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Abstract 

Translation is a major step in the production of functional protein from 

coding regions, and as such is subject to extensive regulation.  Here, I 

describe translational profiling of physiological responses in living 

mammals.  First, ribosome profiling has been adapted for use in whole 

tissues and a ribosome affinity purification system has been developed.  

This affinity purification system has been used here to provide physical 

evidence of translation in non-coding regions, but in mice could also be 

used for ribosome profiling of small cell populations.  In collaboration, I 

have combined ribosome profiling with RNA-Seq and proteomics to study 

changes in protein production in aging.  This study revealed many 

tissue-specific differences between young and old animals, and 

established a correlation between change in translation and change in 

protein level in aging.  Changes in alternative splicing were also seen for 

several transcripts.  Lastly, I have applied ribosome profiling to study 

translational changes in mouse liver resulting from high-fat diet and 

glucose.  While the changes present in these two responses are similar, 

they differ greatly in magnitude.  Furthermore, in high-fat fed animals, 

the normal response to glucose is dramatically reduced. 
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Chapter 1: Introduction 

Translation is a crucial step in the expression of protein coding genes.  

While transcription, RNA processing, and RNA transport are important 

for providing mRNA to be translated, without translation those mRNAs 

have little impact on the cell.  Translation also consumes a large fraction 

of a cell’s resources.  In most eukaryotes, including yeast, flies, mice, and 

human cells, a substantial portion of the proteome is devoted to 

translation (Nagaraj 2012, Brunner 2007, Geiger 2013, Geiger 2012).  In 

mice, this is true across many tissue types, including liver and pancreas, 

both of which produce large amounts of protein (e.g. albumin and 

lipoproteins in liver, digestive enzymes and insulin in pancreas). 

Because translation requires a large amount of cellular resources, it is a 

logical target for regulation.  Large amounts of unnecessary translation 

would certainly impose a large fitness cost for cells, especially in non-

optimal environments.  It is also important to control translation so that 

proteins are synthesized when and where they are needed, as many 

proteins can have negative effects when expressed at the wrong time or 

place (Kong and Lasko 2012).  Regulation of translation also offers a 

more rapid response than transcription or mRNA processing.  

Transcriptional regulation requires time for the accumulation of the 

necessary transcripts, their processing and export, and translation.  

Translational regulation, by contrast, can respond without waiting for 



2 
 

transcripts to accumulate and be processed (Kong and Lasko 2012).  

Translational regulation can also be used to ensure a protein is produced 

only in a particular region of the cell (Kong and Lasko 2012).  This makes 

translational control particularly effective for pathways which respond to 

cellular stresses. 

There are several pathways that are known to regulate protein 

production at the translational level, including mechanistic target of 

rapamycin (mTOR), a global translation regulator (Sengupta, 2010).  The 

mTOR protein is a kinase that regulates translation and autophagy in 

response to many input signals, including cellular energy levels, amino 

acid availability, and growth factors.  As a part of the mTORC1 complex, 

it promotes translation through phosphorylation of several targets.  One 

target is eIF4E-binding protein 1 (4E-BP1), which blocks translation 

initiation factor eIF4E, which binds the 5’ cap of the mRNA, from 

interacting with the scaffold protein eIF4G until phosphorylated by 

mTOR (Ma and Blenis 2009).  Another target is S6K, a kinase that 

targets a number of different proteins involved in translation including 

the ribosomal protein Rps6 (Ma and Blenis 2009).  Although much of the 

translational regulation downstream of mTOR is global, it also has a 

more specific regulatory effect on transcripts with 5’ oligopyrimidine 

tracts (5’ TOP), which include most ribosomal proteins and elongation 

factors (Laplante and Sabatini, 2012).  Although the mechanism of this 

control is unclear, recent studies have suggested that mTOR acts on 
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5’TOP mRNAs through La-related protein 1 (LARP1), which competes 

with eIF4G on 5’TOP mRNAs unless phosphorylated by mTOR (Fonseca 

et al., 2015; Mura et al., 2015). 

Phosphorylation of eIF2α, a subunit of eIF2, which recruits the initiator 

tRNA, is another well-characterized translational regulation mechanism.  

There are a number of kinases that target eIF2α, including Gcn2, in 

response to amino acid starvation, and PERK, in response to ER stress 

(Ron and Walter 2007, Wek et al. 2006).  Phosphorylation of eIF2α 

prevents eIF2 from being recharged with GTP, which is required for its 

role in translation initiation (Wek et al., 2006).  This phosphorylation 

event causes a global decrease in translation levels, but also a seemingly 

paradoxical increase in translation of a number of target genes.  The 

best-known target of this induction is ATF4, a transcription factor, whose 

increase in translation depends on upstream open reading frames 

(uORFs) on the ATF4 transcript (Vattem and Wek 2004).  Under normal 

conditions, these uORFs are translated, preventing translation because 

they overlap the start codon (Vattem and Wek 2004).  However, when 

active eIF2 is low, the uORFs are more likely to be skipped in favor of the 

main ORF (Vattem and Wek 2004). 

Both mTOR and eIF2α phosphorylation are examples of translational 

regulatory pathways that respond to changes in nutrient levels.  All 

organisms must balance their near constant need of nutrients with their 
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sporadic availability.  In multicellular organisms, this balance is 

complicated by the varying needs of different cell types, and the 

sometimes contradictory requirements of the cell versus the organism.  

Glucose is one of the most closely regulated nutrients in many 

organisms, and is often one of the primary sources of energy for 

eukaryotic cells (Brown and Edelman 2010).  Abnormal blood glucose 

levels can lead to many symptoms, ranging from temporary fatigue and 

confusion from hypoglycemia (low blood sugar) to significant kidney and 

neurological damage from chronic hyperglycemia (high blood sugar). 

In humans (and other animals), misregulation of glucose levels results in 

diabetes, a metabolic disease that affects over 29 million people in the US 

alone (CDC, 2015).  In healthy individuals, glucose levels in the blood are 

controlled by signals secreted by the pancreas.  Insulin, secreted by β-

cells, instructs liver hepatocytes (and other cells, such as skeletal 

muscle) to absorb glucose from the blood (Brown and Edelman 2010).  

Glucagon, secreted by α-cells, instructs liver hepatocytes to release 

stored glucose into the blood (Brown and Edelman 2010).  Diabetes 

occurs when insulin is no longer produced properly, due to loss or 

dysfunction of β-cells, or hepatocytes and other target cells no longer 

respond to insulin properly. 

There are a number of elements of the glucose control system that are 

translationally controlled.  First, insulin has been shown to be 
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translationally regulated (Welsh et al. 1986, Kulkarni et al. 2011).  

Although the initial release of insulin is controlled post-translationally, 

these translational mechanisms increase insulin production, preparing 

for later changes in glucose levels and supporting sustained insulin 

secretion (Welsh et al. 1986, Kulkarni et al. 2011).  Furthermore, a 

recent study found that insulin mRNA is present in glucagon-secreting α-

cells, but no insulin protein is detected (Blodgett et al. 2015).  Second, 

knockout of PERK, an eIF2α kinase and component of the unfolded 

protein response (UPR), in mice causes the islets of Langerhans, the 

location of both α- and β-cells, to deteriorate (Zhang et al., 2002).  PERK 

knockout mice are born normal, but gradually lose their islets, beginning 

with the β-cells.  Lastly, mTOR responds to both cellular glucose levels 

and insulin levels (Laplante et al. 2012).  This final observation combines 

both the cellular energy signals and organismal energy signals, lessening 

protein synthesis when either the cell or organism is lacking nutrients. 

Diet-induced obesity, another major health concern, is often a 

contributing factor to the development of diabetes, among other 

metabolic diseases (Winzell and Ahrén, 2004).  An estimated two-thirds 

of adults in the US are considered overweight or obese (Ogden et al., 

2014).  Diet-induced obesity, in part through the induction of oxidative 

stress, is thought to play a large role in the development of diabetes (Rani 

et al., 2016).  However, there remains a fundamental gap in our 

understanding of this process.  Insulin signaling to the liver regulates 
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both glucose and lipid metabolism.  Knockdown of liver-specific insulin 

receptor (LIR) in mice blocks insulin communication to both glucose and 

lipid metabolic pathways, but high-fat diet primarily affects glucose 

metabolism, while lipid metabolism remains normal (Brown & Goldstein, 

2008). 

There is evidence that diet-induced obesity has specific effects on 

translation in the liver.  Analysis of the ER-associated proteome in 

normal and obese mice suggests that, while lipid metabolic proteins are 

more prevalent in obese mice, those involved in protein production are 

down-regulated (Fu et al., 2011).  These include translation initiation 

factors as well as other protein metabolism factors.  Measurement of ER-

associated translation by polysome profiling followed by microarray 

showed a large number of differentially translated transcripts (Fu et al., 

2012). 

Another basic biological process in which translational regulation plays a 

role is aging, a complex process, characterized by gradual deterioration of 

an organism.  Many cells and tissues within an organism are post-

mitotic, while at the molecular level they are subject to damage and 

turned over regularly.  Some structures, however, are not subject to this 

turnover and their protein components are maintained over long periods 

of time (Savas et al., 2012).  These represent a particularly interesting 

group, as one would expect their synthesis to decrease over the 
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organism’s lifespan.  Although several studies have independently 

characterized the global changes in mRNA and protein abundance 

between young and old organisms (Jiang et al., 2001; Lee et al., 2000; Lu 

et al., 2004; Wood et al., 2013; Walther and Mann, 2011), none have 

combined these approaches with measurements of translation levels.  

Combined measurement of mRNA levels, translation levels, and protein 

levels within the same set of organisms can provide a more complete 

picture of not only what changes are occurring, but also how they 

happen. 

Ribosome profiling is used to investigate translation on a genome-wide 

scale with nucleotide resolution (Ingolia et al., 2009).  Ribosome profiling 

simultaneously measures ribosome occupancy on all transcripts, 

presenting an unbiased and genome-wide view of protein production.  At 

the same time, the exact location of ribosomes can be identified with 

nucleotide level resolution, revealing alternative translational events such 

as uORF translation and ribosome pausing.  Ribosome profiling is 

performed by digesting lysates with an RNase, destroying all mRNAs not 

protected by a protein complex (Ingolia et al. 2012).  Ribosomes can be 

isolated by centrifugation through a sucrose cushion, and the 

“footprints” of the ribosomes can be isolated.  These short (about 28 

nucleotide) fragments are used to create a DNA library which is then 

sequenced using “next-generation” sequencing platforms. 
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For many applications, including those discussed above, adaptation of 

ribosome profiling to use in whole tissues is essential.  Although many 

interesting questions can be addressed in yeast or cell culture, there are 

a vast number of applications that are difficult or impossible to replicate 

outside of a full organism.  Ribosome profiling was initially performed in 

yeast, and has since been adapted to mammalian cell culture (Ingolia et 

al., 2010; Ingolia et al., 2011).  Profiling of whole tissues does, however 

present further challenges.  Yeast for ribosome profiling are rapidly 

harvested by vacuum filtration and frozen, while cultured cells can be 

lysed directly on the dish they are grown in.  Tissues to be profiled must 

be disrupted in a way that prevents degradation and changes in the 

translational landscape during preparation.  This can be made even more 

challenging in certain tissues (e.g. pancreas) that produce a wide array of 

enzymes for digestion of protein and RNA.  These challenges can be 

overcome by flash-freezing of tissues, cryogenic grinding, and addition of 

RNase and protease inhibitors to lysis buffer. 

Cell type heterogeneity is another major concern introduced by profiling 

whole tissues.  While some tissues (e.g. liver) are largely homogenous, 

others (e.g. pancreas) are highly heterogeneous.  While beta-cells are of 

great interest in studying translational responses to glucose levels, they 

represent only 1-2% of the total pancreas, which is dominated by the 

“exocrine” pancreas, which produces vast amounts of enzymes for 

digestion.  Unfortunately, microdissection and cell sorting techniques are 
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incompatible with protecting polysomes from degradation or changes in 

translation profiles.  A promising avenue for ribosome profiling of specific 

cell lineages within heterogeneous tissues is lineage specific ribosome 

tagging.  These systems apply a genetically coded affinity tag (e.g. HA, 

GFP) to ribosomes only in specific cell types (Sanz et al. 2009, Heiman et 

al. 2008, Heiman et al. 2014).  Unfortunately existing systems were not 

effective for ribosome profiling in our hands due to non-specific 

background binding.  I propose and have built, in collaboration with 

rotation students, a new system using a ubiquitous Avi tag, which can be 

biotinylated in a lineage specific manner by Cre-inducible expression of 

the BirA biotin ligase. 

