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Abstract 

 Influenza in the human population is mainly caused by infection with influenza A viruses 

(IAVs) and influenza B viruses (IBVs). Although pandemic influenza is only caused by IAV, 

IBV is detected at increasing rates in seasonal influenza. IBV is divided into two antigenically 

and genetically distinct lineages, B/Yamagata and B/Victoria based on the hemagglutinin (HA) 

protein. Annual influenza vaccines include both IBV lineages in the quadrivalent vaccines and 

induce strain-specific protection. Vaccine production traditionally involved passaging viruses in 

embryonated eggs. More recent manufacturing techniques use cell culture-based methods which 

can increase virus production and possibly reduce the risk of antigenic changes by egg 

adaptation. Both egg and cell adaptation have been extensively studied in IAV, but comparable 

research in IBV is not abundant. We hypothesized that egg and cell culture adaptation also 

happen in IBV, and the changes lead to alteration of replication fitness in primary human 

epithelial cell cultures. To test this hypothesis, I focused on characterizing the phenotypic 

differences between vaccine and circulating strains of IBV in the B/Victoria and B/Yamagata 

lineages during the 2017-18 season. The results showed that the cell-derived vaccine strain had 

lower replication fitness in both lineages, but egg-derived vaccine strains had no observable 

phenotypic change compared to the circulating strains. Sequencing of the HA segment showed 

both cell and egg adaptation induced mutations in the HA. Egg adaptation caused a substitution 

at residue 197 which resulted in loss of a N-linked glycosylation site. Results from neutralization 

assays showed better recognition of egg-derived vaccine virus in the B/Yamagata lineage by 

both convalescent and post-vaccination human sera. These results suggested that cell and egg 

adaptations can cause viral fitness changes in IBV in cell culture and alter the antigenic profile of 

the virus. The possibility of antigenic changes causing vaccine mismatches needs to be 

considered during vaccine producing by the traditional egg method. 
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Chapter 1. Introduction 

 

Influenza  

Influenza (flu) is typically a seasonal respiratory disease usually peaks during winter. The 

two viruses that cause influenza in humans are Influenza A virus (IAV) and Influenza B virus 

(IBV) [1]. Influenza is contagious and is transmitted between people by aerosol droplets when 

infected individuals cough, sneeze or talk [2]. Influenza virus infection can cause mild to severe 

disease, even death. Typical symptoms include fever, cough, headache, sore throat, muscle ache, 

fatigue, etc. [2]. Influenza is considered a major public health burden in the world. It is estimated 

that the average incidence rate of symptomatic influenza is 8% between 2010 to 2016 in the US 

and varied from 3% to 11% between seasons [3]. Many factors contribute to the burden of 

influenza in the US every year, including virus strains, timing of season, vaccine efficacy and 

coverage [4]. The preliminary analysis by CDC estimates that influenza causes 9 - 45 million 

annual total illnesses, 140,000 – 810,000 hospitalization and 12,000 – 61,000 deaths in the US 

since 2010 [4].  

Since influenza symptoms are similar to other respiratory illnesses, it is impossible to 

diagnose accurately for influenza by symptoms alone. Laboratory tests are needed to confirm 

infection with influenza virus. Rapid Influenza Diagnostic Tests (RIDTs) are the most common 

tests carried out for diagnosis of influenza in the US [5]. It is an antigen test that detects 

nucleoproteins of both IAV and IBV in specimens [6]. RIDT is rapid and does not require 

extensive laboratory expertise to perform,  but they have lower sensitivity compared to the 

reference standards for lab confirmation of influenza virus which are reverse transcription-
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polymerase chain reaction (RT-PCR) or viral culture [6]. The RT-PCR test is a molecular assay 

that detects viral RNA in patient samples. Since residual viral RNA can still be present in 

patients’ respiratory track, a positive result by RT-PCR does not necessarily mean infectious 

virus production or ongoing illness [7]. 

 

Influenza B Virus 

Structure and Core Protein Function 

 Influenza B virus, like IAV, belongs to the Orthomyxoviridae family. The IBV virion is 

enveloped. It has a segmented genome consisting of 8 single-stranded RNAs (Figure 1.1). The 8 

segments -  in order of their lengths: PB1, PB2, PA, HA, NP, NB/NA, M1/BM2 and NS1/NEP - 

encode for 11 proteins by mechanisms including alternative open reading frame utilization and 

alternative spliced mRNA [8]. The IBV genome encodes 6 fewer proteins than IAV [8, 9], 

lacking accessory proteins such as PB1-F2, PB1-N40, PA-X, PA-N155, PA-N182, M43 and 

NS3, it does encode unique proteins not found in IAV like NB and BM2 [10, 11]. 

 The hemagglutinin (HA) is one of the 3 integral membrane proteins in IBV. This 

glycoprotein consists of 3 identical monomers and mediates receptor binding on cell surface and 

membrane fusion in the endosome [10, 12, 13]. IBV HA shares similar overall structure to IAV 

HA, although the sequence homology is low [10]. Sialic acids are the surface receptors used by 

influenza viruses. In the human upper respiratory track, epithelial cells predominantly express α-

2,6-linked sialic acids, while α-2,3-linked sialic acids are more common in the lower respiratory 

tract.  IBV HA has higher affinity to α-2,6-linked sialic acids, although it can bind both forms 

[10, 14]. The HA is cleaved into 2 separate polypeptide chains during processing. HA1 is the 
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globular glycoprotein head and contains the receptor binding domain (RBD). HA2 is the 

stalk/stem core and contains the fusion peptide [12, 15]. Upon receptor binding, the virion is 

endocytosed into the endosome. Lowering of endosomal pH causes conformational changes in 

HA, insertion of the fusion peptide into the endosomal membrane, followed by membrane fusion 

[12, 13, 15, 16]. Meanwhile, the membrane protein BM2, analogous to the M2 proton channel in 

IAV, acidifies the internal space of the virion, causing uncoating and facilitating the release of 

viral ribonucleoprotein (RNP) into the host cytoplasm [8, 15, 16]. 

 The neuraminidase (NA) is another IBV surface protein that is responsible for cleavage 

of sialic acids on the cell surface and release of newly produced virions [10, 12]. NA is a 

tetramer of identical subunits [12]. While the  IBV and IAV NA have very low overall sequence 

homology, both contain active sites consisting of 19 highly conserved residues, and  share 

similar overall structures [10]. 

 PA, PB1 and PB2 form the polymerase complex of IBV. Despite minimal data on their 

exact function in IBV, they are thought to work similarly to the polymerase in IAV [10]. 

Influenza virus has a negative sense genome, so the RNA-dependent RNA polymerase (RdRp) 

must produce positive sense mRNA immediately upon entry into the cell. The RdRp in an 

assembled virion is bound to each segment of genomic RNA in the viral RNP structure. Upon 

uncoating, the vRNP is transported into the nucleus for viral replication. Two main advantages of 

replication in the nucleus are that there is a lower chance of being detected by innate immune 

sensors in the cytoplasm, and the RdRp can snap the 5’ phosphate caps from host mRNA [15-

17].  

 The NB protein is unique to IBV. It is encoded by the NA segment but 4 nucleotides 

upstream of the NA start codon [10]. It is shown to be an integral component of IBV membrane 



4 

 

and possess ion channel activity [18-21]. However, the exact function of this protein is unknown. 

Evolution and Host Range 

The first strain of IBV was isolated in 1940 [22] and IBV diverged into 2 genetically 

distinct lineages, B/Victoria and B/Yamagata, some time before 1983 [8, 10, 23]. The two 

lineages are defined by their HA sequences, in contrast to IAV where subtypes are characterized 

by both HA and NA sequences [8, 10, 16]. IBV cases in each season had been dominated by a 

single lineage prior to 2001. Since the reappearance of B/Victoria in 2002, the two lineages of 

IBV have been co-circulating with the two IAV subtypes [8, 10, 24, 25]. Apart from possible 

intrinsic viral factors, the dominance of a lineage in a season can also be influenced by external 

factors like vaccine efficacy and vaccine composition. Different evolutionary patterns are 

observed between the two lineages with B/Yamagata evolving into multiple clades that co-

circulate, while B/Victoria viruses follow a more linear evolutionary pattern with the newer 

clades often replacing the previous ones [8, 10, 24].  

