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Abstract

In this work, I draw upon my experience with field deployments of low-power data collection

systems to come up with new approaches to long-term environmental monitoring (LTEM).

Our goal is to develop long-lived, reliable systems that can be deployed by non-experts.

The specific requirements of LTEM systems lead us to pursue techniques which can take

advantage of the natural heirarchies that exist in sensor deployments while avoiding the

difficulties inherent in selecting efficient data transmission routes in the face of unreliable

hardware and difficult-to-measure link dynamics.

The approach we advocate eschews traditional single-path routing and transmission meth-

ods in favor of approaches that leverage non-destructive simultaneous packet transmissions

over subsets of the network. We apply this principle to develop a medium access proto-

col suitable for dense networks (Flip-MAC) as well as a method for identifying the set of

potentially-useful forwarders between a data source and its destination (CX).

This document not only characterizes and evaluates the low-level behavior of these proto-

cols, but also describes the design of a larger multi-tiered data collection system based on CX,

a suite of hardware which is well-suited to both CX and common deployment patterns, and

the design of a “dirt-to-database” system which gives domain scientists the tools they need to

deploy and manage networks on their own.
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Chapter 1

Introduction

Many of our planet’s physical phenomena can only be understood through direct observation.

Deploying arrays of sensors in a natural environment can allow environmental scientists and

others to discover previously unobserved processes, build models of complex systems, and

validate or invalidate previously-held beliefs. Wireless Sensor Networks (WSNs) have been

proposed as tools which can enable such observations at previously-impractical spatial and

temporal scales. It is these Long-Term Environmental Monitoring (LTEM) systems which we

wish to build.

At a high level, we claim that WSNs for environmental monitoring must:

• Be robust to failures of individual devices or links: devices and links are unreliable in

the wild.

• Support hierarchical groupings of analog sensors and wireless nodes: this is how do-

main scientists design experiments.

• Automatically capture as much deployment metadata as possible: misconfigured or

misidentified devices cannot deliver usable data.

In this thesis, we will present hardware and software solutions that address each of these

requirements.

1



Chapter 1. Introduction

In Chapter 2, we describe our motivations behind these claims and lay the groundwork

for the rest of this thesis.

In Chapter 3, we present a medium access protocol, Flip-MAC, suitable for dense groups

of wireless nodes, such as those seen in our deployments. This work uses the principle of

non-destructive radio collisions to operate. If multiple devices wirelessly send the same data

at the same time, the result can still be properly decoded. This property is in stark contrast

to destructive collisions, where the combined signal of differing or unaligned transmissions

cannot be decoded reliably. By taking advantage of this effect, a potential data recipient can

engage in a series of communication rounds with the set of devices wishing to send them

data, rather than each individual sender. This insight lets us reduce the level of contention

in logarithmic time to the number of competing transmitters.

In Chapter 4, we apply the same principle to multi-hop communication. We describe

a method, which we call CX, to efficiently identify the set of nodes which lie between a

source and its destination using multi-transmitter floods. In a multi-transmitter flood, a

node sends a packet, and each recipient rebroadcasts it at exactly the same time (resulting in

non-destructive collisions). We can use this networking primitive to quickly ascertain which

nodes are “useful” forwarders for a source-destination pair, and use this to both save energy

(by turning off radios at unused nodes) and increase data throughput (by limiting the number

of “hops” that each packet travels to the distance between the source and destination). This

approach aims to reduce the impact of individual link or transmitter failures on reliability,

and avoids the need for costly link-estimation.

In Chapter 5, we extend CX to operate in a multi-tiered network, such as those we see

in LTEM deployments. We also take steps to make it revert to a low-power idle mode when

elements of the network infrastructure are absent.

We tie all of this together into a package which can be deployed by non-experts in Chap-

2



Chapter 1. Introduction

ter 6. In order for LTEM systems to succeed, they must be usable by somebody other than the

system designer. Here, we present a suite of hardware that matches our deployment needs

and supporting software to automate many of the common tasks necessary to ensuring data

provenance and quality. We end this chapter with a qualitative discussion of system usability

drawn from a preliminary deployment.

We close with general remarks and discussion in Chapter 7.

3



Chapter 2

Motivation and Background

In this chapter, we describe the Environmental Monitoring application space in some detail.

We present our observations of the major requirements of this application, explain the short-

comings that we see in the current approaches, and lay the groundwork for the solutions

presented in later chapters.

2.1 Application Requirements

In order to understand the application space for this research, we should start with our high

level system goals and present a few illustrative deployments.

Our overall task is to instrument some study area with analog sensors, sample them

periodically, and wirelessly collect their data. We place a number of motes in the field to

carry out this task. A mote is a low-power device consisting of a microcontroller, radio, sensor

inputs, and some persistent data storage. In this work, we may also refer to these as nodes.

Sensor data must be collected reliably and must be assigned meaningful physical values in

time and space. The system itself should be deployable and maintainable by non-specialists.

It should be able to exist in the field on battery power for the duration of the study period.

Table 2.1 summarizes several major deployments we have conducted over the years in

support of the Life Under Your Feet project [59], which studies soil ecology with sensor net-
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Name Duration #Nodes Coverage Data Rate Internet
Cub Hill 08/08 - 07/12 50 Uniform 2.6 B/min Permanent
SERC 03/09 - 06/11 36 Patches 2.6 B/min Permanent
USDA 07/09 - 08/10 22 Patches 2.6 B/min Permanent
Brazil 11/13/09 - 12/18/09 50 Uniform 52 B/min Transient
Ecuador 05/22/10 - 06/07/10 20 Patches 52 B/min Transient

Table 2.1: Summary of Koala [44] and K2 [10] Deployments.

works. They can be roughly grouped into campaign-style deployments (where data is up-

loaded to a laptop and reasearchers visit the site frequently), and semi-permanent deploy-

ments. The overall trend has been towards patchy deployments, where a few widely-spread

study areas are densely instrumented.

Requirements may vary from deployment to deployment, but there are a few items that

we have found to be common to studies of soil conditions and lower atmosphere dynamics,

the areas which we have directly helped our colleagues to explore.

Data rates are relatively low. Measurements germane to soil respiration (temperature,

volumetric water content, photosynthetically-active radiation, etc) can be taken at the reso-

lution of minutes or tens of minutes and provide meaningful information– these phenomena

just don’t change very rapidly. At the other extreme, we’ve performed measurements of soil

CO2 concentrations, air temperature, and relative humidity at a 30-second sampling interval.

These deployments saw a per-node data rate of 2.6 to 52 B/minute.

Data latency is unimportant almost to the point of irrelevance. It’s important that scien-

tists can identify fault conditions within a few days or weeks of their occurrence (e.g. faulty

sensor measurements, low batteries, moisture infiltration), but they don’t need up-to-the-

second measurements of the environment. Much of the required analyses are conducted over

the course of seasons.

On the other hand, we do have very high data delivery requirements. Many environmen-
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Chapter 2. Motivation and Background 2.1. Application Requirements

tal models require gap-free datasets to be applied. While it’s inevitable that some measure-

ments will be missed, every effort should be taken to minimize this. In practice, we have

used linear interpolation to fill short gaps in a single sensor’s data stream and more complex

mechanisms using cross-sensor correlations to handle more difficult cases [27].

We need to support a range of deployment topologies, but most importantly “patchy” de-

ployments. The analog sensors in use may be quite expensive. Soil moisture probes cost tens

of dollars, while CO2 sensors may run into hundreds of dollars apiece. For this reason and for

ease of deployment, it’s much more practical to densely instrument a few discrete and qual-

itatively different sites within a study area than it is to uniformly blanket the whole study

area. We have supported deployments, for example, that attempt to characterize the differ-

ences between old-growth and secondary-growth forests, between forested and grassy areas,

or between intentionally manipulated experimental sites. Such deployments may or may not

align well with the communication range of wireless sensor nodes. Typical distances between

individual analog sensors may be quite small (centimeters), while the distance between study

sites may be hundreds of meters or more. On the other hand, smaller deployments may be

uniformly instrumented, so an ideal system should handle both types of topologies.

Sensor measurements in themselves are not very useful. Without correct sensor meta-

data (types of sensors, locations, calibration records, etc.) to translate numbers into physical

measurements in space and time, a sensor network can’t deliver meaningful data. Manually

collecting this information is tedious and error-prone. Anything that we can do to automate

its collection will prevent misconfigurations and lost data.

Finally, network protocols that can reliably transfer data are necessary but not sufficient

to the success of a WSN in the field. We must reduce maintenance and deployment effort

as much as possible: replacing batteries or failed hardware is time-consuming, and delayed

maintenance can lead to extensive data loss. Generally speaking, the biggest power consumer
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Figure 2.1: A map of the Cub Hill deployment. The communication range of nodes was typi-
cally greater than 20 meters and the network was very well connected.

is radio communication, so WSN systems strive to extend battery lifetime by turning their

radios off as much as possible (called “duty-cycling”). We can’t control all of the environmental

factors which may damage hardware, but we can certainly make every effort possible to

reduce battery usage.

In the rest of this chapter, we’ll look at each of these factors in detail.

2.2 Deployment Patterns

The scientific missions of WSN deployments frequently lead to challenging networking condi-

tions. Cub Hill (Figure 2.1) is the kind of deployment pattern that was originally envisioned

for the TelosB mote platform [50] and the Koala collection protocol [44] (described in 2.4.1).

Devices are more or less uniformly spaced, and there is a permanently powered, perma-

nently Internet-connected base station. None of our subsequent deployments have followed

this model.

Our deployment at the Smithsonian Environmental Research Center (SERC), for exam-

ple, looks very different. This is pictured in Figure 2.2. The dark points represent 2-4 nodes,

while the light points are single nodes serving primarily as relays, whose sole purpose was

to keep the network connected. They were not connected to external analog sensors, and
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Chapter 2. Motivation and Background 2.2. Deployment Patterns

savings possible by taking patches into account in our collection protocol.

We can also designate a subset of nodes as “routers” and equip them with longer-range

transceivers. This reduces the amount of hardware that must be deployed and maintained,

which is good for the domain scientists who have to change fewer batteries and is good for the

computer scientists who want their networks to stay connected. In Section 6.2, we’ll describe

the “Bacon” wireless mote, which is well-suited to the node placement needs of environmental

scientists.

The SERC deployment is composed not only of patches of nodes, but also of patches of

sensors. Each experimental plot had one or two sets of soil temperature and moisture probes

at 10 cm and 20 cm depths. Our USDA deployment was even more densely instrumented,

with roughly 40 sensed locations in each of two small (several meter) patches.

The hardware which we used for these deployments allowed us to connect only 4 analog

sensors to each node. This makes logistics and maintenance more difficult for dense deploy-

ments: why should we have to drain batteries in ten different boxes that are inches away

from each other? Additionally, this prevents us from effectively amortizing connection costs.

There’s a certain amount of overhead necessary to setting up routes to each wireless node,

storing sensor measurements, and putting them into packets. Reducing this overhead will

reduce the amount of data which a network has to transmit, and this will reduce total energy

usage. The “Toast” analog multiplexer board which we present in Section 6.2 gives users

flexibility in how many analog sensors they can connect to a single sensor node.

Related Work These experiences are not unique to our research. One of the earliest WSN

deployments, the Great Duck Island project [58] followed this “patchy” model. More recently,

Tenet [49] advocated a tiered network architecture as well, though it is more oriented toward

processing data in the network than collecting a full historical record.

The concept of separating sensing, storage, and routing concerns has previously been
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Chapter 2. Motivation and Background 2.3. Supporting Systems

proposed in the literature [52]. The Luster [53] system is representative of this approach,

with dedicated sensing, storage, and communication nodes organized into clusters. However,

the analog sensor interface they describe is subject to the same problems we aim to deal

with using the Toast board, and their cluster-head devices [13] are more akin to expensive

full-fledged PCs than motes.

Other researchers have pointed out the benefits of transceiver heterogeneity [72] in WSNs,

showing that a relatively small number of “backhaul” links can greatly improve overall net-

work energy efficiency. Others have developed hardware that supports multiple radios, with

the goal of increasing reliable reception range [35] by exploiting channel diversity. The ap-

proach that we espouse maintains interoperability between the backhaul links and the links

used by end-devices. This uniformity keeps hardware and software design simple.

2.3 Supporting Systems

In WSN literature, a deployment is “successful” if samples taken at nodes get to a database.

In our experience, however, this is but one of the victory conditions. While some of this work

may be considered “just engineering,” we believe that our experiences should reframe what

it means for a deployment to succeed, and the solutions which we develop can serve as a

valuable example to future researchers in this area.

Our first “campaign deployments” [10] were intended to allow domain scientists to instru-

ment a site and collect as much useful data as possible in a short (several week) time period.

As such, they needed to get quick access to preliminary measurements and move sensors

from point to point periodically. To some extent, the need for flexible data processing and ag-

ile hardware placement are necessary for a well-performing WSN. For instance, Ramanathan

et al. envision tight interaction between researchers and their hardware in Suelo [51], in-

corporating expert knowledge from domain scientists in detecting and responding to sensor
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faults.

The original Life Under Your Feet design philosophy was to make the network as “dumb”

as possible, dealing only with opaque blocks of data and doing all data processing in a series

of off-site databases. This is unsuitable for the normally-disconnected use case, where a

researcher may need to have access to processed data in the field. In Section 6.3.3, we describe

an improved, more modular data processing approach.

Tracking hardware as it’s tested, assembled, deployed, and moved is a critical part of

any successful deployment. Domain scientists receive streams of raw data from sensors that

must at some point be interpreted as physical measurements taken at some point in space

and time. Deploying a network involves painstaking notes of, at a minimum, what types of

sensors are deployed at which locations. When this information is inaccurate or missing, we

end up with useless data. If the ultimate goal of a WSN is to deliver scientifically useful data,

then this is as bad an outcome as complete packet delivery failure. In our Brazil deployment,

we had even stricter requirements, as the sensors in use were individually calibrated. Not

only did we need to track what types of sensors were deployed where, but we also needed to

provide a unique ID for each analog sensor to be used to apply its calibration.

In Section 6.3, we describe the mechanisms we have developed to record and automatically

track sensor types, identifiers, and connections from assembly to deployment time.

2.4 Low Power Networking

Many instances of WSN deployments exist in the literature, and here we attempt to summa-

rize the main elements of a “normal” data collection system. We also describe the key issue of

maintaining good performance in the face of unreliable hardware and communication links,

which will shape our approach to this application.
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2.4.1 Existing WSN Systems

Most WSN systems for environmental monitoring move data from source to sink using funda-

mentally similar methods. A series of nodes determine their best choice of “next hop” through

a combination of local link quality measurements and multi-hop distance metrics, and then

strive to send data to that next hop without interfering with other transmissions and with a

minimum of energy waste. This problem is generally decomposed into media access (relating

to interference-prevention and coordinating between each sender/receiver pair) and routing

(relating to the selection of paths in the network). While a wide variety of approaches have

been taken to carry out the task of data collection, they rely on identifying useful individual

links and transmitting data over a series of them.

Our research group’s sensor deployments have, until this point, been based on the Koala [44]

data collection system originally developed by Musăloiu-E. et al., implemented in TinyOS [23,

29] and running on the commonly-used TelosB mote [50]. Each deployment consists of a sin-

gle base station node (a mote attached via USB to a laptop/PC) and a network of battery-

powered nodes (mote + analog sensor assembly) in the field. Each node generates data peri-

odically (e.g., by sampling external analog sensors) and buffers it in an external flash memory

chip.

Nodes running Koala keep their radios off most of the time. Periodically, the gateway

wakes up the entire network and downloads data from each node individually. Details of this

process can be found in [44], but we’ll point out a few of the most important characteristics

here.

First, Koala uses centralized source-routing (where the base station dictates over which

routes data should be forwarded) rather than maintaining persistent data collection routes

(as in the commonly-used Collection Tree Protocol [24], MintRoute [71], and many others).
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This is criticial to maintaining low power operation without reliable infrastructure. If the

base station is absent, the network stays in a low-power state, as opposed to searching for a

nonexistent route to the data sink.

Second, Koala avoids the need for a Media Access Control (MAC) protocol by centrally

coordinating the in-network communication. A MAC protocol typically has to both avoid

conflicts between users of the medium and ensure that a transmitter and its intended receiver

can rendezvous (e.g., agree on a common radio channel and communication time). In Koala,

the entire network stays active for the duration of a download, and the route provided by the

base station dictates an inter-packet spacing time that aims to avoid intra-path interference.

Within the sensor network community, there are a few other notable networking solutions.

CTP [24] is the preeminent data collection protocol in the low power WSN community. In

CTP, a routing tree is constructed in a distributed manner. Each node maintains an internal

notion of its current parent, and they send their data and the data of their descendants up

towards the root of the tree as it is collected. The largest “real-world” CTP deployment of of

which we are aware is the GreenOrbs project [28, 40]. While the original CTP work demon-

strated impressive agility and tolerance to node failures, the GreenOrbs authors describe

networking issues that they see in large-scale networks: they specifically point to high levels

of packet loss in nodes far away from the data sink.

6LowPAN [31] brings IPv6 to the low power wireless networking domain. 6LowPAN pro-

vides general-purpose data delivery service, not just data collection. RPL [70] describes the

underlying routing method used for this task. Nodes arrange themselves into a Destination

Oriented Directed Acyclic Graph (DODAG). A message is routed upward towards a root node

until it reaches a node that knows the path to the destination. At this point, it is sent down

over a series of links to the end point. RPL determines the graph structure on the basis of

one or more objective functions, but the general goal of finding reliable links between devices
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Figure 2.3: 14-day moving average of duty cycle and daily contact rates for an illustrative
period of the Cub Hill deployment.

and maintaining some notion of a directed graph structure is similar to that of tree-based

routing protocols.

The Backpressure Collection Protocol [42] implicitly defines the routing paths by using

the depth of each node’s packet queue as a decision criterion. As a node offloads its data, its

queue length drops: this, along with estimates of per-link ETX (expected transmissions, the

number of packets that must be sent before the first is successfully received) is used to set up

a routing gradient towards the data sink. While the route-selection that this protocol realizes

is less explicitly focused on the concepts of links and shortest paths than other methods, data

still travels from one device to another over single links to a sink.

2.4.2 Stability, Routing, and Energy Usage

In order to select a good route, we have to pick a set of stable nodes between the source and

destination, connected by reliable links. This can be remarkably difficult to do consistently

due to the realities of long-term outdoor deployments and the limitations of single-path rout-

14



Chapter 2. Motivation and Background 2.4. Low Power Networking

ing.

Figure 2.3 shows the high-level performance of Koala at our Cub Hill deployment for a

period where the network size and mote software remained the same. For reference, the

horizontal line shows the analytically-derived expected duty cycle based on data generation

rates, estimates of network connectivity, and a detailed model of the protocol [11]. This site

consisted of 50 nodes, more-or-less uniformly spaced apart: see Figure 2.1. The communica-

tion range of these nodes was generally greater than 20 meters, so the network was densely

connected.

Prior to a network-wide battery replacement in June 2010 (the first vertical line in Fig-

ure 2.3), the actual radio duty cycle exceeded the expected duty cycle. During this period, the

network was connected well enough for the base station to detect many nodes in the network,

but it was unable to reliably find good routes to them. This results in failed and re-attempted

connections, costing radio on-time and energy. While diminished connectivity certainly con-

tributes to this problem, unreliable hardware is a major factor. Once a node’s battery has

been depleted to a certain level, it can no longer sustain the continuous current load of the

active radio. However, it can send wakeup probes and operate for short periods of time, which

leads it to be detected and considered for use in data forwarding. Figure 2.5 shows the volt-

age of partially depleted batteries under different levels of load, while Figure 2.4 shows the

impact that brownouts have on route selection: connection attempts fail at higher rates when

routes are chosen that contain unstable nodes.

While batteries will run down over time, it’s also important to design protocols that default

to low power states when failures occur. Figure 2.5 shows two incidents at our Cub Hill de-

ployment where a bug in the download script kept the network awake for an extended period

of time. After event A, Box 24 starts showing the signs of a depleted battery (large voltage

drop under load), and it dies entirely during event B. Similar instances of basestation errors

15



Chapter 2. Motivation and Background 2.4. Low Power Networking

10/28 10/31 11/03 11/06 11/09 11/12 11/15 11/18 11/21 11/24 11/27 11/30
0

0.2

0.4

0.6

0.8

1
Fa

ile
d 

C
on

ne
ct

io
ns

 [0
 1

]

Period of Network : 10/28/2009 to 11/30/2009

 

 
Routes using "Healthy" motes Routes using "Rebooting" motes

Figure 2.4: A comparison between the fraction of failed connections when using routes that
include motes with high reboot rates (“Rebooting”) in comparison to those using only motes
with low reboot rates (“Healthy”). N.B. this data is from before the route selection method
was improved in 2.3.

triggering cascading faults in the network were reported by the authors of SensorScope [32],

where intermittent failures at a cellular uplink led to extensive packet queuing and data

drops. Langendoen et al. [36] also describe a situation where failures at PC-class backbone

nodes caused data loss and expensive (and useless) routing churn.

Figure 2.6 demonstrates the interplay of high reboot rates with duty cycle in detail, for

an earlier period in the deployment. The top figure shows the overall duty cycle, normalized

to the data collected (to account for changes in network size over time). We can see both a

distinct increase in the normalized duty cycle over time and an increase in the variability of

duty cycle as time goes on. Not only did the network become less efficient, it also became less

predictable.

The most proximal cause for the increased duty cycle is the number of connection failures.

