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Abstract

As the DNA of the invisible world provides insight into the countless microscopic or-

ganisms living amongst us, the integrity of these genomes and the methods by which

we analyze them become increasingly important. In the following, I introduce meth-

ods for both evaluating genomic integrity and analyzing microbial communities.

For the analysis of bacterial genomes, I developed SkewIT (Skew Index Test) based on

GC Skew, a bacterial genome phenomenon wherein the two replication strands of the

same chromosome contain different proportions of guanine and cytosine nucleotides.

SkewIT calculates a single metric representing the degree of GC skew for a single

genome. Applied across 15,000+ complete bacterial genomes, SkewIT quickly detects

assembly patterns and highlights potential bacterial mis-assemblies.

Although eukaryotic microorganisms are abundant worldwide and as human pathogens,

eukaryotic pathogen genomes are underrepresented in genomic databases and contain

significant contamination. I therefore developed a bioinformatics system for eliminat-
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ing contamination, generating a “clean” eukaryotic pathogen database (EuPathDB-

Clean) of nearly 400 genomes. With the final database, I identify eukaryotic pathogens

in human samples, demonstrating the increased sensitivity and reduction in false pos-

itives of the final database as compared to the originally contaminated genomes.

As metagenomics captures the genomic data of all microbial organisms in any envi-

ronment, I developed Bracken (Bayesian Reestimation of Abundance after Classifi-

cation with KrakEN) for a quick and accurate characterization of the full microbial

environment. Bracken uses the taxonomic assignments made by Kraken, a very fast

read-level classifier, along with information about the genomes themselves to estimate

abundance at the species level, the genus level, or above. I demonstrate that Bracken

produces accurate abundance estimates even when a sample contains multiple near-

identical species for both shotgun metagenomics projects and for 16S ribosomal RNA

(rRNA) bacterial projects.

SkewIT, Bracken, and EuPathDB-Clean are all publicly available for use in future

metagenomics projects.

Primary Reader: Professor Steven L. Salzberg, Ph.D.

Secondary Reader: Professor Ben Langmead, Ph.D.
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Chapter 1

Introduction

Metagenomics is a rapidly growing field of study, driven in part by our ability to

generate enormous amounts of DNA sequence rapidly and inexpensively. Since the

human genome was first published in 2001 [1, 2], sequencing technology has become

approximately one million times faster and cheaper, making it possible for individual

labs to generate as much sequence data as the entire Human Genome Project in

just a few days. In the context of metagenomics experiments, this makes it possible

to sample a complex mixture of microbes by ”shotgun” sequencing, which involves

simply isolating DNA, preparing the DNA for sequencing, and sequencing the mixture

as deeply as possible. Shotgun sequencing is relatively unbiased compared to targeted

sequencing methods [3], including widely-used 16S ribosomal RNA sequencing, and it

has the additional advantage that it captures any species with a DNA-based genome,
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including eukaryotes that lack a 16S rRNA gene.

Along with the technological advances, the number of available DNA sequences has

also grown exponentially over the past decade. Two of the largest and most widely-

used nucleotide databases are GenBank [4] (and which is mirrored by the EMBL

and DDBJ databases [4, 5]) and RefSeq, a curated subset of GenBank [5]. This

rich resource of sequenced genomes now makes it possible to sequence uncultured,

unprocessed microbial DNA from almost any environment, ranging from soil to the

deep ocean to the human body, and use computational sequence comparisons to

identify many of the formerly hidden species in these environments [6].

As sequencing technology continues to improve and the number of genomic sequences

continues to grow, the computational tools used for metagenomics have become ex-

tremely critical for the accurate analysis of any microbial sample. Throughout my

PhD research, I have developed multiple tools and pipelines for metagenomics anal-

ysis, improving upon the available genomic databases while providing new tools for

analyzing any microbial environment.

1.1 Genome Databases for Metagenomics

Bacterial genomes encompass the vast majority of sequencing data available, making

up 92% of the genome assemblies in NCBI Genbank database and 94% of the genome
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assemblies in the curated NCBI Refseq database. For sequences to be entered into

RefSeq, curators at NCBI perform both automated and manual checks to ensure

minimal contamination and high sequence quality. Despite these efforts, multiple

studies have identified contamination in RefSeq and other publicly available genome

databases [7–11]. NCBI requires RefSeq assemblies to have an appropriate genome

length as compared to existing genomes from the same species, and it labels assemblies

as “complete” if the genome exists in one contiguous sequence per chromosome, with

no unplaced scaffolds and with all chromosomes present. However, NCBI does not

perform additional checks, most of which would be computationally expensive, to

ensure that a genome was assembled correctly. Therefore, in Chapter 2, I propose a

new method, SkewIT (Skew Index Test), for validating bacterial genome assemblies

based on the phenomenon of bacterial GC-skew. I applied this method to 15,067

complete bacterial genomes in RefSeq, identifying many potential misassemblies as

well as trends in GC-skew that are characteristic of some bacterial clades.