Another interesting application of ribosome profiling coupled with 

pulldown of tagged ribosomes is verification of ribosome association in 

non-canonical coding regions.  These include long intergenic non-coding 

RNAs (lincRNAs), RNA polymerase II products with no clear coding 

potential (Bertone et al., 2004; Carninci et al., 2005; Guttman et al., 

2009), and uORFs (Calvo et al., 2009; Wethmar et al., 2013).  Previous 

ribosome profiling has suggested extensive translation in many of these 

regions, but questions remained as to whether these were bona-fide 

ribosome footprints (Ingolia et al., 2011; Chew et al., 2013; Guttman et 

al., 2013).  Ribosome profiling of ribosome pull-down provides clear 

experimental evidence for these fragments being true ribosome-protected 

fragments.  
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Chapter 2: Ribosome profiling in whole tissues and 

ribosome affinity purification 

Results 

Ribosome profiling is a powerful technique that measures translation on 

a genome-wide scale with nucleotide resolution.  Previously, the 

technique has been used in yeast and mammalian cell culture (Ingolia et 

al., 2009, Ingolia et al., 2012).  While these systems can be very 

informative, some questions do not lend themselves to yeast or cell 

culture models.  For these applications, ribosome profiling of whole 

tissues from an intact organism is essential. 

I addressed several concerns relating to the use of ribosome profiling in 

tissues to obtain accurate and reproducible results.  First, hypoxia 

induced by or occurring immediately after euthanasia could cause 

dramatic translational changes that would obscure meaningful biological 

changes.  Hypoxia is known to activate mTOR, with strong translational 

effects (Sengupta et al., 2010).  To address this concern, I used cervical 

dislocation as the primary method of euthanasia and harvested tissues 

as quickly as possible.  The second concern I addressed is degradation or 

changes in the translational landscape during tissue homogenization and 

sample preparation.  This was prevented by rapid freezing of dissected 

tissues in liquid nitrogen and cryogenic grinding of tissues in a Retch 
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MM400 mixer mill prior to resuspension in lysis buffer.  With this 

procedure, tissues are maintained at extremely low temperatures while 

the macro-scale tissue structure is disrupted, and are only thawed as a 

powder in the presence of lysis buffer.  Lastly, many tissues (e.g. 

pancreas) produce protein products that could degrade RNA or proteins, 

which could damage ribosomes and prevent footprint recovery.  I address 

this concern by including murine RNase inhibitor, which will inhibit 

endogenous mouse RNases but not RNase I used for footprinting, and a 

protease inhibitor cocktail in the lysis buffer. 

This protocol resulted in reproducible profiling from mouse liver (Figure 

2.1A).  While there is variation between replicates, the vast majority of 

transcripts vary by less than 2-fold.  Enrichment of footprints within 

coding regions and 3 nucleotide periodicity, a hallmark of bona-fide 

translation, can also be seen in these data (Figure 2.1B).  Comparing the 

data from liver to that of similar experiments using pancreas by gene 

ontology analysis, it is clear that the expression levels measured reflect 

the known roles of those tissues (Figures 2.1C-D).  Specifically, 

transcripts associated with bile acid, small molecule metabolic processes, 

and lipid metabolism are enriched in liver profiling, while transcripts 

associated with digestion and peptidase activity are enriched in pancreas 

profiling. 
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Figure 2.1. Ribosome profiling of whole tissues 

(A) MA plot showing fold change between liver profiling from two 
untreated biological replicates.  The shaded area indicates a range of 2-

fold change. 
(B) Metagene plot showing the counts of 5’ ends of reads at positions 
relative to the start codon. 

(C-D) Significantly enriched gene ontology categories in liver relative to 
pancreas (C) and pancreas relative to liver (D). 

 

Analysis of translation in heterogeneous tissues (e.g. pancreas) requires 

a method for lineage specific ribosome profiling.  As existing technologies 

were incompatible or insufficient for our needs, my advisor and I 

designed our own lineage-specific ribosome profiling system.  Our system 

relies on the Avi tag, which is a short peptide able to be biotinylated by 

the BirA ligase.  We plan to tag the endogenous Rpl10A (ribosomal 

protein 10A) locus with the Avi tag, resulting in the addition of the Avi 

tag to all ribosomes in every cell.  The BirA ligase can then be expressed 
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in target cell types, for instance by Cre-mediated activation.  In this way, 

only cells in the Cre-positive lineage used will have biotinylated 

ribosomes.  These Avi-tagged Rpl10A constructs were prepared and 

initially tested in cell culture by rotation students in the Ingolia Lab.  

Their work demonstrated that the system could be used for ribosome 

profiling, and that mitochondrial transcripts were disenriched, 

suggesting real enrichment of tagged ribosomes. 

I wanted to test the ribosome affinity purification system in an 

environment with many non-biotinylated ribosomes that could be 

tracked to report the quality of our purification.  Lysate from Rpl1B-GFP 

yeast (Rpl1B is the yeast homolog of mouse/human Rpl10A) were mixed 

with Hek293 cell lysates with biotinylated ribosomes.  This experiment 

showed that I could collect biotinylated ribosomes from a mixed 

population (Figure 2.2A).  Unfortunately the Rpl1B-GFP was difficult to 

track by western blot, and was uninformative for measuring the extent of 

background binding.  While I appeared to recover all biotinylated Rpl10A-

Avi, this represented only a small fraction of the total Rpl10A-Avi present 

in the cells.  This suggested that only a fraction of Rpl10A-Avi ribosomes 

were being biotinylated.  To improve biotinylation, supplemental biotin 

was added to the cell culture medium about 24 hours before collection.  

Although I was still unable to pull down the majority of Rpl10A-Avi, I did 

see an improvement in how much Rpl10A-Avi was biotinylated (Figure 

2.2B). 
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Figure 2.2. Pull-down of tagged Rpl10A with or without biotin 
supplementation 

(A) Tagged Hek293 cell lysates were mixed with Rpl1B-GFP yeast lysates 
and bound to streptavidin beads, without biotin supplementation of 
media.  All biotinylated Rpl10A-Avi appears to be bound. 

(B) Tagged Hek293 cell lysates were mixed with Rpl1B-GFP yeast lysates 
and bound to streptavidin beads, following biotin supplementation of 
media. 
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I decided to try ribosome profiling of these mixed populations to 

determine how much enrichment I could get relative to untagged yeast 

ribosomes.  Libraries were prepared from an input sample that was not 

enriched for biotinylated ribosomes and a sample that was bound to 

streptavidin beads.  Reads were aligned to a combined human and yeast 

genome, with multiple alignments suppressed to prevent any cross-

alignment.  I saw a nearly 7-fold enrichment of human transcripts in the 

bound library relative to yeast (Figure 2.3A).  Two well expressed yeast 

transcripts were enriched, one endogenously biotinylated protein, likely 

biotinylated while still attached to ribosomes, and one aminoacyl-tRNA 

synthetase.  Several human mitochondrial transcripts were disenriched, 

consistent with previous results and the fact that they are translated by 

an independent pool of ribosomes.  
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Figure 2.3. Enrichment of human transcripts in mixed profiling 
(A) A mixed lysate of Rpl10A-Avi tagged Hek293 lysate and Rpl1B-GFP 
tagged yeast lysate was bound to streptavidin beads and ribosome 

profiling was performed on input and bound lysates.  Human transcripts 
are enriched approximately 6.7-fold in the bound library compared to 
yeast transcripts. 

 

I further optimized ribosome affinity purification by measuring the 

amount of RNA recovered rather than by Western blots, which had 

proven uninformative, or by ribosome profiling, which is expensive and 

time consuming.  I performed ribosome purification from untagged yeast 

and tagged human lysates independently, and the RNA concentration in 

the input and bound fractions was measured.  RNA measurements 

showed a clear difference in the yield of ribosomes from yeast vs. human 

lysates, suggesting about 10-fold difference in their ability to be pulled 

down (Figure 2.4A).  Several adjustments to the pull-down conditions 

were tested, but in the end SDS wash was the only condition that 

resulted in improved results.  While the percent of RNA recovered from 
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human lysates decreased slightly with SDS wash, non-specific pull-down 

of yeast was reduced much more dramatically (Figure 2.4B). 
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Figure 2.4. SDS wash reduces background binding 
(A) RNA concentrations of input Rpl10A-Avi tagged Hek293 lysate and 
streptavidin bound Hek293 and Rpl1B-GFP yeast lysates are compared. 

(B) The percent recovery of RNA from tagged Hek293 lysate (teal) and 
untagged yeast lysate (orange) is shown using the previous pull-down 
conditions or SDS wash.  SDS wash lowers non-specific recovery from 

yeast lysate, while having only a small effect on recovery from tagged 
Hek293 lysates.  
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The remainder of this results section was originally published in Cell 

Reports on Aug. 21, 2014.  It is published under a creative commons 

license (CC BY 3.0), and as such may be reproduced here so long as 

appropriate credit is given.  Only portions of this work that directly involve 

work performed by the thesis author (Michael Harris) are shown here.  

More specifically, I performed the ribosome affinity purification and 

profiling experiments and processed and analyzed the resulting data. 

Ribosome Profiling Reveals Pervasive Translation Outside of 

Annotated Protein-Coding Genes 

Nicholas T. Ingolia1,5,Gloria A. Brar2,5 Noam Stern-Ginossar2,6 Michael S. 

Harris1,3,5, Gaëlle J.S. Talhouarne1,3, Sarah E. Jackson4, Mark R. Wills4, 

and Jonathan S. Weissman2 

1Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, 

USA 
2Department of Cellular and Molecular Pharmacology, Howard Hughes Medical 

Institute, Center for RNA Systems Biology, California Institute for Quantitative 
Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA 
3Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA 
4Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK 
5Present address: Department of Molecular and Cell Biology, University of California, 
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We next sought to verify that footprints seen outside of annotated coding 

regions copurified specifically with the ribosome. Ribosome affinity 

purification would provide strong evidence that footprints on lncRNAs 

and on 5′ UTRs were bound to the ribosome (Figure 2.5A). We typically 
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recover ribosomes by sedimentation in an ultracentrifuge, but this 

purification provides little specificity for ribosomes over other large RNPs. 

The most prominent classical noncoding RNAs that contribute to 

background in ribosome-profiling experiments are components of 

nonribosomal RNPs, such as RNase P, telomerase, and the vault RNP. We 

infer that these RNP assemblies both protect RNA fragments from 

digestion and then sediment with ribosomes, and it seemed possible that 

some apparent ribosome footprints on lncRNAs actually reflected the 

incorporation of the lncRNA into a similar RNP complex. 

Specific affinity purification of the ribosome would deplete background 

from these RNPs. The large (60S) subunit joins at the last step in 

translation initiation and does not associate with mRNA prior to this 

time, and so any footprint associated with the 60S subunit derives from 

a ribosome that has completed initiation and begun translation (Aitken 

and Lorsch, 2012). Ribosome-profiling data are unlikely to include 

footprints of small (40S) subunits scanning 5′ UTRs prior to initiation, 

because these complexes are unstable in the absence of chemical 

crosslinking and are expected to protect a different mRNA footprint size 

from assembled 80S ribosomes (Valásek et al., 2007). Nonetheless, we 

wished to verify that footprints on 5′ UTRs reflected postinitiation-

assembled (80S) ribosomes. 
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In order to purify 80S (and 60S) ribosomes specifically, we developed an 

affinity-tagged version of large subunit ribosomal protein L1 (formerly 

RPL10A). Several ribosome epitope tags have been developed for lineage-

specific polysome isolation, including the translating ribosome affinity 

purification tag, in which L1 is fused to enhanced GFP (Heiman et al., 

2008). We believed that in vivo biotinylation of L1 would offer advantages 

over epitope tags, allowing us to exploit the high affinity and rapid 

association of biotin and streptavidin to purify tagged ribosomes. We 

placed a biotin acceptor peptide at the end of a long, flexible linker at the 

C terminus of L1 and coexpressed this tagged protein along with birA, 

the cognate E. coli biotin ligase, in human embryonic kidney 293 

(HEK293) cells. Tagged L1 was biotinylated, dependent on the presence 

of birA, and L1-biotin was incorporated into ribosomes. 

In order to test our enrichment of tagged ribosomes, we mixed lysate 

from human cells expressing L1-biotin (in addition to their endogenous 

L1) with a control yeast lysate lacking biotinylated ribosomes and 

compared the fate of the human ribosome footprints to footprints from 

yeast genes. We performed nuclease footprinting of this mixture, 

collected all ribosomes by filtration through Sephacryl S400 columns, 

and purified the tagged human ribosomes by streptavidin affinity. 

