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Abstract

Cells can be viewed as sophisticated machines that organize their constituent components and

molecules to receive, process, and respond to signals. The goal of the scientist is to uncover both

the individual operations underlying these processes and the mechanism of the emergent properties

of interest that give rise to the various phenomena such as disease, development, recovery or ag-

ing. Cell signaling plays a crucial role in all of these areas. The complexity of biological processes

coupled with the physical limitations of experiments to observe individual molecular components

across small to large scales limits the knowlege that can be gleaned from direct observations. Math-

ematical modeling can be used to estimate parameters that are hidden or too difficult to observe

in experiments, and it can make qualitative predictions that can distinguish between hypotheses

of interest. Statistical analysis can be employed to explore the large amounts of data generated

by modern experimental techniques such as sequencing and high-throughput screening, and it can

integrate the observations from many individual experiments or even separate studies to generate

new hypotheses.

This dissertation employs mathematical and statistical analyses for three prominent aspects of cell

signaling: the physical transfer of signaling molecules between cells, the intracellular protein machin-

ery that organizes into pathways to process these signals, and changes in gene expression in response

to cell signaling. Computational biology can be described as an applied discipline in that it aims to

further the knowledge of a discipline that is distinct from itself. However, the richness of the prob-

lems encountered in biology requires continuous development of better methods equipped to handle

the complexity, size, or uncertainty of the data, and to build in constraints motivated by the reality

of the underlying biological system. In addition, better computational and mathematical methods

are also needed to model the emergent behavior that arises from many components. The work pre-

sented in this dissertation fulfills both of these roles. We apply known and existing techniques to

analyse experimental data and provide biological meaning, and we also develop new statistical and

mathematical models that add to the knowledge and practice of computational biology.

Much of cell signaling is initiated by signal transduction from the exterior, either by sensing the

environmental conditions or the recpetion of specific signals from other cells. The phenomena of

most immediate concern to our species, that of human health and disease, are usually also generated

from, and manifest in, our tissues and organs due to the interaction and signaling between cells. A

modality of inter-cellular communication that was regarded earlier as an obscure phenomenon but
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has more recently come to the attention of the scientific community is that of tunneling nanotubes

(TNs). TNs have been observed as thin (of the order of 100 nanometers) extensions from a cell to

another closely located one. The formation of such structures along with the intercellular exchange

of molecules through them, and their interaction with the cytoskeleton, could be involved in many

important processes, such as tissue formation and cancer growth. We describe a simple model of

passive transport of molecules between cells due to TNs. Building on a few basic assumptions, we

derive parametrized, closed-form expressions to describe the concentration of transported molecules

as a function of distance from a population of TN-forming cells. Our model predicts how the

perfusion of molecules through the TNs is affected by the size of the transferred molecules, the length

and stability of nanotube formation, and the differences between membrane-bound and cytosolic

proteins. To our knowledge, this is the first published mathematical model of intercellular transfer

through tunneling nanotubes. We envision that experimental observations will be able to confirm

or improve the assumptions made in our model. Furthermore, quantifying the form of inter-cellular

communication in the basic scenario envisioned in our model can help suggest ways to measure

and investigate cases of possible regulation of either formation of tunneling nanotubes or transport

through them.

The next problem we focus on is uncovering how the interactions between the genes and proteins in

a cell organize into pathways to process call signals or perform other tasks. The ability to accurately

model and deeply understand gene and protein interaction networks of various kinds can be very

powerful for prioritizing candidate genes and predicting their role in various signaling pathways and

processes. A popular technique for gene prioritization and function prediction is the graph diffusion

kernel. We show how the graph diffusion kernel is mathematically similar to the Ising spin graph,

a model popular in statistical physics but not usually employed on biological interaction networks.

We develop a new method for calculating gene association based on the Ising spin model which is

different from the methods common in either bioinformatics or statistical physics. We show that

our method performs better than both the graph diffusion kernel and its commonly used equivalent

in the Ising model. We present a theoretical argument for understanding its performance based

on ideas of phase transitions on networks. We measure its performance by applying our method

to link prediction on protein interaction networks. Unlike candidate gene prioritization or function

prediction, link prediction does not depend on the existing annotation or characterization of genes

for ground truth. It helps us to avoid the confounding noise and uncertainty in the network and

annotation data. As a purely network analysis problem, it is well suited for comparing network
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analysis methods. Once we know that we are accurately modeling the interaction network, we can

employ our model to solve other problems like gene prioritization using interaction data.

We also apply statistical analysis for a specific instance of a cell signaling process: the drought

response in Brassica napus, a plant of scientific and economic importance. Important changes in the

cell physiology of guard cells are initiated by abscisic acid, an important phytohormone that signals

water deficit stress. We analyse RNA-seq reads resulting from the sequencing of mRNA extracted

from protoplasts treated with abscisic acid. We employ sequence analysis, statisitical modeling, and

the integration of cross-species network data to uncover genes, pathways, and interactions important

in this process. We confirm what is known from other species and generate new gene and interaction

candidates. By associating functional and sequence modification, we are also able to uncover evidence

of evolution of gene specialization, a process that is likely widespread in polyploid genomes.

This work has developed new computational methods and applied existing tools for understanding

cellular signaling and pathways. We have applied statistical analysis to integrate expression, inter-

actome, pathway, regulatory elements, and homology data to infer Brassica napus genes and their

roles involved in drought response. Previous literature suggesting support for our findings from

other species based on independent experiments is found for many of of these findings. By relating

the changes in regulatory elements, our RNA-seq results and common gene ancestry, we present

evidence of its evolution in the context of polyploidy. Our work can provide a scientific basis for the

pursuit of certain genes as targets of breeding and genetic engineering efforts for the development

of drought tolerant oil crops. Building on ideas from statistical physics, we developed a new model

of gene associations in networks. Using link prediction as a metric for the accuracy of modeling the

underlying structure of a real network, we show that our model shows improved performance on

real protein interaction networks. Our model of gene associations can be use to prioritize candidate

genes for a disease or phenotype of interest. We also develop a mathematical model for a novel

inter-cellular mode of biomolecule transfer. We relate hypotheses about the dynamics of TN forma-

tion, stability, and nature of molecular transport to quantitative predictions that may be tested by

suitable experiments. In summary, this work demostrates the application and development of com-

putational analysis of cell signaling at the level of the transcriptome, the interactome, and physical

transport.
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Chapter 1

Introduction

1.1 Prelude

1.1.1 Biological systems: order and disorder

Life is characterized by the ability to organize matter into cells during growth and reproduction,

while maintaining homeostasis and responding to changing environmental conditions. Following the

definition of Schrodinger (1992), life is the ability to maintain (or accumulate) negative entropy. In

general, a closed system should always be moving to a state of higher entropy; on the other hand, life

seems to be moving in the opposite direction of the second law of thermodynamics. Microscopic devi-

ations from the second law, however, can occur by chance. Theoretical advances in non-equilibrium

statistical physics have made it possible to quantify the probabilities of irreversible processes hap-

pening away from equilibrium. For a system in contact with a heat bath, short term increases in

entropy in violation of the second law of thermodynamics occur with a non-zero probability, but

according to the Cook’s fluctuation theorem (Crooks, 1999; Gallavotti and Cohen, 1995; Kurchan,

1998), the chances of this accumulation of negative entropy decrease exponentially with time and

the rate of entropy decrease. Specifically, it says that the probability Pr(−S) a system changing its

entropy at the rate −S per unit time, for a total time τ is given by

Pr(−S)
Pr(S)

= exp(−Sτ)
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Therefore, it is exponentially more likely for a system to increase its entropy than to decrease it.

Of course, this is not at all how cells work – as a kind of Maxwell’s demon. They do not maintain

homeostasis or divide simply by using microscopic fluctuations away from equilibrium. Instead,

they employ a complex machinery that actually uses an energy source (such as light or a chemical

diet) and a heat sink (the surrounding environment) to dump the excess entropy generated. The

entropy of the living matter decreases or is maintained at the cost of increasing the entropy of the

environment.

There is another way of looking at this. Instead of just thinking about the increase in entropy as the

cost of maintaining life, a somewhat speculative argument suggests that life serves as the catalyst

for what nature demands, i.e., the fastest and largest possible increase in entropy.

Michaelian (2009) and others such as Annila and Annila (2008) argue that life and the biosphere

are optimized for the maximum total production of entropy on earth. The earth as a whole absorbs

radiation from the sun, and dissipates this energy back into space. The maximal increase in entropy

occurs when incoming high frequency radiation (such as in the UV range) is converted to lower

frequency thermal radiation which is exported into space. Photosynthesis is of course one of the

ways of directly capturing some of the energy from the sun, and this is one way in which life

on earth captures energy. However, the largest engine of entropy production is the water cycle

which radiates (at much larger wavelengths than the incoming radiation) when it condenses in the

atmosphere. However, Michaelian (2009) argues that the biosphere as a whole accelerates this

working of the water cycle engine. On a molecular level, photosynthesis captures energy which may

be later radiated downstream by animals, fungi, or bacteria. Wang et al. (2007) calculated that leaves

and the stomata actually operate as if optimizing for maximal transpiration from the leaves, rather

than simply energy capture from photosynthesis. Michaelian (2009) also presents arguments that

parts of the biosphere other than plants also operate as a system to maximize entropy production at

a scale vastly bigger than would happen on a lifeless planet; and that early RNA and DNA molecules

by themselves may have been the optimal molecules to capture photons from UV light and transmit

this energy to surrounding water, stimulating evaporation and feeding the water cycle entropy engine.

Recently, the non-equilibrium thermodynamics of systems driven by an external energy source to

undergo irreversible processes was applied to understand self-replication rates of simple molecules

such as RNA (England, 2013, 2015). Similar arguments have been applied for available reservoirs

of chemical energy, arguing that biological matter was able to generate entropy by hydrogenating
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the carbon dioxide that saturated the early atmosphere (Yung and Russell, 2010). The overriding

theme here is that the complexity and organization of the biology systems, including the cell walls,

intracellular compartments, the information content of the genome, and protein structure, is related

to its property of entropy production. We can put circular teleological conjectures aside; whatever

the odds of its emergence, the supposed “purpose” of life as an entropy maximization agent of the

universe is more accurately the emergent property of self-replication dynamics, given the constraints

of the conditions, physical laws, and its dynamic environment. Regardless of these arguments, what

is clear is that the complex machinery of biological matter enables it to perform a very complex task:

to overcome the energy barriers that separate the state of its available resources from the energy

valleys they could potentially occupy.

1.1.2 Signaling and dynamics

While the complexity of cells and organisms is remarkable in terms of its static organization, the

cell is a dynamic machine that needs to control various non-equilibrium processes. The steps of

transcription, translation, chaperone-assisted folding, and post-translational modifications have to

occur sequentially. The different phases of the cell cycle need to be sensed, started, and stopped.

Vesicles have to be formed, transported, and absorbed. The control of all of these processes means

that various signals have to be generated, stored, and processed. All of this would still be necessary

if the cell existed in a static environment with a constant and uniform source of energy. However, a

cell also has to take into account a dynamic macro-environment; it has to maintain its organization

not just in the face of the microscopic disorder of the second law, but also the macroscopic dynamic

disorder of the availability of resources and changing physical conditions.

Cell signaling is required for sensing and observing the environment. Chemical concentrations, tem-

perature, and mechanical signals all convey information about resource availability and probability

of damage. Secondly, the dynamic optimization of metabolic processes according to resource avail-

ability, avoidance of environmental insults, repair of the proceeding injury, and optimal timing of

division or reproduction are complex decisions that require a complex computational machinery to

solve. This problem of computing the best response for a changing environment with limited re-

sources can also be framed in terms of trying to predict the future of the environment (Still et al.,

2012). This computational problem, whether framed as an optimization problem, a prediction task,

or a nonlinear control system is one that has a tremendous effect on biological fitness but that must
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be solved with limited time, memory, and processing units. It is obvious that one way to help this

would be some sort of co-operative means employing a number of cells like the various ensemble

learning, message passing, and parallel processing algorithms employed on computers.

Multicellular organisms have to ensure that the whole organism responds appropriately to the present

or predicted environment. The environmental sensing signal might have to be conveyed to a cell

spatially removed from the site of optimal sensing, or to a cell that is specialized to perform the

adaptive action. Both of these scenarios occur in a problem that we study in this work: the abscisic

acid signaling of drought response, where the signal is communicated from a spatially removed organ

(the root to the leaves), or from cells of one phenotype to the other (mesophyll cells to guard cells).

Cell-to-cell communication also occurs in unicellular organisms. Quorum sensing in bacteria is a

well known example of unicellular organisms employing cell-to-cell communication to regulate their

gene expression as a function of population density. Signaling to and from cells can occur in different

modalities. Chemical signaling by various small and large molecules is pervasive in biology. Neurons

and myocytes respond to, and neurons generate, electrical signals. Cells can also sense mechanical

stresses via strain on cytoskeletal proteins (Ulbricht et al., 2013) and “communicate” mechanical

signals through the extracellular matrix (Reinhart-King et al., 2008).
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1.2 Motivation

All processes of sensing, computation, and decision-making performed by an organism are necessarily

operations on signals. A cell sensing its environment implies receiving external signals; their process-

ing involves intracellular signaling through mechanisms like protein binding, conformation changes,

protein modifications or gene expression; and part of its response could be the communication of sig-

nals to other cells. At a much higher level of organization, even information processing in the brain

is built on chemical and electrical cell signaling between neurons. Understanding the signaling in-

volved in a certain process, whether in disease, development or homeostasis, is key to understanding

the process. Knowledge of the signaling starting from the extracellular receptors to the intracellular

pathway to the secreted signals means that we can predict the response to new conditions, find

targets for pharmaceutical intervention, or propose candidates for genetic engineering.

In this work, we apply and develop computational and statistical techniques that help in under-

standing various aspects of cell signaling. From the perspective of systems biology, we can divide

the phenomena involved in cell signaling into various levels of abstraction. At the lowest level,

we have individual molecules whose physical and chemical properties are responsible for the whole

system. These individual molecules, whether nucleotide polymers, proteins or metabolites, interact

with each other in some fashion. Sets of these interactions happening in concert with each other give

rise to whole cell processes and responses. Going further up the hierarchy, these cellular responses

may then affect other cells. At each level, there are individual processes occurring that give rise to

emergent properties.

This dissertation tackles three problems at different levels of abstraction. We are interested in both

uncovering the biological phenomena and developing tools to represent and model the phenomena.

In practice, however, a specific effort may be more of an exploration of biological observations or of

conceptual advance. The unifying theme in our studies is the application of quantitative tools in

the service of understanding cell signaling at different levels of abstraction and organization.

1.2.1 Cell-cell communication

Cell-cell communication is of primary importance for understanding human disease and development

since they are a product of the behavior of the whole system. In terms of the number of nucleotides

or functional genes, genomes can increase to very large sizes. Whether this alone leads to a more
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“complex” organism, for some behavioral measure of complexity, is debatable. Many plants in fact,

have genomes many times the size of the human genome. Most empirical scaling laws suggest that

simply increasing the size of a certain system increases some measure of its performance up to some

saturating limit. For example, West et al. (1999) shows that the scaling of the rates of biological

processes scale slower than body size in animals, and this is due to the vascular structure needed to

transport nutrients and communication. Bettencourt et al. (2007) shows that a city’s productivity,

in terms of wealth generation, rises faster than its population, according to a scaling law leading to

bigger and denser cities, until this regime collapses leading to a breakdown.

Whatever the scaling of biological functional complexity may be with respect to its gene set size,

there is a stage beyond which one requires a qualitatively different kind of structure to continue to

increase efficiency. Larger organisms are multi-cellular rather than simply giant cells. All of these

multicellular organisms need cell-cell communication to exist and function as a whole. Major modes

of cell-cell communication include endocrine signaling (where the signaling molecule circulates in

the blood to its target), paracrine signaling (where the molecule diffuses locally to other cells in the

source cell’s environment), and Delta-Notch signaling between the membrane bound receptor and

signaling molecules of cells in contact with each other.

We turn our attention in this work to a kind of cell-cell communication about which comparatively

little is known, tunneling nanotubes (TNs). Cells send out protruding nanotubes from their cell bod-

ies. The nanotubes are able to fuse with the cell wall of a nearby cell to form a nanotube connection,

facilitating the transfer of signals. We present a basic model of the dynamics of molecule transfer

with these TNs. TNs have been observed in many different situations including neuronal (Costanzo

et al., 2013), corneal(Chinnery et al., 2008) and lung cells(Lou et al., 2012) and they have been

implicated in many important phenomena such as tumour formation (Thayanithy et al., 2014),

chemoresistance (Dickson et al., 2014), and stem cell differentiation (Vallabhaneni et al., 2012). It

has been hypothesised that TNs may represent a new kind of supercellular organisation in animal

tissues (Rustom, 2016). By modeling the dynamics of biomolecule transfer by TNs, we open the

door to experiments that can characterize the level of regulation in a signal of interest.

1.2.2 Networks and signaling

Biological processes within a cell occur due to many molecular components working together. Our

knowledge of the physics of protein structure and binding is too rudimentary to be able to calculate
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their behaviour and role in the system from first principles. Interaction networks provide additional

information about the relative roles of proteins in the cellular system. These networks can be

composed of many different kinds of interactions. For example, regulatory interactions denote the

direct or indirect effect of one protein on the expression or activity of another, protein-protein

interactions usually denote the physical binding of proteins to each other, genetic interactions arise

from some co-operative behaviour that leads to non-additive phenotypes in double mutants, and

co-expression networks, as the name suggests, record correlated gene expression of certain genes in

many different conditions.

The cellular response to a stimulus is, in almost all cases, composed of a number of genes (or more

accurately their protein or RNA products) working together. If we have even partial knowledge of

the response or signaling pathway in terms of certain genes, a great deal can potentially be pre-

dicted using the interaction networks. For example, interaction networks can be used to search for

additional genes that are highly associated with a core gene set involved in a pathway or disease phe-

notype. They can be used to characterize the unknown function of genes, predict dynamic behavior,

arrange the genes into functional modules, or prioritize genes for experimental characterization or

validation.

In this study, we have used interaction data for exploratory analysis of the guard cell abscisic

acid response. We also attempted to define the causal genes involved in quantitative trait linkage

(QTL) of regions of the genome to certain drought related phenotypes. However, the sparsity of

available network data and limited resolution of the genetic markers mapping the QTL regions was

insufficient to give us statistically significant or even informative results. The model we developed

for gene associations over networks could solve these kind of problems as experimental data sets

improve, however. We had earlier demonstrated how the graph diffusion kernel, a common model

for network analysis, can be adapted to genetic interactions (Qi et al., 2008). We present, as the

second topic here, what we show to be an improvement over the graph diffusion kernel, and show

its close relationship to models developed from the statistical physics of spin lattices.

1.2.3 Cell signaling and gene expression

An extracellular chemical signal is usually sensed either by a cell membrane receptor or in the

case of diffusible small molecules, by an intracellular target. In either case, any signal will usually

trigger a cascade of downstream events through various processes. These downstream events can
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include many different processes, especially in eukaryotes, such as phosphorylation, ubiquitination,

transport, binding, or changes in the conformational structure of existing proteins. For certain

classes of cells and signals, such as an electrical spike train sensed in the dendrite of some neurons,

the response may primarily be the transmission of a modulated signal. Other stimuli may induce

slower and longer lasting changes such as in metabolic fluxes or cytoskeleton structure. Due to

energetic constraints, a cell is unlikely to maintain a large surplus of protein machinery that is not

in regular use. Therefore, an important signal that requires a significant change in the functioning

of the cell, especially one that does not have a relatively uniform repetitive frequency, will require

additional protein machinery to be assembled. This implies a large and systematic change in gene

expression in response to the stimulus. In guard cells, abscisic acid is one such important signal. Its

response includes a large amount of ion transfer, with the resulting changes in turgidity proceeding

to close or narrow the stomatal opening. The sudden and large change in ion concentrations and

turgidity leads to osmotic stress, which requires the expression of osmoprotectants. In addition,

water deficit also implies changes in metabolic resources, and might be predictive of falling levels or

photosynthesis. This might necessitate transport of photoassimilate to safe storage or other changes

in the metabolic program. All of these targets require stepping up the rates of some processes and

production of its machinery.

While Brassica napus is a commercially important food crop, especially in certain countries like

Canada and China, and a target for selective breeding, it has not been a model organism for scientific

research. Its first draft genome was published in 2014. Therefore, its genes have not been annotated

in detail, and no interactome information is available. We were able to use RNA-seq to characterize

the gene expression changes in response to abscisic acid in the guard cells. We also use homology to

Arabidopsis and Arabidopsis interaction and transcription factor binding site to infer the processes

and genes involved.
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1.3 Research aims

1.3.1 To propose a model for inter-cellular molecule transfer through tun-

neling nanotubes

Cell-to-cell communication proceeds through a number of modalities. Tunneling nanotubes are one

medium of communication of emerging scientific interest. Nanotube structures have been observed

to form between many different kinds of cells and can transport, proteins, cell components, and

electrical signals. We develop a mathematical model of the transport of intracellular and membrane-

bound molecules using model in which the nanotube permits mixing of the two cells’ membranes,

and we relate the rates of transfer to nanotube development dynamics. The model makes simple

assumptions for dynamics and diffusion, and it can be augmented once experiments generate different

parameter values that confirm or invalidate model predictions.

1.3.2 To unify and develop a model for understanding network structures

Understanding the network structure of an interaction graph is an important problem in systems

biology, and it can be used for biological discovery and hypothesis generation in a number of ways. In

the context of this dissertation, we wished to prioritize candidate genes from drought responsive QTL

regions using protein interactions. For this and similar problem classes, we developed new algorithms

for network analysis. We review the graph diffusion kernel, a popular model for predicting gene

associations in networks, and relate it to the Ising model for the statistical physics of spin lattices.

We develop a novel approximation of spin-spin correlations in the Ising model. We evaluate the

performance of our model for predicting missing links in protein-protein interactions and show that

our formulation shows better performance than similar methods. We show how our model may be

applicable for other applications and how it provides a more unified view of related network analysis

techniques.

1.3.3 To study the response of abscisic acid signaling in Brassica napus

guard cells

We study the response of the Brassica napus guard cell to an externally applied abscisic acid signal.

Abscisic acid is a major phytohormone and signals water deficit stress. We use short read sequencing
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of mRNA in response to the application of abscisic acid to isolated protoplasts. We apply statistical

tests to understand the changes in gene expression, and we then integrate cross-species and regulatory

interaction data in a systematic fashion to understand the genes and interactions involved in drought

response. In addition, we show that abscisic acid response in Brassica has evolved since it and the

related Arabidopsis lineage split from a common ancestor.
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Chapter 2

Modeling intercellular transfer of

biomolecules through tunneling

nanotubes

2.1 Abstract

Tunneling nanotubes (TNs) have previously been observed as long and thin transient structures form-

ing between cells and intercellular protein transfer through them has been experimentally verified.

It is hypothesized that this may be a physiologically important means of cell-cell communication.

This paper attempts to give a simple model for the rates of transfer of molecules across these TNs

at different distances. We describe the transfer of both cytosolic and membrane bound molecules

between neighboring populations of cells and argue how the lifetime of the TN, the diffusion rate,

distance between cells, and the size of the molecules may affect their transfer. The model described

makes certain predictions and opens a number of questions to be explored experimentally.
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2.2 Introduction

Cell-cell communication plays an important role in coordinating collective cell decisions. It is also

critical to maintain both structural and functional homeostasis in a tissue. Since coordination be-

tween cells is an essential requirement for the successful functioning of a multicellular organism,

many mechanisms have evolved to allow cells to communicate with each other bearing important

outcomes in both normal functioning of the tissues and pathology. For example, high twitch muscle

cells are in close proximity with blood vessels and nerve endings, and their close interactions are

essential for the correct muscle functioning (Behnke et al., 2011; Vikne et al., 2012). Cell-cell interac-

tions between cancer cells and endothelial cells occur within solid tumors, and metastatizing cancer

cells extravasating the endothelium (Weis and Cheresh, 2011; Qin et al., 2012; Stine et al., 2011).

Extensive research has explored the mechanisms of these cell-cell interactions, resulting in exten-

sive information on the chemical cell-cell signaling pathways occurring in autocrine (Lichtenberger

et al., 2010), paracrine (Abou-Khalil et al., 2009), and juxtracrine manner (Bosenburg and Massague,

1993; Singh and Harris, 2005). However, recent evidence has also suggested another form of cell-cell

interaction that occurs via direct transfer of cellular components from one cell to another, thus trans-

ferring information without involvement of traditionally implicated chemical mechanisms (Niu et al.,

2009; Ahmed and Xiang, 2011; Li et al., 2010; Pap et al., 2009; Prochiantz, 2011; Mack et al., 2000).

Although the degree of such intercellular transfer of cellular components and its role in defining cell

and tissue behavior in vivo remain less understood, the evidence for existence of this novel commu-

nication mechanism is overwhelming, suggesting that it could potentially have a significant effect in

influencing the recipient cell phenotypes in such diverse processes as cancer progression (Ambudkar

et al., 2005), immunity (Baba et al., 2001; Carlin et al., 2001; Quah et al., 2008), HIV infection (Mack

et al., 2000), transfer of drug resistance (Levchenko et al., 2005), and ribosomal recruitment in neu-

ronal axons (Twiss and Fainzilber, 2009). Direct protein-protein transfer is therefore important to

understand in greater detail, both experimentally and computationally.

Previous studies have reported multiple examples of transfer of membrane proteins between

cells (Levchenko et al., 2005; Guescini et al., 2012; Agnati et al., 2011; Al-Nedawi et al., 2008;

Davis, 2007). In addition, small cytoplasmic biochemical components have also been shown to be

transferred between cells in a size-dependent manner (Niu et al., 2009). However, intercellular

transfer of large cytoplasmic proteins has not been yet examined with conclusive results. Various

mechanisms have been suggested for intercellular transfer of cellular components, including forma-
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tion of tunneling nanotubes (TNs) between cells (Guescini et al., 2012; Rustom, 2004), spontaneous

secretion and integration of microvesicles (Valadi et al., 2007; Denzer et al., 2000), and transient

cell-cell fusion (Dreisen et al., 2005). As is frequently the case with poorly understood biological

phenomena, it is not easy to discriminate between putative mechanistic details and generate most

plausible models of this cell communication phenomenon. It is also possible that the mechanisms

may be cell-type specific and multiple mechanisms might coexist in diverse physiological and

pathophysiological contexts. However, certain findings have been suggestive of the constraints that

can be placed on the mechanistic models of this process. For instance, the reports of membrane

protein transfer are much more frequent and better supported than the reports of transfer of

large cytosolic components, including of proteins (Agnati et al., 2011; Camussi et al., 2010). We

questioned whether a reason for this discrepancy might lie in the properties of the transfer process

itself. Another, potentially more revealing constraint comes from the observation that transfer of

cytosolic, but not membrane components is strongly dependent on the molecular weight of the

transferred molecules (Niu et al., 2009). Thus, a plausible model of the transfer process has to be

able to explain these particular well-established features of the intracellular transfer of different

cellular components.