While bacteria have been extensively sequenced, eukaryotic microbes have been lack-

ing in major genomic databases, with sequences for eukaryotic microbes representing

only 1% of the number of genomes in Genbank, and only 88 genomes being labeled

”complete genomes”. However, given the importance of such genomic representation,

in Chapter 3, I endeavored to develop a process for removing contamination from

the 390 draft eukaryotic microbial genomes, allowing such genomes to be used in

metagenomics projects downstream.
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1.2 Metagenomics Analysis Tools

1.2.1 Kraken, Kraken 2, and Bracken

With the wide range of genomic information available, metagenomics analysis re-

quired a fast and accurate method for comparing environmental sequences against

the large genomic databases. Therefore, Kraken was developed in 2014 by Wood

et al. to quickly and accurately classify each sequencing read by comparing exact-

match kmers [12]. However, despite the speed and accuracy of Kraken’s classification

algorithm, Kraken only provided the most specific classification possible, assigning

reads across the taxonomic tree. With some reads ”stranded” at higher taxonomic

levels if there lacked a species-specific kmer, analysis of the overall composition of a

metagenomics sample proved difficult. Using the accurate Kraken classification in-

formation, I developed Bracken (Bayesian Reestimation of Abundance with KrakEN)

which calculates species-level or genus-level abundances from the Kraken classifica-

tion numbers. In Chapter 4, I describe and evaluate the Bracken method on both

simulated reads and a real skin microbiome sample.

Since the development of Kraken in 2014, the number of genomes available has grown

exponentially, resulting in an exponential growth in Kraken database sizes. However,

to continue to allow Kraken users to classify their metagenomics samples without

requiring even more computational resources, Wood et al. released Kraken 2 in

4



CHAPTER 1. INTRODUCTION

2018 [13]. Kraken 2 maintained the same accuracy as Kraken 1 and compatibility

with Bracken, with decreased database sizes. In Chapter 4, I demonstrate Bracken’s

continued compatibility and accuracy with Kraken 2 while also proving Bracken’s

accurate abundance estimation in Kraken 2’s clade exclusion experiments.

1.2.2 16S Sequence Analysis

While Kraken’s alignment-free algorithm proved to be highly accurate and fast for

shotgun metagenomics sequence analysis, Kraken had not previously been evaluated

for 16S ribosomal RNA sequencing analysis. However, the release of Kraken 2 in-

cluded added support for 16S databases, allowing both Kraken 2 and Bracken to

provide fast and accurate analysis of 16S rRNA sequencing samples. Therefore, in

Chapter 5, I designed and ran experiments to evaluate the accuracy of both Kraken

2 and Bracken when applied to 16S rRNA experiments and compared to the lead-

ing 16S classifier, the Quantitative Insights into Microbial Ecology (QIIME) software

package [14,15].
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Chapter 2

SkewIT: GC skew

Portions of this chapter originally appeared in:

J. Lu, S. L. Salzberg “SkewIT: Skew Index Test for detecting mis-assembled bacte-

rial genomes.” bioRxiv, 2020.02.27.968214 https://doi.org/10.1101/2020.02.27.

968214. (Submitted for publication).

Related software:

https://jenniferlu717.shinyapps.io/SkewIT/

https://github.com/jenniferlu717/SkewIT
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CHAPTER 2. SKEWIT

2.1 Introduction

Two of the largest and most widely-used nucleotide databases are GenBank [4], which

has been a shared repository for more than 25 years (and which is mirrored by the

EMBL and DDBJ databases [4,5]), and RefSeq, a curated subset of GenBank [5]. For

sequences to be entered into RefSeq, curators at NCBI perform both automated and

manual checks to ensure minimal contamination and high sequence quality. Despite

these efforts, multiple studies have identified contamination in RefSeq and other pub-

licly available genome databases [7–11]. NCBI requires Refseq assemblies to have an

appropriate genome length as compared to existing genomes from the same species,

and it labels assemblies as “complete” if the genome exists in one contiguous se-

quence per chromosome, with no unplaced scaffolds and with all chromosomes present.

However, NCBI does not perform additional checks, most of which would be com-

putationally expensive, to ensure that a genome sequence was assembled correctly.

In this study, I propose a new method, SkewIT (Skew Index Test), for validating

bacterial genome assemblies based on the phenomenon of GC skew. I applied this

method to 15,067 complete bacterial genomes in RefSeq, identifying many potential

misassemblies as well as trends in GC skew that are characteristic of some bacterial

clades.
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Bacterial GC skew

GC skew is a non-homogeneous distribution of nucleotides in bacterial DNA strands

first discovered in the mid-1990s [16, 17]. Although double-stranded DNA must con-

tain precisely equal numbers of cytosine (C) and guanine (G) bases, the distribution

of these nucleotides along a single strand in bacterial chromosomes may be asymmet-

ric. Analysis of many bacterial chromosomes has revealed two distinct compartments,

one that is more G-rich and the other that is more C-rich.

Most bacterial genomes are organized into single, circular chromosomes. Replica-

tion of the circular chromosomes begins at a single point known as the origin of

replication (ori) and proceeds bidirectionally until reaching the replication terminus

(ter). Because the replication process only adds DNA nucleotides to the 3’ end of a

DNA strand, it must use two slightly different DNA synthesis methods to allow bidi-

rectional replication of the circular chromosome. The leading strand is synthesized

continuously from the 5’ to 3’ end. The lagging strand, in contrast, is synthesized by

first creating small Okazaki DNA fragments [18] that are then added to the growing

strand in the 3’ to 5’ direction.

These two slightly different replication processes lead to different mutational biases.

Notably, the DNA polymerase replicating the leading strand has a higher instance of

hydrolytic deamination of the cytosine, resulting in C→ T (thymine) mutations [19].

However, the replication mechanisms for the lagging strand have a higher instance of
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repair of the same C→ T mutation [20]. These differences between the leading and

lagging strands result in GC skew, where the leading strand contains more Gs than

Cs, while the lagging strand has more Cs than Gs.

