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Abstract

The rise of next-generation sequencing has produced an abundance of data with

almost limitless analysis applications. As sequencing technology decreases in cost and

increases in throughput, the amount of available data is quickly outpacing improve-

ments in processor speed. Analysis methods must also increase in scale to remain

computationally tractable. At the same time, larger datasets and the availability of

population-wide data offer a broader context with which to improve accuracy.

This thesis presents three tools that improve the scalability of sequencing data

storage and analysis. First, a lossy compression method for RNA-seq alignments

offers extreme size reduction without compromising downstream accuracy of isoform

assembly and quantitation. Second, I describe a graph genome analysis tool that

filters population variants for optimal aligner performance. Finally, I offer several

methods for improving CNV segmentation accuracy, including borrowing strength

across samples to overcome the limitations of low coverage. These methods compose

a practical toolkit for improving the computational power of genomic analysis.
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Chapter 1

Motivation

1.1 The Rise of Sequencing Technologies

and Data

Genomic sequencing has made great strides since its painstaking and expensive

beginning in the 1970s. The completion of the Human Genome Project [1, 2] marked a

major milestone, but it was not until several years later that the first high-throughput

sequencing platform ushered in the era of next-generation sequencing. The subsequent

explosion in sequencing techniques includes both short and long-read, paired-end and

unpaired technologies, and its applications extend to sequencing messenger RNA

(RNA-seq), mapping DNA methylation, and measuring transcription factor binding

(ChIP-seq) [3]. The recent advent of single-cell sequencing allows the study of varia-
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CHAPTER 1. MOTIVATION

tion within systems at a cellular level.

In tandem with the rise of sequencing technologies, the amount of sequencing

data has also exploded at an exponential rate and shows no sign of slowing [4].

Large-scale efforts such as HapMap [5], the 1000 Genomes Project [6] and UK10K

[7] have genotyped thousands of human genomes. Non-human data also is increasing

at a rapid pace; similar large-scale efforts exists for many plant strains, such as the

1001 Genomes Project for Arabidopsis thaliana, and for metagenomics, such as the

Earth Microbiome Project. In this thesis I focus primarily on human sequencing data,

though the methods extend easily to other genomes.

The traditional pipeline for processing sequencing data (both DNA and RNA)

involves first aligning reads. If a reference genome exists, alignment tools like Bowtie

[8] or BWA [9] provide the foundation for all downstream analysis. These tools use

a precomputed index to place seeds on the reference genome and then find the exact

start position and gapped alignment with dynamic programming. Aligned reads

are generally stored in Sequence Alignment/Map (SAM/BAM) files [10], a format

which stores all relevant read information including location, CIGAR string, mate

information, sequence, and quality string. This alignment file is the input for a host

of downstream analysis tools.

The “alignment against a linear reference” pipeline, both versatile and simple, has

long been the de facto method for processing sequencing data. However, the recent

increase in sequencing data has triggered the design of alternative methods for each

2



CHAPTER 1. MOTIVATION

stage in this pipeline. Among the most significant, pseudoalignment methods replace

the rigor of exact alignment with approximate mapping. The graph genome is an

extension of the linear reference genome to the pan-genome to eliminate sources of

bias and inaccuracy in mapping.

Pseudoalignment Methods

Pseudoalignment methods originate from the observation that exact alignments

are not necessary for many downstream analyses. These tools sacrifice exact align-

ment position and gap information to skip the costly exact mapping step and large

alignment output files. Sailfish [11] and kallisto [12] both utilize pseudoalignment to

provide quantitation estimates in a fraction of the traditional alignment time. Simi-

larly, Salmon [13] does not compute gapped alignments but is not strictly pseudoalign-

ment since it tracks read position and orientation. The benefits of pseudoalignment

are two-fold; first, alignment is significantly faster, and second, large alignment files

are not produced. I focus here on the elimination of traditional alignment files.

A drawback of SAM/BAM, and of any format that stores data on a per-read

basis, is that file size grows close to linearly with the number of reads. As sequencing

continues to improve, and as public archives fill with more datasets, the burden of

storing aligned sequencing data also increases rapidly. The Sequence Read Archive

[14], which stores raw sequencing reads, grew from 4 to almost 20 petabases from

August of 2015 to August of 2018. It is increasingly common for RNA-seq studies to

3



CHAPTER 1. MOTIVATION

span hundreds or thousands of samples, with tens of millions of reads per sample [15,

16].

In Chapter 2 I present a novel compression method for SAM/BAM data based

on the principles of pseudoalignment. This compression method, implemented in

Boiler [17], discards precise read alignment information and instead converts them

to easily-compressible coverage vectors with a few accompanying empirical distribu-

tions. Boiler compresses alignment datasets to roughly the same size as their BigWig

counterparts but like pseudoalignment methods preserves relevant information for

accurate downstream isoform assembly and quantitation.

Graph Genome

A second limitation of traditional alignment tools like Bowtie and BWA is that

they rely on a linear reference genome representing a single individual (although

it may be composed of many disjoint contigs from different individuals.) As high-

throughput technologies have brought an explosion of population genetics informa-

tion, the question is emerging: how can we use population genetics information to

improve accuracy of genomic analyses? This has fueled interest in techniques that

depart from a linear string as point of reference for all individuals, and toward pan-

genome representations [18, 19] more inclusive of genetic variation.

While methods for including variants in the reference are growing in number [20,

21, 22, 23, 24, 25, 26], there is little or no work on how to choose which variants

4



CHAPTER 1. MOTIVATION

to include. The set of variants must be filtered for two reasons; first, current graph

genome alignment methods are often unable to index a graph containing all known

variants; for example, HISAT2 exceeds 1TB of memory when building a human ge-

nomic index containing even 10% of 1000 Genomes variants. Secondly, many variants

introduce additional ambiguity when added to the graph, asserting a negative force

on alignment accuracy. These considerations, which will continue to be exacerbated

by increasing amounts of data, necessitate some level of filtering on graph variants.

Past studies have made such decisions in ad hoc ways, with some filtering according

to allele frequency [27, 22], ethnicity [21], or both [23].

In Chapter 3, I examine the advantages and disadvantages of adding variants

to the reference. I show that the disadvantages are important to measure, since

simply adding more variation to the reference eventually reduces alignment accuracy.

I suggest efficient models for scoring variants according to the effect on accuracy

and “blowup” (computational overhead), and further show that these scores can be

used to achieve a balance of accuracy and overhead superior to current approaches.

For example, extrapolating to a whole-human DNA sequencing experiment at 40-

fold average coverage, I estimate that a well-engineered augmented reference can

yield about 4.8M more correctly aligned reads and 1.2M fewer incorrectly aligned

compared to the linear reference. The methods for selecting variants also reduce

reference bias, a chief goal of graph genomes. Finally, I compare the accuracy yielded

by my methods to that achieved using an ideal personalized graph genome. I show

5
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that these methods approach the ideal much more closely than both linear genomes –

even when they are modified to contain only major alleles – and graph genomes built

on different sets of variants.

These methods are implemented in a new open source software tool called FORGe

[28]. I demonstrate FORGe in conjunction with the HISAT2 [26] graph aligner and

with another aligner based on the Enhanced Reference Genome [21]. But FORGe’s

models and methods are suitable for any aligner that can include variants in the

reference.

Processing large-scale single-cell data

Single-cell sequencing [29] is emerging as a critical technology for understanding

the biology of cancer [30], neurons [31], and other complex systems [32]. Studying

genomic variation at the single-cell level allows investigators to unravel the genetic

heterogeneity within a sample and enables the phylogenetic reconstruction of sub-

populations beyond what is possible with standard bulk sequencing, which averages

signals over millions of cells. To date, many thousands of individual human cells

have been profiled to map the subclonal populations within cancerous tumors [33,

34], and circulating tumor cells [35], discover mosaic copy number variations in neu-

rons [31], and identify recombination events within gametes [36], among many other

applications.

One of the most significant applications of single-cell sequencing is to identify
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large-scale (>10kb) copy-number variations (CNVs) [31, 33]. These events can rad-

ically alter cell biology and are important in neurodegenerative and developmental

disorders among many other conditions. Within heterogeneous samples, CNVs form

a genetic fingerprint from which the phylogenetic history of a sample may be in-

ferred [37]. For example, within cancer biology, this technique has been used to

study the widespread heterogeneity within tumors and has led to greater under-

standing of tumor development and metastasis [33, 34]. CNVs are also the most

readily accessible variants to analyze by single-cell sequencing [38]. Whole-genome

amplification (WGA) techniques are needed to prepare the DNA within a single cell

for high-throughput sequencing. Despite dramatic improvements since their intro-

duction, WGA protocols inevitably have variable amplification efficiency across the

genome and even total loss of coverage in certain regions [38]. This makes detect-

ing single-nucleotide mutations and other small mutations unreliable, although large

copy-number variations (>10kbp) are robustly detected through statistical analysis

of changes in read depth across the genome.

Given the insight derived from single-cell sequencing, many researchers are now

interested in applying the technology to diverse cell types and species. However,

the downstream analysis is complex, requiring a multistage pipeline to identify copy

number variants from low coverage single cell sequencing data. Addressing this crit-

ical need, R. Aboukhalil et al. previously introduced Ginkgo [39], an open-source

web platform for the interactive analysis and quality assessment of single-cell copy-
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number alterations. Ginkgo fully automates the process of binning, normalizing, and

segmenting mapped reads to infer copy number profiles of individual cells, as well as

constructing phylogenetic trees of how those cells are related. Ginkgo was validated

by reproducing the results of five major single-cell studies, and also by examining

the data characteristics of three commonly used single-cell amplification techniques:

MDA, MALBAC, and DOP-PCR/WGA4 through comparative analysis of 9 different

single-cell datasets.

In chapter 4 I present a set of user interface and accuracy improvements to Ginkgo

in light of the increasing scale of single-cell sequencing experiments and soon to be

released in Ginkgo 2. These improvements include a novel binning technique to avoid

unmappable regions more robustly, a bin refinement step to localize copy number

changes more accurately, and a re-segmentation step that borrows strength from

replicate cells such as multiple cells sampled from the same clone within a tumor.

Overall, this work aims to provide tools for a future where personalized genomic

sequencing is commonplace; where sequencing is not only targeted to specific systems

and cells, but results can be analyzed in the context of comprehensive population

data. The methods presented here help to establish the next step in effective and

accurate analysis.

8



Chapter 2

Radically Lossy compression of

RNA-seq alignments with Boiler

In this chapter, I present a novel lossy compression method for alignment data

examine its effect on downstream isoform assembly and quantitation. I implemented

this method in Boiler, originally published in 2016 [17].

2.1 Introduction: Compression Methods

for Alignment Data

Compressed formats for SAM/BAM files eliminate redundant data across reads

or alignments, decreasing file size and allowing size to grow sub-linearly (rather than

linearly) with the number of reads. CRAM [40], NGC [41], Goby [42] and REFEREE
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CHAPTER 2. BOILER

[43] use reference-based compression, which was proposed earlier [44, 45], to replace

a read sequence with a concise description of how it differs from a substring of the

reference. Quip [46] uses arithmetic coding together with a sequence model trained on-

the-fly to compress losslessly and without a reference. Goby uses a range of strategies,

including column-wise compression and detailed modeling of relationships between

columns. REFEREE uses separable streams and clustering of quality strings. In

these formats, the alignments and the fields are largely preserved, but are compressed

along with neighbors row-wise (together with the other fields of the same alignment),

or column-wise (with other instances of the field across alignments).

These studies also explore lossy compression schemes, in which data not used

in certain analyses, such as read names and quality strings, is selectively discarded.

Many tools optionally discard read names and quality values, and REFEREE clusters

quality strings and replaces each with a single representative from its cluster.

Boiler takes a radically lossy approach to compressing RNA-seq alignments, yield-

ing very small compressed outputs. Inspired by the notion of transform coding, Boiler

converts alignment data from the “alignment domain,” where location, shape and

pairing information are stored for every alignment, to the “coverage domain,” where

the coverage vector is stored and alignment information is inferred where needed.

Boiler keeps only a set of coverage vectors and a few empirical distributions that

partially preserve fields such as POS (offset into chromosome) TLEN (genomic outer

distance), XS:i (strand) and NH:i (number of hits). Consequently, Boiler is lossy in

10
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an unusual sense: compressing and decompressing might cause alignments to shift

along the genome, change shape, or become matched with the wrong mate. Table 2.1

presents a comparison of how CRAM, Goby, and Boiler preserve read information.

Boiler should not be considered a general-purpose alignment compression tool.

Because it discards quality values and non-reference alleles, its output is not appro-

priate for downstream tools requiring such data, such as variant callers and tools

for allele-specific expression. However, Boiler preserves the data most relevant to

popular downstream RNA-seq tools for quantification, assembly and differential ex-

pression. We show that popular isoform-level tools – Cufflinks [47] and StringTie [48]

– yield near-identical results for isoform assembly and quantification when the input

is Boiler-compressed.

Boiler yields extremely small file sizes, more than 3-fold smaller than files pro-

duced by CRAM and Goby for paired-end samples with at least 10M paired-end

reads. Unlike other compression tools, Boiler’s compression ratio improves substan-

tially as input file size grows, growing from about 10-fold for lower-coverage unpaired

samples to over 50-fold for higher-coverage samples. Speed and memory footprint are

comparable to other compression tools despite the fact that, as we show, recovering

alignments from a coverage vector is computationally hard. Also, because nucleotide

data is removed, Boiler-compressed data is effectively de-identified, making it easier

to pass between parties securely.

Boiler also provides a range of speedy queries. Many compression tools provide a
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way for the user to extract alignments spanning a particular genomic interval from

the compressed file. REFEREE goes a step further by enabling faster queries when

the user is concerned with only a subset of the fields. Boiler goes further still by

providing fast queries that are directly relevant to downstream uses of RNA-seq data.

Boiler allows the user and downstream tools to (a) iterate over “bundles” of align-

ments according to inferred gene boundaries, (b) extract the coverage vector across

a genomic interval, and (c) extract alignments overlapping a genomic interval.

2.2 Methods

2.2.1 Compression

Boiler implements a lossy compression scheme that preserves only the data needed

by downstream isoform assembly tools such as Cufflinks and StringTie. For this

reason, read names and quality strings are discarded, along with other data that has

little or no bearing on downstream RNA-seq analysis.

Given a set of alignments to a reference genome, Boiler first partitions the align-

ments into “bundles” of overlapping reads. Bundles are computed in the same manner

as Cufflinks’ initial bundling step: As sorted reads are processed, if the current read

starts within 50 bases of the end of the current bundle, the read is added to the

bundle. Otherwise, the current bundle is compressed and a new bundle is initialized

beginning with the current read.

12



CHAPTER 2. BOILER

Boiler converts each bundle into a set of coverage vectors and tallies of observed

read lengths. For most Illumina sequencing datasets, reads are uniform-length (or

nearly so, e.g. after trimming), yielding a concise tally. If any alignments in the

bundle are paired-end, Boiler also stores a tally of observed genomic outer distances

as reported by the aligner in the TLEN SAM field. Note that TLEN includes the

lengths of all the introns spanned by the alignment, so we refer to this as “genomic

outer distance,” rather than “fragment length.” The coverage vector is compressed

using run-length encoding, storing each run of the same coverage value as the value

and length of the run. Run-length is particularly efficient in low-coverage regions.

Each bundle is compressed as follows:

1. Boiler scans the bundle’s alignments to find splice sites spanned by at least one

alignment. Boiler divides the portion of the genome spanned by the bundle into

“partitions” formed by cutting at every splice site (Figure 2.1a).

2. Boiler assigns each alignment to a bucket according to: (a) the subset of par-

titions spanned by the alignment, (b) the value in the alignment’s NH:i field,

indicating the number of distinct locations where the read aligned to the ref-

erence, and (c) the value in the XS:A field, indicating whether spanned splice

motifs are consistent with the sense (+) or anti-sense (-) strand of the gene.

Alignments not spanning a junction usually lack the XS:A field; Boiler treats

these as though the XS:A field contains a “dummy” value indicating the strand

is unknown.
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3. For each bucket, Boiler computes the coverage vector from the alignments as-

signed to it. Boiler writes the run-length encoded coverage vector (Figure 2.1b)

followed by the read and genomic outer distance distributions (Figure 2.1c) for

the junction.

Each bundle, which consists of many buckets, is compressed independently us-

ing the DEFLATE algorithm as implemented in the zlib package from the Python

Standard Library. Each bundle is compressed separately to make targeted queries

efficient, as discussed in the “Queries” section.

Some RNA-seq alignment tools (including HISAT [49]) output SAM records for

reads or ends that fail to align, whereas others (including TopHat 2 [50]) do not.

Boiler deals only with aligned reads. SAM records for unaligned reads are ignored,

and those reads are not represented in a compressed Boiler file. Additionally, if one

end of a paired-end read is “orphaned” – i.e. its opposite end fails to align – Boiler

will convert the orphan to an unpaired read. The paired nature of orphaned reads is

lost during Boiler compression.

2.2.2 Unbundled alignments

Prior to compression, Boiler must identify and handle paired-end alignments that

span bundles in unexpected ways. We call these unbundled alignments. Unbundled

alignments fall into four categories: (a) one end falls within an intron spanned by the

other end, (b) the two ends align to different chromosomes, (c) the two ends align to
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the same chromosome but very far from each other, (d) one end is assigned to the

sense strand, while its mate is assigned to the anti-sense strand. Both TopHat and

HISAT report such alignments, though they constitute only a small fraction of the

alignments in a typical dataset.

These alignments are hard to fit into the bundling scheme described previously.

Reads in category (a) are biologically implausible. Boiler treats them as unpaired

reads by default, however the user may choose to preserve these pairings.

Categories (b) and (c) could be scientifically relevant and should be preserved. For

instance, alignments in category (b) may be evidence of gene fusions. Boiler stores

all alignments in categories (b) and (c) in a special “unbundled alignments” section

of the compressed file. Unbundled alignments are stored in bundle-spanning buckets.

A bundle-spanning bucket is identical to a normal bucket, but includes the indices

of the two bundles it spans in addition to the list of partitions spanned from each

bundle. The bundle-spanning buckets are stored as a contiguous list, compressed in

small chunks using zlib, and indexed to reduce work for targeted queries.

