCI-HS (high-symmetry) PESs]. Out of the 858 orientations for

each R, there are 153 that have a plane of symmetry. Fitting just these points, by means of

the same procedure as described above, we obtain the MRCI-HS PESs.
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7.3.4 Extrapolation of the Potential Energy Surfaces

Short Range

The calculated PES was limited to R≥ 3.5a0, which is sufficiently small for scattering

and bound-state calculations. Inside this value of R, the expansion coefficients are held

constant to their values at 3.5a0. We note that a few expansion coefficients, of relatively

small magnitude, do not vary smoothly for R≤ 4.25a0.

Long Range

The CCSD(T) PESs were extrapolated by a least-squares fit of a few ab initio points

at large R to the form

V ext
l1 l2 l (R) =



i

Ci R
−ni . (7.18)

Here V ext represents an extrapolated B or F coefficient, Ci is a fitted parameter, and ni is

the appropriate power in the standard long-range expansion of the multipole-multipole

electrostatic, the dispersion, and the induction interactions [66, 73]. We included only

the smallest one or two values of ni ≤ 11 in modeling the induction and dispersion terms.

Care was taken to choose a proper range of R values for this long-range fit so that none of

the expansion coefficient would be artificially large at R= 200a0.

The MRCI PESs were extrapolated by a slightly different method since the ab initio

points are less precise at long-range. We employed a multipole expansion method similar

to that described in Ref. [69] to model the long-range electrostatic interaction in terms of

the multipole moments of the separate OH and H2 molecules. We used the distributed

multipole [70] capability of MOLPRO to determine from MRCI calculations the multipole

moments of the isolated OH and H2 molecules. For these calculations we used a larger

active space as well as an augmented correlation consistent sextuple zeta (aug-cc-pV6Z)

basis set [280]. As in the calculations of the full OH–H2 PESs, the OH and H2 bond

distances where held fixed at their average value in the v=0 vibrational level. In Table 7.1
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Table 7.1: Multipole moments (in atomic units) of OH(X 2Π) and H2 from the calculations described
in the text. Previously published experimental and theoretical values are given in parentheses.

l m ql m
OH

1 0 0.6442 (0.6512a, 0.6512b, 0.6545c, 0.6472d )
2 0 1.2913 (1.3939c, 1.2709d )
2 2 −1.1948 (−1.1825c, −1.1589d )
3 0 2.3494 (2.6691c, 2.3023d )
3 2 −0.0615 (0.7986c, −0.0289d )

H2
2 0 0.5235 (0.4852e )
a Experimental value for the ground ro-vibrational level (Ref. [281]).
b Theoretical value averaged over the v=0 vibrational distribution 〈ql m〉v=0 (Ref. [282]).
c Theoretical value for r0(OH) (Ref. [69]).
d Theoretical value for r0(OH) (Ref. [12]).
e Theoretical value averaged over the v=0 vibrational distribution 〈ql m〉v=0 (Ref. [283]).

we compare our calculated values of the lower multipole moments of the OH and H2

fragments with experiment and previous theoretical predictions.

We included in this expansion only the dipole, quadrupole, and octupole moments

of OH, and the quadrupole moment of H2. For the diagonal PES, we can thus estimate

the OH-dipole/H2-quadrupole (B123, R−4), the quadrupole-quadrupole (B224, R−5), and the

OH-octupole/H2 quadrupole (B325, R−6) interactions. Since there is no dipole moment

between the Λ=±1 and Λ=∓1 states of OH, for the off-diagonal PES we included just

the quadrupole-quadrupole (F224, R−5) and the OH-octupole/H2 quadrupole (F325, R−6)

terms.

For these multipole-multipole interactions, the V (Λ′−Λ)
l1 l2 l expansion coefficients are

proportional to the products of the corresponding OH and H2 moments, multiplied by

R−l−1. We then subtracted these electrostatic expansion coefficients from the coefficients

obtained by fitting the MRCI ab initio points to Eq. (7.18). The difference potential

was then extrapolated to long range with Eq. (7.18), using the same method as used in

extrapolating the CCSD(T) PESs. The values of ni in Eq. (7.18) corresponding to the

already modeled electrostatic interaction were excluded.
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Figure 7.3: The diagonal potential Vd as a function of intermolecular distance for various θO with
θH = 90◦ and φH = 0◦, obtained from the CCSD(T) PESs (solid lines), the MRCI PESs (dotted
lines), and the MCKW PES (dashed lines) The MRCI and CCSD(T) curves are nearly identical to
within the resolution of the plot.

We obtain the final MRCI expansion coefficients by smoothly switching, as R ap-

proaches 16a0, between the fit to the ab initio points at short range and the extrapolated

expansion coefficients at long range, for the {l1 l2 l3}=123, 224 and 325 terms. For the other

{l1 l2 l} terms with known inverse R dependences we extrapolated by smoothly switching

at R= 16a0 to Eq. (7.18), or, if not, to an exponential decay.

In the case of the CCSD(T) expansion coefficients, which are smoothly varying out

to R= 30a0, we did not switch to the known multipole-multipole terms. For R> 30a0

we just extrapolated by Eq. (7.18) for the terms with a known inverse R dependence, or by

an exponential decay.

The MRCI-HS PESs were extrapolated with the same procedure and parameters as

for the full MRCI PESs.

7.3.5 Fitted Potential Energy Surfaces

Expansion Coefficients

Figure 7.3 shows several radial cuts of Vd for the MRCI and CCSD(T) PESs at

θH = 90◦ and φH = 0◦. These correspond to planar geometries with H2 perpendicular

to R. Three values of θO (0◦, 90◦, and 180◦) were chosen. For comparison, we also show
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Table 7.2: Predicted and experimental OH–H2 equilibrium separation (Re ) and dissociation energies
for the OH–H2 complex.

PES Re (a0) De (cm−1) D0 (cm−1)
OH–H2 OH–D2

para ortho para ortho
KFa 5.90 248.8 53.7 85.4
MCKWb 6.08 188.1 28.6 42.2
MRCIc 6.05 219.6 38.7 55.8 69.5 53.8
MRCI-HSc 6.05 219.6 38.5 55.5 69.2 53.5
CCSD(T)c 6.02 219.5 36.1 53.7 67.5 51.4

Experimentd 54 > 66
a PESs described in Ref. [269], and bound states in Ref. [273].
b Ref. [148].
c This work.
d Ref. [261].

comparable radial cuts of the CEPA MCKW PESs (adapted from Ref. [148]).

The MRCI and the CCSD(T) PESs agree very well. Of the three orientations plotted,

only the θO = 0 curve shows a significant well, which corresponds to a T-shaped geometry

with the H-end of the OH pointing to H2. The minima on these curves are also the global

minima of Vd , whose positions and depths are tabulated in Table 7.2. The geometry of

these global minima are a consequence of both the dipole-quadrupole interaction and the

quadrupole-quadrupole interaction. The signs of both quadrupole moments are positive,

which implies that there is an excess of positive charge at both ends of each molecule and

of negative charge in the middle. Therefore, the quadrupole-quadrupole interaction favors

T-shaped geometry.

Both minima are significantly more attractive than predicted by the MCKW PESs

(see Table 7.2). This is not unexpected, since the MCKW ab initio calculations were

based on the CEPA method which gives a less complete recovery of electron correlation

and, hence, a shallower van der Waals well. Secondly, the monomer bond lengths were

slightly different. Here, for both OH and H2 we used the average value of r in the ground

vibrational level, namely, 〈r 〉v=0 for both OH and H2, as recommended by Faure et al.
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Figure 7.4: Larger Bl1 l2 l expansion coefficients for the diagonal potential Vd as a function of
intermolecular distance R for the CCSD(T) (solid lines) and MRCI (dashed lines) PESs. The
corresponding expansion coefficients for the MRCI-HS PES are indistinguishable from the dashed
lines. The upper panel shows the Bl1 l2 l terms which go asymptotically to multipole-multipole
electrostatic interactions; the lower panel displays other coefficients.

[64]. Since 〈r 〉v=0 is larger than re , the polarizability and the electrostatic moments of the

monomer fragments will be larger, so that the long-range interaction will be stronger.

We display the larger fitted expansion coefficients as a function of R in Figs. 7.4 and

7.5 for the MRCI, MRCI-HS, and CCSD(T) PESs. The difference between the expansion

coefficients of the MRCI PESs and MRCI-HS PESs are insignificant. Consequently, re-

stricting the angular sampling in the CCSD(T) ab initio calculations to geometries with a

plane of symmetry will not lead to significant error in the fitted CCSD(T) PES.

As a justification of the use of only the points with high symmetry, we performed

some full close-coupling scattering calculations for several rotationally inelastic transitions

of OH in collisions of H2 j = 0, j = 1, and j = 2, at collision energies ranging from 70
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Figure 7.5: Larger Fl1 l2 l expansion coefficients for the off-diagonal potential Vo as a function of
intermolecular distance R for the CCSD(T) PESs (solid lines), MRCI PESs (dashed lines), and the
MRCI-HS PES (dotted lines, barely visible due to the overlap with the dashed lines). The top panel
shows Fl1 l2 l coefficients that have contributions from multipole-multipole interactions; the bottom
panel displays other coefficients.

to 150 cm−1. We found that the state-to-state cross sections computed with the MRCI

and the MRCI-HS PESs differ by no more than ∼ 2%, comparable to the precision of

the scattering calculations (∼ 1%). For calibration, the maximum difference between

cross sections computed on the MRCI and CCSD(T) PESs is 8%. Detailed results on the

OH–H2 scattering calculations are presented in Chapter 8. Also, we see from Table 7.2 that

OH· · ·H2 dissociation energies computed with MRCI and MRCI-HS PESs differ by only

∼ 0.3 cm−1. We will further show the OH· · ·H2 bound state energies and spectroscopic

constants computed from these two sets of PESs in Sec. 7.4.