IBV is also subjected to antigenic drift, although the rate of nucleotide substitution is 

lower than that in IAV. Both the HA and NA segments experience high adaptive evolution with 

HA segment being the highest [8, 10, 24, 26]. Antigenic drift is gradual changes on the virus as 

they replicate which eliminate antibody binding epitopes, allowing for escape from pre-existing 

immunity. The mutations can be additions, deletions or substitutions of nucleotides. These errors 

are caused by RdRp in IBV, which like in many other RNA viruses, lacks proof-reading 

function. In a single infected cell, thousands of copies of genomes can be generated which may 

contain mutations. Newly packaged virions with these mutations can infect other cells in the 

same host or be transmitted to another host and continue to accumulate mutations. The resulting 

mutation rate is around 2.0 × 10-3 substitutions per site per year in IBV [24, 26]. Drifts on HA 
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can gradually change the antigenic profile of the virus. Nonsynonymous mutations are especially 

frequent near RBD [8]. This can result in evasion of neutralization by antibody and emergence of 

new strains. 

Reassortment is another way in which IBV can acquire genetic variation [24, 26].  The 

influenza virus genome is segmented and when a single cell is co-infected by two or more 

viruses, their genetic material can be exchanged by segment reassortment. This is a strategy 

which can introduce a larger degree of genome diversity in a short period of time because it 

involves changes in an entire segment, as opposed to accumulating single mutations. Antigenic 

shift is well documented in IAV as the major cause of multiple pandemic influenza outbreaks 

[27, 28]. While human IAV primarily use α-2,6-linked sialic acids as receptor, avian influenza 

viruses primarily bind to α-2,3-linked sialic acids. Pigs which express both α-2,3- and α-2,6-

linked sialic acids, can be co-infected by human and avian flu. Segments from the two strains can 

reassort and the resulting virus may cross species barriers and infect human. Humans have no 

pre-established immunity against these new strains which potentially cause pandemic outbreaks. 

IBV is strictly a human pathogen, meaning there is no known natural animal reservoirs 

[8, 10] and only occasional detection of IBV in seals, pigs and dogs [29-31]. Unlike IAV, which 

has a wide range of natural hosts, IBV has no risk of constant spill over to humans from animal 

hosts or antigenic shifts, although reassortment between viruses of the same lineage or viruses of 

the two separate lineages has been observed [8]. A study in China showed B/Yamagata-

B/Victoria inter-lineage reassortment occurred in 2013-14 season [32]. New strains were formed 

from B/Yamagata HA in 2013-14 season and B/Victoria NA in 2011-12 season. 
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Epidemiology 

Influenza B Viruses are increasingly becoming prominent contributors to the global 

burden of influenza. Since 2000s, B/Yamagata and B/Victoria lineages have been co-circulating 

with IAV subtypes H1N1 and H3N2 in human populations [8, 10, 33, 34]. IBV was responsible 

for a median 23.4% of total reported influenza cases in 31 countries world-wide from 2000 to 

2018. IBV epidemics usually peak 0.6 – 1.1 months later than IAV [34]. The 2017-18 season, 

which is the season of interest in this thesis, is shown as an example in Figure 1.2 [35]. Most of 

the cases in this particular season were dominated by IAV, and IBV cases peaked around 4 

weeks later than IAV. Interestingly, the 2019-2020 flu season had an early rise of IBV cases 

parallel to the rise in IAV. There were also significantly more IBV cases compared to previous 

flu seasons [35]. 

 Although IBV is capable of infecting people through a wide range of age, older children 

and young adults appear to be most susceptible to IBV. Disease manifestations are more 

prevalent in younger populations [10]. IBV causes out of proportion pediatric deaths compared 

to IAV. CDC reported that except for the 2009 pandemic year, between 2004 and 2011 IBV 

caused 34% of influenza-associated deaths in pediatric population [10, 36]. It is also interesting 

to note that B/Victoria seems to be more prevalent in younger populations than B/Yamagata [8, 

10]. If we look at cases by age from the 2017-18 season, more IBV cases appeared in younger 

age groups. Patients between 5-24 years of age saw the highest proportion of IBV cases (Figure 

1.3) [37]. The 2019-20 season also saw the highest proportion of pediatric deaths caused by IBV, 

followed by the 2017-18 season from year 2016 to 2020 (Figure 1.4) [36]. 
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Vaccines 

 Annual influenza vaccines for IBV are widely available in the world. There are two main 

types of flu vaccines, inactivated flu vaccine and live-attenuated flu vaccine. The US uses 

quadrivalent vaccine which includes both subtypes of IAV and both lineages of IBV [38]. 

Vaccines against IBV provide lineage-specific protection, since the two lineages are 

antigenically distinct. Neutralizing antibodies typically bind to HA on IBV, which interferes with 

protein binding to cell surface receptors and subsequent fusion between the virus and host 

membranes. For the vaccine to work, the HA in the influenza vaccine has to antigenically match 

the HA in circulating IBV strains. A big challenge in influenza vaccine manufacturing is that 

candidate strains must be selected before the start of season which the vaccine will be 

distributed. Traditional influenza vaccines are manufactured in embryonated hen’s eggs. Viruses 

are injected into the allantoic cavity and allowed several passages to produce large amount of 

virus stocks to be made into vaccines. The process is lengthy and requires a large number of eggs 

and facilities to harvest, inactivate and partially purify the virus. The surveillance and tracking of 

influenza activity provide insights into what strains should be chosen for the next influenza 

season [25].  

 Since candidate strains are selected before the season starts, there is a possibility of 

vaccine mismatches. A mismatched vaccine has an HA protein which has different antigenic 

properties to the circulating strains. Neutralizing antibodies generated against the vaccine strain 

may not be effective in inhibiting the circulating strain, decreasing vaccine efficacy. Another 

way for vaccine mismatch to happen is through the egg-adaptation process itself. This process is 

well documented in IAV [39-41], and IBV [42, 43]. Recently, the FDA approved flu vaccine 

manufacturing using cell-based techniques. However, prior of the 2019-2020 flu season, some of 
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the virus strains provided for cell-based production were still derived in eggs. When a virus is 

passaged in non-primary cell cultures, there is a possibility that mutations can be selected for 

which provide the virus with a replication advantage.  The adaptation of IAV or IBV to 

embryonated eggs or to cell lines may select for viruses with a fitness advantage over the 

parental strains, and these strains would then go on to be used in the vaccine manufacturing 

process. Previous research has shown that point mutations on the HA protein were induced on 

B/Victoria viruses when adapting to embryonated hen’s eggs. These mutations shifted the virus’s 

preference from α-2,6- to α-2,3-linked sialic acids, and helped the virus to grow to a higher titer 

than wildtype strains [44, 45]. It is also possible for the virus to acquire mutations near RBD on 

the HA protein where neutralizing antibodies bind and alter its antigenic sites. A study reported 

that antibodies binding more efficiently to egg-adapted H1N1 HA than to wildtype H1N1 HA 

were found in about 5% of vaccinated individuals in the 2015-16 season [46]. In the 2016-17 

season, the lack of a glycosylation site on the HA of egg-adapted H3N2 vaccine strain 

contributed to a low vaccine efficacy  [47]. This poses a concern for vaccine production as the 

resulting vaccine strain may not well represent the circulating strain in the flu season, thus 

causing vaccine mismatches. 
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Figure 1.1: Structure of influenza B virus. Koutsakos et al., 2016 [10] 

 

 

Figure 1.2: Influenza positive tests reported to CDC by public health laboratories, national 

summary, 2017-18 season. CDC, 2018 [35] 
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Figure 1.3: Age group distribution of influenza B positive specimens reported by public 

health laboratories, national summary, 2017-18 season. CDC, 2018 [37] 
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Figure 1.4: Number of influenza-associated pediatric deaths by week of death. CDC, 2020 

[36]  
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Hypothesis and Research Aims 

Influenza A viruses have been well studied historically. While causing significant a number 

of cases each year worldwide, Influenza B virus is generally less well studied. I hypothesize that 

egg and cell culture adaption of IBV leads to changes that will alter the replication of the virus in 

primary human nasal epithelial cell cultures. To test this hypothesis, my research has focused on 

the characterization and comparison of phenotypic differences between vaccine and circulating 

strains of IBV in the B/Victoria and B/Yamagata lineages during the 2017-18 season.  

The thesis is broken down into the following chapters: 

1. Isolation of circulating strains of both lineages 

2. Characterization of circulating strains, egg-cultured vaccine strains and cell-cultured 

vaccine strains with comparisons between circulating and vaccine strains of the same 

lineage, and between circulating strains from the two lineages. 