Treatment of pairs in category (d) is configurable by the user. By default, they re-

main paired and one end, selected at random, is modified to match the other’s strand.

Optionally (using --split-discordant), such pairs can be treated as unpaired reads,

which is consistent with how they are treated by Cufflinks and StringTie.
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2.2.3 Multi-mapping reads

RNA-seq reads may align equally well to many genomic locations. Such reads

are called “multi mappers.” Because downstream tools might treat multi mappers

differently from uniquely mapped reads, at least some multi-mapping information

must be preserved by Boiler.

For a multi-mapping read, Boiler preserves each alignment along with its NH:i ex-

tra field. However, Boiler also discards read names. This can have an adverse impact

on downstream tools that rely on read names to establish the one-to-many relation-

ship between reads and their alignments. For example, Boiler does not distinguish

between primary and secondary alignments, so algorithms that assign special weight

to primary alignments will suffer from compression. Our fidelity experiments show

that discarding read names does not substantially impact the accuracy of downstream

tools for isoform assembly and quantification. However, it does have an adverse ef-

fect on quantification accuracy when Cufflinks is asked to quantify from a given gene

annotation (-G mode). StringTie’s accuracy when quantifying from a given gene

annotation (-G -e mode) is not substantially affected.

Boiler might reduce the adverse effects of discarding read names by splitting pri-

mary and secondary alignments into separate buckets, at the cost of worse compres-

sion ratios. Though promising, we do not explore this option in this manuscript.
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SAM Feature CRAM Goby Boiler
Default Config. Default Config.

Read Name Yes1 No No Yes No
Flags Yes No Yes No No
Mapping Quality Yes No Yes No No
Read Sequence Yes No Yes No No
Quality Scores No Yes Yes2 Yes No
Tags No Yes MD Yes3 XS, NH

Table 2.1: Comparison of the SAM fields stored by different compression tools.
CRAM and Goby can preserve some fields through configurable options, summa-
rized in the “Config” columns.
1CRAMtools documentation claims that by default read names should not be pre-
served, however we were not able to replicate this functionality.
2For mismatches only
3Goby preserves either all tags or just the MD tag.
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Figure 2.1: Illustration of how Boiler compresses alignments in a bundle, for a dataset
with unpaired reads. (a) The genome is divided into “partitions” (colored segments)
based on the processed splice sites. A bucket is defined by the subset of partitions
spanned (as well as the values of the NH:i and XS:A fields, though these are omitted
from the figure for simplicity). Each bucket stores (b) the coverage vector for the
partitions spanned and (c) a histogram of the lengths of all reads assigned to the
bucket.
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2.2.4 Decompression

To decompress, Boiler first expands each bundle with the INFLATE algorithm as

implemented in the Python zlib module, then expands each bucket.

When decompressing a bucket, Boiler seeks to recreate the set of alignment inter-

vals that yielded the bucket’s coverage vector and read and genomic outer distance

tallies. This is a two-step process; first reads must be recovered from the coverage

vector and read length tally (“read recovery”), then the recovered reads must be

paired according to the paired length tally (“pairing”).

The read recovery problem may not have a unique solution; e.g., consider a com-

pressed dataset with read lengths l1 and l2 (l1 6= l2) and a coverage vector containing

1 at all positions in the range
[
0, l1 + l2

)
. This case has two valid solutions:

r1 =
[
0, l1

)
, r2 =

[
l1, l1 + l2

)
and

r1 =
[
0, l2

)
, r2 =

[
l2, l1 + l2

)

Thus, we cannot guarantee perfect recovery of the compressed reads.

We define the read recovery problem as follows. Given a coverage vector and tally

of read lengths, we seek a list of decompressed reads (genomic intervals) such that

1. the decompressed read lengths are a subset of those given in the tally,

2. at no position does the coverage vector produced by the decompressed reads
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exceed the value in the original coverage vector, and

3. the sum of the lengths of all decompressed reads is maximized.

This formulation is general enough to tolerate an input where the read length tally

and coverage vector are not compatible, i.e., where no solution fits both precisely. In

this case, the algorithm might decompress only some of the reads in the input tally.

Lemma 2.2.1 The read decompression problem is strongly NP-hard.

Proof Consider the Multiple Subset Sum Problem (MSSP), defined as follows. Given

n items with weights w1, w2, ..., wn and m knapsacks with capacities c1, c2, ..., cm,

assign items such that:

1. each item is assigned to up to 1 knapsack

2. the capacity of each knapsack is not exceeded by the combined weights of the

items assigned to it

3. the total weight of the items in all the knapsacks is maximized.

MSSP is known to be strongly NP-hard [51].

We reduce MSSP to a special case of the read decompression problem where the

coverage vector never exceeds 1. We first construct a vector C encoding knapsack

capacities in unary. We start with empty C then, for each i, append ci 1s followed by

a single 0. Because the length of C depends on the numeric knapsack weights, this is

a pseudo-polynomial time reduction. Next, we let the read length tally equal the item
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weight tally. Finally, we run our decompression algorithm on the coverage vector C

and read length tally. The algorithm packs reads into the nonzero stretches of C. This

solution is converted to an MSSP solution by converting reads to the corresponding

items and stretches of the coverage vector to the corresponding knapsacks.

The reduction satisfies the requirements of a pseudo-polynomial transformation

[52]. Hence, the read decompression problem for unpaired reads is strongly NP-hard.

�

We observe that the read recovery problem is NP-hard in general, but that some

special cases are easily solved. When all reads are the same length, for example,

the solution is unique and can be found efficiently. We also observe that second-

generation sequencing produces datasets with uniform or near-uniform (e.g. after

trimming) read-length tallies. These facts lead us to propose the greedy algorithm

described below. The algorithm is not optimal in general, but it is well suited to cases

where the input read lengths are uniform or almost uniform.

Recovering Unpaired Reads and Read Ends

The algorithm works from one end of the coverage vector to the other, extracting

reads that are “consistent” with coverage. A read is consistent with coverage if

removing the read and decrementing the corresponding coverage-vector elements does

not cause any vector elements to fall below zero. When a consistent read is selected

for extraction, the corresponding coverage-vector elements are decremented and the
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process repeats. The process stops when the far end of the coverage vector is reached.

When reads have uniform length, the algorithm yields the correct solution. When

reads have various lengths, the problem is harder and the algorithm may fail to yield

the optimal solution. In the case where reads are various lengths, Boiler’s algorithm

uses heuristics to arrive at a solution where (a) the coverage vector induced by the

extracted reads matches the true vector as closely as possible, and (b) the distribution

of extracted read lengths matches the true distribution of read lengths as closely as

possible. Boiler favors (a) over (b); i.e. it will artificially lengthen or shorten the

extracted reads to fix small coverage discrepancies.

The algorithm works from one end of the coverage vector to the other, removing

reads that remain consistent with the coverage vector. We take advantage of the

homogeneous read length distribution produced by sequencing experiments by pref-

erentially removing reads of the most common length. When necessary, we adjust

the lengths of previously found reads by a few bases to match the coverage vector as

closely as possible.

Initially, we extract reads in end-to-end sets of the form (a, b, n) where a and b

are the starting and ending indices in the coverage vector and n is the number of

end-to-end reads. Each read set must satisfy

n · lmin ≤ (b− a) ≤ n · lmax

where lmin and lmax are the minimum and maximum lengths in the read distribution,

respectively. Each time we find a new read (b, c), we search for an existing read set
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matching (a, b, n) and update it to (a, c, n+ 1). If no such read exists, we add a new

read set (b, c, 1).

We define two helper functions extend(x0, x1) and shorten(x0, x1). extend(x0, x1)

searches for a read set of the form (a, x0, n) satisfying

n · lmin ≤ (x1 − a) ≤ n · lmax

and updates it to (a, x1, n) and decrements the coverage vector in the range [x0, x1)

by 1. shorten(x0, x1) searches for a read set of the form (a, x1, n) satisfying

n · lmin ≤ (x0 − a) ≤ n · lmax

and updates it to (a, x0, n) and increments the coverage vector in the range [x0, x1)

by 1.

These functions allow us to adjust previous reads by small amounts to fit in later

reads. The read extraction algorithm works as follows:

Let start and end be the indices of the first and last nonzero elements in the

coverage vector, respectively. We find a and b such that cov[i] > 0 ∀ i ∈ [start, a),

cov[a] = 0, and cov[i] = 0 ∀ i ∈ [a, b), cov[b] > 0.

Special end case: if a = end < start+lmin, we first attempt to run extend(start, a).

If unsuccessful, we decrement the bases in the coverage vector in the range [start, a)

but do not add a new read.

If a ≥ lmode, we add a new read (start, start + lmode) and update the coverage

vector.
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Otherwise, we attempt to run extend(start, a). If unsuccessful, we attempt to run

shorten(a, b). If this is also unsuccessful, we do one of the following:

1. If (a − start) ≥ lmin, we add a new read (start, a) and update the coverage

vector.

2. If lmin

2
≤ (a− start) < lmin, we add a new read (start, start+ lmode) and update

the coverage vector.

3. If (a−start) < lmin

2
, we decrement the bases in the coverage vector in the range

[start, a) but do not add a new read.

We then update start and end and repeat until the coverage vector is empty.

Paired-end Read Recovery

If the data contains paired-end reads, we must also solve the read pairing problem.

We would like Boiler to restore the paired-end relationships in a way that matches the

original genomic outer distances as closely as possible. We start with (a) a collection

of reads (ends), all of which are initially unpaired, and (b) the “true” genomic outer

distance tally, storing the frequencies of each distance, which was compiled and stored

during compression.

We use the following greedy algorithm to pair up reads in a way that closely

matches the true genomic outer distance tally. Each read is examined, working inward

from the extremes, alternating between the left and right extremes. For each read,
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we seek the most distant read such that the resulting pairing is compatible with

distances remaining in the tally. When two reads are paired in this way, they are

removed from future consideration, and the corresponding element of the tally is

decremented. Reads that are not paired in this way are matched up randomly in a

second pass.

2.2.5 Queries

Boiler allows the user to query a compressed RNA-seq dataset to (a) iterate over

genomic intervals delimiting regions of non-zero coverage, roughly corresponding to

genes, (b) extract the genomic coverage vector across a specified genomic interval,

and (c) extract alignments overlapping a specified genomic interval. Because each

bundle of alignments is compressed separately, Boiler can answer such queries without

decompressing the entire file.

Bundle boundaries are stored in the index at the beginning of the compressed file,

so skipping to a particular bundle can be accomplished with a single uncompressed

index lookup. To compute the coverage query (query b, above), Boiler combines the

relevant portions of the coverage vectors for all the buckets overlapping the specified

region. This requires that Boiler decompress the DEFLATED and run-length encoded

coverage vectors, but does not require the more work-intensive read and pair recovery

algorithms. Alignment-level queries (queries a and c above) are more expensive,

requiring Boiler to run the greedy read recovery algorithm on each of the buckets
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overlapping the specified region.

Downstream tools like Cufflinks can be modified to query Boiler-compressed files

directly, removing the need for an intermediate SAM/BAM file. When a downstream

tool requires access only to information about gene boundaries (query a, above) or

about targeted regions of the coverage vector (query b), Boiler’s queries can be much

faster than directly querying a sorted and indexed BAM file.

2.2.6 Implementation

Boiler is implemented in Python and is compatible with Python interpreters ver-

sion 3 and above. All of the Python modules used by Boiler are in the Python

Standard Library, making Boiler quite portable across Python installations and in-

terpreters. For example, we use the fast PyPy interpreter for our experiments.

2.3 Results

We used Flux Simulator v1.2.1 [53] to simulate 10 RNA-seq samples from the

BDGP5 build of the D. melanogaster genome and the Ensembl release 70 [54] gene

annotation. We simulated both paired-end and unpaired RNA-seq samples for a series

of library sizes: 0.5, 1, 2.5, 5, 10, and 20 million reads. We also simulated two samples

from the hg19 build of the human genome and Gencode v12 gene annotation [55] con-

taining 20 and 40 million paired-end reads. We also used two real human RNA-seq
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samples. We used sample HG00100 from the GEUVADIS [15] study, consisting of

about 20 million paired-end reads. We also chose one of the seven technical replicates

of the 3:1 ratio of Universal Human Reference RNA to Human Brain Reference RNA

from the SEQC study [56]. The study accession is SRP025982 and the individual

replicates have run accessions SRR1216073 – SRR1216079. Each replicate consists of

approximately 11-million paired-end reads. We tested sample SRR1216073, labeled

“SRP025982” in the results below. All samples were aligned to the reference genome

using either TopHat 2 v2.1.0 [50] with default parameters, or HISAT 0.1.6-beta [49]

with default parameters. D. melanogaster samples were aligned to the BDGP5 ref-

erence and human samples were aligned to the hg19 reference.

We compared Boiler’s speed, compression ratio, and peak memory usage to Goby

and CRAMTools. Boiler and Goby remove read names by default, but CRAM does

not. (CRAMtools has an option to preserve read names, but we cannot find a working

mechanism in version 3 to remove them.) For a fair comparison, we stripped the

read names before compressing. For Goby, we enabled the full “ACT H+T+D”

compression scheme, as described in the Goby study [42].

2.3.1 Efficiency and compression ratio

We compressed each TopHat 2 alignment file with Boiler v1.0.1, CRAMTools

v3.0, and Goby v2.3.5. Boiler was run with PyPy v2.4 and CRAMTools and Goby

were run with Java v1.7. All tools were run on the Homewood High Performance
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Compute Cluster at Johns Hopkins University. Each cluster computer has 2 Intel

Xeon X5660 2.80GHz processors and 48 GB of RAM. We measured running time by

adding the user and sys times reported by the Linux time command. Each tool runs

predominantly on a single thread and processor. We measured peak memory usage

in Python by spawning a new child process for the command and polling maximum

resident set size (RSS) using the Python resource package’s getrusage function.

Peak memory usage for Boiler and Goby was consistent across runs, but CRAM

memory usage varied widely between runs. We report the median peak memory of

10 runs for greater consistency.

Boiler takes roughly 1.5 – 2 times longer than CRAMTools and Goby to compress

the D. melanogaster samples and about 2 – 12 times longer for the human samples

(Table 2.2, Figure 2.2). It requires less memory than Goby for all but the deeper

human samples, and less than CRAM for small datasets. For larger datasets, CRAM’s

memory footprint seems to be capped at around 2 GB (Table 2.3). Though Boiler

allows the user to pose targeted queries without decompressing the entire file, we also

evaluate how long Boiler takes to decompress an entire file relative to other tools.

These results are presented in Table 2.3.1. Overall, Boiler takes roughly 2 – 4 times

longer than CRAMTools and about 1 – 2 times longer than Goby to decompress

entire files.

Importantly, Boiler achieves a compression ratio comparable to BigWig (Table

2.4) for all but the largest paired-end datasets, and usually produces far smaller com-

28



CHAPTER 2. BOILER

pressed files than CRAMTools or Goby. We measured both compressed file size (Table

2.4) and the “compression ratio” of original to compressed file size (Figure 2.3) for

alignments generated by TopHat 2. The “original” file is a sorted BAM file with read

names removed. For low-coverage unpaired datasets, CRAM and Goby’s compres-

sion ratios are superior to Boiler’s. However, we observe that while CRAMTools and

Goby’s compression ratios remain flat as the D. melanogaster library size increases,

Boiler’s ratios improve substantially (Figure 2.3), achieving its best compression ratios

for the 20M-read samples: 56-fold for unpaired and 39-fold for paired-end samples.

Boiler’s compression ratio is consistently better than the other tools for paired-end

samples and improves as library size increases. For high coverage D. melanogaster

and all human datasets, Boiler achieves compression ratios 3-5-fold higher than both

CRAM and Goby.

To demonstrate Boiler’s performance on an established benchmark, we also ran

Boiler on the dataset with Sample ID EJOYQAZ from the Goby study (Table 2.4).

This consists of roughly 7.5 million paired-end reads from H. sapiens. The BAM file

as well as the compressed Goby output is available at data.campagnelab.org/home/

compression-of-structured-high-throughput-

sequencing-data. Boiler produces a compressed file of 26.9 MB (2.8% of the orig-

inal BAM) compared to Goby’s output of 123.2 MB (13.0% of the original BAM),

representing a 77% space reduction for Boiler compared to Goby. Boiler achieves

a comparable compression ratio for alignments generated by HISAT (3.0% of the
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Figure 2.2: Time required for Boiler, CRAM and Goby to compress simulated D.
melanogaster paired-end datasets.

original BAM).

2.3.2 Fidelity

Boiler discards read nucleotide and quality-value data. So while Boiler is not

appropriate for pipelines where downstream tools measure non-reference alleles – e.g.

for variant calling, allele-specific expression, or RNA editing – and may even limit

post-hoc investigation of specific read alignments, we show that Boiler is appropriate
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Figure 2.3: Compression ratios for simulated D. melanogaster datasets when com-
pressed by Boiler, CRAM and Goby. Ratios are with respect to the original sorted
BAM with read names removed.

for the common case where downstream tools are concerned with assembling and

quantifying isoforms, e.g. Cufflinks and StringTie.