Linear bacterial genomes also exhibit GC skew despite the difference in genome orga-

nization. For example, DNA replication of Borrelia burgdorferi begins at the center

of the linear chromosome and proceeds bidirectionally until reaching the chromosome

ends [21,22]. This bidirectional replication shows the same GC skew pattern seen on

circular chromosomes.

Quantitative measurements of GC skew

Since the 1990s, GC skew has been used as a quantitative measure of the guanine

and cytosine distribution along a genome sequence, where GC skew is computed

using the formula (G-C)/(G+C), where G is the number of guanines and C is the

number of cytosines in a fixed-size window [17]. GC skew plots are generated by

calculating GC skew in adjacent or overlapping windows across the full length of

a bacterial genome [16]. Analysis of these plots confirmed the separation of many

bacterial genomes into a leading strand with largely positive GC skew and a lagging

strand with negative GC skew. The GC skew effect is strong enough that it can be

used to identify, within a few kilobases, the ori/ter locations.
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GC skew plots then evolved into cumulative skew diagrams, which sum the GC skew

value in adjacent windows along the bacterial genome [17]. These diagrams sometimes

allow more precise identification of the ori/ter locations, where the origin is located

at the global minimum and the terminus is at the global maximum.

GC skew Applications and Analyses

Over the last two decades, researchers have employed both GC skew and cumulative

GC skew (CGS) diagrams to analyze bacterial genomes. Initial studies confirmed

that GC skew was a strong indicator of the direction of replication in the genomes of

Escherichia coli [23], Bacillus subtilis, Haemophilus influenzae, and Borrelia burgdor-

feri [16]. In 1998, Mclean et. al. compared GC skew among 9 bacterial genomes and

3 archaeal genomes, revealing strong GC skew in all 9 bacteria but weak or no GC

skew signals in the archaeal genomes [24]. In 2002, Rocha et. al. used CGS to predict

ori/ter locations for 15 bacterial genomes [25] and in 2017, Zhang et. al. analyzed

GC skew across more than 2000 bacterial genomes [26].

Although GC skew has been used as an indicator of the replication strand in thousands

of bacterial genomes, it is rarely used as a means to validate genome assemblies.

However, the association between GC skew and replication is strong enough that

when a genome has a major mis-assembly such as a translocation or inversion, the

GC skew plot is clearly disrupted [27]. While existing mis-assembly detection methods
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(e.g. QUAST [28], REAPR [29], misFinder [30]) require the reads used in genome

assembly and/or a reference sequence, GC skew can indicate a potential mis-assembly

from the genome sequence alone.

In this paper, I introduce SkewIT (Skew Index Test) as an efficient method to calcu-

late the degree of GC skew in a genome. The SkewIT allows us to quickly analyze

all 15,000+ complete bacterial genomes in NCBI’s RefSeq library by assigning each

genome a single SkewI (Skew Index) value representing the degree of GC skew. I

then use the SkewI value to compare GC skew across bacterial clades without re-

quiring GC skew or CGS diagrams. Below, I demonstrate how the degree of GC

skew tends to be conserved within certain bacterial taxa; e.g. Klebsiella species have

high values of the SkewI, while Bordetella have much lower values. During this anal-

ysis, I discovered that bacterial genomes with outlier values of SkewIT are highly

likely to contain mis-assemblies. Using my newly defined metric, I identify multiple

potentially mis-assembled chromosomal sequences in the Refseq library of complete

bacterial genomes.

2.2 Method

SkewIT quantifies GC skew patterns by assigning a single value between 0 and 1

to the complete chromosomal sequence of a bacterial genome, where higher values
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indicate greater GC skew, and lower values indicate that no GC skew pattern was

detected. Figure 2.1 illustrates the overall method.

Although many published bacterial genome assemblies set the start of the published

assembly (i.e., position 1) at the origin of replication, many other bacterial genomes

set coordinate 1 arbitrarily. (Because the genomes are circular, there is no unam-

biguous choice for the beginning of the sequence. DNA databases only contain linear

sequences, and therefore some coordinate must be chosen as position 1.) Therefore,

I first “circularize” each bacterial genome of size L by appending the first L/2 bases

of the genome to the end, resulting in a sequence length of 1.5L (Figure 2.1). This

ensures that the full genome starting from the origin of replication will be contained

within one of the subsequences of length L between positions 0 and L/2.

Next, I select a GC skew window size w and split the genome into 1.5L/w adjacent

windows; e.g., for a 1-megabase genome with a 10-Kb window length, I would create

150 windows. In each window i ∈ [1, 2, · · · 1.5L/w], I count the frequency of guanine

(G) and cytosine (C) bases. Traditionally, GC skew was calculated for each window

using Equation (2.1):

GC-Skew =
G− C

G+ C
(2.1)

Although the GC skew formula accounts for the relative quantities of G and C bases,

my method only evaluates which base is more prominent in each window. Figure

2.1 demonstrates how I convert the GC skew formula into a simplified version that
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Figure 2.1: The SkewIT algorithm. A genome of length L is ”circularized” by
taking the first half of the sequence (L/2) and concatenating that sequence onto the
end of the genome (A). The algorithm then splits the sequence into many shorter
windows of length w. We assign each window an α value [1,-1,0] based on whether
there are more Gs, Cs, or equal quantities of both. (B) The GC skew statistic is shown
(left) plotted across the E. coli genome, with a purple dotted line showing where the
original sequence ended, prior to concatenating 1/2 of the genome to the end. The
plot on the right shows the α value plotted for the same genome. (C) SkewIT finds
the location in the genome with the greatest difference in GC skew between the two
strands of the genome, by using a pair of sliding windows to find the greatest sum of
differences between the α values for the two partitions. SkewIT assumes that the two
strands are nearly identical in length, allowing for a difference in partition size up to
8% of the total genome size.
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instead assigns each window a score αi using Equation (2.2):