Here, we propose a mathematical model to explain passive protein transfer between cells via forma-

tion of tunneling nanotubes (TNs), which have been observed in various studies to be responsible for

intercellular protein transfer (Guescini et al., 2012; Rustom, 2004; Bukoreshtliev et al., 2009). Our

steady state model explains that while membrane protein transfer may be unrelated to the mass of

the protein, cytoplasmic proteins may follow an inverse correlation with size. Though no existing

report conclusively shows the transfer of cytoplasmic proteins between cells, smaller cytoplasmic

components have been shown to be transferred between cells in a size-dependent manner (Niu et al.,

2009), as predicted by the model. The model explains that while transfer of cytoplasmic proteins

may occur between cells, it would be in relatively smaller amounts in comparison to smaller bio-

chemical components present in the cytosol, or membrane proteins. Further, we predict that protein

transfer may depend on the stabilization of TNs for longer duration.
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2.3 Methods

2.3.1 Basic assumptions

Previous studies have revealed that proteins and other cellular components can transfer between

cocultured cells (Niu et al., 2009; Li et al., 2010; Prochiantz, 2011; Davis, 2007). Typically donor and

recipient cells are defined according to the criterion of observation for the transfer. Commonly, these

observations are specific to the transferred component, e.g., by using an antibody or fluorescent tag to

observe the dynamics of transfer of a biochemical molecule from one cell to another. The schematic

in Figure 2-1 details a typical experimental setup used to detect transfer of cellular components

between cells. For simplicity, in the schematic and in the model, we assume that both membrane

and cytosolic components are transferred from a donor population to a second recipient population.

Variables and constants used in the model are described in Table 2.1. We assume that cells are

cultured as adherent cells in a dish. Consider a cell located at the origin of a system of coordinates

superimposed onto the cell adhesion substratum. The cell can exchange proteins or other molecules

with cells around it by sampling the space in some manner, by means of tunneling nanotubes (TNs)

protruding into the extracellular space (Figure 2-2).

The maximal length of TNs will be limited by the physical and energetic constraints of the cell.

The growth of the exploring TN can be expected to be driven by some sort of polymeric growth,

like the filopodia or actin growth. In any given direction, this growing nanotube can only expect

to make a connection with the closest cell. If the cells are uniformly distributed points, and the

placement of one cell is independent of another, the distance of any cell to its nearest cell will follow

an exponential distribution. The physical limit of the TN growth, however, limits the exponential at

its tail and most of the distribution thus lies in the linear regime of the exponential. As a first-order

approximation, we can thus approximate the abundance of the TN lengths to fall linearly with length.

Denoting the maximum length as l, we assume that the length r of such TNs follows a distribution:

p(r) ∝


l − r if r < l,

0 otherwise.
(2.1)

Hence, the probability of forming a connection to transfer protein with a part of another cell located

within the infinitesimal region (r dr, dθ) at the polar co-ordinates (r, θ) within some time unit is
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Figure	1	
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Figure 2-1: Schematics showing the experimental observations of molecule transfer and the TNs.
(A) Transfer of membrane and cytosolic protein transfer between cells in coculture. The donor and
recipient cells are defined according to the observation criterion. After coculture, both membrane
and cytosolic proteins are transferred to the recipient cells from the donor cells at a relatively
slow rate in comparison to the rate of production of proteins in the donor cells. Observation post
coculture depicts a small population of recipient cells that received transferred protein that can
now be detected. (B) Schematic showing transfer of membrane and cytosolic components from
acceptor to donor cells via tunneling nanotubes (TNs). In this model, donor cells contains higher
amount of cytosolic component (shaded), and membrane bound component (dots) than the recipient
cell. Coculture results in formation of TNs from the donor cell that can transiently connect with the
recipient cell, resulting in transfer of both cytosolic component, and membrane-bound component. In
the model, the membrane composition of TN remains similar to the rest of the donor cell membrane,
the cytosol within the TN shaft contains a gradient of cytosolic components till steady state is
reached. Since most TNs are transient (i.e., their lifetime is smaller than that required for the
concentration of cytosolic components within the TN shaft to attain steady state), the transfer of
cytosolic components to the recipient cell is determined by the concentration of the component at
the site of connection between the TN and the recipient cell. The cytosolic component is green and
the membrane proteins are red dots.
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Figure	2	

Figure 2-2: Schematic showing the calculation of the probability of a tunneling nanotube (TN)
connection between an acceptor and donor cell. As explained in Equation (2.2), consider r as the
length of the TN, and l the maximum length. For a cell located at a distance x from the boundary,
there is an arc of angle 2 arccos(x/r) with cells located at a distance r. This corresponds to the
illustrated infinitesimal area 2 arccos(x/r)r dr, which can be integrated from r = x to l for the total
applicable area
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dp(Connection|r, θ) ∝


l − r if r < l,

0 otherwise.

Now consider another cell of radius b located distance r away from the donor cell of interest sending

out TNs. Assuming that the region of sampling by the TNs is much larger than the dimensions of

the cells (l ≫ b and r ≫ b), the probability of forming such a connection will be p(Connection|r) ∝

(l − r)πb2.

Once such a connection is formed, we consider the cases of cytoplasmic and membrane proteins

transferred from a region of donor cells to a region of acceptor cells.

Table 2.1: Description of all the constants and variables used in

the mathematical model of the inntercellular transfer of molecules

through nanotubes.

Description

Symbol

used

Value used

in the

analysis

Source of

the

parameter

value Comments Dimensions

Radius of a

cell

b No value

used,

analysis

done

algebraically

Length

Maximum

length of TN

l Inexact

estimate

in the

range of

observa-

tions

reported

in

(Rustom et

al. 2004)

Length
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Description

Symbol

used

Value used

in the

analysis

Source of

the

parameter

value Comments Dimensions

Diffusion

coefficient

D See

Table 2.2

Length2/time

Stoke’s radius r See

Table 2.2

Length

Constant

related to

membrane

bound

molecule

transfer

A No value

used,

analysis

done

algebraically

Related to the area of membrane

transferred on,each connection,

the frequency with which a cell

sends out TNs, and the,active

transport of the molecule to

donor cell membrane

Molecules/Length3

Constant

related to

cytosolic

molecule

transfer

B No value

used,

analysis

done

algebraically

Related to the frequency with

which a cell sends out TNs and

the concentration of the

molecule in the donor cell

Molecules/Length3

Cell density ρ No value

used,

analysis

done

algebraically

Cells/Length2

2.3.2 Transfer of cellular components by TN

We assume that when a TN from a donor cell reaches the recipient cell, and connects with the

membrane of a recipient cell, it can “donate” a small portion of the membrane to the donor cell.

This process may actually occur as “exchange” of membrane portions, but here we describe only the

transfer of observable membrane and cytoplasmic components present exclusively in the donor cells.

Furthermore, we assume that TNs are open to diffusive transport of donor cell components and
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the concentrations of the transferred components are not necessarily at the steady state in the TNs.

Due to more extensive reservoirs of the potentially transferable cytosolic vs. membrane components

(e.g., cytosolic proteins) and the potential for lower diffusivity through the cytosolic vs. membrane

parts of TNs, the diffusion of the membrane components may lead to a more effective exchange

vs. that of the cytosolic ones during the transient, TN-mediated cell-cell fusion. Thus, the transfer

of membrane components may be limited by the rate of their access to an individual TN on the

donor cell side, with the membrane density otherwise reaching a steady state within the TN. On the

other hand, the transfer of cytosolic components may be limited by the rate of reaching the steady

state in the TN, with transport mostly resulting in and dependent on the spatial gradient of the

component within the TN.

2.3.3 Transfer of membrane proteins

Consider an acceptor cell located at a distance x from the region of donor cells, each of radius b.

There is an arc of radius r subtending an angle of θ radians from the acceptor cell that falls on

the region of the donor cells where θ = 2 arccos(x/r). Assuming a cell density of ρ cells per unit

area, the probability of our cell making a connection with any cell located in the donor region at

the distance x away will thus be

p(Connection|x) ∝ ρπb2
∫ l

x

(l − r)2 arccos
(x

r

)
r dr (2.2)

Membrane bound molecules are actively transferred to the membrane by the cellular machinery.

Every time a TN connection is formed there is a merging of the membranes of the two cells at one

end of the TN. We assume that a small amount of membrane protein is transferred to the acceptor

cell due to the TN-cell membrane contact. The total amount of membrane bound molecules (ϕ

molecules per cell) transferred into an acceptor cell at a distance x from the region of the donor

cells will be the frequency or abundance TN connections (represented by quantity of Equation (2.2))

multiplied by a constant related to the amount of molecules of interest transferred in each TN

connection:
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[
d ϕ
dt

]
Transfer

= Aρπb2


∫ l

x
(l − r)2 arccos

(
x
r

)
r dr ifx < l,

0 otherwise.

=


Aρπb2

3

(
−2lx

√
l2 − x2 + l3 arccos

(
x
l

)
− x3 log

(
x

l+
√

l2−x2

))
ifx < l,

0 otherwise.

where A is a constant with dimensions of molecules/m3 collapsing all the unknowns such as density

of the protein on the donor cell membrane, efficiency of transfer across cells, etc. With a protein

degradation rate of β with units s−1, we have the dynamics

d ϕ

dt
=
[

d ϕ

dt

]
Transfer

− βϕ

This leads to the steady state condition of

ϕ(x) = 1
β

[
dϕ
dt

]
Transfer

=


Aρπb2

3β

(
−2lx

√
l2 − x2 + l3 arccos

(
x
l

)
− x3 log

(
x

l+
√

l2−x2

))
ifx < l

0 otherwise

=


Al3ρπb2

3β

(
−2
√

1 − (x/l)2 + arccos( x
l ) − (x/l)3 log

(
x/l

1+
√

1−(x/l)2

))
ifx < l

0 otherwise

(2.3)

The protein is transferred up to a distance equal to the maximum length of the TNs (l) and the

concentration of the transferred molecule at the boundary of the donor-acceptor cells is

ϕ(x)x→0 = Al3ρπb2

3β
,

while the slope of the concentration of transferred molecules at the boundary is

[
dϕ

dt

]
x→0

= −Al2ρπb2

β
.
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2.3.4 Transfer of cytoplasmic proteins

We consider an identical arrangement of donor and acceptor cells in this case. The chances of TN

connections formed between the donor and acceptor cells is

p(Connection|x) ∝ ρπb2
∫ l

x

(l − r)2 arccos
(x

r

)
r dr.

Here, we assume that the diffusive transport through a TN is the rate limiting step. According to

Fick’s law, in one-dimensional diffusion from a source of density η, the density at a distance r at

time t is ηErfc( r
2

√
Dt

) where D is the coefficient of diffusion and Erfc is the complimentary error

function. We assume that once a connection is made, the transfer of a cytosolic component occurs

due to diffusion for a certain amount of time (i.e., the effective connection time).

The amount of protein transfer per connection is thus proportional to Erfc( r
2

√
DT

). Now the rate of

protein transferred will be proportional to the number of connections made per unit time and the

amount of protein transferred per connection:

[
d ϕ

dt

]
Transfer

= Bρπb2


∫ l

x
(l − r)2 arccos(x/r)Erfc(r/C)r dr ifx < l,

0 otherwise

where B is a constant of dimension molecules/m3 (corresponding to the parameter A for the mem-

brane bound case) incorporating the chemical unknowns and C is the mean diffusion length

C = 2
√

Dt (2.4)

collapsing the diffusion coefficient and effective mean connection time of the TN connections. The

integral with the error function can be computed numerically but is analytically cumbersome.

Since we have already used the one-dimensional approximation and assumed no diffusion within the

TN before the formation of the connection, we can make one more simplifying approximation and

use a linearized approximation to the error function,

Erfc(x/C) =


1 − 2x

C
√

π
if x < C

√
π

2 ,

0 otherwise.
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Like the case of the membrane bound proteins with degradation rate β, we can solve for the steady

state with the aforementioned approximation of the error function to arrive at

ϕ(x) = Bρb2√
π

Cβ



1
48

[
(C2π − 8Cl

√
π − 8x2)2x

√
C2π − 4x2

+(4l − C
√

π)C3π3/2 arccos( 2x
C

√
π

)

+16x2(C
√

π + 2l) log
(

C
√

π+
√

C2π−4x2

2x

)]
if x <

√
πC/2 ≤ l,

1
3

[
(l2 − 2Cl

√
π − 2x2)x

√
l2 − x2

+(C
√

π − l)l3 arccos( x
l )

−(2l + C
√

π)x3 log
(

x
l+

√
l2−x2

)]
if x < l <

√
πC/2,

0 otherwise.

(2.5)

Therefore, the region where the acceptor cells receive the protein is limited by both the maximum

length of the TNs and also by the mean diffusion length. The maximum protein levels seen at the

boundary can be evaluated from Equation (2.5) as

ϕ(x)x→0 =
(

Bρb2√
π

Cβ

)
l3(

√
πC−l)
3 if C ≥ 2l√

π

(4l−
√

πC)C3π3/2

48 Otherwise
(2.6)

The rate of decline of protein levels with distance in the acceptor cells at the boundary is also

dependent on both the maximum length of the TNs and the mean diffusion length.

[
dϕ(x)

dx

]
x→0

=
(

Bρb2√
π

Cβ

)
2l3(1 − C

√
π

2l ) if C ≥ 2l√
π

C2π
24 (C

√
π − 6l) Otherwise

(2.7)

Interestingly, we see that while greater mean diffusion length increases the observed levels of the

transferred molecules transferred adjacent to the donor cells(Equation (2.6)), it also sharpens the

fall in the concentration of the molecule as we move farther from the donor cells(Equation (2.7)).

To calculate the mean diffusion lengths, we assume that the diffusion coefficient follows the Einstein-

Stokes equation D = kBT
6ηβr , where r is the radius (or the effective Stokes radius for nonspherical

particles) of the diffusing molecule, kB is the Boltzmann’s constant, T the absolute temperature,
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and η the viscosity of the medium. We considered a few representative molecules with varying sizes,

the diffusion coefficients of which are tabulated in Table 2.2.

Table 2.2: Table detailing the diffusion coefficients of various

molecules simulated by the model in Figure 2-4.

Molecule Stoke’s radius Diffusion coefficient D

Glucose 500 ţm (Groebe et al., 1994)

Dextran (3 kDa) 13 Å (Nicholson and Tao, 1993) 37 ţm

Dextran (10 kDa) 23 Å (Nicholson and Tao, 1993) 20 ţm

Dextran (40 kDa) 73 Å (Nicholson and Tao, 1993) 6.5 ţm

GFP 23 Å (Nicholson and Tao, 1993) 20 ţm

Cytochrome C 23Å 3
√

12 kDa
30 kDa = 17Å, estimated from

GFP

28 ţm

Legumainpreprotein

(AEP)

23Å 3
√

433 amino-acids
238 amin-acids = 28Å, estimated

from GFP

17 ţm

According to Gregor et al. (2005), and Luby-Phelps (1986), the viscosity of the cytosol is approx-

imately 4 times of that of water, therefore, we simulated our model with the value of value of

η = 4.2 × 10−3kg m−1s−1.
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2.4 Results

2.4.1 Range of profusion of the transferred molecule

Simulating our model for protein transfer by TN from donor to acceptor cells for membrane proteins,

we observe that the membrane proteins can be transferred into the acceptor cells within the distance

up to the maximum length of the TN, l. Also, the decline of the protein levels is approximately

linear with the distance from the boundary of the donor cells.

Figure	4	
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Figure 2-3: Simulated transfer of molecules from donor to accepted cells via TN. Caption continued
on the next page.

When simulated for cytoplasmic proteins, the model predicts a similar profile for the levels of trans-
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Figure 2-3: (Continued caption) Simulated transfer of molecules from donor to accepted cells via TN.
(A) Transferred membrane-bound molecule levels in acceptor cells at a distance x from the boundary
of the donor cells region, calculated from Equation 2.3. The distances used in the plot are in units of
the maximum TN length l. The levels of transferred membrane molecules are given in units of Al3ρπb2

3β
where A is a constant related to the physics of the membrane contact and level in the donor cells, ρ
the density of the donor cells, and b the radius of the cells. The level is maximal at the boundary
and gradually decreases to zero at a distance equal to the maximum TN length l, after which no TN
connection can be made between the donor and acceptor cells. (B) Transferred cytoplasmic molecule
levels in acceptor cells at a distance x from the boundary of the donor cells region, calculated from
Equation 2.5 for various values of the mean diffusion length (C). The distances (x) used in the plot
are in units of the maximum TN length l. The level of transferred molecule levels are given in units
of Bl3ρπb2

3β where B is a constant related to the level in the donor cells, ρ the density of the donor
cells, and b the radius of the cells. The values of the mean diffusion length C considered are specified
as fractional multiples of the maximum TN length l. More of the cytosolic molecule is transferred
for larger mean diffusion lengths. Both the amount of molecules transferred to a particular distance
and the maximal distance to which it is transferred is limited by the mean diffusion length. The
mean diffusion length itself may depend on both the diffusion constant and mean time of stable TN
formations (Equation 2.4), which is explored further in Figure 2-4.

ferred cytoplasmic molecules into the acceptor cells (Figure 2-4). However, the amount of transferred

molecules, as well as the distance over which they are effectively transferred also depends on the

mean diffusion length. This can be attributed to the fact that cytoplasmic constituents, during a

transient TN formation, exist in the form of concentration gradient with the highest concentration

in the location of cytoplasm before TN was formed. The concentration of cytoplasmic constituents

is lowest at the tip of the TN in connection with the recipient cells (Figure 2-3). Similar to the case

of membrane-bound molecules, the fall in the levels of transferred cytoplasmic molecule is approx-

imately linear with distance from the donor cell region boundary (Figure 2-4). We then compared

model predictions for a number of different biomolecules detailing the efficiency of transfer into the

acceptor cells after a steady state of the transfer process is reached. For cytoplasmic molecules, both

the size and the duration of stable TN connection were found to determine the levels of transferred

molecules.

2.4.2 Possible mechanisms for the regulation of TN molecular transfer

A number of regulatory mechanisms for the transfer of molecules across TNs are consistent with

our model. TN length and its stability can be modulated experimentally by stabilizing the actin

cytoskeletal assembly forming the TNs. The model predicts that the stability of TN, and thereby

connection of donor and recipient cells, will have a significant effect on the level of cytoplasmic

molecules in donor cells. The length of time TN connections are made will also influence the transfer

of membrane bound molecules, with longer stable connections leading to higher membrane molecule
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Figure 2-4: Effect of the stability of TNs. Caption continued on the next page.
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Figure 2-4: (Continued caption) Stability of TN connection determines extent of cytoplasmic protein
transfer in a size dependent manner. Level of transferred molecules transferred from donor to
acceptor cells via TN formation, simulated to be stabilized for mean durations of (A) 1 second, (B)
10 seconds, and (C) 100 seconds. In all cases, levels of transferred molecules in the recipient cells are
plotted against the distance x from the region of donor cells, calculated from Equations refeq:memss
and refeq:meandiffl. The levels of transferred molecules are given in units of Al3ρπb2

3β for membrane
bound molecules, and Bl3ρπb2

3β for cytosolic molecules similar to Figure reffig:fig3. In all cases, size
of TN is considered to be 50ţm

transfer. Changes in the transport of the molecule through the Golgi apparatus, micro-vesicles, and

endosomes to and from the membrane and the effect of post translational control of its binding

with the membrane in the donor cells will also determine the amount of membrane-bound molecule

available for transfer on the TNs. These changes in membrane recruitment and binding could be

modulated in the cells by various pathways.

2.4.3 Effect of the size of the transferred molecules

The model predicts that small molecules are quite robust in their transfer across the TNs while

larger proteins require favorable conditions, for example, stable TN that retract after longer dura-

tions. Our model predicts that, in general, in a typical TN that exists for a few seconds to tens

of seconds, transfer of membrane proteins will be appreciably higher than cytoplasmic molecules.

Among cytoplasmic molecules, large molecules will have an extremely low transfer efficiency, with

transfer occuring only within cells that are extremely close to each other (Figure 2-4A). The differ-

ence of extent of transfer between small and large molecules is quite pronounced, suggesting that

the size of molecules plays a significant role in cytoplasmic protein transfer between cells.

Small cytosolic molecules, for example, glucose (Groebe et al., 1994) or other metabolites, transfer

at a much faster rate. Thus the model explains previous observations that dextran molecules of

different sizes showed a size dependent intercellular transfer amounts between dextran containing

Chinese Hamster Ovarian (CHO) cells to those without dextran (Figures 2-4A, B). Since typical

cytosolic proteins are much larger than smaller metabolites (e.g., green fluorescent protein used as

a reporter probe in cell biology experiments, which has a Stoke’s radius of 23 Å, similar to a 10

kDa Dextran (Phillips, 1997)), the extent of their transfer is expected to be much lower, suggesting

a possible reason why the detection of cytosolic protein transfer has been rare, or has remained

unreported.

However, as the TN becomes more stabilized, the diffusion of cytoplasmic molecules within the TN
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shaft shifts more towards a steady state, and becomes shallower. This results in higher transfer of

cytoplasmic molecules (Figure 2-4B). As TNs are stabilize even further, the extent of transfer of

cytoplasmic molecules approaches the transfer of membrane proteins for all distances between donor

and recipient cells (Figure 2-4C). The difference of transfer within cytoplasmic molecules of different

sizes becomes less pronounced, suggesting that size remains a smaller factor in cytoplasmic protein

transfer as TNs stabilize (Figure 2-4C).
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2.5 Discussion

Intercellular transfer of cellular components is a fascinating phenomenon largely because it is under-

stood so little, and does not seem to obey any known classical cell-cell communication mechanisms.

This transfer also seems surprising since it suggests a phenomenon over which the recipient cells

can only have partial or no active control. Even then, it has been implicated as important in

various physiological and pathological contexts. Physiological heterotypic and homotypic cell-cell

interactions occur frequently in various tissues, including blood vessels, muscles, and nerve fibers,

etc., potentially allowing transfer of molecules between cells. Pathological contexts such as cancer

present new avenues for intercellular transfer of biomolecules to play significant roles. For example,

drug-resistant cancer cells could transfer small molecules conferring drug-resistance to neighboring

drug-susceptible cells causing lateral transfer of resistance. However, in spite of the importance of

this passive form of intercellular communication, our present understanding about it is limited.

In spite of the relatively few reports of intercellular transfer of biomolecules, largely due to the small

amounts of transfer that can frequently go undetected, a few trends stand out in the reported studies.

It has been observed that the membrane bound molecules could transfer more readily from one cell

to another, but cytoplasmic molecules transfer has been reported less frequently. Interestingly, while

there are no reports that the efficiency of transfer of membrane-integrated molecules is dependent

on the molecular weight of the transferred components, cytoplasmic molecules have been reported to

transfer in a size dependent manner. In addition, there has not been any conclusive demonstration

of cytoplasmic protein transfer between cells. Here, we propose a mathematical model describing

intercellular transfer of biomolecules via TNs that explains these observations and makes useful

predictions.

The model makes a critical assumption about distinct characteristics of transport of membrane

vs. cytosolic components through TNs. In particular, it is assumed that large cytosolic components,

such intracellular proteins, can diffuse over the length of TN much slower that the membrane com-

ponents. Thus the rate limiting step in the transfer of the membrane components is the rate of

their access to TNs on the donor cell side, whereas the rate limiting step of the transport of cytoslic

components is their diffusion over TN. As a consequence and due to the transient nature of TNs,

membrane but not cytosolic components would reach a steady state distribution over the length of

a TN, with cytoslic components forming a diffusion based gradient. Since diffusion is dependent

on the size of the molecule, and consequently results in a size/mass dependent transfer of cytosolic
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molecules.

For both the membrane bound and cytosolic molecules, the transfer is limited by the spatial sep-

aration between an acceptor cell and the nearest donor cells. Due to the size dependence of the

cytosolic molecular transfer, both the amount of the molecule transferred and the maximum separa-

tion between the cells that allows for any observable transfer becomes negligible for large proteins.

A consequence of the model then is that in most physiological contexts, any signaling happening

across cells in this fashion is limited to either membrane bound molecules or small cytosolic molecules.

Thus, our model provides a physical basis for the observation of signaling by membrane proteins

and small cytosolic molecules.

The model predictions regarding the importance of the length of the TNs the time scale of TN

lifetimes open new avenues for of the analysis of intercellular communication through individual

TN formations. In addition, it raises the question of whether there could be specific pathways

regulating the formation and behavior of such TNs. For example, it has been reported that HIV

induces the formation of TNs in macrophages (Eugenin et al., 2009). This hypothesis can be tested

by modulating the frequency of TN formation by cells, achievable by chemical and environmental

means (Lou et al., 2012). Another hypothesis generated by this model is that increased stability of

TNs could reduce the differential transfer of molecules of different sizes, and this can be tested by

modulating TN stability (Marzo et al., 2012). Recent reports of transfer of endocytotic organelles

due to TNs, which can be controlled by a number of molecular signals (Gurke et al., 2008), suggest

a scope for more detailed theoretical models than the one presented here, taking into account the

active and modulated TN formation frequency and dynamics and how they affect the transfer of

components in response to specific biological signals. It is plausible that TN formation may be

regulated by cells as response to various stresses or other stimuli, resulting in a controlled selection

of the nature, size, and amount of the transferred components and the corresponding phenotypes.
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2.6 Directions for future experimental studies

The model presented here, in the absence of precise values for the multitude of physical parameters

involved in the process, makes a number of assumptions in order to provide some qualitative pre-

dictions. Careful experimental studies may validate or correct certain aspects of this model. These

predictions and assumptions should help to tease out the role the transfer of molecules across TNs

plays physiologically.

We have a simplistic linear relation between the length of TNs and their abundance in a uniform

density of cells (Equation (2.1)). The elongation of the TNs proceeds through actin (Wittig et al.,

2012) and/or microtubule (Wang et al., 2012) polymerization; it is therefore intuitive that TN form-

ing cells will be able to survey their immediate neighborhood more exhaustively than the relatively

distal regions. However, imaging a large number of cells forming TNs could help to provide us with

a better understanding of the dynamic of TN formation and their static distribution. Our model

can thus be updated with a more accurate length distribution of TNs during growth. We have also

ignored the effect of the narrow TN channel on the diffusion coefficient. However, this should be

an additional factor that is absorbed into the mean diffusion length, a parameter we have handled

algebraically while deriving the expressions for concentrations of the transferred molecule.