We thus assert that our CCSD(T) set of PESs, determined at the points with a

plane of symmetry, is the most accurate currently available for OH–H2. Inclusion of
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triple excitations allows a more complete recovery of electron correlation than in the

MRCISD+Q calculations. Use of the CCSD(T)-F12a method with an aug-cc-pVTZ basis

is expected to be more accurate than a standard (without explicit correlation) CCSD(T)

calculation with a larger aug-cc-PVQZ basis [53]. The CCSD(T) calculations are faster than

the MRCISD+Q calculations. Also, whenever there is a plane of symmetry, the diabatic

coupling Vxy vanishes, so that the determination of the diagonal Vd and off-diagonal Vo

PESs from the Vx x and Vyy Cartesian PESs is straightforward by means of Eqs. (7.14) and

(7.15).

The top panels of Figs. 7.4 and 7.5 show coefficients with l = l1+ l2, l1 ≥ 1, and l2 ≥ 2,

to which the multipole-multipole electrostatic interactions make significant contributions

at long range. For the diagonal potential, the B123 (OH-dipole/H2-quadrupole, R−4 depen-

dence) and the B224 (quadrupole-quadrupole, R−5 dependence) terms dominate the PES at

medium to long range. In this range the only comparable non-multipole contribution is

the isotropic B000 term, which is a reflection of the R−6 dispersion interaction. As seen in

the lower panel of Fig. 7.5, the largest non-multipole contribution is the F202 term, which

is a difference between the dispersion interaction between H2 and OH in its π2
xπy and

πxπ
2
y Cartesian states.

We discussed in Sec. 7.2.4 the appearance of terms in the expansion of the off-diagonal

potential Vo corresponding to an odd sum of the indices {l1, l2, l}. For the electrostatic

interactions between the two fragments, the indices obey the relation l1 + l2 = l , so they

do not give rise to terms in the expansion with odd (l1+ l2+ l ). The induction, dispersion,

and overlap interactions do not obey this relation, however, so there are also terms with

l1 + l2 ̸= l , both with odd and even (l1 + l2 + l ). For this reason, and guided by Green’s

investigation of similar terms in the expansion of the interaction between a non-linear

polyatomic and a diatomic [251], we included terms with odd (l1+l2+l ) in our fit. The

largest of these was the F223 term (see Fig. 7.5). As can be seen, this term is quite small

except at small values of R.
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Figure 7.6: Contour plots (in cm−1) of the CCSD(T) Vd PES (left panel) averaged over all orienta-
tions of H2 compared to the Vsum PES for OH–He (middle panel) from Ref. [83] and for OH–Ne
(right panel) from Ref. [111].

Anisotropies

At small R, the anisotropy of both the diagonal and the off-diagonal PESs is more

complex than predicted by a simple multipole-multipole model. A number of expansion

terms make important contributions. When H2 is in the lowest rotational level ( j = 0), its

wave function is spherically symmetric. The OH–H2( j = 0) PES is a function of only R

and θO, and can be obtained by an equal-weight averaging over all orientations (θH and

φH) of the H2 moiety. Figure 7.6 compares the OH–H2( j = 0)Vd PES with the Vsum PESs

for OH–He [83] and OH–Ne [111].

The anisotropies of these PESs are very similar. All three have global minima at

θO = 0 and R∼ 6.5a0. Although OH–H2 is isoelectronic with OH–He, the OH–H2( j = 0)

minimum is more than three times deeper than the OH–He minimum, and the interaction

is more repulsive at short range. Both differences are reasonable. For H2 in j = 0, the charge

distribution is spherical so that there will be no multipole moments. Hence, the dominant

attractive contribution is the dispersion interaction. Because the charge distribution of

H2 is more polarizable than that of He, the OH–H2 attractive interaction will be larger.

Similarly the size of an H2 molecule, even averaged over orientation, will be larger than

that of the isoelectronic He atom. Thus, we expect a somewhat steeper repulsive wall. In
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Figure 7.7: Contour plots (in cm−1) of the (left panel) CCSD(T) Vo PES averaged over the orienta-
tion of H2 in its j = 0 rotational level compared to the Vdif PES for OH–He (middle panel) from
Ref. [83], and for OH–Ne (right panel) from Ref. [111].

reality, the OH–H2( j = 0) PESs appears more similar to that of OH–Ne.

Figure 7.7 displays contour plots of the off-diagonal OH–H2( j = 0) PES and the Vdif

PESs for OH–He and OH–Ne. The Vo (or Vdif) PESs are the half difference between the

PESs corresponding to interaction of a collision partner with OH (π2
xπ

1
y ) and (π1

xπ
2
y ). This

will vanish in linear geometry, where the two electron occupancies are degenerate, and

reach a maximum at θO ∼ 90◦ where the spherical partner is pointed at either a singly-filled

or doubly-filled OH π orbital. Overall, Vo is smaller magnitude than Vd . We thus expect

it to play a less important role in scattering and bound-state calculations.

Figure 7.8 presents contour plots of Vd and Vo in the OH molecule frame similar

to plots given by OvH (Fig. 3a of Ref [268]). In these plots, the center of mass of the

OH molecule defines the origin. The OH molecule lies on the z axis with the H atom

on the positive direction. The OH–H2 separation is
p

x2 + z2, and the orientation of

the OH molecule in the space-fixed frame defined in Fig. 7.1 is θO = tan−1(−x/z). The

orientation of the H2 molecule is fixed at {θH,φH}= {27.464◦, 45◦}. Overall, our PESs

and those of OvH [268] show a very similar dependence on the OH–HH distances and

on the orientation of the OH moiety. For both sets of PESs, Vd has an attractive well on

the oxygen side of OH, and |Vo| is slightly asymmetric about the x = 0 axis.

Our CCSD(T) calculations sampled only high-symmetry geometries while the OvH
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Figure 7.9: Contour plots of the diagonal CCSD(T) PESs Vd (in cm−1) as a function of θO and θH
when φH = 0 (coplanar geometry; left panel) and φH = 90◦ (right panel). In both cases R= 6a0.

PESs are fits to ab initio calculations which sampled non-planar geometries. Thus the

great qualitative similarity in the OvH and CCSD(T) PESs confirms that sampling only

high-symmetry geometries will provide an excellent description of the OH–H2 system.

The OvH PESs were computed with a SCF + dispersion method, which yields a deeper

well at this H2 orientation compared with our more accurate method.

Contour plots showing the dependence of Vd and Vo on θO and θH for φH = 0◦ and

90◦ at R= 6a0 are presented in Figs. 7.9 and 7.10, respectively. At medium to long range,

the interaction between the OH dipole (negative at the O end) and the HH quadrupole
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part, respectively). When φH = 0, Vo is purely real.

(positive at the ends, negative in the middle) will dominate the interaction. The interaction

will be most attractive when the OH approaches the H2 in T-shaped geometry with the

H-end of the OH closer to the H2 (θO = 0, θr mH = 90◦, T-shaped OH–HH). In addition

to this global minimum, there are local minima in linear HO–HH geometry, in which

the negative end of the OH dipole approaches the positive ends of the HH quadrupole

(θO = 180◦, θH =π/2, linear HO–HH).

Figure 7.10 presents contour plots of the off-diagonal potential Vo. The minima and

the maxima of ℜ(Vo) and ℑ(Vo) are all located at θO = 90◦. At this value of θO, one lobe

of the πx orbital of OH points to H2, and thus will maximize the difference between the

energies of the π2
xπy and πxπ

2
y electron occupancies. When φH = 0◦, ℑ(Vd ) vanishes by

symmetry, while the real and imaginary parts of Vd have comparable magnitudes when

φH = 90◦.

When φH = 90◦, exp(i mφH) = i m, and cos(mφH) vanishes unless m is even. Since

the index l2 is also even (because of the permutation symmetry of the HH moiety), one can

show that the diagonal potential [Eq. (7.4)] and the real part of the off-diagonal potential

[Eq. (7.6)] is unchanged when θH is replaced by π−θH. In contrast, the imaginary part

of the off-diagonal potential changes sign when θH→π−θH. Thus Vd andℜ(Vo) should

be symmetric, while ℑ(Vo) should be antisymmetric, about θH = 90◦. This prediction is
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Figure 7.11: Contour plots showing the variation of Vo of the electrostatic interactions (left panel)
and the CCSD(T) PESs (right panel) as a function of θO and θH when φH = 0; R = 15a0. Contour
labels in cm−1.

borne out by the right panel of Fig. 7.9, and the middle and right panels of Fig. 7.10.

Finally we compare in Fig. 7.11 at R = 15a0 contour plots of the contribution to

Vd of just the terms which correlate at long-range to the lower-order multipole-multipole

interactions (B123, B224, and B325) and the full fitted CCSD(T) PESs. The electrostatic

interactions were computed from the multipole moments listed in Table 7.1. Overall,

consideration of just the electrostatic interactions represents well the angular dependence

and magnitude of the PES. Notwithstanding, the CCSD(T) PESs are less repulsive at all

orientations than that predicted by with the electrostatic interactions alone. We infer that

there are still non-trivial contributions from induction and dispersion at this large value of

R. We thus believe that a full calculation of the long-range potential will be more accurate

than relying on electrostatics alone.