αi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1 if Gi > Ci

−1 if Gi < Ci

0 if Gi = Ci

(2.2)

I evaluate the ”skewness” of the genome using a sliding window of size L, sliding over

one window width at a time. Each window x ∈ [1, 2, · · · 0.5L/w] is first split into

two equal partitions that each cover 50% of the original genome. I then calculate the

sum the αi values for each partition and determine the absolute difference in sum

of GC skew values between the partitions as shown in Equation (2.3) and Figure

2.1:

|Ax −Bx| =

⃓⃓⃓⃓
⃓⃓x+L/2w∑︂

i=x

αi −
x+L/w∑︂

i=x+L/2w

αi

⃓⃓⃓⃓
⃓⃓ (2.3)

Ax is the sum of the α values within the partition, and Bx is the sum of the α

values for the second partition. For example, Equation (2.4) shows how I calculate

|A1 −B1|, the skewness for the first sliding window from a genome.

|A−B| =

⃓⃓⃓⃓
⃓⃓L/2w∑︂
i=1

αi −
L/w∑︂

i=L/2w

αi

⃓⃓⃓⃓
⃓⃓ (2.4)
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Then, in order to allow for the leading and lagging strands to be slightly different in

length, I move the transition point between the two partitions a small distance (4%

of the genome length by default) to the left and right, allowing the leading strand

to be anywhere between 46% and 54% of the genome length, and recalculating the

difference in sums of α values. The transition point is chosen to maximize |Ax −Bx|

for this window.

Finally, I determine the maximum value of |Ax − Bx|, which gives me the window

where the greatest difference exists between the GC content of the two partitions

of the genome. In order to be provide a consistent value between 0 and 1 despite

genome length L or window size w, I define the skew index (SkewI) as the following

normalized value:

SkewI =
w

L
max|Ax −Bx| (2.5)

2.3 Results and Discussion

I applied the SkewIT method to the complete bacterial genomes from NCBI RefSeq

Release 97 (released on November 4, 2019). I only evaluated bacterial chromosomes

that were > 50,000bp in length and excluded plasmids from this analysis. In total, I

tested 15,067 genomes representing 4,471 species and 1,148 genera.

First, I compared SkewI values using the various window sizes w of 10Kb, 15Kb, 20Kb,
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25Kb, and 30Kb (Figure 2.2). From my analysis, smaller window sizes (10Kb and

15Kb) caused the SkewI values across all bacterial genomes to be lower, as SkewI

was more sensitive to local fluctuations in polarity. However, as window sizes become

too large, I was no longer able to accurately calculate SkewI for smaller genomes.

Therefore, I selected a window size of 20Kb for calculating SkewI across all genomes

and for the following analyses.

Figure 2.2: SkewI Comparisons for window sizes 10Kb, 15Kb, 20Kb, 25Kb,
30Kb This figure compares the full distribution of SkewI values for all 15,067 genomes
using different window sizes.

16



CHAPTER 2. SKEWIT

Overall, analysis of all bacteria revealed that most genomes have strong GC skew

patterns, with relatively few having SkewI values less than 0.5 (Figure 2.3). In

order to isolate and analyze bacterial genomes with unusually low SkewI values, I

separated the bacterial genomes by clades, revealing characteristic SkewI distributions

for individual genera (Figure 2.4). For example, genomes from the genera of Bacillus,

Figure 2.3: Skew index (SkewI) for all Refseq 97 Bacteria. This figure displays
the full range of SkewI values for all complete bacterial chromosomes in Refseq Release
97, colored by phylum.
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Escherichia, and Salmonella have consistently high SkewI values, with a mean close

to 0.9. However, Bordetella genomes have far lower SkewI values, with a mean of

0.52. Additionally, while genomes in the Klebsiella and Brucella genera all have

similar SkewI values (and therefore similar amounts of GC skew), genomes from

the Campylobacter and Corynebacterium genera demonstrated much less consistent

amounts of GC skew, with a wide range of SkewI values.

Given the differences between genera, I evaluated abnormalities in GC skew by set-

ting a threshold for each genus that would allow me to flag genomes that might have

assembly problems. For each genus with 10 or more genomes, I set a SkewI threshold

Figure 2.4: Skew index (SkewI) per genus. This figure shows the distribution of
SkewI values for the 12 bacterial genera with the greatest number of fully sequenced
genomes.

18



CHAPTER 2. SKEWIT

at two standard deviations below the mean. If a genome’s SkewI exceeded the thresh-

old, then I considered that bacterial genome to be within the expected range for that

genera. However, if a genome’s SkewI was below the threshold, then I considered that

genome to be possibly mis-assembled.

From my analysis, 161 genera of the total 1,148 analyzed contain 10 or more genomes.

These 161 genera represent 12,846 of the 15,067 bacterial genomes analyzed, with 423

genomes having SkewI values below the threshold for their particular genus. Table

2.1 lists the SkewI statistics for the 12 bacterial genera with the greatest number of

complete genomes.

Table 2.1: Average SkewI values for the 12 bacterial genera with the largest
number of complete genomes. The threshold was set at 2 standard deviations
below the mean.