Such failures increase as the network degrades, and this corresponds with the increasing

reboot rate in Figure 2.6. We note that the daily reboots will peak and then go back down over

time, as marginal nodes take longer to recover to operational voltages (rather than oscillating

16



Chapter 2. Motivation and Background 2.4. Low Power Networking

05/01/09 05/03/09 05/06/09 05/09/09 05/12/09
2.5

2.75

3

3.25

3.5

3.75
B

at
te

ry
 V

ol
ta

ge
 [v

ol
ts

]

 

 
A B

Box ID : 81
Box ID : 24
Box ID : 2

Figure 2.5: Impact of base station failure on battery voltage. Motes kept radios on during
periods A and B. Drops in voltage correspond to download events.

around the brown-out zone) and eventually stop running entirely.

These sorts of problems are inherent to single-path routing: each route you select is an

all-or-nothing bet, and the price you pay for failure ranges from time/energy wasted on retries

to packet loss and routing failures (loops, etc.).

In November 2010 (the second vertical line in Figure 2.3), we modified the download pro-

cess in an attempt to both improve route selection and mitigate the cost of individual connec-

tion failures, details of this are in [10]. We began using breadth-first downloads which favor

recently-acquired link quality information over older information, and resulted in fewer at-

tempts before each node could be reached. Since nodes could generally be reached in fewer

attempts, we reduced the number of retries before “giving up” on a node until the next down-

load. Finally, we weighted against nodes which were on a previously-failed download path

in an attempt to weed out misleading link quality measurements and unstable nodes. Being

more aggressive at pruning out potentially-bad information let us maintain roughly the same

contact rate but at a much lower duty cycle.

It is somewhat unsatisfying to conclude that the best that we can do with a centralized

and reasonably up-to-date view of the network is to give up quickly on nodes that are hard to
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reach with the best information we have available, and hope that we can do a better job next

time. So how does one improve from here?

The available options we see are to either do better at route selection or to move from

all-or-nothing routes to something that is more resilient to failures.

Improving route selection would involve gathering better link quality information, explic-

itly incorporating non-link sources of route failures into the selection logic (battery, moisture,

etc), or both. Link quality information is not free: you need some radio traffic to measure

in order to assess a link. Adding more considerations to route selection increases logic and

seems like a band-aid approach. Changing temperature affects battery voltage, so should

that be included too? How does a node actually detect that it has an unstable neighbor?

What if none of a node’s neighbors are consistently stable, but there’s generally at least one

that’s stable on a short term basis?

Rather than chase down every source of error in route selection or link quality measure-

ments, we will seek a method for adding redundancy to routes.

Recent work has explored softer definitions of routes in low power networks. In op-

portunistic routing (for example, [16] ) packets are allowed to travel over less-reliable but

longer-range links. Even more radically, systems such as Flash Flooding [41] and the Low-

Power Wireless Bus [21] do away with routing entirely by communicating via efficient net-

work floods. We see these approaches as taking important steps to addressing the problems

arising from fragile links and forwarders. In the next section and the following chapters,

we will apply these concepts to build a disconnection-tolerant collection protocol that uses

reliable sets of forwarding nodes rather than potentially-shaky single-path routes.

2.5 A New Direction

So where do these observations leave us?
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the Cub Hill deployment. A series of base station faults explains the high duty cycles in 4/09,
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We want a system that matches sensor deployment needs more closely than our current

approach. Organizing nodes into patches and attaching many analog sensors to a single

node will improve both energy efficiency and manageability. Automating the discovery and

identification of analog sensors will improve the yield of scientifically useful data and lead

to more dynamic deployments. This is described in the details of our hardware design and

supporting software systems in Chapter 6.

We want a collection protocol that operates in a low power state as much as possible. Koala

starts down this road, by leaving nodes idle until a download is required. We want to take this

a step further by decoupling each patch from the rest of the network: nodes should be able to

enter a low power state whenever there is not an active download in their immediate vicinity.

This is reflected in the design of our multi-tiered collection system described in Chapter 5.

Finally, we want a system that is robust to the common networking problems arising from

low-power, single-path routing. We will realize redundant simultaneous delivery paths by

leveraging non-destructive interference. Under this approach, we aim to identify a subset

of the network that roughly lies between the source and destination and use them all for

forwarding. By carefully scheduling transmissions to occur simultaneously, we can send a

data packet over this set of nodes without fear of losses due to interference.

2.5.1 Taking advantage of non-destructive interference

The principle of non-destructive radio interference is well-suited to both the spatially patchy

nature of our deployments and our desire for robust delivery methods. Here we briefly explain

non-destructive intereference.

Drs. Musăloiu, Dutta, et al. noted an unexpected benefit in the original Koala system

which leads us down the road to such a method [19]. During the Koala wake-up process,
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nodes send probes periodically and interpret an acknowledgement to one of these probes to

mean “stay awake.” However, once multiple nodes are awake, one would expect that their

acknowledgements would interfere with each other (and so the prober would not wake up).

This does not occur, however, because the packet acknowledgements collide non-destructively.

They are sent so close in time to one another that their combination results in a waveform

that can still be demodulated successfully.

Figure 2.7 shows an idealized view of the effect of multiple non-destructively interfering

transmitters. When transmissions are tightly aligned in time (to within a fraction of the

underlying signals’ chip frequency [22]), nodes can decode the combination of these transmis-

sions. This process is aided by the presence of radio capture effect, in which the gain control

of a receiver effectively drops the weaker of two simultaneous and interfering signals below

the noise floor relative to the stronger signal.

This behavior was used to build a MAC protocol in [18], and we apply this to use in

extremely dense network conditions in chapter 3.

It was not until recently [21,22,54] that this technique was applied to data transmissions

in low power WSNs in industrial and academic research. In Chapter 4 we will apply these

findings to build a system which identifies a useful subset of the network and uses efficient

floods over just this portion of the network to deliver data.
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Vertical lines indicate symbol boundaries and each original signal has an amplitude of 1.
When the FM signals shift from the 0-frequency to the 1-frequency at the same time, the
result is a wave with the same frequency as a single transmitter and varying amplitude.
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Chapter 3

FlipMAC: Building a MAC Protocol on
Non-Destructive Packet Collisions

Our first effort into using concurrent transmissions to solve real problems in sensor net-

works was Flip-MAC. We noted that the region surrounding a router node was likely to be

quite dense relative to the rest of the network. We wished to explore methods for efficiently

resolving contention between a large set of nodes attempting to reach a single destination.

The method described in this chapter uses a series of request-acknowledgement rounds to

winnow down a large set of possible senders to a small set of competing nodes. It makes

use of concurrent transmissions to carry out this contention-reduction process in logarithmic

time relative to the initial number of senders.

While it is not directly applicable to our particular target application (in which we require

long-term, low temporal resolution measurements from all nodes), it may be well-suited to

similar network topologies having different data delivery needs. It merits inclusion in this

thesis not only as a record of the scientific process leading us to our final system design, but

also as a potentially valuable tool for similar classes of sensor networks.

This work followed in the footsteps of A-MAC and BackCast [17, 19] , and was indirectly

inspired by the observations of non-destructive ACK collisions in the Koala LPP wakeup

process [44].
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3.1 Introduction

Many wireless sensor networks (WSNs) are deployed in dense patterns, where a single node

can have dozens of radio neighbors [39]. The advent of long-range radios is likely to create

even denser deployments, with hundreds of nodes within radio range of each other.

In this chapter, we consider the case of a dense network of sensing nodes that continuously

record high-resolution data, most of which is “uninteresting.” Periodically, some event occurs

which is detected by multiple nodes. When this happens, an infrastructure node wants to

quickly become aware of it and retrieve the high-resolution data from any of the detectors

which experienced the event. Namboodiri et al. described a similar use case in the context

of a home security monitoring application, while we add the assumption that it may not be

necessary to service all of the nodes with data to send [45]. Due to the relative rarity of events,

we would prefer to use a non-scheduled MAC protocol to handle the channel negotiation

process, which generally will have lower maintenance costs than a scheduled protocol.

Rather than proposing a complete MAC protocol to fit this use case, we propose dividing

the problem into two steps: the first quickly reduces contention to a manageable level, and

the second uses an existing non-scheduled MAC protocol to select a single sender.

In Flip-MAC, our goal is to quickly reduce the level of contention from many senders to

a handful. The process we follow is analogous to all nodes performing a series of coin-flips,

where the senders whose coins fail to match the receiver’s simultaneously exit the compe-

tition. The competition ends when no senders match the receiver (as this indicates that

relatively few senders remain).

This process is realized through a series of probe-acknowledgement cycles. During the

main negotiation process, the receiver sends a probe to one of two possible 802.15.4 addresses,

while each eligible sender temporarily sets their ID to one of these two addresses. These
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choices are made randomly at each node. The eligible senders which “guessed correctly” (by

setting their ID to the destination of the probe) send simultaneous acknowledgements and

make their selection for the next cycle. When one of these probes goes unacknowledged,

the receiver assumes that none of the remaining senders made a matching selection, which

indicates that only a few senders remain in negotiation. At this point, we revert to a simple

CSMA/backoff scheme and initiate the main data transfer with any one of the remaining

nodes.

Most Medium Access Control (MAC) protocols make the assumption that collisions be-

tween transmitters are solely destructive. It has been demonstrated that this is not al-

ways the case [17, 22]. In Flip-MAC, the concurrent transmissions are limited to hardware-

generated acknowledgements provided by the CC2420 [62] transceiver. These are implicitly

synchronized and are produced in a highly deterministic fashion, so they interfere construc-

tively in most cases. While Flip-MAC is designed with the CC2420 in mind, it makes use of

principles which should apply to any 802.15.4-compliant transceiver.

Flip-MAC has three main benefits. First, negotiation takes logarithmic time with respect

to density, allowing the protocol to scale to extremely high levels of initial contention. Second,

final contention levels are low and largely independent of the initial contention level. Finally,

the incorporation of several two-way communications in negotiation helps to bias sender se-

lection in favor of good links: in our intended use case, any sender is equally valid, so this is

a positive outcome.

Our experiments yield promising results. A testbed evaluation demonstrates that Flip-

MAC works effectively with up to 44 contending senders, completing negotiation successfully

more than 95% of the time. These experiments also show an increase in median negotiation

time from one round to five rounds as density increases from one sender to 44, which agrees

well with the expected ideal logarithmic performance. Simulation results show that Flip-
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MAC should perform well in large networks, effectively reducing the median final contention

by an order of magnitude even when low-PRR links are present.

The rest of this chapter is organized as follows. In Section 3.2, we give a brief survey of

related systems and MAC protocols, highlighting the important differences of Flip-MAC from

them. In Section 3.3, we provide a detailed description of the operation and expected behavior

of Flip-MAC. We evaluate Flip-MAC’s performance in Section 3.4. In Section 3.5 we propose

some extensions to this research, and we offer concluding remarks in Section 3.6.

3.2 Related Work

A staggering number of papers have been written about MAC protocols. Rather than attempt

to describe all of them, we wish to point out several protocols and systems which are evocative

of Flip-MAC: for a comprehensive overview, see [6].

Receiver-initiated MAC protocols were perhaps most famously explored in RI-MAC [57].

Nodes with data to send wait until the intended recipient sends a beacon frame. All waiting

senders respond with data, and if a collision occurs, the receiver sends another beacon with a

“backoff-window” specified. Senders attempt to retransmit their data at some random point

in this window.

A-MAC [17] is another receiver-initiated MAC protocol, but it takes advantage of the fact

that hardware-generated 802.15.4 acknowledgement frames can be sent and processed much

more quickly than full 802.15.4 data frames to reduce wasted idle-listening time. A-MAC

also takes advantage of the fact that hardware acknowledgments collide constructively to

“robustly distinguish the case of zero replies (indicating no pending traffic) from one or more

replies (indicating pending traffic).” The authors demonstrate impressive gains in current

consumption over RI-MAC and Low-Power Listening (LPL) [7], but point out that limitations

remain, particularly in the realm of dense networks. Additionally, their method is only eval-
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uated up to densities of four contending senders (though they show that acknowledgements

are still readily decodable with 94 simultaneous senders). Like any protocol which relies

on detecting collisions and backing off, as contention increases, backoff times suffer. We see

A-MAC and Flip-MAC coexisting well together, as they leverage the same communication

primitives.

The StrawMAN [47] system is reminiscent of Flip-MAC, in that they both allow multiple

transmitters to coexist and make use of randomized negotiation. In StrawMAN, all pending

senders transmit a packet of variable length, while the receiver reads the Received Signal

Strength Indicator (RSSI) to determine the length of the longest transmission. The receiver

then broadcasts a message containing the length of the longest sender-request packet, and

that sender responds by transmitting its data. However, the authors of [17] point out that

pollcast [14], implemented with a similar technique, can be prone to false positives when

multiple nodes perform this activity or external interference is present.

The authors of Alert [45] attempt to solve a similar problem to ours (selecting a single

sender from a pool of many eligible senders), but they approach it through a randomized

channel/time slot assignment that is optimized to minimize the delay of the first message

and the overall delay to collect all messages. Our approach does not require any synchro-

nization between nodes, has channel utilization dictated primarily by the receiver’s latency

requirements, and is simpler to analyze.

Finally, while not a MAC protocol, Glossy [22] was recently introduced to simultaneously

solve the problems of efficient network flooding and time synchronization. Like Flip-MAC,

Glossy relies on non-destructive concurrent packet transmissions to achieve high perfor-

mance. The authors of Glossy take considerable care to transmit data packets (not acknowl-

edgements) with very precise timing, while we use the basically “free” precision of hardware-

generated acknowledgement. Their work is indicative of the nascent trend in WSN research
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of exploiting concurrent radio transmissions.

3.3 Protocol Description

Most non-scheduled MAC protocols rely on collision detection and backoffs at some point: in

both A-MAC and RI-MAC, senders back off in response to collision-detection messages from

the receiver, for example. When contention is very high, these backoffs can hurt the MAC

protocol’s performance. In the extreme case, hard-coded maximum backoff limits will cause

receivers to abort when contention is too high. Flip-MAC is used to quickly reduce contention

to low levels, at which point traditional MAC protocols can work effectively.

The high-level operation of Flip-MAC uses a series of probes to randomly select nodes from

a pool of eligible senders. Each probe is sent to a random ID from a small range of choices,

and any senders1 which correctly guess the ID selected (by setting their ID to it temporarily)

remain in negotiation. The selected senders respond with acknowledgements, which collide

non-destructively and allow the receiver to tell whether nodes are still participating in nego-

tiation. This removes some fraction of the remaining senders on each negotiation round. In

this manner, we quickly reduce the number of eligible senders to the point where a basic MAC

protocol will perform well. We reserve a few bits from the 802.15.4 address to allow the nego-

tiation to take place solely through transmissions from the recipient and fast, non-interfering

hardware acknowledgements from the senders.

In this section, we describe the protocol in detail and characterize its behavior under loss-

free conditions.
1Unless otherwise noted “sender” refers to a node which ultimately wishes to send data to the “receiver” (not to

be confused with the node which is transmitting a Flip-MAC control packet).
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Abbreviation 0 1 2 Meaning
Not Used 0 0 0 Reserved for normal data traffic
DP 0 0 1 Is Data Pending?
NC0 0 1 0 Negotiation choice: 0 selected
NC1 0 1 1 Negotiation choice: 1 selected
RC0 1 0 0 Resolution confirmation: 0 selected
RC1 1 0 1 Resolution confirmation: 1 selected
RCx 1 1 0 Resolution confirmation: none selected

Table 3.1: Predicate Address prefixes. These are prepended to the unique 13-bit ID of a node
to form a predicate address.

3.3.1 Operation and Implementation

In our scheme, nodes may only use the lower 13 bits of their 16-bit 802.15.4 short ID for

unique identification. The three highest-order bits are reserved for encoding “predicate ad-

dresses” (PA’s) used to control Flip-MAC and select from eligible senders. Table 3.1 describes

the format used.

Figure 3.1 demonstrates the negotiation process in detail. Nodes with data to send to

a specific recipient change their 802.15.4 ID to match the “data-pending” (DP) PA of the

recipient. Nodes periodically probe to their own DP PA. If a sender receives a probe on

this address, it acknowledges it and randomly selects one of the “negotiation-choice” (NC)

PA’s for the recipient and sets its 802.15.4 address to this. Likewise, if a receiver gets an

acknowledgement to a DP probe, it randomly selects one of its NC PA’s and sends a probe to

it. This process continues: every time that a sender receives a probe, it assigns itself to a new

NC PA. Every time that the receiver gets acknowledgements, it probes to a new NC PA. In

the basic case, we consider a set of two NC PA’s (requiring a single bit), but a larger number

could be used at the expense of consuming more IDs.

If a sender doesn’t get a probe within the alloted time, it assumes that it picked incorrectly,

and changes its address to the “resolution-confirmation” (RC) PA corresponding to its last

correct choice. The sender “hopes” that it was in the last batch of “winners” and waits for
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Figure 3.1: Negotiation sequence. Black boxes indicate transmissions, with text indicating
the PA to which a probe was sent. White boxes indicate receptions, the text within indicates
the PA at which the receiver was listening. Broken lines indicate that nothing was received
due to a PA mismatch.

immediate confirmation. If this confirmation doesn’t arrive, it concludes that some other

node has been selected and stops participating2.

If the receiver gets no acknowledgements, it assumes that no nodes matched its last se-

lection (implying that relatively few senders remain). Once this state is reached, the receiver

sends a probe to the RC PA corresponding to the last acknowledged NC probe that it sent.3

When this is acknowledged, the behavior reverts to the low-contention MAC protocol in use.

Flip-MAC was implemented in nesC [23] for TinyOS on the TelosB platform [43]. Since

it’s ultimately intended to coexist with another MAC protocol, great care was taken to make

minimal component wiring changes: the only major logical change in the CC2420 radio stack

is the replacement of the CC2420CsmaC component with a CC2420FlipMacC component.

We used a simple CSMA + exponential backoff scheme for the low-contention MAC pro-

tocol. This code, including full instrumentation for debugging and data collection, consumes

approximately 24 KB of ROM and 3 KB of RAM.
2We consider the problem of notifying senders that their data is no longer desired to be orthogonal to this work.

One 3-bit PA prefix is not in use, so this could be added as a “cancel pending transmission” message in the future.
3In the case where the DP probe was acknowledged, but not the first NC probe, a special RCx PA is used.
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3.3.2 Convergence Behavior: Loss-Free Setting

In the absence of packet loss, Flip-MAC can be characterized by answering two key questions.

First, how many rounds of negotiation are required before the receiver ends the process?

Second, how many senders will remain at the end of the negotiation process?

Negotiation Length

We start investigating negotiation length by analyzing how many senders will remain after

k rounds.

For generality, we let psel equal the probability that a sender selects the same NC PA as

the receiver, and we assume that the selection of NC’s is independent for each node. The

probability, then, of a sender selecting the same NC as the receiver k times is simply pksel. We

can therefore define the number of nodes remaining at the kth round, given an initial number

of senders n, with a simple binomial distribution:

R(n, k, psel) = B(n, pksel)

The negotiation process ends when a probe is sent, but no acknowledgements are received.

If m senders remain, this is equal to the probability that all m senders fail to pick the same

NC PA as the receiver, and given by Pna(m) (the probability of no-acknowledgements received

from m actively-negotiating nodes):

Pna(m) = (1− psel)
m

Combining these, we get Ps(k, n), the probability of stopping on the kth round, when start-

ing with an initial density of n:
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Ps(k, n) =
n

j=0

r(j, n, k − 1, psel)Pna(j)

where r(j, n, k, p) is the probability mass function of R(n, k, p). In plain English, the prob-

ability of stopping at the kth round when starting from an initial density of n nodes is given

by summing the probability of having exactly j nodes at the preceding round, and having all

j nodes pick incorrectly, for all values of j up to the original density.

Figure 3.2 shows the cumulative density function that this produces for several initial

contention levels, as well as the results from simulating this process directly with psel = 0.5.

There is very good agreement between the analytical result and the simulation. Note that, as

one would expect, doubling the sender density adds a single round to the negotiation length.

Sender Density Post-Negotiation

The negotiation process ends when none of the eligible senders select the same NC PA as the

receiver. Aside from the time required to reach this point, we are also concerned with the

final contention level.

The expected value of the number of senders participating in a no-acknowledgement

round can be taken from our definition of Pna(m), with initial sender density n.

E(nna) =
n

i=1

i · Pna(i)

This examines the probability of stopping with i nodes in contention for every i up to the

maximum possible, n. The expected value converges to two as n increases with psel = 0.5.

Simulation results bear this out.
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Figure 3.2: CDF of rounds to completion for several initial sender densities, from simulation
and definition of Ps(k, n) The curves are from the analytical results, the points are from the
corresponding results of 10,000 simulation trials.

3.4 Evaluation

In this section, we seek to characterize Flip-MAC’s performance under a variety of conditions.

First, we evaluate Flip-MAC’s behavior in absolute terms on a moderately-sized testbed.

We then turn to a Python simulation in order to evaluate how correlated and uncorrelated

packet losses affect Flip-MAC. Finally, we explore the beneficial positive bias which Flip-

MAC exhibits in link selection at large scales.

Unless otherwise noted, all figures referred to in this section show the 10th, 25th, 50th,

75th, and 90th percentiles of measurements.

3.4.1 Testbed Evaluation

Procedure

In order to evaluate Flip-MAC, we ran a series of testbed experiments over the course of 40

hours. One node was selected to be the receiver, and a variable number of nodes were selected
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to act as senders. Every two seconds, the receiver sent a DP probe, and all senders attempted

to send a data packet to it. When each round was finished, every node logged the results to

the serial port: their final status, timestamps from each packet reception/transmission, and

the RSSI/LQI of the last packet which they received in the round.

The receiver was set to a centrally-located node4 on a two-floor testbed inside of a univer-

sity academic building, consisting of 60 nodes total. We ran multiple 15-minute experiments

with progressively larger sections of the testbed: only the closest node, the nodes in the same

room, the nodes on the same hallway, the nodes on the same floor, and finally the nodes on the

entire testbed. The maximum possible contention was 59. However, since not all nodes were

in communication range, we will refer to the sets of senders by the median initial contention

level observed over the experiments rather than the number of nodes which were designated

as senders. The median initial contention level was 44 for the full testbed. Approximately

28,000 individual probes were sent over approximately 60 test batches.