We note that Wormer et al. [69] used electrostatic interactions only in extrapolating

their OH–HCl PES. However, the OH-HCl PES is dominated by the strong R−3 dipole-

dipole interaction which is absent for OH–H2.

Although we did not use the multipole moments in extrapolating the CCSD(T)

PES, fits of the CCSD(T) ab initio points at large R actually give quite similar results.

For example, from the multipole moments listed in Table 7.1, we predict B123 = 2.86×
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105(R/a0)
−4 cm−1, compared to a coefficient of 2.66 obtained by direct fit of the ab initio

points. This good agreement justifies our direct fit of the CCSD(T) points to Eq. (7.18).

7.4 Bound-state Calculations

7.4.1 Theory and Method

The Hamiltonian for the OH–H2 system with fixed bond lengths can be written as

Ĥ =− 1
2µR

∂

∂ R2
R+ ĤO + ĤH +

L̂2

2µR2
+V (R,θO,θH,φH), (7.19)

where µ is the OH–H2 reduced mass, ĤO and ĤH are the rotational Hamiltonians of OH

and H2, respectively, L̂ is the orbital angular momentum of the complex, and V is the

interaction potential.

We construct a set of basis functions from the product of stretching functions

and angular functions and use a set of distributed Gaussians to span the R-space [284].

The construction of the rotational basis functions, which can also be used for scattering

calculations, is discussed in detail in Appendix A.

We employed the following parameters for ĤO: the rotational constant B , the spin-

orbit constant A, and Λ doubling parameters p and q for the v = 0 level of OH. The values

of these parameters were taken from Mélen et al. [285], and the matrix elements of ĤO

were defined by Kotlar et al. [286]. For ĤH we use the rotational constants B of H2 and D2

averaged over the v= 0 probability distributions (59.322 and 29.9043 cm−1, respectively).

The expression for the matrix elements of the interaction potential in this angular

basis is given in Appendix A. We used our Hibridon [31] suite of programs, recently

extended to handle the OH–H2 system, to construct and diagonalize the Hamiltonian

matrix to determine the energies of the OH–H2 bend-stretch states.
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Table 7.3: J = 1/2 bound levels (in cm−1) of OH–H2 for the CCSD(T) PESs. Also shown are
assignments of the stretching quantum numbers.a

ρ=+1b ρ=−1b

n Energy vs Energy vs
OH–para-H2
1 −29.01 0 −26.93 0
2 −20.55 0 −22.43 0
OH–ortho-H2
1 −53.14 0 −53.73 0
2 −41.72 0 −41.02 0
3 −33.16 0 −32.83 0
4 −25.08 0 −25.17 0
5 −9.48 0 −11.82 0
6 −7.43 0 −7.20 1
7 −6.52 1 −5.39 0
8 −3.74 1 −3.18 1
9 −1.42 1 −1.34 1

a The zero of energy is the energy of separated OH(2Π, j = 3/2 F1e) + H2( j ), where j = 0 and 1
for para- and ortho-H2, respectively. Levels with energy >−1 cm−1 are not listed.

b Symmetry index for the complex. The overall parity of the bend-stretch wave function equals
ρ(−1)J−1/2.

7.4.2 Results

We list in Tables 7.3 and 7.4 the energies of the bend-stretch levels of the OH–H2

complex calculated with the CCSD(T) PESs for total angular momenta J = 1/2 and 3/2.

In computing these energies, we included all angular basis functions with j1 ≤ 6, and j2 ≤ 5

and≤ 4 for ortho and para H2, respectively. The stretch basis (the expansion in the OH–H2

distance) was 41 equally spaced Gaussian functions spanning the range 4a0 ≤ R≤ 16a0.

The computed bound state energies are converged to ∼ 0.01 cm−1.

We have inspected the wave functions for each bound level and assigned OH–H2

stretching quantum numbers vs and the body-fixed projection P of the angular momentum

of the complex J . P was assigned using the vector model of angular momenta similar to

the method described in Ref. [273].

Overall, we find that the computed bound level energies are in qualitative agreement

with the values reported by Miller et al. [148, 273]: The number of bound states are similar,
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Table 7.4: J = 3/2 bound levels (in cm−1) of OH–H2 predicted the CCSD(T) PESs. Also shown
are assignments of the stretching quantum numbers and approximate values of P .a

ρ=−1b ρ=+1b

n Energy vs P Energy vs P
OH–para-H2
1 −36.12 0 3/2 −36.09 0 3/2
2 −28.00 0 1/2 −24.23 0 1/2
3 −20.89 0 1/2 −22.47 0 1/2
4 −16.48 0 1/2 −18.32 0 3/2
5 −1.51 1 3/2 −1.48 1 3/2
OH–ortho-H2
1 −51.22 0 1/2 −52.36 0 1/2
2 −43.10 0 3/2 −42.51 0 —c

3 −38.66 0 —c −38.09 0 3/2
4 −36.49 0 3/2 −36.36 0 3/2
5 −30.83 0 1/2 −30.16 0 1/2
6 −23.00 0 1/2 −23.30 0 —c

7 −16.54 0 3/2 −16.45 0 —c

8 −8.21 0 —c −11.24 0 1/2
9 −6.88 0 1/2 −7.14 1 —c

10 −5.82 0 —c −5.83 0 3/2
11 −4.62 1 —c −4.10 1 —c

12 −3.45 0 —c −2.80 1 —c

13 −2.12 1 —c −2.07 1 —c

14 −2.08 1 1/2
a The zero of energy is the energy of separated OH(2Π, j = 3/2 F1e) + H2( j ), where j = 0 and 1

for para- and ortho-H2, respectively. Levels with energy >−1 cm−1 are not listed.
b Symmetry index for the complex. The overall parity of the bend-stretch wave function is
ρ(−1)J−1/2.

c Strong Coriolis coupling prevents the assignment of the body-frame projection P .

the zero point energies are large, and for both J = 1/2 and 3/2 the binding energies for

OH–ortho-H2 are greater than for the para–H2 complex. The stronger binding with ortho-

H2 is a general phenomenon for all H2 complexes [146–150, 273]. The para–H2 molecule

is spherically symmetric and cannot orient to sample the most attractive orientations (at

least without mixing in the higher j = 2 rotational level).

In Sec. 7.3.5, we discussed whether restricting the angular sampling to geometries

with a plane of symmetry would lead to significant error in the fitted PESs. The difference

between the expansion coefficients for the MRCI and MRCI-HS PESs were found to be
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Table 7.5: The lower J = 1/2 and 3/2 bound levels (in cm−1) of OH–H2 predicted the MRCI and
MRCI-HS PESs.a

ρ=+1b ρ=−1b

n MRCI MRCI-HS MRCI MRCI-HS
OH–para-H2 J = 1/2

1 −30.62 −30.28 −28.60 −28.28
2 −22.24 −21.96 −24.07 −23.78
OH–para-H2 J = 3/2

1 −38.74 −38.52 −38.72 −38.50
2 −29.64 −28.31 −25.99 −25.70
3 −22.79 −22.59 −24.25 −24.00
OH–ortho-H2 J = 1/2

1 −55.21 −54.96 −55.79 −55.54
2 −44.26 −43.90 −43.54 −43.18
3 −35.17 −34.81 −34.96 −34.60
OH–ortho-H2 J = 3/2

1 −53.31 −53.06 −54.42 −54.17
2 −46.12 −45.82 −45.63 −45.35
3 −41.27 −40.94 −40.46 −40.13

a The zero of energy is the energy of separated OH(2Π, j = 3/2 F1e) + H2( j ), where j = 0 and 1
for para- and ortho-H2, respectively.

b Symmetry index for the complex. The overall parity of the bend-stretch wave function is
ρ(−1)J−1/2.

insignificant. Moreover, there were only minimal differences between state-to-state cross

sections computed with these two PESs. As a further check on the validity of considering

interaction energies only for geometries with a plane of symmetry, we compare the energies

of bend-stretch levels computed with these two PESs. Table 7.5 presents comparison of

the energies of the lower J = 1/2 and 3/2 bound levels computed with the MRCI and

MRCI-HS PESs. We see that the energies computed with the MRCI PESs are slightly lower

than the MRCI-HS values. However, the differences in energies are quite small, < 0.3

cm−1. This provides additional justification for using only geometries that have a plane of

symmetry in our fit, and hence allowing the use of RCCSD(T) theory in computing the

interaction energies.

We see in Tables 7.3, 7.4, and 7.5 that there are significant parity splittings in the

energies of the bend-stretch levels. Green and Lester [287] and Dubernet et al. [288]
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have employed a perturbation theory to determine the J -dependence of the bend-stretch

energies and parity splittings, which can be expressed for P = 1/2 bend levels as

BJ (J + 1)+
ρ

2
p(J + 1/2) (7.20)

where B is the rotational constant of the complex and p is the parity splitting parameter

of that particular bend level. As expected from the analysis in the above cited studies

[287, 288], the parity splittings are much larger for P = 1/2 levels than for P = 3/2 levels.