3. Sequencing of HA segments to identify potential mutations which cause the phenotypic 

differences between strains. 
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Chapter 2. Identify IBV clinical isolates of the appropriate lineages from the 

2016-17 and 2017-18 seasons  

 

Rationale 

 My initial goal was to identify the appropriate IBV circulating strains from The Johns 

Hopkins Center for Excellence in Influenza Research and Surveillance (JH-CEIRS) sample 

inventory. Nasopharyngeal swab samples were collected from patients who visited Johns 

Hopkins Hospital. Samples tested positive for IBV infection were requested from the JH-CEIRS 

repository. They were then screened for IBV lineage, and selected strains were used to grow 

working stocks. 

 RT-PCR is the standard lab test for IBV lineage identification. Since the two lineages of 

IBV, B/Yamagata and B/Victoria, have genetically distinct HA segments, the lineage of a 

clinical strain can be determined by RT-PCR using two sets of lineage-specific primers. The 

isolated vRNA was amplified using WHO recommended primers for IBV lineage identification. 

The cDNA product generated from B/Yamagata and B/Victoria viruses would be about 388bps 

and 284bps, respectively. 

 After lineage screening, swab samples were put on human nasal epithelial cell (hNEC) 

culture. This was to amplify any infectious virus present in those samples. hNEC cultures are a 

primary cell culture system that faithfully reproduces the cells that are present in the upper 

respiratory tract and are targeted by influenza viruses.  As a result, passaging in these cultures 

would be less likely to cause mutations which could change the virus phenotype. After we 
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initially amplified IBV stocks in hNEC cultures, MDCK-SIAT1 cells were used for growing 

virus stocks. Madin-Darby Canine Kidney (MDCK) cells are the most widely used cell line for 

lab research on influenza virus. They are easy to culture and can be infected by many influenza 

viruses. They have both α-2,3- and α-2,6-linked sialic acids although α-2,3-linked sialic acids are 

predominantly expressed. MDCK-SIAT1 cells were derived from a MDCK cell line with stable 

transfection of a cDNA  encoding human 2,6-sialyltransferase (SIAT1) [48]. MDCK-SIAT1 

cells express more α-2,6-linked sialic acids and are more suitable to support IBV infection. 

 Virus strain names and lineages used in this and following chapters are listed here: 

 B/Yamagata B/Victoria 

Circulating strains 
B/Baltimore/R0250/2018 B/Baltimore/R0001/2016 

B/Baltimore/R0300/2018 B/Baltimore/R0122/2016 

Egg-derived vaccine strain B/Phuket/3073/2013 egg B/Colorado/06/2017 egg 

Cell-derived vaccine strain B/Phuket/3073/2013 cell B/Iowa/06/2017 cell 

Table 1: All virus strains used in this thesis. 

 

Materials and Methods 

Complete Media (CM) 

 Dulbecco’s Modified Eagle Media (DMEM) supplemented with 10% by volume fetal 

bovine serum (FBS), 2mM GlutaMAX, 100U/mL penicillin, and 100ug/mL of streptomycin 

were used as complete growth media for MDCK-SIAT1 cells. 

 

Infection Media (IM) 

 Dulbecco’s Modified Eagle Media (DMEM) supplemented 2mM GlutaMAX, 100U/mL 
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penicillin, 100ug/mL of streptomycin, and 0.3% bovine serum albumin (BSA) were used as 

complete growth media. Immediately prior to infection, 5ug/mL or 2.5ug/mL of N-acetylated 

trypsin (NAT) was added to IM when infecting MDCK or MDCK-SIAT1 cells, respectively. 

 

PBS and PBS+ 

 1X phosphate-buffered saline (PBS) was made from 10X stocks with autoclaved MilliQ 

water. PBS+ was made from 1X PBS supplemented with 100mg/L CaCl2 and 100mg/L MgCl2. 

 

RT-PCR 

Viral RNA was isolated using Qiagen QIAamp Viral RNA Mini Kit per manufacturer’s 

protocol. 140ul of nasopharyngeal swab sample was used for each extraction. Concentration of 

extracted vRNA were measured by NanoDrop and 2ul of vRNA were input into RT-PCR. One-

step RT-PCR master mix was prepared with SuperScript™ III One-Step RT-PCR System with 

Platinum™ Taq DNA Polymerase per manufacturer’s instruction. All 4 primers were added to 

the mix at final concentration of 10uM. Primer sequences are listed in table 2. Thermocycling 

protocol was set as: 60°C 1 minute, 42°C 20 minutes, 50°C 20 minutes, 95°C 15 minutes, 35 

cycles of 30 seconds at 94°C, 30 seconds at 52°C, 1 minute at 72°C, then 72°C for 10 minutes, 

finally hold at 12°C. DNA gel was run at 150mV in 1% agarose and TAE buffer. 

Table 2: Sequences of primers used for lineage identification RT-PCR. 

B/Victoria 
Bvf224 ACATACCCTCGGCAAGAGTTTC 

Bvr507 TGCTGTTTTGTTGTTGTCGTTTT 

B/Yamagata 
BYf226 ACACCTTCTGCGAAAGCTTCA 

BYr613 CATAGAGGTTCTTCATTTGGGTTT 
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MDCK-SIAT1 cell 

 Cells were split 1:10 or 1:20 when confluent. 10mL of 1X trypsin-EDTA was used to 

resuspend cells. CM was added to the flask after each passage. Cells were cultured at 37°C with 

5% CO2. 

 

hNEC cell culture 

 Human nasal epithelial cells were obtained from disease-free donors during endoscope 

sinus surgery from collaborating lab or bought from commercially available source. Cells were 

differentiated and grown at air-liquid interface (ALI) as previously described [49]. Confluent 

cultures were trypsinized and plated onto human type IV placental collagen coated 12-well 

Falcon filter inserts. LHC Basal Medium was added to basolateral side with supplements 

previously described [49] and cells were cultured at 37°C with 5% CO2. 

 

Generating virus stocks 

 MDCK-SIAT1 cells were seeded in T75 flask and incubated at 37°C with 5% CO2 until 

confluent. Cells were washed twice with PBS+, then 2.5mL of virus in IM was added at an MOI 

= 0.01 infectious units per cell, assuming 1.125x107 cells/T75 flask. Rock the flask at room 

temperature for 1 hour. Virus inoculum was aspirated out and cells were washed once again with 

PBS+. 12mL of IM was added to the flask. Cells were incubated at 32°C and observed every 

day. Media was collected in a conical tube when 70% of cytopathic effect was seen. The tube 

was centrifuged at 400g for 10 minutes at 8°C to remove cell debris. The supernatant was 
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aliquoted into 500ul and stored at -75°C. 

 

Fifty percent tissue culture infectious dose (TCID50) 

 MDCK-SIAT1 cells were seeded in 96-well plates and incubated at 37°C with 5% CO2 

until confluent. Cells were then washed with 100ul of PBS+ per well twice, and 180ul of IM was 

added to each well. Virus samples were serially diluted 8 time in a U-bottom 96 well plate with 

each 1:10 dilution consisting of 180ul of IM and 20ul of the original virus sample or the previous 

dilution. 20ul of each dilution was pipetted to the appropriate wells in the 96-well plate with 

cells. The plates were incubated at 32°C with 5% CO2 for 6 days. Then cells were fixed by 

adding 80ul of 4% formaldehyde to each well and incubating over night at room temperature. 

The media/fixative was removed and 80ul of naphthol blue-black dye was added to each well 

over night. Plates were washed with water the next day and TCID50 titer was quantified.  

 

Flow cytometry 

 MDCK-SIAT1 cells were plated at about 50% confluency in 6-well tissue culture plates 

and incubated at 37°C for 24 hours. Cells were washed twice with PBS+ and then infected with 

250ul of virus at MOI = 0.2 and incubated at 32°C. At 18 hours post infection, cells were washed 

twice with PBS and treated with 1X trypsin-EDTA solution for 15 minutes at 37°C. Dislodged 

cells were collected in a 50mL conical tube and equal volume of complete growth media was 

added to the tube. The tube was centrifuged at 800g for 4 minutes, followed by 2 washes with 

10mL of PBS. One mL of 2% paraformaldehyde was added to each tube and incubated at 4°C for 
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30 minutes, followed by 2 washes with 10mL of PBS and centrifuged at 900g for 3 minutes. The 

fixed cells were permeabilized with 1mL of permeabilization buffer (0.2% of Tween-20 in PBS) 

at 4°C for 15 minutes. Cell were resuspended in FACS buffer (0.3% BSA in PBS) and aliquoted 

into FACS tubes. 100uL of blocking buffer (1% normal goat serum in FACS buffer) was added 

to FACS tubes and incubated at room temperature for 30 minutes. Then cells were washed and 

centrifuged with 2mL of FACS buffer and incubated with the appropriate 100uL primary 

antibody for 45 minutes at room temperature. B/Victoria specific mouse monoclonal antibody 

BR7B7 was used at 4ng/ml, and B/Yamagata specific mouse monoclonal antibody WI3E8 was 

used at 1ng/ml. Cells were washed twice with 2mL of FACS buffer and incubated with 100uL 

secondary Goat anti-mouse IgG AF488 at 2ng/ml for 25 minutes at room temperature. Cells 

were washed with 2mL and resuspended in 500uL of FACS buffer. Ran samples on BD 

FACSCaliber. 