Proof-of-Concept

The first question we need to answer is “Does Flip-MAC work in practice?” Figure 3.3 gives a

high-level answer. When we aggregate results based on the portion of the testbed in use, we

can see that while the initial contention rises from one to 44, we see the negotiation failure

rate go from close to zero to almost 5%. These failures can be categorized as “RC Failures,”

where the final RC probe was not acknowledged, or “DP Failures,” where the initial DP is not

acknowledged.5 We suspect that the loss increases because as we expand the pool of senders,

we add progressively worse and worse links (farther away from the receiver). We note that
4We had intended to repeat this with different receivers, but the other nodes we tried experienced serial commu-

nication issues which made the data unusable. We discarded test results where we detected that the receiver had
experienced poor serial communication.

5In cases where negotiations ended successfully, the simplistic CSMA protocol we used achieved a 97% delivery
rate. A more sophisticated protocol, or one that included retransmissions, would likely do better.
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Figure 3.3: As the initial contention increases, we see an increase in negotiation failures.
However, non-acknowledged DPs (which are most impacted by initial contention) account for
only 2.2% of outcomes in the worst case.

prior work has shown that ACKs can be decoded robustly under good link conditions for up

to 94 nodes [17]. By using no routing protocol and attempting to use every possible link on

the testbed, we are working in a worst-case environment, but we still see more than 95% of

negotiations end successfully. In practice, a good routing protocol would avoid including poor

contenders in the initial pool, mitigating this problem somewhat.

Figure 3.4 further suggests that link quality variations contribute to negotiation failures.

The negotiation failure rates of the multi-room experiments (13, 28, and 44) trace roughly

similar shapes, though higher contention levels are impacted more heavily. The worst perfor-

mance occurred during daytime hours on the second day of testing.

Contention Reduction

Flip-MAC is primarily intended to reduce contention from high levels to manageable ones.

Figure 3.5 demonstrates its effectiveness in this task. The median final contention remains
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Figure 3.4: Testbed delivery rate as a function of time, for the initial contention levels tested.
Note Y-axis scale.

at or below two. While we see fairly long tails at the highest contention levels, we note that

the 75thpercentile remains below seven, which is easily manageable by most MAC protocols.

Flip-MAC’s expected logarithmic running time is one of its primary benefits, and Fig-

ure 3.6 shows rough agreement with the analytical results. There aren’t measurements at

very large scales to definitively bear out the analysis, but we can see that the median num-

ber of rounds required only rises from one to five as we increase the contention from 1 to 44

nodes.

Time Overhead

In order to determine the overhead required in negotiation, we measured the difference be-

tween when a receiver sent their first DP probe to the point where negotiation completes and

nodes begin to send their data with the 32KHz on-board clock. We tuned the inter-round

interval to 16 milliseconds, which allows enough time for senders to consistently receive a

probe, send their acknowledgement, and switch to a new predicate address in time to receive
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Figure 3.5: Results from testbed experiments demonstrating Flip-MAC’s ability to reduce
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Figure 3.6: Results from testbed experiments showing relationship between rounds-to-
completion and initial sender density. The median rounds-to-completion only rose from 1
to 5 as we increased contention from 1 to 44 nodes.
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the next probe. In addition to this, approximately 1.6 milliseconds of overhead are involved

in sending the initial DP probe, and the final RC probe consumes another one-round inter-

val. From the results in Figure 3.6, we can expect less than 66 milliseconds of overhead in

90% of the cases where no contention is present. Our implementation attempted to keep the

CC2420 radio stack as clean as possible. It’s certainly possible that if the lower layers of the

stack were to be re-written with Flip-MAC in mind, it would be possible to reduce the period

between probes. However, this optimization runs counter to the idea that Flip-MAC could

supplement low-contention MAC protocols.

3.4.2 Simulation

We wrote a simulator in Python to help us assess Flip-MAC’s performance in a more con-

trolled environment than the testbed provides. In the remainder of this section, we present

descriptions of how the simulation indicates that Flip-MAC will behave when subjected to

different types of packet loss and how this impacts sender selection bias. Unless otherwise

noted, each experiment simulated 128 senders, and each set of error-bars depicted is derived

from the results of 1,000 trials.

Correlated Loss

The first type of loss we are concerned with is correlated loss, where a probe is lost to all

senders or an entire set of acknowledgements is lost to the receiver. This could occur, for

example, if a burst of WiFi traffic or some other interference is present during negotiation.

If a probe is lost to all senders, no acknowledgements will be sent in response. The re-

maining senders from the previous step and the receiver will therefore both move on to the

resolution-confirmation phase. This has the effect of shortening the negotiation process, but
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potentially leaves many nodes in contention when it’s complete.

If all acknowledgements are lost, the situation is slightly more complicated. When this

occurs, some senders receive a probe, send their acknowledgements, and move on to the next

round of negotiation. However, the receiver assumes that no nodes responded to its last

probe, and moves on to the resolution-confirmation stage. At this point, it’s possible that

nodes which failed at the last negotiation round are currently expecting an RC message, and

nodes which succeeded are waiting for an NC message. It’s also possible that no nodes are

waiting for an RC message at this point. We accept that such failures can occur and will

simply retry the negotiation when they do.

We investigated the impact of correlated loss by simulating the negotiation process with

128 initial senders and a correlated acknowledgement PRR which varied from 0 to 100%.

Varying the correlated probe loss rate elicits a similar response, so we omit those results for

brevity.

Figure 3.7 confirms our expectations: a low acknowledgement PRR leads to very short

negotiations, but can potentially leave very high levels of contention. We leave it to future

work to make Flip-MAC more resilient to correlated losses. This could be achieved in practice

by incorporating retries into the negotiation process, or allowing the low-contention MAC

protocol to coordinate quickly restarting negotiations with Flip-MAC if contention is too high

to work effectively.

Uncorrelated Loss

The second type of loss we are concerned with is uncorrelated loss, where each sender’s link

experiences loss events independent of the others (due to different distances, sources of in-

terference, etc).

The impact of probe loss is intuitively simple to understand in this setting: in order for
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(b) If acks are not reliable (e.g. due to persistent interference at the receiver), Flip-MAC is not able to effectively
reduce the level of contention.

Figure 3.7: Impact of correlated acknowledgement loss on performance.
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a sender to acknowledge an NC probe and continue, it must choose the NC PA correctly

and receive the NC probe. This effectively changes psel to pselprs, where prs is the PRR of

the receiver-to-sender link. If all senders experience identical, but independent, loss rates,

then this is a simple substitution in the preceding analysis. Incorporating variable loss rates

between senders, however, greatly complicates the analysis without providing much new in-

sight, so we examine this through simulation.

The impact of uncorrelated acknowledgement loss is also fairly straightforward: if any

acknowledgements reach the receiver, there is no impact at all. A node which sends a lost

acknowledgement proceeds to the next negotiation round, and since the receiver gets some

acknowledgements, it proceeds as well.

To investigate how uncorrelated losses affect Flip-MAC, we first simulated its operation

on 128 senders, each with the same PRR (both for probes and acknowledgements). Figure 3.8

shows that Flip-MAC is more resilient to uncorrelated loss than it is to correlated loss: nego-

tiations tend to last longer, and as long as PRR is not uniformly terrible, we ultimately end

up with very little contention. This makes sense, as a single correlated loss event can stop

the entire process, but the probability of many uncorrelated losses occurring simultaneously

is much lower.

In practice, it’s not likely that each sender will experience the same uncorrelated PRR.

In Figure 3.9, we run the same simulation just described, but we draw each sender’s PRR

from a Gaussian distribution with mean 0.5 and a variable variance6. When variance is low,

the process completes quickly and leaves a large number of nodes in contention. This makes

sense: in the extreme case, where variance is 0, every node has an effective psel of 0.25. As

we increase the variance, we generate more nodes with “good” PRR: these are able to remain

in negotiation longer. When there is a wide enough margin between “good” and “bad” nodes,
6Sample PRR’s drawn with value less than 0 or greater than 1.0 were set to 0 and 1.0, respectively.
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(a) When link quality is poor, negotiation time is low: the receiver stops the process at the first round where no
acks are received.
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(b) “Early stopping” leaves many nodes in contention, as few eliminations occur.

Figure 3.8: Impact of symmetric packet loss on duration and final contention. All senders
experience the same bi-directional PRR.
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the “good” nodes can keep negotiation running long enough for the “bad nodes” to all drop

out. The next section digs deeper into this effect.

Sender Selection Bias

We suggested above that variable PRRs lead to different outcomes for senders with good links

from senders with bad links. Our evaluation on the testbed showed a slight preference for

nodes with higher RSSIs, but without instantaneous ground-truth PRR measurements, the

connection to actual link quality is a little tenuous. However, we can simulate this effect with

higher numbers of nodes and finely controlled PRRs.

In Figure 3.10, we can observe a positive selection bias for nodes with good links. We use

the same dataset used in Figure 3.9, but we look at the rank of the selected sender when the

nodes are ordered by PRR. A value of 128 indicates that the selected node had the best PRR,

and 1 indicates it had the worst.

The effect is striking: as long as there is a modest degree of variability in links, Flip-

MAC is strongly biased in favor of selecting good links. The accumulated effect of several

loss events is sufficient to weed out the worst links. Keep in mind that these effects manifest

over the span of less than 12 negotiation rounds for the most part (Figure 3.9): if sender

density is higher, there will be more time for this effect to work. Since this effect will be

stronger as negotiation length increases, it’s not terribly surprising that the (relatively-short)

negotiations observed on our testbed didn’t turn up a dramatic bias.

The effect of a single lost acknowledgement is very different from the effect of a single

lost probe from the sender’s perspective (the former may have no effect at all, while the

latter instantly disqualifies them). This naturally raises the concern that when links are

not symmetric, Flip-MAC will be biased in favor of good receiver-to-sender links, but not

necessarily good sender-to-receiver links. Figure 3.11 explores this. For this simulation, we

43



Chapter 3. FlipMAC: non-destructive collisions for MAC 3.4. Evaluation

* * * * *
* * * * * * *

* * * * * * * * *
− − −

− − − −
− − − − − − − − − − −

− − −

− − − − − − − − − − − − − − − − − − − − −

− −
− − −

− −
− − − − − − − −

− − − − − −

* * *
* *

* *
* * * *

* * * * * * * * * *

Symmetric PRR Variance

R
ou

nd
s 

to
 C

om
pl

et
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

(a) Nodes with high PRR tend to last longer in negotiations than those with low PRR. Increasing the variance
gives us more of these.
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(b) If there are enough “good” nodes to keep negotiations running for a few rounds, the final contention remains
low. Short negotiations, caused by poor links, lead to high contention.

Figure 3.9: Probe and ack PRR are equal for each sender, drawn from a Gaussian distribution
with mean 0.5.
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Figure 3.10: Simulation of 128 senders with mean symmetric PRR of 0.5. A modest degree
of variance in PRRs is sufficient to consistently select one of the best nodes in this case. The
Y-value indicates the rank of the selected sender’s probe PRR (128 is the best, 1 is the worst).

selected probe PRR and ack PRR independently from a Gaussian distribution with mean 0.5

and variable variance. This shows that while the process is somewhat biased towards links

with better receiver-to-sender connectivity than sender-to-receiver connectivity, the median

asymmetry is well below the variance of the underlying distribution. The simulation picks

the “winner” at random from the pool of nodes which remained in contention at the end of

negotiation, so in practice this effect will likely be mitigated by the fact the receiver is more

likely to get a data packet from a node with a good sender-to-receiver link than from a node

with a poor one.

3.5 Future Work

There are several promising avenues for expansion in Flip-MAC.

In real deployment scenarios, we will likely need to deal with concurrent negotiations.

In order to reduce conflict between these, it would be good to include a channel-switching
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Figure 3.11: Simulation of 128 senders with independently chosen probe and ack PRRs (mean
0.5). The Y-value indicates Ack PRR - probe PRR: a value of 0 is a symmetric link, a negative
value indicates that the probes have a higher PRR than the acks.

mechanism. In this manner, the DP probes would occupy a single control channel, while

the negotiation could take place on a separate node-specific channel. This takes the scheme

proposed in A-MAC one step further. By moving both data transfer and the lion’s share of

control traffic away from the most-frequently used channel, we aim to isolate receivers from

each other.

Currently, we use a fixed psel during the negotiation. However, if the initial level of con-

tention is known ahead of time to be very high, it could be advantageous to start with a lower

psel (say, 0.25 instead of 0.5 on the first round) in order to reduce contention more quickly.

While this carries a risk of ending with higher final contention if it is carried through the en-

tire negotiation, it could be a good tradeoff in the early rounds. We don’t currently make use

of the RSSI measurements which the CC2420 provides us for received acknowledgements,

but these could potentially be used to estimate the level of contention (more senders leads to

more acks, which will have higher RSSI).
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Perhaps the most exciting idea which Flip-MAC inspires is the concept of structuring MAC

protocols into multiple phases. It would be an interesting engineering problem to design

a new and more modular radio stack which promotes this viewpoint. One could imagine

adaptively modifying the DP probe frequency in response to usage, adjusting initial back-offs

in the low-contention MAC protocols, and other interactions between modules.

3.6 Conclusion

In this work, we have demonstrated the promise of Flip-MAC through analysis, simulation,

and testbed experiments. Our testbed results suggest that Flip-MAC can work in practice,

while simulation and analysis lead us to expect good performance as network density in-

creases. The simulation indicates that not only is Flip-MAC robust to the introduction of

poor links in the mix of initial senders, it compensates for this by favoring good links.

In the future, we see an exciting line of new research in combining well-structured MAC

protocol modules to suit the needs of different deployment scenarios.
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Chapter 4

CX: Forwarder Selection in
Multi-Transmitter Networks

4.1 Multi-transmitter networks

In Chapter 2, we described some of the limitations that single-path routing imposes on low

power networks. Single-path routes can be difficult to identify. They require collecting accu-

rate link quality information. They are fragile to single node or link failures.

The previous chapter showed that on the TelosB mote platform, hardware-generated ac-

knowledgement packets collide non-destructively: they have identical content and are sent at

almost precisely the same time. However, if acknowledegements are the only type of packet

that can be sent in such a manner, there is only so much that we can accomplish.

At the time of Flip-MAC’s publication, Glossy [22] demonstrated that with great care, one

could achieve non-destructive concurrent data transmissions on the TelosB platform. This

capability is used to implement multi-transmitter floods, in which the flood source sends a

packet, each of its neighbors rebroadcasts it simultaneously, and so on. Glossy showed that

the timing precision necessary to achieve this is related to the radio’s chip rate (2 MChip/s

with the CC2420 transceiver). This observation was quite serendipitous for us: we were

developing the Bacon wireless mote (described in detail in Chapter 6), which has a flexible

transceiver capable of operating at a wide range of chip rates. Along with timer access to a
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Figure 4.1: Packet detection rate as a function of symbol rate and transmitter offset in the
absence of capture effect. Higher symbol rates were more susceptible to reception errors at
small transmitter offsets. Note that x-axis is in terms of symbol length: the same horizontal
distance represents a different length of time for each series.

high-precision radio oscillator, this enables us to achieve non-destructive interference with

much more timing flexibility. Could we leverage this to do better than simple flooding?

In order to establish whether this approach was practical on our platform, we experimen-

tally measured the packet detection rate (PDR) resulting from transmissions between two

senders. PDR measures the fraction of transmitted packets that resulted in a valid preamble

detection, and is an upper bound on the packet reception rate. We connected two senders to a

single receiver with coaxial cables and variable attenuators. We carefully tuned the attenua-

tion of the senders to equalize their power at the receiver, and then varied the offset between

transmissions (to simulate timing errors) for a range of symbol rates 1. Figures 4.1 and 4.2

show the resulting packet detection rates. These results indicated that on our platform, a

125 kbps symbol rate struck a good balance between transmission speed and error rate. At a

1µs error (which we used as a rough estimate of the worst synchronization errors we would

encounter), the 250 kbps symbol rate yielded a 32% PDR while the 125 kbps symbol rate

yielded 77%. We decided that it was not worth lowering the speed by more than a factor of
1We use the terms “symbol rate” and “chip rate” interchangeably in this text, as the CC430 transceiver we are

using employs no direct sequence spread spectrum (DSSS), so a bit, symbol, and chip all represent the same thing.
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Figure 4.2: Packet detection rate as a function of symbol rate and transmitter offset in the
absence of capture effect. Vertical lines are placed at 0.5 and 2 microseconds for scale.
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Figure 4.3: Bit Error Rate as a function of transmitter offset for a range of transmitter power
differences at 125 kbps symbol rate. For well-synchronized transmissions, a 3 dBm difference
in received signal strength is sufficient to achieve nearly loss-free operation.

10 to improve the best-case PDR (at perfect synchronization) from 94% to 99%.

Previous work in unsynchronized network flooding [41] showed that differences in re-

ceived signal strength across incoming transmissions can improve reception rates. Essen-

tially, the receiver hardware tracks and demodulates the frequency shifts in the stronger of

two simultaneous signals and filters out the weaker. We wished to observe whether this phe-

nomenon, called “capture effect,” could further improve the reliability of concurrent trans-

missions at the time scales which we are interested in. Figure 4.3 shows how varying the

relative transmission power and offset between two senders affects bit error rate (PDR was

greater than 99.5% at all measured points). With this transceiver, even a modest 3 dBm

difference in signal strength can greatly improve reception quality in the face of large timing

errors.

We implemented the Hamming(7,4) [3] forward error correction scheme to handle the
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relatively low bit error rates observed. While this reduces the effective data rate, it greatly

enhances the reliability of multi-transmitter floods.

In this chapter, we design and evaluate a novel multi-transmitter approach to networking.

Our goal is to take advantage of the flexible timing afforded by our platform to make on-the-

fly decisions about which nodes are useful in moving data from the source to the destination

and which ones are not. By limiting multi-transmitter floods to a subset of the network, we

aim to save energy by turning nodes off when they are not in use and improve throughput by

setting inter-packet spacing based on the source-to-destination distance. We also show that

these forwarder sets are more resilient to random node failures than single-path routes.

The bulk of this chapter originally appeared at the 2013 IEEE International Conference

on Distributed Computing in Sensing Systems (DCOSS 2013).

4.2 Introduction

Glossy [22], Low-power Wireless Bus (LWB) [21], Flash Flooding [41], and Insteon [54] repre-

sent examples in an emerging family of multihop wireless sensor network (WSN) communica-

tion protocols. These systems leverage a combination of non-destructive concurrent transmis-

sions and radio capture effect [33,69] to perform fast network floods that reach all nodes with

high probability: every node receiving a packet rebroadcasts it at precisely the same time,

reducing destructive interference. This approach, which we refer to as multi-transmitter net-

working, carries several key benefits. In addition to the high yield, good throughput, and

low energy consumption demonstrated in LWB, these methods require little routing state

to work. This makes them suitable for networks with high degrees of node mobility, and

may help in challenging environments where existing routing methods struggle to find high

quality links.

Despite these benefits, it is obvious that not every node needs to be involved in every non-

flood data transfer (collection, point to point communication, etc). In collection, a node that

52



Chapter 4. Forwarder Selection in Multi-Transmitter Networks 4.2. Introduction

is adjacent to the data sink should not need assistance from the whole network to deliver its

packets, and a node which always receives packets after the sink cannot help other nodes,

to cite two simple examples. If we can reduce the set of nodes involved in a transfer, then

non-forwarders can turn their radios off to save energy. Furthermore, if the diameter of the

forwarder set is smaller than that of the network, this information can be used to set inter-

packet spacing and thereby increase throughput without introducing collisions. The goal of

this work is to solve the problem of forwarder selection in this context and demonstrate its

benefits. By introducing a better network primitive than flooding, we advance the state of

the art in multi-transmitter systems.

To this end, this work makes four contributions: (1) We formally define forwarder selection

in multi-transmitter networks. (2) We propose a forwarder-selection protocol, the first of its

kind of which we are aware. (3) We describe the first TinyOS implementation of a network

stack based on precisely-timed non-destructive concurrent transmissions, which we call CX

(Concurrent Transmissions), and (4) we evaluate how our forwarder selection mechanism,

CXFS, improves performance over simple flooding in this system.

Under CX, all communication takes place in the form of multi-transmitter floods. Through

the use of a hop counter in each packet, nodes learn their relative distances to each other.

The hop count information allows nodes to estimate whether they are between a source and

destination for a given transfer. We address the inherent unreliability of hop-count and use

this as the basis for our forwarder-selection method, which keeps nodes which are between

the source and destination active while allowing the rest of the network to sleep.

Results from our 66-node indoor testbed show that forwarder-selection reduces duty cycle

by 30% on average over simple concurrent flooding while maintaining an average packet

reception ratio (PRR) of 99.4%. In the same setting, nodes increase their throughput by 49%

on average. CXFS forwarder sets are also shown to deliver packets more reliably than single-

path routes when subjected to random node failures and stale link quality measurements.

This chapter has six more sections. We present related work in Section 4.3 and define
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the task of forwarder selection in Section 4.4. Section 4.5 describes the CX forwarder selec-

tion protocol, and section 4.6 describes the CX network stack and some key implementation

details. Section 4.7 presents results from our testbed. We conclude in Section 4.8 with a

summary.

4.3 Related Work

Concurrent transmissions have been studied extensively in the context of wireless sensor

networks [41, 55]. However, the bulk of this work relates to the capture effect, an artifact of

wireless receiver design that allows radios to lock onto and successfully decode packets in the

presence of considerable interference from other packets as long as the signal-to-noise ratio

is high enough. While capture effect may benefit CX, we do not rely on it for successful packet

receptions.