We have fit the J and parity dependence of the computed energy of the lowest bend-

stretch level (P = 1/2) of OH–ortho-H2 to Eq. (7.20). Table 7.6 compares the rotational

constant and parity splitting parameter for this bend-stretch level, determined both experi-

mentally and theoretically. As expected from the small differences between the MRCI and

MRCI-HS bend-stretch energies, the derived spectroscopic constants computed with these

two PES’s are in good agreement. We also see that there are only slight differences in the

parameters computed with the CCSD(T) and MRCI PES’s. By contrast, the agreement of

our computed spectroscopic constants with those reported experimentally [262], which

were obtained from fitting J = 1/2 and J = 3/2 level energies derived from the spectrum,

is less satisfactory. Our values for B and p are, respectively, smaller and larger than the

experimental values. The differences lie outside the experimental error bars. Curiously,

the spectroscopic constants computed with the less sophisticated MCKW PES are in better

agreement with experiment. We note that the Coriolis coupling in the J = 3/2, P = 1/2

levels we used in deriving spectroscopic constants are weak.

Calculation of the bend-stretch energies allows us to predict the zero-point corrected

dissociation energy D0. These values are presented in Table 7.2. Our predicted well depths

(De ) are ≈ 31 cm−1 larger than predicted for the MCKW PESs. However, this difference

is compensated somewhat by the larger curvature of our PESs in the region of the well

(see the blue lines in Fig. 7.3). Thus the zero-point-corrected dissociation energies (D0)
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Table 7.6: Predicted and experimental spectroscopic constants for the lowest bend-stretch level of
the OH–ortho-H2 complex. Unless otherwise stated, the theoretical constants were determined by
fitting J = 1/2 and and J = 3/2 energies.

PES B (cm−1) p (cm−1)
MCKWa 0.660(2) 0.452(2)
MRCIb 0.543(1) 0.558(2)
MRCI-HSb 0.545(1) 0.560(2)
CCSD(T)b,c 0.554(1) 0.552(2)

Experimentd 0.633(25) 0.498(39)
a Reported in Ref. [262].
b This work.
c Constants determined by fitting the J = 1/2,3/2 and 5/2 energies.
d OH(X2Π, v= 0). Ref. [262].

are only 8 cm−1 (MRCI) and 11 cm−1 [CCSD(T)] larger than the values computed for the

MCKW PESs.

The D0 values obtained from our CCSD(T) PESs, 36.1 cm−1 and 53.7 cm−1 for OH–

para-H2 and OH–ortho-H2, respectively, are both in good agreement with the MRCI values

(Table 7.2). We note that our computed D0 for OH–ortho-H2 is in excellent agreement

with the experimental value of 54 cm−1 [261]. We have also computed the bound states

for OH–ortho-D2 and OH–para-D2 with the CCSD(T) PESs, and obtained D0 values of

51.4 cm −1 and 67.5 cm−1. These values are ∼ 7 cm−1 larger than those obtained with the

MCKW PES [264]. The lower limit of the OH–para-D2 binding energy determined via

electronic spectroscopy is 66 cm−1 [261], which is again in excellent agreement with our

prediction.

7.5 Discussion and Conclusions

We have presented here two sets of OH(X 2Π)–H2 PESs, calculated using the MR-

CISD+Q (Davidson) and the CCSD(T)-F12a methods. Comparison of the full MR-

CISD+Q PES with a fit to a subset of points determined at geometries with at least one

plane of reflection symmetry, shows that sampling based on this subset of points provides
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a very accurate, but much less computationally demanding, representation of the OH–H2

PES. For these points with symmetry we can then use the CCSD(T)-F12a method, which

is more accurate and, in addition, computationally faster. We expect this strategy to be

useful in developing PESs for similar systems involving a 2Π molecule and a 1Σ molecule,

such as NO(X 2Π)–H2.

We have performed calculations of the bend-stretch levels of the binary OH–H2

complex for both the para and ortho nuclear spin modifications. The dissociation energies

(D0) predicted by fits to the MRCI and the CCSD(T) points differ by less than 2 cm−1, and

agree extremely well with the experimental estimate [261]. This agreement is a measure of

the accuracy of our PESs, especially for the depth and shape of the attractive well.

Comparison of inelastic OH–H2 scattering cross sections with experiment would

constitute a further test of our PESs. This comparison would be most sensitive to the PESs

near the onset of the repulsive well. Collisions of OH with H2 have been well studied [144,

263]. Most recently, use of a Stark decelerator [82, 96] has permitted the determination

of the relative magnitude of state-resolved OH( j → j ′) transitions in collisions with D2

and H2 over a wide range of collision energies. Comparable scattering calculations will be

reported in Chapter 8.
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Chapter 8

Rotationally Inelastic Scattering of OH and H2

The work described in this chapter has not been published. The additional ab initio

calculations described in Sec. 8.5 were performed by Jacek A. Kłos. Paul J. Dagdigian,

Millard H. Alexander, and Ad van der Avoird have directed/participated in this work.

Christian Schewe and Nicholas Vanhaecke have also provided useful discussion.

8.1 Introduction

In the preceding chapter, we have presented two sets of ab initio diabatic potential

energy surfaces (PESs) describing the interaction between OH(X 2Π) and H2. The first

set of PESs (the MRCI PESs) used an internally-contracted, multi-reference configuration

interaction (IC-MRCI) method, with a direct computation of the non-adiabatic coupling

matrix elements. The second set of the PESs [the CCSD(T) PESs] used an restricted open-

shell explicitly correlated coupled-cluster [RCCSD(T)-F12a] method, circumventing the

non-adiabatic coupling problem by sampling high-symmetry geometries only. We have, in

addition, created another set of PESs (the MRCI-HS PESs) by fitting the high-symmetry

points of the MRCI PESs. From inspecting these PESs, we discussed our preference of the

CCSD(T) PESs.

Our new PESs gave the dissociation energies (D0) of the OH(X 2Π)· · ·H2/D2 bound

complex in nearly perfect agreement with those obtained from spectroscopic studies
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by Loomis and Lester [261, 262]. This agreement confirmed the accuracy of our PESs.

However, the energies of the bound levels are mainly sensitive to the attractive part of the

PESs. The energy dependence of the state-to-state inelastic cross sections from crossed

beam molecular experiments would provide a more critical test of the PESs.

In the present work, we perform fully quantum close-coupling calculations with

our new PESs, and compare the cross sections with earlier experiments by Schreel and ter

Meulen [144], and by Kirste et al. [96]. In the study of Schreel and ter Meulen, state-to-state

OH–H2 cross sections were measured at a collision energy of 595 cm−1. In the Kirste et al.

experiment, the state-to-state energy dependent OH–D2 cross sections at collision energies

of 100–500 cm−1 were measured. For a more thorough investigation, we also computed the

state-to-state rotationally inelastic cross sections of OH with both normal and para-H2 at a

collision energy of 68–150 cm−1. In our study we will focus on the transitions out of the

j = 1/2, F1, f level of OH, whose molecular beam can be manipulated by a state-of-the-art

Stark decelerator [267].

We found our computed cross sections are in reasonably good agreement with

experimental results, although some discrepancies remain. However, when investigating

the low-energy (≤ 150 cm−1) collisions, we found the cross sections for the j = 1/2, F1, f →

j = 1/2, F1, e and the j = 1/2, F1, f → j = 3/2, F1, e transitions are very sensitive to the

PESs used. In this work we will also check the accuracy of our ab initio calculations and

attempt to identify the properties of the PESs that would lead to the discrepancies between

theory and experiments.

This chapter is organized as follows: Section 8.2 describes the detail of our quantum

scattering calculations. In Secs. 8.3 and 8.4 we show our computed scattering cross sections

for OH–H2 and OH–D2 collisions, respectively. In these sections we also compare our

cross sections with the experimental values and discuss the correlation between the collision

dynamics and the PESs. We discuss the accuracy of our PESs and scattering calculations in

Sec. 8.5, and Sec. 8.6 summarizes this work.
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8.2 Quantum Scattering Calculations

The theory of scattering between a molecule in a 2Π electronic state with a molecule

in a 1Σ state has been described in previous publications [69, 268, 270], as well as in

Appendix A. Close-coupling calculations were performed both with the HIBRIDON

suite of programs [31], recently modified to support the collision between a 2Π molecule

and a 1Σ molecule. Some of the cross sections are also checked with a second independent

scattering program for scattering described in Ref. [94]. Care was taken to check the

consistency of the results from the two scattering programs and the convergence of the

cross sections.

In all the calculations, the rotational constant B , the spin-orbit constant A, and the

Λ doubling parameters p and q for the v= 0 level of OH were taken from Ref. [285]. The

rotational constant B used for H2 and D2 were 59.322 and 29.9043 cm−1, respectively. The

close coupling basis used varies upon the collision energy and the initial rotational level of

H2/D2, and will be described in subsequent sections.

8.3 Collisions of OH with H2

8.3.1 OH–H2 Collisions at 595 cm-1 Collision Energy

We first consider the OH–H2 collision at a relatively high collision energy, and

compare our computed cross sections with the experimental results of Schreel and ter

Meulen [144], as well as theoretical results obtained using the OvH PES [268, 272]. The

scattering dynamics in this case would be mostly sensitive to the repulsive wall of the PESs,

which has not been tested in our previous bound-state calculations.

In the experiments, the cross sections for the the inelastic scattering of OH, with

and without using a electrostatc hexapole to select the j1 = 3/2, F1, f level, in collisions

with H2 at a collision energy of 595 cm−1 were measured. State-to-state cross sections were
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Figure 8.1: Experimental and theoretical cross sections for the scattering of OH(X 2Π, j = 3/2, F1, f )
with “cold” para-H2 at 595 cm−1. The experimental cross sections (black lines) and the theoret-
ical values computed with the OvH PESs (red lines) are taken from Ref. [144]. The theoretical
values computed with the CCSD(T) PESs and the MRCI PESs are shown as blue and green lines
(indistinguishable on the plots), respectively.

then derived for transitions out of the OH j1 = 3/2, F1, e and the j1 = 3/2, F1, f levels.