Genus Genome
Count

Mean
SkewI

SkewI
St.
Dev.

SkewI
Thresh-
old

Genomes
Below
Thresh-
old

Mean
GC-
content
(%)

Escherichia 934 0.8729 0.0620 0.7489 30 50.68
Salmonella 707 0.9682 0.0393 0.8896 15 52.15
Burkholderia 619 0.9323 0.1086 0.7151 39 67.42
Bordetella 618 0.5152 0.1474 0.2204 0 67.52
Bacillus 603 0.9848 0.04452 0.8957 10 41.31
Staphylococcus 513 0.9605 0.0538 0.8530 10 33.13
Pseudomonas 489 0.8359 0.1095 0.6170 20 63.09
Klebsiella 479 0.9746 0.03153 0.9115 17 57.23
Streptococcus 461 0.9743 0.0451 0.8840 12 33.44
Vibrio 386 0.9802 0.0559 0.8685 9 45.69
Lactobacillus 377 0.9799 0.0612 0.8574 11 42.99
Mycobacterium 260 0.7589 0.1730 0.4129 21 66.09
Acinetobacter 252 0.9715 0.0649 0.8418 7 39.37
Campylobacter 248 0.7714 0.0930 0.5853 13 30.98
Corynebacterium 224 0.8220 0.2001 0.4204 16 55.15
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In order to investigate the genomes with SkewI values below the threshold, I focused

on genome assemblies with accompanying read data in the NCBI Sequence Read

Archive (SRA) that could be used to validate the assembly. Although there were

434 genomes with SkewI values below the threshold for their particular genus, 325

of these genome assemblies (75%) did not provide the reads used for assembly. 23

genome assemblies provided only short read data while 30 provided long read data.

Only 56 of the 434 genomes (13%) listed both long and short reads used for genome

assembly. For example, both the Chlamydia and Corynebacterium genera contained

16 genomes with low SkewI values relative to the expected SkewI for that genus.

However, for both of these genera, all 16 genome assemblies did not provide any read

data. NCBI also listed no read data for the 11 Lactobacillus genomes below thresh-

old and the 10 Bacillus genomes below the SkewI threshold. For the genomes and

genera where read data was available, I identified several potentially mis-assembled

Escherichia and Burkholderia genomes. Additionally, I were able to identify an in-

teresting phenomenon in Mycobacterium genomes relating GC-Skew to GC-content.

The following sections describes these findings.

2.3.1 Escherichia

For the Escherichia genus, RefSeq contains 934 complete genomes, with an average

SkewI value of 0.87 and a threshold of 0.75 (Figure 2.5). While the majority of
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Escherichia genomes had SkewI values above the threshold, one of them, Escherichia

coli O121 strain RM8352 (E. coli O121 ), had a SkewI of 0.275, which appeared far

too low. In an effort to validate this assembly, I aligned the original raw reads back

to the genome while also comparing E. coli O121 to Escherichia coli M8, which has

a more-typical SkewI of 0.877. Initial analysis of the GC skew plots for both E. coli

genomes revealed a clear difference between the genomes, as shown in Figure 2.5.

For E. coli M8, the GC skew plot shows that almost precisely half the genome has

more Gs than Cs, and the other half has more Cs than Gs, as is typical for this

species. In E. coli O121, by contrast, a much larger portion of the forward strand

has more Gs than Cs. I then aligned E. coli O121 against E. coli M8 (using used

NUCmer [31]), revealing a large inversion in E. coli O121 from position 2,583,081 to

4,963,263. Alignment of assembly reads to each genome using Bowtie2 [32] revealed

gaps in coverage at the points flanking both ends of the inversion in E. coli O121,

suggested that the assembly is incorrect in those regions (Figure 2.5).

Because there were no reads supporting the inversion from 2,583,081 to 4,963,263 in

E. coli O121, I replaced this sequence with its reverse complement and repeated my

analysis. The new E. coli O121 genome has a SkewI of 0.77 with an evenly divided

GC skew plot (Figure 2.5D). Comparison of the new E. coli O121 against E. coli

M8 shows a much more consistent 1-to-1 alignment between the two genomes, with

only one small inversion remaining.
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2.3.2 Burkholderia

The Burkholderia genomes have a mean SkewI of 0.932 with a SkewI threshold of 0.715

(Figure 2.6A). Although there are 619 finished chromosomes from the Burkholderia

Figure 2.5: Escherichia skew index values. A) SkewI for all 934
Escherichia genomes. The threshold (vertical black line) is at 0.711.
B) GC skew plots for Escherichia coli O121 strain RM8352 and Es-
cherichia coli M8. E. coli O121 has an unusually low SkewI of 0.223,
while E. coli M8 has a SkewI of 0.86, which is typical for this genus.
C) Initial alignment between the two E. coli genomes revealed a large
inversion. Alignment of the assembly reads revealed locations with no
read coverage (red diamonds) E. coli O121 at both ends of the inversion.
D) Flipping the inversion in strain RM8352 produced a much more consistent align-
ment between the E. coli genomes (dot plot), and restored the GC skew plot to a
more normal appearance (shown along the y axis).
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genus, they represent only 270 individual organisms; each Burkholderia strain typ-

ically has 2-3 chromosomes. Figure 2.6B shows the SkewI distribution based on

chromosome. There is no significant difference in SkewI between chromosomes.