Our model derives an analytical expression for the concentration of molecules reaching into a pop-

ulation of cells from another population of TN forming plated next to them. We derive simple

expressions for the slope of the concentration with distance from the boundary of the two cell popu-

lations for membrane bound and cytosolic molecules. Further, we show how the size of the cytosolic

molecules should determine the extent of profusion; while for membrane bound molecules, it is their

concentration on the TN membrane rather than size that should determine the extent of profusion.

These are qualitative predictions that can be tested independent of the exact measurement of various

parameters involved in the model. Experiments measuring the profusion of cytosolic and membrane

bound molecules of differing sizes can shed light on the validity of our models of diffusive transfer

of cytosolic molecules and membrane transfer at the tip of the TNs. We hope that with further

experimental evidence, our model can be refined to better reflect the physiological mechanics of TN

formation and molecule transfer.

As mentioned earlier, experiments perturbing the frequency and stability of the TNs provide another

avenue for testing the model and at least one possible regulatory mechanism.
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Once certain quantitative characteristics of the transfer of these molecules have been verified for

some control molecules, any deviation from these transfer rates for physiologically important pro-

teins opens the way for investigating the signaling pathways the cells employ for regulating this

intracellular traffic.
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Chapter 3

Link prediction in protein

interaction networks: graph

diffusion and the Ising model

3.1 Introduction

3.1.1 Problem definition

Characterizing all the genes that are discovered in a genome or expressed as proteins is an important

goal of systems biology. The physiological influence of genes and proteins, however, is often the result

of physical or other functional interactions between genes, proteins, and other biomolecules, rather

than individual contributions of isolated components. Interaction networks are often defined as

graphs with genes or proteins as vertices, which often have labels describing membership in defined

groups, and interactions as pairwise edges between vertices, which may be of different types, directed

or undirected, and weighted or unweighted. These networks, whether built from a compilation of

small studies or the result of high throughput studies, are often noisy, with both false positive

spurious interactions and false negatives absent from the network.

The problem that we address in this study is predicting missing interactions using the rest of the

tested interactions in the network. The benefit of using this assessment, rather than prediction of
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vertex labels, is that interactions can be experimentally measured whereas gene annotations are less

rigorously defined. Link prediction generally assumes a network where genes with similar functions

or activities are more likely to connect to similar genes than to the rest of the network. We focus

on two approaches to this problem: the random walk or graph diffusion kernel, and the Ising model.

We show how these models are related and compare a number of approximate solutions of these

models in the context of link prediction.

3.1.2 Motivation

The human genome has about 20, 000 protein-coding genes while the much simpler common yeast

(Saccharomyces cerevisiae), an awesomely powerful model organism for understanding eukaryotic

biology, has about 6, 000 protein-coding genes. Detailed experimental studies to elucidate the biol-

ogy of each gene using conventional molecular and cellular biology techniques such as fluorescent

microscopy for protein localization, co-immunoprecipitation, blotting, and phenotyping knock-outs,

are labor and resource intensive and have only been performed for a subset of genes. Systems biology

is an attempt to understand emergent phenomena in physiology, development, and disease that arise

from interactions between various genetic and environmental variables.

Central to the study of systems biology in creating predictive models is the ability to map the

interactions between genes. The types of interactions commonly studied include physical protein

binding or protein-protein interactions (PPI), direct regulation of gene expression by transcription

factors (regulatory interactions), and genetic interactions defined by non-additive phenotypes such as

lethality or slow growth of double mutants when the individual mutants have high fitness. This study

relates primarily to undirected, unweighted networks, a frequently used model for PPI networks.

These can be considered as graphs with nodes or vertices defined by proteins and edges defined by

existence of a protein-protein interaction. However, the developed techniques can be directly applied

to link prediction in other undirected networks, and with some modifications, to weighted networks,

directed networks, and networks with multiple edge types.

High-throughput protein interaction studies using techniques such as yeast two-hybrid screens (Fields

and Song, 1989) and tandem affinity purification (Puig et al., 2001) have been used for systematic

studies to generate protein-protein interaction (PPI) networks with large coverage of proteins in

species such as yeast (Fields et al., 2000; Ito et al., 2001), Escherichia coli (Rajagopala et al., 2014),

fruit fly (Giot et al., 2003) and human (Rual et al., 2005; Rolland et al., 2014). In addition, bioin-
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formatics databases such as BioMart (Haider et al., 2009) or MIPS (Pagel et al., 2005), and species

specific portals such as for yeast (Cherry et al., 1998), bacteria (Su et al., 2008), and human (Stelzl

et al., 2005) collect and curate interactions both from publications reporting individual interactions

and high throughput systematic studies.

These PPI interactomes, along with other interaction networks, have been used to understand the

systems biology of various biological phenomena, and to make specific predictions and generate

testable hypotheses about gene function. Interaction networks have been used to predict protein

functions (Sharan et al., 2007; Chua et al., 2006) and associate genes with disease (Köhler et al., 2008;

Oti et al., 2006), search for causal genes in eQTL regions (Suthram et al., 2008), refine regulatory

networks (Nariai et al., 2003), assemble the temporal order of pathways (Farach-Colton et al., 2004),

and expand and understand gene lists in context (Lachmann and Ma’ayan, 2010).

Even the high-throughout studies, however, usually only capture a subset of all the interactions in

an organism. Stumpf et al. (2008) estimated the true sizes of the interactomes of Saccharomyces

cerevisiae, Escherichia coli, Drosophila melanogaster, and Homo Sapiens, assuming random sampling

of proteins included in various systematic studies. While the true networks are probably very sparse,

we have not been able to sample all the interactions. Deane et al. (2002) used gene expression and

interactions among paralogous genes to estimate that only about half of the interactions found in high

throughput studies are physiologically relevant. The known interactome thus compiled from these

studies may have under-sampled some proteins while oversampling others, and there are unequal

sampling biases in distinct high throughput studies (von Mering et al., 2002; Bader et al., 2002).

This sampling bias affects our estimation of the global properties of the interaction networks (Han

et al., 2005). Huang et al. (2007) modeled protein specific promiscuities in the prey-bait counts of

yeast two-hybrid experiments to arrive at false-positive rates of 25% to 45% and false-negative rates

of 75% to 90% in the yeast, worm, and fly datasets.

3.1.3 Related methods for predicting links and improving interaction net-

work quality

Computational approaches to improve the quality of experimentally measured interactions and pre-

dict additional interactions have followed two general approaches, depending on the information

used: biological approaches based on experimental and computed properties of individual proteins,

and statistical approaches based on the observed interaction network. In this section we briefly
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review some studies that have used one or both of these approaches to improve interaction networks,

and then focus on some of the common themes in network analysis techniques for link prediction.

Some studies use additional biological information like gene expression, co-expression of transcripts

or co-existence of proteins in the same cell type or cellular localization, and additional statistical

characterization of the results of different high throughput studies to classify pairs as false negatives

and false positives, thus improving the network. Kemmeren et al. (2002) use differential co-expression

and Matthews et al. (2001) use cross-species homologs to predict new interactions.

Other studies have used the topological structure of the interaction networks to predict likely missing

links. These methods assume that interacting pairs of nodes are more well connected to each other

than chance through paths of length two or greater. Biological networks have been shown to be

scale-free, modular, and hierarchical (Barabási and Oltvai, 2004; Ravasz and Barabási, 2003; Ravasz

et al., 2002). Cellular physiology is thought to arise from a modular organization of pathways and

interaction networks (Hartwell et al., 1999). It is known that interaction networks are more clustered

than predicted by chance. Kashtan and Alon (2005) argued that the evolutionary model of gene

duplication followed by divergence naturally results in an interaction network which looks modular

and where interacting pairs share many common neighbors. Indeed, the presence of community

structure is a common property of various real-world networks (Girvan and Newman, 2002) and

is a common framework for the study on complex networks. Przulj et al. (2004) showed that PPI

networks are better modeled by embedding the nodes in a metric space and drawing connections

between nearby nodes than the scale-free or Erdos-Renyi random graphs.

One way to conceptualize link prediction in the context of network topologies is to assign to each

pair of nodes in an interaction network a distance or similarity score. This distance measure de-

pends on our model of the graph topology, but nodes deemed more similar or closer to each other

are more likely to interact. Multiple measures of common neighbors between nodes have been used

as measures of similarity, with different normalizations based on the node degree (Kossinets, 2006;

Ravasz et al., 2002; Newman, 2001; Saito et al., 2003). Goldberg and Roth (2003) modeled inter-

actions assuming a small-world network rather than explicit modularity assign confidence scores to

individual interactions from a high-throughput interaction study. By fitting the hypergeometric

distribution to the number of common neighbors of a vertex pair, they introduced the idea of the

mutual clustering coefficient as a local distance measure. Zhou et al. (2009) compared a number

of these local measures of node similarity for predicting missing links in PPI and other networks.
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Chen et al. (2005) assessed the reliability of PPI interactions by considering the shortest weighted

alternative path connecting the two proteins. Other methods assign reliabilities to interactions by

building a model of the whole interactome rather than a simple combination of terms involving the

closest neighbors. Guimerà and Sales-Pardo (2009) tested the reliability of links and networks using

a fully Bayesian stochastic block model of the network. Pan et al. (2016) predicted links by learning

the likelihoods of cycles of various lengths. Exclusive community structure (Zheleva et al., 2008)

and hierarchical structure (Clauset et al., 2008) have also been used to predict missing links.

Others have combined biological information with network statistics to improve network quality.

Bader et al. (2004) use a number of distance measures in networks derived from different yeast

two-hybrid and co-immunoprecipitation studies as predictors to arrive at a confidence score for

each possible interaction. Other studies have combined the topological structure and knowledge

of specific proteins to arrive at reliable links. For example, Ahmed and Glasgow (2014) use both

protein domain knowledge and common neighbors in a particle swarm optimization framework to

predict high confidence interactions.

Barzel and Barabási (2013) predicted direct interactions between genes and proteins using the cor-

relation matrix of gene expression patterns in E. coli. Unlike the other works discussed here, their

study did not predict missing links in the same network used as an observation to the algorithm.

However, it uses the notion of direct interactions versus correlations that we also employ in the Ising

model method here.

In this study, we are especially interested in the class of similarity functions over nodes called graph

diffusion kernels (Kondor and Lafferty, 2002), which are often motivated by probability distribu-

tions describing random walks on graphs. Graph diffusion kernels became very popular after their

commercially successful use in web search engines (Brin and Page, 1998). Qi et al. (2008) used

graph diffusion kernels to predict links in protein and genetic interaction networks, which included

signed edges akin to ferromagnetic and anti-ferromagnetic interactions in a spin lattice. The graph

diffusion kernel can be described as the probability of a random walker starting at one vertex and

end at another vertex, while following certain rules for stochastic transitions across network edges.

Variant forms of the graph diffusion kernel are motivated by slightly different physical analogies

and mathematical construction. They may be constructed as the equivalent electrical resistance in

a graph composed of resistors (Klein and Randić, 1993), the diffusion of heat (Chung, 2007), or

as the probability that random walkers starting from two nodes meet at some third node (Jeh and
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Widom, 2002), among others. These functions can be mathematically described as the weighted sum

of paths of various lengths through the network, or the probability distribution for random walkers

that decays over time. Related functions on graphs have appeared in other work (Katz, 1953; Leicht

et al., 2006), although these functions were not presented as graph diffusion kernels.

Here we draw connections between the stochastic model of graph diffusion and the equilibrium

statistical physics of the Ising model, introduced to model regular lattices of magnetic dipoles in

solids (Ising, 1925). Ising models have a Hamiltonian that is defined by signed and weighted edges

connecting pairs of vertices, each having a spin variable with states +1 and −1, and possibly also

coupled to an external field. The Ising model has been used to model communities (Son et al., 2006)

and propagation dynamics (Grabowski and Kosiński, 2006; Fraiman et al., 2009) across networks.

We explore isomorphisms between the spin-spin correlation function and the graph diffusion kernel

to connect existing approaches and develop new approximations to identify strongly coupled vertices

in the Ising sense, and likely interactions in the PPI domain. We apply the Ising model and our

new approximations to general graphs arising from interaction studies and other real-world networks

rather than regular or semi-regular lattices observed in materials science or statistical physics.

3.1.4 Link prediction in other contexts

Link prediction in complex networks is also useful for domains other than protein interaction net-

works and biological networks. Link prediction has been used to predict links in social network of

friendships or relationships between people (Fire et al., 2013). Liu and Ning (2011) used link pre-

diction on a bipartite network to rank candidates for employment positions. Collaborative filtering,

a commercially important problem that seeks to recommend a product that is likely to appeal to

an individual, can be cast as a link prediction problem in a bipartite network of consumers and

products (Huang et al., 2005; Li and Chen, 2013). Link prediction can be used to predict likely links

or followers in online social networks (Valverde-Rebaza and de Andrade Lopes, 2013). Kastrin et al.

(2016) used link prediction in a network of scientific literature to generate hypotheses in the form of

related biomedical concepts.
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3.1.5 The approach used in this study

In this study, we relate graph diffusion kernels to the Ising model. We show how the Ising model

can be used for link prediction and why the two approaches are intimately related. We derive

new analytical approximations for the spin-spin correlation function in an Ising model, and we

demonstrate that our approximations are overall better for link prediction than either graph diffusion

kernels or existing Ising model approximations. We also present a theoretical argument supporting

the superior performance of our network analysis method. Our new method could be a powerful new

approach for related problems spanning many fields of network science: gene candidate prioritization,

graph clustering, and community detection.
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3.2 Methods

3.2.1 The Ising model

The Ising model is defined for a graph with spins on vertices (su) and pairwise interactions as edges

(Juv) with the the Hamiltonian (or energy function):

H(s) = −
∑
u∼v

Juvsusv −
∑

u

husu,

where each spin variable su can take the values +1 and −1.

The equilibrium probability of a state, defined by the configuration of spins, is given by the Gibbs-

Boltzmann distribution,

Pr(s) = exp[−βH(s)]∑
s′ exp(−βH(s′))

=
exp

[
β(
∑
u∼v

Juvsusv +
∑

u

husu)

]

Trs′ exp

[
β(
∑
u∼v

Juvs′
us′

v +
∑

u

hus′
u)

]

=
exp

[
β(
∑
u∼v

Juvsusv +
∑

u

husu)

]
Z

.

(3.1)

where Z = Trs exp

[
β(
∑
u∼v

Juvsusv +
∑

u

husu)

]
is the partition function.

By symmetry, the expected value of any spin is 0 when the external field hu is 0. For a non-zero

external field, the expectation is

⟨su⟩ =
∑

s exp[−βH(s)]su∑
s exp[−βH(s)]

.

An exact calculation requires a full enumeration of each possible state, 2N for a lattice with N

spins. For most lattices, approximations are required. A very useful approach is the mean field

approximation, in which the average is effectively moved from the outside to the inside of the
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exponential:

⟨su⟩ =
∑
su

suP(su)

= Pr(su = 1) − Pr(su = −1)

≈
exp(β(

∑
v ̸=u Juv⟨sv⟩ + hu)) − exp(−β(

∑
v ̸=u Juv⟨sv⟩ + hu))

exp(β(
∑

v ̸=u Juv⟨sv⟩ + hu)) + exp(−β(
∑

v ̸=u Juv⟨sv⟩ + hu))

= tanh(β(
∑
v ̸=u

Juv⟨sv⟩ + hu)).

Under zero external field (hu = 0, ∀u), one of the solutions to this equation is su = 0, ∀u. This

naïve mean field method was extended to include the effect of pair interaction correlations by the

Bethe mean field method (Bethe, 1935). Yedidia (2001) showed a general method to include larger

correlations using Plefka’s formulation of the Gibbs free energy (Plefka, 1982).

3.2.1.1 Spin correlations

One measure of distance between nodes in a graph is the correlation of spins, ⟨(su−⟨sv⟩)(sv−⟨sv⟩)⟩ =

⟨susv⟩ − ⟨su⟩⟨sv⟩. Under zero external field and magnetization, this reduces to ⟨susv⟩.

3.2.1.1.1 A non-linear mean field solution using partial relaxation

Now let us consider the correlations χuv = ⟨susv⟩ between two nodes u and v under 0 external

field, in which each spin has expectation 0. For convenience, we denote the rest of the nodes as

R = {r : r ̸∈ (u, v)}. We then consider separately the terms of the Hamiltonian for the spins of

interest

H0 ≡ −husu − hvsv − suJuvsv,

the terms of the Hamiltonian for the rest of the system,

HR ≡ −
∑
r∈R

hrsr −
∑

r∼r′∈R
srJrr′sr′ ,

and the terms connecting the system to the rest of the network,

V ≡ −su

∑
r∈R

Jursr − sv

∑
r∈R

Jvrsr,
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with H = H0 + HR + V .

The vector of spins s is similarly considered separately as two blocks of the spins of interest suv =

[su , sv]T and the rest sR = [..., sr, ...] where r ∈ (R and r ̸∈ (u, v).

The partition function can then be written as

Z = Trs exp [−βH0(suv)] exp [−βHR(sR)] exp[−βV (suv, sR)]

= Trsusv exp [−βH0(suv)]TrsR
exp [−βHR(sR)] exp[−βV (suv, sR)]

Consider the Boltzmann weight obtained by summing over the rest of the system,

TrsR exp[−βHR(sR)] exp[−βV (suv, sR)]

=TrsR exp[−βHR(sR)]TrsR exp[−βHR(sR)] exp[−βV (suv, sR)]
TrsR exp[−βHR(sR)]

=ZR⟨exp[−βV (suv, sR)]⟩R

=ZR

⟨
exp

[∑
r∈R

β(suJursr + svJvrsr)

]⟩
R

(3.2)

We wish to arrive at a self-consistent equation for χ without summing over all the discrete states (Trs).

Note that what makes the problem hard is the discrete nature of the spins; a quadratic form could

be calculated exactly. We therefore approximate the discrete sR with a continous approximation

of a multivariate Gaussian distribution with means mr = ⟨sr⟩ = 0 and covariance matrix given

by ⟨srsr′⟩ − ⟨sr⟩⟨sr′⟩ = χr,r′ where r, r′ ∈ R. Using this approximation, Equation (3.2) can be

approximated as,

ZR

⟨
exp

[∑
r∈R

β(suJursr + svJvrsr)

]⟩
R

≈ZR

∫
R

1√
(2π)|R||χR|

exp
[
−1

2
sR

T χR
−1sR

]
exp

[∑
r∈R

β(suJursr + svJvrsr)

]
dsR

=ZR

∫
R

1√
(2π)|R||χR|

exp
[
−1

2
sR

T χR
−1sR

]
exp [βsuvJuv×RsR] dsR.

(3.3)

Now, since the moment generating function of a zero-mean multivariate normal distribution is

E
[
tT X

]
= exp(1

2
tT Σt),
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where X ∼ N (0, Σ). We can substitute this result in Equation (3.3) with tT = βsuvJuv to get

TrsR exp[βHR(sR)] exp[βV (suv, sR)]

= ZR

⟨
exp

[∑
r∈R

β(suJursr + svJvrsr)

]⟩
R

≃ ZR exp
[

1
2

β2suvJuv×RχRJT
uv×RsT

uv

]
.

(3.4)

By definition of the Boltzmann distribution. the correlation between su and sv is,

χuv = Trssusv exp[−H(s)]
Z

= Trssusv exp[−H0] exp[−HR] exp[−V ]
Z

= Trsu,sv susv exp[−H0]TrsR exp[−HR] exp[−V ]
Trsu,sv exp[−H0]TrsR exp[−HR] exp[−V ]

Using the approximation of Equation (3.4) in the numerator and denominator, we get

χuv = Trssusv exp[H0] exp[HR] exp[V ]
Z

=
Trsu,sv susv exp[H0]ZR exp

[
1
2

β2suvJuv×RχRJT
uv×RsT

uv

]
Trsu,sv exp[H0]ZR exp

[
1
2

β2suvJuv×RχRJT
uv×RsT

uv

]

=

Trsu,sv susv exp

[
βhusu + βhvsv + βsuJuvsv +

∑
r∼r′∈R

1
2

β2suJurχrr′Jr′vsv +
∑

r∼r′∈R

1
2

β2svJvrχrr′Jr′usu

]

Trsu,sv exp

[
βhusu + βhvsv + βsuJuvsv +

∑
r∼r′∈R

1
2

β2suJurχrr′Jr′vsv +
∑

r∼r′∈R

1
2

β2svJvrχrr′Jr′usu

] .

In the absence of external fields (hu = 0 anhd hv = 0), we get

χuv =

Trsu,sv susv exp

[
βsuJuvsv +

∑
r∼r′∈R

β2suJurχrr′Jr′vsv

]

Trsu,sv exp

[
βsuJuvsv +

∑
r∼r′∈R

β2suJurχrr′Jr′vsv

]

= tanh

[
βJuv +

∑
r∼r′∈R

β2Jurχrr′Jr′v

]
.

If we define tanh is the element-wise tanh operation, then in matrix form this can be written as

χ = tanh
(
βJ + β2JχJ

)
,
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where the only difference is the sum over r1 and r2 was not supposed to include the points u and v.

This is for the case where u ̸= v. If u = v, we know that χuu = ⟨susu⟩ − ⟨su⟩2 = 1. Finally,

χ = I + (1 − I) ⋄ tanh
(
βJ + β2JχJ

)
,

where 1 is a square matrix of all 1’s, and ⋄ is the element-wise product (Hadamard product).
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3.2.1.1.2 A mean field derivation

A mean field solution for the average magnetization is given by

mi = tanh

(∑
k

Jikmk + hi

)
.

When there is no external field, and we define the matrix J to be symmetric, this can also be written

as

mi = tanh

(∑
k

Jikmk

)

Now, we can find the average magnetization of spin at i when the spin sj = 1 at node j as

mi|sj=1 = tanh

∑
k ̸=i,j

Jikmk|sj=1 + Jij



Let us denote these dependent magnetizations mi|sj=1 by a marix mi|sj=1 = Qij . This leads to

Qij = tanh

∑
k ̸=i,j

JikQkj + Jij



which leads to the following recursive formula

Q = I + (1 − I) ⋄ tanh(JQ)

Now, in the absence of an external magnetic field, we expect symmetry, which gives us

mi|sj=1 = −mi|sj=−1

The correlation can thus be found as

χij = ⟨sisj⟩ = ⟨si|sj = 1⟩P(sj = 1) + ⟨si|sj = −1⟩(−1)P(sj = 1)

= QijP(sj = 1) + (−Qij)(−1)P(sj = −1)

= Qij [P(sj = 1) + P(sj = −1)]

= Qij
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But we know that the correlation function is symmetric (χij = χji); therefore, we must have

Qij = Qji. We can thus combine the requirement of symmetry and the previous recursive equation

to arrive at

χ = I + (1 − I) ⋄ tanh
(

1
2

J
(
χ + χT

))
where ⋄ denotes the element-wise (Hadamard) product and tanh denotes the element-wise tanh

function.
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3.2.1.1.3 Using the linear response theorem

The following formulation of the spin correlation has been derived and has proven useful to the

neural networks community (Tanaka, 1998; Kappen and Rodriguez, 1998). Consider the Helmholtz

free energy function

F (J, h) = − ln Z.

The average magnetization at each node is

mu = − ∂F

β∂hu
.

The variables mu and hu can be replaced by the Legendre transformation to the Gibbs free energy

G(J, m) = F (J, h) + β
∑

u

humu

According to the method of Plefka (1982), one can derive a series of mean field approximations by

parametrizing the Hamiltonian as

H(s, γ) = −γ
∑
u∼v

Juvsusv −
∑

u

husu

where for the true Hamiltonian γ = 1, and for the zeroth order (independent) approximation γ = 0.

The Gibbs free energy for this Hamiltonian is

G(J, m, γ) = F (J, h, γ) + β
∑

u

humu

= − ln Z(J, h, λ) + β
∑

u

humu

= − ln

(
Trs exp(

∑
uv

βγsuJuvsv +
∑

u

βhusu)

)
+ β

∑
u

humu.

The Taylor’s series approximation of G(J, m, γ) is

G(J, m, γ) = G(J, m, 0)+γ

[
∂

∂γ
G(J, m, γ)

]
γ=0

+γ2
[

∂2

2!∂γ2 G(J, m, γ)
]

γ=0
+γ3

[
∂3

3!∂γ3 G(J, m, γ)
]

γ=0
+. . .

(3.5)
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Since we have introduced mu = ⟨su⟩, we can remove hu by noting that at γ = 0,

mu = ⟨su⟩ = exp(βhu) − exp(−βhu)
exp(βhu) + exp(−βhu)

which reduces to

hu = 1
2β

ln
(

1 + mu

1 − mu

)
.

The successive terms of the Taylor’s series, starting with the zeroth order term, are as follows:

G(J, m, 0) = − ln(Trs exp(
∑

u

−βhusu)) + β
∑

u

humu

= −
∑

u

ln(exp(βhu) + exp(−βhu)) + β
∑

u

humu

= −
∑

u

[
ln

((
1 − mu

1 + mu

) 1
2

+
(

1 + mu

1 − mu

) 1
2
)

+ 1
2

mu ln
(

1 − mu

1 + mu

)]

=
∑

u

1
2

(1 + mu) ln
(

1 + mu

2

)
+ 1

2
(1 − mu) ln

(
1 − mu

2

)
.

The first derivative is readily evaluated,

[
∂

∂γ
G(J, m, γ)

]
γ=0

= −⟨β
∑
uv

suJuvsv⟩γ=0 = −β
∑
uv

muJuvmv.

Therefore, up to the first order, the Gibbs free energy is

G(J, m){1} =
[
G(J, m, γ){1}

]
γ=1

≃ 1
2

(1 + mu) ln
(

1 + mu

2

)
+ 1

2
(1 − mu) ln

(
1 − mu

2

)
− β

∑
uv

muJuvmv.

To solve for the average magnetization mu, we re-introduce the field variables hu = (∂/∂mu)G(J, m),

to find

hu = 1
2β

ln
(

1 + mu

1 − mu

)
+
∑

v

Juvmv,

which reduces to

m{1}
u = tanh

(
β
∑

v

Juvm{1}
v + βhu

)
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And this is identical to the naïve mean field equation.

For the second order terms, we find the recursive equation (which is the same as the Bethe mean

field approach)

m{2}
u = tanh

(∑
v

(
βJuvm{2}

v + β2J2
uvm{2}

u (1 − (m{2}
v )2

)
+ βhu

)
.