 

Results 

Lineage identification of IBV clinical samples by RT-PCR 

IBV-positive nasopharyngeal (NP) swab samples collected from patients enrolled in the 

Johns Hopkins Hospital Emergency Room were subjected to viral RNA extraction. The 2017-18 

season was a B/Yamagata dominated season in terms of IBV cases (Figure 1.2) [35]. Almost all 

NP swab samples from that season were B/Yamagata positive (Figure 2.1) or did not generate a 

band due to low virus titers. Some samples generated double or multiple bands which may be the 

result of overamplification, or due to the existence of some host materials in NP swab. Notably, 

sample 11-Pro-365 had double bands and each band were at approximately similar in length to 
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the 2 expected products at 284bps and 388bps. I suspected that it was a co-infection with both 

IBV lineages, and a plaque purification was attempted to isolate the B/Victoria clinical strain. All 

picked plaques still had the double bands at similar sizes as before, and only the gel image of 2 

representative plaques was shown (Figure 2.2). Eventually we decided to switch to the 2016-17 

influenza season to isolate B/Victoria viruses as it was only one season prior and less 

B/Yamagata-dominated. Similar procedures were carried out for 2016-17 season NP swab 

samples, and we were able to identify multiple B/Victoria-positive clinical strains (Figure 2.3).  

 

Passage of IBV clinical strains on hNEC culture and growing virus stocks 

 A total of 4 samples (11-Pro-250, 11-Pro-300, 11-Pro-0001, 11-Pro-0122) were selected 

to be used as the clinical strains in my thesis research. The NP swab samples were inoculated 

onto the apical side of hNEC culture and incubated at 32°C. Virus production was quantified 

from apical washes collected at day 3, 5 and 7 post infection and infectious particle titers were 

measured using TCID50 assay. All 4 strains showed positive replication and infectious virus 

production in hNEC cultures. The harvested apical media were then used to grow virus working 

stocks using MDCK-SIAT1 cells at 32°C. IBV lineages of the new stocks were confirmed again 

using similar procedures by RT-PCR, and all viruses had the same lineages as their original NP 

swab samples. 

 

Flow cytometry to validate the lineages of IBV clinical strains 

 A protocol using flow cytometry was developed to re-confirm the lineage of our IBV 

clinical strain working stocks, and to have an alternative method for IBV lineage identification. 
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When MDCK-SIAT1 cells were infected with B/Baltimore/R0001/2016, a B/Victoria virus, the 

B/Victoria-specific mouse monoclonal antibody was able to recognize the HA on the surface of 

infected cells (Figure 4A, B), while experiencing low to no recognition of HA on cells infected 

by B/Baltimore/R0250/2018, a B/Yamagata virus (Figure 2.4E, F). When a B/Yamagata-specific 

mouse monoclonal antibody was used, it recognized B/Yamagata virus infected cells well but did 

not react with B/Victoria infected cells (Figure 4C, D, G, H). Their lineages were also triple 

confirmed by sequencing the HA segments (see Chapter 4). Hence, we were confident that we 

now have obtained 2 clinical isolates from each IBV lineage. 

 

Discussion 

 IBV lineage identification by RT-PCR is a standard test by WHO for differentiating 

between B/Victoria and B/Yamagata lineages. We have shown that the recommended protocol 

and primers sets work well with 2016-17 and 2017-18 flu season IBV clinical isolates. We were 

able to identify the lineages of our IBV clinical strains and isolate the viruses. Flow cytometry 

was also shown to be a good tool for IBV lineage differentiation. Although it is not as easy or 

fast to run, we have demonstrated that it can be a useful alternative method or as a validation for 

the RT-PCR assay. 

It was ideal to have clinical strains of both lineages from the same year for the proposed 

thesis research. Although we did get a few B/Victoria positive samples after scanning more than 

70 NP swabs from the 2017-18 season, they did not show positive replication of infectious virus 

in hNEC culture and had very weak bands for the B/Victoria specific RT-PCR reaction, 

indicating low viral load in the swab samples. RT-PCR is a very sensitive test, it is also possible 
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that the samples had no infectious viruses but did have residual viral RNA which caused the 

assay to be positive. Given that it was a B/Yamagata-dominated season in IBV, we had to go 

back to the previous influenza season to try to identify replication-positive B/Victoria clinical 

strains. The B/Victoria component of the WHO-recommended composition of influenza virus 

vaccines for 2017-18 did not change from the 2016-17 composition [50, 51]. WHO reported that 

the majority of B/Victoria circulating strains of the 2016-17 and 2017-18 seasons were well 

inhibited by antisera from ferrets infected by B/Brisbane/60/2008, the B/Victoria component in 

flu vaccines for both seasons [50, 51]. Both flu seasons also experienced low percentage of 

B/Victoria cases, meaning that the virus used as the B/Victoria component was a good match to 

the majority of circulating strains, and there was probably no major difference between 

B/Victoria circulating strains from the two seasons. However, it is worth noting that a substantial 

portion of more recent viruses from 2017-18 season showed poor inhibition by these antisera, 

while well inhibited by B/Colorado/06/2017-infected antisera. These viruses had a 2-amino acid 

deletion in HA at residues 162 and 163 [52]. 
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Figure 2.1: Gel image of RT-PCR products of IBV-positive NP swab samples from the 

2017-18 flu season. Samples were labeled by their patient IDs. More samples were screened and 

only n=7 representative samples were shown in the image. B/Brisbane/60/2008 and 

B/Wisconsin/01/2010 were used as B/Victoria and B/Yamagata controls, respectively. 

 

 

Figure 2.2: Gel image of RT-PCR products of isolated plaques from plaque purification of 

NP swab sample 11-Pro-365. A total of n=10 non-overlapping plaques were picked and 

screened, only n=2 representative plaques were shown in the image. 
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Figure 2.3: Gel image of RT-PCR products of IBV-positive NP swab samples from the 

2016-17 flu season. B/Brisbane/60/2008 and B/Wisconsin/01/2010 were used as B/Victoria and 

B/Yamagata controls, respectively. 

 

 

Figure 2.4: Flow cytometry for IBV clinical strain lineage identification. Scatter plots and 

histograms were shown for each virus and antibody pair: A. and B. B/Victoria virus and 

B/Victoria-specific antibody, C. and D. B/Victoria virus and B/Yamagata-specific antibody, E. 

and F. B/Yamagata virus and B/Victoria-specific antibody, G. and H. B/ Yamagata virus and B/ 

Yamagata-specific antibody. Mock infected cells with no primary antibody were used for gating. 

Negative controls were set to be between 100 – 101 on the X axis. Analysis was done on FlowJo. 
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Chapter 3. Viral phenotype characterization of egg-adapted, cell-adapted 

vaccine strains and circulating strains from both lineages 

 

Rationale 

 Basic characterization of our IBV strains involves 2 main experiments: plaque assays and 

low MOI growth curves. They can provide qualitative comparison of replication fitness between 

strains. The three comparison groups to be investigated are: i) B/Yamagata circulating strains vs 

B/Victoria circulating strain, ii) circulating strain vs egg-derived vaccine strain vs cell-derived 

vaccine strain in B/Victoria, and iii) circulating strain vs egg-derived vaccine strain vs cell-

derived vaccine strain in B/Yamagata.  

Plaque morphology is an indication for viral fitness. The monolayer of cells is covered by 

an agarose overlay which prevent viruses from diffusing freely into the media to infect cells that 

are distal to the initially infected cells. This assay can quantify how viruses infect neighboring 

cells or spread cell to cell. Faster replicating strains can spread to adjacent cells faster and 

produce bigger plaques. Plaques are areas of dead cells which cannot be stained with our live cell 

dyes. If a virus can generate a higher CPE, the plaques will be clearer. MDCK cells were used 

for plaque assays instead of MDCK-SIAT1 because SIAT1 cells were not able to adhere to the 

tissue culture dishes strongly enough under assay conditions.  