The H2 beam used in the experiment consisted of a mixture of H2 in various rotational

levels. The population of each level depends on the temperature (“cold” or “warm”) of

the beam and whether the beam was para-converted. For a comparison, we performed

close-coupling calculations at this collision energy, considering the scattering of OH with

H2 in the j2 = 0–3 initial levels. All channels with j1 ≤ 13/2 and j2 ≤ 4 were included in

the channel basis. The cross sections obtained were then averaged according to the initial

population distribution of H2, shown in Table II of Ref. [144].

Figures 8.1 and 8.2 shows the cross sections for “cold” para- and normal H2 collisions,

respectively. In these figures, the relative cross sections, obtained from dividing the state-

to-state cross section by the total inelastic cross section, are plotted. Given the similarity

between our CCSD(T) PESs and the MRCI PESs (discussed in Chapter 7) it is not surprising

to see that the relative cross sections obtained from the two sets of PESs (blue and green

lines, respectively) are practically indistinguishable. By contrast, these cross sections are

slightly different from those obtained from the OvH PESs, in particular the transitions to
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Figure 8.2: Experimental and theoretical cross sections for the scattering of OH(X 2Π, j = 3/2, F1, f )
with “cold” normal H2 at 595 cm−1. The experimental cross sections (black lines) and the theoret-
ical values computed with the OvH PESs (red lines) are taken from Ref. [144]. The theoretical
values computed with the CCSD(T) PESs and the MRCI PESs are shown as blue and green lines
(indistinguishable on the plots), respectively.

other low-lying F1 levels. Aside from the differences between the PESs, the cross sections

for the OvH PESs were computed using the coupled stated approximation. From our

bound state calculations (Chapter 7), we see that the Coriolis coupling can be strong for

this system. The coupled state calculations ignore Coriolis coupling completely and may

leads to some error in the cross sections.

We see the agreement between theoretical and experimental cross sections is good,

which validates our PESs. The largest deviations are for the j1 = 3/2, F1, f → j1 = 3/2, F1, e

and the j1 = 3/2, F1, f → j1 = 5/2, F1, e transitions, which are unfortunately the two with

the largest cross sections. We will discuss these transitions further in Sec. 8.3.2 that these

transitions are very sensitive to the PESs.

Comparing Figures 8.1 and 8.2, we see that the para- and normal H2 scattering

show roughly the same behavior. Initially, this looks surprising given that many larger

coefficients of the PESs have l2 ̸= 0, which do not couple channels with j2 = 0 directly.

However, we note that significant amount of H2 is in the j2 = 2 rotational level (48.3% in

the “warm” beam, or 30.8% in the “cold” beam) in the beam used in the Schreel and ter

183



0.0 0.2 0.4 0.6 0.8 1.0
j ′1 (final level)

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

cr
os

s
se

ct
io

n
/%

5
2

7
2

9
2

0

10

20

30

40 3
2 F1f → j ′1F1f

3
2

5
2

7
2

9
2

0

10

20

30

40 3
2 F1f → j ′1F1e

1
2

3
2

5
2

0

10

20

30

40 3
2 F1f → j ′1F2f

1
2

3
2

0

10

20

30

40 3
2 F1f → j ′1F2e

Figure 8.3: Experimental and theoretical cross sections for the scattering of OH(X 2Π, j = 3/2, F1, f )
with “warm” para-H2 at 595 cm−1. The experimental cross sections (black lines) and the theoret-
ical values computed with the OvH PESs (red lines) are taken from Ref. [144]. The theoretical
values computed with the CCSD(T) PESs and the MRCI PESs are shown as blue and green lines
(indistinguishable on the plots), respectively.

Meulen experiments. This will make the propensities in the para- and normal H2 scattering

similar. We will discuss this phenomenon further in Sec. 8.4.

We show in Fig. 8.3 the cross sections for the collision of OH ( j1 = 3/2, F1, f ) with

“warm” para-H2. Clearly, the agreement between theory and experiment is worse than

that for the collision with “cold” H2, and our cross sections do not show better agreement

than those from OvH PESs. One can expect this deviation suggests lesser quality in the

calculations for the collisions with H2 j2 = 2. However, our PESs used significant higher

level of theory than the OvH PESs, and we have performed converged close coupling

calculations. Given that the experiment is at a single collision energy and the state purity

of the beams is limited, no hard conclusions can be drawn from this deviation between

theory and experiment.

8.3.2 Cold Collisions of OH with H2

To investigate further the collision dynamics between OH and H2, we computed

the state-to-state cross sections for this system at collision energies between 70 and 155
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/Å 3/2, F1e

5/2, F1e

5/2, F1f

1/2, F2e, ×3

1/2, F2f , ×3

OH(j1 = 3/2, F1f )–para-H2(j2 = 0)

Figure 8.4: Theoretical state-to-state integral cross section as a function of collision energy for
transitions out of the OH j1 = 3/2, F1, f level in collisions with H2 in j2 = 0 level. The cross
sections were computed with the CCSD(T) PESs (solid lines), the MRCI PESs (dotted lines), and
the MRCI-HS PESs (dashed lines, overlap significantly with the dotted lines). The final level of the
transitions are indicated on the plots. For clarity, the transitions to the F2 levels are multiplied by 3.

cm−1. We will focus on the transition out of the j1 = 3/2, F1, f level, which can be Stark-

decelerated in a crossed molecular beam experiment. For these calculations, we included

all channels with j1 ≤ 11/2 and j2 ≤ 4 in the channel basis.

We first show in Fig. 8.4 the energy dependent cross sections of OH out of the

j1 = 3/2, F1, f level in collisions with para-H2 ( j2 = 0). In the collision energy range

considered, all possible inelastic transitions with j2 unchanged are shown. We see that the

j1 = 3/2, F1, f → j1 = 3/2, F1, e transition dominates at low collision energies, but its cross

section becomes comparable to that of the j1 = 3/2, F1, f → j1 = 5/2, F1, e transition at

∼ 120 cm−1. The latter transition will eventually dominate at higher collision energies. For

the transitions shown, there is a strong propensity toward the formation of e -parity levels

in the Λ-doublets. These propensities are surprisingly similar to those for the OH–Ne

collision [83, 112] (see also Fig. 2.13). Although the masses of Ne and H2 are very different,

we have shown that the PESs for OH–H2( j2 = 0) are very similar to those for OH–Ne

(see Figs. 7.6 and 7.7). This similarity in PESs in turn leads to similar collision dynamics.

We do note that the j2 = 2 channels are not unimportant in a proper description of the

OH–H2( j2 = 0) collisions. Including these channels would make the anistropies of OH–H2
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PESs that are absent from the OH–Ne PESs accessible indirectly in scattering calculations.

The low-energy collision dynamics is quite sensitive to the PESs. The cross sections

computed from the CCSD(T) PESs and the MRCI PESs in Fig. 8.4 show some differences,

particularly for the two transitions with larger cross sections. The agreement between the

MRCI and MRCI-HS cross sections is excellent, showing that sampling high-symmetry

geometries is a good approximation for OH–H2. The sensitivity of the computed cross

sections to the PESs indicates the importance of retrieving electron correlation energies in

ab initio calculations.

The peaks shown in the energy dependent cross sections are scattering resonances

and are also very sensitive to the PESs. Using a wave function analysis as described in

Chapter 3, we were able to identify the two major peaks located at ∼ 93 cm−1 and ∼ 102

cm−1 in the j1 = 3/2, F1, f → j1 = 5/2, F1, e transition are primarily shape resonances

arising from the quasibound states related to the final level of the transition. The two

peaks for the j1 = 3/2, F1, f → j1 = 5/2, F1, f transition at similar collision energies are also

shape resonances. While these peaks are broad which would facilitate the experimental ob-

servation, the resonance peaks do not show significant increase over the background cross

section. Therefore, the unambiguous observation of these peaks in a crossed molecular

beam experiment would be difficult.

In Fig. 8.5 we show the computed state-to-state cross sections for OH in collisions

with ortho-H2 in the j2 = 1 level. We see the propensities of the inelastic transitions are

quite different from the collision with H2 ( j2 = 0). The transition between the Λ-doublets,

j = 3/2, F1, f → j = 3/2, F1, e dominates at all energies considered, and its cross sections

are much larger that when the collision partner is H2 ( j2 = 0) (note the cross section for

this transition is divided by 2 in Fig. 8.5). Also, for the collision with H2 ( j2 = 1), the

preference to the e -parity no longer exists.

These changes in the propensities originates from the l2 > 0 terms of the PESs, which

can couple directly j2 = 1→ 1 transitions but no j2 = 0→ 0 transitions. The difference in
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Figure 8.5: Theoretical state-to-state integral cross section as a function of collision energy for
transitions out of the OH j1 = 3/2, F1, f level in collisions with H2 in j2 = 1 level. The cross
sections were computed with the CCSD(T) PESs (solid lines), the MRCI PESs (dotted lines), and
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transitions are indicated on the plots. For clarity, the cross sections for the transitions to the F2
levels are multiplied by 3, and that for the transition to the j = 3/2, F1, e level is divided by 2.

cross sections obtained from the CCSD(T) PESs and the MRCI PESs are smaller in Fig. 8.5.

This is surprising since the collision dynamics here depends heavily on the φH-dependent

l2 = 2 terms of the PESs, and CCSD(T) calculations can only deal with special values of

φH. This again validates our approach in creating the CCSD(T) PESs.