Further analysis of the individual genomes with SkewI values below the threshold

revealed significant differences between the SkewI values for the three chromosomes of

Burkholderia contaminans MS14. Notably, chromosome 2 had a SkewI of 0.322 while

chromosomes 1 and 3 had SkewIs of 0.869 and 0.909 respectively (Figure 2.6C). By

comparison, the three chromosomes of a different strain, Burkholderia contaminans

SK875, all had very high SkewIs of 0.978, 1.000, and 1.000.

Aligning the raw B. contaminans MS14 assembly reads against the three chromo-

somes using Bowtie2 [32] revealed many locations with no read coverage, suggesting

that the full read set used for the assembly was not available in the NCBI SRA. I then

aligned the B. contaminans MS14 chromosomes against the same chromosomes for

B. contaminans SK875 and observed multiple large-scale disagreements between the

chromosomes. While chromosome 3 from both strains aligned nearly perfectly, only

50% of chromosome 1 and 2 of MS14 aligned to the same corresponding chromosome

of B. contaminans SK875 (Figure 2.6D).

I then aligned chromosome 1 of B. contaminans MS14 to chromosome 2 of B. con-

taminans SK875 and vice versa and discovered that the sequences of B. contaminans

MS14 appeared mis-assembled (Figure 2.6E). Based on the differences in alignment
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Figure 2.6: Burkholderia skew index values. A) SkewI for all 934 Burkholderia
genomes. The threshold is 0.715. B) SkewI colored by chromosome. C) GC skew
plots for all three chromosomes (chr) for Burkholderia contaminans strains MS14
(left) and SK875 (right). D) Alignments between MS14 and SK875 chr 1 and 2.
MS14 is shown on the y axis of each plot. E) Cross-chromosome alignments between
MS14 and SK875 chr 1 and 2 reveal that a 1.7Mbp region of MS14 chromosome 1
belongs to chr 2 and two regions in MS14 chr 2 belong in chr 1. F) We rearranged
the sequences of MS14 chr 1 and 2 based on the alignments and GC-Skew plots. G)
The final MS14 chr alignments with those of B. contaminans SK875.24
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and the GC skew plots of B. contaminans MS14, it appears that the 1.7Mbp region

of B. contaminans MS14 chromosome 1 from 812,522 to 2,579,632 belongs to chro-

mosome 2. Similarly, two regions from B. contaminans MS14 chromosome 2 belong

to chromosome 1. (I note that it is possible that a very recent set of translocations

and re-arrangements explains the anomalous SkewI value; however, the available data

does not support that hypothesis.)

Based on the chromosome alignments and GC skew plots, I rearranged and inverted

the individual B. contaminans MS14 sequences as illustrated in Figure 2.6F. The

final SkewI for these corrected chromosome 1 and chromosome 2 sequences were 0.774

and 0.946 respectively, both within the expected range. Additionally, realigning the

new MS14 sequences against those of SK875 a far higher degree of synteny between

the two genomes (Figure 2.6G).

2.3.3 SkewI versus GC Content andMycobacterium

Analysis of the Mycobacterium SkewI distribution revealed a main peak at 0.85 and

a smaller peak centered around 0.4 (Figure 2.7A). Due to the large standard devi-

ation, the SkewI threshold was calculated to be 0.413, with 20 genomes falling below

the threshold. However, upon investigation into the individual genomes, it appeared

that all 20 of these genomes come from Mycobacterium avium and M. avium sub-

species, suggesting that the SkewI values are not reflective of a mis-assembly but
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rather reflective of a different degree of skew in M. avium and possibly other species

within the Mycobacteria.

I explored this hypothesis by re-plotting SkewI using different colors for each of the

12 species, as shown in Figure 2.7B. As the plot shows, the large peak centered

around 0.85 mainly consists of the 179 M. tuberculosis genomes while the smaller

peak mainly consists of the 27 M. avium genomes. Because Mycobacterium genomes

Figure 2.7: Mycobacterium skew index values. A) SkewI for 236 Mycobacterium
genomes from 12 Mycobacterium species, all of which have multiple strains available
in RefSeq. The threshold (vertical line) is at 0.413. B) SkewI colored by species.
C) Plot comparing GC Content (%) to SkewI, where each dot represents a different
genome colored by species.
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have a high GC-content (%), we then plotted GC-content vs. SkewI for these same

genomes (Figure 2.7C), revealing that for the Mycobacterium genus, higher GC-

content results in a lower SkewI.

Although higher GC-content species within the Mycobacterium genus tend towards

lower SkewI values, this evolutionary-based relationship [33] is not true across all

bacterial clades. Upon analysis of the 12 bacterial genera with the greatest number

of complete genomes, higher average GC-content does not necessarily reflect a low

mean SkewI value (and vice versa, Table 2.1). For example, genomes in theMycobac-

terium, Burkholderia, and Bordetella genera all have high GC-content (66%, 67% 68%

respectively). However, while the average SkewI for Mycobacterium and Bordetella

are relatively low (0.7589 and 0.5152), the average SkewI for Burkholderia genomes

is at the higher end of the SkewI spectrum (0.9323). Similarly, the low GC-content

genera of Acinetobacter and Campylobacter, (GC-content values of 39%, 31% respec-

tively) have different mean SkewI values; Campylobacter genomes have an average

SkewI of 0.77 while Acinetobacter genomes have an average SkewI of 0.97.