Boiler tends to “shuffle” alignment data in certain ways during compression. Fig-

ure 2.4 shows a simple case where Boiler might switch the order of two reads. Some

of the shuffling is harmless, having no adverse effect on downstream results from Cuf-

flinks and StringTie. But some shuffling could be harmful, negatively impacting the
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Figure 2.4: A simple example of two sets of read alignments which are indistin-
guishable by Boiler. Given just the coverage vector and read lengths, Boiler cannot
determine the original read order.

fidelity of downstream results. Using both simulated and real data, we (a) establish

the nature of the shuffling introduced by Boiler, (b) show there is only slight harmful

shuffling in practice, and (c) show that the overall amount of shuffling is smaller –

often much smaller – than the shuffling that results from substituting one technical

replicate for another.
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Dataset Boiler CRAM Goby
Drosophila, Simulated Unpaired
0.5M 57.4 17.4 15.3
1M 66.5 20.7 23.2
2.5M 89.1 40.6 40.1
5M 126.0 70.0 72.9
10M 197.9 129.6 122.3
20M 329.5 246.6 248.2

Drosophila, Simulated Paired
0.5M 50.5 30.9 24.1
1M 76.8 40.1 36.5
2.5M 152.5 80.8 81.5
5M 254.8 142.0 156.4
10M 497.7 279.6 298.4
20M 943.9 556.1 626.4

Human
SRP025982 (11M) 6122.6 507.6 674.5
HG00100 (20M) 4118.8 691.6 1045.6
Simulated 20M 2337.3 906.8 1301.3
Simulated 40M 7906.3 1476.8 2138.7

Table 2.2: Compression times in seconds.
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Dataset Boiler CRAM Goby
Drosophila, Simulated Unpaired
0.5M 0.38 0.74 0.73
1M 0.29 1.37 1.39
2.5M 0.24 1.12 1.72
5M 0.24 1.13 1.73
10M 0.24 0.96 2.11
20M 0.50 1.53 3.77

Drosophila, Simulated Paired
0.5M 0.32 1.15 0.90
1M 0.31 1.91 1.05
2.5M 0.30 1.96 1.33
5M 0.32 1.18 1.61
10M 0.79 1.11 5.67
20M 1.57 0.99 7.21

Human
SRP025982 (11M) 7.10 2.08 5.3
HG00100 (20M) 3.23 2.08 4.12
Simulated 20M 6.11 2.08 4.87
Simulated 40M 9.14 2.08 6.88

Table 2.3: Peak memory usage (GB) reported by Python. Numbers reported are the
median across 10 runs.
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Dataset BAM BigWig Boiler CRAM Goby
Drosophila, Simulated Unpaired
0.5M 26.0 3.7 2.7 0.9 1.2
1M 49.4 6.4 3.6 1.6 2.4
2.5M 120.3 12.8 5.6 3.8 5.6
5M 222.2 19.0 7.6 6.7 10.1
10M 436.1 28.1 11.0 12.6 19.0
20M 883.0 37.0 15.0 23.2 35.7

Drosophila, Simulated Paired
0.5M 56.1 6.3 4.3 7.7 4.9
1M 104.6 10.4 6.7 14.2 9.4
2.5M 255.6 19.8 12.9 33.9 23.8
5M 488.1 27.8 20.0 61.9 45.9
10M 955.0 37.2 31.6 116.9 95.8
20M 1902.6 47.8 49.0 226.2 193.3

Human
EJOYQAZ (7.5M) 747.91 – 26.9 – 123.21

SRP025982 (11M) 810.1 54.6 38.0 160.5 159.8
HG00100 (20M) 2017.9 98.7 78.0 288.8 352.2
Simulated 20M 2117.3 54.3 71.6 273.5 307.8
Simulated 40M 3858.4 71.7 118.0 491.4 587.6
1 Datasets downloaded from Goby supplementary data.

Table 2.4: Size of compressed files (MB) compared to the original sorted BAM with
read names removed.
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Dataset Boiler CRAM Goby
Drosophila, Simulated Unpaired
0.5M 20.3 9.4 14.3
1M 23.3 14.3 20.5
2.5M 40.7 29.5 36.8
5M 49.8 50.0 64.1
10M 82.9 87.8 110.9
20M 186.7 168.2 240.3

Drosophila, Simulated Paired
0.5M 31.7 16.1 23.0
1M 44.5 25.7 35.8
2.5M 97.5 55.4 70.8
5M 161.0 99.0 121.6
10M 344.5 192.6 239.2
20M 1089.4 378.4 519.8

Human
SRP025982 (11M) 828.2 315.1 654.0
HG00100 (20M) 1203.5 462.0 –*
Simulated 20M 1008.8 464.0 986.4
Simulated 40M 3179.7 835.3 1552.0
* Received an error when decompressing.

Table 2.5: Decompression times in seconds.
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2.3.3 Alignment-level fidelity

Boiler compression can change where alignments lie on the genome and how they

are paired. Here we ask how well alignment locations are preserved after Boiler

compression of the TopHat 2-aligned samples. We measure alignment-level precision

and recall in two ways. First we ignore read pairings. For each aligned unpaired

read (or end of a paired-end read) in the original file, we seek a corresponding align-

ment in the compressed file where the genomic position of the alignment and of all

overlapped splice junctions are identical. This counts as a true positive, and the

alignments involved are “matched.” An alignment can be matched with at most one

other alignment. An alignment in the original file that fails to match an alignment

in the compressed file counts as a false negative and the converse is a false positive

Given these definitions, precision and recall are shown in the left-hand columns of

Table 2.6 (labeled “Ignoring pairings”). These range from 96.2% to 99.4% across the

samples tested.

We also measure precision and recall in a way that takes pairing into account:

for each aligned pair, we seek a corresponding pair in the compressed file where both

ends match their counterparts in terms of their genomic position and the positions

of splice junctions. These results are shown in the right-hand columns of Table 2.6

(labeled “Including pairings”). Here precision and recall are lower, with most samples

ranging from 17.6% to 54.5%. Note that the SEQC sample, SRP025982, exhibited

higher unpaired precision and recall than the others (99.4%), and much higher than
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the others when considering pairing (89.4%). This is likely due to the smaller number

of reads in the sample relative to the other human samples, and to the much larger

number of Boiler buckets induced by that sample. The larger number of buckets

is likely owing to the presence of Universal Human Reference RNA, in which many

genes are expressed.

We also measure genomic outer distance distribution (excluding unbundled align-

ments) before and after Boiler compression. We find they match closely (Figure 2.5,

left) though not perfectly (Figure 2.5, right). The results are emblematic of Boiler’s

strategy: aggregate distributions are preserved, but links between particular align-

ments and particular points in the distribution are lost. As a result, some data is

“shuffled;” ends themselves are largely unchanged, but pairings between ends are

shuffled in a way that preserves the aggregate genomic outer distance distribution.

We repeated these experiments for alignments output by HISAT, as shown in

Table 2.3.3. The results are similar to those produced by TopHat 2, with precision

and recall ranging from 96.7% to 99.3% when ignoring pairings, and from 14% to

32.1% when considering pairings.
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Figure 2.5: Comparison of genomic outer distances for the 10M paired-end D.
melanogaster sample. Left: Frequency ratio of each genomics outer distance, com-
pressed divided by original, up to a distance of 100,000 bases. Right: Original and
compressed genomic outer distances between 70 and 79 kilobases in length.

39



CHAPTER 2. BOILER

Dataset Ignoring Pairings Including Pairings
Precision Recall Precision Recall

Drosophila, Simulated Unpaired
0.5M 0.991 0.993 – –
1M 0.986 0.989 – –
2.5M 0.976 0.981 – –
5M 0.969 0.974 – –
10M 0.962 0.968 – –
20M 0.964 0.969 – –

Drosophila, Simulated Paired
0.5M 0.990 0.992 0.544 0.545
1M 0.984 0.987 0.458 0.460
2.5M 0.972 0.978 0.338 0.340
5M 0.967 0.972 0.263 0.264
10M 0.964 0.969 0.219 0.220
20M 0.964 0.968 0.176 0.177

Human
SRP025982 (11M) 0.994 0.994 0.894 0.894
HG00100 (20M) 0.983 0.983 0.261 0.261
Simulated 20M 0.973 0.976 0.327 0.328
Simulated 40M 0.972 0.975 0.319 0.320

Table 2.6: Precision and recall of SAM reads aligned with Tophat.
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Dataset Ignoring Pairings Including Pairings
Precision Recall Precision Recall

Drosophila, Simulated Unpaired
0.5M 0.992 0.993 – –
1M 0.988 0.990 – –
2.5M 0.980 0.984 – –
5M 0.973 0.978 – –
10M 0.967 0.973 – –
20M 0.969 0.974 – –

Drosophila, Simulated Paired
0.5M 0.990 0.992 0.504 0.505
1M 0.984 0.988 0.404 0.406
2.5M 0.974 0.979 0.298 0.300
5M 0.969 0.974 0.221 0.222
10M 0.967 0.972 0.173 0.174
20M 0.968 0.972 0.140 0.141

Human
SRP025982 (11M) 0.991 0.991 0.321 0.321
Simulated 20M 0.975 0.979 0.250 0.251
Simulated 40M 0.976 0.980 0.235 0.236

Table 2.7: Precision and recall of SAM reads aligned with HISAT.
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2.3.4 Isoform fidelity

Having established Boiler’s lossy-ness and shuffling behavior, we now assess the de-

gree to which loss and shuffling have an adverse effect on downstream results obtained

by Cufflinks v2.2.1 and StringTie v1.2.2. StringTie was run with default parameters.

Cufflinks was run with the --no-effective-length-correction parameter to avoid

variability due to an issue in how Cufflinks performs effective transcript length cor-

rection.

Let T be the true simulated transcriptome, including abundances for each tran-

script, which we extract from the Flux-generated .pro and .gtf files. Let T̂ be

the transcriptome assembled and quantified from the original alignments, which we

extract from the Cufflinks/StringTie output. Let T̂ ′ be the same but for the Boiler-

compressed alignments. Here we ask whether T̂ and T̂ ′ are approximately equidistant

from T , indicating Boiler’s loss and shuffling are not having an adverse effect.

We define a function for measuring the distance between two transcripts t1 and t2

assembled with respect to a reference genome. The function outputs a value between

0 and 1, with 0 indicating the transcripts do not match and 1 indicating a perfect

match.

A transcript t can be represented as a set of exons {e1, ...en}, each defined by its

start and stop positions. We first define a scoring function for two exons e1 = (x1, y1)

and e2 = (x2, y2):
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s(e1, e2) = 1− min(|x2 − x1|, k)

2k
− min(|y2 − y1|, k)

2k
(2.1)

for some threshold k. We further define function max(e, t̂) to be the set Ê of

exons ê from t̂ with maximal score s(e, ê).

Algorithm 1 Transcript scoring algorithm

1: procedure Score(t, t̂)

2: s← 0 . Score before normalization

3: n← 0 . Number of matching exons found

4: for e ∈ t do

5: Ê = max(e, t̂)

6: for ê ∈ Ê do

7: if e ∈ max(ê, t) then

8: s← s+ s(e, ê)

9: n← n+ 1

10: break

11: end if

12: end for

13: end for

14: return s
|t|+|t̂|−n

15: end procedure
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The weighted precision for pre-compression alignments is:

∑
t̂∈T̂

max
t∈T

(
score(t̂, t)

)
· c(t̂) (2.2)

Where c(t̂) is the predicted coverage level of t as reported by Cufflinks/StringTie. This

measure is weighted both by the coverage of the assembled transcript and by the sim-

ilarity of the matched-up transcripts. Precision for the post-compression alignments

is calculated similarly, using T̂ ′ instead of T̂ .

Similarly, weighted recall is

∑
t∈T

max
t̂∈T̂

(
score(t, t̂)

)
· c(t) (2.3)

Where c(t) is the true coverage level for t as reported by Flux.

We investigated the effect of varying the threshold k in the exon scoring equation

(1). As k increases, the scoring function becomes more relaxed, allowing exons with

more divergent boundaries to contribute to the score. If k = 0, then two exons receive

a score of 1 only if they are identical, 0 otherwise. On the other extreme, as k →∞

the score approaches 1 for all pairs of exons. Figure 2.6 shows the precision and

recall at varying k thresholds for the simulated D. melanogaster dataset containing 1

million paired-end reads. We observe that, across various k cutoffs, accuracy decreases

slightly after Boiler compression. Both plots show an inflection point around k = 5

to 10, after which the accuracy measure becomes more stable. Based on these results,

we used a threshold of k = 10 in all experiments.

We calculated the weighted precision (Tables 2.8) and recall (Table 2.9) for all
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Figure 2.6: Precision (left) and recall (right) of transcripts compared to the reference
transcriptome before and after compression with Boiler, as a function of the threshold
used in the exon scoring function.

simulated samples. While there are small differences in all experiments (as expected

due to Boiler’s shuffling behavior) overall Boiler compression does not have a substan-

tial adverse impact on weighted precision and recall. While precision and recall might

not be uniform, and certain genomic regions may be disproportionately affected by

compression, Boiler demonstrates consistent accuracy across both varying samples

and varying scoring methods.

2.3.5 Other Isoform Fidelity Scores

In addition to precision and recall, we used two other methods to measure iso-

form accuracy, described below. Weighted k-mer recall (WKR) does not depend on a

distance function, while the Tripartite Score compares two assembled transcriptomes
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to a third “reference” transcriptome. The results from these methods, described in

detail below, substantially agree with the results above.

Weighted k-mer recall.

We assess fidelity by measuring weighted k-mer recall (WKR), a component of

the KC score developed by Li et al. [57] to assess transcriptome assemblies. WKR

measures the degree to which an assembly recovers k-mers from the true simulated

transcriptome, weighted by abundances of simulated transcripts containing the k-mer.

For a k-mer r, its frequency profile p(r) is defined as:

p(r) =

∑
t∈T n(r, t)c(t)∑
t∈T n(t)c(t)

where T is the simulated transcriptome and for each transcript t ∈ T :

• n(r, t) is the number of times r occurs in t,

• n(t) is the total number of k-mers in t, and

• c(t) is the coverage of t.

Letting R(T ) be the set of all k-mers in transcriptome T :

WKR =
∑

r∈R(T )

p(r)

WKR is defined with respect to the true transcriptome T , which we obtain from

Flux Simulator’s output. The GEUVADIS sample is not considered here, since it

46



CHAPTER 2. BOILER

Figure 2.7: WKR with varying k-mer length for simulated Drosophila 10M paired-end
reads, assembled with Cufflinks and StringTie.

is not simulated. Figure 2.7 shows that WKR is largely unchanged after Boiler

compression for various k-mer length settings. It also shows that the difference in

WKR is more pronounced for Cufflinks than for StringTie.

Tripartite Score

We developed a different scoring method to compare the accuracy of alignments

before and after compression, called the tripartite score. There are two versions of
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this score, strict and loose.

We first construct a tripartite graph containing a node for each transcript in the

cufflinks output for the alignments both before and after compression, as well as for

each transcript in the reference transcriptome. We add a connecting edge from each

transcript from the original set to the best-matching transcript from the reference

set, determined using the transcript scoring method described previously. Similarly,

we add an edge from each transcript in the compressed set to the best match from

the reference set of transcripts.

For the strict tripartite score, we take all the nodes from the set of reference

transcripts that are connected to a single node Ai from the set of original transcripts

and a single node Bi from the set of compressed transcripts. The final score is the

average of the transcript scores for every pair Ai, Bi.

For the loose tripartite score, we take all the nodes from the set of reference

transcripts that are connected to at least one node from the set of original transcripts

and at least one node from the set of compressed transcripts. Let Ai be the original

transcript with the highest score compared to the reference node, and let Bi be the

compressed transcript with the highest score compared to the reference transcript.

The final score is the average of the transcript scores for every pair Ai, Bi.

Tables 2.10 and 2.11 show the tripartite scores alongside the percentage of tran-

scripts from the original and compressed set of transcripts that contribute to the

score.
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2.3.6 Shuffling relative to technical replicates

Next we investigate the amount of “shuffling” introduced by Boiler – causing

some reads to shift along the genome and scrambling some paired-end relationships

– and whether the effect is large or small compared to the shuffling that occurs when

switching from one technical replicate to another.

We first construct five artificial technical replicates by generating five times the

desired number of reads with Flux Simulator and randomly partitioning the result-

ing read file five ways. We then assemble and quantify each using Cufflinks and

StringTie. Let T̂1, T̂2, ..., T̂5 be the corresponding transcriptomes. We also pick

a technical replicate (T̂1, say) to compress with Boiler. Let T̂ ′1 be the result of

running Cufflinks/StringTie on the Boiler-compressed alignments. We calculate the

weighted precision and recall of T̂ ′1 relative to T̂1. Finally, we calculate weighted pre-

cisions and recalls between all 10 ordered pairs of technical-replicate transcriptomes:

(T̂1, T̂2), (T̂1, T̂3), ..., (T̂4, T̂5). Since the ordering of technical replicates is arbitrary,

the precision and recall values between these pairs are interchangeable. Results are

presented in Tables 2.12 and 2.13. Precision and recall between technical replicates is

shown as a range from the minimum to the maximum observed among the 10 ordered

pairs. Precision and recall after Boiler-compression are consistently higher than pre-

cision and recall between technical replicates, indicating that shuffling due to Boiler

compression is less consequential than shuffling due to technical variation.

For SRP025982, we followed the same process but using real lane-level technical
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replicates. The same sample was sequenced in 5 separate lanes of an Illumina in-

strument, but on the same flowcell. We compressed the first replicate (SRR1216073)

with Boiler and used the four others (SRR1216076 – SRR1216079) to calculate the

ten pairwise precision and recall measures.

It is notable how precision and recall change relative to per-sample coverage.

Precision and recall between technical replicates increases as per-sample coverage

increases, indicating that the shuffling effect decreases as more transcripts become

deeply covered. On the other hand, precision and recall of T̂ ′1 versus T̂1 decreases

as per-sample coverage increases. Therefore, there may be higher levels of cover-

age for which Boiler shuffling has a greater impact than technical-replicate shuffling.

For the realistic levels of coverage we tested, however, Boiler’s shuffling remains less

consequential.

2.3.7 Queries

Recovering coverage vectors from a Boiler-compressed file requires that Boiler

decompress and combine coverage vectors for all the relevant bundles and buckets.

Decompression of the coverage vector involves the DEFLATE algorithm and run-

length decoding, but does not involve the more expensive read and pair recovery

algorithms. SAMtools, on the other hand, does not explicitly represent the coverage

vectors in a BAM file. Instead, coverage information must be recovered from the

BAM file by first extracting the relevant alignments, then composing the coverage
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vector using another tool like BEDTools:

samtools view -b -h x.bam c:start-end | genomeCoverageBed -bga -split

-ibam stdin -g chromosomes.txt

We compared the time required for Boiler to respond to coverage queries to the

time required for SAMtools/BEDTools. Specifically, we iterated over all bundle

boundaries in several D. melanogaster samples and queried for the coverage vec-

tor within those boundaries using both Boiler and SAMtools/BEDTools. Figure 2.8

compares the tools both in terms of average query time (left) and per-bundle query

time (right). As expected, Boiler is consistently faster than SAMtools/BEDTools,

with Boiler taking under 0.1 seconds on average, and SAMtools/BEDTools taking

close to 0.75 seconds.

We also compared alignment query times for Boiler to those for the indexed BAM.