8.4 Collisions of OH with D2

In this section we consider the collision between OH and D2. Comparing with the

OH–H2 collision, OH–D2 is of less astrophysical importance, and probably show less

quantum properties of the molecules.1 However, Kirste et al. [96] has recently carried out

a molecular beam experiment on OH–D2 using a Stark decelerator. In the experiment,

state-to-state cross sections as a function of collision energy were measured. Comparing

the computed cross sections with their experimental results would provide a stronger test

of our newly developed PESs.

In Figs. 8.6 and 8.7 we show the state-to-state cross sections out of the j1 = 3/2, F1, f

1Chapter 3 presents a comparison of the scattering resonance for the collision of NH3 with H2 and D2,
which is an analogy to the OH–H2/D2 system.
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Figure 8.6: State-to-state integral cross section as a function of collision energy for transition from
the j1 = 3/2, F1, f level of OH to other F1 levels in collisions with D2. The final levels are indicated
for each transition for which the cross section is plotted. The initial rotational quantum number j2
is labeled on each subplot. Cross sections to various final rotational levels of D2 are summed up.

level of OH in collisions of D2 in j2 = 0, 1, and 2 levels. Figure 8.6 shows the cross sections

of the spin-orbit conserving (F1→ F1) transitions. As expected, for the collisions with ortho-

D2 ( j2 = 0), the transition between the Λ-doublet dominates at lower collision energies

while the transition to the j1 = 5/2, F1, e level becomes significant at higher energies. A

strong preference to the j1 = 5/2, F1, e final level over the j1 = 5/2, F1, f level is observed

with ortho-D2 ( j2 = 0) as the collision partner, but not with para-D2 ( j2 = 1). Overall the

spin-orbit changing (F1 → F2) transitions shown in Fig. 8.7 have smaller cross sections.

These propensity rules are similar to what we observe for OH–H2.

We see the cross sections for the collisions with D2 in the j2 = 1 and j2 = 2 initial

levels are very similar for the larger F1→ F1 transitions. This is reasonable considering that

both collisions allows direct access to the parts of PESs related to the quadrupole moment
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Figure 8.7: State-to-state integral cross section as a function of collision energy for transition from
the j1 = 3/2, F1, f level of OH to other F2 levels in collisions with D2. The final levels are indicated
for each transition for which the cross section is plotted. The initial rotational quantum number j2
is labeled on each subplot. Cross sections to various final rotational levels of D2 are summed up.

of D2 (or l2 = 2 expansion coefficients). For the F1→ F2 transitions, collisions with D2 in

the j2 = 1 and j2 = 2 initial levels show cross sections of distinctly different magnitude.

A primary reason for this difference is the presence of j2 = 2→ 0 transitions, which has

cross sections comparable to the smaller j2 = 2→ 2, F1→ F2 transitions at lower collision

energies. The j2 = 2→ 0 transitions are also responsible for the non-zero cross sections

below the threshold.

Figure 8.8 shows the comparison between our computed state-to-state relative cross

sections with the experimental results by Kirste et al. [96]. Unfortunately the rotational

temperature of the D2 beam, which is important in making a fair comparison between

theory and experiment was not reported in Ref. [96]. The authors stated that six tempera-

tures ranging from 93K to 293K were used for the valve producing the D2 beam. Here
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Figure 8.8: Experimental and theoretical relative state-to-state inelastic scattering cross section of as
a function of collision energy for transition out of the j1 = 3/2, F1, f level of OH. The experimental
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PESs assuming the temperature of the D2 beam be 93 K and 293 K are plotted in solid lines and
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section is plotted.
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Table 8.1: Populations (in percent) of the lower D2 rotational levels at various temperatures,
assuming Boltzmann distribution and a rotational constant of 29.322 cm−1.

D2 initial level T = 93 K T = 133 K T = 173 K T = 213 K T = 253 K T = 293 K
j = 0 52.1 38.6 30.5 25.2 21.4 18.6
j = 1 31.0 30.3 27.8 25.2 22.9 20.8
j = 2 16.2 27.7 34.3 37.4 38.6 38.6
j = 3 0.7 2.8 5.4 7.8 9.7 11.2
j = 4 0.0 0.5 1.9 4.0 6.4 8.9
j = 5 0.0 0.0 0.1 0.3 0.7 1.3

we assume the D2 beam is in thermal equilibrium (rotational level distribution of D2 at

various rotational temperatures are shown in Table 8.1). To make a reasonable comparison

between theory and experiment, we computed the two sets of relative cross sections (up to

the j2 = 3 initial level of D2 considered) assuming that the initial level of D2 is at thermal

equilibrium at 93K (solid lines in Fig. 8.8) and 293K (dotted lines in Fig. 8.8). These two

sets of theoretical cross sections would give an indication of the variation in relative cross

sections due to the unknown beam temperature. In addition, we could probably assume

that the experimental cross sections for lower energies are taken with a lower D2 beam

temperature. Thus, if the theoretical and experimental results were to match perfectly, in

Fig. 8.8 the dots representing the experimental cross sections would overlap with the solid

lines at the lowest collision energies, and gradually move toward and eventually overlap

with the dotted lines as the collision energy increases.

Using this criterion, we see the agreement between theory and experiment is excellent.

Most of the experimental cross sections lie close to the range we predicted. For some

of the transitions, e.g., the j1 = 3/2, F1, f → j1 = 5/2, F1, e transition, we could even

observe the experimental cross sections agree with the theoretical results at 93K and

eventually move towards those at 293K at the collision energy increases. Given this

excellent agreement, we believe that the loss of preference for the e -symmetry levels for

the transition to the j1 = 5/2, F1 state at higher energies is actually due to the increased

rotational temperature of the D2 beam, rather than the increased collision energy, as

presumed in Ref. [96]. In addition, we note that the relative cross section for the dominating

191



transition, j1 = 3/2, F1, f → j1 = 3/2, F1, e , does not vary significantly for the two D2

rotational temperature considered. For this transition the agreement between theory and

experiment is excellent.

We see our CCSD(T) PESs are successful in predicting the spin-orbit changing

(F1→ F2) transitions as well. In the Hund’s case (a) limit, these transitions are coupled

directly by the off-diagonal Vo PES only. Although OH cannot be described by a pure

case (a) coupling scheme, we could expect Vo plays a more significant role in the F1→ F2

transitions. This agreement between theory and experiment again validates our approach

by sampling only the high symmetry geometries.

Still, we notice that our predicted cross sections to the j1 = 7/2, F1 levels are much

smaller than the experimental values, and at ∼ 200 cm−1 collision energy the experimental

cross sections for the transition to the j1 = 5/2, F1, e level is noticeably larger than our

prediction. These discrepancies may come from the inaccuracy of our PESs.

8.5 The Quality of the PESs

We have shown in Sec. 8.3.2 that the OH–H2 scattering dynamics is very sensitive

to the accuracy of the PESs. To further check the accuracy of our ab initio calculations,

we performed extra calculations for the potential for the T-shaped geometry (θO = 0◦,

θH = 90◦, φH = 0◦) of OH–H2 at three values of intermolecular distances (5, 5.25, and

6a0). At 5a0, the potential is repulsive with a value of ∼ 300 cm−1, close to the classical

turning point in the cold collisions. At 5.25a0, the potential is close to zero and is very

sensitive to the level of theory. The potential at R = 6a0 is a good indicator of the well

depth of the PESs as it is close to the geometry at which the global minimum is found.

Our results are listed in Table 8.2. First, we notice that all the methods give con-

sistent values for the off-diagonal Vo potential, which at this OH–H2 orientation is pro-

portional to the difference between the interaction energy of OH in |Πx〉 and |Πy〉 states

with H2. For the diagonal Vd potential, the CCSD(T)-F12a values agree reasonably very
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Table 8.2: Comparison of the computed OH–H2 diagonal Vd and off-diagonal Vo potential at
three intermolecular separations for the T-shaped (θO = 0◦, θH = 90◦, φH = 0◦) geometry.a In this
table aVnZ represent the correlation consistent aug-cc-pVnZ basis set. The last two lines represent
results obtained by averaging CCSD(T)-F12a/aVTZ+BFb potential computed with various bond
lengths of OH or H2 over the ground-state vibrational wave function of the molecule.

Vd (cm−1) Vo (cm−1)
Method R= 5a0 5.25a0 6a0 R= 5a0 5.25a0 6a0
MRCISD+Q/aVQZb 268.6 1.8 −218.9 −34.7 −25.8 −12.1
CCSD(T)-F12a/aVTZ+BFc,d 243.8 −13.4 −219.6 −34.3 −25.3 −11.6
CCSD(T)/aVTZ+BFd 280.0 12.5 −210.2 −34.6 −25.6 −11.7
CCSDT/aVTZ+BFd 271.8 6.0 −213.4 −34.9 −25.8 −11.7
CCSD(T)/CBS[345]e 255.8 −4.2 −215.1 −34.0 −25.1 −11.5

averaged over χ0(r ) of H2 243.1 −13.4 −219.2 −34.5 −25.4 −11.6
averaged over χ0(r ) of OH 263.5 −1.9 −219.8 −34.5 −25.5 −11.6

a See Chapter 7 for the definition of Vd , Vo and the angles.
b The method used in creating the MRCI PESs.
c The method used in creating the CCSD(T) PESs.
d BF indicates the addition of mid-bond functions.
e CBS limit extrapolated from CCSD(T) calculations using the aVTZ, aVQZ, and aV5Z basis.

well with the CBS values, showing that the CCSD(T)-F12a method is a good approxima-

tion to improve the basis-set convergence. Using the aug-cc-pVTZ basis with mid-bond

functions (aVTZ+BF), the close coupling calculations with full triples (CCSDT) [289]

gives results very similar to those with the perturbative inclusion of triples [CCSD(T)],

and the difference between these results are much less than the difference between the

CCSD(T)/aVTZ+BF and the CBS results. The CCSD(T)-F12a calculations are much

cheaper, and more accurate, than the CCSDT calculations when the aug-cc-pVTZ basis is

used. Hence the CCSD(T)-F12a/aVTZ+BF calculations we used for the CCSD(T) PESs

are of good accuracy.