Plefka (1982) derived the terms up to the second order. Georges and Yedidia (1991) used a similar

series, and Nakanishi and Takayama (1997) independently used a computer algebra system to derive

terms up to the fourth order.

To calculate the correlations χuv, consider that χuv = (∂2 ln Z)/(β2∂hu ∂hv) = (∂mu)/(β∂hv).

Using the field variables h as the independent variable and the average spins m as the dependent

variable, we can calculate (∂mu)/(∂hv). For the na”ive mean field (the first order approximation,

which is the first non-zero term), we find that

χ{1}
uv = ∂mu

β∂hv
= 1 − m2

u

β
(
∑

w

βJuw
∂mw

∂hv
+ βδuv)

= (1 − m2
u)(
∑

w

Juw(βχ{1}
wv ) + δuv)

For mu = 0, the correlation function is

χ{1}
uv = δuv + β

∑
w

Juwχ{1}
wv .

In matrix notation,

χ{1} = I + βJχ{1},

or, solving for the correlation function,

χ{1} = (I − βJ)−1

Similarly, for the second order approximation of the free energy, we have

χ{2}
uv = ∂mu

β∂hv
= 1 − m2

u

β

(∑
w

(
βJuw(βχ{2}

wv ) + 2β2J2
uwm2

u(1 − mw)(βχ{2}
wv )

)
+ βδuw

)
.
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Higher order terms can be derived using the free energy approximations (as given in Nakanishi and

Takayama (1997))

G(J, m) =1
2

(1 + mu) ln
(

1 + mu

2

)
+ 1

2
(1 − mu) ln

(
1 − mu

2

)
−
∑
uv

βmuJuvmv −
∑
uv

β2J2
uv(1 − m2

u)(1 − m2
v)

− 4
∑
uv

β3J3
uvmumv(1 − m2

u)(1 − m2
v)

− 6
∑
uvw

β3JuvJvwJuw(1 − m2
u)(1 − m2

v)(1 − mw)2.

3.2.1.1.3.1 Valid regime for the linear response correlation

The linear response correlation function is χ = (I − βJ)−1. At very high temperatures, β is small;

I − βJ is close to the identity matrix and hence invertible and positive definite. As the temperature

decreases, β increases, until I − βJ is not invertible. This is the phase transition temperature βc.

Therefore,

βc = inf
β>0

[det(I − βJ) = 0]

= inf
β>0

[
β det( 1

β
I − J) = 0

]
= inf

β>0

[
det(J − 1

β
I) = 0

]
We know that det(J−λI) = 0 is the characteristic polynomial, the zeros of which are the eigenvalues

of J. Therefore, the largest such zero λ = 1/β (the largest eignevalue) gives the largest β that is

still in the invertible regime. Therefore, βc = 1
λ1

, the inverse of the largest eigenvalue of J.

For β just below the transition temperature βc, we will have at least one negative eigenvalue for

(I − βJ) and hence for χ = (I − βJ)−1. We know that the correlation matrix must be positive

semi-definite; therefore, the linear response approximation of the correlation matrix is only valid for

β below the transition point (i.e., at high temperatures).
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3.2.2 Graph diffusion

Following the definition in Qi et al. (2008), consider a graph with the adjacency matrix A. We

view the links as pipes with flow conductance proportional to the edge weights, and the nodes as

reservoirs capable of holding a certain fluid. We also imagine a constant loss of fraction γ from each

node and a source flux qu from outside the system.

The flow of a liquid ρ can now be written as

ρ̇u(t) =
∑

v

Juvρv(t) − (λ + Jvu) ρu(t) + quH(t)

=
∑

v

Juvρv(t) − (λ + Duu) ρu(t) + quH(t)

where H(t) =


0 if t ≤ 0

1 otherwise
is Heaviside step function.

The steady state solution to this is given by

ρt=∞ = (λI + D − J)−1 q

= Gq

where D is the diagonal in-degree matrix such that Duu =
∑

v Jvu. The graph diffusion kernel is

defined as

G = (λI + D − J)−1
.

If we denote J − D as L (the Laplacian matrix), we arrive at G = (λI − L)−1.

Substituting λ = 1
β , we obtain

G = β(I − βL)−1,

which is of same form as the spin-spin correlation, except that we are using the Laplacian matrix

rather than the adjacency matrix.

For a large matrix, the inverse can be summed using the series

G = 1
λ

(
I − λ−1L

)−1 = 1
λ

(
I + λ−1L + λ−2L2 + λ−2L3 + λ−4L4 + . . .

)
,

with a finite sum leading to a approximation.
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3.2.2.1 Exact correspondence for regular graphs

All vertices in a regular graph have the same degree. The graph diffusion kernel and the spin-spin

correlation can be shown to have exactly the same form for the case of regular graphs. For a degree

d regular graph, we have the diagonal degree matrix D = kI. This means that the graph diffusion

kernel can be written as

G = (λI + D − J)−1 = (λI + dI − J)−1 = 1
d + λ

(
I − 1

d + λ
J
)−1

= β (I − βJ)−1

where we have defined the inverse temperature β = 1/(d + λ).

In practice, for most networks we will have an irregular graph, and the edges are often normalized

by the degree to discount the effect of high-degree edges.

If we are interested in a symmetric graph diffusion kernel, we will use symmetric normalization,

employing both the in-degree and out-degree, to obtain

juv = Juv√
dh dv

,

where J is the original adjacency matrix and j is the normalized matrix to be used to calculate the

graph diffusion kernel.

Using this normalization, for a regular graph, the diffusion kernel can be written as

G = (λI + I − j)−1

= (λ + 1)−1
(

I − 1
1 + λ

j
)−1

= (λ + 1)−1 (I − β′j)−1

=
(

λI + I − D− 1
2 JD− 1

2

)−1

=
(

(λ + 1)I − 1
d

J
)−1

= (λ + 1)−1
(

I − 1
d(λ + 1)

J
)−1

= (λ + 1)−1 (I − β′′J)−1
.

Here we have defined the inverse temperatures β′ = 1/(λ + 1), and β′′ = 1/(d(λ + 1)).
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3.2.3 Summary of the functions considered

Table 3.1: Summary of the methods (i.e., graph kernels or distance

measures) discussed in this study.

Physical

analogy/rationale

Calculation

method and

name used in

this study Formula Notes

Graph diffusion

of heat/random

walkers over the

nodes

Can be

computed

exactly

G = (λI + D − J)−1 Valid for all

λ > 0. This

method has been

previously used

in the context of

link prediction,

candidate gene

prioritisation etc.

Spin-spin

correlation

Linear

approximation

χ = (I − βJ)−1 Valid for

β < βCurie. This

approximation is

widely used in

the statistical

physics

community.

Spin-spin

correlation

Saturating

approximation

(tanh1)

χ =

I + (1 − I) ⋄ tanh
(

1
2

J
(
χ + χT

)) Novel method

derived using a

mean field

approach. Should

be valid for a

greater range of

temperature than

the linear

approximation.
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Physical

analogy/rationale

Calculation

method and

name used in

this study Formula Notes

Spin-spin

correlation

Saturating

approximation

(tanh2)

χ = I+(1−I)⋄tanh
(
βJ + β2JχJ

)
Novel method

derived using a

relaxation or

variational

approach. Should

be valid for a

greater range of

temperature than

the linear

approximation.

Before evaluating the various functions that we have just derived on some examples of graphs and

real applications, we review in Table 3.1 all the measures with their mathematical formulae, their

physical analogies and their names that will be used henceforth. The graph diffusion kernel is a

commonly used method in complex network analysis for the class of problems we discuss here, while

the linear approximation of the Ising model is commonly used in theoretical studies in magnetism.

We believe that the other two approximations for the spin-spin correlation in Ising models are novel,

both with respect to the physics literature and also for problems in bioinformatics and network

analysis.
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3.2.4 Computational details

The graph diffusion and the linear spin-spin correlation functions were evaluated using matrix inver-

sion, possible for the smaller data sets considered here. For very large datasets, one could use the

recursive relations utilizing sums and repeated matrix multiplications to evaluate these functions, as

has been explained in the derivation of these methods, with suitable stopping conditions. The two

novel approximations with saturating correlations functions were implemented using the recursive

relations. For all experiments, we simply evaluated these functions for 10 recursive steps. Often

the longest shortest path in the giant components yields excellent convergence for the number of

recursive steps; for the networks considered here, paths of more than 10 hops certainly are capable of

spanning the network. This was confirmed by preliminary experiments suggesting that our results

do not change even for earlier stopping conditions using 7 and 8 steps. The code for the graph

diffusion and all the three Ising spin-spin correlation approximations was written in the R language.

For the exact computation and Gibbs sampling of the spin-spin correlation functions, we wrote

custom C++ code that interfaces with R using Rcpp (Eddelbuettel and Fran, 2011). The correlation

function was computed exactly by enumerating over all the possible states of the spin variables, and

this enumeration was fast and convenient enough for the graph of 20 vertices evaluated on a desktop

computer. For Gibbs sampling, we averaged the spin-spin correlation for 10 random restarts with

5000 samples each time, with a sample recorded after every 20 simulation steps. Each simulation

step is a complete cycle of proposed switches of each and every spin variable.
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3.3 Results

In this section, we first present results for approaches for calculating spin correlation functions and

graph diffusion kernels for sample graphs where the truth is known and the graphs are sufficiently

small to permit exact calculations by full summations over states. Secondly, we apply these methods

to the practical problem of predicting missing links in a protein-protein interaction network.

3.3.1 The single clique, or long-range, weak interactions model

Let us consider a very simple case of N vertices with complete connections, with an edge between

every distinct pair of vertices. In statistical physics, this is referred to as the long-range, weak

interactions model as opposed to a regular grid model. It is long-range because there are interactions

between all vertices, even if they are separated by large distances in a physical model. To bound

the energy in the limit of infinite size, the average interaction is scaled as Jij = 1/N , leading to

weak interactions. For simplicity, we will keep a uniform Aij = 1 for all non-diagonal entries in our

adjacency matrix, scaled as stated by system size to 1/N .
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3.3.1.1 The mean field Ising model

A clique of size N leads to N − 1 interactions for each vertex. Since the problem is invariant over

the vertices, mi = m∀i. For Jij = 1,

m = mi = tanh(β
∑

j

Jijmj) = tanh(β(N − 1)m)

This can also be considered as a discrete time dynamical system (map or recurrence relation), with

the right hand side giving the next value of m given the present value.

In the high temperature regime, for (N−1)β < 1, there is only one solution, m = 0. For temperatures

colder than the Curie point, where β > 1/(N − 1), there is a phase transition, and two additional

symmetric solutions appear. We can evaluate the stability of the three solutions using the second

derivative of the free energy. The m = 0 solution is unstable, while the positive and negative

magnetization solutions are stable.
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3.3.1.2 The spin correlation calculated using linear response

The first order spin-spin correlation χ{1} = (I−βJ)−1. For convenience, consider the recurrent form

χuv = δuv + β
∑

w

Juwχwv.

For the clique model, χuv = χ∀u ̸= v and χuu = 1. This reduces to

χ = β(N − 1)

While this does not show any phase transition, it is clear that the spin-spin correlation is greater

at high β (low temperature) and for larger cliques (high N), assuming the individual edge weights

(Jij) remain constant.
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3.3.2 Approximations to the correlation function evaluated for a small

graph

In this section, we construct a small graph to explore the behaviour of the linear response and our

tanh approximations for the correlation function. We explore the factors affecting the accuracy of the

various approximations. The small graph permits exact calculations of the correlation function by

a complete sum over states, with connectivity chosen to be representative of features of sub-regions

of real graphs. The adjacency matrix for this graph is given in Figure 3-1.

0

5

10

15

20

0 5 10 15 20
Column Index

R
ow

 In
de

x Edge
0

1

Figure 3-1: Adjacency matrix for a small artificially constructed graph used to evaluate the approx-
imations to the correlation function.

Figure 3-2 visually displays the spin-spin correlation matrices, calculated exactly by enumerating over

all states, by Gibbs sampling, and with the three approximations discussed in the Methods section.

The value of β increases from left to right, corresponding to lower temperatures and prominent

and larger clusters of nodes coalescing together. For the case of the Ising magnetic models, these

would be the growing microdomains of magnetization. The various approximations to the spin-spin

correlation matrix appear to behave similarly here. To examine numerical differences that might
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Figure 3-2: The behaviour of the different approximations to the correlation function along with the
exact calculation for the small graph shown in Figure 3-1.
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Figure 3-3: Accuracy of different estimates of the spin-spin correlation for the small graph shown in
Figure 3-1. Each panel had the exactly computed correlation (by summing over all states) on the
x-axis and the estimated value on the y-axis. Each column has a different temperature expressed
as inverse temperature β. Dots represents pairs of nodes for which the spin-spin correlation is
calculated. The black line is the x = y curve that is expected if the estimate of the correlation is
equal to that computed exactly. The blue line denotes the best Lowess fit for the exact vs. estimate.
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Figure 3-4: Comparison of node-pairs ranked from low to high spin-spin correlations using different
estimates for the correlation for the small graph shown in Figure 3-1. The x-axis denotes the
ranking by computing the correlation exactly while the y-axis denotes ranking using an estimate.
Each column is for a different temperature expressed as inverse temperature β. Dots represents
pairs of nodes for which the spin-spin correlation is calculated. The black line is the x = y curve
that is expected if the rank of the estimate of the correlation is equal to the rank from the exactly
computed correlation. The blue line denotes the best Loess fit for the exact vs. estimated.
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have been overlooked in the matrix images, Figure 3-3 plots the estimated values of the correlation

function for each pair of nodes versus the exactly computed correlation. It is clear that the deviation

between the exact and approximate correlations increases at lower temperatures (higher β). Also, it

is clear that the linear response correlation approximation can give values greater than 1 even before

its collapse due to the phase transition. At even lower temperatures, we observe more non-physical

values of correlation from the linear response correlation function. Our two saturating correlation

functions, while still suffering from increasing inaccuracy at lower temperatures, have greater validity

in bounding the magnitude of the correlation function to values less than 1. Our approximations

also show the generally correct trend of the exact correlation function.

For applications including prioritizing candidate genes to phenotypes or pathways and predicting

missing links, we are often more interested in the relative order of the similarity/distances between

pairs of nodes rather than the magnitude of the distance measure. Figure 3-4 compares the ranking

of pairs of nodes in the graph using the various spin-spin correlation estimates with rankings from

the exact correlation. For this example for the values of β considered, the general ranking of node

pairs is maintained by the approximate correlations, even if the correlation functions themselve differ

from the true values. The Gibbs sampling estimates for high temperatures (the panel on upper left

hand corner of the image) shows higher variance than our analytic approximation. This is natural

because while Gibbs sampling estimates are unbiased, they do have the natural thermal variance

present at that temperature and can be slow to converge.
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3.3.3 Resolution and behaviour on a string of cliques

In this section, we consider a slightly larger sample graph with block structure, with connections

enriched within blocks and much lower frequency between blocks. We then visualize the graph

diffusion kernel and the correlation approximations. The graph includes 5 cliques of various sizes

arranged linearly. Consecutive cliques share a vertex, yielding a string of cliques. In addition, some

noise is added by randomly removing some edges from within cliques and randomly adding edges

between vertices in different cliques. The graph is shown in Figure 3-5, and the corresponding

adjacency matrix is visualized in Figure 3-6.

Figure 3-5: Graph of a string of cliques that is used to illustrate the behaviour of the algorithms.
The colored regions denote the different cliques used to construct the graph. Subsequent colored
regions share a vertex, which is a member of two cliques. A small number of inter-clique edges
randomly are added and a small number of intra-clique edges are removed.

Since this a small graph, we can infer some conclusions about the behaviour of the various functions

on this graph for different temperatures by visualising the diffusion kernel or the spin-spin correlation.

Figure 3-7 shows the behaviour of the various methods as matrix images. The size of this graph

makes it prohibitive to evaluate the exact correlation function by a complete sum over each possible

state. However, as we have seen earlier, the Gibbs sampling estimate converges sufficiently quickly

to represent the real correlation matrix.
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Figure 3-6: Adjacency matrix of the graph shown in Figure 3-5. The graph consists of a number of
cliques of different sizes, with adjacent cliques sharing a vertex, with a small amount of noise added
by removing some edges within cliques and adding extraneous edges between cliques.
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Figure 3-7: Analytic and Gibbs simulation of the Ising model and the corresponding Graph diffusion
kernel. The linear and saturating tanh approximations along with the Gibbs simulation of the spin-
spin correlation of the Ising model, and the Graph diffusion kernel computed with λ = 1

β
− 1 for the

symmetric degree normalization (Juv = Auv√
du

√
dv

) toy graph shown in Figure 3-5. The calculations
are performed for various values of β as shown in the subfigure titles.
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Figure 3-8: Comparison of the ranks of spin-spin correlation between node pairs using different
estimates of the correlation for the string of clusters shown in Figures 3-5 and 3-6. The node pairs
are ranked from low correlation to high correlation. The x-axis denotes the ranking using Gibbs
simulation of the correlation, and the y-axis denotes ranking using a closed form estimate. Each
column has a different temperature, expressed as the inverse temperature β. Dots represents pairs
of nodes for which the spin-spin correlation is calculated. The black line is the x = y curve that is
expected if the rank of the estimate of the correlation is equal to the rank from the exactly computed
correlation. The blue line denotes the best Loess fit for the Gibbs simulation vs. the closed form
estimate.
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In the high temperature regime (low β), the cliques are clearly visible separately, and the direct links

between vertices are the most influential in determining the kernel. As the temperature decreases,

we observe that the correlation function or diffusion kernel for nodes in adjacent cliques becomes

higher as the algorithm groups larger numbers of nodes together. In terms of the Ising model, these

represent growing microdomains of superparamagnetism. At lower temperatures, the magnitude of

the correlation function also increases. Note that symmetric degree normalization gives symmetric

diffusion kernels and spin correlation functions and similar behaviour for small degree and large

degree nodes. Since this a small graph, the linear spin-spin correlation function and the graph diffu-

sion kernel are calculated using direct matrix inversion rather than repeated multiplications. That

is, however, a detail of implementation and not necessarily enlightening for the basic methods. This

makes it possible to calculate the function even when the expansion is invalid at low temperatures.

To make the comparison easier, we denote the different graph diffusion kernels with different values

of β just as we have for the spin-spin correlations using the formula β = 1/(1 + λ) as explained in

Section 3.2.2.1.

At the highest β, the corresponding value of λ is negative and the the graph diffusion kernel is invalid,

with the values of the kernel within cliques lower than those between cliques. Obviously, negative λs

violates the physical model for graph diffusion. Even though the solution is mathematically invalid,

we have presented it to understand the numerical behavior of the expression viewed independently

as a distance measure over vertices in a graph. We also note that neighboring cliques start merging

together at lower temperatures, with slightly different temperature for various methods.

As for the previous example, we plot the ranks of each pair of nodes calculated using the different

methods in Figure 3-8. As mentioned previously, relative ranks of node pairs may be more important

for prioritization problems (as opposed to physics problems where we are interested in bulk properties

and macrostates rather than individual spins or particles). We compare each method to the ranks

obtained using a Gibbs sampling of the spin-spin correlation. We generally observe that all methods

give similar rankings in their regions of validity, such as when the graph diffusion kernel has a

negative value of λ or the temperature is below the phase transition temperature for the Ising model.

The spread in the individual plots in Figure 3-8 is partly due to the thermal noise present in the

Gibbs estimate. As a visual aid, a Loess smoothing curve over the scatter points is drawn as a blue

line.

While these numerical experiments give us an overview of the behaviour of these methods, it is
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important to note that we are plotting the spin-spin correlations and the graph diffusion kernel over

links that are actually present in the network. For predicting missing links, we are only interested

in pairs with no direct link present in the graph over which the correlation is calculated. In the

following sections we compare these methods for predicting missing links to explore performance on

realistic predictive applications.
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3.3.4 Predicting missing links in the yeast protein interaction network

In this section, we evaluate how well our methods perform on a link prediction task. We select

Saccharomyces Cerevisiae PPI network because the awesome power of yeast genetics (Stark, 2001)

has made it an extraordinarily well-characterized eukaryotic cellular system. While it is a simpler

organism, evolutionary conservation between yeast and human has made it an important model

for mammalian disease and development. Yeast is also a very useful industrial microbe and the

subject of many synthetic biology efforts. We extracted the protein-protein interaction network

of Saccharomyces Cerevisiae (common yeast) from Biogrid (Stark et al., 2006). After recursively

trimming all the nodes of degree one, we obtained a graph of 5630 nodes and 83137 edges. We then

use the graph diffusion kernel and our approximation of the spin-spin correlation to predict missing

links. For each cross-validation, we hold back randomly selected 10% of the edges as the positive

test set, and an equal number of pairs without edges as the negative test set.
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Figure 3-9: Comparison of the different kernels for predicting missing links in the Yeast PPI. Each
curve is the mean of the area under of the curve for the ROC curves of 5 different cross-validation
tests. The results computed using the symmetric degree normalized and unnormalized adjacency
matrix are plotted in different panels.

We show the performance, as measured by the area under the curve of ROC curve, for all the
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methods together in Figure 3-9. We see that the Ising correlation methods outperform the graph

diffusion kernel on the link prediction task. Secondly, we observe that the best AUC is reached at

about the same temperature for all the three approximations of the spin-spin correlation function,

and this temperature is close to or right before the temperature of the phase transition. Thirdly,

our saturating approximations (denoted tanh 1 and tanh 2) do not break down as catastrophically

at the phase transition. We can argue that our approximations are thus more robust for these tasks

and not as sensitive to temperature as the linear response method. Fourthly, we see that the degree

normalized adjacency matrix gives a slightly higher AUC.
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Figure 3-10: The ROC curves for predicting missing links in the Yeast PPI network at the individual
best β for that specific kernel. The same β is used for all cross-validation sets. (Top) where the
kernels are evaluated by symmetric normalization of the adjacency matrix, and (Bottom) where the
kernel is evaluated on the un-normalized or raw adjacency matrix.

Figure 3-10 shows ROC curves at the respective optimal temperatures for each method. The three

of the Ising spin-spin correlation methods perform very similarly but better than the graph diffusion

kernel. This effect is more pronounced when we use the symmetrically degree normalized adjacency

matrix to compute correlation and diffusion kernels.
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3.3.5 Predicting missing links in the Plasmodium falciparum protein in-

teraction network

We confirm the applicability of our methods on a similar network here. Plasmodium falciparum is

the parasite that causes malaria, a major public health concern in the developing world. Since it

is a smaller (in terms of the number of genes in the graph) organism than yeast, the computations

are fast and it is a good way to validate the generality of our findings. We also show that small

microbial PPI networks may have enough data to warrant the application of these generic systems

level methods. Hypothesis generation using these network analysis approaches can aid in directing

experimental attention to genes that may aid in discovery.

The method followed here mirrors that used for the yeast dataset. We extracted the protein-protein

interaction network of Plasmodium falciparum from Biogrid. After recursively trimming all the nodes

of degree one, we obtained a graph of 686 nodes and 1930 edges. We then use the graph diffusion

kernel and the linear and saturating (tanh) versions of the spin-spin correlation to predict missing

links. For each cross-validation, we hold back randomly selected 10% of the edges as the positive

test set, and an equal number of pairs without edges as the negative test set. The performance of

the graph diffusion kernel and our approximations of the spin-spin correlation is evaluated in terms

of the AUC and plotted against different values of β in for 5 cross-validation tests.

Figures 3-11 and 3-12 also plot the smallest eigenvalue of I−βJ in addition to the AUC for different

values of β. We see that the sharp fall in the AUC happens right at the point of the phase transition

when the linear response breaks down, resulting in an impossible negative definite correlation matrix.

The peak in the AUC also happens for β right below this phase transition.

Figure 3-13 shows similar behavior to that shown in Figure 3-9 for the yeast dataset. Here, however,

the saturating approximations (tanh 1 and tanh 2) are not just more robust but actually outperform

the linear response correlation function even at the optimal temperature.

Figures 3-14 and 3-15 shows the ROC and precision-recall curves respectively at the optimal tem-

perature for each method. We can clearly see that the tanh 1 and tanh 2 approximations outperform

the linear response approximation, which in turn outperforms the graph diffusion kernel. This order

is most pronounced true on the lower left hand corner of the curve, which shows the most probable

predictions of the missing links and is the most useful for generating candidate genes for experiments.
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Figure 3-11: The performance of the linear estimate of the spin-spin correlation function on the nor-
malized Plasmodium falciparum PPI network as measured by the area under the receiver operating
characteristics curve. A fraction of the held-out edges are used as the positive test set, while an
equal number of vertex pairs without an edge form the negative test set. The individual lines denote
the different cross-validation sets while the black line represents the mean of all the cross-validation
sets. The minimum eigenvalue of the matrix that is inverted (I − βJ) and its sign is also plotted
to show the transition temperature where the linear spin-spin correlation estimate becomes invalid.
This is the point where the prediction performance (AUC) drops as well.
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Figure 3-12: The performance of the linear estimate of the spin-spin correlation function on the
unnormalized Plasmodium falciparum PPI network as measured by the area under the receiver
operating characteristics curve. A fraction of the held-out edges are used as the positive test set,
while an equal number of vertex pairs without an edge form the negative test set. The individual
lines denote the different cross-validation sets while the black line represents the mean of all the
cross-validation sets. The minimum eigenvalue of the matrix that is inverted (I − βJ) and its sign
is also plotted to show the transition temperature where the linear spin-spin correlation estimate
becomes invalid. This is the point where the prediction performance (AUC) drops as well.
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Figure 3-13: Comparison of the performance of all the different kernels for predicting missing links
in the Plasmodium falciparum network. Each curve is the mean of 5 cross-validation tests. The
performance is compared in the two panels for the kernels computed from the normalized and un-
normalized adjacency matrices.
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Figure 3-14: The ROC curves for predicting missing links in the Plasmodium falciparum PPI network
at the individual best β for that specific kernel. The same β is used for all cross-validation sets. (Top)
where the kernels are evaluated by symmetric normalization of the adjacency matrix, and (Bottom)
where the kernel is evaluated on the un-normalized or raw adjacency matrix. The much smaller size
of the Plasmodium falciparum PPI network leads to only about 200 edges in the test set, giving a
noisier ROC curve compared to the yeast PPI network.
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Figure 3-15: The precision-recall curves for predicting missing links in the Plasmodium falciparum
PPI network at the individual best β for that specific kernel. The same β is used for all cross-
validation sets. (Top) where the kernels are evaluated by symmetric normalization of the adjacency
matrix, and (Bottom) where the kernel is evaluated on the un-normalized or raw adjacency matrix.
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3.4 Discussion

We have shown how the spin-spin correlations from the Ising model and graph diffusion kernels

from random walk models lead to identical expressions for regular graphs, and similar expressions

for general networks. Both of these models can provide effective distance measure over nodes in a

graph that can be used for link prediction. There are a number of other methods commonly used

in the analysis of complex networks that are also related to these models. Specifically, the notion of

random walks over a graph is employed in Markov clustering, and for a distance measure to a set of

nodes for gene prioritization (Köhler et al., 2008). Also, the Ising model and its variants have been

used for clustering and modeling propagation across networks among other problems. We discuss

how the results from these disparate methods also have the same form and can be related to one

another in the same way that spin-spin correlation and the graph diffusion are related.