Low MOI growth curves tell us about the replication kinetics of the virus. A virus is said 

to be more fit when it can produce infectious viruses faster, and/or to a higher peak titer. If the 

inoculation dose is within 5-fold of each other, any difference in virus titer we see in later time 
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points can be considered due to intrinsic characteristics of the viruses tested. Growth curves in 

this chapter were done in 2 cell culture systems. MDCK-SIAT1 cells are a commonly used 

transformed cell line for influenza virus.  hNEC cultures represent the cell type IBV naturally 

infects and are primary, differentiated cultures. The results generated from hNEC cultures are 

more biologically relevant to the real world.  

 

Materials and Methods 

MDCK-SIAT1 cell 

 Cells were split 1:10 or 1:20 when confluent. 10mL of 1X trypsin-EDTA was used to 

resuspend cells. CM was added to the flask after each passage. Cells were cultured at 37°C with 

5% CO2. 

 

hNEC cell culture 

 Human nasal epithelial cells were obtained from disease-free donors during endoscope 

sinus surgery from collaborating lab or bought from commercially available source. Cells were 

differentiated and grown at air-liquid interface (ALI) as previously described [49]. Confluent 

cultures were trypsinized and plated onto human type IV placental collagen coated 12-well 

Falcon filter inserts. LHC Basal Medium was added to basolateral side with supplements 

previously described [49] and cells were cultured at 37°C with 5% CO2. 
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Plaque assay 

 MDCK cells were seeded in 6-well plates to be confluent on day 3. Extra cells were 

seeded to make sure the plate is fully confluent by the day of the assay. On day 3, cells were 

washed twice with PBS+. Virus dilution was done on a separate 24-well plate. 900ul of IM was 

added to 6 wells per virus on the dilution plate. 100ul of virus sample was added to the first well. 

1:10 serial dilution was done on each sample until 10-6. Then 250ul of the virus dilution was 

added directly to the appropriate wells on the 6-well plate. Plates were incubated at 32°C for 1 

hour and shacked every 10-15 minutes to ensure even distribution of inoculum. After 1 hour, 

virus was aspirated out and 2% agarose was mixed with 2X plaque media (2X modified eagle 

medium supplemented with 2mM GlutaMAX, 100U/mL penicillin, 100ug/mL streptomycin, 

0.3% BSA, 5mM HEPES buffer, and 5ug/mL N-acetyl trypsin) and 2mL of the resulting 1% 

agarose was overlayed to each well. Plates were then put in 32°C incubator after agarose had 

solidified. Plates were observed every day and fixed overnight with 4% formaldehyde when 

plaque reached desired sizes. The agarose overlay was scooped out the next day, and cells were 

stained with naphthol blue-black. Plaques were imaged by light dissection microscope. Plaque 

size was quantified by Image J. Area under the and-drawn shape tracing the edge of plaque was 

measured. Overlapping plaques were not sampled. 

 

MDCK-SIAT1 growth curve  

 Cells were seeded in 24 well plates to be confluent on day 2. On the day of infection, 

cells were washed twice with PBS+. Virus dilution to an MOI of 0.001 was prepared, assuming 

3x105 cells/well. 100ul of virus dilution was added to 3 wells per virus. The plate was rocked for 
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1 hour at room temperature. Then virus inoculum was aspirated, and cells were washed twice 

with PBS+. Five hundred ul of IM was added back to each well and incubated at 32°C. Infected 

cell supernatants were collected and replaced with fresh IM at 2, 12, 24, 36, 48, 72 and 96 hours 

after infection. Collected timepoint samples were stored at -75°C. Infectious virus titers in those 

samples were measured with TCID50 assay. 

 

hNEC growth curve 

 300ul of warm PBS+ was added to apical side to wash cells twice and basolateral media 

was replaced. Virus was diluted to an MOI of 0.01, assuming 3.3 x 105 cells/well. 100ul of virus 

inoculum was added to the apical side and cells were incubated at 32°C for 2 hours. Virus was 

then aspirated out and cells were put back in the incubator. At timepoint 2, 12, 24, 36, 48, 72 and 

96 hours after infection, 100ul of IM was added to apical side and incubated in 32°C for 10 

minutes. Then media was collected and stored at -75°C. Basolateral media was changed every 2 

days. Infectious virus titers in the apical supernatants were measured with TCID50 assay. 

 

Fifty percent tissue culture infectious dose (TCID50) 

 MDCK-SIAT1 cells were seeded in 96-well plates and incubated at 37°C with 5% CO2 

until confluent. Cells were then washed with 100ul of PBS+ per well twice, and 180ul of IM was 

added to each well. Virus samples were serially diluted in a U-bottom 96 well plate. Each 1:10 

dilution consisted of 180ul of IM and 20ul of the original virus sample or the previous dilution. 

Each sample was diluted 8 times to 10-8. 20ul of each dilution was pipetted to the appropriate 
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wells in the 96-well plate with cells. The plates were incubated at 32°C with 5% CO2 for 6 days. 

Then cells were fixed by adding 80ul of 4% formaldehyde to each well and incubating over night 

at room temperature. The media/fixative was removed and 80ul of naphthol blue-black dye was 

added to each well over night. Plates were washed with water the next day and TCID50 titer was 

quantified.  

 

Results 

Plaque morphology 

 Plaque assay was performed on MDCK cells at 32°C. When comparing across lineages, 

both B/Yamagata clinical strains had larger plaque sizes compare to B/Victoria clinical strains. 

The B/Yamagata mean plaque size was 3.43 ± 1.27 mm2 for B/Baltimore/R0250/2018 and 3.10 

± 1.56 mm2 for B/Baltimore/R0300/2018 (Figure 3.1 A). The B/Victoria mean plaque size was 

1.56 ± 0.89 mm2 for B/Baltimore/R0001/2016 and 1.07 ± 0.54 mm2 for B/Baltimore/R0122/2016 

(Figure 3.1 A). There was no major difference in plaque clarity both between strains within a 

lineage and across lineages. Plaques were transparent and viruses were able to clear the 

monolayer of cells well (Figure 3.1 B-E). 

 Plaque comparison within a lineage was also done on clinical strains, egg-derived 

vaccine strains and cell-derived vaccine strains. In the B/Yamagata lineage, the mean plaque 

sizes for B/Baltimore/R0250/2018, B/Phuket/3073/2013 egg-derived and B/Phuket/3073/2013 

cell-derived were 1.03 ± 0.64 mm2, 1.16 ± 0.50 mm2 and 0.76 ± 0.42 mm2, respectively (Figure 

3.1 F). The B/Baltimore/R0250/2018 plaques had different sizes compared to the previous assay 

because they were done as separate experiments. No significant difference in plaque size was 
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observed between the circulating strain and the egg-derived vaccine strain, while the cell-derived 

vaccine strain had larger mean plaque sizes when compared to both egg-derived vaccine strain 

and circulating strain. Plaque clarity was similar across the 3 virus strains. Most plaques were not 

clear and were stained light blue in the center (Figure 3.1 G-I).  

In the B/Victoria lineage, the mean plaque sizes for B/Baltimore/R0001/2016, 

B/Colorado/06/2017 egg-derived and B/Iowa/06/2017 cell-derived were 0.59 ± 0.40 mm2, 0.60 ± 

0.37 mm2 and 0.39 ± 0.25 mm2, respectively (Figure 3.1 J). The cell-derived vaccine strain had 

smaller plaques than both other strains. Plaque clarity was similar across the three strains. Most 

plaques were not clear and were stained light blue in the center (Figure 3.1 K-M). 

 

Low MOI growth curve 

 To compare replication fitness between the two lineages, a low MOI growth curve was 

done on the four circulating strains at 32°C. No significant fitness advantage was observed 

among the strains tested in both MDCK-SIAT1 and hNEC cultures (Figure 3.2 A, B). Peak titer 

was reached at 48 hours post infection, and viral replication rate was similar across all strains. 

 The comparison between the circulating strain and two vaccine strains of B/Yamagata 

lineage revealed that cell-derived vaccine strains replicated more slowly than the other two 

strains and reached a lower peak titer (Figure 3.2 C, D). In MDCK-SIAT1 cell culture, 

B/Phuket/3073/2013 cell-derived virus reached peak titer at 36 hours post infection, while 

B/Baltimore/R0250/2018 and B/Phuket/3073/2013 egg-derived virus reached peak titer at 48 

hours post infection and at 1.9 and 1.3 log higher level, respectively (Figure 3.2 C). Infectious 

virus titer started to drop after 48 hours post infection due to cell death. A similar trend was 
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observed in hNEC cultures (Figure 3.2 D). All strains reached peak titers between 36 and 48 

hours post infection, but the cell-derived vaccine strain had peak titer more than 2 logs below the 

other two strains. Infectious virus titer reached a plateau and remained steady around their 

corresponding peak titer after 48 hours. No significant difference in viral replication fitness was 

detected between the circulating strain and the two vaccine strains from the B/Victoria lineage 

(Figure 3.2 E, F). All strains reached peak titer between 48 and 72 hours post infection in both 

MDCK-SIAT1 and hNEC cultures. In all growth curves, hNEC culture consistently produce 1 to 

2 log10 higher peak titers than MDCK-SIAT1 culture. 