Footprints from human protein-coding genes were strongly enriched in 

the streptavidin-bound sample relative to footprints from yeast 

transcripts (Figure 2.5B). The only exception was the yeast gene ACC1, 
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which encodes the endogenous yeast biotin carrier protein. We assume 

that it is biotinylated cotranslationally in vivo and so footprints recovered 

by affinity purification through the nascent chain. Consistent with this 

model, only footprints from the 3′ end of ACC1, corresponding to 

ribosomes that have synthesized the biotin acceptor site of Acc1p, are 

enriched. Importantly, the observed specificity for human mRNAs also 

excluded post lysis association of human ribosomes to yeast mRNAs, 

arguing strongly that footprints seen in ribosome-profiling experiments 

reflect translation that initiated in vivo prior to cell lysis. Fragment length 

distribution analysis provided further evidence against human ribosomes 

subject to affinity enrichment on yeast mRNAs, as protected fragments 

on human and yeast ribosomes are distinct in the mixed lysate and there 

was no evidence for a shift toward human fragment lengths on yeast 

messages following affinity purification. Human snoRNA reads also 

copurified with biotinylated L1, though somewhat less efficiently than 

ribosome footprints, as we expect due to their binding to preribosomal 

complexes in order to guide pre-rRNA modification (Figures S2.1A–C). 

We then investigated the fate of other human-derived background reads 

following affinity purification of ribosomes. As noted above, profiling data 

after conventional ribosome sedimentation in HEK cells contained 

fragments mapping to several classical noncoding RNAs that also 

appeared in the mESC profiling, such as RNase P. Fragment length 

analysis using the FLOSS reliably discriminated this background from 
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footprints on coding sequences (Figure 2.5D). These same transcript 

fragments were also depleted in affinity-purified profiling samples, at 

least as strongly as were yeast-coding sequences (Figures 2.5E-F). 

Fragments from mitochondrial coding sequences were also strongly 

depleted, as the mitochondrial ribosome, which is entirely distinct from 

the cytosolic ribosome, lacked a biotin tag. 

Having established affinity purification as a physical separation of 

background RNA fragments from true ribosome footprints, we next 

turned to investigate the status of apparent ribosome footprints in 

noncoding regions. We first verified that, as in mESCs, the protected 

fragments size distribution on HEK cell 5′ UTRs closely resembled 

ribosome footprints from the coding sequences (Figure S2.1D). These 5′ 

UTR protected fragments also copurified with the large ribosomal 

subunit in nearly all cases (Figure 2.5C). We thus conclude that these 

fragments are true 80S ribosome footprints and do not reflect scanning 

40S subunits. Likewise, we find that protected fragments on most HEK 

lncRNAs are physically bound to the ribosome and likely reflect true 

translation of these noncoding RNAs (Figures 2.5G–I). Furthermore, the 

small number of lncRNAs yielding substantial non-ribosome-associated 

fragments were independently identified as sources of background by the 

FLOSS analysis. 
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Figure 2.5. Ribosome Affinity Purification Separates 80S Footprints 
from Background RNA (next page) 
(A) Schematic showing that affinity purification of tagged 60S ribosome subunits 

recovers 80S footprints but depletes background from nonribosomal RNPs, potential 
scanning 40S footprints, and footprints of untagged yeast 80S ribosomes. 

(B) Human ribosome footprints are retained during ribosome affinity purification 

whereas yeast ribosome footprints (excepting the yeast biotin carrier ACC1) are 

depleted. 

(C) Fragment length analysis of nuclear and mitochondrial coding sequences and of 
functional noncoding RNAs in HEK cells. A fragment length score cutoff based on 

extreme outliers relative to coding sequences excludes background fragments. 

(D) Ribosome footprints are retained during ribosome affinity purification whereas 

mitochondrial footprints and noncoding RNAs are depleted. 

(E and F) Ribosome footprints on 5′ UTRs are retained during affinity purification of the 

60S ribosomal subunit. 
(G) Fragment length analysis of ENCODE lncRNAs, identifying a small number of 

transcripts with likely nonribosomal contamination. 

(H and I) Ribosome footprints on lncRNAs are retained during ribosome affinity 

purification, whereas many sources of nonribosomal contamination, including the 

nuclear noncoding RNA XIST, are depleted. 
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Discussion 

Adaptation of ribosome profiling to whole tissues is an important 

advancement in the use of the technique.  Many biological questions, 

including those addressed in subsequent chapters of this thesis, are 

better suited to study in whole animals rather than cell culture.  For 

example, while cell culture models of glucose response are available, they 

fail to fully capture the complex network of signals that give rise to in 

vivo responses.  While some aspects of the liver’s response to glucose 

may be a direct result of increased glucose levels, elevated insulin 

released from the pancreas is also a major contributor.  Some responses 

may be mediated by other, less obvious, hormone factors.  Studying this 

system with all the components intact provides a much better picture of 

this response. 

The lineage-specific ribosome isolation strategy described here will 

further expand the range of systems that can be studied using ribosome 

profiling.  For example, while the liver is relatively homogenous and can 

be meaningfully studied as a whole organ, translational regulation in β-

cells can only be assayed with lineage-specific profiling, as they comprise 

a small percentage of the pancreas.  Lineage-specific profiling will also be 

immensely helpful in studying translation in the brain, as the brain is 

highly complex and heterogeneous.  The ability to select a small subset of 

cells using an existing Cre driver line would allow for studying of many 
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interesting phenomenon that may be specific to certain types of neurons.  

Although this system is incomplete, it has been shown to be effective at 

separating populations of ribosomes in mixed cell culture and yeast 

lysates.  Transfer of the constructs used here to mice would likely 

provide the necessary lines for lineage specific profiling. 

The discovery of ribosome footprints in non-coding regions suggested 

that these sequences are, in fact, translated to some degree.  This has 

remained relatively controversial, due to concerns about these data 

representing bona-fide ribosomes footprints and not the footprints of 

some other ribonucleoprotein (RNP) complex.  Among other evidence, the 

presence of these footprints in ribosome profiling libraries generated 

using this ribosome affinity purification system has clearly demonstrated 

that these fragments are in fact bona-fide ribosome footprints. 
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Chapter 3: Translational regulation in aging 

While most proteins are turned over within hours to days to avoid 

accumulation of damaged proteins (Belle et al., 2006, Cambridge et al., 

2011 and Price et al., 2010), this is not always the case.  There are a 

number of proteins that have been shown to be extremely long-lived, 

ranging all the way up to several years (D’Angelo et al., 2009, Masters et 

al., 1977, Piha et al., 1966, Rodrĩguez de Lores et al., 1971, Savas et al., 

2012 and Verzijl et al., 2000).  A central question in the study of these 

long-lived proteins is whether they are continually translated in older 

animals.  One might expect, because the old proteins remain, that far 

less new protein is produced in older animals. 

I collaborated with Brandon Toyama and Martin Hetzer in their study of 

the long-lived proteins that they had identified in rat brain and liver 

(Savas et al., 2012).  These proteins were primarily components of the 

nuclear pore complex and histones, some of which were maintained in 

the brain for up to 12 months.  I performed ribosome profiling on young 

and old tissues to assess the levels of protein production for these long-

lived proteins. 

  



29 
 

 

The following two paragraphs were originally published in Cell on Aug. 29, 

2013.  A license has been acquired from Elsevier (License # 

3838920365480) for reproduction of these excerpts which contain the 

work contributed by the thesis author (Michael Harris).  I performed the 

ribosome profiling experiment described here, and analyzed the resulting 

data. 

Identification of Long-Lived Proteins Reveals Exceptional Stability 

of Essential Cellular Structures 

Brandon H. Toyama1, 5, Jeffrey N. Savas2, 5, Sung Kyu Park2, Michael S. 

Harris3, 4, Nicholas T. Ingolia3, John R. Yates III2, Martin W. Hetzer1 

1Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 

CA 92037, USA 
2Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 

92037, USA 
3Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, 

USA 
4Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA 

 

Results 

In the case of eye lens crystallin, the lack of protein translation (and 

degradation) in lens fiber cells provides a rationale for their exceptional 

lifespan. To determine if lack of synthesis might explain the exceptional 

lifespans of the cellular proteins identified above, we determined the level 

of translation for all proteins expressed in liver and brain tissue through 
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deep sequencing of ribosome-protected mRNA footprints (Ingolia et al., 

2009). Translation levels (i.e., density of ribosome footprints) were 

determined for over 11,000 proteins in 6-month-old liver and brain, and, 

unlike crystallin, we found evidence for translation of almost every long-

lived protein. To test if there was a correlation between a protein’s 

synthesis rate and its lifespan, we plotted translation levels versus 15N 

fractional abundance at 6 months postchase (Figure 3.1A). Intriguingly, 

no strong correlation could be determined, with long-lived proteins 

possessing translation levels that span three orders of magnitude. 

Prevalent translation was also seen for all Nups regardless of their 

protein lifespan or tissue type (Figures 3.1A and 3.1B) and is particularly 

noteworthy for the NPC proteins Nup98 and Nup96. These nucleoporins 

are translated as a single precursor polypeptide that is autocatalytically 

cleaved into Nup98 and Nup96 (Fontoura et al., 1999). MS data on these 

two proteins 6 months postchase reveal that, despite their identical 

translation rates, Nup96 retains 15N signal whereas Nup98 has been 

completely replaced with newly synthesized copies (Figures 3.1C and 

3.1D). This difference is consistent with the structural and functional 

properties of these two Nups: although Nup98 is a peripheral and highly 

mobile nucleoporin with very low residence time at the NPC, Nup96 is a 

member of the Nup107/160 subcomplex and is therefore critical for the 

assembly and structural integrity of the nuclear pore (Hoelz et al., 2011 

and Rabut et al., 2004). It thus appears that protein longevity is the 
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result of protein deposition into a stable complex rather than a lack of 

expression. Because the overall levels of Nup96 and NPC numbers do not 

increase with age (see below), these results also suggest that newly 

synthesized copies of Nup96, which are not incorporated into the NPC, 

are rapidly degraded. 
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Figure 3.1. Protein Translation Does Not Correlate with Protein 
Lifespan 

(A) Protein translation levels of long-lived proteins. Translation levels (reads/CDS 

length) of long-lived proteins are plotted (log2) against their corresponding 15N 

fractional abundance at 6 months postchase. Translation levels of long-lived 

nucleoporins are plotted in orange. 
(B) Translation levels of NPC proteins in liver and brain tissue. Translation levels of all 

NPC proteins were determined in liver (horizontal axis) and brain (vertical axis) tissue, 

and plotted against each other (log2). 

(C) Translation and stability of Nup98/96. Top: schematic of the Nup98/96 translated 

peptide, as well as the cleavage site (aa 880) that produces the separate Nup98 and 
Nup96 proteins. Lower: elution profile MS1 traces of the indicated peptides from the 

Nup98 and Nup96 region, plotted as describe for Figures 3.1D–3.1G. 

(D) Stability of Nup98/96 over 12 months. Average 15N fractional abundance for Nup98 

(gray) and Nup96 (orange) was determined from multiple peptides for each indicated 

time point and plotted over time. 
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Discussion 

Another surprising result from our study is the continued translation of 

almost all long-lived proteins. This phenomenon is most clearly 

illustrated by the Nup98/Nup96 proteins, which are translated at 

identical rates from the same mRNA but exhibit divergent lifespans. 

Although Nup98 turns over rapidly, Nup96 is incorporated into the NPC 

scaffold, where it persists for months. This observation implies that the 

majority of newly synthesized Nup96 is immediately degraded in 

postmitotic cells. Why the coupling of translation of these two proteins is 

evolutionarily conserved when their cellular lifespans are divergent 

remains a mystery. Also unclear is the continuous production of long-

lived proteins despite the fact that they are stably embedded in a cellular 

structure. One possibility is that long-lived proteins may exist in multiple 

functional populations within the cell, whereby one population is stable 

and long-lived, whereas another is dynamic and short-lived. Thus, 

translation would be needed to maintain constant turnover of the short-

lived population. Alternatively, most of the newly synthesized copies may 

be unincorporated and subject to degradation. This possibility is 

consistent with protein turnover serving as a mechanism to buffer 

intracellular amino acid levels and with the reported immediate 

degradation of ∼30% of all translated proteins (Schubert et al., 2000 and 

Vabulas and Hartl, 2005). 
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Related to the study of long-lived proteins and their production rates is 

the broader question of how the overall proteome changes with age.  This 

includes identifying what proteins change in abundance between young 

and old animals, as well as understanding how these changes occur.  

Following the previous study of these long-lived proteins, I again 

collaborated with Brandon and Martin, along with Alessandro Ori and 

Martin Beck, in an integrative analysis of proteome change in aging. 
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The following was originally published in Cell Systems on Sept. 13, 2015.  

It is published under a creative commons license (CC BY-NC-ND 4.0), and 

as such may be reproduced here so long as appropriate credit is given.  

Sections of the paper that are not directly related to work performed by the 

thesis author (Michael Harris) are included in the “Results from 

collaborators” section.  More specifically, I performed the ribosome profiling 

and RNA-Seq experiments described here, processed and analyzed the 

resulting data, cross referenced transcriptome and translatome data with 

proteomics data, and played a major role in the writing process. 

Integrated Transcriptome and Proteome Analyses Reveal Organ-

Specific Proteome Deterioration in Old Rats 

Alessandro Ori1, 6, 7, Brandon H. Toyama2, 6, Michael S. Harris3, 4, 

Thomas Bock1, Murat Iskar1,Peer Bork1, 5, Nicholas T. Ingolia3 Martin W. 