3.4.1 Markov clustering

The Markov clustering algorithm (Van Dongen, 2008) is another graph clustering approach that is

inspired by the idea of random walks on graphs. It has been applied to several areas such as protein

interaction networks (Krogan et al., 2006; Pu et al., 2007) and detection of orthologous genes (Chen

et al., 2006). The algorithm proceeds as follows. Suppose V is the symmetric adjacency matrix of the

graph to be clustered. First, the adjacency matrix is added to the identity matrix and then column

normalised to give a Markov transition matrix that we will call J in keeping with the convention of

this paper.

Jij = Vij + δij

1 +
∑

k Vik

A matrix inflation operator Γr is defined which raises each element to the power r and then column-

normalizes the matrox,

(ΓrM)ij =
Mr

ij∑
k Mr

ik

The Markov clustering proceeds by iterative rounds of expansion and inflation. Let us define a

sequence of matrices M1, M2, M3 that may be initialized by M0 = J. Then, at each subsequent
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step we compute the next matrix as

Mt+1 = ΓrMt
e,

where the matrix raised to the (integer) power e is computed by successive matrix multiplications.

Eventually, Mt converges to the idempotent steady state matrix M∞. The conventional view is

that the Markov matrix describes the probability of a random walker moving from one vertex to the

other. Powers of a matrix (expansion) is the walker taking multiple steps, and the inflation operator

is a trick to prevent the successive steps leading to a uniform diffusion across the whole graph by

rewarding the larger elements in column and shrinking the smaller elements.

3.4.2 The mean field Potts model

We have mentioned that superparamagnetic clustering proceeds by finding the pair-wise spin-spin

correlation for a Potts model using Monte Carlo simulation. In this section we simply write down

the equivalent mean field equations for the average magnetization of a Potts model. Assume the

spins si take values in the set {1, 2, 3, . . . q}. Now, the average magnetization mi at the vertex i is

a q × 1 vector where
∑

k∈{1,2,3,...q} mik = 1. The average magnetizations for all the N vertices of a

graph can be described by a N × q matrix m where
∑

r mik = 1∀k.

The self-consistent mean field equations can thus be derived in a manner similar to the Ising case,

mik =
exp(β

∑
j Jijmjk)∑

t∈{1,2,3,...q} exp(β
∑

j Jijmjt)

3.4.2.1 A particular approximation to the mean field Potts model

Consider a special case of the Potts model where possible spin states for a single vertex are equal to

the total number of vertices in the graph, q = N where N is the number of vertices. Let us try to

solve the successive approximations to the average spins using the mean field method. Due to the

symmetric nature of the problem, we start with the average magnetization matrix m(0) = I. Let us

calculate a matrix w where

w
(0)
ik =

∑
j

Jijm
(0)
jk = Jijδjk = Jik.

Note that effectively, in terms of the random walk or Markov clustering, this is similar to the

expansion step.

80



Now, the subsequent approximation to the average magnetization will be

m
(1)
ik =

exp(βw
(0)
ik )∑

t exp(βw
(0)
it )

,

which is similar to the inflation step.

Note that

exp(x) = 1 + 1
1!

x + 1
2!

x2 + 1
3!

x3 + . . . .

Consider the case where x > 1. The terms ti in this series keep growing for all i < x and then start

declining i > x with a plateau around the point i close to x. For a low temperature limit, β will be

high and therefore β
∑

j mjrJij = βwir will be greater than 1. Let us approximate the exponential

exp(βw
(0)
it ) by some multiple of the largest term in the series to give A(βw

(0)
it )r for some exponent

r.

Therefore,
mik = exp(βwik)∑

t exp(βwit)

≃
A(βw

(0)
ik )r∑

t A(βw
(0)
it )r

or,

m(n+1) ≃ Γrw(n)

Even if our approximation is far from exact, the effect of the exponentiation and normalization by

the site-wise partition function is similar to the effect of the inflation operator in Markov clustering.

We therefore hypothesize that the MCL algorithm in effect calculates a matrix close to the average

magnetization of a Potts model near a low-temperature phase transition.

The matrix multiplication of the solved matrix M with itself rather than with the inital Markov

matrix J accelerates the stable magnetization within microdomains by inreasing the interaction

strength. A physical analogue of this effect is cooperativity, in which greater spin correlation leads

to greater ferromagnetic coupling between the vertices, possibly by motion towards each other in

physical space to increase the interaction strength Jij . Indeed, ferrofluid systems have been physically

demonstrated (Khalil et al., 2012) and mathematically modeled (Gruber and Griffiths, 1986; Palm

and Korenivski, 2009).
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3.4.3 Superparamagnetic clustering

Blatt et al. (1996) introduced the idea of paramagnetic clustering. They first induce a graph over

a collection of points in Euclidean space, with edge weights inversely proportional to the distance

between points. Considering a Pott’s model, the energy of the system is defined as

H(s) = −
∑
uv

Juvδsusv

where each su can take a total of q discrete values ({1, 2, . . . q}).

They use Monte Carlo simulations of the state space (spins at each node) and evaluate the spin-

spin correlation at different temperatures. The temperature at which the super-paramagnetic phase

transition occurs (as inferred from the jump in magnetic susceptibility) is selected. The spin-spin

correlations at neighboring points are calculated and a thresholding of these correlations is used to

separate the clusters.

In this study, we calculated the spin-spin correlations using analytical approximations rather than

Monte Carlo simulations. This makes our work suitable for large scale networks for which Monte

Carlo simulations might be slow to converge and computationally much more expensive. While the

original superparamegnetic clustering algorithm used a Potts model, we argue that in fact the Ising

model is sufficient for clustering into more than two communities. This is because the spin-spin

correlations are decoupled across different magnetic domains, even if there are only two choices for

the direction of the spin. Therefore, our spin-spin correlation function could be used in a similar

fashion to the super-paramagnetic clustering algorithm for clustering or community detection.
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3.5 Conclusions

The spin-spin correlation on an Ising model on graphs has a similar form to the graph diffusion

kernels commonly used in complex network analysis problems. The spin-spin correlation estimate

commonly used in statistical physics models is derived from the linear response of a spin due to an

applied external field at a different site. This is valid at temperatures above the Curie point, below

which a net non-zero magnetization develops without external magnetic fields. This important

property is used to predict phase transitions observed in real materials. For the link prediction

problems we consider, we show that the phase transition inverse temperature (β) is the inverse of

the largest eigenvalue of the adjacency matrix of the graph. We also present two novel analytical

approximations to the correlation that saturate to the physically valid limit of 1 at temperatures

near and below the phase transition.

Applying our spin-spin correlation approximations to a link prediction problem in a protein-protein

interaction network, we show that the spin-spin correlation outperforms graph diffusion kernels.

Also, the optimal temperature where the correlation is the best at predicting missing links is near

the phase transition temperature. We interpret this to mean that at a certain temperature, the

spins are strongly correlated within meaningful clusters or microdomains. The novel spin-spin cor-

relation expressions we derived in this work are robust with respect to the temperature at which

the graph structure is correctly “understood” in terms of the spin-spin correlation matrix. For one

of the datasets (the Plasmodium PPI network), we also see a marked improvement in the optimal

performance in addition to the robustness in temperature. We believe that for certain problems,

the optimal temperature could be different in different regions of the graph. For the linear response

function, the correlation could catastrophically break down in one region when we optimize the

temperature to understand the community structure in another region. However, since the new ex-

pressions of the correlation degrade more gracefully, this could help in a better overall performance

at the globally optimal temperature.

We have also shown theoretical links between graph diffusion, the Potts model, super-paramagnetic

clustering, and Markov clustering. Although link prediction and clustering address two different

problems, it is clear that for many of these methods that assume higher link probability within

communities compared to between communities, similar mathematical expressions underlie node

similarity and co-membership. Studies have explored link prediction as a means to improve clus-

tering (Burgess et al., 2016), and conversely have used community information to improve link

83



prediction (Soundarajan and Hopcroft, 2012). In fact, methods described at the start of this chapter

using biological information to assist network analysis can be interpreted in this fashion.

This work thus provides a unified view for widely used methods for network analysis derived from

statistical physics and stochastic processes. Our novel approximations motivated by mean field theo-

ries improve the performance over more standard linear response approximations, with virtually no

increase in computational cost. Network analysis problems including finding additional members of

communities, priotizing candidate genes, and clustering graphs are becoming increasingly important

across many fields. Our methods provide new insight and may show better performance across many

related problems and fields.
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Chapter 4

Abscisic acid response in Brassica

napus guard cells

4.1 Abstract

Drought is a major threat to food crops and is poised to become increasingly so with climate

change. Abscisic acid (ABA) is the main hormone signaling drought or water deficit stress in

plants. The present study aims to investigate the response to ABA in the guard cells of Brassica

napus, an important oil crop. Stomatal closure is mediated by ABA-induced guard cell changes in

turgidity, which limits the loss of moisture from leaves. We sequence mRNA derived from guard cell

protoplasts treated with ABA and quantify the changes in gene expression. We find far-reaching

changes in gene expression, affecting a host of physiological processes including stomatal movement,

changes in metabolism, seed germination, and light response. We also find some evidence supporting

fast and slow responses to ABA. The transcription factors and regulatory networks mediating these

responses are in agreement with what is known from Arabidopsis thaliana. We integrate network

data to suggest additional genes and interactions that are important in the response to ABA in

guard cells. We also find evidence of the continuing evolution of the ABA response in Brassica since

its divergence from the common ancestor it shares with Arabidopsis.
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4.2 Introduction

4.2.1 Problem description

This study aims to elucidate drought response pathways in Brassica napus guard cells. We use

mRNA sequencing, Arabidopsis-Brassica homolgy, interaction network data, and the knowledge

of cis-acting regulatory components to understand the response to ABA in guard cells. Drought

results in water deficit in the plant, and drought often co-occurs with higher temperatures, further

aggravating the deficit due to increased evaporation rates. It is well established that ABA is the

hormone that signals drought stress. Guard cells in leaves control the stomatal openings that are

the major means of exchange of water vapor, carbon dioxide, and oxygen with the surrounding air.

By constricting the stomatal opening, the guard cell modulates the amount of water loss from the

leaves, while balancing the carbon dioxide exchange and subsequent photosynthesis.

4.2.2 Motivation

Understanding the genetic and molecular basis of how crops respond to droughts could enable

further development and genetic engineering of drought resistant crops, which will be essential for

the social and economic well-being of most of the world. Globally, the total water consumption

due to crop production was estimated to be 6490 × 109 m3/year in 2007, more than 70% of the

world’s total water consumption (Hoekstra and Chapagain, 2006). High income countries with

larger amounts of meat consumption require a larger portion of this water for animal agricultural

use. The per-capita US water consumption of 2480 m3/person/year is twice the global average of

1240 m3/person/year (Hoekstra and Chapagain, 2006).

Climate change projections predict increasing frequencies of extreme climate events, including

droughts (Dai, 2012; Trenberth et al., 2013). Climate change threatens water supplies for agri-

culture, with effects on food security (Wheeler and von Braun, 2013). Food insecurity is a major

political risk factors (Schwartz and Randall, 2003; Barnett and Adger, 2007) and it is likely that

droughts may have precipitated recent conflicts (Kelley et al., 2015; Gleick and Gleick, 2014) and

wars (Couttenier and Soubeyran, 2014; Fjelde, 2015). Some studies predict that the US southwest

may enter a long period of increased aridity (Seager et al., 2007; Cook et al., 2004). To sustain

agriculture in the southwest, simply increasing water storage or savings from domestic use is not

likely to be sufficient, and agricultural water use will have to be reduced (MacDonald, 2010).
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Drought and heat stress adversely affect crop productivity (Ciais et al., 2005) and plant growth.

Climate change forecasts predict that 20-60 Mha of irrigated cropland will be forced to rely on

rain-fed agriculture (Elliott et al., 2014), and crops will need to withstand the vagaries of nature,

including drought and rising temperature.

Brassica napus is an important food crop as the source of an edible oil popularly known as Canola or

rapeseed oil. Brassica napus was developed (Jonnson, 2009; Qiu et al., 2006; Kondra and Stefansson,

1965) to lower the total content of anti-nutrients (components that interfere with absorption of

minerals), such as erucic and eicosenoic acids and glucosinolates, and has found acceptance as a

major food source.

Brassica napus belongs to the Brassica genus, which includes many other important food crops

such as mustards, turnip, broccoli, and cabbages. The larger Brassicaceae family also includes

the Arabidopsis genus and the model plant Arabidopsis thaliana. Insights drawn from Brassica

napus can thus be used to understand parallel mechanisms in Arabidopsis thaliana, and candidate

genes identified through Brassica may be often be tested using Arabidopsis orthologs. Therefore,

understanding the mechanism of drought response in Brassica napus is of practical and immediate

importance for agriculture and the economy, and it can also be used to help decipher the biology of

drought resilience in other plants of agricultural or scientific interest.

ABA is the main phytohormone signaling drought stress in plants. One of its most important

activities is to control stomatal closing, thereby reducing water loss. Unfortunately, closing the

stomata also impedes the transfer of CO2 needed for photosynthesis. However, Yang et al. (2016)

showed that over-expressing the ABA receptors in Arabidopsis thaliana showed increased water

use efficiency. This suggests that there are ways to modulate stomatal opening to reduce water

loss while retaining high rates of photosynthesis. A deeper understanding of the mechanism and

signaling controling stomatal closure in guard cells could lead to engineering crops that do not just

survive periods of drought but maintain their accumulation of biomass. In addition, more plant

growth in water scarcity can also help to capture atmospheric carbon.
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4.2.3 Previous work and known biology

4.2.3.1 Mechanisms of drought response

Conditions of drought or water deficit are sensed in both the root and the leaves. The water deficit

signal sensed in the root is communicated to the leaves and elicits the adaptive response (Schulze

and Hall, 1982). Experiments in apple (Gowing and Davies, 1990) and maize (Blackman and Davies,

1985) demonstrate that there are chemical signals from the roots to the leaves that result in stomatal

closure and re-opening. Other experiments in Arabidopsis (Christmann et al., 2007; Assmann et al.,

2000), birch (Saliendra et al., 1995), fir (Fuchs and Livingston, 1996), and Hymenoclea salsola (Com-

stock and Mencuccini, 1998), however, have also uncovered evidence of a hydraulic mechanism from

the root to the shoot through the xylem that transmits the drought signal. In a study of wilting of

the common bean Phaseolus vulgaris L. (Qin and Zeevaart, 1999), it was shown that ABA synthesis

was controlled by the gene PvNCED1 and that the ABA synthesis was more pronounced in the

leaves than the roots. Bauer et al. (2013) has shown that the guard cell has the complete functional

machinery for ABA synthesis, and that ABA synthesis in the guard cell can amplify the received

ABA signal and is also responsive to decreases in relative humidity. This suggests that the drought

sensing and signaling may also originate in the leaves.

Plants employ a number of strategies to survive and grow during periods of reduced water availability.

Attempting to reduce evaporative water loss through stomatal closure is generally considered a

drought avoidance mechanism (Fang and Xiong, 2015). Leaf wilting (Poorter and Markesteijn,

2008) and rolling (Begg, 1980) under high solar radiation to decrease the evaporative surface area are

similar mechanisms. Other drought avoidance traits could be decreasing the hydraulic conductance

of the root-to-stem loss of water into the ground (North and Nobel, 1992; Lo Gullo et al., 1998).

Drought escape mechanisms aim to hasten development to complete the life cycle of the plant before

maximum drought severity. Early flowering is one of the phenotypes associated with this strategy.

There is evidence that ABA stimulates earlier onset of flowering in response to longer days (Riboni

et al., 2013).

4.2.3.2 The role of ABA

ABA has long been recognized as a chemical signal mediating the drought response in plants (Jones

and Mansfield, 1970). In addition to its role in drought response, ABA is also involved in mediating
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the response to heat stress (Heikkila et al., 1984; Larkindale and Knight, 2002). The stress response

in leaves has been shown to have ABA-dependent and ABA-independent pathways (Shinozaki and

Yamaguchi-Shinozaki, 1996). In particular, a number of genes have a cis-acting ABA response

element (ABRE) (Choi et al., 2000) that mediates the ABA-dependent stress response. The corre-

sponding dehydration response element (DRE) mediates the ABA-independent stress response. The

drought response element also mediates the cold stress response. Some genes are activated by both

the ABA-dependent and ABA-independent pathways, and there is considerable cross-talk between

them (Narusaka et al., 2003; Nakashima et al., 2014).

Water uptake by the roots may also increase in response to ABA levels in the root (Hose et al., 2000).

Water deficit sensed in the leaves results in reduced stomatal water loss (Comstock and Mencuccini,

1998) though reduced stomatal aperture. This reduces evaporative water loss and extends plant

survival, although it may also reduce photosynthetic activity impeding the uptake of CO2 (Cornic,

2000; Panek and Goldstein, 2001; Medrano et al., 2002). It is tempting to suppose that rising

atmospheric concentrations of CO2 might offset the effects of this lower stomatal conductance in

response to drought, but unfortunately it is becoming clear that this is not the case (Leakey et al.,

2006; Pataki et al., 1998).

4.2.3.3 Phylogeny of Brassica napus

Brassica napus was formed from the polyploid hybrid speciation of Brassica rapa and Brassica

oleracea (Allender and King, 2010; Song and Osborn, 1992). The amount of synonymous nucleic acid

substitution rates (Chalhoub et al., 2014) and low degree of chromosomal rearrangements (Parkin

et al., 1995) point to its relatively recent speciation event about ten thousand years ago. The 19

Brassica napus chromosomes are derived from the 10 chromosomes (subgenome A) of Brassica rapa

and the 9 chromosomes (subgenome C) of Brassica oleracea. The Brassica species, along with the

much more well studied plant Arabidopsis thaliana, are members of the Brassicaceae family. Studies

point to an estimated age of 10-20 million years for the Arabidopsis/Brassica split and to a number

of genome duplication events giving rise to the Brassica species from its common ancestor with

Arabidopsis (Yang et al., 1999; Ermolaeva et al., 2003; Blanc et al., 2003).

Numerous studies of drought stress (Rizhsky et al., 2004; Seki et al., 2002) and ABA response (Leon-

hardt et al., 2004) in Arabidopsis thaliana and its genetic similarity with Brassica napus provide a

framework to compare and interpret our results in Brassica napus. We will be able to investigate
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whether the genetic components are conserved across lineages. Since the Brassica napus genome has

many times more genes than Arabidopsis thaliana, it is likely to have more complex or redundant

pathways, and we can investigate whether the gene copies resulting from polyploidy have had time

to evolve different functions. In addition, we are able to use the knowledge of the regulatory inter-

actions in Arabidopsis thaliana to suggest some causal mechanisms of the ABA response in Brassica

napus.

4.2.3.4 Other ABA response studies

Previous studies have profiled the changes in gene expression in response to ABA. Hoth et al. (2002)

profiled Arabidopsis thaliana mRNA levels in whole seedlings, comparing wild type with a mutant

with ABA-insensitive phenotype, using massively parallel signature sequencing (MPSS). Since the

mRNA in that study was extracted from whole seedlings, the genes identified as differentially ex-

pressed could have been involved in any of several ABA response processes, including germination,

flowering, and stomatal movement, rather than those specific to guard cells or stomatal movement.

Guard cell specific ABA response genes were identified by Leonhardt et al. (2004), who separately

quantified expression levels from isolated Arabidopsis thaliana guard cells and mesophyll cells after

ABA treatment of the whole plant. While this experiment was able to find the guard cell specific

genes that were regulated, they could have been regulated either by ABA sensed directly in the guard

cell or by an indirect mechanism wherein ABA sensed in a different cell regulates gene expression

downstream in the guard cell.

Other gene expression studies have also investigated the role of ABA in disease susceptibility and

interactions with other signaling molecules (Anderson et al., 2004) in the whole plant, or elucidated

the role of ABA-response element transcription factors in the mesophyll cells (Yoshida et al., 2015,

2010). Gene expression profiles in other organisms have also been studied in other organisms such

as rice in response to ABA treatment of seedlings (Rabbani et al., 2003).

4.2.4 Approach used in this study

The present study looks at the genome-wide transcription response of ABA in the guard cells of

Brassica napus. We focus on the plastic drought avoidance traits in the leaf, specifically the control

of stomatal conductance.
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We extracted mRNA from guard cell protoplasts of Brassica napus after 15 minutes and 60 minutes of

ABA treatment. mRNA was then fragmented and sequenced with the Illumina platform, generating

single end short reads of approximately 100 basepairs. Short reads were then aligned to the Brassica

napus genome and differential gene expression is quantified.

As mentioned above, earlier studies primarly involved application of ABA to either whole plants

(or seedlings) or leaves. By applying ABA to isolated guard cell protoplasts, we study in isolation

the genes regulated directly by ABA in the guard cell specifically, excluding intermediary signaling

from mesophyll cells or the cell wall barriers. By using the protoplasts, we ensure that ABA is

able to robustly and promptly initiate the signaling pathways without any hindrance. We extract

mRNA at only 15 minutes and 60 minutes of application. We aim to uncover ABA dynamics at

this time scale, such as differentiating between genes with early and delayed responses to ABA, or

genes that may return to baseline expression after an early response due to negative feedback. In

addition, earlier studies on ABA response in other species were performed using microarrays rather

than direct sequencing; therefore, they were limited to the genes pre-selected for the microarray. For

example, the study by Leonhardt et al. (2004) used a microarray with about 8100 genes, which is a

third of the estimate of the total number of protein coding genes in Arabidopsis thaliana. In contrast,

by employing RNA sequencing and aligning to the genome, we are able to potentially capture the

whole transcriptome and all the annotated genes rather than a subset. The resolution of these genes,

however, is limited by the number of reads captured, sequence similarity of paralogs, and sequencing

noise.

The Brassica napus genome is essentially a number of copies of the Arabidopsis thaliana genome

with various degrees of divergence and fragmentation. This is due to the evolutionary history of

genome duplication, hybridization, and gene loss in Brassica napus since its split from the common

ancestor with Arabidopsis thaliana. Since genome duplications are not thought to have occured

in the Arabidopsis lineage, we use Arabidopsis thaliana genes as a proxy for the ancestral origin

for families of Brassica napus paralogs. We use these sets of paralog families to integrate mRNA

expression with DNA regulatory elements to explore the evolution of ABA response in Brassica

napus. We also compare the regulation of gene expression in Brassica napus with the known biology

of Arabidopsis thaliana and draw conclusions regarding the evolution of the ABA response.

The integration of pathway models and interaction data with gene expression data enables us to find

up-regulated pathways. The promoters of the corresponding genes contain DNA regulatory elements
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that suggest the most likely transcription factors mediating the ABA response and the genes that

are activated downstream of ABA signaling. These results could be used to select gene candidates

for further experiments.
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4.3 Results

4.3.1 Temporal dynamics of the ABA response

Guard cell protoplasts were extracted from 5-7 day old leaves from Brassica napus plants grown

under 60% relative humidity. Sets of extracted guard cell protoplasts were treated with ABA for 15

minutes, 60 minutes, and an ABA-free solution each. The entire process of the three treatments was

repeated three times for a total of nine samples. mRNA was extracted from the treated protoplasts

of each sample, and sequenced on the Illumina platform to give 100 bp reads. These reads were

aligned against the Brassica napus genome of the Darmor-bzh line (Chalhoub et al., 2014) using the

Tophat-Bowtie pipeline (Kim et al., 2013). Differential expression for 15 minutes of ABA and 60

minutes of ABA was estimated using DESeq2(Love et al., 2014).

In this section, we explore whether there is a time-varying ABA response of interest.

4.3.1.1 Genes are similarly regulated under both the early (15 minutes) and late (60

minutes) response, with a larger effect at 60 minutes

By measuring the gene expression at two different times, we identify the temporal response to ABA.

Possible responses are short lived (around 15 minutes), delayed (around 60 minutes), growing with

time, or stable from 15 to 60 minutes. We performed exploratory analysis comparing response at 15

and 60 minutes of ABA vs. baseline to categorize genes by their temporal response.

The relationship between mRNA expression at 15 minutes and 60 minutes for individual genes is

shown in Figure 4-1, restricted to genes that are significant at either time vs. baseline (< 5% FDR).

Expression levels at the two time scales is correlated. The log2 fold changes are correlated with an

R2 of 0.53 and a highly significant p-value < 2.22e − 16.

Most genes show the same direction of regulation at the two time points, with a larger change at 60

minutes. The slope of the best fit line is 2.39, corresponding to a 4-fold increase from 15 minutes to

60 minutes. This would be approximately the expected increase assuming a constant rate of mRNA

production starting instantaneously at ABA application with a zero initial mRNA concentration and

no degradation. Thus, the dominant pattern for differential expression is consistent with immediate

up-regulation in response to ABA, with a constant production rate and no degradation in the first

hour of response.

93



−2

0

2

4

6

−1 0 1 2 3
log2 fold change at 15 mins

lo
g2

 fo
ld

 c
ha

ng
e 

at
 6

0 
m

in
s Count

(0,100]

(100,200]

(200,300]

(300,400]

(400,500]

(500,600]

(600,700]

(700,800]

Figure 4-1: Scatter plot of the correlated gene expression values at 15 and 60 minutes of ABA
treatment. We plot the log2 fold changes at 15 minutes vs. 60 minutes of ABA treatment for all
genes that are significantly regulated (< 5% FDR) at either time. Each cell in the plot shows the
density of genes with a particular combination of log2 fold changes at each time point. The straight
line is the linear best fit. Genes that are not significantly differentially expressed at either time are
excluded; the best fit estimate reflects stable regulation rather than background variation.
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Note that a similar pattern is observed for genes whose expression levels decrease, with the decrease

greater at 60 minutes than 15 minutes, but there are fewer genes in this category than in the

consistently increasing category. The magnitude of the increased expression could be significantly

larger because a larger protein machinery is required to afford the cell proetection from the resulting

stress. On the other hand, the housekeeping and photosynthetic processes only slow down rather than

shutting down which might explain the comparatively smaller decrese in expression. Choosing only

the subset of genes with decreasing expression, the slope of the best fit line is between 1.1251077 and

1.6376437 (with and without the intercept), suggesting that the decay rate in 60 minutes is slightly

lower than the first 15 minutes.