The research community has focused less on concurrent transmissions in the form of

radio signals interfering non-destructively, mainly because the timing required to perform

non-destructive interference is considered difficult to achieve on resource-constrained de-

vices. Note that non-destructive concurrent transmissions are different from beamforming

and Multiple-Input Multiple-Output (MIMO) where antenna arrays at the transmitter and/or

receiver are used to generate signals that interfere constructively at some desired angles.

Early work using the principle of non-destructive interference has primarily relied on

the “free” transmission synchronization provided by hardware-generated acknowledgments

from IEEE 802.15.4-compliant radios. Dutta et al. [19] first used these acknowledgments to

efficiently wake up a large network of nodes. The same principle has been applied to medium

contention and arbitration in receiver-initiated MAC protocols such as A-MAC [17] and Flip-

MAC [9]. Strawman [46] demonstrates that even destructive radio interference can be a

valuable primitive in low-power networks, and works without requiring precise transmission

timing.

By taking full control of the MCU on the TelosB during packet reception, Ferrari et al.
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succeeded in generating non-destructive concurrent transmissions using a software-based

approach, and used this to build a highly efficient network flooding protocol (Glossy) with

microsecond time synchronization [22] on the Contiki embedded operating system [15]. While

implementation details are not widely available, Insteon [54] is a commercial product which

appears to use a network protocol which is very similar to Glossy. Our CX stack enables

Glossy-type flooding in TinyOS [37], though it achieves this by using our hardware platform’s

high-precision timer/capture module rather than deterministic execution times.

Ferrari et al. later added a scheduler on top of the Glossy flooding protocol to construct

the Low-power Wireless Bus (LWB) [21], a virtual one-hop network. In LWB, a master node

in the network assembles and disseminates a TDMA schedule based on bandwidth requests

by the nodes in the network. Our work is focused on the performance of the network protocol

(not the scheduler), though LWB demonstrates that multi-transmitter networking protocols

are practical and effective building blocks for real systems.

More recently, Wang et al. studied the scalability of Glossy-like flooding protocols and

found that time synchronization errors (for scheduling concurrent transmissions) could accu-

mulate over each hop and lead to destructive interference as the network scales [68]. In re-

sponse, they proposed a flooding protocol which limits the number of forwarders to reduce the

timing errors. Nevertheless, this study was purely based on analytical models of baseband

wireless communications, and did not consider the effects of carrier wave frequency/phase

offset or model the radio hardware behaviors such as symbol clock and phase recovery. The

proposed flooding protocol further assumes that the geographical locations of all nodes are

known, and uses the simple unit-disk communication model. Under these assumptions, the

simulation results indicate that this protocol can be more scalable than Glossy.

4.4 Forwarder Selection

Our overall goal in this work is to reduce the nodes involved in forwarding data to those that

do useful work, while still preserving good connectivity. In this section, we introduce the
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forwarder set concept and describe multi-transmitter flood, standard single-path, and our

Reduced Routeless forwarder sets in formal terms. Section 4.5 describes how we approximate

the reduced-routeless forwarder set in real-world settings.

4.4.1 Forwarder sets: Current Approaches

For the purposes of this section, we treat a wireless network as a directed graph G with

vertices for each communication node and edges for each wireless link (having an associated

packet reception ratio). We further assume that loss events are independent (e.g., no external

interference). Under the concurrent communications paradigm [22], data transmissions take

place in discrete communication rounds: transmissions of the same data in the same commu-

nication round are non-interfering. If a set of nodes S sends the same data packet at the same

time, any node in the union of the adjacency sets of every node s ∈ S successfully receives the

packet with a probability determined by the union of packet reception ratios on the adjacent

edges. In reality, synchronization errors and other effects may violate this model, though it

remains useful for the purpose of explanation.

In this framework, a “valid” forwarder set from source s to destination d is any set of nodes

F for which the subgraph of G consisting of nodes in F connects s to d with high probability

(i.e. good end-to-end PRR).

Single-Path Routing

Single-path routing protocols effectively approximate some minimal forwarder set, Fmin(s, d),

for each (source, destination) pair which consists only of the nodes on a single minimum cost

path between source s and destination d. Path cost in this context is defined as the sum of

link costs using metrics such as ETX [12]. In Figure 4.4, {e}, {c}, and {g} would all fit the

definition of Fmin.

Even under perfect network conditions, single-path routing methods require coordination
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d

f

hs

a b

c e

g

Fmin={e}
FRR={e, c, g}
Fmax={a, b, e, c, f, g, h}

Figure 4.4: Examples of minimum (Fmin), maximum (Fmax), and Reduced-Routeless (FRR)
forwarder sets for a 3×3 grid. All edges have cost 1.

between nodes to estimate link metrics and calculate end-to-end paths. Nevertheless, when

properly executed, such protocols have been shown to be very efficient, both in terms of energy

and channel utilization [24].

On the other hand, single-path routing protocols can have difficulty adapting to variable

link conditions, requiring either agile link quality estimation, reliance on conservative links,

or a combination of the two. Such routing protocols can also experience periods of packet loss

when previously-reliable routes break (e.g., due to node failures).

Multi-Transmitter Flooding

Multi-transmitter flooding selects the maximum forwarder set Fmax: every node in the net-

work. The validity condition is trivially satisfied for this set (as long as some reliable end-to-

end path exists between s and d anywhere in the original network). Figure 4.4 illustrates the

difference between Fmin and Fmax.

In multi-transmitter floods, many more nodes are used for forwarding than is strictly

necessary. Under idealized network conditions (e.g. no external interference), any node in

Fmax which does not lie on a minimum cost path between s and d is not useful: if they were

removed from Fmax, d would still receive a packet in the same number of communication
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rounds and the inclusion of these extra nodes is a source of unnecessary energy expenditure.

For the example in Figure 4.4, {c, e, g} all lie on a minimum cost path while {a, b, f, h} are the

extra nodes.

Furthermore, in order to prevent interference, a source node cannot start a new flood

until the previous one has completed. When the entire network participates in flooding, this

means that a node has to wait until a number of communication rounds (at least) equal to

the diameter of the network have elapsed before it transmits without fear of collision.

In contrast to single-path routing, protocols that use multi-transmitter flooding have been

shown to work well even in the face of link asymmetry and dynamism. Since this approach

does not need to adapt routing state to link conditions, and since no bidirectional communi-

cation is required, as long as there is some reliable path from s to d at the point in time when

the flood begins, d will successfully receive the packet.

4.4.2 Reduced-Routeless Forwarder Sets

Between these extremes, we define a Reduced-Routeless forwarder set FRR(s, d), which con-

sists of all nodes f on any minimum cost path between s and d.

By the triangle inequality, a node f is a member of FRR(s, d) if and only if

dsf + dfd = dsd (4.1)

where dij denotes the minimum distance, as defined by a cumulative metric (e.g., ETX, hop

count), between i and j.

In contrast to single-path routing, each node f can test whether f ∈ FRR(s, d) without

exchanging routing information with non-endpoint nodes: it only needs to have the end-to-

end cost and its cost relative to each end. In other words, FRR is similar to Fmax in protocol

design (thus the word “routeless”) but is closer to Fmin in its goals.

Although FRR(s, d) still includes more nodes than Fmin(s, d) for any network with more

than one minimum cost path between s and d, it is also smaller than Fmax as long as not all
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paths between s and d are minimum cost paths. Using FRR instead of Fmax should therefore

reduce duty cycle (by decreasing the number of participating nodes) and increase throughput

(by decreasing the diameter of the forwarder set and reducing inter-packet spacing) while

retaining much of the path redundancy afforded by flooding.

However, if propagation patterns are not relatively stable (e.g. due to interference be-

tween concurrent senders or varying link conditions), then a node may remove itself from

the forwarder set when it would be useful, or add itself to a forwarder set when it may be

redundant. In the next section, we discuss several practical approaches to handling such

variability.

4.5 CX Forwarder Selection Protocol

The CX (Concurrent Transmissions) multi-transmitter network stack allows nodes to approx-

imate their membership in FRR, using these results to duty cycle their radios and set inter-

packet spacing. Next, we provide details on the protocol used to select forwarders, CXFS

(CX Forwarder Selection). Each exchange in the setup process uses a basic multi-transmitter

flood, whose implementation is described in Section 4.6 and which is evaluated separately in

Section 4.7.2.

4.5.1 CXFS Operation

In order for a node w to decide whether it should forward or not, it must learn its distance

from the source, its distance from the destination, and the distance from source to destination

(dsw, dwd, and dsd, respectively).

For point-to-point transmissions, Figure 4.5(a) shows the steps in CXFS. The source s

sends a Burst Setup packet, which allows each potential forwarder w to measure dsw and

the destination d to measure dsd. In the Setup Acknowledgment phase, d responds with a

packet containing dsd in its body, which allows w to obtain dsd and to measure dwd (under the
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(a) CX forwarder selection for point-to-point traffic. In Burst Setup, s floods a message to inform potential
forwarders w and the destination d of their distance from the source (dsw and dsd, respectively). In Setup
Acknowledgment, d floods a message which informs the network of dsd and dwd (assumed from ddw). In
Data Forwarding, w forwards messages only if dsw + dwd ≤ dsd.

(b) CX forwarder selection for collection traffic. The Setup Acknowledgment phase of the general point-to-
point process is replaced by the periodic schedule announcements from the data sink, d.

Figure 4.5: CX forwarder selection process. Dotted lines indicate multi-hop paths, boldface
distances are directly observed, non-boldface distances are reported in packet bodies.
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simplifying assumption that dwd = ddw). w now has enough information to make forwarding

decisions.

In the case of data collection in CX, the network root both sends out periodic TDMA sched-

ule packets and is the destination for all data traffic. Figure 4.5(b) shows how this can be

leveraged. The schedule packets provide ddw to each potential forwarder and dds to each po-

tential source. The Burst Setup packet now contains dsd and allows nodes to measure dsw

(again, under the assumption of symmetric distances). w can now make forwarding decisions

for (s, d) packets while only requiring a single end-to-end communication in s’s time slot.

This decreases the setup overhead at the cost of increasing the staleness of distance in-

formation. Our evaluation did not indicate problems resulting from this. In the rest of this

work, we will restrict the rest of our discussion to the collection case.

In either setting, node w can compute its membership in FRR(s, d). In the Packet Forward-

ing phase, nodes not in FRR(s, d) turn off their radios, and s sends packets with inter-packet

spacing determined by dsd.

4.5.2 Hop-count as Multi-transmitter distance metric

The previous discussion has used the concept of “distance” in multi-transmitter networks

without defining it. In this subsection, we describe the motivation behind our use of hop-

count as the basis for our distance metric and how we make the most of it.

“You can’t seriously be using hop count, can you?”

While hop-count is a notoriously unreliable metric in the single-transmitter networking do-

main, it possesses several key characteristics which make it the best choice for CXFS.

First, hop-count obeys the triangle inequality: a node which is 4 hops from the source is on

no shortest path to a node which is 3 hops from the source. Any distance metric which cannot

be applied to the definition of FRR in equation 4.1 will not work in CXFS.
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Second, in order for concurrent transmissions to be reliable, simultaneously transmitted

content must be identical. In a sense, intermediate nodes cannot embed information in pack-

ets that is unique to them, and forwarding decisions must be made based on information that

is common to all predecessors of a forwarder. Nodes cannot tell, for instance, which sender(s)

participated in transmitting a packet that they received. Hop-count can convey meaningful

distance information without requiring intermediate nodes to send conflicting data.

Finally, the distance metric must make sense in the multi-transmitter networking context.

Putting aside the first two characteristics, traditional physical-layer metrics (such as RSSI

and LQI) are subject to a range of effects in the multi-transmitter domain which may limit

their usefulness. For instance, phase differences between two transmitters lead to wide vari-

ability in RSSI measurements at receivers, depending on whether the transmissions interfere

constructively or destructively. We view the behavior and usefulness of physical layer metrics

in the multi-transmitter setting as a topic for future research.

Rather than spurn hop-count for its faults, we choose to embrace it for its virtues.

Hop-count variability in multi-transmitter flooding

Previous work in single-path routing protocols has repeatedly shown that link quality can

vary rapidly over time [56]. Furthermore, links can be asymmetric [5]. Thus, we can expect

that the distance measurements in the multi-transmitter environment are similarly ephem-

eral and have to be updated over time, in order to provide accurate distance estimation.

Indeed, the results obtained using multi-transmitter floods on our testbed (described in

Section 4.7) may show considerable long-term and short-term fluctuations in distance mea-

surements for some nodes, as Figure 4.6 illustrates. Since FRR is based on these hop-count

measurements, the more accurately that we estimate distance and the better we handle its

variability, the better our estimate of FRR will be.

Estimating distance is analogous to link estimation and route discovery in single-path

routing protocols, and faces the same challenges with regard to efficient neighborhood and
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Figure 4.6: Hop-count distance measurements at node d when node s sends concurrent floods
back-to-back. Tests were spaced several hours apart, but concatenated to show long-term
variation. Gaps separate each test run above.
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routing table maintenance. We seek a distance estimation strategy that is lightweight, yet

accurate enough to provide a reliable and compact forwarder set. We propose three strategies

to do this: we either use the last-observed hop-count (termed “Last”), the average of observed

hop-counts, or the maximum of observed hop-counts.

“Last” is easy to implement and requires basically no routing state, but may behave poorly

as distances vary. “Average” may prevent nodes from responding to rapid changes, but will

handle some degree of variability. “Max” will give the most inclusive forwarder sets, mak-

ing it more reliable but also less power efficient. Additionally, by conservatively estimating

distances between nodes, this strategy has the potential to increase inter-packet spacing by

overreacting to rare bad transmissions. While “Last” is usable on networks of all sizes and

for all traffic patterns, under the collection traffic pattern it is certainly feasible to maintain

an average or maximum hop-count relative to the root, and in many real-world networks it

is feasible to maintain this for each node in the network.

Distance Fluctuation Boundary

Orthogonal to the different distance estimation strategies, we add a boundary zone to the

shortest-path distance in Equation (4.1) to account for estimation errors, short-term variabil-

ity, and the assumption of distance symmetry.

By adding the boundary zone width b and using d to denote the estimated distance and

assumption of distance symmetry, FRR(s, d)’s definition from Equation (4.1) becomes:

FRR(s, d) = {f : dsf +dfd ≤ dsd + b} (4.2)

By increasing b, we include more nodes in the forwarder set FRR(s, d), up to and including

using the entire network. Increasing the size of the boundary zone aids end-to-end packet

reception by both increasing the diversity of paths that a packet can travel (mitigating the

possibility of selecting a forwarder set that lacks reliable links) and adding an error margin

to the distance estimations.
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Figure 4.7: CX network stack design, with rough equivalents in LWB [21]. This work focuses
on the bolded duties.

As the evaluation in Section 4.7 shows, even with these simple approximations and strate-

gies CX offers significant improvements to the state of the art.

4.6 CX Software Design and Implementation

4.6.1 Software Design

We implemented our CX network stack in TinyOS 2.1 with CXFS based on the distance

metrics, estimation strategies, and boundary zone described above. Figure 4.7 shows a high-

level view of the software architecture.

The CX link layer maintains transmission scheduling information. Time is divided into

fixed-length frames (on the order of a packet-length in duration), and these are grouped into

fixed-size slots (on the order of 10’s of frames). Each node in the network is assigned a slot,

and this schedule is distributed by a single root node. Nodes turn their radios on slightly

ahead of each frame start, and keep their radios on until either a packet is received or a fixed

1 ms timeout elapses.

When a node rebroadcasts a packet, it does so at the next frame start after incrementing

its hop-count field and decrementing its time-to-live (TTL) counter. Packets with TTL of 0

are dropped.
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The CX network layer provides two primitives, Simple Flood and RR Flood. Under a

Simple Flood, packets have their TTL initially set to the network diameter, and a node always

rebroadcasts a packet with a non-zero TTL. In an RR flood, packets have their TTL initially

set to dsd + b. The RR Flood component is responsible for the forwarding decisions in CXFS:

nodes only rebroadcast packets for which the inequality in Equation (4.2) holds.

CX provides two transport layer protocols on top of these, Flood Burst and RR Burst.

These control packet queuing and spacing (starting the next transmission after the current

packet’s TTL has expired). Nodes queue packets until some threshold is exceeded, and then

they transfer as many as they can in their next slot. Broadcast packets are handled by the

Flood Burst transport protocol, while unicast packets are handled by the RR Burst protocol.

RR Burst implements the CXFS protocol outlined in Figure 4.5(b) and described in Sec-

tion 4.5.1. The setup phase uses Simple Floods, and the packet forwarding phase uses RR

Floods. In a Flood Burst, packets are simply sent one after the other via Simple Flood, and

there is no Burst Setup phase.

Nodes turn their radios off if they determine that they are not a forwarder for the current

slot. If a node receives no packets in the first N frames (where N is an estimate of the network

diameter), it assumes that the slot owner did not have any packets to send and turns its radio

off until the next slot starts. Likewise, nodes turn their radios off until the next slot if they

determine they are not in FRR(s, d) during the Burst Setup.

The scheduler sits above the transport protocols. We use a simple static TDMA schedule

(with equal-length slots) in this work, as our focus is on the performance of the forwarder

selection and network layers. The network root (also the destination for collection traffic)

sends out the TDMA schedule once per cycle, dictating how long each frame is, how many

frames are in each node’s slot, and how many slots are in the entire cycle. The schedule layer

is where much of the work reported in LWB [21] would reside in this design.

Applications use the standard AMSend and AMReceive interfaces, allowing existing sys-

tems to easily switch over to CX.

66



Chapter 4. Forwarder Selection in Multi-Transmitter Networks 4.6. CX Design

We note that if applications require mobility, multiple sink support, minimal state-main-

tenance, or high interference-resistance, they can set a compiler flag to use Simple Flood

Burst for both unicast and broadcast data.

4.6.2 Platform-Specific Implementation details

A detailed discussion of the network stack implementation is beyond the scope of this work,

but there are a few items that may be of interest to readers.

Our platform, the “Bacon” mote, is based on TI’s CC430 [65] SoC, combining a 900MHz

radio core (almost equivalent to a CC1101 [66] ) and an MSP430 [63] microcontroller.

Glossy achieved good transmission synchronization through deterministic execution and

forwarding times across motes, while our system can leverage a fast and reliable 26 MHz

radio crystal for capturing and scheduling events. We clock one of the timer modules from

the radio crystal, and capture the preamble RX/TX interrupt from the radio core with it. If

the packet is to be forwarded, the mote sets a timer compare interrupt for one frame-length

from the capture, loads the packet into the radio’s TX buffer, and puts the radio into the

FSTXON state (frequency synthesizer running and ready to transmit). When the compare

interrupt is raised, we issue the command to begin transmission. The CC430 can be run

with a 16MHz main clock, which keeps the potential interrupt-handling jitter within the

tolerances dictated by the radio symbol rate. By using a relatively long frame length (∼40

ms), the radio stack has considerable flexibility in making forwarding decisions, interleaving

non-radio operations, and logging performance data to the testbed.

We found significant differences in PRR between the various stock radio settings pro-

vided by Texas Instruments, and ultimately chose a 125kb/s setting which provided the best

balance of reliability and speed. Since the CC430 lacks the hardware support for forward

error correction (FEC) found on other radios (e.g., CC2420 [62]) we implemented FEC in soft-

ware to make transmissions more robust at low-to-moderate bit error rates. Combining our
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implementation of a Hamming(7,4) [3] encoding and a 125kbit/s symbol rate (2-frequency-

shift-keying modulation), this gives us an effective data rate of 62.5kbit/s, one quarter that

of the CC2420. In the future, we would like to find 250kbit/s (or higher) settings which work

well, and we would like to use a more efficient coding scheme.

4.7 Evaluation

4.7.1 Method and Materials

We evaluate CXFS on our wireless testbed consisting of 66 Bacon motes connected to a

testbed server via TMote Connect NSLUs. Figure 4.8 shows a map of this testbed. The

network is physically spread over a roughly 50 m x 50 m office area, though the large open

space at the top of the map forces the network to be roughly 6 hops in diameter at an output

power of -6 dBm (in the single-transmitter connectivity graph, based on offline measurements

of PRR when nodes take turns transmitting non-concurrently).

Unless otherwise noted, all data presented is derived from aggregating over at least 3 test

runs, and each test was run for one hour. Nodes generate one packet per minute and use

a slot length of 40 frames for all tests. Each frame is roughly 40 ms in length, and nodes

switch from RX to Idle if no packet is received within the first 1 ms of a frame start. Radio

duty-cycles were obtained by recording the time of each radio state-change interrupt with a

6.5MHz timer driven by the radio crystal. The radio was considered to be active when it was

in any of the RX, TX, or FSTXON states. Nodes used -6 dBm output power for all tests unless

otherwise noted, though we do validate performance at several TX powers to confirm some

degree of topology independence.
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Figure 4.8: Single-transmitter connectivity graph: links shown have PRR > 95% at -6 dBm
output power, with one node transmitting at a time. Labels indicate distance from root node
(marked with a star). Darker colors represent farther distances, with black being 5 hops and
white being 1 hop. The area shown is roughly 50 m x 50 m.
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(a) Distribution of synchronization error between two concurrent senders.
Mean error (dotted line) is 0.35 µs, roughly two ticks of the 6.5 MHz timer
used for transmission scheduling.
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(b) Histogram of packet reception ratios for each (src, dest) pair when using
simple flooding. The average PRR was 99.5% and the median was 100%.
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(c) Distribution of duty cycles when using Flood Burst transport on our
testbed.

Figure 4.9: Baseline measurements of CX Flooding performance.

70



Chapter 4. Forwarder Selection in Multi-Transmitter Networks 4.7. Evaluation

4.7.2 Baseline Performance

Our goal is to evaluate the benefits that forwarder selection provides over simple flooding.