A SAMtools alignment query uses this command:

samtools view -h x.bam chrom:start-end

Boiler must both decompress the relevant bundles and run the greedy read and

pair recovery algorithms. Figure 2.9 compares the tools both in terms of average

query time (left) and per-bundle query time (right). As expected, because of the

need to run read and pair recovery, Boiler’s alignment query is consistently slower

than SAMtools. Even so, Boiler’s average response time is under 0.15 seconds.
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Figure 2.8: Comparison of coverage query times for Boiler the indexed BAM for
all bundles. Left: Average query time for varying D. melanogaster paired-end
datasets. Right: Ratio of Samtools / Boiler query time for each bundle in the
10M D. melanogaster paired-end dataset plotted as a function of bundle length. The
blue line denotes the best fit line for the points, the red line is y = 1.
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Dataset TopHat + Cufflinks TopHat + StringTie HISAT + StringTie
Original Compressed Original Compressed Original Compressed

Drosophila, Simulated Unpaired
0.5M 0.364 0.364 (+0.1%) 0.466 0.466 (+0.0%) 0.542 0.542 (+0.0%)
1M 0.432 0.434 (+0.3%) 0.545 0.545 (+0.0%) 0.611 0.611 (+0.0%)
2.5M 0.527 0.527 (+0.1%) 0.627 0.627 (+0.0%) 0.646 0.542 (-0.7%)
5M 0.564 0.564 (+0.1%) 0.637 0.637 (-0.0%) 0.644 0.641 (-0.5%)
10M 0.583 0.585 (+0.2%) 0.645 0.645 (+0.0%) 0.639 0.637 (-0.3%)
20M 0.602 0.603 (+0.2%) 0.654 0.653 (-0.1%) 0.642 0.638 (-0.6%)

Drosophila, Simulated Paired
0.5M 0.583 0.582 (-0.1%) 0.546 0.546 (-0.0%) 0.628 0.628 (-0.0%)
1M 0.611 0.609 (-0.3%) 0.614 0.613 (-0.1%) 0.660 0.660 (-0.0%)
2.5M 0.632 0.630 (-0.4%) 0.644 0.643 (-0.2%) 0.666 0.665 (-0.2%)
5M 0.635 0.633 (-0.3%) 0.652 0.652 (-0.1%) 0.662 0.661 (-0.2%)
10M 0.644 0.643 (-0.1%) 0.663 0.662 (-0.1%) 0.666 0.665 (-0.1%)
20M 0.639 0.634 (-0.8%) 0.660 0.659 (-0.2%) 0.660 0.657 (-0.4%)

Human, Simulated Paired
20M 0.552 0.554 (+0.4%) 0.570 0.568 (-0.4%) 0.613 0.613 (-0.1%)
40M 0.554 0.555 (+0.2%) 0.576 0.572 (-0.6%) 0.614 0.615 (+0.1%)

Table 2.8: Reference-based precision.
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Dataset Cufflinks StringTie HISAT + StringTie
Original Compressed Original Compressed Original Compressed

Drosophila, Simulated Unpaired
0.5M 0.583 0.583 (+0.0%) 0.526 0.526 (+0.0%) 0.551 0.551 (+0.0%)
1M 0.708 0.707 (-0.1%) 0.682 0.682 (+0.0%) 0.712 0.712 (+0.0%)
2.5M 0.791 0.785 (-0.7%) 0.795 0.795 (-0.0%) 0.803 0.800 (-0.4%)
5M 0.822 0.822 (+0.0%) 0.834 0.834 (-0.0%) 0.833 0.831 (-0.3%)
10M 0.824 0.824 (+0.0%) 0.844 0.844 (+0.0%) 0.835 0.834 (-0.2%)
20M 0.827 0.826 (-0.1%) 0.851 0.850 (-0.1%) 0.853 0.847 (-0.7%)

Drosophila, Simulated Paired
0.5M 0.732 0.729 (-0.4%) 0.691 0.689 (-0.3%) 0.715 0.715 (-0.1%)
1M 0.799 0.797 (-0.2%) 0.792 0.791 (-0.1%) 0.814 0.814 (-0.0%)
2.5M 0.825 0.826 (+0.1%) 0.840 0.840 (-0.0%) 0.843 0.840 (-0.4%)
5M 0.840 0.838 (-0.2%) 0.857 0.855 (-0.2%) 0.861 0.859 (-0.3%)
10M 0.828 0.824 (-0.5%) 0.851 0.851 (-0.0%) 0.851 0.849 (-0.3%)
20M 0.826 0.823 (-0.4%) 0.850 0.849 (-0.1%) 0.854 0.849 (-0.6%)

Human, Simulated Paired
20M 0.762 0.762 (+0.0%) 0.794 0.792 (-0.2%) 0.851 0.850 (-0.1%)
40M 0.792 0.789 (-0.3%) 0.824 0.821 (-0.4%) 0.851 0.849 (-0.2%)

Table 2.9: Reference-based recall
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Dataset Strict Loose
Score % True % Comp Score %True % Comp

Drosophila, Simulated Unpaired
0.5M 0.999 27.5 27.6 0.981 43.7 43.8
1M 0.999 23.3 23.4 0.986 39.4 39.6
2.5M 0.998 24.9 24.9 0.992 34.7 34.7
5M 0.996 23.9 24.0 0.994 30.6 30.7
10M 0.992 23.1 23.1 0.990 28.0 28.1
20M 0.988 22.3 22.4 0.986 26.9 26.9

Drosophila, Simulated Paired
0.5M 0.994 45.2 45.2 0.984 59.2 59.2
1M 0.990 35.5 35.5 0.983 47.1 47.1
2.5M 0.979 31.5 31.3 0.977 39.4 39.2
5M 0.979 28.0 27.9 0.976 34.4 34.4
10M 0.969 25.2 25.2 0.963 31.6 31.6
20M 0.965 23.3 23.3 0.959 29.5 29.5

Human, Simulated
20M 0.976 16.8 16.9 0.972 22.6 22.7
40M 0.976 14.4 14.5 0.970 20.2 20.3

Table 2.10: Tripartite score for Cufflinks transcripts.
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Dataset Strict Loose
Score % True % Comp Score %True % Comp

Drosophila, Simulated Unpaired
0.5M 1.000 43.2 43.2 1.000 59.1 59.1
1M 1.000 44.0 4.0 1.000 58.3 58.3
2.5M 0.999 40.9 40.9 0.997 51.1 51.1
5M 0.998 34.3 34.3 0.998 42.3 42.3
10M 0.993 29.4 29.4 0.994 36.4 36.4
20M 0.988 24.5 24.5 0.990 32.0 32.0

Drosophila, Simulated Paired
0.5M 1.000 44.6 44.7 0.999 58.5 58.6
1M 0.999 41.0 41.0 0.994 51.9 52.0
2.5M 0.996 35.1 35.0 0.996 42.7 42.7
5M 0.995 28.5 28.6 0.994 36.2 36.2
10M 0.989 25.0 25.0 0.988 32.5 32.6
20M 0.986 23.0 23.1 0.986 30.3 30.3

Human, Simulated
20M 0.985 16.7 16.6 0.985 22.4 22.4
40M 0.983 14.0 14.0 0.981 19.9 19.9

Table 2.11: Tripartite score for Stringtie transcripts.
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Dataset Cufflinks Stringtie
Boiler Tech Reps Boiler Tech Reps

(min–max) (min–max)
Drosophila, Simulated Unpaired
0.5M 0.997 0.386–0.396 0.998 0.452–0.470
1M 0.996 0.492–0.502 0.998 0.559–0.578
2.5M 0.989 0.659–0.669 0.993 0.729–0.736
5M 0.988 0.757–0.763 0.989 0.807–0.816
10M 0.983 0.814–0.824 0.985 0.854–0.863
20M 0.980 0.861–0.868 0.983 0.892–0.900

Drosophila, Simulated Paired
0.5M 0.986 0.618–0.636 1.000 0.568–0.583
1M 0.980 0.724–0.733 0.996 0.698–0.706
2.5M 0.965 0.806–0.811 0.989 0.807–0.815
5M 0.969 0.843–0.850 0.991 0.854–0.862
10M 0.960 0.867–0.879 0.986 0.890–0.895
20M 0.952 0.893–0.902 0.985 0.915–0.921

Human
SRP025982 (11M) 0.964 0.627–0.645 0.997 0.622–0.641
HG00100 (20M) 0.939 (no replicates) 0.997 (no replicates)
Simulated 20M 0.969 0.897–0.912 0.981 0.910–0.932
Simulated 40M 0.965 0.911–0.927 0.976 0.935–0.947

Table 2.12: Non-reference-based precision. Columns labeled Boiler compare precision
before and after Boiler compression. Columns labeled Tech Reps compare pairs of
technical replicates.
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Dataset Cufflinks Stringtie
Boiler Tech Reps Boiler Tech Reps

(min–max) (min–max)
Drosophila, Simulated Unpaired
0.5M 0.996 0.386–0.396 0.998 0.428–0.441
1M 0.993 0.492–0.502 0.998 0.528–0.549
2.5M 0.989 0.659–0.669 0.993 0.708–0.716
5M 0.988 0.757–763 0.989 0.789–0.799
10M 0.983 0.814–0.824 0.985 0.843–0.851
20M 0.979 0.861–0.868 0.983 0.892–0.900

Drosophila, Simulated Paired
0.5M 0.985 0.618–0.636 0.999 0.568–0.583
1M 0.981 0.724–0.733 0.996 0.698–0.706
2.5M 0.970 0.806–0.811 0.991 0.807–0.815
5M 0.971 0.843–0.850 0.991 0.854–0.862
10M 0.957 0.867–0.879 0.986 0.890–0.895
20M 0.949 0.893–0.902 0.985 0.915–0.921

Human
SRP025982 (11M) 0.939 0.627–0.645 0.997 0.622–0.641
HG00100 (20M) 0.936 (no replicates) 0.995 (no replicates)
Simulated 20M 0.967 0.897–0.912 0.981 0.910–0.932
Simulated 40M 0.963 0.911–0.927 0.977 0.935–0.947

Table 2.13: Non-reference-based recall. Columns labeled Boiler compare recall before
and after Boiler compression. Columns labeled Tech Reps compare pairs of technical
replicates.
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Figure 2.9: Comparison of alignment query times for Boiler versus sorted and indexed
BAM for all bundles. Left: Average query time for varying D. melanogaster paired-
end datasets. Right: Ratio of Samtools / Boiler query time for each bundle in the
10M D. melanogaster paired-end dataset plotted as a function of bundle length. The
blue line denotes the best fit line for the points, the red line is y = 1.
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2.4 Discussion

Boiler applies principles of lossy compression and transform coding to the problem

of compressing RNA-seq alignments. Beyond discarding unnecessary BAM attributes,

Boiler additionally discards most of the data that ties individual reads to their aligned

positions and shapes. Boiler instead stores coverage vectors and read- and outer-

distance tallies, effectively shifting from the “alignment domain” to the “coverage

domain.” While this can cause alignments to shift along the genome or pair with

the wrong mate, the shuffling effect is modest compared to the differences between

technical replicates, and adverse effects on downstream tools for isoform assembly

and quantification are minimal.

Boiler is not a general-purpose substitute for RNA-seq SAM/BAM files, but it is

an extremely space-efficient alternative that works well with tools like Cufflinks and

StringTie. RNA-seq alignments are much larger than downstream files summarizing

coverage (BigWig) or per-isoform expression level (FPKM table). Boiler and BigWig

are similar in size, but, importantly, Boiler files preserve the ability to re-run the

analysis repeatedly in the future. This can profoundly reduce the cost and difficulty

of working with RNA-seq data, especially for large datasets.

Though we have not explored it here, we expect Boiler compression to work well

with annotation-based tools like featureCounts [58] and HiTseq [59], as well as down-

stream differential-expression tools like derfinder [60] that rely on counts and coverage

values.

60



CHAPTER 2. BOILER

Boiler also discards information about non-reference alleles, making Boiler archives

readily sharable even when the input data is protected by privacy provisions like

dbGaP.

In future work, it will be important to explore alternatives to the greedy de-

compression algorithms described here. For example, Boiler’s greedy algorithm for

extracting reads from a coverage distribution assumes the distribution of input read

lengths has a dominant mode. This is a reasonable assumption for Illumina data, but

not so for other sequencing technologies. Also, Boiler’s compression and decompres-

sion algorithms could be accelerated by moving from Python to a compiled language

such as C/C++. In general, there are many opportunities to make the read extrac-

tion and pairing algorithms more accurate, faster, and less hampered by assumptions

about the data.

Another subject for future work is how Boiler represents multi-mapping align-

ments. By discarding read names, Boiler discards the one-to-many relationship be-

tween a multi-mapping read and its alignments. While this does not harm fidelity in

most cases, it does adversely affect fidelity when Cufflinks is used to quantify from

a gene annotation. It is an open question as to whether and how multi-mapping re-

lationships can be represented in a way that allows trading off between compression

ratio and fidelity.

Finally, we note that the methods used here to characterize Boiler’s shuffling effect

are more generally useful for evaluating any upstream tool that modifies the data. For
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example, one could apply the same techniques to evaluate a tool for read trimming or

digital normalization, or to compare many parameterizations of the spliced aligner.

Boiler is available from github.com/jpritt/boiler and is distributed under the

open source MIT license.
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Optimal Graph Genome

Construction with FORGe

3.1 Introduction

Read alignment with variants

Read alignment is the process of determining each read’s point of origin with

respect to a reference genome. The origin can be ambiguous and reported align-

ments can be incorrect [61]. Repetitive genomes and sequencing errors contribute to

this problem [61, 62]. Importantly, genetic differences between donor and reference

genomes also contribute. Alignments overlapping positions where the genomes dif-

fer — i.e. where the donor genome has a non-reference allele — are systematically

penalized. This can (a) reduce the correct alignment’s score below the threshold
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considered significant by the aligner, (b) cause the aligner’s heuristics to miss the

correct alignment, (c) cause the correct alignment’s score to fall below the score at

a different, incorrect location. The problem is magnified in hyper-variable regions

such as the Major Histocompatibility Complex (MHC) [63, 64]. It is also problematic

when individuals differ dramatically e.g. if they are from distinct inbred strains [20],

or when downstream analyses are vulnerable to allelic bias, such as when detecting

allele-specific expression [65, 21, 66] or calling heterozygous variants [67, 68].

Augmenting the reference genome with known variants helps in two major ways.

First, it reduces the genetic distance between donor and reference genomes, removing

the tendency to penalize correct alignments that overlap non-reference alleles. Second,

it avoids the allelic bias, also called “reference bias,” [65] that results when one donor

haplotype resembles the reference more closely than the other(s).

There are many proposals for how to include and index genetic variants along

with the reference genome. Two early approaches were GenomeMapper [20] and the

Enhanced Reference Genome [21]. GenomeMapper came from a project to sequence

many inbred strains of Arabidopsis thaliana, and it used a graph representation and an

accompanying k-mer index to represent and align to a graph representing all strains.

The Enhanced Reference Genome [21], which specifically addresses reference bias for

allele-specific expression, included variants by taking the non-reference allele along

with flanking bases and appending these “enhanced segments” to the linear reference

genome. Since the resulting reference is linear, a typical read aligner like Bowtie [8]
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can be used.

Several studies have expanded on these ideas. deBGA [69] uses a colored De Bruijn

graph [70] and an accompanying hash-table index. BWBBLE [22] and gramtools [27]

use an FM Index [71] with an expanded alphabet and modified backward-search

algorithm to account for variants. GCSA [23] generalizes the compressed suffix array

to index not a single reference but a multiple alignment of several references. HISAT2

[26] combines GCSA with the hierarchical FM Index implemented in HISAT [49].

GCSA2 [24] indexes paths in arbitrary graphs and is implemented in the VG software

tool [25] which can align reads to such indexes. MuGI [72] and GraphTyper [68] use

k-mer-based indexes.

Genome assemblies are also evolving along these lines. The GRCh37 and GRCh38

human assemblies [73, 74] include “alt loci,” alternate assemblies of hypervariable re-

gions including MHC. Other studies suggest modifying the linear genome by replacing

each non-major allele with its major alternative [75, 76]. This leverages population-

level information while keeping a linear representation.

Variant selection and evaluation

Past efforts that evaluated graph aligners have been selective about what variants

to include in the graph, but without a clear rationale. Some included all variants from

a defined subset of strains or haplotypes [20, 69, 72] or from a database such as the

1000 Genomes Project callset [6] or dbSNP [77]. In some cases, variants were filtered
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according to ethnicity, e.g. keeping just the Finnish 1000 Genomes individuals [23]

or the Yoruban HapMap [5] individuals [21]. The ERG study (concerned with allele-

specific expression) excluded variants outside annotated genes. The gramtools study

[27] used 1000 Genomes variants but excluded those with observed allele frequency less

than 5%. GraphTyper [68] used dbSNP variants in one experiment, excluding single-

nucleotide variants (SNVs) with under 1% frequency in all populations. HISAT2’s

software for selecting variants to include filters out SNVs with an allele frequency of

under 10% in some cases [26].

Here we explicitly model the variants according to their effects on alignment,

and we provide methods for choosing an optimal set based on those models. We

apply these methods in combination with two different augmented-reference alignment

methods, and compare to a range of relevant competing methods, including a linear

reference with reference alleles, a linear reference with all-major alleles, and an ideal

“personalized” reference that customized to fit the donor individual’s alleles (including

at heterozygous positions) as closely as possible. This experimental design allows us

to make statements about how our methods affect accuracy, how those effects vary

with genomic region, how close the methods come to achieving ideal accuracy, and

how practical current graph alignment methods are overall.
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3.2 Methods

FORGe works in cooperation with a variant-aware read aligner such as HISAT2

[26] or the ERG [21]. The strategy has two stages. In the offline stage, FORGe

selects variants to include in the augmented reference based on a variant model —

which predicts the pros and cons of including a variant — and a variant limit. The

model and limit together constitute a variant inclusion strategy (VIS) that aims for

a balance between accuracy and overhead. Once variants have been selected, the

aligner software is used to create an index of the augmented reference. The second

stage is an online stage where the read aligner aligns reads to the augmented reference

using the index.