We used a rigid rotor model in creating PESs and performing scattering calculations.

Full-dimensional dynamics study is not possible presently using the close-coupling method.

For the PESs, a better treatment would be to calculate the PESs at various values of O–H

and H–H bond lengths and then average over the ground vibrational wave function χ0(r )

for both species. The last two lines in Table 8.2 show the effect of vibrational averaging on
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Figure 8.9: Comparison of the theoretical state-to-state OH–H2 ( j2 = 0) integral cross section
computed from potential energy surfaces generated using different monomer bond lengths. Cross
section as a function of collision energy for transitions out of the OH j1 = 3/2, F1, f are shown.
The cross sections were computed with the CCSD(T) PESs (using r0 of OH and H2, solid lines), a
CCSD(T)/aVTZ+BF PES using re of OH and r0 of H2 (dotted lines), and a CCSD(T)/aVTZ+BF
PES using re of OH and re of H2 (dashed lines). The final level of the transitions are indicated on
the plots. For clarity, the transitions to the F2 levels are multiplied by 3.

the potential. We see the averaging over χ0(r ) of H2 has little effect on the potential of the

T-shaped geometry, while the averaging over χ0(r ) of OH leads to a ∼ 8% change in Vd at

R= 5a0.

To gain more insight on the effect of the vibrational averaging on the cross

sections, we computed two extra sets of PESs, at a slightly lower level of theory

[CCSD(T)/aVTZ+BF], by using the equilibrium bond lengths (re ) instead of vibrationally

averaged bond lengths (r0) of OH and/or H2. We then computed the state-to-state cross

sections for the cold collisions of OH with H2 with these new PESs. Our results are shown

in Fig. 8.9. Again, the cross section for the j1 = 3/2, F1, f → j1 = 3/2, F1, e (black lines in

Fig. 8.9) appears to be most sensitive to the PESs. For this transition, the bond lengths

of OH and H2 may have a significant impact on the cross sections, and our simplified

treatment may be a source of deviations between theory and experiments.

In our scattering calculations the reaction (OH+H2→H2O+H) channel is ignored.

The experimental value for the activation energy was reported to be 1380±240 cm−1 [290],

which is much higher than the collision energies considered in our calculations.
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8.6 Conclusions

In this chapter we have presented computed cross sections for the rotationally in-

elastic scattering of OH out of the j1 = 3/2, F1, f level with H2 and D2, using our recently

developed CCSD(T) and MRCI PESs (Chapter 7) and the close coupling method. Specifi-

cally, we have computed OH–H2 cross sections at 595 cm−1 collision energy and OH–D2

cross sections at 100–500 cm−1. These results are compared to the experimental values by

Schreel and ter Meulen [144] and by Kirste [96], respectively. The agreement between

theory and experiments is satisfactory, signifying the accuracy of our PESs.

In addition, we present cross sections for the cold collisions of OH–H2 at 70–150

cm−1. We found that the cross sections are very sensitive to the PESs, especially for the

j1 = 3/2, F1, f , j2 = 0→ j1 = 3/2, F1, e , j2 = 0 transition. The collision dynamics for the

OH–H2/D2 system depends heavily on the initial rotational level of H2/D2. In particular,

the quadrupole of H2/D2 does not play a direct role in the collisions with H2 or D2 in

the j2 = 0 initial level, which leads to distinct dynamics. The existing experimental cross

sections were measured with relative high-temperature H2/D2 beams. In this case the

measured cross sections are less dependent upon the j2 = 0→ 0 cross sections, which is

more sensitive to the accuracy of PESs. We encourage further experimental study on this

system, which will provide more strict tests to our PESs.

We also performed extra ab initio calculations to justify our PESs. We believe the

CCSD(T)-F12a/aug-cc-pVTZ+BF method we used in generating the PESs is accurate and

cost-effective. Still, we ignored the vibrational motion of the collision partners in creating

the PESs and in the scattering calculations. This may lead to some error in our description

of the scattering dynamics.
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Appendix A

Theory on the OH–H2 Potential Energy Surfaces, and

Bound-State and Scattering Calculations

A.1 Expansion of the Potential

To suggest a functional form for the OH–H2 interaction we use the two-center

multipolar expansion of the Coulomb interaction, namely [66, 135]

r−1
i j =



l1 l2 l m1 m2 m

〈l1m1, l2m2 | l m〉Al1 l2 l (ri , r j , R)Cl1 m1
(ωi )Cl2 m2

(ω j )C
∗
l m(Ω). (A.1)

Here,ωi andω j are the space-frame polar angles of vectors centered, respectively, at the

centers-of-mass of the OH and HH moieties, and Ω denotes the polar coordinates of the

OH–HH Jacobi vector R which joins these two centers of mass.

We define a body frame where the Z axis lies along R. In this frame, the orientations

of the OH and H2 molecular frames (in which the internuclear axes define the z axes) are

defined by, respectively, the angles (0,θO, 0) and (φH,θH, 0). In the OH molecule frame,

z⃗ points from O to H, so that θO = 0 corresponds to the H nucleus lying along the +z

direction. The body-frame expansion in Eq. (A.1) can then be written as

r−1
i j =



l1 l2 l m

〈l1m, l2,−m | l 0〉Al1 l2 l (ri , r j , R)Cl1 m( r̂i )Cl2,−m( r̂ j ). (A.2)

196



In Eqs. (A.1) and (A.2) r̂i and r̂ j are the orientations of the vectors describing the position

of the i -th OH electron (referred to the coordinate system fixed at the OH center of mass)

and the j -th H2 electron (referred to the coordinate system fixed at the HH center of mass).

Specifically, the operator involves a product of a one-electron operator in the space of the

OH electrons and a one-electron operator in the space of the H2 electrons.

To investigate the symmetry of the OH–HH potential, it is sufficient to express the

electronic wave function as a product of a definite-Λ function on OH multiplied by the

non-degenerate wave function for H2 in its 1Σ+ electronic state, namely

ΨOH(Λ)−H2
≡ |Λ〉=ψΛψH2

Following an earlier work on interactions of a molecule in a 2Π electronic state with

an atom[106], in this two-fold (Λ = ±1) basis we can express the matrix elements of the

electronic Hamiltonian as

V (e l )
Λ′Λ = 〈ψΛ′ψH2

|Ĥe l |ψΛψH2
〉 (A.3)

To obtain a formal expansion of these VΛ′Λ potential energy surfaces, we can replace

Ĥe l by V̂ , where

V̂ =


i , j>i

r−1
i j

We then use the multipolar expansion of Eq. (A.2). It is then necessary to integrate over

the electronic coordinates. The electronic wave functions of the diatomic moieties are

conventionally defined in molecular frames, in which the z axes lie along the OH or HH

bonds. Thus, to integrate over the electronic coordinates, it is first necessary to transform

from the body frame to the molecular frame.

In the OH molecular frame the first spherical harmonic in Eq. (A.2) transforms as
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[68]

Cl1 m( r̂i ) =


µ1

D l1∗
mµ1

(0,θO, 0)Cl1µ1
(ρ̂i ) =



µ1

d l1
mµ1

(θO)Cl1µ1
(ρ̂i ), (A.4)

where ρ̂i ≡ θi ,φi is the orientation of the i -th OH electron in the OH molecular frame,

and d l
m′m is a reduced rotation matrix [68]. Similarly, in the H2 molecular frame the second

spherical harmonic in Eq. (A.2) transforms as [68]

Cl2,−m( r̂ j ) =


µ2

D l2∗
−mµ2

(φH,θH, 0)Cl2µ2
(ρ̂ j )

=


µ2

d l2
−mµ2

(θH)exp(−i mφH)Cl2µ2
(ρ̂ j ), (A.5)

We now wish to determine the dependence of the interaction potential on the angular

momentum projection Λ. To do so, it is simplest to write the OH electronic wave function

as a Slater determinant built of the π±1 molecular orbitals of the OH moiety,

ψΛ ≡ | . . .πλπ̄λπ−λ| (A.6)

We choose these definite-Λπ orbitals to have the same reflection symmetry in the x z -plane

as the spherical harmonics with mL = λ namely

σ̂x zπλ =−π−λ

The OH wave function will then have the same symmetry, namely

σ̂x zψΛ =−ψ−Λ

Formally, we can expand the OH molecular orbitals in single-center expansions. In

particular,

|πλ〉=


L

gL(ρi ,θi )CLλ(ρ̂i ), (A.7)
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Consequently, in the integration over the angular coordinates of electron i we have



C ∗L′λ′(θi ,φi )Cl1µ1
(θi ,φi )CLλ(θi ,φi ) sinθi dθi dφi

= 4π





L′ l1 L

0 0 0









L′ l1 L

−λ′ µ1 λ



 . (A.8)

This vanishes unless

µ1 = λ
′−λ. (A.9)

For the OH component of the diagonal 〈Λ|V̂ |Λ〉matrix element, both the bra and the ket

correspond to the same Slater determinant, so that the one-electron integral over each πλ

spin-orbital corresponds to λ′ = λ, so that µ1 must equal 0.