Hetzer2 Martin Beck1 
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Meyerhofstrasse 1, Heidelberg 69117, Germany 
2Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 

North Torrey Pines Road, La Jolla, CA 92037, USA 
3Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 

CA 94720, USA 
4Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA 
5Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, 
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Summary 

Aging is associated with the decline of protein, cell, and organ function. 

Here, we use an integrated approach to characterize gene expression, 

bulk translation, and cell biology in the brains and livers of young and 

old rats. We identify 468 differences in protein abundance between 

young and old animals. The majority are a consequence of altered 

translation output, that is, the combined effect of changes in transcript 

abundance and translation efficiency. In addition, we identify 130 

proteins whose overall abundance remains unchanged but whose sub-

cellular localization, phosphorylation state, or splice-form varies. While 

some protein-level differences appear to be a generic property of the rats’ 

chronological age, the majority are specific to one organ. These may be a 

consequence of the organ’s physiology or the chronological age of the 

cells within the tissue. Taken together, our study provides an initial view 

of the proteome at the molecular, sub-cellular, and organ level in young 

and old rats. 
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Graphical Abstract 

 

Results 

To identify age-related molecular changes in the liver and brain, we 

sacrificed three “young” (6-month-old) and three “old” (24-month-old) 

rats from multiple litters, the latter of which represent old, but not dying, 

animals at the age of 50% expected survival. Brain and liver were 

harvested and identical samples were split for analysis at the 

transcription, translation and proteome levels by next-generation RNA 

sequencing, ribosome profiling and tandem shotgun mass spectrometry, 

respectively (Figure 3.2A). The mRNA abundance and translation output 

(total ribosome footprint reads) of 8,975 and 6,490 transcripts were 
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compared between young and old animals in brain and liver, 

respectively, and changes in translation efficiency were inferred by 

comparing these measured values. To increase proteomic coverage and 

obtain insights into subcellular localization, brain and liver samples were 

fractionated into nuclei, post-nuclear fraction 1 (pn1; enriched for 

mitochondria), post-nuclear fraction 2 (pn2; enriched for cytoplasmic 

membranes) and soluble cytosolic proteins (sol) according to a previously 

established procedure (Blobel and Potter, 1966 and Lovtrup-Rein and 

McEwen, 1966). All samples were analyzed by shotgun mass 

spectrometry, enabling us to perform 14,131 comparisons of protein 

abundances across two age groups and four subcellular fractions, 

covering 4,714 protein groups (i.e., collections of alternative protein 

isoforms containing shared peptides) mapping to 4,697 unique gene 

identifiers. 

The proteomic measurements were highly reproducible, as indicated by 

the high correlation between technical replicates (on average Pearson’s r 

= 0.974; Figure 3.2B). More importantly, correlation values across 

biological replicates of different age groups were significantly lower as 

compared to samples from the same age group (Wilcoxon rank sum test 

p value 2.5e-5 and 8.1e-5 for brain and liver, respectively; Figure 3.2C), 

demonstrating that the variation of protein abundance across age groups 

is more pronounced than the variation of protein levels across 

individuals of the same age. At the same time, the observed coefficients 
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of variation among both, young and old animals were very low (median 

coefficient of variation ∼25%; Figure S3.1A). Similarly, both ribosome 

profiling and RNA sequencing (RNA-seq) were highly reproducible, as 

indicated by high correlation between replicates (Figures S3.2A-B, 

S3.2D-E). We thus conclude that the measured changes in protein and 

transcript abundance, and ribosome occupancy significantly 

discriminate samples obtained from the two age groups with the number 

of analyzed animals (n = 3 for each age group) using rigorous statistics 

(Figures S3.1B-C, S3.2C, and S3.2F). 

In agreement with previous studies (Jiang et al., 2001, Lee et al., 2000, 

Lu et al., 2004, Toyama et al., 2013, Walther and Mann, 2011 and Wood 

et al., 2013), our data underline that age-specific variations of the 

transcriptome and proteome are much less pronounced than tissue-

specific differences (Figure S3.1D). The majority of genes and proteins 

(>90%) are stably expressed and maintained in both the brains and livers 

of old animals (Figures 3.2D and 3.2E). Ribosome profiling provides an 

inclusive measure of “translation output” that reflects the net effect of 

changes in mRNA levels and ribosome occupancy. We identified 658 and 

490 transcripts, in brain and liver respectively, with changes in 

translation output (adjusted p value < 0.01). Of these, 168 (brain) and 

283 (liver) were caused exclusively by changes in mRNA abundance. The 

“translation efficiency” of an mRNA is the overall translation output from 

ribosome profiling normalized over the transcript abundance from RNA-
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seq. Among differentially expressed transcripts, 96 (brain) and 9 (liver) 

displayed exclusively a change in translation efficiency but not in 

transcript abundance (Figure 3.2F). In order to directly relate changes in 

protein production to the observed alterations of protein abundance, we 

compared our translation output values from ribosome profiling to our 

proteomic measurements. At the proteomic level, significant abundance 

changes for 204 protein groups in young versus old organs (q value < 

0.1) were detected. A total of 264 proteins were identified exclusively and 

consistently in all three replicates of one age group but in no replicates of 

the other age group; these were considered as potentially affected. We 

conclude that hundreds of genes and proteins were identified that 

differentiate young and old organs and constitute a comprehensive 

resource for the scientific community to query molecular alterations of 

cells in their physiological ground state during aging in mammals. 
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Figure 3.2. Integrated Genomics and Proteomics Analysis of Aging 
Brain and Liver (next page) 
(A) Brain and liver samples obtained from three “young” (6-month-old) and three “old” 

(24-month-old) rats were compared by next-generation RNA sequencing, ribosomal 
profiling and shotgun mass spectrometry. Prior to mass spectrometry, organ 

homogenates were fractionated in four subcellular fractions: nuclei (nuc), post-nuclear 

fraction 1 (pn1; enriched for mitochondria), post-nuclear fraction 2 (pn2; enriched for 

cytosolic membranes) and soluble cytosolic proteins (sol). For proteomics 

measurements, each sample was analyzed in technical duplicate (repeated injection of 
the same sample). 

(B) Reproducibility of protein abundance measurements. The histogram shows the 

distribution of pairwise correlations between all technical replicates for brain and liver. 

(C) The boxplots depict all the pairwise correlations between samples from all the 

subcellular fractions. 

(D and E) Less than 10% of the quantified transcript and protein groups were affected 
in young versus old rats, both in brain (D) and liver (E). Differential protein expression 

was assessed by label-free quantification and significantly affected proteins were 

defined using a q value cut-off of 0.1. Additionally, proteins that were identified 

exclusively and consistently in one age group but not the other were considered as age-

affected (dark orange). Translation output was measured by ribosome footprints. 

Significantly affected transcripts were defined using an adjusted p value cut-off of 0.01. 
(F) Significantly affected transcripts were grouped according to whether they were 

affected by a change in transcript abundance (as quantified by RNA-seq), translation 

efficiency or by a combined effect. 

(G) Established aging markers were recovered at the protein level. Histones H3.1 and 

H3.3 were quantified using proteotypic peptides measured by targeted proteomics (see 
Supplemental Experimental Procedures). The ratio between the two proteins is 

displayed relative to its value in young animals (set to 1) and it represents the average 

value ± SEM (n = 3 animals per age group). For beta-galactosidase and alpha-synuclein, 

protein abundances are indicated as average abundance score (sum of peptide 

intensities normalized by protein molecular weight) ± SEM (n = 3 animals per age 

group). 

See also Figures S3.1 and S3.2.  
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Age Markers Were Consistently Identified 

The sensitivity of our approach recovers alterations of previously 

established age markers. A global decrease in the abundance ratio 

between histone H3.1 and H3.3 was observed in both old organs (Figure 

3.2G). Histone H3.1 is incorporated in nucleosomes only during mitosis 

(Wu et al., 1982) and is replaced by the H3.3 variant outside of mitosis, 

typically during transcription (Ahmad and Henikoff, 2002 and Schwartz 

and Ahmad, 2005). Thus, in a tissue that is largely post-mitotic such as 

the brain, the H3.1/H3.3 ratio is expected to decrease with age (Maze et 

al., 2015); this is what we observe. We also observed a 2-fold increase in 

the abundance of the enzyme beta-galactosidase in old brain (Figure 

3.2G), a widely used marker of cellular senescence (Dimri et al., 1995). 
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Concurrently, we detected beta-galactosidase in old liver but not young. 

A decreased level of alpha-synuclein, a protein involved in synaptic 

plasticity and neurodegenerative disorders, was also detected in brain 

(Figure 3.2G), corroborating a previous study in mice (Mak et al., 2009). 

Additionally, we detected significant changes at the level of protein 

abundance or translation output for 97 age-related factors (Hühne et al., 

2014). We conclude that our integrative analysis recapitulates trends of 

several known age markers but also identifies a large and comprehensive 

set of transcripts and proteins that are linked to age-specific alterations 

for the first time. 

Identification of Common and Organ-Specific Alterations 

Liver and brain have different regenerative capacities. Most neurons in 

the adult brain are non-dividing cells that must survive for an organism’s 

lifespan (Spalding et al., 2005). In contrast, liver cells, such as 

hepatocytes, are replaced every few months throughout adult life in 

rodents (Arber et al., 1988 and Toyama et al., 2013). One would thus 

predict that age-related effects onto the proteome are organ-specific. A 

comparison of proteomic changes across the different biochemical 

fractions supports this hypothesis: we identified the highest number of 

differentially expressed proteins in the nuclear fraction of the brain (7% 

of nuclear proteins affected: Figure 3.2D), whereas in the liver the most 

changes were found in the cytosolic fraction (5% of cytosolic proteins 
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affected: Figure 3.2E). Overall, a larger fraction of the proteome was 

affected in brain, the tissue with lower regenerative capacity: 8% of all 

quantified proteins versus 5% in liver (Figures 3.2D and 3.2E). 

The identities of the transcripts and proteins affected were also indicative 

of organ-specific differences between young and old animals. Out of 

1,099 transcripts abundances that were altered, only 48, considerably 

less than expected (Fisher’s exact test: p value < 0.0001, odds ratio 0.04), 

were common to brain and liver and 37 of them (77%) changed 

concordantly (Figure 3.3A). Most of these transcripts are involved in the 

regulation of the immune system and stress response. The protein 

abundance data showed a similar trend: only eight out of the 447 

affected protein groups are common to brain and liver (Fisher’s exact 

test: p value < 0.001, odds ratio 0.02; Figure 3.3B). 

Gene ontology analysis confirmed that different functional modules are 

affected in brain and liver, but also underlined the existence of common 

aspects of altered protein function in old tissues. Commonalities include 

the enrichment of altered genes encoding for factors involved in cell 

communication, hormone response, immune response/inflammation, 

and the depletion of respiratory chain components (Figures 3.3C-F). The 

latter, previously described at the mRNA level across multiple organs and 

species (Zahn et al., 2006), likely arises from mitochondrial dysfunction 

and might be accompanied by an increase of reactive oxygen species and 
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generation of pro-inflammatory signals (Green et al., 2011). Another 

common feature is the regulation of proteins involved in post-

translational modifications, although different pathways are affected in 

the two organs. Whereas several protein kinases (Figure S3.3A) and 

methyltransferases are altered in brain (Figure 3.3D), it is largely 

acetyltransferases that are affected in liver (Figure 3.3F). We speculate 

that some of these alterations might be responsible for the changes in 

the epigenetic landscape described in aged cells (Rhie et al., 2013 and 

Sun et al., 2014). 

Organ-specific alterations appear to be linked to their physiology. In 

brain, alterations of neuronal communication and synaptic transmission 

occur at multiple levels: we observed depletion of intracellular mediators 

of signaling such as protein kinases, multiple ion channels and G 

protein-coupled receptors, in the brains of old rats (Figure 3.3C). In liver, 

several metabolic networks are altered (Figures 3.3E-F). In particular, we 

observed an increased abundance of enzymes involved in pyruvate 

metabolism and the tricarboxylic acid cycle, lipid catabolism (in 

particular fatty acid oxidation), and maintenance of redox homeostasis 

(Figure 3.3F). These alterations are consistent and might underlie the 

metabolic changes that have been observed in old liver in mice 

(Houtkooper et al., 2011). 
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In summary, by providing a detailed picture of the molecular alterations 

that distinguish young and old organs, our data suggest a molecular 

basis for several hallmarks of aging including mitochondrial dysfunction, 

increased inflammation, and changes in regulators of the epigenetic 

landscape (López-Otín et al., 2013). 
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Figure 3.3. Common and Organ-Specific Alterations of the Proteome 
in Old Rats 
(A and B) We identified only 48 transcripts affected at the level of translation output (A) 

and eight proteins affected at the level of protein abundance (B) that were altered in 

both brain and liver. The most represented gene ontology (GO) terms among 

consistently affected transcripts are shown in (A) while the five consistently affected 

proteins are indicated in (B). 
(C–F) Functional enrichment was performed on the list of quantified transcripts and 

proteins that were ranked according to the level of differential expression (fold change) 

using GOrilla (Eden et al., 2009). Displayed GO terms are representative cases selected 

from among those significantly enriched (cut-off for transcripts: q value < 0.05, 

minimum number of transcript >4, fold enrichment ≥2; for proteins the same criteria 

were applied with the exception of q value < 0.2). The fold enrichments are plotted using 
positive values for terms enriched in transcripts/proteins that are increased in old 

animals, or using negative values for terms enriched in transcripts/proteins that are 

decreased in old animals. 