Inputs to the offline stage consist of (a) a reference genome, (b) variants in VCF

format, (c) a VIS, and (d) a window size s. The variant inclusion strategy (VIS)

consists of a variant model and a limit on the number or fraction of variants to

include. The VIS is the user’s most direct means for balancing blowup and alignment

accuracy in the augmented reference. We now propose multiple variant models, each

aiming to give higher scores to variants that will impart a greater net benefit when

considering accuracy and blowup. The window size s is used in three separate places

in the software (described below) and should typically be set to the maximum read

length.
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3.2.1 Variant models

Let Gref denote the linear reference genome and G∗ the complete augmented

genome including all variants in the population. Let G be a possible result of a

VIS, i.e. an augmented genome that includes a subset of population variants. For

simplicity, assume all variants are SNVs (substitutions). Let a localized s-mer 〈s, l〉

be a string of length s (the configurable windows size) that matches some combination

of alleles in an augmented genome G starting at offset l; we also call these simply

〈s, l〉-mers . For instance, if G is GATYACA, where Y can be either C or T, then 〈GAT, 0〉,

〈TCA, 2〉 and 〈TTA, 2〉 are all 〈3, l〉-mers of G. For an 〈s, l〉-mer σ, let p(σ) be the

probability a random 〈s, l〉-mer drawn from a random individual in the population

equals σ. This can be calculated as:

p(〈s, l〉) = pl(l) · ps(〈s, l〉) ≈
ps(〈s, l〉)
|Gref |

where pl(σ) is the probability a random s-mer begins at σ’s offset, which we approx-

imate by 1
|Gref |

. ps(σ) is the probability a localized s-mer starting at l has alleles

matching σ’s. We approximate ps(σ) by assuming independence and multiplying

the frequencies of each allele, or, if phasing information is available, by using allele

co-occurrence frequencies.
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Population Coverage

The population coverage C(G) of an augmented reference G is proportional to the

population variation included, weighted by allele frequency. Specifically:

C(G) =
∑
〈s,l〉∈G

p(〈s, l〉)

Note that C(Gref ) ≤ C(G) ≤ C(G∗) = 1.

We want to prioritize alleles according to how much they increase C(G). To do

so accurately, each variant’s effect on C(G) must be calculated according to which

nearby variants (within s − 1 positions) are already in G. While this is possible, it

requires much recalculation of scores as variants are added to G. It also means there is

no way to produce a single, static list of per-variant model scores. For these reasons,

we instead compute each variant’s effect on C(G) assuming that all surrounding

variants are already in G; in other words, we compute the decrease in C(G) caused

by removing the variant from G∗. We call this the complete graph assumption.

Although FORGe is capable of using phasing data — describing which alleles co-

occur on the same haplotype — the complete graph assumption makes this irrelevant

for our calculation here. We do make (optional) use of phasing data in the Hybrid

model, discussed below.
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Uniqueness

The uniqueness U(G) of a genome G decreases as the multiplicities of its k-mers

increase, i.e. as the genome becomes more repetitive (Figure 3.1). Uniqueness can

be thought of as inverse to the amount of ambiguity, or repeated k-mers, in the

genome. Let fG(s) be the number of 〈s′, l′〉-mers in genome G with s = s′. We define

uniqueness of the genome as:

U(G) =
∑
〈s,l〉∈G

1

fG(s)

Adding a variant to the genome can either increase or decrease U(G). Specifically,

an 〈s, l〉-mer overlapping the variant increases U(G) if there is no other 〈s′, l′〉-mers

with s = s′. Alternately, an 〈s, l〉-mer overlapping the variant decreases U(G) if there

are any other 〈s′, l′〉-mers with s = s′.

While we rely on this definition below, we do not expect uniqueness alone to be

an effective variant model. This is because for most variants all the added (overlap-

ping) 〈s, l〉-mers are unique. All such variants therefore receive an identical score.

The hybrid measure, presented next, effectively breaks ties by also considering allele

frequency.

Hybrid score

The hybrid score H(G) of a genome G considers both population coverage and

uniqueness. Again let fG(s) be the number of 〈s′, l′〉-mers in G with s = s′ and
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Figure 3.1: Simple example of added variants reducing uniqueness in the reference
genome. Read r maps uniquely to the linear reference genome at position p1. The
addition of the group of variants on the right creates a new perfect match for r at
position p2, reducing overall uniqueness.

let p(〈s′, l′〉) be the probability a random 〈s, l〉-mer drawn from a random individual

equals 〈s′, l′〉. We define the hybrid measure H(G) of an augmented reference G as

H(G) =
∑
〈s,l〉∈G

p(〈s, l〉)
fG(s)

Note that this is simply the dot product of the terms from the C(G) and U(G) sums.

For a variant v, we wish to compute the increase in H(G) caused by adding v. For

each 〈s, l〉-mer overlapping v and containing the alternate allele, let 〈s, l1〉, 〈s, l2〉, ..., 〈s, ln〉

be all other 〈s, l〉-mers with the same sequence s. Before adding v, the hybrid score

can be written as

C +
n∑

i=1

p(〈s, li〉)
n

where C is the hybrid-score portion due to the 〈s′, l〉-mers with s′ 6= s. After adding
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〈s, l〉 to G, the score becomes

C +
n∑

i=1

p(〈s, li〉)
n+ 1

+
p(〈s, l〉)
n+ 1

The change in hybrid score due to the addition of 〈s, l〉 is

∆Hs,l =
n∑

i=1

p(〈s, li〉)
n+ 1

+
p(〈s, l〉)
n+ 1

−
n∑

i=1

p(〈s, li〉)
n

=
p(〈s, l〉)− 1

n

∑n
i=1 p(〈s, li〉)

n+ 1

Assuming each 〈s, l〉-mer overlapping variant v has a distinct sequence s, their

∆Hs,l terms are independent. Thus the total change in hybrid score due to the

addition of v is the sum of the ∆Hs,l’s for each 〈s, l〉-mer overlapping and including

v.

There are a couple caveats to how FORGe implements the hybrid model. First,

As with the Pop Cov model, we make the complete graph assumption, allowing us to

produce a scored variant list without dynamic re-scoring of variants as they are added.

Second, computing ∆Hs,l’s for all variants is expensive, since it involves calculating

the read probability for each other occurrence of sequence s for every overlapping

〈s, l〉-mer . Instead, we approximate it using average probabilities. Specifically, we

pre-calculate p̄ref , the average p(〈s, l〉) for all 〈s, l〉-mers in Gref , and p̄∗, the average

p(〈s, l〉) for all 〈s, l〉-mers in G∗ but not in Gref . We approximate the summation

with a weighted average:

1

n

n∑
i=1

p(〈s, li〉) ≈
1

fG∗(s)
[(fG∗(s)− fGref

(s)) · p̄∗ + fGref
(s) · p̄ref ]

72



CHAPTER 3. FORGE

Whereas the complete graph assumption rendered phasing data irrelevant to the

Pop Cov model, we can use phasing data in the Hybrid model. This is because

the Hybrid model weights the terms of the sum according to their frequency in the

genome. By default, FORGe uses phasing information when it is available.

Hybrid score implementation

The Uniqueness and Hybrid models are concerned with s-mer counts both in the

linear reference genome (Gref ) and in the complete augmented reference (G∗). FORGe

uses Jellyfish v2.2.6 [78] to calculate these counts. Since Jellyfish counts s-mers in

a FASTA input file, FORGe must first construct an augmented FASTA such that

〈s, l〉-mers in this FASTA map one-to-one to 〈s, l〉-mers in G∗. This is also the goal

of the Enhanced Reference Genome [21] representation, which accomplishes this by

adding 2k − 1 “enhanced segments” for every length-s window containing k variants.

Thus, to obtain s-mer counts for G∗, we first constructed such a FASTA file using

our implementation of the ERG, then counted s-mers using Jellyfish.

Once s-mers have been counted, FORGe computes the average probability for

reads in the linear reference (p̄ref ) and in the complete augmented reference (p̄∗),

for use in the Hybrid model formula. Finally, we compute the change in H(G) for

each s-mer in both and update the Hybrid model scores for every variant with an

alternate allele in that read. After this, we have the full set of Hybrid model scores

for all variants.
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Considering blowup

Adding variants to the augmented reference increases computational costs, in-

cluding (a) size of the index on disk, (b) memory footprint during read alignment,

and (c) time required for read alignment. We collectively refer to these as “blowup.”

Blowup is most drastic in genomic regions where variants are densely clustered, driv-

ing a exponential increase in the number of allelic combinations possible (Figure 3.2).

A model based purely on minimizing blowup would prioritize isolated variants over

those in clusters. We do not expect such a model to perform well on its own, though,

since (like the Uniqueness model described above) it would fail to prioritize among

the isolated variants. For this reason, we sought a way to combine a blowup avoidance

strategy with the models already described above.

Selecting variants with blowup avoidance

After ranking variants, FORGe selects the subset of variants to include in the

augmented reference. The user specifies either a number of a fraction of all variants

to include. In the simplest case, variants are chosen in order, starting with the

highest-scoring variant, until the desired number have been included.

As an additional defense against blowup, we also propose a dynamic re-scoring

scheme that can be added to an existing model. In this scheme, when a variant

is added to the reference, FORGe searches for other variants within s bases (the

window length) of the added variant that have not yet been selected for addition.
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Figure 3.2: Demonstration of the blowup effect created by densely-packed variants.
(a) In general, wherever k variants lie inside our window, 2k − 1 new alternative
contigs must be added to the graph. Current graph aligners often limit this blowup
in one of two ways; either by (b) keeping only the most desirable alternative contigs
(the method used by HISAT2’s pruning script) or by (c) filtering the set of variants
before creating alternative contigs (used by the ERG).

These nearby variants are re-scored by multiplying their score by a penalty factor

w, where 0 < w ≤ 1. By letting w be variable, FORGe can trade off between

maximizing the model score and minimizing blowup. w = 1 maintains the original

scores, whereas a penalty near w = 0 would ensure all isolated variants were added

before any neighboring variants. We found that a penalty of w = 0.5 performed well

in practice, and this is FORGe’s default, used in all experiments performed here. Pop

Cov+ and Hybrid+ are how we refer to those models when they are combined with

this dynamic re-scoring scheme.
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3.3 Results

Strategy

Read alignment can be divided into offline (index building) and online (align-

ment) stages. FORGe operates in the offline stage. Specifically, FORGe takes a

reference genome (FASTA format) and catalog of variants and their frequencies in

the population (Variant Call Format). FORGe can also use phasing information when

provided in the VCF. FORGe then selects variants to include in the index according

to a model and desired fraction or number of variants.

Simulation

We used Mason 0.1.2 [79] to simulate reads for testing. Mason simulates sequenc-

ing errors and base quality values. Mason also annotates each read with information

about its true point of origin. We disabled Mason’s facility for adding genetic variants,

since we simulate from already-individualized references. We classify an alignment as

correct if its aligned position in the reference is within 10 bases of the true point of ori-

gin. If the aligner reports several alignments for a read, we consider only the primary

alignment — of which there is exactly one per aligned read, usually with alignment

score equal to or greater than all the others — when determining correctness.

76



CHAPTER 3. FORGE

Alignment

We tested FORGe with two read alignment strategies capable of including variants

in the reference: HISAT2 [26] and the Enhanced Reference Genome (ERG) [21].

HISAT2 is a practical graph aligner that we hypothesized would benefit from careful

selection of genetic variants to include. The ERG is simple and compatible with linear

aligners like Bowtie. We use ERG only with short unpaired reads (25 nt) to test the

hypothesis that the seed-finding step of an aligner can benefit from including FORGe-

selected variants. While HISAT2 can be used with unpaired and paired-end reads,

we test it only with unpaired reads here. Adapting the ERG approach to paired-end

alignment is probably not practical (see Discussion).

In its offline stage, HISAT2 takes a linear reference genome and a VCF file with

single-nucleotide variants and indels. HISAT2 uses GSCA indexing [23] to build a

graph-genome index. The resulting graph is the generating graph for all combina-

tions of reference (REF) and included alternate (ALT) alleles. HISAT2 also provides

software that, starting from a VCF file (or the UCSC “Common SNPs” track, derived

from dbSNP [77]), selects a subset of variants to include. It filters in two ways. First,

it excludes variants with allele frequency under 10%. Second, where variants are

densely packed, it imposes artificial haplotype constraints to avoid the exponential

blowup that results from considering all combinations of REF and ALT alleles. We

call this the HISAT2 auto method.

We also tested FORGe with our implementation of the ERG [21]. ERG’s offline
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phase starts with a linear reference genome and a variant file. It builds an augmented

reference genome by adding enhanced segments : reference substrings that include

ALTS and flanking context. The amount of context depends on a user-specified

window size, r, which typically equals the maximum read length. When n variants

co-occur in a window, 2n− 1 enhanced segments are added to cover all combinations

of ALT and REF alleles. The original ERG study limited growth by considering

only the leftmost k variants per length-r window, with k = 5 in practice. We use a

variation on this limit: if a window contains more than k variants, we consider (a)

the leftmost variant, and (b) the k − 1 other variants with highest allele frequency

according to the input VCF. Including the leftmost guarantees that each variant has

its ALT included in at least one of the overlapping enhanced segments. We also set

the limit higher (k = 15) by default. While k is configurable, we used the default in

all experiments here. After adding enhanced segments to the reference, we indexed

it with Bowtie [8]. In the online stage, we used Bowtie to align to the enhanced

reference.

In all experiments, we ran HISAT2 with the -k 10, --no-spliced-alignment,

and --no-temp-splicesite options. In the ERG experiments we ran Bowtie with

the -v 1 option to allow alignments with up to 1 mismatch. Note that HISAT2 is able

to find alignments with mismatches, insertions or deletions, whereas Bowtie can only

find alignments with mismatches. In all cases, we used Python’s rusage module to

measure peak resident memory usage and we used the Linux time utility to measure
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running time. All tools were run using a single thread.

Variant models

As detailed in Methods, FORGe has two main models for ranking and selecting

variants to include in the reference. First is Population Coverage (Pop Cov), which

scores variants according to allele frequency. Second is Hybrid, which weighs both

a variant’s allele frequency and the degree to which its addition would make the

reference more repetitive. Additionally, we evaluated versions of these two models

enhanced with a blowup avoidance strategy that, at variant adding time, dynamically

down-weights candidates that are close to already-added variants. These versions are

called Pop Cov+ and Hybrid+. All of these strategies are detailed in the Methods

section.

3.3.1 Chromosome 9 simulation

We tested FORGe in a series of simulation experiments. We used human chro-

mosome 9 from the GRCh37 assembly [73]. GRCh37 was chosen to match the co-

ordinates for the official 1000 Genomes Project Phase-3 variants [6]. We simulated

sequencing reads from chromosome 9 of NA12878, a female from the CEPH (Utah

residents with Northern and Western European ancestry) group studied in the 1000

Genomes Project. Specifically, we generated 10 million unpaired Illumina-like reads

from each haplotype of NA12878 for a total of 20 million reads. We created a VCF
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file containing all single-nucleotide variants (SNVs) appearing in chromosome 9 in at

least one 1000-Genomes individual, excluding NA12878 and family members. The

resulting file contained 3.4 million SNVs. We used the Pop Cov, Hybrid, Pop Cov+

and Hybrid+ models to score the 3.4M SNVs. The Hybrid and Hybrid+ models used

phasing information, whereas the Pop Cov and Pop Cov+ models did not (explained

in Methods). We compiled subsets of SNVs consisting of the top-scoring 0%, 2%, 4%,

6%, 8%, 10%, 15%, and 20% up to 100% in 10 point increments.

HISAT2

Figure 3.3 shows alignment rate and accuracy when using HISAT2 to align our

simulated 100bp reads to the genome indexes created with hisat2-build. The left-

most point (in the case of 3.3c, the point labeled 0%) corresponds to a HISAT2 index

with no SNVs added, i.e. a linear reference genome. The diamond labeled Major

Allele Ref corresponds to a linear reference with all major alleles; i.e. with every

SNV set to the allele that was most most frequent among CEU individuals in the

filtered callset. The diamond labeled HISAT2 auto corresponds to the pruned set

obtained by running HISAT2’s scripts. The diamond labeled Personalized shows

results when aligning to a personalized NA12878 genome with all non-reference ho-

mozygous (HOM) alleles replaced by their ALT versions and all heterozygous (HET)

SNVs added as variants, so that neither REF nor ALT are penalized at alignment

time. This is not a realistic scenario, but helpful for assessing how close the tested
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methods come to the personalized-genome ideal. Plotted lines show results obtained

when adding progressively larger subsets of SNVs to the graph genome, prioritized

by model score.

Figures 3.3a and 3.3b show alignment rate and fraction of alignments that are

correct (henceforth “correctness”) as a function of the number of SNVs included in

the genome. For all models except Hybrid+, peak alignment rate and correctness

occur in the 8–12% range of SNVs included. All the FORGe models at their peak

achieve higher alignment rate and correctness than the major-allele and HISAT2

methods. When greater fractions of variants are included — more than around 12% —

alignment rate and correctness generally decrease. Correctness eventually decreases

to a level only somewhat higher than that achieved by the linear reference, showing

that alignment suffers when too many variants are included. Figures 3.3d and 3.3e

are similar to 3.3a and 3.3b but show alignment rate and correctness as a function

of HISAT2’s memory footprint at alignment time. While FORGe’s models at their

peak have a roughly 50% larger memory footprint than the linear references (both

major-allele and reference-allele), they use roughly half the memory of the “HISAT2

auto” method.

Figure 3.3c plots a point or a parametric curve for each indexing strategy and

model. The vertical axis is the fraction of reads (not alignments) that aligned cor-

rectly, and the horizontal axis is the fraction of reads that aligned incorrectly. Notable

points on the curves are labeled with the fraction of SNVs included. Diamonds mark
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points on the curves with maximal y−x, where y is fraction correct and x is fraction

incorrect. This is a combined measure for alignment rate and accuracy, and maxi-

mal values are reached in the 8–10% range of SNVs included (except Hybrid+, which

peaked at 30%). The best-performing are superior to (above and to the left of) the

linear-genome methods, the “HISAT2 auto” method, and to the the genome obtained

by adding all of the SNVs (labeled 100%). The best-performing graph genomes come

much closer to the personalized-genome ideal than the other methods.