For a more in-depth analysis, I compared SkewI versus GC-content across all bacterial

genomes (Figure 2.8). Figure 2.8A displays SkewI and GC-content for all 15,000+

RefSeq bacterial complete genomes while Figure 2.8B plots the mean SkewI and

mean GC-content for every bacterial genus. However, analysis of both figures revealed

no relationship between SkewI values and GC-content.
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Figure 2.8: SkewI vs. GC Content for bacterial RefSeq genomes. This figure
compares SkewI to GC-content of each bacterial genome. A) displays each individual
genome as a separate point, while B) displays the average SkewI vs. average GC-
content for each bacterial genus. Points in both plots are colored by phylum.

I then generated the same SkewI vs. GC-content figures for genomes in specific

genera. Figure 2.9 shows the SkewI and GC-content distributions for genomes

in the Bacillus, Escherichia, Salmonella, and Burkhoderia genera. While there is

evidence that GC-content is conserved within species, there is no relationship between

SkewI and GC-content for these genera. By comparison, Figure 2.10 shows similar

SkewI/GC-content plots for Mycobacterium and Bordetella. For these two genera,

there is some evidence that certain low GC-content species have higher SkewI values.

However, while the patterns are more pronounced for Mycobacterium, there are some

Bordetella species that follow this pattern (e.g. Bordetella pertussis and Bordetella

parapertussis), there are also some Bordetella species that do not (e.g. Bordetella

flabilis)
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Figure 2.9: SkewI vs. GC Content for Bacillus, Escherichia, Salmonella,
and Burkholderia genera. This figure compares SkewI to GC-content for four
bacterial genera where no relationship between SkewI and GC-content is present.
Axes in each plot are specific to the range of SkewI and GC-content values for genomes
within that genus. Points are colored by species.

Figure 2.10: SkewI vs. GC Content for Mycobacterium and Bordetella
This figure compares SkewI to GC-content for two bacterial genera where higher GC-
content genomes tend towards lower SkewI values. Axes in each plot are specific to
the range of SkewI and GC-content values for genomes within that genus. Points are
colored by species.
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2.3.4 Simulated Mutations

Following analysis of existing genomes and their SkewI values, I performed the fol-

lowing simulation experiment to measure the sensitivity of the SkewIT method for

detecting misassemblies. First, I randomly selected 10 genomes belonging to each

of the following species: Bacillus thuringiensis (SkewI threshold 0.896), Salmonella

enterica (SkewI threshold 0.890), Staphylococcus aureus (SkewI threshold 0.853), Es-

cherichia coli (SkewI threshold 0.759), and Pseudomonas aeruginosa (SkewI thresh-

old 0.617). All selected genomes had SkewI values above the SkewI threshold for that

genus.

For each genome, I simulated a misassembly error where a random subsequence,

of length k% of the full genome length, is moved to another random location in the

genome. I tested 12 different values of k = 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30

and for each value of k, I generated 100 randomly misassembled genomes and subse-

quently calculated the SkewI value of the misassembled genome. I then calculated the

average number (across all 10 genomes for a given species) of misassembled genomes

whose new SkewI values fell below the SkewI threshold for that genus.

Figure 2.11 summarizes the results of this translocation experiment. Figure 2.11A

shows the different SkewI thresholds for each of the tested species. Figure 2.11B

displays the average number of misassemblies detected (with SkewI values falling be-

low the threshold) for each value of k. As the length of the moved sequence increases,
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Figure 2.11: SkewIT Sensitivity to Misassemblies. In order to evaluate the sen-
sitivity of the SkewIT method for detecting misassemblies, I first randomly selected
10 genomes from these species: Bacillus thuringiensis, Salmonella enterica, Staphylo-
coccus aureus, Escherichia coli, and Pseudomonas aeruginosa. A) displays the SkewI
threshold for each species. For each genome, I simulated 100 misassembled genomes
by moving a random subsequence of length k% of the full genome length to another
random location. This was repeated for 12 values of k ranging from 0 to 30, with 100
random misassemblies for each value of k. B) shows the average percentage of the
misassembled genomes that had SkewI values below the threshold.

the number of misassemblies detected increases. Moving a short subsequence of only

5% of the full genome length yields a very small change in GC skew. Approximately

20% of these misassemblies caused low enough SkewI values for the SkewIT method

to detect the change. However, when long subsequences are displaced, the GC skew

pattern of the genome as a whole is disrupted more, decreasing the SkewI value. For

example, the SkewIT method detected 60% of misassemblies when 20% of a Bacil-

lus thuringiensis genome is randomly moved to the incorrect locations. However, if

only 5% of the same genome is moved, then the SkewIT method only detects the

misassembly 35.5% of the time. Comparisons between the various species also shows
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that species with higher thresholds, such as Bacillus thuringiensis and Salmonella

enterica, are more sensitive to genome modifications/misassemblies.

2.3.5 SkewIT Runtime and Computational Resources

Execution of the SkewIT code for all 15,000+ NCBI RefSeq bacterial genomes re-

quired 30 minutes, using 112Mb of RAM. For a single genome, the SkewIT code cal-

culated SkewI within 1 second, using only 50Mb of RAM. All code is single-threaded

and can process multi-FASTA files.

2.4 Software Availability

For this project, I developed the SkewIT Application (available at https://jenniferlu717.

shinyapps.io/SkewIT/) as an interactive web app which calculates SkewI and plots

GC skew from a user-provided bacterial genome FASTA file. Figure 2.12 displays

the interface after a user has uploaded a FASTA file for sequence NZ CP010191.1.

The app displays the GC skew plot and the SkewI value based on the user-selected

window size and frequency. Frequency is the distance between the start of each win-

dow for which GC skew is calculated. Users can regenerate the GC skew plot and

recalculate a new SkewI value by choosing new window size/frequency parameters.