We next take the larger fold change at 60 minutes of treatment than 15 minutes of treatment as a null

hypothesis and investigate genes whose differential regulation falls outside this pattern, suggesting

additional mechanisms of gene regulation. We tabulate the number of genes up-regulated, down-

regulated, or unchanged at each timepoint, using a 5% FDR threshold for differential expression

vs. baseline, in Table 4.1.

Table 4.1: Contingency table showing the number of genes with

significant positive and negative differential expression (< 5% FDR)

for 15 minutes and 60 minutes of ABA treatment.

Down regulated

at 60 min.

Insignificantly

regulated at 60 min.

Up regulated at

60 min.

Down regulated at 15

min.

64 7 0

Insignificantly

regulated at 15 min.

4282 89104 7177

Up regulated at 15

min.

0 4 402

Almost all genes identified as differentially expressed at 15 minutes are also differentially expressed

at 60 minutes with concordant direction. The log-ratios seem are greater 60 minutes, giving the test

at 60 minutes higher statistical power and identifying more genes as differentially expressed. It is

therefore difficult to distinguish between genes with a delayed response and those with an immediate

response but that simply lack significance at 15 minutes.
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The other, smaller group of genes that show statistically significant regulation at 15 minutes but

whose differential expression at 60 minutes is either in the opposite direction or statistical significant

represent an interesting temporal response that is not explained by the general pattern of sustained

activation. We study these genes further in the Section 4.3.1.2.

We also observe that a larger number of genes are up-regulated than down-regulated. This may

have a physiologically interpretion that the ABA response and stomatal closing require additional

machinery that the cell needs to generate while maintaining the baseline activities from its quiescient

state prior to the onset of drought.
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4.3.1.2 Temporal dynamics suggest roles for genes in the early response to ABA

For most genes we do not detect a statistically significant differential expression at 15 minutes, and

many genes that are significantly differentially expressed at 15 minutes show the same direction of

regulation (up or down) at 15 minutes and 60 minutes. There are, however a few genes showing

significant differential expression at 15 minutes, with either opposite differential expression or no

significant effect at 60 minutes. The levels of these genes for the 3 time points, corrected for batch

effects, are plotted in Figure 4-2.

Table 4.2: Genes with significant differential expression at 15 min-

utes with no regulation or regulation in the opposite direction at

60 minutes of ABA treatment.

Temporal

Pattern

B. napus

gene

A. thaliana

gene

Common

name

FDR at

15 min.

FDR at

60 min.

BnaA05g12320D Only

down-regulated

at 15 mins

BnaA05g12320DAT2G30040 MAPKKK14 0.00986 0.195

BnaA08g02360D Only

down-regulated

at 15 mins

BnaA08g02360DAT1G49850 0.03198 0.683

BnaA09g11950D Only

down-regulated

at 15 mins

BnaA09g11950DAT1G64090 RTNLB3 0.02868 0.071

BnaA09g27780D Only

down-regulated

at 15 mins

BnaA09g27780DAT1G27730 STZ 0.00735 0.814

BnaC03g39060D Only

down-regulated

at 15 mins

BnaC03g39060DAT3G15353 ATMT3 0.02381 0.718

BnaC05g21480D Only

down-regulated

at 15 mins

BnaC05g21480DAT1G27730 STZ 0.00029 0.889
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Temporal

Pattern

B. napus

gene

A. thaliana

gene

Common

name

FDR at

15 min.

FDR at

60 min.

BnaC06g40000D Only

down-regulated

at 15 mins

BnaC06g40000DAT1G79660 0.02328 0.485

BnaAnng27240D Only

up-regulated at

15 mins

BnaAnng27240DAT4G19230 CYP707A1 0.00192 0.074

BnaC01g11650D Only

up-regulated at

15 mins

BnaC01g11650DAT4G19230 CYP707A1 0.01032 0.536

NA Only

up-regulated at

15 mins

BnaC05g31990D 0.01387 0.088

BnaC06g32150D Only

up-regulated at

15 mins

BnaC06g32150DAT1G71010 FAB1C 0.01980 0.513

Table 4.3: Genes with opposite directions of significant regulation

in the first 15 minutes of ABA treatment and the last 45 minutes

of ABA treatment.

B. napus

gene

A.

thaliana

ortholog

Common

name

log2 fold

change for 0

to 15 mins.

log2 fold

change for

15 to 60

minutes

FDR for 0

to 15 mins.

FDR for

15 to 60

mins.

BnaA08g02360DAT1G49850 -0.52 0.41 0.03 0.02

BnaA09g27780DAT1G27730 STZ -0.43 0.48 0.01 1.07e-04

BnaAnng27240DAT4G19230 CYP707A1 0.39 -0.32 0.02 0.02

BnaC01g11650DAT4G19230 CYP707A1 0.46 -0.43 2.90e-04 7.99e-05

BnaC03g39060DAT3G15353 ATMT3 -0.77 0.54 0.02 0.05

BnaC05g10770DAT1G14500 -0.81 0.42 3.29e-09 3.76e-03

BnaC05g31990D 0.81 -0.60 0.01 0.02
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B. napus

gene

A.

thaliana

ortholog

Common

name

log2 fold

change for 0

to 15 mins.

log2 fold

change for

15 to 60

minutes

FDR for 0

to 15 mins.

FDR for

15 to 60

mins.

BnaC06g40000DAT1G79660 -0.42 0.30 0.02 0.04

Table 4.2 lists the genes showing significant differential expression at 15 minutes in a different

direction from 60 minutes of ABA treatment. Although only a few genes are identified here, either

because of the limited statistical power at 15 minutes due to a smaller fold change or because only

a few genes are involved in the initial transient response, they hint at an initial transient response

to ABA. Previous literature points to the role of some of these genes. FAB1C is known to be

responsible for fast closure of the stomata and its mutation causes slow stomatal closure (Bak et al.,

2013). These observations support our data showing that FAB1C is up-regulated for this initial

response and it subsequently returns to its basal expression, with less contribution to the later ABA

response. In the context of ABA signaling in seed maturation and dormancy, CYP707A1 is known

to be expressed in mid-maturation and is then down-regulated in late maturation (Okamoto et al.,

2006). Perhaps a similar feedback mechanism could be present in the guard cells and responsible

for the initial up-regulation and then return to baseline expression of both CYP707A1 and FAB1C.

Since we only test for the presence of regulation rather than its absence, the selection of genes for

null regulation in Table 4.2 may not be statistically sound. The genes are listed mainly for the

purpose of suggesting candidate genes that may have an early-only response. To gain statistical

confidence for an early response, we calculate the differential expression between the 15 minutes

and 60 minutes of ABA treatment, and select genes that show the opposite direction of differential

expression compared to the first 15 minutes. These are listed in Table @ref(tab:opp.genes.table).

We see that most of the genes are selected in this method as well. We have selected genes with a

corrected p-values (i.e., false discovery rate) of less than 0.05 for both tests of differential regulation.

Since these are two correlated tests, the genes are actually selected conservatively, with an overall

false discovery rate between 0.025 (if the tests were independent) and 0.05 (if the tests were perfectly

correlated).
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Figure 4-2: Batch corrected read counts for genes showing significant differential expression at 15
minutes in a different direction from 60 minutes.
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4.3.2 Gene regulation is conserved within paralogous families

Since Brassica napus is the product of a number of genome duplication and fractionation events,

its genome contains paralogous families each descended from a common ancestral gene. In order to

understand the evolution of the drought response in Brassica napus, we investigated whether the

responses of individual genes within a single family had diverged. If the regulatory response to ABA

in paralogous gene families had completely diverged, we would expect that the fold changes within

gene families would not be correlated. We therefore tested whether the ABA response (as measured

by the fold change at 60 minutes) of genes within each paralogous family clustered around different

means, or whether they all followed a single distribution common to the family. We tested this

hypothesis using one-way analysis of variance.

Brassica napus genes were mapped to their corresponding closest Arabidopsis thaliana homologs.

Since the genome triplication and polyploid hybridization events in Brassica napus happened after

its split from the Arabidopsis lineage, multiple Brassica napus genes map to the same Arabidopsis

thaliana ortholog. For the purposes of this study, these groups of paralogous Brassica napus genes

are considered to be gene families resulting from duplications of the same ancestral gene. After

filtering out genes with very low read counts, hence with inaccurate estimates of fold-change, and

including only groups with more than two valid Brassica napus genes, we conducted the one-way

analysis of variance, with results shown in Table 4.4. The p-value is highly significant.

With a large number of genes and paralogous families, the highly significant p-value could arise from

a small effect. We therefore estimated the effect size (η2), calculated as the ratio of the variance

explained by the paralogous families to the total variance. We see that 68.56% of the variance is

explained by paralogous group membership. We conclude that while there has been measurable di-

vergence of gene expression in these paralogous families, the regulation is still substantially correlated

within gene families.

Table 4.4: Analysis of variance to test whether the differential ex-

pression is correlated within paralog gene families.

Source

Sum of

Squares (SS)

Degrees of

Freedom Mean SS F-statistic log(p-value)

Effect Size

(η2)

Paralogous

Group

5857 16575 0.3533609 4.546911 -7022.886 0.6855728

Error 2686 34565 0.0777145
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Source

Sum of

Squares (SS)

Degrees of

Freedom Mean SS F-statistic log(p-value)

Effect Size

(η2)

Total 8543 51140
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4.3.3 The ABA responses in Arabidopsis thaliana and Brassica napus

are similar

The ABA response and its role in drought response is well studied in both model plants such as

Arabidopsis thaliana and agricultural crops. We explored whether the results of our experiment

agree with the known ABA responses in the model organism Arabidopsis thaliana.

We visualized the comparison of the ABA response in Arabidopsis thaliana guard cells and Brassica

napus protoplasts by plotting the changes for each gene in Brassica napus at 15 minutes and 60

minutes (Figure 4-3) with the corresponding fold change in expression for its ortholog in Arabidopsis

thaliana, taken fromWang et al. (2011). Expression fold changes of genes in Arabidopsis thaliana that

were not significantly differentially expressed were not reported in Wang et al. (2011), creating an

empty horizontal band in the figure. It is clear that the correlation is highly statistically significant

at both time points, and the R2 is twice as high at 60 minutes compared to 15 minutes.

Despite its statistical significance, the overall R2 is small, suggesting a moderate degree of correlation.

However, in addition to differences between the species (Arabidopsis thaliana vs. Brassica napus),

additional sources of variation are guard cells vs. protoplasts, microarray vs. RNA-seq experimental

technologies, and the 3 hour vs. 15 or 60 minute exposure to ABA. Due to these differences, it is

understandable that even genes that occupy a similar role in the transcriptional response may show

quantitatively different fold changes. We therefore continued by investigating qualitative patterns

of differential expression in the two experimental systems.

Table 4.5: Cross-tabulation of the direction of statistically signif-

icant differential expression of Brassica napus genes in response

to 15 minutes of ABA treatment against the regulation of their

corresponding orthologous genes in Arabidopsis thaliana.

Down-regulated in

Brassica (15 min.)

Insignificantly regulated

in Brassica (15 min.)

Up-regulated in Brassica

(15 min.)

Down-regulated

in Arabidopsis

16 1352 4

Up-regulated in

Arabidopsis

0 1809 135
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pval=2.68e−99,
R^2=0.13

pval=3.04e−200,
R^2=0.24
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Figure 4-3: Statistically significant correlation of the ABA response in Arabidopsis thaliana guard
cells and Brassica napus protoplasts. The log2 fold change observed in Brassica napus after 15
minutes and 60 minutes of ABA treatment is plotted against that of the corresponding Arabidopsis
ortholog after 3 hours of ABA treatment as reported in Wang et al. (2011). Only significantly
differentially expressed genes were reported for the Arabidopsis experiment, resulting in the missing
horizontal band in the figure. The p-value for the statistical significance of the correlation and R2

values for each time point are overlayed in the plots.
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Table 4.6: Cross-tabulation of the direction of statistically signif-

icant differential expression of Brassica napus genes in response

to 60 minutes of ABA treatment against the regulation of their

corresponding orthologous genes in Arabidopsis thaliana.

Down-regulated in

Brassica (60 min.)

Insignificantly regulated

in Brassica (60 min.)

Up-regulated in Brassica

(60 min.)

Down-regulated

in Arabidopsis

186 1064 122

Up-regulated in

Arabidopsis

48 978 918

Table 4.7: Tests of association for the differential expression in re-

sponse to ABA for Brassica napus and Arabidopsis thaliana guard

cells. For each test, the 2imes2 contingency table for significant

differential expression in each species was constructed. The p-value

was calculated using the Fisher’s exact test, and the effect size was

measured by Cramer’s V. The tests are then repeated by select-

ing, for each paralogous gene family, the Brassica napus paralog

with the most significant p-value for differential expression at the

corresponding time point.

Brassica napus gene sets

Fisher’s exact test

p-value Effect size (Cramer’s V)

2 Regulation at 15 minutes 2.035e-18 0.8815

3 Regulation at 60 minutes 6.679e-93 0.6128

4 Regulation at 15 minutes

(only the most regulated

paralog)

2.035e-18 0.8815

5 Regulation at 60 minutes

(only the most regulated

paralog)

4.995e-46 0.5944
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To investigate co-regulation by ABA of homologous genes in Brassica napus and Arabidopsis thaliana,

we tabulated the number of Brassica napus genes regulated in each direction against their correspond-

ing Arabidopsis thaliana orthologs in Tables 4.5 and 4.6 for 15 and 60 minutes of ABA treatment

in Brassica napus, respectively. While we identify fewer significant genes at 15 minutes, it is clear

that their regulation is consistent with the regulation observed in Arabidopsis thaliana. More genes

are significant after 60 minutes of ABA treatment, but many of these have discrepancies with the

regulation in Arabidopsis thaliana.

The statistical significance of the agreement between the regulation in Arabidopsis thaliana and

Brassica napus is evaluated by Fisher’s exact test, selecting only the counts for genes showing

significant differential expression (the columns in bold in Tables 4.5 and 4.6). To examine whether

some of the variation between the Arabidopsis and Brassica gene expression can be explained by

Brassica polyploidy, we also conducted tests of association using only the paralog that is the most

significantly regulated (i.e., with the smallest p-value for differential expression). The results of

these statistical tests, along with effect sizes, are reported in Table @ref{tab:bna-at-tests}. Since we

have tested only the 2 × 2 tables excluding genes not significantly regulated in Brassica napus, we

conclude that while some paralogs may have lost regulation due to lower positive selective pressure,

they are distinct from the genes observed to be regulated in opposite directions from Arabidopsis

thaliana.

The preceding exploratory analysis yielded a small number of genes with opposite response in Ara-

bidopsis vs. Brassica. Of the genes identified at 15 minutes, only 4 show discordant regulation. These

are shown in Table 4.8. These genes may are interesting candidates for further investigation of the

evolution of ABA response. NLP1 is an enzyme in the putrescine synthesis pathway (Piotrowski

et al., 2003). It is also known that in drought conditions, the levels of putrescine and spermidine are

tightly controlled with interconversion between these species (Alcazar et al., 2011). It is possible,

therefore, that NLP1 might be over-expressed in certain drought stress conditions (such as that

observed in our Brassica napus cells), and under-expressed in others. AtMYB30 is a close paralog

of AtMYB96 that is involved in regulating wax production, which could provide protection from

the harsh, dry environment in drought (Seo et al., 2011). It is possible that the identified gene

BnaC02g37590D functions as the equivalent of AtMYB96. HSFA7A is a heat shock protein, with

plausible involvement with the drought stress pathway (Port et al., 2004; Nishizawa-Yokoi et al.,

2011).
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Table 4.8: Genes selected for discordant gene expression in

Atabidopsis thaliana and Brassica napus guard cell ABA responses.

B. napus

gene

A. thaliana

gene

Common

name in A.

thaliana ATl2fc

log2 fold

change in B.

napus (15

mins.)

log2 fold

change in B.

napus (60

mins.)

BnaA06g25930D AT2G17150 NLP1 -1.319 0.3356 1.299

BnaA08g21990D AT1G19620 NA -3.177 1.035 1.208

BnaC02g37590D AT3G28910 ATMYB30 -

0.9752

0.3724 0.7381

BnaC04g28450D AT3G51910 AT-HSFA7A -3.224 0.6457 1.157
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4.3.4 Proline and isoprene polymerization pathways are up-regulated

We tested the hypothesis that the metabolism of guard cells changes in response to ABA. We

inferred metabolic pathways in Brassica napus from the corresponding Arabidopsis orthologs and

the metabolic pathways in BioCyc (Caspi et al., 2016).

Table 4.9: BioCyc pathways enriched for Brassica napus genes dif-

ferentially expressed at 60 minutes of ABA treatment

BioCyc pathway ID pvalue Pathway

CITRULBIO-PWY 1.455e-14 citrulline biosynthesis

HEXPPSYN-PWY 1.414e-18 hexaprenyl diphosphate

biosynthesis

PWY-5783 1.414e-18 octaprenyl diphosphate

biosynthesis

PWY-5805 1.414e-18 nonaprenyl diphosphate

biosynthesis I

PROSYN-PWY 4.963e-16 proline biosynthesis I

PWY-6922 6.732e-24 L-N-delta-acetylornithine

biosynthesis

PWY-3341 2.232e-18 proline biosynthesis III

We searched for the pathways enriched for genes differentially expressed in response to ABA ac-

cording to the statistical tests described in the Methods (Section 4.5.3.2). A total of 611 pathways

were tested, and the p-value cutoff at the family wise error rate was 1.2770332 × 10−11 (details in

the methods). The enriched pathways are listed in Table 4.9. The various isoprenyl polymerization

pathways are actually the same enzyme; and the proline, acetylornithine, and citrulline synthesis

pathways share the same up-regulated enzymes.

As an example, we show the proline biosynthesis pathway in Figure 4-4 with the log2 fold change

shown next to the gene names. Proline has an established role in drought stress response. Proline

accumulation in response to drought has been observed in roots and leaves (Sofo et al., 2004).

Proline can be protective of proteins from the stresses of heat and increasing amounts of inorganic

solutes characteristic of water loss (Samaras et al., 1995). It has also been hypothesized that proline

accumulation is a mechanism of storing energy to be released once the stress is relieved. Proline
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Figure 4-4: Proline biosynthesis is enriched for ABA responsive genes. The enzymes catalyzing each
reaction are listed next to the reaction along with the log2 fold change in expression observed at 60
minutes of ABA treatment. The colored squares visually represent the fold change, with brighter
colors for greater regulation.
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accumulation was found to be correlated with post-stress recovery in sorghum (Blum and Ebercon,

1976). Proline accumulates under drought stress in both drought resistant and drought sensitive

cultivars of barley (Hanson et al., 1979). The transformation of the Arabidopsis delta-1-pyroline-5-

carboxylate synthetase (the enzyme up-regulated under ABA) into petunia (Yamada et al., 2005)

and tobacco (Kishor et al., 1995) was shown to confer drought resistance. In Arabidopsis thaliana,

the delta-1-pyroline-5-carboxylate synthetase gene was expressed under dehydration but the delta-

1-pyroline-5-carboxylate reductase gene was not regulated (Yoshiba et al., 1995). Over-expression

of N-acetyl-L-glutamate synthase in Arabidopsis was found to confer drought tolerance (Kalamaki

et al., 2009). The dual role of proline as an osmoprotectant and energy source upon recovery may

may confer additional drought resistance in particular systems. Application of exogenous proline to

increase drought tolerance and yield was tested in Brassica juncea, with mixed effects observed (Wani

et al., 2016).

Similarly, isoprene polymetrization is also associated with the drought response. It is known that

isoprene emissions are related to heat, light, and CO2 concentrations, and they are the major form

of volatile organic carbon compounds released by the ecosystem. Isoprene emission was found to be

protective of the photosynthetic apparatus in tobacco (Ryan et al., 2014). Citrulline is an osmopor-

tectant in the leaves and acetylornithine is produced as an intermediate in citrulline synthesis.
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4.3.5 Known ABA signaling genes are up-regulated at both 60 minutes

and 15 minutes

The ABA synthesis and signaling network is comprehensively discussed by Hauser et al. (2011).

They list the transcription factors, kinases, ion channels, and other genes involved in the multiple

pathways (Shinozaki and Yamaguchi-Shinozaki, 2006) downstream of ABA. We expect that the

expression of some of these genes may also be regulated by ABA in Brassica napus guard cells. We

therefore tested whether this known ABA network is significantly regulated. The Brassica napus

orthologs of the ABA signaling Arabidopsis thaliana genes were used to test for the enrichment of

ABA responsive genes.

We cross-tabulated the number of genes regulated and the membership in the ABA signaling network

in Tables 4.10 and 4.12. The statistical significance of the association between membership in the

signaling and differential expression was tested and the effect sizes estimated in Tables 4.11 and

4.13.

Table 4.10: Cross-tabulation of membership in the known ABA

signaling network against differential expression at 15 minutes of

ABA treatment in Brassica napus.

Down-regulated in

Brassica (15 min.)

Insignificantly

regulated in Brassica

(15 min.)

Up-regulated in

Brassica (15 min.)

Gene not part of the

ABA signaling network

68 100153 385

Gene part of the ABA

signaling network

3 410 21
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Table 4.11: Tests of statistical significance and the estimated effect

size for the association of the known ABA signaling genes and

those differentially expressed under 15 minutes of ABA treatment

in Brassica napus.

Test of

association Statistic

Degrees of

freedom P value

Effect size

measure Effect size

G-test 76.50 2 < 2.22e-16 Contingency

coefficient

0.05

Pearson’s χ2 test 238.58 2 < 2.22e-16 Cramer’s V 0.05

Table 4.12: Cross-tabulation of membership in the known ABA

signaling network against. differential expression at 15 minutes of

ABA treatment in Brassica napus.

Down-regulated in

Brassica (60 min.)

Insignificantly

regulated in Brassica

(60 min.)

Up-regulated in

Brassica (60 min.)

Gene not part of the

ABA signaling network

4293 88857 7456

Gene part of the ABA

signaling network

53 258 123

Table 4.13: Tests of statistical significance and the estimated effect

size for the association of the known ABA signaling genes and

those differentially expressed under 60 minutes of ABA treatment

in Brassica napus.

Test of

association Statistic

Degrees of

freedom P value

Effect size

measure Effect size

G-test 235.59 2 < 2.22e-16 Contingency

coefficient

0.06

Pearson’s χ2 test 356.64 2 < 2.22e-16 Cramer’s V 0.06
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There is a statistically significant association of the genes in the signaling pathway and those differ-

entially regulated by ABA treatment for both 15 minutes and 60 minutes of treatment. However,

the effect sizes are quite small, at 0.049 for 15 minutes and 0.059 for 60 minutes. Only a small core

subset of genes in the ABA signaling pathway are transcriptionally regulated in response to ABA. To

test whether the number is unexpectedly low, we also calculate the statistical significance and effect

size of the enrichment of ABA signaling genes in the differentially expressed genes in Arabidopsis

thaliana.

Table 4.14: Cross-tabulation of membership in the known ABA

signaling network vs. differential expression in Arabidopsis thaliana

due to ABA treatment.

Down-regulated in

Arabidopsis

Statistically

insignificant

regulation in

Arabidopsis

Up-regulated in

Arabidopsis

Gene not part of the ABA

signaling network

407 18522 594

Gene part of the ABA

signaling network

13 103 21

Table 4.15: Pearson’s chi-square (Pearson) and the G (Likelihood

ratio) for the independence of the known ABA signaling genes and

those differentially expressed under 3 hours of ABA treatment in

Arabidopsis thaliana.

Test of

association Statistic

Degrees of

freedom P value

Effect size

measure Effect size

G-test 58.64 2 1.8463e-

13

Contingency

coefficient

0.07

Pearson’s χ2 test 106.13 2 <

2.22e-16

Cramer’s V 0.07

The correlation with Arabidopsis thaliana differential expression, with a Cramer’s V of 0.073, is
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only slightly larger than that at 60 minutes for Brassica napus (0.059). We thus conclude that the

ABA signaling network and its transcriptional regulation is conserved from Arabidopsis thaliana

to Brassica napus and the regulation of the genes in this network is more pronounced at 60 of

treatment than at 15 minutes, reflecting the increased transcriptional response with time. Since the

signaling nomodifications, protein binding, and transport, with many genes not transcriptionally reg-

ulated. Thus the overall small but significant transcriptional effects are consistent with evolutionary

conservation of ABA signaling.
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4.3.6 Regulatory interactions and the observed differential expression

In this section, we examine the observed differential expression in Brassica napus in the light of

the known regulatory interaction network in Arabidopsis thaliana. We use the AGRIS database, a

collection of known transcription factors and their targets from various Arabidopsis thaliana stud-

ies (Davuluri et al., 2003). We examine the extent of the agreement of our results with various

high-throughput and low-throughput studies and what this may mean for the utilization of the

regulatory network during the ABA response.

4.3.6.1 ABA-induced differential expression does not employ the whole of the known

regulatory interactome from high throughput studies

Any stimulus, including ABA response, may involve only a few direct protein targets. These tar-

gets convey the signal through cascades involving protein binding, post translational modifications

including phosphorylation and dephosphorylation, and transcriptional factor-DNA binding. The

observed changes in mRNA expression of any gene in response to the stimulus involve regulatory

interactions between transcription factor proteins and their promoter elements in DNA.

Given mRNA data, we focus primarily on changes to transcription due to transcription factor bind-

ing. The qualitative effect of a known regulatory interaction on a target is defined by the type of

interaction (activation or repression) and the expression of the transcription factor (up-regulated or

down-regulated). For example, if a transcription factor is up-regulated and it is known to activate

the expression of its target, we expect to see up-regulation of the target, while if an up-regulated

transcription factor is known to repress the expression of its target, we expect to see the target

down-regulated. We tabulated the stated type of the interaction vs. the observed expression of the

target under ABA treatment. We then performed tests of the observed patterns.

The effects represented by the 2 × 2 tables were summarized as odds ratios. The odds ratio is

defined as the ratio of the fraction of up-regulated genes among those predicted to be up-regulated,

divided by the fraction of up-regulated genes among those predicted to be down-regulated. An odds

ratio much larger than one implies that our estimate predicts of the observed direction of regulation.

When we use all the known interactions from the Agris database, the cross-tabulation does not show

this effect, and in fact the opposite is true (with an odds ratio of 0.46).
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Table 4.16: Cross-tabulation of the calculated effect of the all the

interactions (rows) vs. the actual differential expression (columns)

in response to ABA in Brassica napus.