It is notable that the alignment rate curves in Figure 3.3a,b,d and e eventually

trend downward. Like most read aligners, HISAT2 uses heuristics to limit the effort

spent aligning reads to many repetitive regions of the same reference genome. HISAT2

is unusual in that when a read has too many repetitive alignments, it will abort

and leave the read unaligned. Bowtie does not have this heuristic; rather, Bowtie

chooses one best-scoring alignment to report even when the read has many repetitive

alignments. Because of this, HISAT2’s alignment rate decreases as more variants are

included and the genome becomes more repetitive.

A known drawback of graph aligners is that accuracy and overhead can suffer

when many variants co-occur in a small window of the genome. To measure the

impact this has on FORGe’s models, we also plotted results using blowup avoiding

versions of the Pop Cov and Hybrid models (Figure 3.3, dotted lines), called Pop

Cov+ and Hybrid+. These versions will, when selecting variants to add, deprioritize

variants that are near already-added variants. We observed that blowup avoidance
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had a minimal impact on the shape of the Pop Cov curve; e.g. Figure 3.3d & e

shows the solid and dotted lines for Pop Cov on top of each other. Notably, blowup

avoidance did cause the alignment memory to increase more slowly with respect to

the number of added variants for the Pop Cov ranking (Figure 3.3f). For the Hybrid

model, blowup avoidance did not change the relationship between memory footprint

and number of variants added (Figure 3.3f) and had an adverse effect on alignment

rate and correctness. This is likely because the Hybrid model already takes clustered

variants into account in its k-mer counts.

We repeated these experiments for paired-end reads (Figure 3.4) and the results

closely followed those in Figure 3.3. As expected, alignment rate and accuracy both

increase when using paired-end reads, since an accurate alignment for one end can

“rescue” the other in the presence of ambiguity. Peak accuracy (maximal y − x) was

achieved at the same SNV fraction except in the case of the Hybrid ranking, which

peaked at 15% rather than at 10%.

We also repeated these experiments for reads simulated from a YRI individual

(Figure 3.5), taking the same measures we took above to exclude the individual and

family members before providing variants to the model for scoring. These results also

closely follow those in Figure 3.3, with accuracy and recall peaking at a somewhat

higher percentage of variants included (15% for YRI compared to 8-10% for CEU),

likely due to YRI’s greater divergence from the reference. We return to this in the

Discussion.
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Enhanced Reference Genome

Figure 3.6 shows alignment rate and correctness when using Bowtie [8] to align

simulated 25bp reads to enhanced references constructed with the ERG method [21].

We used shorter reads and configured Bowtie to find alignments with up to 1 mismatch

(-v 1) to mimic the seed alignment step of seed-and-extend aligners.

Unlike HISAT2, Bowtie always reports an alignment if one is found, regardless of

how repetitively the read aligns. Consequently, the alignment rate shown in Figure

3.6a and d strictly increases as variants are added to the graph. Apart from that,

the results reinforce those from Figure 3.3. Peak alignment rate occurs at a relatively

small fraction of SNVs (6-20%). As more variants are added, decreases eventually

decreases, though the Hybrid ranking does not suffer this drop until over 70% of

SNVs are included. The alignment-time memory footprint of the best-performing

FORGe indexes is higher than that of the linear reference; e.g., including the top 6%

of Pop Cov+-scored SNVs increases the footprint 29%, from 127.9 MB to 165.0 MB.

But it is a fraction of the size of the index when 100% of variants are included (1.87

GB). Blowup avoidance (Figure 3.6, dotted lines) had a somewhat minor effect on

alignment rate and correctness for Pop Cov, and a clear negative effect for Hybrid.

On the other hand, it slowed the rate of index growth for both models at low and

intermediate fractions of SNVs (Figure 3.6f).
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Figure 3.3: Results from NA12878 simulation. 100-bp unpaired reads were simulated
from GRCh37 Chromosome 9 with NA12878’s variants included. FORGe and HISAT2
created and indexed augmented reference genomes with various variant sets. Besides
the Pop Cov and Hybrid rankings, we also included a strategy that gave variants
random ranks (“Random”). (a) and (d) show the fraction of reads aligned. (b) and
(e) show the fraction that aligned correctly to the simulated point of origin. (c) plots a
parametric curve of the fraction of reads with a correct alignment (vertical) versus the
fraction with an incorrect alignment (horizontal). Lines follow measurements made
over a range of fractions of SNVs, with points for 0%, 2%, 4%, 6%, 8%, 10%, 15%,
and 20% up to 100% in 10 point increments.The diamond labeled HISAT2 auto is an
augmented genome produced using HISAT2’s pruning scripts. The diamond labeled
Major allele ref is a linear reference with all positions set to the most frequent allele.
Other diamonds indicate the SNV fraction maximizing y− x, where y is the fraction
of reads aligned correctly and x is the fraction aligned incorrectly. The HISAT2 and
Major allele diamonds are excluded from panels (a), (b) and (f) because there is no
clear way to measure the fraction of variants included by these methods. The black
filled circle and square in panel (c) represent measurements when 0% and 100% of
variants are included, respectively.
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Figure3.4: Resultsfromaligningsimulated100-bppaired-endreadstoGRCh37
chromosome9usingHISAT2.PanelsandplotshavethesamemeaningasforFigure
3.3exceptthattherandomrankingisomittedhere.
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Figure3.5: Accuracyforreadssimulatedfromchromosome9ofYRIindividual
NA19238.Theinitialvariantsetcontainedall1000GenomesSNPsinchromosome
9,afterremovingNA19238anditsdirectrelatives.Panelsandplotshavethesame
meaningasforFigure1exceptthattherandomrankingisomittedhere.
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(a) (b) (c)

(d) (e) (f )

Figure 3.6: Results from aligning simulated 25-bp unpaired reads to GRCh37 chro-
mosome 9 using the ERG+Bowtie approach. Panels and plots have the same meaning
as for Figure 3.3 except that HISAT2 auto and Major allele ref diamonds are omitted
here.
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Stratification by variant density, variant rarity, and repetitiveness

Figure 3.3c showed that when we move from 0% to 8% of variants included in

the augmented reference, the number of correct alignments increases by about 0.4

percentage points (as a fraction of reads) and the number of incorrect decreases by

about 0.1 points. Though these may seem like small differences, in a study with 1.2

billion reads — approximately the number of unpaired 100 nt unpaired reads required

to cover the human genome to 40-fold average depth — this would yield about 4.8M

more correctly aligned reads and 1.2M fewer incorrectly aligned.

Still, we hypothesized that certain read subsets might be affected more dramati-

cally by the inclusion of variants. To this end, we measured alignment rate and cor-

rectness when we varied the number of alternate alleles overlapped by a read (3.7a-c),

whether the alternate allele was common or rare (3.7d-f) and what kind of genomic

region or repeat the read originated from (3.7g-i). The measurements studied here

are the same as those presented in Figure 3.3, but filtered as described below.

Figures 3.7a-c show alignment rate and correctness stratified by the number of

non-reference SNVs overlapped by a read. To obtain these subsets, we first removed

reads originating from reference-genome regions deemed repetitive by DangerTrack

[80] (score over 250). We did this after finding that these regions had a combination of

low SNV density and repetitive content that caused the 0-SNV stratum to behave very

differently from the others. Reads containing 1 or more SNVs undergo a rapid increase

in alignment rate and correctness from 0% to 10% of SNVs. Beyond 10%, all strata
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experience a slow decrease in alignment rate and correctness up to 100% of SNVs

added. The 0-SNV stratum has decreasing alignment rate and correctness across the

whole range, as expected since the addition of variants cannot help (since the reads

lack alternate alleles) but can harm alignment by increasing the repetitiveness of

the reference. Strata with more SNVs experience a more dramatic rising-and-falling

pattern; for the 3-SNV stratum, alignment rate varies from about 80–98%. While

curves for the various strata have different shapes, all peak at a relatively low SNV

fraction: 20% or lower.

Figures 3.7d-f show alignment rate and correctness for reads containing a single

rare SNV allele (1000 Genomes frequency < 0.5) versus reads containing a single

common SNV allele (≥ 0.5). In both cases, we considered only reads with a single

non-reference allele. Rare-SNV reads peak lower and at a higher SNV fraction than

common-SNV reads for both alignment rate and correctness (Figures 3.7d-f). This

is expected, since the Pop cov model prioritizes common over rare SNVs. In other

words, by the time a rare variant is added, many common variants have already been

added, making the genome more repetitive.

Figures 3.7h-j show alignment rate and correctness for reads stratified by feature

of origin. We analyzed reads originating from (a) RepeatMasker-annotated repeti-

tive regions (http://www.repeatmasker.org), (b) RepeatMasker-annotated “Alu”

repeats, (c) regions captured by the Nextera exome sequencing protocol, and (d) all

reads. Reads from repetitive regions generally had lower alignment rate and correct-
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ness compared to all reads. As before, alignment rate and correctness curves peaked

at low SNV fractions: 10% or lower. Reads from more repetitive features were more

sensitive to the number of variants included in the reference, as evidenced by the

vertical spans of the curves.

In a related experiment, we examined the graph genome’s effect specifically on the

hypervariable MHC region. We simulated reads from NA12878 Chromosome 6 and

used HISAT2 to align to both a linear and a graph genome augmented with the top-

scoring 10% of SNVs. We visualized the read-alignment pileup in the hypervariable

MHC region using IGV [81] (Figure 3.8). Qualitatively, the pileup for the augmented

reference looks superior — with more coverage in variant-dense regions and with more

even overall coverage — to the pileup for the linear reference.
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(d) (e) (f )

(g) (h) (i)

Figure 3.7: First row: Results for simulated reads stratified by the number of SNV
alternate alternate alleles overlapped by the read. Reads overlapping regions with
high DangerTrack [80] score — indicating the regions are difficult to align to — are
omitted. Second row: Results for simulated reads overlapping exactly one common
alternate allele (and no other alternate alleles) and reads overlapping exactly one rare
allele. Reads overlapping regions with high DangerTrack [80] score, indicating the re-
gions are difficult to align to. Third row: Results for simulated reads stratified by
region of origin. Regions examined are: regions labeled with the “Alu” family by Re-
peatMasker, regions captured by the Nextera exome sequencing protocol (“Exome”),
and regions labeled with any repeat family by RepeatMasker (“Rep”).
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Figure 3.8: Substantial improvements in alignment coverage in the MHC region when
variants are included in the graph genome. Simulated reads from chromosome 6
of NA12878 were aligned against the linear reference genome (top) and the graph
genome including the top-scoring 10% of SNVs ranked according to the Pop Cov
model (bottom). Visible in the pileup are are multiple places where linear-genome
coverage decreases to 0, but graph-genome coverage remains high, because the graph
genome includes some or all of the variants in the dense clusters.
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Ethnicity specificity

We also studied how ethnicity-specific augmented references, advocated in other

studies [82, 83, 84], can improve alignment. We used FORGe to select variants

from two lists: one with variants drawn from and scored with respect to the overall

1000-Genomes phase-3 callset, and another drawn from and scored for just the CEU

individuals. In both cases, variants private to NA12878 and family members were

excluded and reads were simulated from NA12878.

Figure 3.9 shows alignment rate and correctness when aligning to CEU-specific

and pan-ethnic references. As expected, the CEU-specific reference yielded higher

alignment rate and correctness. CEU-specific curves also peaked at lower numbers of

SNVs compared to pan-ethnic. However, the differences were only a few hundredths

of a percentage point and cover only a small fraction of the remaining distance to the

ideal point. Looking at this another way, if we extrapolate the results to a whole-

genome DNA sequencing experiment with 40-fold average coverage, around 250,000

alignments would be affected. We return to these small differences in the Discussion

section.
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Figure 3.9: Results from chromosome-9 NA12878 simulation when using an ethnicity-
specific (“CEU”) versus a pan-ethnic (“All”) augmented reference. Reads are 100 bp
and unpaired.
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3.3.2 Whole human genome

Simulated reads

To show our methods generalize to whole genomes, we repeated experiments like

those presented in Figure 3.3 using the full GRCh37 reference. We gathered over 79.2

million SNVs from the Phase-3 callset of the 1000 Genomes Project [6]. We used

FORGe’s Pop Cov+ model to score SNVs and compiled subsets consisting of the top-

scoring 2%, 4%, 6%, 8%, 10%, 15%, and 20% up to 100% in 10 point increments.We

built graph-genome indexes for each using HISAT2. We used the Pop Cov+ model

because the others required excessive time and/or memory; specifically, the Pop Cov

model (without blowup avoidance) produced a set of variants that HISAT2 was unable

to index in a practical time and space budget. Specifically, even with 1 TB of RAM

HISAT2 was unable to build a graph-genome index for the top-scoring 10% of SNVs

from the full genome, chosen according to the population coverage strategy. After

incorporating the blowup avoidance re-ranking strategy into FORGe, HISAT2 was

able to construct the index for up to 80% of SNVs with less than 210 GB of RAM.

For 90% of variants or higher, index construction still exhausted memory and failed.

In addition, the Hybrid and Hybrid+ models required excessive time for the step

that generates the FASTA file for G∗ due to exponential blowup. The Hybrid ranking

strategy requires that we iterate over all s-mers in G∗ in order to count each k-mer’s

frequency with Jellyfish. The time required to perform this count limits makes the

Hybrid much less practical than Pop Cov. In future work, it will be important to

96



CHAPTER 3. FORGE

●

(a) (b) (c)

Figure 3.10: Results from aligning NA12878-simulated reads to HISAT2 graph
genomes with variants selected using FORGe’s Pop Cov+ model.

investigate ways to make the Hybrid strategy more efficient, which could possibly be

achieved by switching to a more efficient and/or less precise k-mer counting strategy

Figures 3.10a & b plot HISAT2 alignment rate and correctness as a function

of the SNV fraction. We aligned 20 million 100 bp unpaired reads from simulated

from NA12878. We omitted NA12878 and family members from variant selection.

Results using the ideal personalized index are also shown for comparison. Maximal

y − x, where y is the fraction of reads aligned correctly and x is the fraction aligned

incorrectly, occurred at 10% of SNVs (Figure 3.10c). Interestingly, the maximal point

does not approach the personalized-genome ideal point as closely here as it did for the

chromosome-9 experiment (Figure 3.3). This seems to be due to the added ambiguity

that comes when variants in all non-chromosome-9 portions of the genome are added.
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Platinum reads, SNVs

For a more realistic setting, we conducted further experiments using a set of 1.57

billion real 100 bp unpaired sequencing reads from the Platinum Genomes Project [85]

(accession: ERR194147). Like the simulated reads, these also come from NA12878.

For this experiment we gathered a set of 80.0 million SNVs from the 1000 Genomes

phase-3 callset but omitting variants private to NA12878 and family members. We

again used the Pop Cov+ model to select variants.

We cannot assess correctness since the reads were not simulated. Following a

prior study [86], we measured the number of reads that align uniquely — where

HISAT2 reported exactly one alignment — versus the number that aligned perfectly,

matching the reference exactly with no differences. The goal was to capture the

variant-inclusion trade-off; we hypothesized that adding more variants will remove

the alignment-score penalty associated with known genetic variants (increasing the

number of perfect matches) without increasing reference ambiguity (decreasing the

number of unique alignments). As shown in Figure 3.11a, the points that achieved

the peak number of unique plus perfect alignments corresponded to 30% of the SNVs.

This fraction is higher than most of our simulated results, perhaps due to the fact

that unique-plus-perfect is an imperfect proxy for correct-minus-incorrect.
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Platinum reads, SNVs and indels

To highlight the effect of including indels in the reference, we repeated the previous

experiment but using both SNVs and indels from the 1000 Genomes phase-3 callset.

Specifically, we gathered 83.1 million variants, both SNVs and indels, but omitting

variants private to NA12878 and family members. We again used the Pop Cov+

model to select variants. We again plotted the number of reads that aligned uniquely

versus the number that aligned perfectly (Figure 3.11a). The graph genome built

from both SNVs and indels achieved peak unique+perfect at 30% of variants, like the

graph built from SNVs alone. However, at every percentage it yields more unique

and perfect alignments.

Reference bias

We measured how reference bias varies with the fraction of variants included.

We analyzed the alignments of the ERR194147 reads to the whole human genome

with both SNVs and indels included in in reference. Figure 3.11b shows a series of

boxplots summarizing bias at a set of 2.07 million HET SNVs called in NA12878 by

the Platinum Genomes Project [85]. The set of 2.07M HETs was chosen by taking all

HETs covered by at least 25 reads in all of our experiments. Each boxplot summarizes

the fraction of REF alleles (REF/(REF+ALT )) at the HET site for all 2.07M HETs.

As expected, bias decreased as more variants were included. The decrease plateaued

at 10–20% of variants. Beyond 20%, including more variants did further reduce bias,
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but only slightly. From 20% to 70% of variants the mean decreased by only 0.00011.

This is consistent with previous results showing that most of the benefit is achieved

at a small fraction of variants.

HLA typing accuracy

Finally, to measure how the graph genome affects relevant downstream results,

we measured how HLA typing recall and accuracy vary with the fraction of variants

included in the reference. After observing that the inclusion of about 10% of the

variants lead to a qualitative improvement in the alignment pileup (Figure 3.12) we

used the Kourami [87] HLA typing tool to make HLA calls at all variant-inclusion

fractions...

3.4 Discussion

FORGe’s modeling of positive and negative effects of including genetic variants

in an augmented reference yields accuracy-blowup tradeoffs superior to current ap-

proaches. We proposed models for prioritizing variants with distinct rationales and

strengths. We found repeatedly that the most advantageous set of variants consisted

of a fraction (6–30%) of the variants called in the 1000 Genomes project. In the case

of the Pop Cov model, this corresponded to an allele frequency threshold of around

3.8–5%. Though the best threshold varied depending on the properties of the read

aligner used, we suggest a rule of thumb of filtering out variants with allele frequency
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Figure 3.11: (a) Perfect/unique alignment results when aligning real reads. The
blue curve is parametric, as a function of the fraction of variants included from 0%
(bottom left) to 80% (top). The green diamond marks the number perfect and unique
mappings for HISAT2’s custom variant pruning script applied to the set of SNVs and
Indels. Graph genomes were built for SNVs alone (red) and for SNVs and Indels
(blue), both ranked with the Pop Cov+ strategy. Blue and red diamonds mark the
fractions that achieved the highest sum of unique and perfect alignments. (b) Allelic
bias for the 2.07 M heterozygous SNVs that met a minimum coverage threshold of
25 in all experiments. Whiskers show the 5th-to-95th percentile range.

under 5%, as was done in at least one prior study [27]. We also showed that FORGe’s

modeling can substantially reduce reference bias, also at a relatively low fractions of

variants included.