 

Discussion 

 The plaque assays were repeated twice for each comparison to ensure reproducibility. 

Since the end point of a plaque assay is subjective, data could not be compared across different 

experiments. Although plaque size bear similar trends between assays, we noticed that plaque 

morphology was not very consistent. Sometimes the plaque was clear, the next assay with the 

same virus may produce semi-clear plaques. The cells themselves could contribute to the 

inconsistency of plaque morphology. Since there was no way to accurately quantify the 

confluency of cells, the monolayer could be in slightly different confluency in every assay. Cell 

passage number could also affect condition of the cells. 

The two B/Yamagata circulating strains consistently produce larger plaques than the two 

B/Victoria circulating strains in plaque assay (Figure 3.1 A). However, low MOI growth curves 

in both hNEC and MDCK-SIAT1 cultures suggest no difference between the four strains in 

replication kinetics (Figure 3.2 A, B). This result suggests that there may be differences between 
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lineages in the ability for virus to spread cell-to-cell, but the advantage B/Yamagata had may be 

masked when virus progenies can diffuse freely in media and infect distal cells. A recent study in 

IAV showed that IAV can spread to adjacent cells via tunneling nanotubes [53]. The group 

showed that HA deficient IAV could transport its viral genome to recipient cells. Productive 

infection was also observed in those cells. At the time of writing, no similar phenomenon has 

been reported in IBV. 

 In the first several B/Victoria growth curves, virus inoculums had larger than 5-fold 

differences from each other, meaning any differences we saw in later timepoints may not be due 

to viral characteristics alone. The original stock was measured multiple times to reconfirm its 

infectious virus titer. Eventually, we pre-made virus serial dilutions separated by 5-fold each and 

tittered these dilutions. Then picked the samples with similar TCID50 titers to do the growth 

curve. Each growth curve was repeated twice to confirm the trend. 

 In both B/Yamagata and B/Victoria lineages, the cell-derived vaccine strains had smaller 

plaques, suggesting possible changes to the virus by cell-adaptation. Those changes could be on 

HA or internal proteins such as the PA, PB1 and PB2 polymerase complex. The lower viral 

fitness of the cell-derived B/Yamagata vaccine strain in both MDCK-SIAT1 and hNEC growth 

curves reconfirmed the finding in plaque assays. Interestingly, while we observed a fitness cost 

in plaque assays of both cell-derived vaccine viruses (Figure 3.1 F, J), a slower replication 

phenotype was only captured in B/Yamagata cell-derived virus by growth curves (Figure 3.2 C, 

D). This may also be a result of differential ability of cell-to-cell spread between lineages. 

B/Victoria viruses may depend more on virus budding to spread, and cell-adaptation only caused 

reduction in ability of viruses to spread to adjacent cells. Overall, the data supports that cell-

derived vaccine viruses may induce phenotypes with slower replication in both in vitro cell lines 
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and primary cell cultures. 
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Figure 3.1: Plaque Assays. A. Comparison of plaque sizes formed by circulating strains of both 

lineages. B-E. Representative images of plaques from each strain. F. Comparison of plaque sizes 

formed by B/Yamagata IBV strains. G-I. Representative images of plaques from each strain. J. 

Comparison of plaque sizes formed by B/Yamagata IBV strains. K-M. Representative images of 

plaques from each strain. Asterisks denote statistically significant differences (* = p<0.05) via 

one-way ANOVA with multiple comparisons. 
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Figure 3.2: Low MOI Growth Curves. A. Low MOI growth curve of all circulating strains of 

both lineages on MDCK-SIAT1 culture and B. hNEC culture. C. Low MOI B/Yamagata growth 

curve of circulating strain, egg-derived and cell-derived vaccine strains on MDCK-SIAT1 

culture and D. hNEC culture. E. Low MOI B/Victoria growth curve of circulating strain, egg-

derived and cell-derived vaccine strains on MDCK-SIAT1 culture and F. hNEC culture. 

Asterisks denote statistically significant differences (* = p<0.05) by repeated measures 

MANOVA with Tukey multiple comparison tests. 
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Chapter 4. Sequencing of HA segment and differential neutralizing antibody 

titers against vaccine and circulating strains  

 

Rationale 

 In the previous chapter we demonstrated that there are phenotypic differences between 

vaccine and circulating virus strains in both IBV lineages. Although multiple factors may 

contribute to the differences, we sought to investigate if there are changes in the HA sequences 

of these viruses which could potentially explain the different phenotypes. We chose the HA 

segment because it is one of the main antigens of which humans mount an antibody response to. 

Changes in HA can impact vaccine efficacy and cause viral fitness change [25, 32, 44, 54]. 

 As discussed in earlier chapters, IBV egg adaptation was well documented [42, 43, 55]. It 

was reported that the percentage of egg-propagated viruses that were antigenically similar to the 

circulating strains was significantly lower when compared to cell-propagated viruses from 2008 

to 2018 [55]. The greater discrepancy was seen in B/Victoria lineages. As a final analysis, I 

wanted to determine if egg or cell propagation induced changes in the HA protein sequence of 

our IBV strains. 

 

Materials and Methods 

RT-PCR 

Viral RNA was isolated using Qiagen QIAamp Viral RNA Mini Kit per manufacturer’s 
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protocol. 140ul of virus stock was used for each extraction. The concentration of extracted 

vRNA were measured by NanoDrop and 2ul of vRNA were input into the RT-PCR reaction. 

One-step RT-PCR master mix was prepared with SuperScript™ III One-Step RT-PCR System 

with Platinum™ Taq DNA Polymerase per manufacturer’s instruction. The PCR primers were 

added to the mix at final concentration of 10uM. Primer sequences are listed in Table 3. 

Thermocycling protocol was set as: 60°C 1 minute, 42°C 20 minutes, 50°C 20 minutes, 95°C 15 

minutes, 35 cycles of 30 seconds at 94°C, 30 seconds at 52°C, 1 minute at 72°C, then 72°C for 10 

minutes, finally hold at 12°C. DNA gel was run at 150mV in 1% agarose. 

B/Yamagata RT-PCR 
primer 

IBV_Yam_5UTR_1F AGCAGAAGCAGAGCATTTTCT 

IBV_Yam_3UTR_1842R TGATGACAAGCAAACAAGCACT 

B/Victoria RT-PCR 
primer 

IBV HA 5’ UTR TATTCGTCTCAGGGAGCAGAAGCAGAGCATTTTCT 

IBV HA 3’ UTR R GTAATGATGACAAGCAAACAAGCA 

Sequencing primer 
IBV HA seq 426 F AGAAAAAGCACGACCAGGAGGACCCTA 

IBV HA seq 1316 R AGTATTTCGTTGTGGAGTTCATCCAT 

Table 3: Sequences of PR-PCR primers and sequencing primers for IBV HA sequencing. 

Sequencing 

 After cDNA generation, the product was purified using QIAquick PCR Purification Kit 

per manufacturer’s protocol. Final concentration of cDNA was quantified using NanoDrop. The 

cDNA was sent to the Synthesis & Sequencing Facility of the Johns Hopkins University for 

Sanger sequencing. The 2 PCR primers and 2 sequencing primers at 7mM each were included in 

the tube. 

 

HA modeling 

 Sequences were retrieved and analyzed using Geneious 8 software. B/Brisbane/06/2008 

was used for the IBV HA numbering and the HA crystal structure was used for modeling. HA 
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modeling was done using Pymol. 

 

Results 

RT-PCR of HA segment 

 A set of forward and reverse primers were designed for each IBV lineage for RT-PCR of 

the HA segment. Another pair of sequencing primers which hybridized more to the center of the 

segment were also used to generate overlapping reads with the outer primers for more 

sequencing coverage. Initially a universal pair of primers were used since the 3’ and 5’ ends of 

the HA segment had similar sequences for both lineages. However, RT-PCR only worked for our 

B/Victoria viruses, and new pair primers needed to be designed specifically for B/Yamagata. The 

length of cDNA product was around 1800 bps for all viruses - the expected length of the HA 

segment in IBV. 