Gene observed up-regulated for

60 mins. ABA treatment

Gene observed

down-regulated for 60

mins. ABA treatment

Target gene predicted to be

up-regulated based on

regulatory interactions

402 170

Target gene predicted to be

down-regulated based on

regulatory interactions

410 80

This implies that either many of these known interactions are not functional for the ABA response

or that some subset of these studies may not be in agreement with our results due to the nature of

the experiments that were used for inferring the regulatory interactions.
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4.3.6.2 Activation/Repression interactions from low-throughput studies are consistent

with the direction of the differential expression

The accuracy and quality of interactome networks derived from high throughput systematic studies

and whether they are of similar confidence as individual studies has been debated in literature (Bader

et al., 2004; Mrowka et al., 2001). Although the case of protein-protein interactions is more well

studied, similar issues may arise in transcription factor studies. For this reason, we re-evaluated

the agreement with previously published studies by stratifying according to the study size, with the

hypothesis that smaller studies are higher quality. The issue of study size is further explored in

Section 4.3.6.4.

Considering regulatory interactions from only the low-throughput studies, fewer than 50 Arabidopsis

thaliana interactions reported, we see more interactions where the direction of differential expression

is consistent with the reported type of regulation.

Table 4.17: Cross-tabulation of the calculated effect of the inter-

action (rows) vs. the actual differential expression (columns) in

response to ABA in Brassica napus, using only the interactions

derived from low-throughput (N < 50) studies.

Gene observed up-regulated for

60 mins. ABA treatment

Gene observed

down-regulated for 60

mins. ABA treatment

Target gene predicted to be

up-regulated based on

regulatory interactions

103 2

Target gene predicted to be

down-regulated based on

regulatory interactions

12 8

Table 4.18: Fisher’s exact test for the correlation of the theoreti-

cal effect of transcriptional regulatory interactions with the actual

differential expression of the target.

P value Alternative hypothesis odds ratio

3.978e-06 * * * greater 32.47
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P value Alternative hypothesis odds ratio

For small studies, the odds ratio of 32.47 is much larger than 1 and highly statistically significant. We

conclude that the observed differential expression is highly consistent with regulatory interactions

reported by low throughput studies.
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4.3.6.3 Differentially expressed regulatory subnetwork

The set of regulatory interactions from low-throughput studies among the differentially expressed

genes of Brassica napus is visualized in Figure 4-5. Most of the genes represented in this regula-

tory network are up-regulated, reflecting the observed bias of up-regulation in ABA transcriptional

response.

Some transcription factors and targets in Figure 4-5 have confirmed roles in drought stress re-

sponse. For example, in addition to its role in heat stress, the overexpression of Heat Shock Factor

3 (HSF3) was found to improve drought resistance and water productivity (Bechtold et al., 2013).

One target of HSF3 is Galactinol Synthase 1 (GolS1), which is involved in the synthesis of raffi-

nose oligosaccharides and galactinol (Panikulangara et al., 2004), which are osmoprotectants and

an antioxidants (Nishizawa et al., 2008). Both of these genes are found to be up-regulated in our

experiment.

Signaling pathways for flowering timing (a drought avoidance strategy) may also be shared with

signaling for stomatal movement. We see in our experiment that FLO2 is down-regulated in response

to ABA. FLO2 is thought to repress the expression of SOC1, which is up-regulated. Both FLO2 and

SOC1 are well known for their role in drought escape through early flowering (Riboni et al., 2013),

but recently it has been found that SOC1 also affects stomatal opening (Kimura et al., 2015).

We conclude that integrating low-throughput, high-confidence regulatory interactions with gene ex-

pression response reveals downstream mechanisms of ABA signaling. Rediscovery of known response

components suggests that this analysis can generate new hypotheses to further define ABA signaling

pathways.

119



Hsp70b

Hsp18.1

Hsp21

Hsp26.5

Hsp70bHsp22.0

HSF6

At2g37180

At4g33210
RD26

AtbZIP53 At2g37180

ERD5

RD22

LHY
At2g37180

CHI

At1g68400

At1g76180
AT1G19000

AT1G19000

LHY AT1G19000

ELF4
At1g76180

RD26

At1g76180

ERD5 At3g16320 At2g37180

At1g76180

At4g33210

CCA1 AT1G19000

CCA1

TOC1

HY5RD26
CHI

At1g76180

Hsp70b

Hsp22.0

Hsp70b

Hsp21

HSF6

Hsp22.0

HSF6

ERD5

JIN1
AtbZIP53

AtNAC3 AtNAC3AtbZIP53 ADH1

ERD5

BiP-2

EIN3

ERD5
ADH1

GolS1

GolS1

HSF3

GolS1

GolS1

HSF3

HSF3

SOC1

FLO2

AtNAC3

ERD1 AtNAC3

FLO2

FLO2

SOC1

AtNAC3

CAB1

ERF1 SOC1

EIL1

JIN1

RD22

RPS15aD

TCP20

KNOLLE

MYB61

PME17

MYB3R1

CesA1

CesA1

CesA3

BES1

CesA1

CesA3

CesA1

BES1

BES1

BiP-2

PUB24

WRKY22

PUB24

AtbZIP60

WRKY22

CYCB1

KNOLLE

AtbZIP60

Figure 4-5: Regulatory interactome likely involved in the Brassica napus guard cell ABA response.
Caption continued on the next page
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Figure 4-5: (Continued caption) Brassica napus regulatory interactions compiled from the ARGIS
low throughput studies (N < 50) among differentially expressed genes. Genes are colored by their
direction of regulation, with green for up-regulated genes and red for down-regulated genes. The
edges and arrow heads ends denote the type of regulatory interactions: activation (green edges with
pointed arrows), repression (red edges with flat heads), and unknown (black edges with dotted ends).
Since Arabidopsis gene names are more well known, Brassica genes are labelled according to their
Arabidopsis thaliana orthologs.

121



4.3.6.4 Agreement with observed differential expression decreases with study size

We have shown above that the regulatory interactions compiled from small studies are consistent with

the observed guard cell gene expression profiles in response to ABA. In this section, we explore the

high-throughput studies that seem to be inconsistent with our differential expression results. These

studies may be of lower confidence or they may be measuring regulatory interactions in conditions

that are different from our experiments.
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Figure 4-6: Histogram showing the number of Arabidopsis thaliana transcriptional regulatory inter-
actions reported per study in the AGRIS database (Davuluri et al., 2003).

First, we provide an exploratory visualization of the numbers of interactions reported in various

studies. The histogram in Figure 4-6 shows that most studies report only a few interactions, with

a few studies reporting hundreds to thousands of interactions. We use a simple metric, the fraction

of edges consistent with our differential expression data, to characterize each study. An edge is

considered consistent if the direction (i.e., up or down) of expression of the target predicted by

the transcription factor’s (up or down) regulation and interaction type (repression or activation) is

the same as the observed differential expression of the target. This metric does not account for

the class imbalance of up/down regulation or the activation/repression edges. Figure 4-7 shows
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that many low-throughput studies are consistent with the observed differential expression, and the

fraction consistent varies across a wide range. The 4 high throughput studies with a large number of

signed interaction edges show about 0.3 to 0.6 fraction consistency with our differential expression

observations.
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Figure 4-7: Histogram for the fraction of Brassica napus interaction edges that are consistent with
our observed ABA differential expression per study. The panels separately show the histograms for
studies with less than 50 reported interactions (labelled as low throughput) and for studies reporting
50 or more interactions (labelled as high throughput).

Since the number of up-regulated and down-regulated genes are unbalanced, the effect of individ-

ual studies on the statistical significance of the directional prediction of the targets’ differential

expression is best evaluated by the Fisher’s exact test rather than the fraction of consistent edges.

Figure 4-8 shows the effect of increasing data by including larger studies vs. the effect of potentially

less accurate or consistent large studies.

We have only evaluated the consistency of the interactions with the differential expression in one

condition, and it is possible that activation vs. repression could vary in other conditions. Nevertheless,

the lower agreement with larger study sizes suggests that high-throughput studies of transcriptional

regulation are less accurate than low-throughput studies.
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Figure 4-8: The effect of including larger studies on the consistency with the observed gene expression
profiles. The x-axis denotes the cutoff for the study size, and for each point all studies larger than
this size are disregarded. For each cutoff, we plot the fraction of interactions that are consistent with
the observed gene expression, the statistical significance (p value) of this consistency calculated using
Fisher’s exact test, and the cumulative number of translated Brassica napus interactions between
differentially expressed genes added. An Arabidopsis thaliana interaction from the AGRIS database
may map to multiple Brassica napus interactions due to Brassica polyploidy; or it may result in
zero Brassica napus interactions being included in the study if either the factor or target are not
differentially expressed).
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4.3.6.5 Differentially expressed targets of known ABA signaling transcription factors

suggest candidates for a role in ABA signaling

Table 4.19: Regulatory interactions with known ABA transcription

factors among differentially expressed genes.

Common

name of the

transcription

factor

Common

name of

the

target

B. napus transcription

factors B. napus targets

Interaction

Type

Is the

target a

known

member

of the

ABA

signaling

pathway?

AtMYC2 ADH1 BnaC08g07580D,

BnaA05g18020D

BnaC06g37860D,

BnaA07g33310D

Activation No

AtMYC2 RD22 BnaC08g07580D,

BnaA05g18020D

BnaC07g29150D,

BnaA06g39340D

Activation No

AtMYC2 CAB1 BnaC08g07580D,

BnaA05g18020D

BnaC03g59520D Repression No

HY5 At1g76180 BnaA10g21200D BnaC06g36880D,

BnaA07g21490D,

BnaA07g32420D,

BnaA02g36030D,

BnaC06g21970D

Unknown No

HY5 At2g37180 BnaA10g21200D BnaC04g08090D,

BnaA05g07290D,

BnaC04g08100D,

BnaA05g07300D

Unknown No

HY5 At4g33210 BnaA10g21200D BnaA01g03630D,

BnaC01g04970D

Unknown No
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Common

name of the

transcription

factor

Common

name of

the

target

B. napus transcription

factors B. napus targets

Interaction

Type

Is the

target a

known

member

of the

ABA

signaling

pathway?

HY5 At1g19000 BnaA10g21200D BnaC08g18480D,

BnaA08g22290D,

BnaC08g36920D,

BnaA09g44370D

Unknown No

HY5 RD26 BnaA10g21200D BnaA01g16400D,

BnaC07g40860D,

BnaA03g48570D

Unknown Yes

HY5 At3g16320 BnaA10g21200D BnaC05g37040D Unknown No

HY5 CHI BnaA10g21200D BnaA09g34840D,

BnaC08g26010D

Activation No

HY5 ELF4 BnaA10g21200D BnaA05g05560D Activation No

Not all regulatory interactions may actually be functional in all physiological conditions, and not all

of them may be involved in any particular response. If a transcription factor is known to be involved

in ABA signaling, this is prior information that leads to a higher confidence that its regulatory

interactions are likely to be functional in the ABA response. Therefore, we attempt to use our

knowledge of the important drivers of the ABA response to predict other targets that may in fact

be regulated using the known mechanisms and have an important role in the response to ABA by

guard cells.

Within the high-confidence (i.e., low-throughput) set of regulatory interactions, we select a subset

where the transcription factors are known members of the guard cell ABA signaling pathway and

where both the factor and target are differentially expressed. These selected transcription factors,

their targets, and interactions are listed in Table 4.19. This table suggests candidate genes among
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the targets that are likely to be involved in ABA signaling. Among the targets identified, RD22

and RD26 are named for their response to desiccation and have known roles for their response to

water deprivation. ADH1 is known to be regulated by both dehydration and hypoxia. CAB1 is

a light-responsive protein involved in photosynthesis. CHI is involved in the response to UV light.

These results suggest shared elements between the various stress response pathways and a role for

ABA in the regulation of these pathways. ELF4 is an early flowering gene. AT1G76180 (ERD14) is

a Ca2+ binding protein involved in the early response to dehydration and cold.
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4.3.7 Regulation inferred from cis-acting transcription factor binding

sites

A transcription factor often regulates the expression of its target by binding to a cis-regulatory

element in the target gene’s promoter region or a more distant enhancer. A transcription factor

or a class of transcription factors often binds in a sequence-specific manner, recognizing a specific

polynucleotide sequence. The existence of these binding sites in the promoter regions of Brassica na-

pus genes permit inference of putative regulatory interactions between Brassica napus transcription

factors and their targets. These provide testable hypotheses of the regulatory network and refine the

networks generated by mapping Arabidopsis thaliana interactions to all the corresponding Brassica

napus orthologs, which we used in the previous section.

4.3.7.1 Promoters of differentially expressed genes are enriched for the binding sites

of putative causal transcription factors

To search for possible transcription factors responsible for ABA gene expression response, we identi-

fied known binding sites in the putative promoter regions of Brassica napus genes. For each known

Arabidopsis transcription factor binding site sequence in our set, we calculated the enrichment of

the occurrence of the sequence in the promoters of the up-regulated or down-regulated genes versus

all other genes as background, with statistical significance measured by the hypergeometric p-value

corrected for multiple testing.
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Table 4.20: Binding site sequences over-represented in the putative

promoter regions of genes up-regulated by ABA, along with the

corresponding transcription factors.

Binding

site

sequence

(BSS)

Number

of

promoter

regions of

up-

regulated

genes

with BSS

(out of

7669)

Total

number

of pro-

moter

regions

with

BSS

(out of

101040)

Adjusted

pval

Arabidopsis

thaliana

transcription

factor(s) that

bind to the BSS

Orthologous

Brassica napus

transcription

factors

Is the

transcrip-

tion

factor

part of

the ABA

signaling

network?

ABRE

binding

site motif

2625 19775 2.897e-

216

ABF4

(AT3G19290)

BnaCnng41320D,

BnaA01g26200D,

BnaC01g43800D,

BnaA03g35190D,

BnaA05g20870D,

BnaC05g33570D

Yes

ABFs

binding

site motif

2003 13791 6.162e-

200

ABF1

(AT1G49720),

ABF2

(AT1G45249)

BnaC06g02640D,

BnaA06g03040D,

BnaC06g00420D,

BnaA10g28780D

Yes, Yes

ABRE-

like

binding

site motif

6442 71043 4.318e-

181

NA

(NOTAVAILABLE)

NA No

CBF2

binding

site motif

960 6780 8.816e-

81

ATCBF2

(AT4G25470)

BnaA08g30910D No
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Binding

site

sequence

(BSS)

Number

of

promoter

regions of

up-

regulated

genes

with BSS

(out of

7669)

Total

number

of pro-

moter

regions

with

BSS

(out of

101040)

Adjusted

pval

Arabidopsis

thaliana

transcription

factor(s) that

bind to the BSS

Orthologous

Brassica napus

transcription

factors

Is the

transcrip-

tion

factor

part of

the ABA

signaling

network?

GBF1/2/3

BS in

ADH1

960 6780 8.816e-

81

AtGBF1

(AT4G36730),

ATBZIP54

(AT4G01120),

GBF3

(AT2G46270)

BnaC03g61840D,

BnaC01g02130D,

BnaA01g01100D,

BnaA08g15400D,

BnaC-

nng01910D,

BnaA09g00170D,

BnaC04g01070D,

BnaC03g25660D,

BnaA05g01520D

No, No,

No

ERF1 BS

in

AtCHI-B

5106 57711 5.664e-

68

ATERF1

(AT3G23240)

BnaA07g06760D,

BnaC07g08360D,

BnaA01g23940D

No

TGA1

binding

site motif

1633 15985 4.986e-

38

TGA1

(AT5G65210)

BnaC09g06840D,

BnaAnng04720D,

BnaC02g43620D,

BnaA09g07120D,

BnaA06g24140D,

BnaC03g49070D

No

RAV1-B

binding

site motif

6168 77449 3.646e-

15

AtRAV2

(AT1G68840)

BnaC02g18650D,

BnaA02g14040D

No
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Binding

site

sequence

(BSS)

Number

of

promoter

regions of

up-

regulated

genes

with BSS

(out of

7669)

Total

number

of pro-

moter

regions

with

BSS

(out of

101040)

Adjusted

pval

Arabidopsis

thaliana

transcription

factor(s) that

bind to the BSS

Orthologous

Brassica napus

transcription

factors

Is the

transcrip-

tion

factor

part of

the ABA

signaling

network?

HSEs

binding

site motif

2281 28000 0.001116 AT-HSFC1

(AT3G24520)

BnaC07g07130D,

BnaA03g37460D,

BnaC03g43990D,

BnaA07g05580D

No

DREB1&2

BS in

rd29a

204 2036 0.001853 ATCBF2

(AT4G25470)

BnaA08g30910D No

AtMYB2

BS in

RD22

4689 59738 0.004914 ATMYB2

(AT2G47190)

BnaA05g00710D,

BnaC04g51450D

Yes

E2F-

varient

binding

site motif

211 2182 0.01041 NA (AT2G36011) NA No

VOZ

binding

site

155 1541 0.01253 ATVOZ1

(AT1G28520)

BnaC05g21930D,

BnaC03g58740D,

BnaA08g18270D,

BnaA09g27210D

No

ARF

binding

site motif

7433 97264 0.03437 ARF1

(AT1G59750)

BnaC01g28340D,

BnaA01g35830D

No
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Table 4.21: Binding site sequences over-represented in the putative

promoter regions of genes up-regulated by ABA, along with the

corresponding transcription factors.

Binding

site se-

quence

(BSS)

Number of

promoter

regions of

down-

regulated

genes with

BSS (out of

4547)

Total

number

of pro-

moter

regions

with

BSS

(out of

101040)

Adjusted

pval

Arabidopsis

thaliana

transcription

factor(s) that

bind to the BSS

Orthologous

Brassica napus

transcription

factors

Is the

transcrip-

tion

factor

part of

the ABA

signaling

network?

ERF1

BS in

AtCHI-

B

2766 57711 5.794e-

06

ATERF1

(AT3G23240)

BnaA07g06760D,

BnaC07g08360D,

BnaA01g23940D

No

These binding sites are also enriched in the promoter regions of Arabidopsis thaliana guard cell

ABA responsive genes (Wang et al., 2011). Specifically, while the ABRE targets are regulated in an

ABA-dependent manner, the DREB targets are also up-regulated during drought and cold stress in

an ABA-independent manner (Narusaka et al., 2003; Agarwal and Jha, 2010).

4.3.7.1.1 ABA and drought-related roles for implicated transcription factors

We predict that the transcription factors implicated by enrichment of their binding sites function in

ABA and drought responses. CBF2/DREB1C disrupted mutants have a higher tolerance for drought

and cold stresses (Novillo et al., 2004). GBF1/2/3 genes are associated with light response, and their

shared binding motif is also enriched in drought response genes in Arabidopsis (Huang et al., 2008),

suggesting cross-talk between stress and circadian clock pathways. ERF1-overexpressing Arabidopsis

plants have increased resistance to drought and salt stress (Cheng et al., 2013). ERF1 also functions

in pathogen response pathways that are mediated by ethylene and jasmonic acid signaling. TGA1

was found to be up-regulated in response to drought in Arabidopsis (Ding et al., 2013). RAV1 is
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known to down-regulate the expression of ABA related genes ABI3, ABI4, and ABI5 (Feng et al.,

2014). Plants overexpressing MYB2 have greater sensitivity to ABA (Abe et al., 2002), and its

expression is regulated by dehydration (Urao et al., 1993) and ABA (Xin et al., 2005). VOZ1

and VOZ2 are implicated in flowering time regulation (Yasui and Kohchi, 2014) (a drought escape

strategy) by repressing FLC and their double mutant increased drought tolerance (Nakai et al.,

2013).

4.3.7.1.2 Transcription factors regulating the up-regulated genes are themselves up-

regulated

There are 170 distinct Brassica napus transcription factors whose binding sites are enriched in the

promoter regions of up-regulated genes. Out of these 170 genes, 29 genes are themselves up-regulated

as opposed to 1944 out of the total 101040 genes, giving a statistically significant hypergeometric

p-value of 4.11e − 20.

4.3.7.1.3 Transcription factors regulating the up-regulated genes are known members

of the ABA signaling network

Out of the 170 Brassica napus transcription factors whose binding sites are enriched in the promoter

regions of up-regulated genes, 23 are known members of the translated ABA signaling pathway. Out

of the total of 101040 genes, 435 are members of the ABA pathway. This leads to a statistically

significant hypergeometric p-value of 4.86e − 29.
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4.3.7.2 Loss/gain of specific binding sites after the genome duplication events affects

differential expression

Brassica napus is the result of genome triplication, fractionation, and polyploid hydrid speciation

events since its ancestor and the Arabidopsis thaliana lineage diverged (Cheng et al., 2014). As

discussed above, binding site sequences of known transcription factor families are enriched in the

promoter regions of differentially expressed genes. The same sequence motifs are also present in

the promoter regions of the corresponding Arabidopsis thaliana orthologs. The actual mechanism of

regulation of gene expression in response to drought and ABA probably also involves other cis and

trans acting regulatory elements in addition to the transcription factor binding sites that we have

found. This mechanism is present in Arabidopsis thaliana, and the enrichment of certain sequence

motifs that we have found could simply be a carryover from an earlier mechanism that is no longer

dynamically evolving.

Since the genome triplication event, some of these known binding sites in the gene promoter regions

would have been lost due to mutations. We investigate whether the regulation of expression of

Brassica napus genes is affected by the continuing loss or gain of these binding sites. If gene expression

is indeed related to the relatively recent gain or loss of these binding sites, then this is additional

evidence (like a mutation experiment might provide) that these enriched sites are a causal link in

the regulation of gene expression. Also, this is evidence that drought response has been evolving in

some fashion in the Brassica genus.

For each binding site sequence motif, we construct a fixed effects generalized linear model that relates

the observed log2 fold change in expression of a gene to the number of copies of the binding site

sequence found in the putative promoter region of the gene. We model Arabidopsis thaliana orthologs

of the genes as fixed effect categorical variables. By controlling for the Arabidopsis thaliana ortholog,

we have controlled for the variance explained within gene families due to a common ancestral gene.

The remaining variance that our method models is only due to the gain or loss of binding site

sequences since the genes copies diverged.
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Table 4.22: Binding site sequences that influence the difference be-

tween the regulation (i.e., fold change in response to ABA) of indi-

vidual Brassica napus genes coming from the Arabidopsis thaliana

ortholog. Only those sequences that have a p-value of less than

0.05 are shown here, based on a T test of the coefficient represent-

ing the binding site sequence in a linear model predicting the fold

change.

Pr(>|t|) Adjusted p val.

ABRE-like binding site motif 1.595e-15 8.456e-14

CBF2 binding site motif 7.261e-06 0.0001283

GBF1/2/3 BS in ADH1 7.261e-06 0.0001283

ERF1 BS in AtCHI-B 0.0005842 0.00774

ABRE binding site motif 0.003044 0.03226

MYB3 binding site motif 0.004178 0.03691

DPBF1&2 binding site motif 0.008482 0.06422

HSEs binding site motif 0.02602 0.1697

ABFs binding site motif 0.03116 0.1697

RAV1-B binding site motif 0.03202 0.1697

Table 4.22 shows the result of our fixed effects regression. The statistical significance of the number

of copies of a specific binding site sequence in the promoter regions as a predictor is estimated by

the p-value of including its coefficient in the model. Since we tested a total of 53 sequence motifs,

we apply the Benjamini-Hochberg multiple testing correction to obtain an adjusted p-value (false

discovery rate) shown in the model. We show the binding site sequences with the smallest p-values

in the table.
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4.3.8 Most genes are under negative selection

In the previous section we investigated how the evolution of ABA transcriptional response is related

to changes in the binding site sequences in the promoter region. Here, we examine DNA mutation

rates between Arabidopsis and Brassica napus.

Point mutations in the protein coding regions of the genomes can lead to substitutions of one

nucleotide in place of another; we do not consider insertions or deletions here. Single-nucleotide

changes in the DNA sequence that change the amino-acid sequence of the product, rather than

introducing a stop codon, are termed non-synonymous substitutions; if the amino acid sequence

remains the same (due to codon degeneracy), the change is termed a synonymous substitution.

The substitution rate is defined as the number of times each nucleotide position in a sequence has

undergone a substitution. Since a new subsititution will mask the history of the nucleotides that

were once present at that position, the substitution rates between two homologous genes must be

estimated rather than just counted as the fraction of mismatches. For the purpose of our analysis,

we calculated the nucleotide mismatch rates only in the regions of protein sequence alignment. The

regions of indels and unaligned regions due to early stopping were ignored. We have used the method

of Li (1993) for calculating the nucleotide substitution rates from the nucleotide mismatches.

The synonymous (Ks) and non-synonymous (Ka) nucleotide substitution rates are calculated for all

Brassica napus genes based on their corresponding Arabidopsis thaliana orthologs. Although we do

not have access to the common ancestor of Brassica napus and Arabidopsis thaliana, we use this

interspecies comparison as a proxy for the substitution rates since the Arabidopsis-Brassica split for

simplicity. Figure 4-9 shows the ratio of the estimated non-synonymous and synonymous substitution

rates for all genes. If there is a fitness loss for mutations of the protein sequence, we expect the

non-synonymous substitutions to be less than the synonymous substitutions, which are more free to

accumulate, since their effect on fitness should be less pronounced in general. Accordingly, Ka/Ks

is less than 1 for most genes. Thus, most of the genes in Brassica napus are still under negative

selection, with pressure to retain their ancestral amino acid sequence, despite the high polyploidy.

Possible explanations are that the plant uses the multiple gene copies to finely control gene expression;

or the different gene copies may have evolved to fulfill a more specialized function. The ancestral

genomes, Brassica rapa and Brassica oleracea, have both experienced gene loss, and genes not under

evolutionary pressure to conserve function may be lost as evolution continues. Since the speciation

of Brassica napus, time may not yet have been sufficient to show larger rates of non-synonymous
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substitutions for genes that are not under negative selection.
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Figure 4-9: The distribution of the ratio of non-synonymous to synonymous nucleotide substitution
rates (Ka/Ks) of Brassica napus genes from the corresponding Arabidopsis thaliana genes.

The mean synonymous substitution rate Ks of 0.4797091 is consistent with estimates that the

Arabidopsis-Brassica split occurred 10-20 million years ago.