See also Figure S3.3. 

 

[One section from the published work has been removed here (“Protein 

Complexes Are Affected at Multiple Levels”), and can be found in “Results 

from collaborators.”] 
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Translation Output Contributes Significantly to Proteomic Alterations 

The combination of ribosome profiling and shotgun proteomics data 

allowed us to determine the contribution of translation output, and thus 

protein synthesis, to alteration of protein abundances (Battle et al., 2015 

and Guo et al., 2010). Globally, we found that the changes in translation 

output between young and old animals are reflected by consistent 

changes in protein level. We categorized all transcripts into three groups: 

significantly increased, significantly decreased, and not affected at the 

level of translation output. The corresponding proteomic fold changes of 

altered transcripts were shifted substantially and significantly relative to 

transcripts without evidence for significant translational change (Figures 

3.4A-B). 

Notably, for ∼75% of these transcripts, the changes in translation output 

and protein abundance are concordant in directionality (Figures 3.4A-B, 

dashed lines). Also, the observed fold-changes in translation output and 

protein abundances in both brain and liver were positively correlated, 

meaning that we see a correlation between the changes in the abundance 

of a protein, as assessed by proteomics, and the abundance and/or 

translation of the mRNA that encodes it in our ribosome profiling 

experiments (Spearman’s rank correlation coefficient between translation 

and protein abundance fold changes: 0.13 and 0.25 for brain and liver, 

respectively: Figures 3.4C and 3.4D). Conversely, if proteins are 
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categorized into groups that are significantly increased, significantly 

decreased, and not affected in their abundance, their respective fold 

changes in translation output are similarly shifted, although with smaller 

effect size (compare Figures 3.4E-F to 3.4A-B). 

Taken together, this analysis suggests that differences in protein 

synthesis (translation output) give rise to an appreciable fraction of the 

observed changes in protein abundance that discriminate young and old 

organs (Figures 3.4E-F). This overall correspondence emerges despite 

limited overlap between datasets (Figures 3.4C-D), suggesting that many 

genes might be showing subtle changes in synthesis and abundance that 

do not rise to statistical significance when studied with only one of the 

techniques. We show that on a global scale, changes in translation 

output—although small—impact on protein abundance between young 

and old animals, as exemplified by the increase of chaperonin alpha-

crystallin B in old brains (Figure 3.4G). 
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Figure 3.4. Changes in Translation Correspond to Changes in 
Protein Abundance (next page) 
(A and B) The distribution of the corresponding protein changes for transcripts showing 

increased (red) or decreased (blue) translation output in old animals is significantly and 
consistently shifted relative to that of unaffected transcripts (gray). 

(C and D) Changes in translation output and protein abundance are positively 

correlated despite the limited overlap in cases that rise to significance using both 

methods. We assessed the correlation between translation and protein abundance by 

calculating the Spearman’s rank correlation coefficient between the respective fold 
changes: 0.13 and 0.25 for brain and liver, respectively. The correlation coefficients 

increased to 0.37 for brain and 0.42 for liver when only significant cases (either at the 

translation or protein level) were taken into account. 

(E and F) The distribution of the corresponding changes in translation for proteins 

increased (red) or decreased (blue) in old animals is significantly and consistently 

shifted relative to the distribution of unaffected proteins (gray). 
(G) The chaperonin alpha-crystallin B is shown as an example of a protein that is 

affected at the level of translation output, and it is consistently changed at the protein 

level in multiple subcellular fractions. 
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[Two sections from the published work has been removed here (“Altered 

Protein Localization”, “Changes in Protein Phosphorylation”), and can be 

found in “Results from collaborators.”] 

 

Multiple Levels of Regulation Modulate Functional Networks between 

Young and Old Animals 

The integration of multiple measurements on the same sample provides a 

powerful approach to capture functional modules that discriminate 

between different cellular states. To take advantage of this, we combined 

genes affected at the level of translation, protein abundance and protein 

phosphorylation and used them to reconstruct functional networks (see 

Supplemental Experimental Procedures) that are altered between young 

and old animals (Figure 3.5). Specifically in brain, we identified three 

related networks that are involved in signal transduction. The majority of 

the nodes in these networks displayed reduced translation output or 

protein abundance in old animals. Among these, several mediators of the 

calcium signaling pathway, such as the kinases CAMK1D and CAMK4, 

were reduced in their protein abundance, while the kinases CAMK2D 

and CAMK2G were affected in their phosphorylation state (Figure 3.5A). 

We found up-stream mediators of calcium signaling to be affected, 

including several voltage-gated channels and calcium transporters, as 

well as down-stream effectors such as the CREB-regulated transcription 
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coactivator 1 (CRTC1; Figure 3.5A). Taken together, our data suggests 

that the response to stimuli might be modified at multiple levels in the 

brain of old animals, mainly through the depletion of several factors 

involved in mediating calcium signaling. 

We also found two related functional networks that are common to both 

brain and liver. These clusters comprise multiple mediators of the 

immune response such as proteins involved in antigen processing and 

presentation, including all the three components of the C1q complex that 

are involved in the first step of the classical complement activation 

pathway by direct recognition of pathogens or antibody:antigen 

complexes (Figures 3.5A-B). As many of these proteins are generally not 

expressed in hepatocytes and neuronal cells, such as CD4, we speculate 

that the observed abundance increase derives from an increased number 

of immune cells that are recruited into the old organ by pro-inflammatory 

stimuli. 

 

 

Figure 3.5. The Impact of Age on Functional Networks Occurs at 

Multiple Levels of Regulation (next page) 
(A and B) Selected functional networks that are altered between young and old rats are 

displayed. The node fill color indicates significant fold change in protein abundance and 

the node border color indicates significant fold change in translation output. Changes 

in phosphorylation status are represented by the circled letter “P.” Increased abundance 
in old animals is indicated in red and decreased abundance is indicated in blue. 

See also Figures S3.4 and S3.6. 



54 
 

 



55 
 

Alternative Splicing 

Another potential source of age-related alterations of the cellular 

proteome is the process of alternative splicing, which results in a single 

gene coding for multiple proteins (Wood et al., 2013). Inspired by the fact 

that multiple factors involved in the regulation of alternative splicing and 

RNA processing were affected in old animals (Figure 3.5A), we analyzed 

potential differences in mRNA splicing between young and old animals 

(see Supplemental Experimental Procedures). We found significant 

differences in the expression of 41 and 61 transcript isoforms from 24 

and 39 genes in brain and liver, respectively (Figure S3.5). Among these 

were two isoforms in the brain of Sgk1, a serine/threonine protein kinase 

that plays an important role in cellular stress response and two isoforms 

in the liver of Whsc1, a histone H3K36 N-methyltransferase (Figure 

3.6A). A longer isoform (ENSRNOT00000016121) of Sgk1 predominates 

in old brain, whereas a shorter isoform (ENSRNOT00000040736) is 

equally prevalent in young animals (Figure 3.6B). Comparison of the 

number of isoform-specific reads suggests that this change is primarily 

due to a large increase in the levels of the long isoform with age (Figure 

3.6C). In liver, the short isoform (ENSRNOT00000050238) of Whsc1 is 

more prevalent in young animals compared to the long isoform 

(ENSRNOT00000021952), whereas in old animals the two isoforms are 

expressed at similar levels (Figure 3.6B). For Whsc1, this is due primarily 

to an increase in expression of the longer isoform with age, bringing it to 
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a similar expression level as the short isoform (Figure 3.6C). Our analysis 

of alternative splicing demonstrates that there are age-related changes in 

the abundance of specific transcript isoforms with distinct coding 

potential, which might result in functional proteome diversification in old 

organs. 
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Figure 3.6. Alternative Expression of Splicing Isoforms 
(A) Sgk1 and Whsc1 each have two isoforms with substantial expression in brain and 

liver, respectively. The lengths of Whsc1 introns have been scaled down by a factor of 2 

for display purposes. 
(B) A comparison of percent spliced-in (PSI) values generated by MISO (Katz et al., 2010) 

shows a significant difference in isoform expression levels between young and old 

animals (for each isoform, Bayes factor ≥1012). Error bars represent 95% confidence 

intervals. 

(C) Isoform-specific expression (reads per kb, normalized for overall sequencing depth) 
shows the underlying changes in isoform abundances responsible for differences in PSI 

values. 

See also Figure S3.5. 
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Discussion 

Here, we present an integrated comparison of gene expression, 

translation, protein abundance, and phosphorylation in organs from 

young and old rats. Our work expands the list of proteins that are 

affected by chronological age in mammals. Although some of the 

functional modules discussed above were previously identified as 

hallmarks of aging (López-Otín et al., 2013), we identified hundreds of 

molecular events underlying these processes that were previously 

unknown to be affected by age. We thus provide a rich resource that 

should stimulate the generation of new, experimentally testable 

hypotheses, leading to a better understanding of aging on the organism 

level. 

The comparison of two organs with different physiology and regenerative 

capacity enabled us to distinguish organ-specific effects from more 

systemic effects of aging. Intuitively, our results suggest that organ-

specific effects of age are tightly linked to the organ function. For 

example, in brain, multiple alterations of key signaling mediators are 

observed. We speculate that these alterations might be part of a 

progressive functional deterioration that affect the maintenance of 

neuronal plasticity in old brains (Bading, 2013) and other phenotypes 

observed the aging brain (Burke and Barnes, 2006). Notably, 45 of the 

changes that we identified in old rat brains are consistent with a 



59 
 

previous transcriptomics study of aging human brains (Lu et al., 2004) 

(Figure S3.6), suggesting that age-related changes in the proteome and 

transcriptome are to some extent conserved from rat to humans. 

The systemic impact of chronological age on proteome homeostasis 

manifests on many levels. In the liver, the majority of age-dependent 

changes are driven by alteration of transcript abundance (58% of the 

affected transcripts versus only 25% in brain; Figure 3.1F), suggesting 

the occurrence of age-related changes in transcriptional regulation. In 

contrast, the brain appeared to be affected by age largely at the 

translational level. For example, specifically in aged brain, we observed 

that the translational output of multiple ribosomal subunits increased 

(Figure 3.5A); these subunits were also more abundant on the protein 

level (Figure S3.4). A similar effect of orchestrated ribosomal gene 

expression was described throughout the lifespan of the short-lived fish 

Nothobranchius furzeri (Baumgart et al., 2014), suggesting that this 

phenomenon might represent a conserved feature of the aging brain. 

Conversely, a decreased protein level of multiple factors involved in 

translation initiation accompanied the increased abundance of ribosomal 

subunits (Figure 3.5A). Taken together, our data suggest that an age-

associated remodeling of the translation machinery in the brain may 

ultimately lead to alterations of the translation efficiency of a subset of 

transcripts in old animals. Specifically, we identified 15% of the brain 
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transcripts to be affected by a change in translation (versus only 2% in 

liver). 

Despite the correlation between translation output and protein 

abundances, not all the observed changes of protein abundance could be 

explained by changes in translation output, particularly in brain (Figure 

3.4E). This phenomenon strongly indicates a higher degree of post-

translational control in the brain as compared to the liver. Indeed, our 

proteomic analysis revealed that key regulators of protein homeostasis 

were altered in aged brain, including several components of the 

ubiquitin-proteasome and autophagy systems (Figure S3.3B). These 

findings imply that altered protein homeostasis, which has been shown 

to affect organism longevity under stress-response conditions (Kevei and 

Hoppe, 2014), also leads to detectable proteomic alterations that occur 

between young and old animals. The exact consequences and targets of 

such alterations are likely complex and remain to be explored in detail. 

In addition, more fine-grained genomic and proteomic investigations at 

multiple time points across organism life-span are required to shed light 

on the dynamics and interplay between systemic and organ-specific 

effects of aging and thus reveal which alterations are causative of, or a 

result of, aging. 

From our measurements performed on the bulk organ lysate, it is 

impossible to estimate whether the observed changes affect most of the 
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cells within an organ or whether they originate from a subpopulation of 

cells that is more prone to the effects of aging or from a change in the 

proportion between cell types in an organ. Most of the proteomics 

changes that we describe at the level of both protein abundance and 

phosphorylation level are quite large (typically >2-fold). It is therefore 

reasonable to assume that they might affect a major proportion of cells. 