 

Amino acid changes and mapping mutations on HA model 

 A list of all amino acid mutations for each lineage can be found in the following tables 

(Table 2, 3). All mutations are named as changes from the circulating strain of the corresponding 

lineage. There were more nucleotide changes in B/Yamagata lineage but most of them were 

silent mutations and did not result in amino acid changes in the HA protein. Mutation Q173L, 

N197D and N230D were on the surface of HA, and V252M was a mutation that was not solvent 

exposed, so it was not mapped on the HA model. Residue numbers 172 and 197 are close to 

known antigenic structures called the 120 loop and 190 helix, respectively (Figure 4.1 A). 
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Residue 197 is a known glycosylation site and the mutation in B/Phuket/3073/2013 egg-derived 

virus caused the loss of this glycosylation site.  

In the B/Victoria lineage, all amino acid changes were on the surface of HA (Figure 4.1 

B). Mutation R495K was located at the bottom of the HA stem. Mutation D129G was in the 120 

loop and I180V was next to this antigenic site. The egg-derived vaccine strain also possessed a 

mutation at residue 197, which caused the loss of the glycosylation site. In loop 160, both 

vaccine strains had two amino acid deletions at residues 162 and 163. Apart from R495K, all 

mutations in both lineages were located near known antigenic structures.  

Amino acid 

position 
B/Baltimore/R0001/2016 B/Colorado/06/2017 egg B/Iowa/06/2017 cell 

129 Asp (D) Gly (G) Gly (G) 

162, 163 Lys, Asn (K, N) - - 

180 Ile (I) Val (V) Val (V) 

197 Asn (N) Thr (T) Asn (N) 

495 Arg (R) Lys (K) Lys (K) 

Table 4: All amino acid changes in B/Victoria lineage. 

Amino acid 

position 
B/Baltimore/R0250/2018 B/Phuket/3073/2013 egg B/Phuket/3073/2013 cell 

173 Gln (Q) Leu (L) Leu (L) 

197 Asn (N) Asp (D) Asn (N) 

230 Asn (N) Asp (D) Asp (D) 

252 Val (V) Met (M) Met (M) 

Table 5: All amino acid changes in the B/Yamagata lineage. 

 

Differential serum neutralization of egg-derived vaccine virus compared to circulating strain 

 To investigate whether the changes we saw in HA affect effective antibody-mediated 

virus neutralization, Dr. Jo Wilson, the research and clinical fellow in our lab, did neutralization 
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assay on the B/Yamagata viruses. Baseline and convalescent sera from patients infected with 

B/Yamagata viruses in the 2017-18 season were collected. The neutralization titers of the sera 

were measured against B/Baltimore/R0250/2018, B/Phuket/3073/2013 egg-derived virus and 

B/Phuket/3073/2013 cell-derived virus (Figure 4.2 A). No significant difference was observed in 

baseline sera titers to the afore mentioned viruses. The convalescent sera had higher 

neutralization activity to B/Phuket/3073/2013 egg-derived virus than both circulating strain and 

cell-derived vaccine virus. The 3 high responders in the group were vaccinated individuals. 

 To further investigate on how egg-adaptation may affect vaccine efficacy, Dr. Wilson 

also tested the neutralization titers to the B/Yamagata viruses in paired pre- and post-influenza 

vaccination sera from 67 humans (Figure 4.2 B). All subjects had received quadrivalent vaccine 

including B/Phuket/3073/2013-like virus prior to the 2019-20 season. Both pre- and post-

vaccination sera recognized the B/Phuket/3073/2013 egg-derived virus better than the 

B/Baltimore/R0250/2018 circulating virus. Post-vaccination serum recognized the 

B/Phuket/3073/2013 egg-derived virus more effectively than either the cell culture or circulating 

virus. Taken together, the data indicate that the mutations present in the egg and cell culture 

vaccine strains of the B/Yamagata lineage viruses affect the antigenic structure of the HA 

protein, indicating that cell and egg adaption can alter antigenic sites.  

 

Discussion 

 We hypothesized that a universal pair of primers would work for RT-PCR of the HA 

segments for both IBV lineages. We compared several published sequences and found the 3’ 

UTR and 5’ UTR of the segment were very similar for both lineages, and the first 30 bases 
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downstream of the start codon and the last 20 bases upstream of the stop codon were conserved, 

as well. There could be possible degradation of vRNA at the two ends of the segment which 

caused the primers not able to bind in the case of our B/Victoria viruses. However, the fact that 

all 3 of our B/Victoria viruses were able to generate products from their HA segments but none 

of our B/Yamagata viruses did suggested it may be a systematic problem such as sequence 

variations. We decided to redesign a new set of primers for B/Yamagata as the process was quick 

and easy. The new primers bind closer to the starting codon on the 5’ end. A few bases 

downstream of the start codon were not read due to poor sequencing quality of the Sanger 

Sequencing but since the first 30 bases and 10 amino acids were highly conserved as mentioned 

above, this did not pose a problem in identifying HA lineages. The first 15 amino acids of the 

newly translated polypeptide chain will also be cleaved during processing, so even if the 

sequences were different it would not be problematic. 

 HA is the surface protein on influenza virus which is responsible for receptor binding and 

membrane fusion. It is also a common target for antibody binding. Neutralizing antibodies often 

bind at or near the receptor binding domain on the top of HA. Changes in amino acid residues 

and glycosylation sites near antigenic sites may alter the binding affinity of neutralizing 

antibody, causing potential evasion from antibody response in hosts. A mutation at 197 is present 

in egg-derived vaccine viruses in both lineages, suggesting this may be a common mutation site 

caused by egg adaptation during vaccine manufacturing. The same mutation in egg-cultured 

viruses were reported before [43, 44]. Virus with a 197 glycosylation had suppressed replication 

in eggs, suggesting a disadvantage of this modification for efficient growth in eggs. 

Glycosylation is also an important factor to the antigenic profile of influenza viruses. If egg 

adaptation occurred in a vaccine virus, it may not match the antigenic property of the circulating 
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viruses very well and decrease vaccine efficacy. The result from neutralization assay confirmed 

our hypothesis in the B/Yamagata lineage. Unfortunately, we could not test the hypothesis in 

B/Victoria lineage because we were not able to isolate a B/Victoria circulating strain from this 

year. Further consideration needs to be taken into account when producing egg-based influenza 

vaccine. Even though the B/Phuket/3073/2013 cell-derived virus had reduced viral fitness, it 

seemed to preserve similar antigenic properties as the circulating strain. The reduction in 

replication fitness will not be a setback for inactivated vaccine compared to live attenuated 

influenza vaccine which requires active viral replication. We also see that cell-derived vaccine 

strains have fewer mutations on HA compared to egg-derived vaccine strains, especially at key 

glycosylation sites.  

Mutations in HA may also alter the binding affinity to sialic acids, which subsequently 

increases or decreases infectivity. The decrease in viral fitness of B/Phuket/3073/2013 cell-

derived virus in both MDCK-SIAT1 and hNEC cultures may be partly caused by the mutations 

we found in HA. Viral fitness changes are often associated with mutations on internal proteins, 

as well. The replicase proteins PA, PB1 and PB2 can also contribute to the rate of influenza virus 

replication and should also be sequenced to determine if any mutations were acquired during egg 

and cell adaption. 
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Figure 4.1: Mutations mapped on IBV HA model. All mutations on the HA surface of egg-

cultured vaccine and cell-cultured vaccine strains from the circulating strain in both A. 

B/Victoria and B. B/Yamagata lineages are mapped on the model. A mutation V252M is not 

shown on the model as the residue is inside the HA trimer structure. The known antigenic sites of 

IBV are highlighted. The 120 loop is shown in green, the 150 loop is shown in blue, the 160 loop 

is shown in yellow, and the 190 helix is shown in violet. The crystal structure of HA of 

B/Brisbane/06/2008 was used for modeling and amino acid numbering.  
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Figure 4.2: Neutralization assay. A. Comparison of neutralizing antibody titers using baseline 

and convalescent sera from B/Yamagata infected patients in 2017-18 season (n = 7) and B. pre- 

and post-influenza vaccination in individuals in 2017-18 (n = 67).  Asterisks denote statistically 

significant differences (* = p<0.05) via two-way ANOVA with multiple comparisons. 
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Chapter 5. Conclusion and Future Direction 

 

 In this thesis, I have demonstrated characterization of circulating strains, egg-derived 

vaccine strains and cell-derived vaccine strains of IBV in both lineages. The whole process 

started from virus isolation from patient samples to phenotypic characterization, and finally 

sequencing to try to explain the different phenotypes we observed in these strains. We have 

shown that B/Victoria and B/Yamagata circulating strains in 2017-18 season had different cell-

to-cell spread pattern, but overall replication kinetics are similar. In both lineages, cell-derived 

vaccine viruses had slower replication in cell cultures, although there seemed to be no antigenic 

changes to the circulating virus. The sequencing results supported our hypothesis that there were 

mutations in the HA of cell-derived and egg-derived vaccine viruses. We also proved that these 

changes on egg-derived vaccine virus led to antigenic changes with our neutralization assay 

results. 