The calculation of the point substitution rates (ka and ks), and therefore the measure of conservation

pressure on the protein sequence (ka/ks) according to our definitions depend only on the aligned

portions of the amino acid sequence. We also counted the total number of amino acids that were part

of insertions and deletions (including those due to late start codons or early stop codons). Since the

indel mechanisms in the nucleotide sequence are different from the mechanisms of point mutations,

and the effect of amino acid indels is different from the effect of amino acid point mutations, we

used a separate measure for indels. Table 4.23 shows that the total length of amino acid indels is

correlated with the point mutation rates, especially with the non-synonymous mutation rate (ka).
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Figure 4-10: The distribution of the synonymous nucleotide substitution rate (Ks) of Brassica napus
genes from the corresponding Arabidopsis thaliana genes.
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Table 4.23: The correlation between the synonymous subsitution

rate ks, the non-synonymous substitution rate ka, amino acid

convervationary pressure ka/ks, and the number of amino acids

in indels calculated between corresponding Brassica napus and

Arabidopsis thaliana orthologs. All correlations are evaluated as

Kendall’s τ , and p-values correspond to rejecting the null hypoth-

esis of no correlation (τ = 0). Each cell represents the correlation

between the quantities described in the corresponding row and col-

umn names.
ka ks ka/ks

ks τ=0.26,

p-value<2.2e-16

ka/ks τ=0.71,

p-value<2.2e-16

τ=-0.04,

p-value=1.31e-36

Amino-acids in

indels

τ=0.31,

p-value<2.2e-16

τ=0.13,

p-value<2.2e-16

τ=0.27,

p-value<2.2e-16
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4.3.9 Evolution of differential expression is related more to changes in

the nucleotide sequence than the amino acid sequence

We explored the mechanism of the evolution of the regulatory response to ABA in Brassica napus.

Specifically, we are interested in genes whose transcriptional response has changed since the Brassica-

Arabidopsis split. We compare homologous gene families and calculate the variance in the fold

changes of the individual members within gene families. Gene families with higher standard deviation

in their fold changes must have members that diverged from their ancestor. We investigated whether

this divergence is related to the synonymous nucleotide substitution rates (Ks), non-synonymous

substitution rates (Ka), or the degree of amino acid conservation pressure (Ka/Ks).

For each gene family, we calculated the standard deviation in the log 2 fold changes and fit linear

models to the means of Ks, Ka, and Ka/Ks.

Table 4.24: Linear regression model showing the relation between

differential expression divergence and nucleotide mutation rates.

Parameters for the model σ log 2(Fold Change) ∼ µka + µks + µka/ks
+

µextindels i.e., the standard deviation of the log2 fold change of a

gene family predicted from the mean nucleotide substitution rates

(ks, ka, and their ratio ka/ks) and the number of amino acids in

indels between members of the Brassica napus paralogous family

and the corresponding Arabidopsis thaliana ortholog. The statisti-

cal significance is given by the p-value of the t-test.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1409 0.007377 19.1 1.732e-80

µka -0.1278 0.04994 -2.56 0.01047

µks 0.0833 0.01441 5.782 7.526e-09

µka/ks
0.07432 0.02636 2.82 0.004813

µextindels -5.618e-06 3.855e-06 -1.457 0.1451

Using the t-statistic as a test statistic for each coefficient, we observe that Ks is the most significant

predictor. The divergence of the nucleotide sequence is therefore more strongly associated with

the divergence of the ABA-responsive regulation of gene expression than the amino acid sequence.
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Dependence on nucleotide rather than amino changes could be due to changes in histone affinities,

the binding of other proteins to the coding region of genes, or due to the association of intragenic

nucleotide mutation rates with the promoter region mutation rates.
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4.4 Conclusions

This study has used experimental measurement of Brassica guard cell genes that are transcriptionally

regulated by ABA. In addition to statistical analysis of the gene expression data, we have combined

the expression data with known information about metabolic pathways, gene regulatory interactions

involving transcription factors and DNA regulatory elements, and evolutionary comparisons to Ara-

bidopsis. Our analyses are consistent with existing knowledge and have suggested new components

of ABA signaling pathways. Here, we briefly summarise the conclusions from this analysis.

We have generally found qualitatively similar gene expression response at 15 and 60 minutes of ABA

application. The extent of regulation generally increases from 15 minutes to 60 minutes, consistent

with a mechanism in which the transcription rate is constant with negligible degradation. Only a few

genes show statistically signficant regulation with a different dynamic pattern. These early response

genes were identified and listed in Table 4.2.

Comparisons with Arabidopsis show considerable divergence of gene expression in paralogous gene

families, but the level of correlation within families is still high. While statistically correlated, we see

many differences between the measured guard cell ABA response in Brassica napus and Arabidopsis

thaliana. Despite the low statistical power, and hence a smaller number of genes identified at 15

minutes of ABA treatment, these genes showed a much higher concordance with the Arabidiopsis

response, with only 4 genes showing opposite direction. These 4 genes were up-regulated in Bras-

sica napus genes, while their Arabidopsis orthologs were down-regulated; roles for these genes were

discussed.

Among the metabolic pathways, proline synthesis was found to be up-regulated, consistent with

published studies. A statistically significant part of the ABA signaling pathway is up-regulated, but

most genes in the pathway do not change their expression, similar for both Arabidopsis and Brassica.

We found that regulatory interactions reported in individual small-scale in Arabidopsis were more

consistent with the observed Brassica napus gene expression profiles. We selected these interactions

to generate the regulatory interaction graph shown in Figure 4-5. The regulatory interactions in-

cluded in this figure are likely to be actively involved with the ABA response. We found certain

transcription factor binding sites whose occurence in proximity to the translation start sites of Bras-

sica napus genes was enriched for the regulated genes. Most of the transcription factors known to

bind to these purported cis-acting regulatory elements were also regulated, and some of them are

well known for their role in ABA signaling.
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Finally, we showed that these non-coding DNA regulatory elements have diverged within paralogous

families, and evolutionary divergence has affected the expression of their target genes. This is

evidence of the functional evolution of the drought response facilitated due to the gene copies present

in polyploid genomes.
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4.5 Materials and Methods

4.5.1 Plant Material and Growth Conditions

All Brassica napus plants used in this study were from the double-haploid line DH12075. Brassica

seeds were sown on Sunshine Redi-earth Plug & Seedling Mix (Sun Gro Horticulture, Canada) and

then stratified for at least 2 d at 4°C. The plants were grown at 60% relative humidity in 16 h light

at 21°C and in 8 h dark at 18°C.

4.5.2 Isolation of Guard Cell Protoplasts

Brassica leaves (~70g) 5-7 weeks old were excised and their central veins removed before blending

for 3 × 1 min with a Waring blender in cold water. After filtering through a nylon mesh (pore

size 200 µm), the epidermal fragments were washed thoroughly with water and transferred to a

flask containing 100 mL of 0.7% Cellulase R-10 (Yakult Pharmaceutical, Tokyo, Japan), 0.05%

Macerozyme R-10 (Yakult), 0.10% polyvinylpyrrolidone 40, 0.25% BSA, 0.5 mM ascorbic acid, and

55% basic medium (0.5 mM CaCl2, 0.5 mM MgCl2, 5 mM MES hydrate, 0.5 mM ascorbic acid,

10 µM KH2PO4, 0.53 M D-sorbitol, pH 5.5). The epidermal peels were incubated in a shaking

water bath (175 RPM) at 22°C for 40-50 min in the dark to digest all epidermal and mesophyll

cells. To adjust the osmolality in preparation for the second enzyme digestion, 150 mL of basic

medium were added, and the epidermal peels were incubated for an additional 10 min prior to

being collected using a nylon mesh (pore size 200 m) and washed two times with basic medium.

The epidermal fragments were then transferred into a flask containing 50 mL of 1.1% Cellulase RS

(Yakult), 0.0075% Pectolyase Y-23 (Duchefa Biochemie, Haarlem, Netherlands), 0.25% BSA, 0.5

mM ascorbic acid, and 100% basic medium. After incubating in a shaking water bath (100 RPM) at

22°C for 1-1.5 h in the dark, the solution containing free guard cell protoplasts was filtered through

a single layer of nylon mesh (pore size 20 µm). Basic medium was also poured through the mesh to

rinse the epidermal peels for a total volume of 400 mL. The protoplast solution was centrifuged at

350g for 5 min, after which the supernatant was removed. The pellet was re-suspended in a small

volume of basic medium and then layered carefully on top of an equal volume of gradient solution

containing 35% basic medium and 65% Histopaque (Sigma-Aldrich, St. Louis, MO, USA). Following

centrifugation at 430g for 5 min, the guard cell protoplasts at the interface of the two solutions were

isolated. Guard cell number and purity were determined using a hemacytometer. Protoplasts with
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a purity of ~99% were used for subsequent experiments.

4.5.3 Statistical tests

4.5.3.1 Tests of association of categorical variables

We have tested contingency tables for dependency between counts of categorical variables like sets

of differentially expressed genes and membership in signaling networks. The hypothesis tested was

generally that membership of a gene in one classification is associated with its membership in another

classification. The null hypothesis in these tests is that categorical classifications are independent,

in which case the probability in each cell of the table is simply a product of the marginals.

For the 2 × 2 tables, the distribution of the table entries under the null hypothesis is the hyperge-

ometric distribution. We therefore used Fisher’s exact test (Fisher, 1922). The effect size in 2 × 2

tables can be calculated as the odds ratio, which is simply the ratio of the product of diagonal terms

divided by the product of the off-diagonal terms.

For 2-way tables larger than 2x2, where at least one of the classifications involves three or more cate-

gories, we used continuous approximations to the discrete counts. The two statistics commonly used

here are the Pearson’s χ2 statistic given by
∑

i
(Oi−Ei)2

Ei
and the G statistic given by 2

∑
i Oi ln( Oi

Ei
).

The G statistic can be thought of as the mutual information contained in the counts of the contin-

gency table given the marginals. This is also the Kullback-Leibler divergence between the observed

distribution and that expected assuming independence of the two classifications. The Pearson’s χ2

statistic measures the variance from the expected counts, but it can also be derived from the saddle

node approximation of the G-statistic (Hoey, 2012). We report both tests in the results. While the

G-test has favorable theoretical properties, the χ2 is a more familiar and commonly used statistical

test. Both tests gave similar results for our data. We used the vcd R package (Meyer et al., 2016)

for calculating statistical significance for both tests.

The strength of association is measured using Cramer’s V, which is calculated as V =

√
χ2

n(k − 1)
,

where n is the total sample size (i.e., the sum of all entries in the contingency table), and k is the

smaller of the number of rows and columns (Cramer, 1947).
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4.5.3.2 Enrichment of metabolic pathways

Metabolic pathways were downloaded from BioCyc/PlantCyc and translated from Arabidopsis

thaliana to their Brassica napus orthologs.

For each gene, we used the p-value of differential expression to calculate an equivalent z-score. The

z-score is calculated as the value of a standard normal distribution that gives the p-value for that

gene for a two-tailed test. The z-scores of the pathway genes were compared with those in the

complementary set for a difference of means using a t-test.

However, the t-test may give significant p-values smply because the genes in the pathway are cor-

related. To account for this, we permuted the samples and calculate p-values for each gene set

(pathway) for each permution. The best (i.e., smallest) p-value for each permutation among all the

gene sets were tabulated. The median of the best p-values for among all permutations was used as

the cutoff for calling significantly enriched pathways. Since this is the best p-value acheived in the

case of randomly permuted samples, this is the cutoff for the family wise error rate.

4.5.4 Analysis of differential expression

All the RNA-seq reads (100 bp single ended) were aligned to the Brassica napus genome of the

Darmor line (Chalhoub et al., 2014) with TopHat2 (Kim et al., 2013). Reads mapping to genes were

counted with HTSeq (Anders et al., 2015). Multi-mapped reads were discarded by HTSeq due to low

mapping quality. This lowers the statistical power to detect differential expression for genes with

many close paralogs because sequencing reads may align to different paralogs. However, removing

these ambiguously mapped reads means that we are confident that we are correctly distinguishing

the different paralogs, and differentially expressed genes are stringently called.

We were able to map about 100 million reads for each sample. There were 101040 annotated gene

models in the genome, out of which we had at least one read uniquely mapped to 78105 genes. It is

possible that the other genes are not expressed in the guard cells of our line, or their expression is

lost due to polyploidy.

The differential expression values was calculated with DESeq2 (Love et al., 2014).

Batch effect on replicates were noted and accounted for by including the replicate information in a
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linear model design matrix. The expected expression level of a gene i in sample j was modeled as

qij = sj

∑
r

xjrβri,

where sj is the sample normalization, xjr is the effect r on sample j and βir is the effect r on gene

i. We arranged our samples block-wise with time as { t=0 (Replicate 1), t=0 (Replicate 2), t=0

(Replicate 3), t=15 (Replicate 1), t=15 (Replicate 2), t=15 (Replicate 3), t=60 (Replicate 1), t=60

(Replicate 2), t=60 (Replicate 3), }. The design matrix x had the form

x =



1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1


,

where the first 3 rows of the design matrix correspond to the effect of the 3 time points, while the

latter 3 rows correspond to the effect of the 3 replicates. This design matrix separates the effects of

the conditions and replicates that we observe in Figure 4-11.

The actual read counts Kij for gene i and sample j are assumed to be sampled from a negative

binomial distribution with the expected expressions qij and a gene-specific dispersion αi. The

probability mass function of the read counts is given by

Pr(Kij = k) = Γ(k + 1/αi)
k!Γ(1/αi)

(
qij

qij + 1/αi

)k ( 1
1 + qijαi

)1/αi

.

The dispersion for a gene αi is a shrinkage estimate based on all the observed genes, which decreases

with increasing mean read counts.

The p-values for differential expression were obtained by the Wald’s test (Wald, 1943). Genome

wide significance was evaluated by adjusting for multiple testing using the Benjamini Hochberg

correction (Benjamini and Hochberg, 1995) and an independent filtering step based on the mean

expression level. An adjusted p-value cutoff of 0.05 (FDR) was used to call a gene differentially

expressed in all downstream analyses.
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4.5.5 Identification and enrichment of cis-acting regulatory elements

A list of 53 Arabidopsis transcription factor binding sites was downloaded from AtcisDB (Davuluri

et al., 2003; Yilmaz et al., 2011). Since the gene models in the genome did not have transcription

start sites, we defined a region of 5000bp upstream and 2000bp downstream of the translation start

site of each gene to search for cis-regulatory elements. Exact matches of the binding sites in these

regions were counted.

For calculating the enrichment of a particular binding site among up-regulated genes (and similarly

for among down-regulated genes), we assumed a null model of random sampling of the binding sites

among all the genes. This leads to a hypergeometric distribution, and we calculate a corresponding

p-value for each binding site sequence. False discovery rates were calculated from the p-values to

correct for multiple testing.

4.5.6 Evaluating the significance of the binding site gain/loss

We use a fixed effects linear model to evaluate the significance of the loss or gain of a binding site

on the differential expression.

For a gene i, we denote the fold change in expression at 60 minutes of ABA treatment as (βi,60/βi,0).

For a particular binding site sequence, let the number of binding site sequences occurring in the

promoter region be denoted as ni,BSS, and let its mapped Arabidopsis thaliana ortholog be coded

as the categorical variable Oi. If there are a total of M Arabidopsis thaliana genes, then Oi is an

M vector of all zeros except one 1 for the corresponding Arabidopsis gene. We model the log fold

change as

log 2
(

βi,60

βi,0

)
= βBSSni,BSS + βOrthOi.

The parameter βOrth is simply a vector of the mean log 2 fold changes for each gene family, where

a gene family are all the Brassica napus genes corresponding to the same Arabidopsis thaliana gene.

The parameter βBSS captures the effect of the presence of a binding site sequence on the fold change

after correcting for the common ancestry of the genes within a gene family. We do not necessarily

expect the log 2 fold changes to be linearly dependent on the binding site sequence presence. However,

a significant non-zero value of βBSS should signal the dependence of the fold change on the presence
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of binding site sequence with an effect that is detected in a linear model.

The statistical significance is evaluated as the p-value of the F-test for the null hypothesis of βBSS = 0

and the alternative hypothesis of βBSS ̸= 0.

We modeled the gene ancestry (for which Oi is a proxy) as a fixed effect and the statistical significance

was evaluated using the lfe R package (Gaure, 2013a,b). Like other statistical analyses in this work,

multiple testing correction was applied to arrive at false discovery rates as the adjust p-values.

4.5.7 Nucleotide substitution rates

Amino acid sequences of the translated gene products were aligned using ClustalW2 (Larkin et al.,

2007). The aligned protein sequences were then used to align the nucleotide sequences using

transAlign (Bininda-Emonds, 2005). The synonymous and non-synonymous nucleotide substitu-

tion rates were calculated in the seqinr R package (Charif and Lobry, 2007) using the model of Li

(1993). Any values of ks and ka greater than 2 were discarded as missing values for subsequent

analyses assuming that these might be incorrect ortholog assignments or alignments since we do not

expect to observe substitution rates this high across the length of any gene.

4.5.8 Paralogous groups and Arabidopsis thaliana-Brassica napus or-

thologs

Orthologs between Arabidopsis thaliana and Brassica napus were mapped according to Cheng et al.

(2012), for the purposes of translating metabolic networks, the regulatory interaction network, and

the cross-species comparison of ABA response. All Brassica napus genes mapping to the same

Arabidopsis thaliana gene were considered as a paralogous gene family. Out of the 101040 Brassica

napus genes, we mapped the corresponding Arabidopsis thaliana orthologs for 60573 (i.e., 59.95%) of

these genes. Considering only those genes that had any transcripts mapped to them in our RNASeq

data, the fraction of genes with Arabidopsis orthologs rises to 69.73%. Some of the genes for which

Arabidopsis orthologs were not found could be pseudogenes which have acquired too many mutations

to be easily mapped to their cross-species ortholog. Among those identified as significantly regulated

(false discovery rate less than 0.05), 9910/11925 = 83.10% have Arabidopsis orthologs.

The size of a paralogous gene family (number of Brassica napus genes mapping to the same Ara-
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bidopsis thaliana ortholog) varied from 1 to 16, with a mean size of 3.0810275.
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4.6 Supplementary Information

4.6.1 Differential expression diagnostics

We explore some technical aspects of the observed gene expression data in this section to ensure

that we are correctly modeling our observations. While this analysis does not provide us with any

scientific results, they serve to assess the technical quality of the statistical models and confirm

underlying assumptions.

4.6.1.1 Modeling batch effects
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Figure 4-11: Principal component analysis of the variance in the log read counts of the genes in the
3 replicates at each of the 3 conditions. The first two principal components are plotted for all the 9
samples.

We collected mRNA from 3 replicates with 3 conditions each. The replicates help distinguish the

relevant differential expression due to the effect of ABA from the background noise. It is possible

that the 3 replicates are very similar to each other, in which case simply averaging over the replicates

for each condition should reduce the noise. An alternative, however, is that the 3 replicates are very
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different from each other, in which case the observed gene expression is meaningfully affected by both

the replicate condition and ABA exposure. Principal component analysis provides an exploratory

visualization of the sources of variation in high dimensional data. Since we have 9 samples, the read

counts mapped to the genes from all the samples can be represented as 9 × M matrix, where M is

the number of genes. The covariance matrix for the observations can be calculated as a 9×9 matrix.

Singular value decomposition of the covariance matrix provides to the principal components of our

observed read counts.

Using the top 500 genes with the greatest variance as a proxy for the variation from biological sources

as opposed to sequencing noise, we calculated the principal components. Each sample was mapped

to the first (largest) two principal components in Figure 4-11, with the color and shape of the points

denoting the sample condition (ABA exposure) and replicate. Both batch effects (in the direction

PC1-PC2) ABA exposure effects (approximately in the PC1+PC2 direction) are evident.

When analysing the RNA-seq reads, this batch effect was explicitly modeled into the design matrix,

as explained in the Methods (Section 4.5.4).
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4.6.1.2 MA plot shows smaller differential expression at 15 minures

The mean of the log read counts versus the fold change between the control and treatment for every

gene is shown in Figure 4-12. This visualization, also known as the MA plot or the Bland-Altman

plot (Altman and Bland, 1983; Bland and Altman, 1999), confirms that the mean log fold change is

zero for the bulk of the genes with both low and high basal gene expression. This is expected since

the majority of the genes should not be either up-regulated or down-regulated. We see that there

are more up-regulated than down-regulated genes, and there are slightly more up-regulated genes

with higher mean expression than low expression. This might be because many of the genes involved

in stomatal closure are basally expressed at higher rates in guard cells to maintain turgidity or to be

able to respond to water deficits quickly. On the other hand, genes that are not required for guard

cell functioning are not likely to be present in large quantities in the guard cell, and these are also

unlikely to be regulated by ABA signaling.

Secondly, by comparing the graphs for 15 and 60 minutes, it is clear that, in general, larger fold

changes are observed at 60 minutes compared to 15 minutes of ABA treatment.

Figure 4-12: MA plot showing the log ratio (M) versus the average read count (A) for 15 minutes
and 60 minutes. The red colored dots denote genes identified as significantly differentially expressed.
The black colored dots represent genes that are not identified as significantly differentially expressed.
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Chapter 5

Conclusion

This dissertation demonstrates the importance of mathematical modeling and statistical analysis

for understanding aspects of cell signaling and pathway organization at increasing scales of length

and organization: biological physics of molecular transport; interactions of cellular components in

network and pathways; and functions of entire cells. We have made contributions in methods for

biological physics, computational biology and network science, and understanding specific manifes-

tations of cell signaling.

In terms of computational tools, we have developed and applied a range of methodologies including

differential equation modeling (protein transfer in tunneling nanotubes), statistical testing (gene

expression, evolution, and data integration), and statistical physics of disordered and stochastic

systems (random walks, spin systems, and phase transitions). All of these tools can be employed for

answering questions of real biological importance.

Our model of tunneling nanotubes (TNs) predicts the dependence of transfer through TNs on the

size and localization (cytosolic vs. membrane bound) of the transferred biomolecules and the dynam-

ics of TN growth. It relies on simplified assumptions about TN formation and passive transport.

Experiments that test our predictions will be able to confirm or improve these features of the model.

As the role of TNs in tissue and organ formation and cancer pathophysiology potentially gains

prominence, more detailed mathematical models will be proposed and tested.

Graph diffusion kernels are a well known method of prioritizing candidate genes based on network

data and known genes of interest. We relate these models to Ising model of spin interactions, which
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assigns a distribution over the binary (+1 or −1) spins associated for each node in the graph as

a Boltzmann distribtuion parametrized by temperature. The graph diffusion kernel and the linear

estimate of the spin correlation between two nodes of a graph are related: the two are identical in

the case of regular graphs (all nodes have the same degree), and of a similar form for general graphs

of the kind encountered in network science in biological and non-biological domains. We show that

the linear estimate of the spin-spin correlations out-performs than the graph diffusion kernel for

predicting missing links in protein protein interaction networks. Secondly, we show that this best

performance is when the spin distributions are calculated at a temperature just higher than the

Curie point phase transition into ferromagnetism. Thus, there is a narrow parameter range where

the spin-spin correlation function “understands” the correct network structure just before it starts to

assigns all the nodes into a single cluster of aligned spins in accord a ferromagnetic phase transition,

and the linear approximating function breaks down catastrophically. We also derive two novel non-

linear approximations to the spin-spin correlation whose regime of valid temperature extends wider.

The performance of our functions degrades gracefully below the Curie temperature.

In the context of analyzing interactome networks, this has two consequences. First, our method

requires less stringent parameter tuning for good performance. Secondly, in certain networks with

wildly differing edge densities and topology between regions of the same graph, the optimal temper-

atures for different regions may differ. In these cases, our method should show better performance

than linear approximations even after an exhaustive parameter search.

We demonstrate and compare the performance of all these functions on two experimentally obtained

protein-protein interaction networks. We also briefly discuss methods developed for the related prob-

lem of graph clustering; we describe how super-paramagnetic clustering and Markov clustering are

related to our methods. Besides providing an intellectually satisfying unified view and a method for

link prediction in networks, our method can be applied to candidate gene prioritization. Previously,

candidate gene prioritization algorithms have been built on similar models of graph diffusion (Nitsch

et al., 2010), random walks (Köhler et al., 2008), and electrical resistance (Suthram et al., 2008).

Methods for candidate gene prioritization and related problems often integrate as much of the given

knowledge about all the genes and interactions as possible, and attempt to rank the genes optimally

based on these. The network analysis component of such a system can utlize our approximations of

the spin-spin correlation as a measure of gene association.

Finally, we study the case of drought signaling in the guard cells of Brassica napus leading to
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stomatal closure and limiting evaporative loss from the leaves. We analyse RNAseq reads from

protoplasts treated with abscisic acid (ABA) to quantify its differential expression, and integrate

this with cross-species expression, interactome, and regulatory sequence data. We are able to find

the Brassica napus genes, interactions, and pathways underlying the transcriptomic and metabolic

changes underlying the drought response. We find that the ABA response in guard cells is also

related to a host of processes other than stomatal closure, most of which are biochemical changes

to afford protection to the intracellular machinery during stress. Correlating sequence changes in

cis-regulatory elements with differential expression, we uncover some evidence of the continuing

evolution of drought response in Brassica. We hope that these insights can provide scientific clarity

towards breeding and genetic engineering efforts for drought tolerant crops.

We can apply the network analysis developed in this work to identify additional Brassica napus genes

involved in specific pathways in the drought response. We expect genes involved in a particular path-

way to be closely associated with other genes of the same pathway in the interaction network. Since

the Brassica napus interaction networks have not been experimentally oberved, we can translate

the Arabidopsis thaliana protein-protein interaction (PPI) network to a purported Brassica napus

PPI network using ortholog data. Assuming the association kernel is a matrix G, the network as-

sociation score of any gene i from a set of query genes Q is
∑

q∈Q Giq, where the kernel can be the

graph diffusion kernel, or in our case, the spin-spin correlation matrix. Using known members of a

pathway (such as the ABA signaling network or a part thereof) as the query gene set Q, all the other

genes can be ranked according to their network scores. The appropriate network model parameter

(i.e., temperature for the spin-spin correlation) can either be tuned in a supervised learning fashion

using cross-validation with known pathway members if we have sufficient data. As we have shown

in this work, we can also use link prediction to learn the optimal temperature, which would be

especially useful if we do not have sufficient confidence in the known true members of the pathway

of interest for parameter fitting. We can also integrate other sources of data, such as differential

expression, by adding a differential expression score as the fold change, p-value, or an equivalent

z-score computed from it. In addition, multiple network scores could theoretically be computed if

there were additional network data (such as genetic or regulatory interactions, multiple systematic

studies, or homology based translation from multiple species). Obviously increasing the number of

such features and their associated parameters and weights can lead to potentially more powerful

prediction systems, but they require larger amounts of training data to learn all the parameters.

With the support of additional experimental data, we would like to continue this work to explore
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these ideas further and develop them into concrete algorithms and prediction systems.
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