Rather than port the state-of-the-art flooding protocol to our platform and operating system,

we will compare against the CX implementation of simple flooding. In this section, we justify

our implementation as a fair baseline by showing that it achieves reasonable timing preci-

sion, reliability, and duty cycle, not by showing that it is categorically better than Glossy.

TX Timing Microbenchmark

Figure 4.9(a) shows the degree of timing precision we are able to achieve between two for-

warders (as measured by recording the difference between the forwarders’ start-frame-delimiter

indicator pins on a 24 MHz logic analyer). The 91st percentile of the difference between

the two transmitters’ SFD signals is 0.5416 µs, somewhat worse than the 0.5µs reported in

Glossy [22] with 30 transmitters. We note that the driver of multi-transmitter timing require-

ments is the radio’s chip rate: our radio’s 125 kb/s symbol rate should be compared against

the CC2420’s 2 MChip/s chip rate due to the CC430’s lack of DSSS. In the experiments which

open this chapter, we measured a bit error rate of 1.18% when two nodes transmit 1 µs apart

with no capture effect (see Figure 4.3). Even the worst synchronization errors we measured

are within the operating limits of the FEC mechanism, and we expect to see lower bit error

rates when capture effect is present. This level of precision is adequate to support multi-

transmitter flooding.

Simple Flood Performance

To demonstrate that the above results lead to reliable flooding, we perform a series of tests

to evaluate Flood Burst on its own. In these tests, nodes generate a packet once every 60

seconds, and initiate a Flood Burst when they have queued 10 packets. Figure 4.9(b) shows

the distribution of packet reception ratios between pairs of nodes in the network: the mean
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PRR was 99.5%. While Glossy used parameter “N,” for the number of rebroadcasts that each

node performed upon receiving a packet, we found that our implementation provided high

PRR with a single broadcast.

Figure 4.9(c) shows the distribution of duty cycles across the network, with mean/median

of roughly 2.8%. To put this in perspective, the closest comparison we can make is against the

FlockLab results reported in LWB [21]: their test used 54 nodes, a 120 second inter-packet

interval, and a 15 byte payload vs. our 66 nodes, 60 second IPI, and 12 byte payload. They

report a 0.43% duty cycle for the resulting 6.75 B/s aggregate load, while our 2.8% figure cor-

responds to a 12.1 B/s aggregate load. When one considers that our slower radio and software

encoding cuts our effective transmission speed to 1/4 of the CC2420’s, this indicates that our

implementation is roughly on par with the state of the art in terms of energy efficiency.

We acknowledge that this comparison elides some of the complicating factors, but remind

the readers that our goal is not to show that our implementation of flooding is better than

Glossy, but to show that it works correctly on our platform and is a fair baseline for demon-

strating forwarder selection.

4.7.3 RR Burst vs. Flood Burst

The goals of this work are to reduce network duty cycle for data transmissions which need

only travel through part of the network, and to use distance estimates to improve inter-

packet spacing. This section focuses on this impact and keeps a simple fixed TDMA schedule

as described above.

As a quick sanity check, Figures 4.10 and 4.11 show how often nodes join FRR(s, d) for an

example pair of s and d nodes and we indeed observe that nodes physically between the source

and destination are the most likely to participate. However, one can also clearly see that some

nodes outside of the geometrically shortest path participate with high probability, and others

clearly on the shortest path participate with low probability (due to non-heterogeneity of
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Figure 4.10: Participation frequency for a node at moderate distance. Heatmaps showing
frequency of joining FRR(s, d) for source nodes at different distances from root. Dark colors
represent higher frequencies, with black being 100% and white being 0%. Nodes used average
distance with b = 0 to determine membership in FRR.
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Figure 4.11: Participation frequency for a more distant node. See key description in Fig-
ure 4.10.
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Figure 4.12: Mean of observed distances from the sink for each node at several TX power
settings: each vertical stack of points shows results for the same node.

links, variability, etc.). Of particular note are the co-located node pairs where one node never

participates (colored white) while the other participates frequently. These largely result from

the limitations of the testbed hardware. A network-attached storage device with custom

firmware is connected via Ethernet cable and power to the building infrastructure, one node

is directly connected to the NAS via a rigid USB plug, while the other is connected via a

USB cable of 1-2 m. While the two nodes may be spatially close, the antenna orientation

is independent for them, with the rigidly-connected node vertically oriented and the second

node frequently lying sideways. Since these devices are installed in academic offices, it is not

uncommon for the NAS device to sit on top of a desk while the second node dangles behind

furniture. A more uniform channel environment would likely show less spatial variability in

forwarder selection than these figures indicate.

To quantify this result, we use the RR Burst protocol (with the “Average” metric, boundary

width 2) to transfer data from all nodes to the sink and adjust the radio transmission power

to vary the network depth and topology. Figure 4.12 shows how node distances change under

different TX powers to give a sense of our testbed’s size.
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Figure 4.13: Duty cycle as a function of source-node distance. Each point corresponds to a
single node’s allocated slot. The X-value indicates the distance of the source node from the
sink, the Y-value indicates the average duty cycle across the network during that node’s slot.
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In order to find the relation between where traffic originates and what impact this has on

the duty cycle across the network, we first calculate the average duty cycle in each slot. Since

each slot belongs to a unique node, this duty cycle is an indicator for a single node’s impact

on the rest of the network. In Figure 4.13 we show the average network duty cycle for each

node’s slot as a function of the slot owner’s distance to the root at three different transmission

powers.

The same trend is visible at all tested transmission powers: slots belonging to nodes close

to the sink (having low depth) contribute less to network duty cycle than nodes far from the

sink. Additionally, the sparser the network is, the less impact a node at a given depth has on

the rest of the network. This makes sense: all other things being equal, a node at depth n

will have fewer nodes between itself and the root in a sparse network than in a comparable

network of higher density.

We note that the duty cycles in Figure 4.13 are for each individual slot and do not include

inactive slots where the whole network is asleep. Since the duty cycles in Figure 4.9(c) also

include inactive slots, a direct comparison between the two figures is not possible. However,

when we calculate the overall duty cycles in these tests, we find that at -6dBm, we see a 30%

improvement in the average network duty cycle (25% at 0 dBm, 20% at -12 dBm).

Figure 4.14 shows each node’s normalized throughput as a function of distance to the

root at the three different transmission powers. This flood throughput is computed offline by

assuming the maximum observed hop-count is used for flood packet spacing: in practice, most

network designers will not know this ahead of time and will conservatively set the flood TTL

to some estimate of the network diameter (further hurting flood throughput). Under CX,

only the setup packets of RR Burst transmissions are affected by a conservative diameter

estimate. The figure shows that nodes close to the sink can indeed use their estimate of dsd

to increase their throughput. On our testbed, this results in an average throughput increase

of 49% when nodes transmit at -6 dBm (31% at 0 dBm, and 28% at -12 dBm).

Nodes at the edge of the network will always see worse throughput under RR Burst than
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Figure 4.14: Per-node throughput as a function of source node distance. These results are
normalized to flood throughput (1.0 = same as flood, > 1.0 = higher throughput than flood).

Flood Burst: they have to pay the cost of the setup phase for each burst (whereas if they

used Flood Burst, they could use that time to send data). In these tests, slots were 40 frames

in length (roughly five Flood Burst rounds), so the setup phase has a relatively high cost

(roughly 20% of available throughput). Increasing the length of a slot in the schedule would

help to further amortize this at the cost of increased latency. Such scheduling optimizations

and trade-offs are an important candidate for run-time tuning in future work. That being

said, when averaged across the network, throughput increases over Flood Burst for all of

these tests.

Distance Estimation

Next, we evaluate the effects of several distance estimation strategies from Section 4.5.2.

Figure 4.15(a) shows the impact of each strategy on end-to-end packet reception ratio,

while Figure 4.15(b) shows their impact on duty cycle. These results were produced with

boundary width b = 0 to isolate the effect of the metric.

As expected, “Last” achieves the best duty cycle improvement over flooding (with per-node
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Figure 4.15: Impact of distance estimation strategy on PRR and duty cycle. All tests conducted
using boundary width of 0.
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Figure 4.16: Distribution of path length asymmetry from a 1-hour test. The average root-
to-leaf distance was less than 2 hops different from the average leaf-to-root distance for all
nodes. The worst asymmetry was 2 hops when considering maximum root-to-leaf and leaf-to-
root distances.

savings of nearly 60%), while it also shows the worst PRR. For some applications, this may

be an acceptable tradeoff.

“Max” and “Average” show relatively similar performance in PRR, but the latter achieves

lower duty cycles. This suggests that “Max” can be overly conservative while “Average” can

strike a balance between efficiency and reliability. On our testbed, it is reasonable to set

aside the 70 bytes of RAM necessary to track the average or maximum distance of each node,

though in much larger networks “Last” would be the only viable option.

Boundary Width

Recall that we added boundary zone b to the shortest-path distance to account for the distance

asymmetry shown in Figure 4.16 and the variability shown in Figure 4.6. As we are currently

restricted to a single testbed, we don’t yet know how dependent this asymmetry is on physical

topology, but we can see that distances are generally not too asymmetric.

The boundary width essentially reflects a trade-off between efficiency (duty cycle) and

reliability (PRR) as shown in Figure 4.17. Specifically, Figure 4.17(a) shows how PRR in-
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creases with boundary width, while Figure 4.17(b) shows how the duty cycle becomes less

efficient. When the boundary width is set to 0, we see many nodes with poor PRR due to

routing failures: distance variations can easily generate cases where some nodes that are on

the shortest path decide not to join FRR and participate in forwarding packets. On the other

hand, as boundary width increases, more and more nodes that are not on the shortest path

decide to participate and waste energy.

A boundary width of 2 achieves a good balance with an average PRR of 99.4% and the

average node’s duty cycle is only 70% of what it experiences when using Flood Burst.

4.7.4 Single-Transmitter Comparison

We have demonstrated that we can achieve good end-to-end packet delivery by forwarding

data over FRR while reducing energy consumption over Fmax. While we don’t expect to

achieve energy consumption on par with Fmin, it is instructive to look at how the size of

FRR differs from Fmin and how multi-transmitter distances differ from single-transmitter

route lengths, as these are the main drivers of energy consumption under CXFS. Addition-

ally, we wish to more specifically support our claim that the redundancy present under CXFS

enhances end-to-end delivery rates in the presence of unreliable links or nodes.

To investigate these questions, we collected a 24-hour trace of multi-transmitter floods

on our testbed. All nodes kept their radios in RX, and a script triggered each node to send

a multi-transmitter flood in sequence. The PRR for all pairs of nodes in the network was

recorded, as well as the hop count of each received packet and physical layer measurements

(RSSI and LQI). The records of RSSI and LQI from packets received on the first hop were used

to compute aggregate single-transmitter link quality information, including packet reception

ratio.

We find that many more nodes are used in FRR than in Fmin (unsurprisingly), but that

the resulting inter-node distances are generally slightly shorter. On the other hand, we also
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Figure 4.17: Impact of boundary width (BW) on PRR and duty cycle. All tests conducted using
“Average” distance metric with large enough routing table to track all nodes.
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see that not only are the forwarder sets chosen with CXFS more reliable than the single-

transmitter routes selected, they are also much more robust to random node and link failures.

FRR and Fmin Comparison

Our first goal is to evaluate how the number of nodes in FRR and the multi-transmitter

distances relates to the number of nodes in Fmin and the shortest-path distances on our

testbed. We used the collected traces to compute membership in FRR by using the average

hop count at which floods were received and setting boundary width to 2. We approximated

the values of Fmin for each pair of nodes in the network by computing the shortest path

between each pair of nodes, considering only links having a PRR of 99% or higher. We note

that in some cases, shorter paths were available by weighting links with ETX. However,

in order to match the CX burst transmission behavior (in which each packet is sent as the

previous one finishes), each link needs to be individually reliable: if a packet is slowed down

because it must be retransmitted en route, intra-path interference can occur. This is not

a perfect comparison, but it avoids many complicating factors specific to single-transmitter

routing.

Figure 4.18 presents a comparison of CX flood distance to shortest-path length. The av-

erage point to point distance using CX is 95% of the shortest-path length, though we do see

some pairs shrink in distance by 50% or incrase by up to 60%. The shorter distances are

likely due to occasional receptions over poor links that essentially “jump over” parts of the

network. The instances where paths are longer could be explained by the fact that when mul-

tiple 100% PRR links are exercised simultaneously, the phase offsets between transmitters

and other physical effects lead to a slightly worse than 100% reception rate at the recipient.

On the whole, we shouldn’t expect CX to significantly hurt or help throughput over single-

transmitter networking.

Figure 4.19 compares the number of nodes in Fmin against the number of nodes in FRR

for each pair of nodes on the testbed. The average pair of nodes sees a 9.3x increase in size
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personally encountered situations where factors such as low batteries lead to high numbers

of unstable nodes that may be selected for routing, but are unable to send and receive data

reliably.

We randomly selected 10 pairs of nodes and their corresponding FRR and Fmin from our

data set across the range of inter-node distances. For each forwarder set, we randomly deac-

tivated each forwarder node with a probability f (failure rate) and measured the end-to-end

packet reception ratio for a series of floods from the source node. The 140 distinct test setups

were each run at least 4 times. Each test run consisted of 10 separate applications of random

failures, and each of those consisted of 20 transmissions.

Figure 4.20 shows the results of these tests. Node pairs are grouped by their original

inter-node distance for clarity.

The first item to note is that most of the shortest-paths selected offline actually did not

have 100% end-to-end PRR. The average PRR was only 92%, indicating that even with rela-

tively detailed PRR data and a global view of the network, short-term dynamics and link qual-

ity changes can hurt the quality of paths selected. While more sophisticated route-selection

techniques may be less subject to these issues, this impact cannot be ignored.

The next item to note is that when a 5% failure rate is introduced, all of the shortest-path

PRR’s begin degrading, while the CX PRR remains close to 100%. In a long-term deploy-

ment, it would not be unusual to see 5% or more of deployed nodes enter a state of degraded

performance, so it is encouraging to see that CX tolerates this well.

Next, we can see that the shortest-path tests are more heavily impacted the farther apart

nodes are. This shows that the danger of “all-or-nothing” routing increases as more and more

fragile routes are chosen. Similar behavior has been reported elsewhere in the literature [40],

manifesting as diminished PRR for nodes far from the data sink.

On the contrary, we note that at the highest failure rates, the ‘> 4.5’ series actually per-

forms better than the intermediate distances under CX. Our previous results indicated that

for distant pairs of nodes, practically the entire network is conscripted in FRR. CXFS aims to
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essentially select the nodes on a shortest path between the end points, plus nodes just off of

this path. When the entire network (or close to the entire network) is in use, there may be

multiple disjoint paths present. If any of these remain intact, PRR will remain high.

We can clearly see that CXFS outperforms the reliability of single-path routing for every

single test. In fact, the worst CXFS test outperforms the best single-path test at every failure

rate evaluated.

4.7.5 CXFS and Multi-Transmitter Flooding: Benefits and Tradeoffs

We believe that multi-transmitter flooding and CXFS are broadly applicable to collection

applications in low-power sensor networks. That being said, there are important factors to

consider when assessing the usefulness of these protocols. In this section, we wish to more

precisely describe the overhead associated with simple flooding and with CXFS and discuss

some of the inherent limitations of this approach.

Flooding vs. CXFS overhead

In our previous discussions, we pointed out that the setup cost associated with CXFS can

cause some nodes to experience lower throughput and higher duty cycles than they would

encounter under simple flooding.

The number of packets p a node can fit into a slot is determined by the slot length S, the

network diameter D, and the distance between the source and destination node d.

When simple flooding is in use, each node can fit the same number of packets in a slot:

pflood =
S

D

When CXFS is in use a shorter distance d between endpoints allows a node to fit more

packets into a slot. Regardless of d, a setup cost of two simple floods (each taking D frames

to complete) must be paid.
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Figure 4.21: Distances at which CXFS breaks even with simple flooding for a range of slot
lengths and network diameters. Nodes farther from the destination than the break-even
distance will see worse performance when they apply CXFS than they would if they simply
flooded data.

pcxfs =
S − 2D

d

We can set these to equal each other to obtain the break-even value for d in terms of D

and S.

d = D − 2D2

S

Figure 4.21 plots the resulting break-even distances for a range of slot lengths and net-

work diameters. Since each node is provided with the maximum network depth (either ex-

plicitly or by observing the sum of hop-count + TTL in packets from the root), nodes could

locally compute whether it is worth it for them to apply CXFS or not.

An important item to note is that as the slot length increases relative to the network di-

ameter, the break-even distance moves closer to the edge of the network. This makes sense:
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Figure 4.22: Asymptotic response of break-even distance to slot length for a range of network
diameters.

the setup time decreases as a fraction of the entire slot length. Figure 4.22 illustrates this ef-

fect for a selection of network diameters. The break-even distance asymptotically approaches

D as S grows large compared to 2D2.

Slot length and guard times

If we desire to maximize our benefit from CXFS, the above results suggest that we should

strive to make slot length as long as possible, subject to the constraints of the application.

As clocks drift farther apart in long slots, progressively larger guard times have to be

built in to ensure that nodes can receive packets correctly. These larger guard times add to

the idle-listening cost at each node.

If we assume that clock skew is insignificant on the scale of frames (which are ms in

length), nodes only have to use large guard times for the first reception in a slot (all subse-

quent transmissions will be based on the most recent reception from the slot owner). Under
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idealized conditions, a node must start listening at Tslot ∗maxdrift prior to its estimate of a

frame boundary and stop listening at Tslot ∗maxdrift after its estimate of a frame boundary,

until it can obtain synchronization. In the worst case, this must be done in the first D frames

of each slot. The worst-case idle listening time as a function of slot length, diameter, and

clock skew is then 2 ∗ D ∗ Tslot ∗ maxdrift. If we look at this in terms of duty cycle, the idle

listening duty cycle during an active slot is simply 2 ∗D ∗maxdrift.

Our platform derives its initial frame timing from a 32KHz oscillator with a nominal

precision of +/- 20 ppm at room temperature. According to the manufacturer’s datasheet [1],

this gives us an absolute worst-case difference between two oscillators of 353 ppm (assuming

one device is at -40 C, the other is at +85 C, and their RT frequencies are at opposite ends of

the tolerance ranges). Even under these extreme conditions, idle listening incurs under 1%

duty cycle in active slots at networks of up to roughly 30 hops in diameter.

While this analysis will vary for different platforms and different operating conditions,

it suggests that slot length should primarily be dictated by the latency requirements of the

application for most practical purposes. If the time between active periods is large (e.g. for

daily batch data collection), then the synchronization cost for the start of the active period

will vastly outstrip the idle listening cost during the active period. The material in Chapter 5

which addresses the issues of network discovery and slot assignment opts for loose synchro-

nization between active periods, and is not affected by clock drift during idle periods.

CX Limitations

CX confers both high reliability and low energy usage. That being said, there are some situ-

ations where multi-transmitter networking will fall short of single-transmitter networking.

When executed correctly, distributed TDMA schedules can enable spatial reuse in a wire-

less network: multiple nodes can transmit different data at the same time, as long as they

don’t interefere with each other at recipients. Many approaches have been proposed and ex-

ecuted in the sensor network space to perform this optimization in the single-transmitter,
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single-channel context [20]. CX assumes that a single node can control the network at a

time, which precludes us from reaping this benefit. By segmenting the network into distinct

patches, each on a separate channel, we show how a large CX network can recover some of

this benefit in Chapter 5.

CX implicitly relies on the existence of end-to-end paths in the network. Delay-tolerant

and disruption-tolerant networks do not have these requirements. In sparse networks with

high mobility, an approach more akin to ZebraNet [30] where nodes opportunistically transfer

data when they encounter other nodes will be able to deliver data even when the network is

never globally-connected. Again, in Chapters 5 and 6 we describe a system built on top of

CX that does not assume a globally-connected network, but is still limited in the types of

disconnections that it supports.

Likewise, CX may not be well-suited for extremely constrained energy-harvesting ap-

plications. Systems such as Tenet [49] and the system proposed by Yerva et al. [73] favor

highly-asymmetric communication systems, where more powerful infrastructure nodes col-

lect data from intermittently-powered leaf nodes. The large-scale scheduling requirements of

CX (tracking active/inactive periods) would not be feasible in such a setting, where nodes are

typically only able to operate for short periods of time with their radios on and are prone to

intermittent failure due to lack of power.

4.8 Conclusion

Recent work from industry and academia has shown the feasibility and benefits of using

multi-hop concurrent transmissions for point-to-point and convergecast traffic in low-power

wireless networks. Approaches such as Low-Power Wireless Bus and Insteon offer high yield

and throughput, low duty cycles, and simple operations. Despite these benefits, flood-based

approaches are intuitively wasteful since they involve every node in the network for every

data transfer. This work proposes adding forwarder selection to the emerging concept of a

multi-transmitter network stack.
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We formally defined the forwarder selection process for multi-transmitter protocols and

provide simple mechanisms that nodes in a network can use to determine whether they

should participate in a transmission or turn off their radio to conserve power. Further, we

present the CXFS protocol that shows how the forwarder selection process can be adapted for

real networks with asymmetric and time varying links.

Results from our 66-node testbed show that CX reduces average duty cycle by 30% and

increase average throughput by 49% over simple flooding while preserving a 99.4% average

end-to-end packet reception ratio. CX continues to deliver data reliably where random node

failures and stale link quality information cripple single-path routing.
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Chapter 5

Multi-tiered Networking with CX

While the results in Chapter 4 show that we can achieve high reliability and data rates by

using CX and forwarder selection, the described approach falls short of an ideal solution to

our application for a few reasons.