 There also are questions we were not able to answer in this thesis. Influenza virus 

replication kinetics is not only affected by HA. Internal proteins, notably the polymerases and 

M2 proteins, can also drastically alter replication efficiency. We can also go more in depth on the 

mutations we found on HA. Specific mutants can be generated with only one of the several 

mutations and characterized using our workflow to pinpoint mutations that caused the 

phenotypic change. Sequencing can also be done on the NA protein, as it is also subjected to 

antigenic drift as mentioned in earlier chapters. A recent PhD graduate from our lab, Dr. 

Harrison Powell, showed that glycosylation changes on NA in IAV can alter viral fitness and 

evade antibody binding [56].  A novel genotype of IAV from clade 3c.2a H3N2 encoded 
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glycosylation site at position 245–247 in the NA protein appeared in 2014-15 season surveillance 

data. Recombinant virus with 245 NA Gly had lower enzymatic activity and grew to lower virus 

titer in hNEC cultures compared to virus without the glycosylation. However, this change 

allowed the virus to evade neutralization by blocking the binding of NA specific antibodies in 

human sera. 

 Our data showed reduced virus growth in cell culture adapted viruses and introduction of 

multiple mutations on HA. However, no change in its antigenic property was captured by the 

neutralization assay with human sera. These results suggested that cell culture remains to be the 

better strategy than egg culture in preserving the antigenic sites on IBV HA, thus lowering the 

risk of vaccine mismatch. However, mutations may still arise and possibly cause lower virus 

yield in vaccine production. 

 In the WHO report for vaccine recommendation for the 2020-21 season, a vast majority 

of B/Victoria viruses tested had a 3 amino acid deletion on HA at positions 162-164 [57]. Ferret 

antisera raised against the virus with the deletion (B/Washington/02/2019) can effectively 

neutralize these viruses, but neutralization was poor by ferret antisera raised against strains from 

previous seasons (B/Colorado/06/2017). This suggests possible antigenic drift of recent 

B/Victoria viruses. A similar workflow as in this thesis can be implemented to characterize these 

recent B/Victoria strains. Comparison can be made between older and newer B/Victoria 

circulating strains as a possible future project. 

 Similar aspects in IAV have been well studied, but these have not been extensively 

studied with IBV. Other studies have shown hemagglutinin inhibition assays or ferret antisera 

neutralization assays, but our data is using human sera neutralization assay. It will be more 

relevant to influenza surveillance and vaccine work.  
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Appendix. SARS-CoV-2 Lung Pathology in Golden Syrian Hamsters 

 

Background 

 The coronavirus disease 2019 (COVID-19) started at the end of 2019. The disease is 

caused by the newly emerged Severe, Acute, Respiratory Syndrome coronavirus 2 (SARS-CoV-

2 or SCV2), a betacoronavirus. Multiple publications have indicated a male bias in disease 

severity and mortality rates [58-61]. To understand the biology of sex differences in COVID-19, 

a group effort to study SARS-CoV-2 infection in Golden Syrian Hamsters was conducted, and I 

am very proud to have been part of that team. 

 Animal models can be used for studying sex differences in the pathogenesis of SCV2. 

The Golden Syrian Hamster was chosen because they are susceptible to human strains of SVC2 

without the need to adapt viruses to generate disease. This study aimed to provide a more 

thorough analysis of sex differences in the pathology of SCV2 infection, including infectious 

virus load, viral RNA, cytokines, antibody responses, and lung damage in Golden Syrian 

Hamster infection model. In this appendix, I will focus on my contribution to the group, which is 

infectious virus load in tissues. At the point of writing, the manuscript had been submitted to 

mBio for review on 31 March 2021. 

 

Material and Methods 

Tissue homogenization 

 Hamster nasal turbinates, lung lobes and tracheal tissue samples, harvested at 2, 4, 7, 14 
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and 28 days post infection were provided by the animal group. The animals were infected with 

105 TCID50s per animal, and the inoculum of 100 ul was divided equally between the two nares. 

Homogenization media (DMEM with 100 U/mL penicillin and 100 μg/mL streptomycin) was 

added to each pre-weighed tissue to generate a 10% weight to volume ratio for homogenization. 

Lysing Matrix D beads were added to each tube and the samples were homogenized in a 

FastPrep-24 bench top bead beating system (MPBio) for 40sec at 6.0m/s, followed by 

centrifugation for 5 min at 10,000g at room temperature. Samples were returned to ice and the 

supernatant was distributed equally into 2 tubes. To inactivate SARS-CoV-2, TritonX100 was 

added to one of the tubes to a final concentration of 0.5% and incubated at room temperature for 

30 minutes. The homogenates were stored at -70C. 

 

TCID50 

 Infectious virus titers of tissue homogenates were measure by TCID50 assay. DMEM 

supplemented with 2.5% fetal bovine serum, 1mM glutamine, 1mM sodium pyruvate, and 

penicillin (100 U/mL) and streptomycin (100 μg/mL) antibiotics were prepared as infection 

media for SCV2. Homogenates were serially diluted in IM similarly to the TCID50 for IBV as 

described in earlier chapters. Virus dilutions were then transferred to Vero-E6-TMPRSS2 cells 

seeded in 96-well plates. Cells were incubated at 37°C for 6 days. At the end point, cells were 

fixed with 4% formaldehyde, and stained with naphthol blue-black. Infectious virus titers were 

quantified as described for IBV. 
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Results 

Similar SARS-CoV-2 replication kinetics between sexes 

 Day 2 post infection, we saw peak infectious virus titer in all tissue types (Figure A1). 

Nasal turbinate samples had the highest virus titers. Viral load began to drop in both sexes 

starting 4 days post infection. At day 7, almost no detectable infectious virus was detected in all 

tissues. None of the samples had detectable virus titer at day 14 or 28 post infection. No sex 

differences were observed in either peak viral load or viral clearance in all tissues.  

 

Discussion and Conclusion 

 The infectious virus titer in hamster respiratory tissues did not show sex differences. The 

data suggested that the difference in disease progression and severity was not caused by 

differential virus replication. Along with other data not included in this appendix, we have shown 

that male hamsters lose more body mass and suffer from more severe pulmonary pathology than 

female hamsters. Our data also demonstrated that virus replication and cytokine responses did 

not correlate with sex differences in disease severity in SCV2 infection in hamsters. Measuring 

antibodies from infected hamsters showed that female hamsters produced greater amounts of 

antibodies in both respiratory tissues and in plasma compared to males. Overall, further studies 

are needed to mechanistically determine why males suffers more severe outcomes compared to 

females in SCV2 infection. 
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Figure A1. Infectious virus titers in A nasal turbinates, B trachea and C lungs separated by sex. 

Data represent mean ± standard error of the mean from one or two experiment(s) (n = 1-

5/group). Statistical analysis was done by MANOVA. 
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(Internship) 

Nanjing, China 

Jun 2015 - Jul 2015 

• Helped researchers with solution preparation and bacteria broth culture. 

• Induced protein expression in E. coli using IPTG. 

• Cell lysis using ultrasound and lysis buffer. 

• Learned and assisted GST-tagged protein extraction and purification. 

• Incubator, orbital shaker, autoclave, centrifuge, spectrometer and ultrasonic homogenizer operation. 

• Experienced and learned the process of medical research. 

Bayi Hospital Affiliated Nanjing University of Chinese Medicine 

(Volunteer)  

Department of General Surgery 

Nanjing, China 

Sep 2014 

• Watched and learned how department of general surgery worked in the hospital with an experienced 

doctor. 

• The experience inspired me to grow higher responsibility and efficiency. 

EXTRA CURRICULUM 

TENDER NIGHT STUDENT CONCERT 

Co-founder & Studio director 

Irvine, California 

Sep 2014 – Oct 2017 

• Cooperated with executive director to design and create musical performance to campus community, 

had held over 30 live performances. 

• Technically controlled and optimized live performance quality, the size of audience had raised 10 

times in 4 years. 

• Led our studio group members to record and mix covers for our singers.  

• Collaborated and assisted USC students to found their own student concert club (Till Dawn). 

• Adaptive in bilingual environment: Mandarin (Native), English (fluent) 

• Proficient in Microsoft Office 

• Skilled in Image J, GraphPad, Geneious 
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