FORGe and HISAT2 combine to make a practical graph aligner that works with

human data with large variant databases like the 1000 Genomes Phase 3 call set.

Using hisat2-build to index a GRCh37-based graph genome with the top 8% of

variants from Phase-3 set required 4 hours and 165 GB of memory. Aligning 20 million

reads to this graph required 19 minutes and 6.5 GB of memory, about 50% more time
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Figure 3.12: HLA typing results called with Kourami from the same set of real reads
in figure 3.11. The percentage of genes called (red) and correctly called (blue) are
both shown.

and 50% more memory than HISAT2 requires to align to the linear GRCh37 genome.

(To prioritize the variants prior to indexing, FORGe required about 110 minutes on a

single processor.) This is competitive with the performance of aligners like Bowtie 2

and BWA-MEM when aligning to the linear reference, suggesting graph-based tools

are ready for broader use.

Though we estimate that the overall improvement in alignment accuracy for a

40x whole-genome DNA sequencing experiment would lead to 4.8M more correctly

aligned reads and 1.2M fewer incorrectly aligned reads, the magnitude of the im-

provement imparted by modeling variants depends on the genomic region. For some
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regions and variant classes (rare, isolated SNVs), the benefit is small. To improve

alignment to these regions might require an iterative approach that aligns to a graph

containing known variants, calls donor-specific variants, then realigns to a graph that

includes both. Strategies like this are implemented in the GATK HaplotypeCaller

[67], GraphTyper [68] and other tools [88]. Better variant models might also benefit

these hard cases. Even so, the effects we measured translate into substantial net

increases in the number of correctly aligned reads, and the results are pronounced

in regions such as MHC as shown in Figures 3.8 and by the HLA typing experiment

(Figure 3.12).

An ethnicity-specific reference conferred a slight accuracy improvement compared

to a pan-ethnic reference with a similar number of variants. This is notable in light of

proposals to use ethnicity-specific references [82, 83]. It suggests that the advantages

of an inclusive reference, applicable regardless of the donor individual’s ethnicity,

might outweigh the slight accuracy gain that comes with ethnicity-specificity. Also,

ethnicity-specific references could be counterproductive or misleading in cases where

donor ethnicity is reported incorrectly or where the donor is admixed [89].

The accuracy achieved at relatively small fractions of the 1000 Genomes variants

has implications for the design of graph aligners. A central challenge for these tools is

to operate efficiently even when variants are densely clustered, causing local explosion

in the number of allelic combinations. But our observations that peak accuracy occurs

at a relatively small fraction of variants, and that memory footprint increases by a
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factor of 2 or less at peak accuracy, suggests that this is not a major barrier to

practical graph-genome alignment as long as variants are chosen carefully.

It should also be possible to adapt FORGe to study how including structural vari-

ants can improve alignment. A common observation of studies that have assembled

human genomes from long reads is that the assemblies contain many megabases of

sequence not present in the standard human reference [83, 84, 90, 91]. The models

we propose are equally applicable to structural variants, assuming the variants are

called in enough individuals to estimate allele frequencies accurately.
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CNV Analysis with Ginkgo

Since the initial introduction of single cell DNA sequencing that required a manual

preparation for each cell sequenced, the number of cells that can be analyzed in a single

experiment is rapidly growing. Recently, 10X Genomics (Pleasanton, CA) announced

the release of a new single cell CNV kit that, among other advances, significantly

increases the number of individual cells that can be barcoded and sequenced in a

single experiment. While Ginkgo was designed for dozens to hundreds of cells, we

now anticipate datasets containing thousands to tens of thousands of cells that must

be processed in tandem will become routine.

In light of the increasing scale of single-cell experiments using the new 10X Ge-

nomics kit and related high-throughput approaches, we have added several features

to Ginkgo for more effective and convenient usage, released in Ginkgo 2 (Figure

4.1). Most significantly, we present two new methods that improve accuracy even
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with relatively low coverage. These methods improve the localization of copy-number

transitions, reducing the number of incorrect copy-number assignments for genes that

lie near such transitions. First, Ginkgo 2 can aggregate data across cells with simi-

lar copy number profiles, increasing read depth through ”borrowing” and enabling a

smaller bin size. Second, Ginkgo 2 can selectively introduce smaller bins near copy

number changes to improve localization without significantly increasing noise across

the full genome. We also introduce a number of improved user interface tools for more

effective transfer and analysis of large datasets as well as a novel binning technique

to avoid unmappable regions more robustly. We apply these improvements to sev-

eral real and simulated single cell datasets to highlight the improvements to accuracy

made possible by these methods.

4.1 Methods

4.1.1 Improved Binning Technique

As the typical depth of coverage in a single cell DNA analysis is very limited, a core

component to any copy number analysis method is a strategy for aggregating (bin-

ning) read counts across larger segments of the genome. The original Ginkgo provides

a set of variable-length bins defined such that each bin contains the same number of

uniquely mappable bases. A base is considered uniquely mappable for a given read

length r if a read of length r beginning from that base aligns uniquely and correctly
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to that position in the reference genome. Most of the human genome as well as most

other large genomes consist of uniquely mappable bases, interspersed with sporadic

unmappable bases due to repetitive or undefined regions (Ns and other sequencing

gaps). However, there are also occasional large unmappable regions, most notably

the centromeres of each chromosome, that create extended regions where no reads

can be reliably mapped. For example, Figure 4.2 (top) shows the composition of bins

created by Ginkgo for a desired bin size of 1Mb. Aside from the clearly-identifiable

centromere, there are multiple other poorly mapped bins containing almost 1 million

unmappable bases throughout the chromosome. Such bins are not only more likely

to skew segmentation results with abnormal read counts, but larger bins make copy-

number changes within these bins harder to localize accurately. Ginkgo 2 introduces a

new method for generating variable-length bins that avoids creating bins that contain

long regions of poor mappability (Figure 4.3). We describe both the original and the

new bin-generation methods below.

Original Bin-Generation Method

Ginkgo’s original bin-generation algorithm takes as parameters a genome, a list

of genes, and a read length r, bin width b, and aligner (BWA [9] or Bowtie [8]). The

script then performs the following steps for each chromosome:

1. Assign each base in the genome a mappability flag indicating whether a read

from this position is uniquely mappable. To do this, sample an unpaired read
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of length r starting at that position and align it to the full genome. If the read

maps uniquely to the correct position, set the mappability flag to 1. Otherwise

set the flag to 0.

2. Beginning from the leftmost mappable base, iterate through all bases in the

genome while incrementing a counter for each mappable base. When the counter

reaches b, create a new bin beginning at the end of the previous bin and ex-

tending to the current base, and reset the counter to 0. When the number

of mappable bases in an arm of the genome is not evenly divisible by b, the

bin furthest from the centromere should be extended to contain all remaining

mappable bases.

This method excludes the telomeres and guarantees that all bins contain the same

number of mappable bases, except possibly the last bin on the extreme end of each

chromosome. Thus, where the copy number remains constant (and assuming no biases

affecting coverage level) we would expect the same number of reads to map to each

bin. Unfortunately, bins that span large unmappable regions may be much longer

than the desired bin width. In particular, one of the bins bordering the centromere

will contain the centromere itself. For example, the bins for chromosome 1, computed

for b = 1Mb, include a bin surrounding the centromere of length 26Mb, for which only

4% of the bases are mappable (Figure 4.2, top). Copy number changes that occur

near unmappable regions may not be well localized, and the very large genomic span

can mask the presence of CNVs. Ideally, long stretches of unmappable bases should
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be segregated into separate bins to avoid confusion with mappable regions.

New Bin-Generation Method

Ginkgo 2 implements a new method that avoids creating bins spanning large

unmappable regions. In addition to the parameters required for the original method

above, the new method includes parameters i and p for the minimum island size and

unmappable island threshold, described in more detail below.

1. Assign each base in the genome a mappability flag, using the same method as

step 2 of the original binning method described above.

2. Identify large regions of poor mappability, which we call unmappable islands.

To find these islands, split the genome into non-overlapping windows of length i

and find all windows for which at least a proportion p of bases are unmappable.

If any of these windows are directly adjacent, merge them.

3. Beginning from the left, iterate through all bases in the genome while incre-

menting a counter for each mappable base. When the counter reaches b, or the

edge of an unmappable island is reached, create a new bin beginning at the end

of the previous bin and extending to the current base, and reset the counter to

0. If the newly-created bin is less than b
2

bases in length and is preceded by a

bin (not an island), merge it with the previous bin. Each bin is stored with the

number of uniquely-mappable bases it contains.
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The new binning method is illustrated in Figure 4.3. Bins created with this method

will by construction avoid spanning large unmappable regions, though in some cases a

bin may contain a large proportion of unmappable bases that happen to be dispersed

evenly throughout it. We can guarantee that no bin contains a proportion of ≥ p

unmappable bases, since in such a case the bin would overlap at least one unmappable

island. In practice our approach is highly effective for separating mappable and

unmapped regions. For example, Figure 4.2 demonstrates the improvement in bins

produced by the new method. Notably the proportion of unmappable bases is higher

for bad bins and lower for good bins. We also find that in practice the maximum

proportion of bad bases in all good bins is often substantially lower than the maximum

guaranteed by our parameters.

Unlike the original binning method, the new method creates bins with potentially

variable numbers of mappable bases, especially those bins adjacent to an unmappable

island. Consequently Ginkgo 2 records each bin’s unmappable base count c and

divides each its read count by c to obtain a normalized count before segmentation.

Ginkgo 2 also stores each unmappable island as a bin, but marks them with an

unmappable flag. Ginkgo 2 removes these unmappable bins before segmenting the

bins by copy number.
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4.1.2 Aggregating Read Counts from Similar Cells

Particularly in large experiments, we often find that many cells appear to be

closely related with nearly-identical copy-number profiles. In a cancer context these

would include multiple cells derived from the same clone, or normal cells that all

share the same (germline) CNVs. In such cases, Ginkgo 2 can improve segmentation

by borrowing strength from ”replicate” cells. Merging read counts from multiple cells

allows Ginkgo 2 to reduce the bin size, leading to more accurate localization of copy

number changes: aggregating 10 cells can increase the power to detect CNVs that are

up to 10 times smaller.

Ginkgo’s original release includes a cell clustering visualization (Figure 4.1d) based

on the similarity of the copy number profile of the different cells in the analysis.

Ginkgo offers a number of clustering methods as options for the user, including single

linkage, complete linkage, ward linkage or neighbor-joining, as well as several options

for the distance metric including Euclidean, Manhattan or Minkowski distances. After

computing copy number profiles for all cells, Ginkgo uses the specified clustering

method to construct a similarity tree of all cells. In Ginkgo 2, we leverage this

clustering to find replicate cells for aggregation.

A similarity score between pairs of cells in the clustering can be inferred from

the height of the lowest branch point that contains both cells. Accordingly, a user

may choose a similarity threshold below which most cells can be treated as replicates.

Ginkgo 2 generates clusters by cutting the tree at the height of the given threshold
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(Figure 4.1e). For each cluster, a new synthetic aggregate cell is created that contains

all the reads from each cell in that cluster. Ginkgo then recomputes the copy number

profile for each of these aggregate cells. The user may also optionally specify a different

bin size to use for the second segmentation; if many cells are combined into a single

cluster, a much smaller bin size can be used for greater accuracy.

The Ginkgo 2 website includes an interactive tree that visualizes the effects of

cutting the tree at any given height. Choosing an accurate threshold for clustering is

an essential part of this process. Using too high of a threshold will lead to merging

cells with substantially different copy number profiles, effectively averaging their copy

numbers and potentially obscuring important data. Too small a threshold will fail

to take full advantage of ”replicate” cells, and thereby limit the CNVs that can be

detected. Ginkgo 2 auto-fills the threshold input with a suggested threshold (defined

below), although the user may also specify their own threshold after inspecting the

copy number profiles.

Ginkgo 2 computes a suggested threshold at which to cut the tree based on the

principle that the copy-number profiles for replicate cells should differ by only a few

bins at the boundaries of where the copy number changes since these bins are most

sensitive to noise, but should not differ by long contiguous stretches. Specifically, the

suggested threshold is the largest height at which no pair of cells assigned to the same

cluster differ in their copy number profile by at least 30 contiguous bins. The default

threshold does not claim to be the optimal threshold for every sample, but is simply
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a starting point to guide the user in choosing an appropriate threshold.
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Figure 4.1: The Ginkgo flowchart for performing single-cell copy-number analysis.
New methods introduced in Ginkgo 2 are highlighted in red.
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Figure 4.2: Comparison of original Ginkgo 1 bins (top) and new bins (bottom) in
human chromosome 1. Red segments indicate unmappable islands and blue segments
indicate ”good” bins with a high proportion of mappable bases. New bins were
generated with a window size of 100kb (0.1X desired bin size) and bad island threshold
of 0.5635, thus guaranteeing that no good bin will contain more than half unmappable
bases. In GRCh37, we find that the peak proportion of bad bases is < 0.1253 for all
good bins.
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Figure 4.3: The new binning method included in Ginkgo 2. First, each base in
the genome is flagged as uniquely mappable or not. Red dots indicate unmappable
bases, blue dots indicate mappable. Next, the genome is divided into non-overlapping
windows. Windows with a high proportion of unmappable bases are classified as
non-mappable islands and adjacent islands are merged. Finally, bins are constructed
between islands such that every bin contains between b

2
and 3b

2
mappable bases, where

b is the desired bin size.
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4.1.3 Bin Refinement at Copy Number Changes

Ginkgo, as with other CNV analysis algorithms, allows copy number changes only

at bin boundaries. Consequently, even when CNVs are correctly identified, the results

can be misinterpreted when a transition is truly in the middle of a bin. For a typical

bin size of ∼ 1 Mbp bins, the true transition may therefore be as much as 500kb away

from a boundary, a difference that can easily affect the copy number status of one

or more genes. Furthermore, when the true copy number change occurs inside a bin,

the bin’s average count tends to lie between those of the flanking bins (Figure 4.4).

In Ginkgo 2, read counts are stored not only for the specified bin width, but

also for the smallest available bins, currently 5kb, that we call fine bins. The CNV

analysis algorithm uses the counts in the fine bins to determine the position of the

larger CNVs. Let r be the average number of fine bins contained in each large bin.

If Ginkgo detects a copy number change between bins B1 and B2, we assume that

the true change occurs somewhere between the start of B1 and the end of B2. Let

C1 and C2 be the average read counts per bin of the segments ending with B1 and

beginning with B2, respectively. Let b1, . . . , bn be the fine bins fully contained in B1

and B2, with read counts of c1, . . . , cn respectively. For each fine bin bk, we compute

the weighted counts of the left and right sets of fine bins as

countleft =
r

k

k∑
i=1

ci
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Figure 4.4: Sample initial copy-number profile for 500kb bins in chromosome 7. Nor-
malized read counts for each bin are marked in gray, assigned copy-number states in
black, and identified outlier bin counts in red.

countright =
r

n− k

n∑
i=k+1

ci

And the boundary score is the sum of squares of the distances between the left

and right fragments and the average read counts of their adjoining segments:

boundary score = (countleft − C1)
2 + (countright − C2)

2

Ginkgo 2 chooses the fine bin break point that minimizes this boundary score,

leading to improved accuracy at the ends of CNV events. Note that this method is

still susceptible to variation in the reads counts of fine bins, especially at low coverage,

and may overfit bin boundaries to noise in the read counts. However, such overfitting

is limited to the neighborhood of copy-number changes, and in general this method

improves the precision of segmentation.
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4.1.4 User Interface Improvements

The distribution of reads across the genome is non-uniform, due to factors such as

random primer amplification, sequencing bias, and repetitive or unmappable regions.

The low coverage of single-cell sequencing is more severely affected by noise, which

adds increased dispersion over bulk sequencing datasets with deep coverage. Ginkgo

2 offers new minimum bin width and maximum ploidy parameters to help deal with

noisy data. Both parameters can be changed in the Advanced Parameters section of

the interactive website.

The minimum bin width parameter specifies the minimum number of bins allowed

in any copy number segment as computed by the circular binary segmentation algo-

rithm in DNACopy [92]. A small value will often lead Ginkgo to discover more unique

copy number states, but is more susceptible to over-fitting to the noise in the data.

The maximum ploidy parameter sets an upper bound on the ploidy chosen for the

final copy numbers. After segmenting the normalized read counts, Ginkgo chooses the

scaling factor that minimizes the sum of square differences between scaled counts and

integer values. Maximum ploidy sets an upper bound on the scaling factors tested. A

lower value reduces the chance of choosing a large outlier at high ploidy, which would

lead to inflated copy number values.
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Scalability Improvements

The original Gingko required users to upload a single bed file for each cell, so

that samples with 1000s of cells would require 1000s of separate uploads. Ginkgo 2

allows the user to upload data from many cells in a single bed file, provided each read

is tagged with its cell of origin in the rightmost column. The user should indicate

that a file contains multiple cells by uploading a file with the same name and an

added ‘.cells‘ extension, containing a list of all cells from the bed file that should be

processed. Ginkgo 2 also adds the option to download a tar file containing all CNV

profile images to avoid downloading each image independently.

Gene Copy Number Heatmap

Ginkgo 2 adds a fourth heatmap to the three previously displayed on the main

results page. This heatmap shows the copy number assigned to all genes in the

COSMIC list of cancer-associated genes curated by the Cancer Gene Census [93]. For

this figure we use the Tier 1 gene list from https://cancer.sanger.ac.uk/census.

Figure 4.5 shows one such heatmap for a set of cells from the the SK-BR-3 cancer

cell line.
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Figure 4.5: Copy number assigned to all genes in the COSMIC gene list associated
with cancer. For genes that span multiple distinct copy number states, reported copy
number is the average copy number across all bases in the gene.
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4.2 Results

4.2.1 Datasets for Testing

Simulated Data: We simulated an aneuploid human genome based on GRCh37

with 120 simulated CNVs with an average CNV occurrence rate every 25 million

bases. CNV lengths were drawn from a log-normal distribution with mean of 10

million bases and ranging from 5kb to 200Mb in length. While these parameters may

not truly represent the true distribution of CNVs in every experimental dataset, the

high occurrence rate and wide range of sizes allow us to thoroughly test Ginkgo’s

flexibility and accuracy. CNVs were defined by adding or removing contigs in the

genome fasta (e.g. a normal diploid genome fasta would contain two copies of each

contig.)