First, we consider the presence of reliable power and communication infrastructure to

be the exception rather than the rule. For this reason, whatever mechanism we use for

coordinating nodes with each other, it should be robust to the case where the base station is

absent for long periods of time. The network coordination should robustly handle the case

where unreliable nodes enter and exit the network at random.

Second, typical WSN deployments for environmental monitoring are naturally “patchy.”

Not only is it easier to make network schedules if the patches are coordinated separately, but

we can also realize energy savings. Systems which schedule the entire network together tend

to see energy consumption scale with the size of the full network. By subdividing the network,

we aim to scale energy consumption at end-devices with the size of their subnetwork.

Finally, the hardware that we describe in Section 6.2 allows us to deploy a subset of nodes

as “routers” to handle long-range transmissions, reducing the need for sensing nodes to par-

ticipate in data forwarding for anything outside of their patch. Using such routers, we can

concentrate energy usage at a few points in the network.

In this chapter, we detail the design of a multi-tiered collection protocol built on CXFS and

evaluate its performance. We segment the network into multiple patches and use CXFS to
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collect data from each patch at a router, then use CXFS to collect data from all of the routers

at a basestation.

5.1 Multi-Tiered CX Design

Our high-level design goals in this data collection system are to maintain high end-to-end

reliability while reducing energy consumption at sensing locations.

The energy consumers in a low power networking protocol can roughly be broken down

into forwarding load (how much time nodes spend sending and receiving data) and control

overhead (how much traffic must be sent to coordinate data transfers). Both of these scale

with the size of the network: larger networks produce more data (which must be forwarded)

and larger networks require more messages to coordinate.

Our general approach will be to subdivide the full deployment into multiple patches. We

designate some nodes as sensing locations (or leaves) and designate others as routers, where

each patch consists of one router and zero or more leaves. Routers independently collect

data from the leaves in their patch. A basestation node periodically downloads the collected

data from each router without relying on the leaves to perform data forwarding. We use

the technique of CXFS described in Chapter 4 to perform each of these data collection steps

reliably and efficiently.

Figure 5.1 shows a schematic design of such a network. Each download, whether from

leaves to a router or from routers to a basestation, follows the same basic pattern. This flow

is shown in Figure 5.2. All nodes are normally in a low-power idle state. Periodically, the

collection point, or sink, for the download initiates a wakeup process. Once the network is

active, the download proceeds in a series of slots. The sink determines which node will be

assigned the next slot (if any) and sends a Slot Assignment or SA message to it. During its

slot, a node sends any outstanding data it may have. When the sink determines that no more

nodes have outstanding data, it stops assigning slots and returns to the idle state. After a

few slots elapse with no SA, the rest of the network returns to the idle state as well.
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Slot Assignment STATUS D0 D1 D2 EOS

Figure 5.3: Phases within each slot of the active period. The x-axis is time, which increases
from left to right. Tall black rectangles indicate transmissions, tall gray rectangles indicate
packet receptions. Short gray rectangles indicate periods where a node is in RX mode but
is not actively receiving a packet. Nodes use the arrival of the SA packet to determine the
timing of their receive checks for the remainder of the slot.

it receives them. When nodes hear their wakeup probes being forwarded, they start listening

and forwarding any probes that they hear. After a number of probe intervals equal to the dis-

tance of the farthest node in the network from the root, the entire network has been woken

up. The same process is used when the basestation wishes to download from the routers (on

the router channel), or when the basestation needs to contact every node in the network (on

the global channel).

In this manner, we keep the idle radio duty cycle low and pay a modest cost when we need

to initiate a download. Section 5.3.2 looks at the costs associated with this technique.

5.1.2 The anatomy of a slot

Each slot begins with a Slot Assignment (SA) message CX flood from the download initiator

(either a router or basestation) which designates the owner of the current slot. These packets

are a fixed short length, and we send them with a short retransmission interval (5.7 ms).

Nodes wait in RX until they either detect an SA message or determine that the possible time

when an SA could be received has ended, based on a pre-agreed maximum network depth and

the retransmission interval. Every recipient uses their estimate of the original transmission

time of the SA packet, along with a fixed and pre-defined frame length, to determine the

points in time when transmissions may occur for the rest of this slot. The initial SA RX
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timeout is relatively long, which allows nodes to have loose synchronization with the root

between slots and still maintain connectivity.

At the next frame boundary, the recipient sends a Status message back to the root. The

Status message conveys the second half of the forwarder-selection criteria (the end-to-end

and source-to-forwarder distances), a copy of the owner’s neighbor table (for network discov-

ery), and a flag to indicate whether it has data pending or not. The rest of the nodes either

immediately sleep until the next slot (if no data is pending) or use the included distance

information to determine whether or not they need to stay awake to forward data.

The main period of the slot is the same as described in Chapter 4– the source transmits

packets back to back, using the end-to-end distance to determine the interpacket spacing.

Forwarders check for channel activity slightly before each frame boundary, and immediately

return their radios to sleep until the next frame if no activity is detected.

An active slot (one in which the owner indicated data was pending) ends with an end-

of-slot (EOS) message. This is used to indicate to the sink whether there is still more data

pending.

5.1.3 Network Discovery and Slot Assignment

The original CX work assumed that all nodes were known ahead of time, that they had been

assigned a slot in the download for their use, and that they agreed on a common wakeup

schedule. We’ve addressed the problem of coordinating the network’s active period and de-

scribed what happens in a particular slot, but have not yet addressed the problems of slot

assignment and node discovery.

During the wakeup period, nodes record the source of each probe that they overhear in a

neighbor table. Every node that wakes up must have had a probe heard by at least one other

node. So if the size of this neighbor table was large enough, we would be guaranteed to have

a list of every active node somewhere in the network (appearing in the neighbor tables of one
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or more nodes). Since we don’t necessarily know ahead of time how many radio neighbors

a node may have (and since we have a limited amount of memory to work with), we use a

simple eviction policy that reliably satisfies our need to enumerate the network’s members.

Each node maintains index, a pointer into the next free entry in their neighbor table.

This starts at 0 when a node is woken up, and gets incremented whenever a probe is inserted

into the neighbor table. If the number of recorded neighbors exceeds the size of the table

tableSize, index wraps back to 0. After this point, when a new probe is heard, we randomly

choose to either ignore it or insert it at index before incrementing index. The probability of

ignoring the probe is set to index/tableSize. This ensures that 0th entry is never evicted,

and the earlier an entry was recorded, the less likely it is to be evicted. The intuition behind

this is that probes sent early in the wakeup process have fewer active recipients that may

record them, while probes sent late in the wakeup process have potentially many nodes that

receive them. A simple first-in-first-out policy fails to effectively enumerate the network,

as the nodes closest to the base station are the most likely to be evicted (quickly leading to

undiscovered sections of the network) 1.

The slot assignment order is implicitly determined by distance from the root. It starts with

the nodes within immediate radio contact of the root, and as Status messages are received,

the newly-discovered nodes are appended to the assignment order. If a node couldn’t be

reached, or if it indicated that additional data was pending in its EOS message, the root will

grant it another slot when it finishes cycling through the network.

This process continues until no nodes have data pending. A node is considered to be

finished if it explicitly indicates no data is pending (in either a Status message or an EOS

message), a pre-defined number of attempts to reach it have failed, or a pre-defined maximum

number of slots per download have been assigned to it. These safeguards are in place to

prevent aberrant conditions from allowing a node to keep the network active for long periods
1Assume you have a basestation with a single neighbor A in the network. A has n neighbors, and tableSize is

m < n. Let B be the first of these n nodes to send a probe after A has woken up. B will be recorded at index 0 in
A’s table, and will not be recorded anywhere else. Under a FIFO eviction policy, once the mth neighbor of A sends its
probe, B will be evicted.
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Figure 5.4: CX stack for multitier networking.

of time.

Nodes consider the download to be complete if they perform a pre-defined number of SA

checks without detecting activity. This limit is set based on how reliable the network is.

Testbed results have indicated that a early shutdowns are very rare when this limit is 4 or

higher, though networks with lower end-to-end PRR may need to increase that threshold to

account for occasional packet losses.
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5.2 Software design

Moving from the original CX implementation to one more appropriate for field deployment

leads us to some design changes from the implementation described in Section 4.6. Figure 5.4

shows the high-level view of the network stack. While the previous network software stack

was designed to parallel an OSI-style layered protocol, the current network software stack is

more closely aligned to the functional needs at the mote.

We need to support non-frame-aligned transmissions for the wakeup process described

in 5.1.1 and variable-length receive timeouts (for SA and EOS packets as opposed to Status

and Data packets). This forces us to strip down the link layer to its bare minimum: it is now

responsible only for handling the precise timing of retransmissions and keeping the radio

core and related peripherals in low-power modes when possible. The coarse-grained timing

of receptions and the initial timing of non-concurrent transmissions is moved up the stack.

The Wakeup component is responsible for controlling the timing of wakeup probes and

initiating the wakeup process (for routers and base stations), while the Scheduler is respon-

sible for the behavior in active downloads. The Scheduler needs to be able to put the node

back into its low power state at the end of a download and get notified when it is woken up.

They can be thought of as residing at the same level of abstraction in a sense (one handles

idle behavior, one handles active behavior), but the TinyOS conventions of down-calls (com-

mands, e.g. “return to idle mode”) and up-calls (events, e.g. “woken up”) leads us to treat

them as layered.

The Scheduler component coordinates the timing of the events described in 5.1.2, sends

and receives control messages, and indicates when SA messages are received. The logic

in this component is decomposed into master-specific, slave-specific, and role-agnostic sub-

components (CXMaster, CXSlave, and SlotScheduler, respectively). It absorbs the duties pre-

viously divided between the Network and Transport layers, as they are quite tightly coupled

in practice.
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In order to keep the interfaces presented to the application simple, we introduce a Queu-

ing component above the Scheduler. This abstracts the logic of determining when a packet

should be sent (e.g. when the destination’s network segment is active) from the rest of the

Scheduler logic. The Queuing component presents a standard split-phase Send command

and matching SendDone event to the application level code.

The following subsections present the most important implementation details and design

choices for each of these layers.

5.2.1 Link Layer

Hardware independent behavior

The Link layer, as before, interacts with the radio’s hardware presentation layer (HPL) and

precision timing source to schedule the time-sensitive events in CX. Our goal in this layer

is to present a simple interface to higher levels of abstraction that wish to receive or send

packets at specific times.

When sending packets, the radio core’s transmit buffer is loaded and then the transmis-

sion command is issued either as soon as possible (for wakeup probes) or at a time designated

in the packet metadata (for frame-aligned transmissions). Upon receiving the sendDone

event from the HPL, the packet’s time-to-live (TTL) counter is decremented. An alarm is set

to coincide with the packet’s last transmission (frame length ∗ TTL). When this expires, the

SendDone event is signalled to the caller.

The receive behavior parallels this closely, and in fact reuses many of the same code paths.

Reception has to be explicitly requested from a higher level by calling an RX command. This

accepts a timeout length, which may be on the order of milliseconds (for frame-aligned data

transmissions) or for long periods of time (e.g. the multiple-second wakeup period). This

command puts the radio into RX mode and sets an alarm for the specified timeout. When

the alarm fires, an rxDone event is signalled immediately unless channel activity has been
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detected. Upon receiving a packet, a node decrements its TTL, increments its hop-count, and

loads it into the transmit buffer. Its subsequent retransmission is scheduled for one frame

length from its reception, and the standard Receive interface is scheduled to coincide with

the packet’s last transmission.

Choosing to wait until a packet’s TTL reaches 0 before signalling its reception or trans-

mission greatly simplifies logic at higher layers. As soon as the Scheduler gets a sendDone

event, for instance, it can send the next packet. As soon as it receive’s an SA packet, it can

send its Status packet.

In order to optimize performance for the various short packets used in multi-tier CX

(wakeup probes, SA messages, and EOS messages), we use a shorter frame length for packets

having total length of 18 bytes or fewer. In order to support wakeup probe behavior, we also

add a flag to the packet metadata which lets the sender indicate that it wishes to receive the

sendDone event as soon as the packet is transmitted. This allows a node to send a probe

with TTL 2, switch to RX mode, and then check for its retransmission by neighbors.

The RX command can also be invoked with an option that disables retransmission: this

exists so that a node can sniff packets without spreading them further in the network. We

need this to support the Phoenix [26] time reconstruction protocol, though other systems may

not need this feature.

The radio module is switched into IDLE mode when not in use, and can be put into SLEEP

mode through an explicit command invoked by higher layers. It also provides pass-through

access to the HPL set-channel command.

These factors should be largely independent of the hardware implementing a similar sys-

tem.

Platform-Specific Details

We found that packets having fewer than 64 bytes (one full TXFIFO) exhibit a variety of

length-dependent timing changes that complicate the link layer logic. When measured on a
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logic analyzer, it appeared that the time between issuing a TX strobe and the time that the

transmission actually began differed depending on whether a node had just switched from RX

to TX, or whether it was retransmitting a previously-transmitted packet. Without being able

to understand how the radio module was internally handling these cases differently, it was

determined that the safest way to proceed was to pad packets to either a fixed short-packet

length or a minimum long-packet length (in practice, most packets are large enough to not

need padding). For the short packets, we allow a node to retransmit it more than once before

returning the radio to idle. This is a somewhat inelegant solution, though the short duration

of these packets lets us do this without significant damage to the overall duty cycle.

We use a 26MHz crystal for all timing-critical operations. This isn’t free to operate, con-

suming up to a milliamp of current while running. We explicitly turn this off when there is

no ongoing or scheduled transmission or reception.

5.2.2 Wakeup Layer

The Wakeup layer is primarily responsible for sending wakeup probes and determining which

network segment is active. A configuration structure (see Section 6.3.1) dictates the corre-

sponding channels for each network segment, as well as a wakeup probe frequency for each

segment. We use this information to set a timer to fire, on average, with the specified in-

terval. When it fires, the Link layer is switched to the corresponding channel, and a probe

packet is sent with self-retransmission disabled. After sending it, the Link layer is immedi-

ately switched to RX mode with a timeout specified by the short-packet frame length to check

for retransmission. If this results in receiving ones own retransmitted packet, we signal a

wokenUp event to the next layer above, and indicate which network segment was woken up

as a parameter. Further probe transmissions are disabled until this layer is explicitly put

back into a sleep state.

We include local timing information in probe packets and support a probe-sniffing mode
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in order to enable the Phoenix timestamp reconstruction protocol [26].

Additionally, we enforce a black-out period in which no probes are sent after the layer is

put to sleep. This is in place so that if a node loses synchronization with the network, it is

less prone to disrupt an active download by sending probes on the same channel.

5.2.3 Scheduler Layer

The Scheduler layer coordinates the timing of the events described in 5.1.2, as well as the

role-specific (master or slave) behavior relevant for each network segment.

A common SlotScheduler module controls the timers which dictate when a slot begins,

when the node is in the SA period of a slot, and when valid receive and transmit times occur.

When this module receives a wokenUp event from the wakeup layer, it keeps the radio in RX

mode until the wake up period has completed (determined by a maximum network depth and

probe interval for the active segment in the same configuration structure described in 5.2.2)

and the first SA message has been received or sent. It uses the time of this event to set a

periodic slot-started timer (which it re-adjusts at each SA reception/transmission).

A SlotController interface, parameterized by the active network segment, determines

the node’s role in the download. A router, for instance, has a CXMaster instance wired to the

subnetwork index of this interface, while it has a CXSlave instance wired to the router index

of this interface. SA, Status, and EOS messages are handled in the same manner whether a

node is master or slave, the only difference is who is sending and who is receiving.

The CXMaster slot controller implements the node discovery and slot assignment logic

described above. It maintains a list of all the nodes discovered so far in the network (start-

ing with itself), and as Status messages are received it appends discovered neighbors to

its contact list. Each entry in this list tracks a node ID, the number of failed attempts to

contact that node, and whether it may have data pending. At the start of each slot, the

SlotScheduler component checks the active SlotController interface for whether it is
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responsible for sending or receiving a SA message, and prepares the relevant SA message if

needed.

The CXSlave slot controller tracks the node ID which is acting as a master for its network

segment: this is necessary so that a node can accurately specify the destination for its packets

(and allow other nodes to perform forwarder selection).

This layer is linked to the send queuing and dispatch layer by the Send and CTS interfaces.

The CTS interface is signalled when an SA message is received, indicating that the queuing

layer can Send the next packet. When the queueing layer calls Send, it will receive an

ERETRY response if the current slot is not assigned to this node, or if there is not enough time

left in the slot for a packet to be sent (e.g. there are 2 frames left, but the destination is 3 hops

away). If a packet is accepted for transmission, then it is temporarily held at the scheduler

layer until just prior to the next frame boundary. At this point it is given a 32KHz resolution

transmission time exactly matching the next frame boundary and passed down through the

wakeup layer to the link layer.

Some care is taken to set short RX SLACK and TX SLACK times which determine how far

in advance of a frame boundary a node starts listening for packets or loads its transmit

buffer. Nodes agree on a common notion of frame boundaries (based on the actual SA packet

transmission), and then set their frame timers to fire prior to these boundaries. This lets us

account for both the jitter in time measurement across the network (potentially off by up to 1

32KHz tick, even in the absence of clock skew) and the jitter in event handling time (depen-

dent on the other tasks that a node is doing aside from running the networking protocol).

5.2.4 Send Queuing and Dispatch

The contents of a well-written networking stack should be invisible to the application de-

veloper. With only minor modifications, we expose the TinyOS-standard AMSenderC and

AMReceiverC generic components to the application level.
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In our experience, each node in the network sends all messages of a given type to one

particular network segment. Leaf nodes send data from their log to their router, routers send

data to the base station, and requests for missing data go in the reverse direction. With

this in mind, we replace AMSenderC with network-segment specific generic configurations:

these correspond to “send a packet of type X on network segment Y.” While the details of this

implementation are specific to TinyOS, the principle of separating the per-segment queuing

logic from the Scheduler logic is broadly applicable to other systems following this design.

Each client instance connects to a modified version of the standard AMQueueImplP, which

queues outstanding sends from AMSenderC clients and sends the next packet as the preced-

ing one completes. In our modified AMQueueImplP, a send command which fails with ERETRY

is queued. No further attempts are made by AMQueueImplP until it receives a CTS event from

its corresponding network segment. When it gets a sendDone event back in response to such

a send, it will immediately try to send the next outstanding packet if it exists.

In order to keep logic as simple as possible, we have to violate one of the TinyOS design

principles by invoking a down-call (the Send command) from an up-call (the CTS event) [38].

This is generally frowned upon, as it can lead to infinite loops, deep call stacks, and long

execution times. However, this lets a node immediately compute the data-pending bit in its

Status message as soon as it receives an SA. We can (and do) attempt the next pending send

in a successive task context after the preceding sendDone event is handled, as the logic in

the scheduler layer will either accept the next send if there is enough time to handle it or

reject it and indicate that data is still pending in its EOS message.

5.3 Evaluation of multi-tiered CX

5.3.1 Baseline Performance Validation

The results presented in Chapter 4 measured the behavior of forwarder selection in an iso-

lated setting. They did not take into account scheduling or network discovery, for instance.
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Before we proceed, we need to establish some rough benchmarks for the revised CX imple-

mentation presented in this chapter. All tests were conducted on the same indoor testbed,

though due to hardware failures there are now only 58 nodes available.

For a baseline comparison to the previously-reported results, we simulated a 1 minute

packet-generation rate on a flat (non-tiered) network. Each download, every node tried to

send 50 packets to the root. The slot length was adjusted to fit 4 flood packets, as this is how

many packets fit into each flood burst under the previous implementation. A boundary width

of 2 was used when forwarder selection was applied. The maximum network depth was set

to 10, and the probe interval was set to 1 second.

Baseline Packet Reception Ratio

Figure 5.5 shows histograms of the end-to-end packet reception rate in each direction without

forwarder selection, and Figure 5.6 shows the leaf to root PRR with forwarder selection en-

abled. The mean end-to-end PRR is above 99.5% from leaf to root (with and without forwarder

selection), while the root to leaf PRR is 98.7%. This appears to be due to poor connectivity

at a single node. The revised CX implementation achieves comparable PRR to the original

implementation.

Baseline Duty Cycle

Figure 5.7 shows a CDF of the resulting duty cycle from this test. The duty cycle at each

node was calculated as their active time during a download (including wakeup) divided by 50

minutes. This allowed us to run tests back to back. The average duty cycle is 5.2% without

forwarder selection, and 2.8% with forwarder selection.

This is higher than the previously reported results. There are three factors that account

for this.

First, since every slot now requires both an explicit SA from the root and response from
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Figure 5.5: Packet Reception Ratio with forwarder selection disabled in a flat network. Av-
erage root-to-leaf PRR is 98.7% (dragged down by the single sub-99% node) and the average
leaf-to-root PRR is 99.75%.
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Figure 5.6: Packet Reception Ratio with forwarder selection enabled in a flat network.
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Figure 5.7: Duty cycle with and without forwarder selection enabled in a flat network at
1-minute IPI and 50-minute download interval.
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Baseline Throughput and Throughput Improvement

The same tests were used to measure the maximum achievable network throughput and to

quantify the throughput increase possible with the forwarder selection. Figure 5.8 shows

the throughput with forwarder selection enabled, normalized to the flooding throughput and

plotted against distance from the root.

These results show a more significant throughput gain than in Chapter 4, with a mean

improvement of 227% (c.f. 49%). This is due to the fact that the explicit slot assignment from

the root and response from the leaf take place whether forwarder selection is enabled or not:

previously, the setup phase was skipped for flood bursts and this improved non-forwarder

selection throughput (hurting the relative improvement).

In absolute terms, nodes could send 2.1 data packets per second without forwarder selec-

tion and 2.9 to 6.3 (average: 4.7) data packets per second with forwarder selection. These

tests were conducted with 12 B payloads to match the previous test, giving 25.2 B/s and 56.4

B/s, respectively. We note that the software limitations which previously restricted packet

size have been resolved since the work in Chapter 4 and PRR is not appreciably impacted by

longer packets. Since the frame length is fixed for all packets regardless of the data length,

we can guarantee at least 210 B/s in this network (and up to 630 B/s) with 100-byte packets.