However, we cannot exclude that events occurring in a minor fraction of 

cells will be missed by our approach. Higher resolution studies focusing 

on specific anatomical regions or cell subpopulations will be required to 

detect more subtle alterations. 

Experimental Procedures 

Determination of Transcription and Translation Changes 

RNA-seq and ribosome profiling libraries were prepared using an 

Illumina TruSeq kit and standard ribosome profiling protocols (Ingolia et 

al., 2009 and Ingolia et al., 2012), and sequenced using the Illumina 

HiSeq platform. The data discussed in this publication have been 

deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and 

are accessible through GEO: GSE66715 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66715). 

[Two sections from the published work has been removed here (“Tissue 

Fractionation”, “Determination of Protein and Phosphosite Abundance 

Changes”), and can be found in “Results from collaborators.”] 
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Supplemental Experimental Procedures 

Determination of transcription and translation changes 

Ribosome profiling libraries were prepared as described previously 

(Toyama et al., 2013). Total RNA libraries were prepared from 

homogenized tissue using TruSeq stranded kits with RiboZero gold 

(Illumina). Libraries for both ribosome profiling and total RNA were 

sequenced using the Illumina HiSeq platform. Mapping of RNA-Seq and 

ribosome profiling data was performed using TopHat (Trapnell et al., 

2009), a splice-aware aligner. For differential expression analysis of 

ribosome profiling and total RNA sequencing, a generalized linear model 

(GLM) was constructed using DESeq (Anders and Huber, 2010). This 

analysis differentiates between specifically transcriptional and 

translational changes. Individual, highly variable outlier transcripts 

(colored red in Figure S2) were identified and removed from downstream 

analysis by testing for excess residual deviation between replicates (209 

transcripts for brain and 281 transcripts for liver). Outlier samples were 

assessed by hierarchical clustering and excluded from dispersion 

estimates. Significantly affected transcripts were defined using an 

adjusted p value cut-off of 0.01. 
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Chapter 4: Translational control in the acute 

glucose response and high-fat diet 

Results 

Pilot experiment results 

To investigate the role of translational control in the acute glucose 

response and understand how this effect is modified by a chronic high-

fat diet, I performed ribosome profiling on liver samples from mice given 

a high-fat or normal-chow diet for one week, and a controlled dose of 

either glucose or water. This 2-factor design allows for analysis of 

changes associated with both glucose and high-fat diet alone, as well as 

the effect of high-fat diet on the glucose response.  A time period of one 

week was chosen for high-fat diet to concentrate on the early changes 

associated with the diet (Andrikopoulos et al., 2008).  Tissues were 

collected 20 minutes following glucose administration, a time point near 

the peak of blood glucose and insulin levels (Andrikopoulos et al., 2008). 
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The change caused by high-fat diet was associated with many significant 

changes in gene expression (Figure 4.1A).  Because no matched RNA-Seq 

is available, these data reflect changes in transcription, mRNA 

processing, degradation, and translation.  A gene ontology analysis 

identified several categories of transcripts that were up- or down-

regulated (Figure 4.1D).  These include repression of lipid and small-

molecule metabolic processes, as well as induction of sulfotransferase 

activity and membrane and extracellular components. 

Figure 4.1. Results from pilot experiment 
(A-C) MA-plots showing fold change of individual transcripts in high-fat vs. normal diet 

(A), glucose vs. no glucose (B), or glucose in high-fat vs. glucose in normal diet (C).  

Significant changes (p < 0.01) are marked in blue (down) or orange (up). 

(D-F) Significantly up- or down-regulated GO categories in high-fat vs. normal diet (D), 
glucose vs. no glucose (E), or glucose in high-fat vs. glucose in normal diet (F).  For all 

GO categories shown, p<0.01. 

 

Analysis of changes associated with glucose response also revealed 

several significant changes in individual transcript levels (Figure 4.1B).  

Due to the short time frame used in this experiment (20 minutes) it is 

unlikely that these changes are a result of changes in transcription or 
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RNA processing.  While some down-regulation could be the result of 

rapid mRNA degradation, up-regulation is almost certainly the result of 

translational changes.  Gene ontology analysis suggests that 

translational components are strongly up-regulated, while AU-rich 

element binding proteins are down-regulated.  The up-regulation of 

translation factors, which includes many ribosomal proteins, is likely a 

result of mTOR activation (Laplante et al. 2012). 

The final and most informative analysis of these data is assessing how 

the glucose response changes with the addition of high-fat diet.  There 

are many differences between the glucose response of high-fat fed 

animals and normal animals at the transcript level (Figure 4.1C).  Gene 

ontology suggests that many of these changes are simply the loss of the 

normal glucose response (Figure 4.1F).  While this pilot study yielded 

informative and encouraging results, this experiment had a few flaws 

including limited replicates (2 animals for each condition, but only 1 for 

high-fat, no glucose), limited time points for glucose response, and lack 

of additional data (e.g. weights of animals, blood glucose levels). 

Based on these promising results, I decided to follow this experiment 

with a similar, yet larger-scale experiment to more fully understand these 

responses.  The follow-up experiment was designed to address the 

shortcomings of the original study by including 4 replicates for each 

condition, three time points for glucose response (10, 20, and 30 
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minutes), and physiological measurements such as animal weight while 

on the diet and glucose levels at the time of tissue collection. 

Figure 4.2. Weights and blood glucose levels 
(A) Average weights for high-fat and normal diet animals over the week.  Error bars 

represent 95% confidence intervals. 

(B) Blood glucose levels for all animals used in ribosome profiling analysis. 

 

Weights and blood glucose levels 

The high-fat diet induced significant and substantial weight gain relative 

to the normal diet (almost 10% over the course of one week).  All mice 



68 
 

used in the experiment were weighed each day while on the experimental 

diet.  At day 0, all animals weighed approximately 26.5g, and there was 

no significant difference between animals receiving high-fat or low-fat 

diets (Figure 4.2A; p>>0.05).  After 6-7 days however, animals on the 

high-fat diet had gained significantly more weight than those on the low-

fat diet (Figure 4.2A; p<0.01).  High-fat fed animals were now about 2.5g 

heavier than low-fat fed animals, on average.  A small decrease in weight 

can be seen in both populations on day 7, when animals had already 

been fasted for several hours in preparation for glucose administration 

and tissue collection. 

As expected, blood glucose levels were higher in animals given glucose 

(Figure 4.2B).  Very little difference could be seen between early or late 

time points, or between normal and high-fat glucose levels.  This is 

perhaps unsurprising as one week is a relatively short exposure to the 

high-fat diet.  A few samples were removed from further analysis based 

on their blood glucose measurements.  One control and two high-fat 

glucose animals were identified as outliers based on measuring the 

median ± interquartile range (IQR) for plus or minus glucose populations 

(Figure S4.1A).  Two additional low-fat glucose animals were removed 

due to having glucose levels in the range of control animals, suggesting a 

problem with their glucose administration (Figure S4.1A).  These animals 

also stood out in a correlation matrix of all samples, likely a result of low 
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sequencing coverage due to under-representation in multiplexing pools 

(Figure S4.1B). 

 

Figure 4.3. High-fat diet response 
(A) MA-plot showing fold change of individual transcripts in high-fat vs. normal diet.  

Significant changes (p<0.05) are highlighted in blue (down) or orange (up). 

(B) Significantly up- or down-regulated GO categories in high-fat vs. normal diet 
(p<0.01). 

(C-E) Cumulative distribution functions (CDFs) of fold change for all transcripts (gray) 

and transcripts associated with the indicated GO term (colored) in high-fat vs. normal 

diet. 

 

High-fat diet response 

Several changes in individual transcript levels could be identified in 

response to high-fat diet (Figure 4.3A).  As before, these changes are the 

combined effects of all the steps in protein expression, from mRNA 

transcription through translation.  Most striking is the strong down-
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regulation of a number of the Scd genes, which are involved in 

processing lipids in the ER (Hulver et al. 2005).  Interestingly, SCD1 has 

been found to be up-regulated in muscle of obese humans (Hulver et al., 

2005).  A gene ontology analysis of changes resulting from high-fat diet 

suggests a number of broader changes (Figure 4.3B).  Translation is 

moderately up-regulated, a change which was not seen in the earlier 

experiment.  This change appears to be driven by small shifts in the 

expression of a large portion of the associated transcripts (Figure 4.3C).  

In contrast, down-regulation of both fatty acid biosynthetic processes 

and lipid metabolic processes appear to be driven largely by large 

changes in a select number of associated transcripts (Figures 4.3D-E).  

These include the Scd genes, along with other less dramatic changes. 

Glucose response in normal and high-fat diets 

Broader gene expression programs can be detected by gene ontology, in 

spite of the limited changes seen in individual transcripts.  Analysis of 

the glucose response in normal diet identified only a single significant 

change at 20 minutes, down-regulation of SH2B1 (Figure 4.4A).  SH2B1 

is also significantly down-regulated at 30 minutes, but not at 10 minutes 

(Figures S4.2A-B).  Capable of binding to insulin receptors, SH2B1 plays 

a role in activation of the insulin response (Rui, 2014).  Down-regulation 

of SH2B1 in response to glucose may be a feedback mechanism intended 

to return the cell to a normal state.  No individual transcripts were 
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significantly different between the high-fat and normal glucose responses 

(Figure 4.4B).  Looking at all transcripts with a log2 fold change of at 

least 0.5 regardless of significance, a number of patterns can be seen 

between time points (Figure 4.4C).  First, there is a subset of transcripts 

not strongly up-regulated until 20 minutes.  An additional group is up-

regulated at 10 and 20 minutes, but less changed at 30 minutes.  Lastly, 

a small group of transcripts is down-regulated strongly at 10 minutes, 

but less so at 20 and 30 minutes.  The change in glucose response due 

to high-fat diet is relatively consistent across time points, although there 

is variation (Figure 4.4D). 

Gene ontology on a ranked list of transcripts can extract biological 

insight despite the lack of significant changes on the individual 

transcript level.  This analysis suggests a number of changes in response 

to glucose, and several modifications to the glucose response as a result 

of high-fat diet (Figures 4.5A-B).  As seen in the smaller experiment, 

translation is significantly up-regulated in response to glucose, and this 

up-regulation is lost or lessened in high-fat fed animals.  As in the high-

fat response, this change appears to be driven by a relatively modest 

change in most associated transcripts (Figures 4.5C, D).  The up-

regulation of translation in response to glucose appears to be much 

stronger than in response to high-fat (Figures 4.3C, 4.5C).  Another 

change in response to glucose is a down-regulation of lipid metabolic 

processes.  This change is also reversed in high-fat fed animals.  As with 
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the high-fat response, change in expression of lipid metabolic associated 

transcripts seems to be primarily driven by change in a smaller number 

of transcripts (Figures 4.5E-F).  In contrast to the up-regulation of 

translation, down-regulation of lipid metabolic processes seems to be 

weaker in glucose response than high-fat response (Figures 4.3E, 4.4E).  

A small number of transcripts associated with adherens junctions also 

seems to be up-regulated in response to glucose, but not in high-fat 

animals. 
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Figure 4.4. Glucose response in normal and high-fat diet 
(A-B) MA-plots showing fold change of individual transcripts in glucose vs. no glucose 

(A), or glucose in high-fat vs. glucose in normal diet (B) at 20 minutes.  Significant 

changes (p < 0.05) are marked in blue (down) or orange (up). 
(C-D) Heatmap showing fold change of individual transcripts across time points in 

glucose vs. no glucose (C), or glucose in high-fat vs. glucose in normal diet (D).  Only 

transcripts with at least 0.5 fold change at one time point and mean expression of at 

least 100 are shown. 
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Figure 4.5. Gene ontology analysis of glucose response 
(A-B)  Significantly up- or down-regulated GO categories in glucose vs. no glucose (A), or 

glucose in high-fat vs. glucose in normal diet (B) at 20 minutes.  p<0.01 for non-faded 

bars, 0.01<p<0.05 for faded bars. 

(C-F) Cumulative distribution functions (CDFs) of fold change for all transcripts (gray) 
and transcripts associated with the indicated GO term (colored) in glucose vs. no 

glucose (C,E), or glucose in high-fat vs. glucose in normal diet (D,F). 
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Figure 4.6. Changes in gene ontology categories across time course 
(A-D) Heatmap showing fold change of individual transcripts associated with translation 

(A-B) or lipid metabolic process (C-D) across time points in glucose vs. no glucose (A,C), 

or glucose in high-fat vs. glucose in normal diet (B,D). 
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The time course following glucose administration provides an opportunity 

to see when these responses occur, and how quickly they dissipate.  

Changes in transcripts associated with translation peak at 20 minutes, 

and appear noticeably diminished by 30 minutes (Figure 4.6A).  The 

decrease of this response in high-fat fed animals follows a similar 

pattern, suggesting a general dampening of the response rather than a 

delay (Figure 4.6B).  The down-regulation of transcripts associated with 

lipid metabolic processes is strongest at 10 minutes, and tapers off at 20 

and 30 minutes (Figure 4.6C).  Interestingly, there is a small subset of 

transcripts that seem to be up-regulated at 30 minutes.  The changes in 

this response between normal and high-fat animals follow a similar 

pattern, again suggesting a dampened, rather than delayed, response 

(Figure 4.6D). 