We then used Mason [79] to simulate 2 million reads from this simulated genome

(approximately 0.6x coverage). We aligned these reads to GRCh37 with Bowtie [8],

and selected the roughly 1.65 million reads which aligned uniquely as our read set

using samtools [10]. We measured the accuracy of each CNV segmentation by the

proportion of bases in the genome which were assigned the correct copy-number.

Figure 4.6 shows the per-base accuracy of CNV calls for various bin sizes and down-

sampled subsets of the simulated read dataset. As a general rule of thumb, Ginkgo

achieves optimal accuracy when bins are as small as possible while maintaining an

average of at least 20 reads per bin. At extremely low coverage levels or large bin
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sizes, accuracy begins to decline as either noise begins to overwhelm the read depth

analysis or the large bins dilute the signal from small CNVs .

SK-BR-3 Sequencing Data: We also analyzed genuine single-cell data from

the SK-BR-3 breast cancer cell line. This dataset contained single-cell sequencing

data from 96 unique cells, as well as a BAM file containing approximately 800 million

aligned reads from a bulk DNA sequencing experiment. We discarded 2 of the cells

which contained less than 10 thousand reads each. All SK-BR-3 experiments below

used the remaining 94 cells, which contained an average of 1.2 million reads each.

Since this data is not simulated, there exists no ground truth to test the accuracy

of Ginkgo’s CNV profiles. Instead, as a proxy for correctness we compare CNVs

assigned to genes to their average read coverage from the bulk sequencing dataset.

Specifically, for each gene in the Ensembl GRCh37 annotation, we compute:

1. The average per-base read coverage of bulk sequencing alignments across all

bases in that gene.

2. The average copy-number assigned to all bases in the gene. Usually the entire

gene is contained in a single copy-number state, in which case we assign the gene

that copy number. In the infrequent case where the gene spans multiple copy-

number states, we compute a weighted average of the different copy-numbers,

weighted by the number of bases that they span.

After determining these two values for all genes, we compute the Pearson corre-
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lation between the vector of coverages and vector of copy numbers. In general, we

expect the batch sequencing coverage at any point in the genome to directly correlate

with the true copy number at that point. Figure 4.7 shows the average correlation

of all 94 cells for various bin sizes and down-sampled read sets. The correlation is

lower than the accuracy for the simulated data, as expected since the whole genome

amplification used for generating the single cell data will have biases not captured in

the simulation. Nevertheless, the curves for each down-sampled dataset resemble the

corresponding curves from the simulated data, substantiating our use of this measure

as a proxy for correctness.

MKN-45 Sequencing Data: We also evaluated a single-cell sequencing dataset

from the MKN-45 gastric cancer cell line released by 10X Genomics produced using

their new CNV kit. This dataset contains 5,203 cells containing an average of 3.45

million reads per cell. As with SK-BR-3, we approximated accuracy by the Pearson

correlation with bulk sequencing coverage for all genes in the Ensembl GRCh37 an-

notation. We used an existing bulk sequencing dataset of 282 million reads sequenced

from MKN-45 (accession number SRR801243 [94]).

Figures 4.6 through 4.8 illustrate the tradeoff between bin size and read coverage

mentioned throughout this analysis. In general, accuracy is highest when small bins

can be applied to samples with deep coverage, and decreases for larger bin sizes

and lower coverage. As a general guideline, a coverage of about 20–30 reads per

bin appears to yield the best accuracy for the simulated and SK-BR-3 datasets, a
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value consistent with earlier Ginkgo recommendations [39]. The MKN-45 dataset

peaks at a higher coverage, around 100 reads per bin due to higher noise in the 10X

Genomics scDNA data. Correlation with bulk sequencing is lower for MKN-45 than

for SK-BR-3, most likely due to the lower coverage of the bulk sequencing data and

higher frequency of extreme copy number states in SK-BR-3. As a second measure of

accuracy for this dataset, we computed the CNV for the bulk sequencing data with

Ginkgo for 10kb bins and computed the average Euclidean distance between each

sample CNV and the bulk CNV (Table 4.1) and see near universal improvements in

accuracy using the bin refinement technique.

Bin Size Original Bin Refinement (5kb)
10kb 194,128 193,462 666 (0.3%)
50kb 162,399 162,570 -171 (-0.1%)
100kb 158,970 158,950 20 (0.01%)
250kb 161,931 161,906 25 (0.02%)
500kb 168,131 168,107 24 (0.01%)
1Mb 169,966 169,746 220 (0.1%)

Table 4.1: Average Euclidean distance between sample CNVs and bulk CNV com-
puted for 10kb bins, for the original Ginkgo segmentation and with the addition of
the bin refinement step.
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Figure4.6:AccuracyofCNVsegmentationforsimulateddataacrossdifferentdown-
samplingratesandbinsizes. Eachcurvecorrespondstoadifferentdownsampled
dataset.Curvesareplottedsuchthatthex-axismarkstheaveragenumberofreads
ineachbin. Oneachcurvethebinsizesare,fromlefttoright:5kb,10kb,50kb,
100kb,250kb,500kb,1Mb.
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Figure4.7:CorrelationbetweengenecoverageandassignedCNVforSK-BR-3data
acrossdifferentdownsamplingratesandbinsizes.Eachcurvecorrespondstoadiffer-
entdownsampleddataset.Curvesareplottedsuchthatthex-axismarkstheaverage
numberofreadsineachbin. Thusforeachcurve,thelargestbinsize(1Mb)is
therightmostpointandthesmallestbinsize(5kb)istheleftmost. LowPearson
correlationisexpectedduetotruedifferencesbetweenthesingle-cellandbulkgene
expressionprofiles.
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Figure4.8:CorrelationbetweengenecoverageandassignedCNVforMKN-45data.
Thelargestbinsize(1Mb)istherightmostpointandthesmallestbinsize(5kb)is
theleftmost.
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4.2.2 New Binning Method

We next tested the accuracy of Ginkgo 2’s new binning method. By construction,

the new method should more accurately exclude regions of high unmappability in bad

bins. Figure 4.2 visualizes the change in bins after adoption of the new method. Over-

all, unmappable bins become smaller and have a higher proportion of unmappable

bases, while good bins have a lower proportion of unmappable bases. This indicates

that we are more accurately differentiating mappable and unmappable bins.

There are many parameters to consider when generating bins with the new method.

Bin size refers to the desired number of mappable bases to be included in each bin,

just as in the original binning method. Minimum island size, i, is the size of the

initial window used to search for bad islands. Bad island threshold, p, is the cutoff

for the proportion of mappable bases in a bad island. All windows with less than this

proportion of mappable bases are classified as bad islands. Tables 4.2 & 4.3 show the

CNV accuracy for varying minimum island size and bad island threshold. We found

the optimal parameter values to vary between datasets, read coverage, and bin size

used. However, accuracy was substantially higher for new bins than for the old ones

for all parameter values tested.

Figures 4.9 through 4.11 show the increase in accuracy across multiple coverage

levels and bin sizes for the optimal parameter sets in Tables 4.2 & 4.3. Bins con-

structed with the first set of parameters (left) perform slightly better for medium

to large bin sizes, while the second parameter set performs better for smaller bin
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sizes. Promisingly, the dataset downsampled by 50% achieves almost the same level

of accuracy as the full dataset at its peak, suggesting that improved bins increase

Ginkgo’s effectiveness on sparse datasets.

While there is some variability in accuracy depending on the parameters, all of

the parameters we tested yielded a large improvement over the original Ginkgo bins.

While it is impossible to choose a single parameter set that optimizes accuracy for all

experiments, since the optimal parameter set varies based on the dataset, coverage,

and bin size, by default we have selected parameters that guarantees that no bin

contains more than 52.4% unmappable bases. Specifically, for bins provided on the

active Ginkgo 2 website we use a minimum island size of 1
5

the desired bin width and

bad island threshold of 0.6.

Bad Island Threshold
0.5 0.6 0.7

0.05 0.9756 0.9754 0.9752
Min. Island Size 0.1 0.9754 0.9749 0.9750
(Prop. of bin size) 0.2 0.9741 0.9695 0.9731

0.3 0.9846 0.9841 0.9742

Table 4.2: CNV accuracy for the full simulated dataset using bins generated with the
new method for a bin size of 100kb and varying Minimum Island Size and Bad Island
Threshold. The peak accuracy is shown in bold. The CNV accuracy for the original
100kb bins is 0.9696.
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Bad Island Threshold
0.5 0.6 0.7

0.05 0.7489 0.7452 0.7443
Min. Island Size 0.1 0.7455 0.7455 0.7447
(Prop. of bin size) 0.2 0.7459 0.7459 0.7514

0.3 0.7501 0.7507 0.7494

Table 4.3: Average CNV correlation with gene coverage for all cells in the SK-BR-3
dataset. Bins were generated with the new method for a bin size of 500kb and varying
Minimum Island Size and Bad Island Threshold. The peak correlation is shown in
bold. For the original 500kb bins, the correlation was 0.7408.

Figure 4.9: Comparison of CNV segmentation accuracy of the simulated dataset for
original bins (solid) and new bins (dotted). New bins in the left figure were computed
for a minimum island size of 0.2 and a bad island threshold of 0.7. New bins in the
left figure were computed for a minimum island size of 0.3 and a bad island threshold
of 0.5. The peak accuracy for each curve is labeled.
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Figure 4.10: Comparison of SK-BR-3 CNV correlation for original bins (solid) and
new bins (dotted). New bins in the left figure were computed for a minimum island size
of 0.2 and a bad island threshold of 0.7. New bins in the left figure were computed for
a minimum island size of 0.3 and a bad island threshold of 0.5. The peak correlation
for each curve is labeled.
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Figure 4.11: Comparison of MKN-45 CNV correlation for original bins (solid) and
new bins (dotted). New bins were computed for a minimum island size of 0.2 and a
bad island threshold of 0.6.
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4.2.3 Bin Refinement

We expect our bin refinement method to be most useful when the initial Ginkgo

segmentation must use large bins, for example due to lower read coverage. Refinement

uses a fine bin size of 5kb, a 100x improvement in granularity over an initial bin size of

500kb. An initial bin size of 10kb, in contrast, would see little to no improvement from

refinement with 5kb bins. Figures 4.12 through 4.14 show the increase in accuracy

across multiple coverage levels and bin sizes when 5kb bins (the smallest bin available)

are used for refinement. The improvement is most noticeable at the largest bin sizes

and decreases to 0 as initial bin size decreases to 5kb since no further refinement is

possible.

We also assessed the effect of bin refinement in SK-BR-3 cells on the copy number

assigned to cancer-related genes, based on the COSMIC list of cancer-associated genes

released by the Cancer Gene Consensus. For an initial bin size of 50kb refined to 5kb,

we found that of 565 total genes, an average of 10.9 genes per cell changed copy

number after bin refinement, including 5 genes that had a changed copy number

state in at least 70 of the 94 cells.
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Figure 4.12: Accuracy improvement with bin refinement around copy-number
changes. Each color shows a different downsampling of the original dataset and each
curve runs from 1Mb bins (right) to 5kb (left). The peak accuracy for each curve is
labeled.
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Figure 4.13: Improvement in SK-BR-3 CNV correlation after bin refinement around
copy-number changes. Each color shows a different downsampling of the original
dataset and each curve runs from 1Mb bins (right) to 5kb (left). The peak correlation
for each curve is labeled.
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Figure 4.14: Improvement in MKN-45 CNV correlation after bin refinement around
copy-number changes. Each color shows a different downsampling of the original
dataset and each curve runs from 1Mb bins (right) to 5kb (left). The peak correlation
for each curve is labeled.
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4.2.4 Copy Number Results at Cancer-Associated

Gene Loci

To validate the bin refinement method in a real-world setting, we analyzed copy

numbers of the COSMIC list of cancer-associated genes released by the Cancer Gene

Consensus for both the SK-BR-3 and MKN-45 cell lines. Figure 4.15 shows the

absolute change in assigned copy number before and after bin refinement for an initial

bin size of 50kb across all samples. Only those genes that changed in at least 3 samples

are shown. Several genes show changes in a majority of samples, including the well

known cancer genes CDH1, PBRM1, PTPRT, and TRIP11.

Figure 4.16 shows the absolute change in assigned copy number before and after

bin refinement for an initial bin size of 50kb for a random subset of 200 samples.

Only genes that changed in at least three samples are shown. Genes showing changes

across a large proportion of samples include HIP1, MAML2, MAP2K4, NOTCH2,

and PDE4DIP.
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Figure 4.15: Heatmap of copy number changes of Cosmic cancer-associated genes in
SK-BR-3 cells before and after bin refinement for an initial bin size of 50kb. We
omitted genes for which copy number did not change in at least 3 samples.
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Figure 4.16: Heatmap of copy number changes of Cosmic cancer-associated genes in
MKN-45 cells before and after bin refinement for an initial bin size of 50. We omitted
genes for which copy number did not change in at least 3 samples.
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4.3 Discussion

As single-cell sequencing becomes more efficient and widely adopted, researchers

are applying it to increasingly diverse cell types and applications. In light of this

recent boom, this manuscript has characterized some of the challenges of perform-

ing CNV analysis on single-cell data and presented methods to minimize their ef-

fect. Ginkgo 2 increases the accuracy of Ginkgo on low coverage data and im-

proves scalability for large numbers of samples. Ginkgo 2 is available open source at

https://github.com/jpritt/ginkgodev and a web platform is available at https:

//qb.cshl.edu/ginkgodev.

The key to accurate copy number analysis is the appropriate placement of bin

boundaries and copy number segment boundaries. Boundary selection should be

informed both by the genome sequence – taking repetitive sequences and other un-

mappable bases into account – and by the coverage profile of the dataset at hand.

The methods described here address both these issues by improving the trade-off

space between read coverage and bin size. When computing CNVs with Ginkgo it is

important to choose an appropriate bin size. In general smaller bins lead to better

precision, but in practice bin size is limited by the low coverage of samples.

The trade-off between bin size and read coverage affects CNV accuracy in at least

3 distinct ways. First, bin size and read coverage limits the detection of CNVs in

the neighborhood of unmappable regions. Under the original binning implementa-

tion, larger bins are more likely to contain large regions containing a high density
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of unmappable bases. In addition, bins in the neighborhood of unmappable bases

tend to suffer from increased noise due to the unpredictability of those regions. Sec-

ond, bin size affects the localization of changes in copy-number level. Ginkgo defines

CNVs by the bins that they span; thus even if bins are classified correctly, CNV

endpoints may be placed up half a bin away from their true location. Third, bin size

and read coverage affect the detection of short CNVs. To avoid overfitting, Ginkgo

accepts a parameter minBinWidth and only searches for CNVs that span a minimum

of minBinWidth bins. This threshold is generally set to about 3–5, meaning that

CNVs that span fewer than 3 bins are unlikely to be detected. Even if the threshold

is set to 0, CNVs substantially shorter than the bin size will likely go undetected.

Each of the methods described in this chapter improves on the bin size - read

coverage trade-off in one of these three areas. The new binning method improves

segregation of highly-unmappable regions, thus improving CNV detection near those

regions. Moreover, we can optimize improvement for a specific bin size by varying

the parameters of the binning method. The bin refinement method improves the

localization of CNV endpoints even when overall coverage is low. While bin refinement

is still susceptible to local noise, this effect is diminished by first segmenting with a

large bin size, and use the smallest bins only in highly localized regions. Figure 4.12

demonstrates that bin refinement corrects some of the errors due to low coverage;

specifically, the 50%-downsampled dataset achieves nearly the same peak accuracy as

the full dataset. Finally, aggregation of technical replicates effectively increases read
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coverage, improving accuracy in all three areas. Particularly, it offers the opportunity

to detect small CNVs that were previously engulfed by large bins.
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Future Directions

The tools and research questions discussed in this thesis present many promising

extensions. I discuss several of the most interesting below.

Boiler

Boiler presents many opportunities for innovation, including extension to multi-

mapped reads and multi-sample datasets, and integration with existing aligners and

downstream tools.

One direction that I find particularly interesting is the ability to choose the amount

of lossy-ness introduced by compression. The current Boiler algorithm is an extremely

lossy but efficient compression method. In contrast, tools like Goby or CRAM present

a lossless but less compressible alternative. One might imagine a lossy-ness slider

between these two extremes, set by the user for their particular application.
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Although Boiler’s current method represents an extreme level of lossy-ness, inter-

mediate amounts might be introduced by storing some additional information along-

side each bucket. For example, storing all read starting positions would improve read

localization, but would still leave some ambiguity in read lengths. While this example

is a binary option, a true ”sliding-scale” feature would require development and op-

timization of a continuous or fine-grained variable that can be adjusted from lossless

to fully lossy.

FORGe

While I have demonstrated that an optimal subset of variants exists for the graph

genome, I presented only two ranking methods here, one of which is not yet tractable

for the full human genome. Extension of the hybrid ranking to the full human genome

requires use of an approximate k-mer counter and is not yet complete. In the future,

I hope to explore alternative ranking strategies, such as a haplotype-centric pseu-

docontig ranking (in contrast to the methods presented here which treat variants

independently.)

I would also like to extend the methods presented here to other organisms; plant

genomes such as Arabidopsis thaliana might particularly benefit from graph genome

analysis.
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Ginkgo

Single-cell sequencing is still a relatively novel technology, even within the context

of genomic sequencing. As a result, the full range of applications has yet to be

fully explored. As single-cell sequencing becomes increasingly available, the demands

placed on analysis tools will continue to rise and I anticipate that researchers will

require yet unlooked-for features.

One such feature is association of a score with each copy-number value indicating

Ginkgo’s confidence in the correctness of that assignment, similar to the “mapping

quality” reported by aligners. Confidence scores would make CNV calls more mean-

ingful and enable more accurate interpretation. In order to truly be useful, confidence

scores must be computed from a statistical basis and should reflect such values as (1)

the probability computed by the segmentation algorithm, (2) the variability of bin

counts, or noisiness of the data, and (3) confidence in the chosen ploidy. Formulation

of a statistical basis would be the first step toward assigning confidence scores to

CNVs.
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