This far exceeds the typical data rates required in environmental monitoring networks.

We note that since the throughput is always greater than 1.0, this indicates that the

maximum network depth (used for flood packet spacing) is overestimated. The maximum

average depth was only 4.6. If we had set the flood packet spacing to 5 hops, the improvement

would be cut in half across the board (mean improvement of 113.5%).

5.3.2 Overhead

The two sources of overhead in this system are the network wakeups and the slot-assignment/slot-

discovery messages.
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Figure 5.9: Duty cycle as a function of wakeup probe interval and downloads per day. Network
depth of 5 is assumed.

Wakeup cost

Based on the data rate, FEC scheme, and execution timing constraints, we can perform a

single wakeup probe + check in roughly 5 milliseconds. Figure 5.9 illustrates how changing

the probe transmission interval lowers the idle duty cycle, but increases the time to perform

a network wakeup.

This figure was generated by computing the idle duty cycle for a given probe interval (e.g.

1 probe/second = 5 active ms/second = 0.5% DC) and the total amount of time to guarantee a

full-network wakeup in a 5-hop network (e.g. 1/probe/second = 5 second wakeup). Each series

represents a different number of wakeups per day.

In our experience, unattended deployments can be run perfectly well with a single down-

load per day. The baseline duty cycle reaches its minimum at 0.11% with a 9.5 second probe

interval at this wakeup frequency.

Figure 5.10 shows the impact of slot length on daily duty cycle in a flat network with
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forwarder selection enabled. Figure 5.10(a) shows the effect on a 0 packets-per-download

(overhead-only) setup. The duty cycle is driven almost entirely by the wakeup cost at this

traffic level, so slot length has little impact.

On the other hand, Figure 5.10(b) demonstrates the energy that can be saved by sizing

slots appropriately. If a node can fit all of its packets into fewer slots, the per-slot setup cost

will be reduced.

In practice, it can be difficult to determine the best slot length. If we were totally un-

constrained, the best slot length would be set to fit exactly as many packets as each node

generates between downloads (e.g. 75 packets in this test). Since a node’s throughput de-

pends on its distance from the root, this would vary from node to node.

5.3.3 Benefits of segmentation

5.3.4 Duty Cycle

Our primary goal in segmenting the networking into patches is to reduce the forwarding load

(and radio duty cycle) at each leaf. In order to test the effectiveness of this approach, we

divided our testbed into 9 distinct patches, varying in size from a 1 leaf node to 8 leaf nodes.

Collections were performed at 0 packets per download and 75 packets per download, with

100-byte payloads. The 0-packet traffic load shows how the overhead costs associated with

each download change when the network is segmented, while the 75-packet load is roughly

equivalent to a single day’s worth of data under commonly-used deployment settings (a 10-

minute sampling rate and a single 8-sensor multiplexer board).

The results presented compare the segmented (9-patch) network to the non-segmented

(flat) network. Transmission power was set to -6 dBm at all nodes. We note that in prac-

tice, router nodes should be expected to have their radio amplifiers activated for router-tier

downloads.

Figure 5.11 shows the effect of segmenting the network on the overhead-only traffic load.
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Figure 5.13: Change in PRR from flat network to multi-tiered (leaf to router, router to root).
Values greater than 0 indicate an improvement in PRR in the multitier setting.

Since probes and wakeups dominate this cost, leaf nodes see virtually no improvement at this

data rate. Router nodes see their duty cycle double, since they have to perform two wakeups

per day in the multi-tier network as opposed to one in the single-tier network.

Figure 5.12 shows a rosier picture. The average leaf duty cycle drop is 56% of its single-

tier level when they are grouped into patches, shown in figure 5.12(a). We expected smaller

patch sizes and shorter sink distances to correlate with the best duty cycle improvements.

These results don’t seem to indicate an obvious relationship between these factors, though.

Figure 5.12(b) shows that the improvement in leaf node duty cycle is not free. While

routers enjoy the same short downloads that the leaves in their patch do, they also have to

retransmit all of this data to the root and suffer an additional wakeup. Their duty cycle is

50% higher than it is in a single-tier network, on average. That being said, the total energy

consumption of the network decreases under segmentation, consuming only 70.8% as much

as the flat network.
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5.3.5 Packet Reception Rate

The end-to-end packet reception ratio for leaf nodes may change when the network is seg-

mented. Figure 5.13 shows the distribution of the changes in PRR experienced by the leaf

nodes when moving from a flat network to a tiered network. The average packet reception

ratio drops to 96.91%, primarily due to the poor router-to-root PRR of a single router. 22 out

of the 57 leaf nodes see improvements ranging up to 3.5%. This can occur if their router has

a good PRR to the root, and their in-patch PRR is better than their flat-network PRR.

5.4 Future Extensions and Optimizations

There are a few modifications and optimizations that immediately spring to mind which could

potentially improve energy-efficiency, connectivity, or both. We record them here not as nec-

essary work that is incomplete, but as potential avenues for future research that may be of

interest to others.

We currently enforce a black-out period after each download, in which nodes do not send

wakeup probes, in order to not disrupt an ongoing download in the event that a node tem-

porarily loses connectivity. We could take this black-out period further and make it close to

the “normal” download interval, on the order of hours. This would cut the idle duty cycle due

to wakeup probe transmissions/checks from the 0.5% range (at 1 Hz probe interval) to almost

nothing. By disabling probing up until the limit of the clock uncertainty, idle duty cycle would

drop to that limit. For example, if a node is using a 1 Hz probe interval in a network of depth

5, it spends 432 seconds per day sending probes and 5 seconds per day being woken up: idle

duty cycle dominates the cost. If the worst-case clock skew is 5%, it can cut this to 21.6 sec-

onds per day of probes and 5 seconds per day of wakeup time by suppressing its probes for

the 95% of the day where no download is expected. This is a change from roughly 0.5% idle

duty cycle to 0.025%.

We’ve observed receiver saturation in certain situations, which contribute to missed wake-
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ups and potential packet loss. This can occur, for instance, if many nodes are in a small area

(within a meter) and they are set to transmit at a relatively high power (+10 dBm). In

this case, when the last node to wake up sends its wakeup probe, the resulting concurrent

transmission exceeds the limit of the radio module’s gain control and no packet is detected.

Experiments indicate that when the receiver is saturated, it does at least register channel

activity (though it fails to recognize the packet preamble sequence). One could add a qualified

“activity but no packet” indication to the wakeup layer’s rx response, which would instruct

it to continue listening for probes and SA packets, but prevent it from rebroadcasting probes

until it has confirmed that a wakeup has been initiated. It may also be possible to use the

radio module’s CLOSE IN RX setting to insert an additional attenuator block before the RF

signal reaches the demodulation hardware, or to temporarily reduce output power at the

retransmitter (based on the received signal strength of the original probe, perhaps).

Perhaps the most aggressive way to save energy would be to include data compression at

multiple points in the system. Leaf nodes could compress their data prior to transmitting it,

and routers could potentially compress the data they aggregate from their network. Unfor-

tunately, the MCU which we are using only has 32 KB of ROM available, and the network

stack and application logic use the vast majority of that. Our results in [10] clearly demon-

strate the practical usefulness of even simple compression techniques, and we desperately

hope that future platforms using CX have a little more space to work with.
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A Dirt-to-Database System

6.1 The road to field-deployability

Too often in research, we lose sight of our end goals and pursue short-term projects. While it

is exciting to develop novel MAC and routing protocols, our goal is to build networked sensing

systems that field scientists can deploy to support their research missions.

The previous chapters have described several important elements of this pursuit by look-

ing at how practical concerns such as deployment topology and expected failure modes inform

protocol design. This chapter looks at the remaining elements necessary to move data from

the dirt to the database.

Our research group’s early sensor network deployments [10, 60] revealed a mismatch be-

tween the preferred methods of field ecologists and the capabilities of standard WSN hard-

ware.

Before proceeding with a description of the existing platform and our replacement, let us

briefly sum up the usage patterns we observed.

It is rarely feasible to uniformly blanket a study area with sensing nodes at a scientifically-

useful level of granularity. The favored approach is to identify regions that are qualitatively

similar (e.g. old growth vs. secondary growth forest) and densely instrument a subset of

these regions to capture the heterogeneity within (either naturally occurring or due to ex-

perimental manipulations). This leads to deployments with dense patches of sensors spread
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Figure 6.1: Block diagram of a Breakfast deployment.

over kilometers of study area.

We sum up the system requirements as the following:

• We need to place wireless nodes that can accomodate the analog sensors required for

the study.

• We must place additional wireless nodes as needed to connect the network.

• We need to record sensor associations and calibration records of deployed hardware.

• Once deployed, we need to get usable data into the hands of domain scientists.

We developed a new suite of hardware and supporting software, code-named Breakfast,

to address these requirements. Rather than having a single device which does everything in

the network (analog sensing, data storage, and routing), we have developed the Toast analog

sensor board and the Bacon wireless sensor mote. The Bacon mote can be configured as a leaf

(with an antenna printed directly on the circuit board) or as a router (with a power amplifier

and an external antenna connector). The Toast multiplexer board maintains identification

and calibration metadata for its attached sensors and delivers analog measurements to the

Bacon mote.

Table 6.1 summarizes the capabilities of the devices, and Figure 6.1 shows how they are

deployed and connected. A single Bacon mote connects via commodity USB cables to a digital
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(Inter-Integrated Circuit or I2C) bus of one or more Toast boards. Each Toast board supports

up to eight analog inputs.

Separating sensing duties from storage and transmission allows us to reduce cost, de-

crease software complexity, and automate labor-intensive processes.

By allowing an arbitrary number of analog sensors at each wireless node, we can slash the

required number of devices to support a given sensing setup. At USDA, for example, we had

to deploy 20 nodes to supply analog sensors for two study areas, despite the fact that each

was under 5 meters in diameter. We could instrument this deployment with two Bacon nodes,

each connected to a chain of 5 Toast boards. This would save over 50% in fixed hardware costs

and reduce the number of monitored and maintained devices in the field.

We described a networking approach to patchy networks in Chapter 5. In practical terms,

however, router nodes need to have longer communication range than leaf nodes. At our

SERC deployment, for instance, one third of our deployed nodes were in place just to keep

the two patches connected. Bacon addresses this issue with router nodes, which add up to

16.4 dB of transmit amplification and 8 dB of receiver sensitivity over the basic mote (before

adding an external antenna).

Our old platform connected the mote directly to the analog sensors, so all sensor asso-

ciations had to be manually recorded and entered into the data processing pipeline (there

is no way for the mote to tell what, if anything, is connected to its analog inputs). This is

especially important for sensors which must be individually calibrated to provide good data.

Tracking these associations is annoying for small deployments, but becomes a major bottle-

neck for large deployments, especially in campaign settings where time at the study site is

limited. The Toast board has enough on-board storage to record unique identifiers for each of

its analog sensors, and this data can be collected automatically by the Bacon node.

Taken as a whole, these improvements reduce both the cost of deploying a sensor network

and the effort required to maintain it.

We start this chapter by presenting the hardware suite that we developed for long-term
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Parameter TelosB Bacon-Leaf Bacon-Router Toast
Free Space Radio Range [4] 0.2km 0.7km 24km/3 km * NA
ROM 48KB 32KB 32KB 16KB
RAM 10KB 4KB 4KB 2KB
Flash 1MB 8MB + SD card 8MB + SD card 256B
Analog Inputs 4 ext, 4 int 2 int 2 int 8 ext
Active Power 6.4mW 5.4mW 5.4mW 5.0mW
Shutdown Power 15.3µW 7.8 µW 8.1µW 2.1 µW
Std TX Power 60 mW 51.3 mW 802.5 mW NA
Std TX Output 0 dBm + 0.3 dBm +22.6 dBm NA
Max TX Power 60mW 87.6 mW 1107 mW NA
Max TX Output 0dBm +8.7 dBm + 25.1 dBm NA
RX Power 60 mW 50.1 mW 62.4 mW NA
RX Sensitivity -90 dBm -90 dBm -98 dBm NA
Unit Cost ∼$31 $22 $34 $21

Table 6.1: Comparison of standard TelosB-based platform and Breakfast hardware suite.
TelosB cost is based on estimated manufacture cost assuming the same ratio of fabrica-
tion/assembly/NRE cost to BOM cost as Bacon/Toast (commercial price is ∼C85, $116). *:
router-to-router range estimated at 24km, router-to-leaf 3km.

environmental monitoring, detailing the design process and performance characteristics. We

then describe the supporting software and systems we have developed for tracking the assem-

bly, calibration, and deployment of sensors, as well as the data processing pipeline. Finally,

we close with a discussion of our early deployment experiences.

6.2 The Breakfast Hardware Suite: hardware for data-hungry

scientists

Previous deployments were based on the TelosB [50] mote platform with some supporting

hardware. Each sensing location was instrumented with a TelosB mote, a custom-designed

analog multiplexer board (allowing the connection of up to 4 external analog voltage inputs to

the mote’s single ADC input), and a custom-built analog sensor assembly (enclosing 4 analog

sensors in a waterproof housing).

There are a few important areas where this platform fails to align with our needs.

First, the limited communication range of the TelosB mote is typically much less than 200
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Figure 6.2: Bacon sensor node block diagram. See Appendix A for details.
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meters in a forested area. This necessitates long chains of relay nodes to connect patches

together. This increases the number of points of failure in the network and increases the

number of locations that must be visited during maintenance.

Second, the four-sensor-per-node limit artificially inflates the number of nodes we must

deploy. Ideally, the factor which dictates node placement is communication range: you add

more nodes to the system when you need to extend the connectivity. However, we found

ourselves deploying columns of sensors within centimeters of each other, inflating the setup

cost and maintenance effort at the site.

Next, we found the bookkeeping required for sensor testing, calibration, deployment, and

replacement to be a constant source of headaches and errors. This stemmed from the fact that

the device collecting data had no way of telling how many or which sensors were connected

to it: all it sees are analog voltages.

Finally, this platform is expensive. TelosB-compatible motes currently retail for C85 [2].

Adding an external antenna, waterproof housing, and the supporting hardware more than

doubled the cost for each sensing node. This further aggravates the problems of heavy relay

placement and requiring one node for every four analog sensors.

Our general approach was to design hardware that we could match to the deployment

scales in common use. We want to be able to have a high ratio of analog sensors to commu-

nication/storage nodes, and we want to have a high ratio of sensing nodes to communication-

only nodes. Additionally, we want to drive down the unit cost and energy consumption of the

individual devices to maximize the number that we can deploy while reducing maintenance

efforts.

The high-level design, component-selection, and schematic review were carried out at

JHU, while the layouts and schematics were developed by Pacific Design and Engineering.
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6.2.1 The Bacon mote

In order to address the communication needs of patchy deployments, we replace the TelosB

mote with the Bacon1 mote. Bacon replaces the separate MCU and radio transceiver of the

TelosB mote with a single Texas Instruments CC430 system-on-a-chip (SoC) [65], increases

the capacity of the flash storage chip, and takes pains to reduce idle power consumption and

manufacturing cost.

The CC430 operates on the 900 MHz frequency band, which has a theoretically greater

communication range in outdoor environments than the 2.4GHz CC2420 chip [61] on the

TelosB, largely due to its worse absorption by water. To further improve flexibility, the Bacon

mote can be connected to three different radio front-ends. The most basic option uses a PCB

antenna. By moving a single capacitor in the circuit, this can be replaced with an external

u.fl antenna connector. We also support a “router” node variant that uses the CC1190 power

amplifier/low-noise amplifier [67] and a secondary high-current voltage regulator to add up

to 16 dBm of amplification and 8 dB of receiver gain to the mote (as well as an external

antenna). Table 6.1 summarizes these differences.

By totally powering down the external flash memory, replacing the voltage regulator, and

adding switching hardware to cut power to the on-board light and temperature sensors, we

were able to cut the shutdown power consumption in half relative to the TelosB and reduce

the active power by a full milliwatt (15.6% lower than the TelosB). When compared to the

figures reported in the TelosB datasheet [43], the Bacon Leaf mote consumes 14.5% less

power in TX mode and 16.5% less power in RX mode. These improvements help to offset

the fact that we are operating at a lower radio data rate (125 kbps without forward error

correction, 62.5 kbps with).

The CC430 SoC not only cuts the unit cost over a separate microcontroller and transceiver
1The name “Bacon” was chosen for a few reasons. First, a platform called Egs [34] was previously developed in

our research group, and Bacon goes well with Egs. Second, it’s easy to type “Bacon” (and it gets typed a lot when
developing software). Third, people tend to smile when you talk about bacon in an academic setting, and smiling is
important.
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but it also reduces the total chip footprint. We removed the programming and USB communi-

cation hardware from the mote to further reduce cost and space, as it is only used to program

the mote and not used in the field. This hardware was moved to a separate USB adapter

board, of which we only need a few (for assembly/testing). By reducing the chip count, we

were able to come up with a design that is slightly smaller than the TelosB, but uses a single-

sided 4-layer PCB. This cuts the cost of the raw materials down to roughly 2/3 of the cost of a

TelosB mote.

6.2.2 The Toast analog sensor multiplexer

In order to address the problems of low sensor-to-node ratios and manual metadata collection,

we developed the Toast2 analog sensor board. This puts a microcontroller between the analog

sensors and the main mote. The Toast MCU samples the analog sensors attached to it and

communicates the results to the Bacon MCU digitally (using the I2C standard). These devices

are designed to be connected in a bus of arbitrary length, and each supports up to eight analog

sensors via a set of terminal blocks. This lets us support dense sensor clusters with fewer

multiplexers and far fewer motes than our previous hardware allowed.

The addition of an MCU to the multiplexer also allows us to persistently store informa-

tion about the attached analog sensors. In Section 6.3 we describe the labeling and assembly

process that lets us assign unique type and ID barcodes to each analog sensor, automati-

cally discover and record this information, and combine it with the raw data stream in the

database. Together, this limits the manual data collection at deployment time to the geo-

graphic locations of devices.

For cases where domain scientists require relatively few sensor locations, Dr. Szalay has

designed a reduced-size, reduced-feature Mini-Toast board. This replaces the eight terminal

blocks with a set of three solder pads (for a single analog sensor) and puts a thermistor and
2The name “Toast” was chosen for the same reasons as “Bacon.” Plus, Toast on its own is pretty bland, but when

you add stuff to it, it’s great.
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Figure 6.5: Main components of mote software and their interactions.

supply voltage measurement circuit onto the same board. It does not support daisy chaining.

This board can be fully potted in epoxy to weatherproof it. The same firmware is used to run

this board as the full-size Toast.

6.3 Supporting software

The networking software we’ve previously described doesn’t do us very much good if we don’t

have data to send over it. In this section, we briefly explain the software that runs in the

field, the end-user tools for assembling and configuring equipment, and the data-processing

pipeline.
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6.3.1 Field-deployed Software

The mote software is designed with modularity in mind. It can roughly be broken down

into the configuration storage, data storage, Toast sampling, Bacon sampling, timestamping,

and networking subsystems. Figure 6.5 shows a high-level view of how these components

interact.

Settings storage

A common settings-storage component manages the configurable elements on each mote, in-

cluding its unique identifier, sensor sampling rate, and radio channel assignments. This

component uses the Tag-Length-Value (TLV) format which Texas Instruments uses to store

calibration data and other information in its MCU’s flash memories [64], and exposes a nor-

mal get/set/delete map interface. Essentially, this structure is a checksum followed by a

sequence of (tag (record identifier), length, value) tuples. A special TAG EMPTY tag

indicates an unused section of the storage.

We take a similar implementation approach to that of the core TinyOS MSP430Internal-

Flash for safe persistence. This splits the available storage space into two units, and ensures

that at least one of these units is valid and defines an order between successive modifications.

We accomplish this by adding a “version” tag in the TLV structure and using the previously-

defined TLV checksum. At boot, we check to see whether segment A or segment B has a valid

checksum. If they both do, then we accept the one with the higher version number as the

correct TLV. If this is in segment B, then we copy it to segment A and validate that the copy

was performed successfully. When there is a run-time modification to the TLV storage, it

is fetched from segment A, modified in RAM, checksummed, and written to segment B. The

contents are then validated and copied to segment A if all is well.

The same component provides persistence and loading to the Toast and Bacon MCU’s,

parameterized by the addresses of the two TLV copies and their lengths.
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A separate component sits on top of the load/persist methods this provides and imple-

ments the logic necessary to get, set, and clear TLV entries.

The final element of this system is a component which connects these methods to the net-

working subsystem and the data logging subsystem. This not only enables changing system

settings remotely (e.g. sampling rate), but it also logs settings changes to the external flash

as they occur. These changes get collected along with the sensor data stream, and so they

provide an accurate view of each mote’s configuration throughout the life of a deployment.

Data Storage

The core TinyOS distribution’s LogStorage components were modified to address integrity

and concurrency problems and simplify the logic surrounding reads from the external flash

log.

First, we modified the logic of Stm25PLogP to safely support multiple LogWrite clients

on a single log volume (physical section of the external flash chip’s memory). Having a single

volume for all data (rather than a separate volume for each data source) simplifies the book-

keeping associated with retrieving data and obviates the need to allocate storage space to

different components at design time. This involved maintaining a single shared reference to

the end-of-log address and restructuring several safety-checks to take place at the time that

a client is granted access to the log (rather than at the time that the client requests access to

the log).