Discussion 

These data provide a comprehensive view of changes in protein 

expression in response to high-fat diet and glucose.  I have identified 

changes in both individual transcript levels, as well as coordinated 

changes in groups of transcripts associated with various biological 

processes or functions.  In addition to characterizing the responses to 

high-fat diet and glucose, I have also characterized how the glucose 

response changes in high-fat fed animals. 
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Many of the changes I have seen here in response to high-fat diet differ 

from those previously seen in obese mice (Fu et al. 2011).  There are a 

number of factors that may be responsible for these differences.  First, 

the Fu et al. study used leptin-deficient mice rather than high-fat diet.  

This means that these mice are eating a normal diet, but in vast 

quantities.  This is in contrast to the mice in this study, which were 

eating an extremely high-fat diet, but presumably in relatively normal 

quantities (food was provided ad libitum, but there was no noticeable 

difference in the quantity of food eaten by high-fat fed animals).  Second, 

the Fu et al. study focused on ER associated proteins, so they could not 

distinguish changes in protein synthesis from relocalization or 

degradation, whereas my study focuses on expression specifically. 

Several changes I have identified in the high-fat and glucose responses 

are similar in nature, yet differ by degree.  For example, up-regulation of 

translation and down-regulation of lipid metabolism are present in both 

responses.  However, the up-regulation of translation is stronger in 

response to glucose, while the down-regulation of lipid metabolism is 

stronger in response to high-fat.  This suggests that many of these 

changes may be primarily driven by general availability of resources.  For 

translational responses especially this would be consistent with current 

theories in the field, as translation consumes vast amounts of resources 

and is closely tied to growth. 
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These data provide clear evidence for the disruption of the translational 

response to glucose by high-fat diet.  Since many of these changes are 

also present in high-fat diet animals already, it is possible that the loss of 

regulation is simply a result of an altered basal state limiting the 

regulation that can occur.  If translation factors are already up-

regulated, there may be less room for up-regulation in response to 

glucose.  The other logical explanation for the changes in glucose 

response in high-fat diet is that the abundance of fat directly interferes 

with the response to glucose.  The loss of these translational responses, 

as well as chronic activation from high-fat diet, is likely to impair the 

ability of the liver to function properly. 

Methods 

Animals 

All animals used for this study were C57BL/6J obtained from Jackson 

Laboratory.  Mice were maintained on a standard 24hr light cycle.  High-

fat animals were fed Research Diets diet #D12492, a 60% fat diet.  

Control animals were switched to Research Diets diet #D12450J, a 

matched low-fat control diet, simultaneously.  Mice were weighed each 

day before and during the high-fat diet period, at approximately the same 

time each day.  On day 7, food was removed from the cage about 2 hours 

into the light period, and animals were collected for glucose gavage and 

tissue collection 6 hours later. 
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Tissue collection 

After euthanizing by cervical dislocation at the indicated time point post-

gavage, animals were immediately necropsied.  Tissues were rinsed in 

sterile PBS and immediately flash-frozen in liquid nitrogen.  The left lobe 

of the liver was specifically set aside for profiling, while the remainder 

was collected for further experiments.  The right quadricep was collected 

for muscle profiling, and blood was collected from the abdominal cavity 

after removal of the liver and flash-frozen for blood glucose and insulin 

measurements. 

Ribosome profiling 

Ribosome profiling was performed as previously described (Ingolia et al., 

2009, Ingolia et al., 2012), using the adaptations described in the 

“Ribosome profiling of animal tissues” section of this thesis. 

Data analysis 

Sequencing reads were processed as described previously (Ingolia et al., 

2012).  Differential expression analysis was performed using DESeq2 

likelihood ratio testing (Love et al. 2014).  A significance cutoff of p<0.05 

was used.  Gene ontology analysis was performed using Gorilla using a 

list of transcripts ranked by fold-change (Eden et al., 2009, Eden et al., 

2007).  REVIGO was used to identify redundant GO categories, followed 
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by manual curation to avoid overlapping or misleading categories (Supek 

et al., 2011). 

Blood glucose measurements 

Frozen blood was thawed at 37°C, and 5µl was taken for blood glucose 

measurement using a Clarity Advanced glucose meter (Diagnostic Test 

Group).  The remaining blood was allowed to coagulate for 30 minutes 

and centrifuged to isolate plasma for insulin tests. 
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Chapter 5: Conclusion 

Translation is a crucial step in the production of active protein, and an 

energy and resource intensive process.  As with other important cellular 

activities, it is subject to significant regulation.  Not only does this 

prevent resources from being wasted on unnecessary protein production, 

but it also prevents production of proteins when they are not needed and 

could be disruptive, and provides a rapid means of responding to 

external stimuli.  Understanding mechanisms of translational regulation 

is important to inform our general understanding of cellular processes, 

as well as specific processes such as nutrient response. 

Ribosome profiling is a powerful technique for understanding translation 

and translational regulation.  It’s adaptation to whole tissues here is 

important for understanding translational regulation in systems that do 

not lend themselves to cell culture or yeast models.  While the examples 

studied in this thesis include nutrient response and aging, there are 

many other systems that could benefit from ribosome profiling of whole 

tissues.  Although not yet incorporated into animals, the ribosome 

affinity purification method demonstrated here will further expand the 

systems to which ribosome profiling can be applied to small cell 

populations in heterogeneous tissues.  In cell culture, our ribosome 

affinity purification has provided key physical evidence for translation 

outside canonical coding regions. 
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The application of ribosome profiling, combined with RNA-Seq and 

protein mass spectrometry, has furthered our understanding of protein 

expression changes in aging.  Many organ-specific changes in protein 

expression were identified, and a strong correlation was seen between 

change in translation output and protein levels.  Changes in splicing 

patterns were also seen for several genes using RNA-Seq data.  Along 

with the changes discussed here, this data set is a resource that 

enhances the understanding of protein production changes in aging for 

the field as a whole. 

Ribosome profiling experiments described here in mouse liver have 

provided a detailed picture of changes in translation output from short 

term high-fat diet and the translational response to glucose.  While the 

translational changes in response to high-fat diet and glucose are 

similar, they appear to have more substantial changes in different areas.  

While up-regulation of translation factors is stronger in response to 

glucose, down-regulation of lipid metabolic processes is more 

pronounced in response to high-fat diet.  These data also suggest that 

much of the normal translational response to glucose is substantially 

disrupted by high-fat diet, including both up-regulation of translation 

factors and down-regulation of lipid metabolic processes.  The changes 

identified here can be further studied in cell-culture models to establish 

the mechanism by which they occur. 
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Appendix A: Results from collaborators 

The following was originally published in Cell Systems on Sept. 13, 2015.  

It is published under a creative commons license (CC BY-NC-ND 4.0), and 

as such may be reproduced here so long as appropriate credit is given.  

These sections of the paper that are not directly related to work performed 

by the thesis author (Michael Harris), however due to the integrated nature 

of the work, they are important for establishing the overall impact and 

results. 

Integrated Transcriptome and Proteome Analyses Reveal Organ-

Specific Proteome Deterioration in Old Rats 

Alessandro Ori1, 6, 7, Brandon H. Toyama2, 6, Michael S. Harris3, 4, Thomas 

Bock1, Murat Iskar1, Peer Bork1, 5, Nicholas T. Ingolia3, Martin W. 

Hetzer2, Martin Beck1 

1European Molecular Biology Laboratory, Structural and Computational Biology Unit, 
Meyerhofstrasse 1, Heidelberg 69117, Germany 
2Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 

North Torrey Pines Road, La Jolla, CA 92037, USA 
3Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 

CA 94720, USA 
4Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA 
5Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, 

Germany 
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Results 

Protein Complexes Are Affected at Multiple Levels 

We have previously shown that the composition of the nuclear pore 

complex (NPC) is altered during aging through the loss of long-lived 

scaffold components (D’Angelo et al., 2009 and Toyama et al., 2013), 

affecting its permeability barrier. We wanted to investigate the 

maintenance of protein complexes more generally and found that the 

alterations of the proteome that occur between young and old animals 

affect protein complexes in two different ways. 

First, the overall abundance of some protein complexes is different in 

young and old rat. Consistent with a previous study in mice and worms 

(Houtkooper et al., 2013), we observed that the abundance of 

components of the mitochondrial ribosome was lower in old versus young 

brain (Figure A.1A). This phenomenon was not observed in the liver. 

However, other protein complexes in liver were similarly affected by age: 

the abundance of cytosolic proteasomes was higher in old liver versus 

young (Figure A.1B) and the abundance of NPCs was lower (Figure A.1C). 

Such changes might result in a reduced functional output and longevity, 

as in the case of the mitochondrial ribosome (Houtkooper et al., 2013). 

Second, a subset of protein complexes undergoes compositional changes 

in young versus old animals. Using algorithms that we have previously 

developed (Ori et al., 2013), we identified changes in protein abundance 
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for specific members of complexes involved in chromatin regulation (e.g., 

polycomb repressive complex I), RNA processing and transport (e.g., 

TREX and exon junction complex), and complexes involved in vesicular 

transport (e.g., COPI, COPII, retromer complex: Figure A.1D). Our data 

suggests that changes of composition that occur in old animals might 

cause loss of protein complex function due to complex mis-assembly, as 

described for the nuclear pore (D’Angelo et al., 2012 and Lessard et al., 

2007), or might mediate adaptation of its functionality, for example, 

under increased stress conditions. 
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Figure A.1. Proteomic Changes Affect the Abundance and 
Composition of Protein Complexes 
(A–C) We analyzed changes in protein complex abundance using a gene-set enrichment 

approach (see Supplemental Experimental Procedures). Definitions covering 270 large 

protein complexes curated from different resources and the literature (A.O., M.I., et al., 

unpublished data) were used. Only protein complexes that had at least five members 

quantified were considered. A q value cut-off of 0.1 was used to determine significantly 

affected protein complexes. All proteins identified in the respective sample are plotted 
according to their average abundance score and average fold change between young 

and old animals (both log2-transformed). Positive values indicate higher expression in 

old animals and negative values indicate higher expression in young animals. Orange 

dots indicate the identified members of the affected complex. Boxplots show the 

distribution of abundances of complex members in young and old animals. 
(D) Changes in protein abundance affect the composition of several protein complexes 

in old rats. For each selected example, the quantified complex members are displayed 

and the significantly affected cases are highlighted in red (indicating increased 

abundance in old animals) or blue (indicating decreased abundance in old animals). 

Compositional changes were inferred from protein abundance scores obtained by 

tandem mass spectrometry as previously described (Ori et al., 2013). A q value cut-off of 

0.2 was used to determine significantly affected protein complex members. 
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Altered Protein Localization 

The data integration also revealed exceptions from the overall trend, in 

which significant changes in protein abundance could not be explained 

by changes in translation output, particularly in brain (Figure A.2A). 

These discrepancies point to alternative mechanisms that differentially 

control protein abundance across age groups, such as protein 

degradation, or changes in protein localization. In the latter case, the 

increased abundance of a protein in one compartment might be 

counterbalanced by a decrease in another, leading to a signal we can 

observe in our subcellular fractions that would not be detectable by 

proteomics on total lysates or measurements of translation output. 

Indeed, we observed opposite abundance changes in different subcellular 

fractions for nine proteins—seven in brain and two in liver. We 

interpreted these data as indicative of change in subcellular localization. 

The potentially relocalized proteins include RNA and protein-modifying 

enzymes, proteins involved in translation, and nuclear transport factors 

(Figure A.2B). For example, exportin 5, which interacts with NPCs during 

the export of miRNAs (Lund et al., 2004) and tRNAs (Calado et al., 2002), 

shows an increased abundance in the cytoplasm of cells from old brains, 

implying a potential alteration of nuclear transport activity. Two protein 

kinases—TRAF2- and NCK-interacting kinase (TNIK) and brain-specific 

kinase (BRSK1, also referred to as SAD-B)—also show proteomic 

alterations suggestive of subcellular redistribution with no changes in 
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translation output. Whereas TNIK showed an increased abundance at 

cytosolic membranes, BRSK1 was less abundant there and more in 

soluble cytosol of old brains (Figure A.2A). These potential relocalization 

events highlight an additional level of proteome alteration between young 

and old animals. Our data, along with the previously described age-

related deterioration of the NPC (D’Angelo et al., 2009), suggest a 

remodeling of the protein and RNA transport machineries that is 

associated with animal age. 

 

 

 

 

Figure A.2. Changes in Protein Localization and Phosphorylation 
(next page) 
(A) The intracellular distribution of the kinase BRSK1 changes between young and old 
brain. BRSK1 shows significant changes in protein abundance with opposite signs in 

two distinct subcellular fractions, whereas it is not affected at the level of translation 

output. 