For the OH component of the off-diagonal 〈Λ′|V̂ |Λ〉matrix element, the bra and

the ket differ in one spin orbital. In the 〈+1|V̂ | − 1〉 matrix element this one-electron

integral is of the form




|...π1π̄1π−1|
�

�V̂
�

�|...π−1π̄−1π1|
�

=−〈π̄1|V̂ |π̄−1|〉

so that µ1 =+2. Similarly for the 〈−1|V̂ |+ 1〉matrix element,




|...π−1π̄−1π1|
�

�V̂
�

�|...π1π̄1π−1|
�

=−〈π̄−1|V̂ |π̄1|〉

so that µ1 =−2.

The electronic wave function of the H2 moiety is cylindrically symmetric, so that

regardless of the value of Λ, the integration of Eq. (A.5) over the azimuthal coordinate of

electron j will vanish unless µ2 = 0.
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Using this analysis, we can expand the VΛ′Λ interaction potential [Eq. (A.3)] as

VΛ′,Λ(R,θO,θH,φH) =


l1 l2 l

V (Λ′−Λ)
l1 l2 l (R)



m

〈l1m, l2,−m | l 0〉

× d l1
m,Λ′−Λ(θO)d

l2
−m,0(θH)e

−i mφH (A.10)

The potential must be invariant with respect to interchanging the two hydrogen

nuclei in the H2 moiety. The corresponding operator, P̂HH, involves a rotation around the

Z -axis by π followed by a reflection in the X Y -plane, in other words

{θH ,φH}→ {π−θH ,π+φH} (A.11)

Applying this operation to Eq. (A.10) gives

Π̂H2
VΛ′,Λ(R,θO,θH,φH) =



l1 l2 l

V (Λ′−Λ)
l1 l2 l (R)



m

〈l1m, l2,−m | l 0〉

× d l1
m,Λ′−Λ(θO)d

l2
−m,0(π−θH)(−1)me−i mφH (A.12)

Now, we can use the relations d l2
m0(π−θ) = (−1)l2+md l2

−m,0(θ) to obtain

Π̂H2
VΛ′,Λ(R,θO,θH,φH) =



l1 l2 l

V (Λ′−Λ)
l1 l2 l (R)



m

〈l1m, l2,−m | l 0〉

× d l1
m,Λ′−Λ(θO)d

l2
−m,0(θH)(−1)l2 e−i mφH (A.13)

By symmetry this expression should equal Eq. (A.12). Thus l2 must be even.
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A.2 Long-Range Multipole-Multipole Expansion of the PESs

At long-range, most of the expansion terms in Eq. (A.10) go to zero exponentially.

The exception are terms which correspond to the electrostatic interactions between the

multipoles which arise in the expansion of the the OH and H2 electron densities (or, for

OH, in the expansion of the overlap density between theΛ= 1 andΛ=−1 electronic wave

functions. For these terms, the expansion index l in Eq. (A.10) takes on its “stretched"

value of l = l1 + l2.

For these multipole-multipole terms the Vl1 l2 l (R) terms in Eq. (A.10) are [66]

V |Λ′−Λ|
l1 l2 l (R) = δl ,l1+l2

Al1 l2
R−l−1qO

l1,|Λ′−Λ|q
H
l20, (A.14)

where

Al1 l2
= (−1) l2

�

(2l1 + 2l2)!
(2l1)!(2l2)!

�
1
2

.

Here qH
l20 is the l t h electrostatic definite-Λ multiple moment of the H2 molecule

qH
l20 =



|ΨH2
|2


j

e j r j
l2Cl20(ω j )dτ j . (A.15)

The integration extends over the coordinates of the j t h electron of the H2 moiety. For

OH, there are two sets of definite-Λ multipole moments: a diagonal set comparable to

Eq. (A.15)

qO
l10 =



|ΨΛ2
|2


i

ei r i
l1Cl10(ωi )dτi , (A.16)

and an off-diagonal set (|Λ′−Λ|= 2)

qO
l12 =



Ψ∗1

�



i

ei r i
l1Cl1,2(ωi )

�

Ψ−1dτi . (A.17)
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Most ab initio packages yield real multipole moments

Qlκ = 〈ψ|R̂lκ|ψ〉 (A.18)

The definition of R̂lκ can be found in Table E.1 of Stone [71]. The index κ can be 0, 1c ,

1s , 2c , 2s , .... We use upper case Q to distinguish these from the definite-Λ moments ql m.

The relationship between the Qlκ and ql m is

Ql 0 = ql 0, (A.19)

Ql mc =
p

2ℜ(ql m), (A.20)

and

Ql ms =
p

2ℑ(ql m). (A.21)

Since, for OH

|Π±1〉=∓2−
1
2 (|Πx〉± i |Πy〉), (A.22)

we find

qO
l10 = 〈Π1|q̂l10|Π1〉= 〈Π−1|q̂l10|Π−1〉 〈Πx |q̂l10|Πx〉= 〈Πx |Rl10|Πx〉 , (A.23)

and

qO
l12 = qO

l1,−2 = 〈Π1|q̂l12|Π−1〉= 〈Π−1|q̂l1,−2|Π1〉

=− 2 〈Πx |q̂l12|Πx〉=−
p

2 〈Πx |Rl12c |Πx〉 . (A.24)

Equation (A.14) was employed in Sec. 7.3.4 in the long-range extrapolation of the

OH–H2 PESs.
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A.3 Matrix Elements of the Potential in an OH–H2 Rotational Ba-

sis

By defining a complete coupled rotational basis, built of products of the rotational

wave functions of the OH and H2 moieties, we can describe both scattering of OH by

H2, as well as the bend-stretch levels of the OH· · ·H2 complex. We follow earlier work by

Miller and Clary [273], and Offer and van Hemert [268], in using a Hund’s case (a) basis

for the OH(X 2Π) rotational wave function.

| j1m1ωϵ〉= 2−
1
2 (| j1m1ω〉 |ΛΣ〉+ ϵ | j1m1,−ω〉 |−Λ,−Σ〉) , (A.25)

where ϵ=±1, and j1, m1, ω, and Σ designate the total angular momentum of OH, the

space-frame projection of j1, the absolute value of the molecule-frame projection of j1, and

the molecule-frame projection of the electron spin, respectively. The OH rotational wave

function in Eq. (A.25) is

| j1m1ω〉= [(2 j1 + 1)/4π]
1
2 D j1∗

m1ω(φO,θO, 0). (A.26)

Similarly, the rotational wave function of H2 is

| j2m2〉= [(2 j2 + 1)/4π]
1
2 D j2∗

m20(φH,θH, 0), (A.27)

and the wave function for end-over-end rotation of the OH–H2 complex is

|LML〉= [(2L+ 1)/4π]
1
2 DL∗

ML0(Φ,Θ, 0), (A.28)

where (Φ,Θ, 0) is the space-frame orientation of R.
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The close-coupling basis is then

|J M j1ω j2 j12L〉=


m1 m2 m12ML

〈 j1m1, j2m2 | j12m12〉

× 〈 j12m12, LML | J M 〉 | j1m1ω〉 | j2m2〉 |LML〉 . (A.29)

The rotational levels of the isolated OH radical are described in mixed Hund’s case

coupling. The lower and higher energy fine-structure levels for each j1 are designated F1

and F2. Expressing the wave function of OH as a linear combination of Hund’s case (a)

wave functions. Thus the full close-coupled angular basis is

|J M j1ϵFi j2 j12L〉= c1/2

�

�

�J M j1,ω = 1
2 ,ϵ j2 j12L

¶

+ c3/2

�

�

�J M j1,ω = 3
2 ,ϵ j2 j12L

¶

. (A.30)

Making use of the above equations, we find the following expression for the potential

matrix elements in the {J M j1ϵFi j2 j12L} basis




J M j1
′ϵ′F ′i j2

′ j ′12L′
�

�V
�

� J M j1ϵFi j2 j12L
�

=


l1 l2 l

1
2

�

1− ϵ′ϵ(−1) j1
′+ j1+l1

�

(−1)J+l1−l2+ j1− j2+ j ′12−L−L′− 1
2

×
�

[ j1
′][ j2

′][ j ′12][L
′][ j1][ j2][ j12][L][l ]

�
1
2

×





j2
′ l2 j2

0 0 0









L′ l L

0 0 0











j12 L J

L′ j12
′ l





























j1 j2 j12

j1
′ j2

′ j12
′

l1 l2 l























×









c ′1/2c1/2





j1
′ l1 j1

− 1
2 0 1

2



− c ′3/2c3/2





j1
′ l1 j1

− 3
2 0 3

2







Bl1 l2 l (R)

+ ϵ



c ′1/2c3/2





j1
′ l1 j1

− 1
2 2 − 3

2



− c ′3/2c1/2





j1
′ l1 j1

− 3
2 2 − 1

2







Fl1 l2 l (R)







, (A.31)
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where [J ]≡ (2J + 1), and (:::), {:::}, and {.........} are Wigner 3- j , 6- j , and 9- j symbols, respec-

tively [28]. Equation (A.31) can be used in both bound-state and scattering calculations.

The phase factor in Eq. (A.31) is different from that in Eq. (A15) of Ref. [273]. We

believe the latter value is incorrect, although, this difference in phase does not affect the

computed bound-state energies or state-to-state cross sections.
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