Second, we added a 2-byte checksum to each block header. The log is divided into 4096-

byte “blocks,” each of which starts with a 4-byte logical block address and a 2-byte checksum

of this address. These are used to provide the appearance of a full 32-bit address space for log

entries (e.g. to support a log that fills the entire flash and wraps around). The header is used

at boot to find the end of a log (by checking for the block header having the highest validated

address) and is used when seeking to a point in the log (the physical address is calculated for

a given logical address, and the block at that location is checked for a match). We augmented
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Periodically, the Bacon mote enumerates the attached Toast boards. All communication

with the Toast bus is carried out using the I2C standard. Figure 6.6 shows the sequence of

events in the enumeration phase. First, the Bacon powers on the bus. Next, it sends (as

master) a command to request identification to a broadcast address and switches into slave

mode. The connected Toast boards randomly pick a time to respond to the Bacon mote. They

do so by switching into master mode, sending their globally-unique 8-byte ID (stored in their

TLV structure), and reading out a bus-local 7-bit I2C address. The Bacon switches back to

master and repeats the request identification step until no Toast boards respond. If the Bacon

mote has found any new Toast boards (unique ID was not discovered on the last round), the

Bacon mote reads the contents of the Toast TLV storage over the I2C bus, determines which

ADC inputs are in use, and logs the whole structure to its external flash. Likewise, if a

previously-detected Toast board is not enumerated, the Bacon mote records a disconnection

event in its log.

Following the enumeration step, we send a sample-ADC command to the Toast board

(indicating the sequence of channels to be sampled and ADC module settings to be used),

and then read back the response and log it to flash. Samples are recorded as (Toast unique

ID, bacon reboot counter, bacon timestamp, [ADC value]) tuples, where the length varies

depending on the number of analog sensors attached to the Toast board. These records can

be paired with the previously-recorded TLV structure records to view the series of data from

the perspective of individual sensors.

Optionally, we provide a method for recording references between the Bacon’s internal

clock and the Toast’s, which lets us assign timestamps to the individual channel samples with

32KHz resolution. This feature can be disabled to save ROM space (in which case samples

are recorded with millisecond accuracy).

Once all Toast boards have been sampled, we power off the bus again.
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Bacon sampling

Similarly, the Bacon mote samples its on-board sensors periodically and writes the results

to its flash. It switches on each of its on-board sensors in turn, records their voltage, and

then switches them back off. These are recorded as (bacon reboot counter, bacon timestamp,

battery voltage, photodiode voltage, thermistor voltage).

Phoenix timestamp reconstruction

Our previous work [26] illustrated the importance of recording enough information to sup-

port post-mortem timestamping of data. Data is recorded in a mote’s local time frame (reboot

counter and internal time), but needs to be translated to some global time scale to be scien-

tifically meaningful. We leverage the wakeup probes as presented in “Phoenix: an Epidemic

Approach to Timestamp Reconstruction” to accomplish this task: a mote periodically turns its

radio on to listen for wakeup probes, logging their local time state and the transmitter’s local

time state to flash. In post-processing, these sets of references are used to establish mappings

from the global time scale to each mote’s local time scale. Once again, the interval with which

we record these references can be configured through the settings storage component.

Auto-push and data recovery

Finally, we need some method of getting data into the networking stack. This is primarily

accomplished through the AutoPush component, which keeps track of how much data has

been logged to the flash but not yet collected and handles requests for specific data.

Dr. Marcus Chang implemented the core of this logic. The LogStorage component pro-

vides a LogNotify interface to the AutoPush component, which notifies it when the num-

ber of outstanding records reaches some threshold. At this point, the AutoPush component

reads records into a packet until it is full (or until there are no records left outstanding) and

attempts to send it (either to the most-recently-used parent node or to the broadcast address
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if no parent has been found). This packet will be queued as described in 5.2, and then the

LogNotify interface will be informed of the transfer.

This component also uses the standard Receive interface to receive requests for missing

data. These consist of cookie and len parameters, which tell the mote where to start read-

ing data from and how many bytes it should attempt to read. Recovery requests are granted

higher priority than data pushes, and only one can be queued at a time.

The packets which we deliver precisely specify what data they contain to facilitate the

identification of losses. Each packet consists of a sequence of (cookie, length, data) tuples

and a nextCookie field. The nextCookie field indicates the read pointer value after the

last record was read: if the data processing pipeline doesn’t have a record that matches this,

it indicates a gap.

Packet Tunneling

When Router nodes receive log record packets from their patch, they need to queue them for

eventual delivery to the base station. They do this by appending a TUNNELED MESSAGE record

to their logs. This record indicates the packet type and the original sender, and contains the

payload of the received packet.

Routers use the same auto-push logic as leaf nodes, so the TUNNELED MESSAGE records

they record will be subject to the same behavior as described above. The base station can

first attempt to recover missing data from the routers, only making requests to the leaf nodes

after eliminating all gaps from the router’s log.

Implementation notes

In order to fit all of these components into the meager 32K of ROM available on the mote,

we had to use our knowledge of what hardware components were and were not shared (and

what features are not being used) to aggressively cut code space.
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First, we took advantage of the fact that most of the hardware modules on the CC430 were

only in use by one component, and so did not need to be protected with resource arbiters.

The CC430 has two universal serial communication interface (USCI) modules, so we were

able to assign one of them to the SPI bus (flash) and one to the I2C bus (Toast). Likewise,

there is only one user of the RF1A radio module. We implemented an extremely light weight

DummyArbiterC component which provides the same interfaces and semantics that a real

arbiter provides while consuming a fraction of the code space.

Second, we use low-level access to the CC430 ADC module rather than the TinyOS ADC

reader abstraction to sample the on-board sensors. In addition to avoiding unnecessary ar-

biters, this saves a great deal of ROM by ensuring that only the necessary code paths are

included. The TinyOS ADC driver uses the values of configuration structs to determine in

which mode to operate. This approach resists the static analysis of the nesC compiler, so it

includes all possible code paths in the binary.

Third, we allowed for static versions of most of the configurable components. These were

mainly used in development, though we use an auto-push component with fixed thresholds

for initiating a transfer in the field (as a well-chosen download interval will almost always

lead to all nodes requiring a transfer).

Finally, we were able to simplify much of the log storage logic by having a single flash

volume. This streamlines the calculation of physical log addresses from logical addresses at

many points in the code.

6.3.2 End-user tools

All of the effort which went into developing the hardware and software we’ve presented so far

would be wasted if it could only be used by a computer scientist. To that end, we’ve invested

considerable time into developing tools that allow non-specialists to deploy their own sensor

networks.
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In order to deploy a WSN, one must configure hardware, record sensor metadata, and

periodically download the collected measurements. To this end, we’ve developed a Labeler

utility to barcode and initialize hardware and a deployment Dashboard to interact with the

network once it is deployed.

Dr. Marcus Chang developed the Python front ends for these utilities, while I imple-

mented the Labeler mote firmware, the PC-side download logic for the Dashboard, and reha-

bilitated the defunct Python TinyOS serial stack (used by the Labeler and Dashboard).

Labeler

The goals of the Labeler utility are to make it easy for users to assign globally-unique bar-

codes to all hardware, record associations between analog sensors and Toast boards, test

analog sensors, and install Bacon firmware.

Figure 6.7 shows an annotated screenshot from the Labeler utility.

The procedure for assigning barcodes and associating sensors to Toast boards is fairly

straightforward. The user connects a Bacon mote (via USB adapter) to the PC, selects the

relevant USB device from the dropdown, and programs it as a “Labeler.” They then connect

a Toast board to the Bacon mote via USB cable. They click “reload” in the Toast panel, then

scan the barcodes for each piece of hardware, field by field. Once they’ve recorded the Toast

board’s unique ID and the ID’s of each connected sensor, they click on “Save” and this data

is written to the Toast board’s flash. If they wish, at this point they can click the “Start

Sampling” button, which will show the user a graphic representation of the voltage on each

analog input channel as well as summary statistics for each channel.

Bacon motes are initialized by connecting them to the PC, programming them as “La-

beler,” and then scanning their barcode. The barcode is persisted to their internal flash. The

user can either leave them configured as labelers, or click on the relevant button to program

them as sensor nodes, routers, or base stations.

Each of these operations is recorded in a local SQLite database [48]. In general, we expect
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(a) (1) selects the physical device, (2) and (3) connect and disconnect from the attached Bacon. (4) Dumps
the local record of labeled devices to a .csv file. (5) through (8) install firmware on the attached Bacon. (9)
shows the progress of a currently-running task.

(b) (10) and (11) display/edit the Bacon and Toast barcodes. (12) displays/edits the analog sensor types and
barcodes. Clicking (13) causes the Toast board to start reading its analog sensors, the results are shown in
text above and graphically to the left in (14). (15) Shows the factory calibration settings of the Toast MCU.

Figure 6.7: Labeler utility user interface.
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Figure 6.8: Dashboard user interface. (1) Selects the network segment to download from. (2)
Indicates whether missing data should be recovered as well as newly-collected data. Column
(3) shows the routers detected in the network, and the leaf nodes in each patch are shown
in column (4). Column (5) shows the detected Toast boards for each Bacon, and clicking on
these entries shows the details of the analog sensors in area (6).

that sensors will be permanently attached to their respective Toast boards. In this case, all

the metadata required for sample processing (channel assignments, factory ADC calibration

results) can be obtained through the same data stream as the sensor measurements. How-

ever, in the event that the history of an analog sensor’s associations needs to be tracked, this

information can be obtained from the labeler database or dumped to a CSV file.

Dashboard

Many of our deployments have taken place in areas with no permanent power or Internet

connectivity. In these deployments, we rely on periodic visits from researchers to download

outstanding data from the network. The “Dashboard” application provides users with an easy

tool for this task. Figure 6.8 shows an annotated screenshot of the parts of this application.

The main panel shows the network hierarchy as of the last download: the leftmost column

shows the discovered routers, the nodes in each patch show up to the right of their router,
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and the Toast boards attached to each node show up to the right of their node. Selecting a

node shows a detailed list of its attached sensors and its sensor sampling rate.

In order to perform a download, the user selects the network segment which they wish

to contact (typically a specific subnetwork for single-patch deployments and the routers for

multi-tiered deployments). They then click on the “Download” button. This opens a second

window which shows the running status of the download, followed by a summary of the

download results. When the download completes, this will inform the user of the last contact

time and last sample time from each node in the field, as well as its most recent battery

voltage measurement. Checking the “Repair” box will cause the base station to attempt to

recover missing data as well as any outstanding data.

Immediately following a download, the collected data is dumped into locally-generated

text files.

6.3.3 Data Pipeline

What we have presented so far gets us as far as transferring the contents of the motes’ flash

logs to the base station mote (potentially tunneled through a router). We need to go through

a few more steps before we have data that a domain scientist can actually use.

The general flow of data from the motes to a usable form is depicted in Figures 6.9 and

6.10. At a high level, nodes send the contents of their logs to the base station (potentially

passing through a router on the way). These packets are stored in a SQLite database in their

raw form, and then broken down into their constituent log records. Each of these log records

is then parsed according to its record type, and the results are loaded into the corresponding

database tables. SQL and Python scripts are then used to dump these contents into a set of

text files which can be used by domain scientists.

By maintaining a local SQLite database (schema shown in Figure 6.11), we gain consid-

erable flexibility in how we can store and operate on the data. We store a canonical record of
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Figure 6.9: Data flow from Leaf node sample to packets received at download script.
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Figure 6.11: Local SQLite DB schema.

the actual raw packets received from the network and a fully-normalized representation of

the data they contain. We use the normalized representation to generate whatever output is

useful for a given purpose: either a flattened view (appropriate for visual inspection or pro-

cessing in a tool such as Excel or Matlab [25]), or a translation to some structure suitable for

ingest into another database. We track sufficient information to integrate with the existing

Life Under Your Feet Staging and Science databases.

The transfer from node flash to the base station mote was described in 6.3.1. As packets

are received at the base station mote’s radio, they are forwarded over its UART through the
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USB adapter and to the download script running behind the Dashboard. Packets received

here are written in their entirety to the local database, and then dispatched to one or more

“listeners” based on the packet’s Active Message (AM) id. We assign listeners to handle log

record data packets (RecordListener), the Status messages received at the master during

the download (see 5.1.2), and printf messages (used for monitoring download progress).

The RecordListener logs the record start addresses, lengths, and succeeding record

start addresses for every record in the packet. It iterates over each record contained in

the packet, reads its record type (the first byte of the record) and hands the record data

off to its corresponding Decoder (e.g. BaconSampleDecoder, ToastConnectionDecoder,
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PhoenixReferenceDecoder). This framework makes it easy to add new types of log records

to the system.

In this design, tunneled data records are received in Log Record data packets from the

router. These are handled by the RecordListener as above, and the tunneled message

decoder simply instantiates a copy of the originally-received packet and re-inserts it into the

stream of incoming data packets from the network. We note that this scheme allows for

arbitrarily deep network hierarchies, though we only explicitly support a single router tier.

In order to generate human-readable .csv files, we implement an extremely stripped-down

version of the Phoenix timestamp reconstruction algorithm [26]. We only use direct global

time references (obtained from the Status messages) to generate the mapping from local

timestamps to global (UNIX) timestamps. For cases where only a single reference is available,

we assume that there is zero clock skew.

Sample records are denormalized (joining them to their associated sensor, Toast and Ba-

con ID’s) and these approximate clock fits are applied to convert their local timestamps to

global timestamps. After discussion with our collaborators in Earth and Planetary Science,

we have decided on a single file for onboard sensor samples (with columns: Barcode ID, date,

time, light voltage, temperature voltage, battery voltage) and a separate file for each type

of sensor (with columns: sensor barcode ID, toast barcode ID, toast input channel, bacon

barcode ID, date, time, voltage).

6.4 Preliminary deployment experiences

In this section, we will relate the qualitative experiences of the deployment maintainers

from assembly to field visits. We rely on the more detailed observations from our testbed to

characterize the technical performance of our system (radio usage, packet reception rates,

etc). Due to code space limitations, we were not able to fit the necessary instrumentation

for these measurements and the rest of the required software on the mote. Our goal in this

section is to evaluate how well the hardware and supporting systems meet the needs of field
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researchers.

These observations are drawn from a conversation with Michael Bernard, an Assistant

Research Scholar with the Earth and Planetary Sciences department. Mr. Bernard’s duties

span the full duration of a sensor deployment, including hardware assembly and testing,

determining sensor layouts, and visiting deployments to collect data.

We can be heartened to note that, at a high level, the Breakfast suite of hardware and

software is “Certainly better than the previous system, where we called you every time we

needed to do something. This at least gives us the chance to be independent.”

6.4.1 Preparing for Deployment

With our previous platform, Mr. Bernard’s pre-deployment responsibilities involved building

sensor assemblies, testing sensors, and sealing node enclosures. Every time that a new batch

of hardware was needed, he “needed a refresher” on the test process.

In terms of hardware assembly, Mr. Bernard said that the new hardware is much easier

to package. With its PCB antenna, the node and battery can be placed in a plastic tube, with

a single small opening at the bottom for connection to a Toast bus. This is “not even close”

to the old enclosures, which required drilling holes in a plastic box, connecting waterproof

gaskets to them, and applying silicone sealant to each connection.

On the other hand, it is somewhat time-consuming to attach analog sensors to the ter-

minal blocks on the Toast board. Mr. Bernard found it necessary to tin the wires before

connecting them, and even then it was sometimes be a struggle to get the wires properly

seated.

That being said, Mr. Bernard was able to use the Labeler utility to quickly validate that

connections were good and sensor measurements were consistent. He was “pleasantly sur-

prised” by how few bad connections he saw with the terminal blocks. Furthermore, he appre-

ciated being able to see the test results as he assembled hardware: this allowed him to find
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and fix problems as he went along. This is in contrast to the previous workflow, where sensor

assemblies would be tested in batches after they were put together. Having to switch context

from assembly to testing to repair was a cumbersome and awkward workflow.

6.4.2 Experiment Design

One of our main goals with this platform is to match the hardware platform to the deployment

needs of environmental scientists. We want to avoid situations where “the tail wags the dog,”

and researchers have to design their experiments around the limitations of the hardware.

Mr. Bernard’s advisor, Dr. Szlavecz, had need of a small-scale experiment at SERC, and

he has managed the details of this deployment from assembly to download. The experiment

consists of four rainfall shelters, each served by four Bacon nodes and four Toast boards (for

a total of 128 instrumented locations). The shelters are grouped in two sites. No routers

are deployed, field researchers visit each site separately. This deployment was started on

September 21, 2013.

In Mr. Bernard’s words,

The research goals of the experiment are to simulate soil moisture conditions un-

der future changes in rainfall patterns predicted by climate change models and

to test how differences in rain volume and intensity might affect carbon storage

within forest soils. Using shelters covered with clear polycarbonate panels and

rain barrels to collect rain, the researchers are able to distribute water so that

one treatment (“dry conditions”) receives 0.5 x natural input and the other (“wet

conditions”) receives at least 1.5 x natural input (additional water amendments

are used on occasion). Soil moisture sensors are helpful because they allow us to

continuously monitor conditions and correlate them with various environmental

measures, such as soil respiration (the rate of carbon dioxide efflux from the soil).

The experiment requires a dense, uniform grid of soil moisture sensors at a single depth.
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Mr. Bernard knew, based on the data needs, that he would be populating all eight channels

of each Toast board.

Mr. Bernard found that the main limitation in deploying the sensors was the cable length

of the individual moisture probes. Since the Toast board is still anchored in one location,

it was sometimes difficult to pick locations that let them put all the sensors where they

wanted them. That being said, he noted that there’s always tradeoff with cable length, where

short cables are easier to manage and transport, but long cables give you better placement

flexibility.

Mr. Bernard said that cable lengths would be less of a hassle if there was a single analog

sensor for each Bacon node. This is a fair point, though we maintain that obtaining additional

batteries and assembling additional enclosures might prove to be more trouble than the ca-

bles in practice. For experiments where one sensor per Bacon is the best pattern, researchers

have the option of partially populating the Toast board or using Mini-Toasts.

6.4.3 Site Visits

Mr. Bernard has been able to visit the site four times, including the initial deployment,

between 09/21/13 and 11/1/13.

In terms of hardware, he noted that it is much easier to access everything, and it is

possible to do real work in the field. With our previous platform, the only maintenance

that was feasible was replacing nodes having failed batteries or leaky enclosures with pre-

programmed, pre-assembled nodes. Mr. Bernard was able to use the Labeler utility to per-

form a firmware update in the field without assistance from us, for instance. He was also able

to place nodes on one day, and then return to attach Toast boards on a separate occasion.

In comparison to what he saw at our previous campaign deployment in Ecuador, he had

a few comments. He noted that downloads still seem to take a long time. However, he also

said that it was not a very big deal to him, since there is normally plenty of other work that
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needs to be done, and he can start the download and walk away. While he had not used our

previous download utility in Ecuador (a command line tool which a different researcher was

responsible for using), he did like that the download process informed him of which nodes

it was contacting. He would have liked to see a progress bar or some other indicator of how

much time remained in the download. This is not something that we have immediate plans

for, but it would be possible to add a “bytes remaining” field to each of the log record data

packets to give some more insight into the download progress.

Mr. Bernard appreciated the better communication range afforded by the 900 MHz radios

and 10 dBm output power. He described it as “very nice!” and liked being able to stay in the

van at the side of the road rather than carrying out a laptop to the site itself. The estimated

distance from the road to the site is 50-70 meters.

6.4.4 General Observations

If we are trying to develop something that can be handed off as a package to researchers,

they need to be confident that it is working as expected. To this end, I asked Mr. Bernard to

describe how confident he was in the system.

Mr. Bernard said that the metadata which he had looked at was all consistent with the

ground truth, so he is confident that the sensors are being identified and associated with

Bacon motes correctly.

In terms of the sensor data, he said that he “believed that the data was there, but it’s not

in a format I can read yet. I’m not worried about this step, though.” That is to say, the local

.csv files indicate that data is being collected as it should be, but the presentation as voltage

measurements and lack of spatial information make that dataset incomplete. This is a fair

point, and it would be helpful to include data conversion for at least a few common sensor

types in the local data-processing steps.

In his ideal system, he would like a better way to record sensor locations. He said that
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this process (done with a clipboard and pen) is always painful: you need two people to do it

effectively, it takes a while, and “things always go wrong.”

Furthermore, he said that when working with the Breakfast suite, he would typically put

it down for a week, and then forget about some of the details (what connects where, mainly).

While the Breakfast suite is not perfect, we have made great strides in usability from our

previous platform. Improving documentation, labeling, and user feedback would go a long

way toward improving the end-user experience.
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Conclusion

Wireless sensor networks have long promised to enable explosive growth across a range of

field sciences. In this work, we have explored how the domain-specific requirements of Long-

Term Environmental Monitoring shape a unified approach to low power wireless networking.

In this thesis, we designed protocols and hardware with this application in mind. Rather

than constraining our imaginations, this application has inspired us.

We didn’t rue the need for medium access in dense environments, we delighted in the nov-

elty of the challenge and developed Flip-MAC to excel in these situations. We didn’t despair

(very much) that unreliable hardware and links lead to routing failures, we built CX, which

works without routing. We didn’t just acknowledge the need for spatially heterogeneous sen-

sor deployments, we took advantage of it by segmenting our networks and building hardware

that concentrates energy costs in this setting. We faced the tedious and error-prone processes

in real deployments by automating and simplifying them.

We hope that our system designs can not only enable domain scientists to perform previously-

impractical research, but can also help other WSN researchers build more useful tools. We

see a bright future in multi-transmitter networking, and hope that interesting research con-

tinues to develop in this field.
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Appendix A

Bacon and Toast Schematics

While we came up with the high-level design, selected the components and provided their

associated reference designs, the Bacon and Toast schematics were created by Pacific Design

and Engineering. Dr. Alex Szalay designed the Mini-Toast schematic.

The Bacon Sensor Node schematic is divided into the base components and the modular

RF front-end (for supporting an additional power amplifier and high-current voltage regula-

tor).
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