(B) Another eight proteins display behavior similar to BRSK1, suggesting that their 

intracellular distribution might change in young versus old animals. 

(C and D) Changes in phosphopeptide abundance were assessed by label-free 
quantification using the same procedure used for protein quantification (q value < 0.1). 

In addition, phosphopeptides identified exclusively and consistently in one age group 

but not the other were considered as age-affected (dark orange). 

(E) Comparison of functional annotations between affected phosphosites in brain and 

liver. Affected phosphosites were annotated using the GO slim annotation associated to 
the corresponding protein group using QuickGO (Binns et al., 2009). Annotations were 

compared by selecting terms that were at least 1.5 times more frequent among affected 

phosphosites in one of the two organs. Only the 15 most represented categories per 

organ were considered. 

(F) We identified a decreased level of phosphorylation of several microtubule-associated 

proteins (MAPS) in membrane fractions that mimics the relocalization of BRSK1 (A). 

See also Figure SA.1. 
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Changes in Protein Phosphorylation 

Changes in post-translational modifications, such as phosphorylation, 

have been shown to drive cancer (Krueger and Srivastava, 2006) and a 

series of developmental processes (Huang and Reichardt, 2001 and 

Sancho et al., 2004). However, in the context of aging, evidence for 

alterations of post-translational modifications remain largely anecdotal. 

We identified several kinases that are differentially expressed between 

young and old animals, particularly in the brain (Figure S3.3A). In total, 

we found perturbations in the levels of 12 protein kinases belonging to 

different families. These include the major kinases that control cell 

growth, neuronal morphogenesis and plasticity such as the beta-

adrenergic receptor kinase 1, the calcium/calmodulin-dependent protein 

kinases (CAMK) types I and IV, the cyclin-dependent kinases 5 and 19, 

and the serine/threonine-protein kinase mTOR (Figure S3.3A). 

We next tested whether these changes in kinase levels impact 

downstream target phosphorylation levels by performing a phospho-

proteomic analysis of all subcellular fractions, tissues, and age groups 

described above. Similarly to the protein abundance measurements, we 

observed high reproducibility between technical replicates (on average 

Pearson’s r = 0.957; Figure S A.1A), lower correlation values across age 

groups as compared to samples from the same age group (Figure S A.1B), 

and median coefficient of variation ∼25% (Figure S A.1C). Across all four 
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subcellular fractions and two organs, we made 2,497 comparisons of 

phosphosite abundance, covering 1,437 unique phosphosites, of which 

75 (occurring on 68 proteins) were found to change significantly (q value 

< 0.1; Figures A.2C-D). In addition, we found 168 phosphosites (on 160 

proteins) that were uniquely and consistently identified in all the 

replicates of one age group but not the other. For 136 affected 

phosphosites, we covered both changes in protein abundance and 

phosphorylation state on the same set of samples and thus could infer 

changes in the fraction of protein molecules phosphorylated (Figure S 

A.1D). In 19 out of the 136 phosphosites both the protein and 

phosphosite level changed in the same organ and subcellular fraction. In 

17 of these 19 cases the fold changes were consistent (Figure SA.1E), 

implying that the phosphorylation state of the protein is not changed. In 

contrast, 2 of the 19 phosphosites had opposing fold changes, and the 

remaining 117 phosphosites had not-affected protein abundances while 

phosphosite level changed. The latter two scenarios are indicative of an 

alteration of the fraction of protein molecules phosphorylated (Figure 

SA.1D). 

In liver, we found effects on the phosphorylation of proteins involved in 

metabolic processes and energy production, similarly to the biological 

processes impacted at the protein abundance level (Figure A.2E). 

However, we also identified several altered phosphosites in 

transcriptional regulators, including c-JUN and FOXA1, as well as 
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proteins involved in stress responses and homeostatic processes. 

Similarly to the observed protein abundances, a larger fraction of 

phosphosites changed in brain as compared to the liver, which is 

consistent with the large number of protein kinases affected in brain. In 

addition to those kinases affected at the protein level, we also found 

changes in phosphorylation of a different subset of kinases, possibly 

because their activity is regulated through their phosphorylation status. 

Interestingly, the affected phosphosites were not equally distributed 

between cell compartments of brain, but primarily identified in 

membrane (pn2) and nuclear fractions (Figures A.2C and A.2D). A very 

prominent fraction of altered phosphosites was detected in cytoskeletal 

proteins (mostly in pn2), in particular in multiple microtubule-associated 

proteins (MAPS) (Figure A.2F). We speculate that this observation is 

related to the above-discussed redistribution of BRSK1 kinase away from 

membranes in old brain (Figure A.2A). BRSK1 is known to associate with 

synaptic vesicles (Inoue et al., 2006) and it is required to control the 

polarization of neurons (Kishi et al., 2005) through a mechanism that 

ultimately leads to the phosphorylation of MAPS (Barnes et al., 2007). 

While this specific hypothesis remains to be tested, the overall dataset 

suggests that altered protein phosphorylation and localization might 

have important physiological outcomes in old animals. 

 



93 
 

Experimental Procedures 

Tissue Fractionation 

Liver and brain were harvested from three Fischer 344 rats for each age 

group. Nuclei were purified according to previously described protocols 

(Blobel and Potter, 1966 and Lovtrup-Rein and McEwen, 1966). Further 

fractionation was based on previous descriptions (Toyama et al., 2013). 

Determination of Protein and Phosphosite Abundance Changes 

Proteins from subcellular fractions were solubilized and digested into 

peptides as described in Ori et al. (2014). For phosphoproteome analysis, 

phosphopeptides were isolated from peptide mixtures by TiO2-based 

affinity enrichment using the Titansphere Phos-TiO Kit (MZ 

Analysentechnik) as described in Bui et al. (2013). All samples were 

measured by shotgun mass spectrometry (see Supplemental 

Experimental Procedures). The mass spectrometry proteomics data have 

been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) (Vizcaíno et al., 2014) via 

the PRIDE partner repository (Vizcaíno et al., 2013) with the dataset 

identifier PXD002467. 
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Appendix B: Supplemental figures 

 

Figure S2.1. FLOSS analysis detects snoRNA-derived background 
that co-purifies with the ribosome. 
(A) FLOSS analysis distinguishes snoRNA-derived background from true ribosome 

footprints. 
(B, C) SnoRNAs are substantially retained during ribosome affinity purification. 

(D) FLOSS analysis confirms that nearly all 5’ UTRs resemble coding sequences in total 

HEK cell ribosome profiling. 
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Figure S3.1. Reproducibility of proteomic measurements and 
variation of protein abundances between animals of different age. 

(next page) 
(A) Coefficients of variation (standard deviation / mean calculated on raw protein 

abundance scores) between animals of the same age were computed for all the protein 

groups quantified across subcellular fractions. The low coefficients of variation indicate 

minimal within-age-group variation in protein abundance both in brain and liver. 
(B and C) Distribution of p values for all the subcellular fractions analyzed. The 

enrichment of protein groups having low p values (< 0.1) indicates deviation from the 

null-hypothesis (i.e. presence of proteins that vary in abundance between young and 

old animals). As discussed in the manuscript, brain samples are generally more affected 

than liver one. P values were calculated using fdrtool (Strimmer, 2008) from the t-

statistics computed by limma (Smyth et al 2005). 
(D) Molecular alterations during physiological aging are mild. The effect of aging at the 

level of transcription, translation output and protein abundance is compared to 

differences between the two organs. Age-related changes are characterized by small 

effect sizes and they affect a limited number of transcripts and proteins. For proteomic 

data, the comparison of the nuclear fractions is shown as a representative example. 
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Figure S3.2. Replicate samples of RNA-Seq and Ribosome Profiling 
are consistent. 
(A-B, D-E) Pairwise scatterplots and Pearson correlations are given for RNA-Seq (A, D) 
and Ribosome Profiling (B, E) counts. Samples from different animals show high 

correlation in both measurements for both tissues. Points in red were filtered from final 

analysis due to high dispersion. 

(C, F) Distribution of p values for translation output in brain (C) and liver (F). 

Enrichment of low p values indicates statistically significant changes. 

 
 
 

 
 
 

 
 

 
 
 

 
 

Figure S3.3. Protein kinases and members of the ubiquitin-
proteasome system and autophagy are affected between young and 
old animals. (next page) 
(A) Kinases are grouped in families as classified in UniProt (UniProt Consortium,2009). 

The names of twelve significantly affected cases (q value < 0.1) are indicated in black 
font, while the names of additional 14 kinases that showed a strong trend (p value < 

0.05) but did not raise to significant level (q value > 0.1) are indicated in gray font. 

(B) Several proteins functionally related to the ubiquitin proteasome system and 

autophagy change abundance in brain from old animals. Proteins are grouped 

according to their functional classification. 
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Figure S3.4. Increased abundance of ribosomal proteins in old brain. 
All proteins identified in the pn2 fraction of brain are plotted according to their average 

abundance score and average fold change between young and old animals (both log2-
transformed). Positive values indicate higher expression in old animals and negative 

values indicate higher expression in young animals. Orange dots indicate the identified 

members of the cytosolic ribosome. Boxplots show the distribution of abundances of 

ribosomal proteins in young and old animals. 
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Figure S3.5. Changes in PSI value for all transcripts. 
Percent Spliced In (PSI) values are mostly consistent across age, but with a moderate 

number of differentially expressed transcripts. Significantly changed transcripts, 

marked in orange, had Bayes factor ≥ 10 and difference ≥ 0.2 in merged and at least 

5/9 individual analyses. 
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Figure S3.6. Conserved molecular alterations in aging brain between 
rat and human. 
We compared significant changes in protein abundance or translation output that we 

identified in aging rat brain to changes in transcript level associated to age in human 

brain (Lu et al., 2004). 12 out of 14 (86%) changes in the protein abundance level and 

33 out of 38 (87%) alterations in translation output that were identified as significant in 

both our and the human dataset are consistent having fold changes with the same sign. 
This suggests that conservation of age-associated molecular events between rodents 

and humans. Cases that were identified as significantly affected both at the level of 

translation output and protein abundance are highlighted in orange. 
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Figure S4.1. Identification of outlier samples by blood glucose levels 
and Spearman’s correlation 
(A) Blood glucose levels for all animals.  Points in red were considered outliers and 

removed from further analysis. 
(B) Spearman’s correlation matrix for all samples.  Samples outlined in red on the left 

were removed from further analysis. 
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Figure S4.2. Glucose response at 10 and 30 minutes in normal and 
high-fat diet 
(A-D) MA-plots showing fold change of individual transcripts in glucose vs. no glucose 

(A-B), or glucose in high-fat vs. glucose in normal diet (C-D) at 10 (A,C) or 30 (B,D) 

minutes.  Significant changes (p < 0.05) are marked in blue (down) or orange (up). 
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Figure SA.1. Reproducibility of phosphoproteomic measurements 
and comparison of protein abundance and phosphorylation level 

changes (next page) 
(A) Reproducibility of phosphopeptide abundance measurements. The reproducibility of 

phosphopeptide abundance measurements was assessed by correlating protein 

abundance scores between technical replicates. The histogram shows the distribution of 

pairwise correlations between all technical replicates for brain and liver. The average 
pairwise correlation was Pearson’s r = 0.957, indicating high reproducibility. 

(B) As for protein abundance measurements (Figure 3.2C), samples from the same age 

group displayed consistently higher correlation than samples from different age groups. 

The boxplots depict all the pairwise correlations between samples from all the 

subcellular fractions. For both brain and liver, the correlation coefficients of samples 

from the same age group are significantly higher than samples from different age 
groups (Wilcoxon rank sum test p value 2.0e-2 and 3.2e-4, respectively). 

(C) Coefficients of variation (standard deviation / mean calculated on raw 

phosphopeptide intensities) between animals of the same age were computed for all the 

phosphopeptides quantified across subcellular fractions. The low coefficients of 

variation indicate minimal within-age-group variation in phosphopeptide levels both in 
brain and liver. 

(D) Comparison of protein abundance and phosphorylation level changes. For 136 

affected phosphosites, we had measurements of both protein abundance and 

phosphorylation level in the same subcellular fraction. The heatmap show side–by–side 

comparison of protein abundance and phosphorylation level fold changes. For 19 of 

these phosphosites (indicated by a white star), we detected changes at both protein (p 
value < 0.05) and phosphopetide level. These cases are highlighted in (E): the barplot 

compares fold changes measured at the protein (dark blue) and phosphopeptide level 

(green) in the two independent experiments. In 17 out of 19 cases (90%) the fold 

changes measured at the protein and phosphopeptide level are in agreement (fold 

change with same sign). A star indicates not consistent cases that are suggestive of an 
alteration of the fraction of protein molecules phosphorylated. Proteins and 

phosphosites identified only in one age group were assigned an arbitrary log2 fold 

change of +3 (identified only in old animals) or -3 (identified only in young animals). 
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