The default window size and frequency is 20kb. The app also allows users to scroll
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Figure 2.12: SkewIT App: SkewI Calculation and GC skew Plot. The main
panel in the application allows users to upload any FASTA file from which the program
will generate a GC skew plot and calculate the SkewI value for the FASTA sequence.

over the GC skew plot to identify individual genome positions of interest.

The SkewIT app provides additional tabs for investigating the existing SkewI data

generated for Refseq Release 97 Bacterial complete chromosomes. First, the ”Bacteria-

Wide SkewI” tab, seen in Figure 2.13, shows the full range of SkewI values as col-

ored by Phylum or other taxonomic levels of interest. The bins used in generating the

SkewI histogram can be adjusted to visualize the number of genomes in each SkewI

range.
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Figure 2.13: SkewIT App: Refseq Release 97 Bacterial SkewI Distribution
The SkewIT App allows users to explore the SkewI values across all bacteria in this
tab, coloring the plot based on Phylum, Class, or other taxonomic groupings.

Finally, the”Genus-Specific SkewI” tab shows SkewI values for individual genera

(Figure 2.14). Following selection of a genus, the SkewI values will be displayed

in two separate plots: as a histogram and as a dot plot. The histogram shows the

distribution of SkewI values for complete chromosomes within that genus. The dot

plot displays each genome as a single point, grouped by species within that genus.

Scrolling over individual points will show the SkewI value for that genome and the se-

quence ID associated with that SkewI value. This tab also shows the SkewI threshold

for the genus as a black vertical line on both plots.
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Figure 2.14: SkewIT App: Refseq Release 97 Bacterial SkewI Distribution
The SkewIT App allows users to explore the SkewI values across all bacteria in this
tab, coloring the plot based on Phylum, Class, or other taxonomic groupings.
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2.5 Conclusion

The SkewIT (Skew Index Test) provides a fast method for identifying potentially

mis-assembled genomes based on the well-known GC skew phenomenon for bacterial

genomes. In this study, I described and implemented an algorithm that computes a

new GC skew statistic, SkewI, and I computed this statistic across 15,067 genomes

from RefSeq, discovering that GC skew varies considerably across genera.

Following the SkewIT method, I used anomalous values of SkewI to identify likely

mis-assemblies in Escherichia coli O121 strain RM8352 and in two chromosomes of

Burkholderia contaminans MS14. For further analysis, I also used the SkewI values to

investigate relationships between GC skew and GC-Content, discovering that certain

genera do show a correlation between these two metrics, such as for Mycobacterium

genomes. Finally, to determine the sensitivity of SkewIT for detecting misasssemblies,

I performed an experiment with simulated mis-assemblies. In this experiment, I

showed that when a longer portion of a genome is incorrectly placed, SkewIT is

better able to detect the change in GC skew.

I suggest that researchers can validate future bacterial genome assemblies by running

SkewIT and comparing the resulting SkewI value to the thresholds in Table 2.1.

Genomes with SkewI values lower than the expected threshold should be further

validated by comparison to closely-related genomes and by alignment of the original

reads to the genome.
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Eukaryotic Pathogen Genomes

Portions of this chapter originally appeared in:

J. Lu, S. L. Salzberg (2018). “Removing contaminants from databases of draft

genomes.” PLoS Comput Biol, 14(6): e1006277.

https://doi.org/10.1371/journal.pcbi.1006277

Related data: http://ccb.jhu.edu/data/eupathDB/
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3.1 Introduction

3.1.1 Next-generation sequencing in pathogen dis-

covery/diagnosis

Next-generation sequencing (NGS) over the last few years has emerged as a valuable

tool for human pathogen discovery and diagnosis. In the case of human pathogen

detection, traditional histological, immunological, or molecular techniques are limited

and often yield an incorrect or incomplete diagnosis [34]. As sequencing has grown

faster and cheaper, clinicians have begun to explore the possibility of replacing older

methods with NGS, which provides a fast, specific, and relatively unbiased method

of capturing the full spectrum of macro- and microorganisms in any sample.

A growing number of case studies illustrate the potential for NGS in diagnosis. For

example, in 2013 Loman et al. conducted a retrospective investigation into the 2011

German outbreak of Shiga-toxigenic Escherichia coli (STEC) [35]. In this study,

sequencing led to rapid and accurate identification of the bacterial infection in fe-

cal specimens of the infected patients. In 2014, Hasman et al. analyzed 35 urine

samples from patients with suspected urinary tract infections, confirming cultured

bacterial infections using sequencing of isolated and cultured bacteria [36]. They

also successfully identified polymicrobial bacterial infections by directly sequencing

the urine samples. Later in 2014, Wilson et al. used next-generation sequencing of
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cerebrospinal fluid (CSF) to identify and treat a bacterial Leptospira infection in a

14-year old patient [37]. In 2016, Salzberg et al. tested the possibilities of detecting

pathogens by sequencing brain or spinal cord biopsies from 10 patients presenting

with neurologic symptoms with previously unidentified infections [38]. In that study,

NGS identified both bacterial and viral infections in selected patients, diagnoses that

were confirmed by traditional immunologic techniques.

A critical step in using NGS for diagnosis is in the bioinformatics analysis of the

millions (or billions) of genomic reads that result from a sequencing experiment. The

identification of the sequenced DNA provides the information about the potential

pathogenic organisms causing the infection. Because the source of the sample is

human tissue, all the studies mentioned above first filtered out human DNA, which

is uninformative for pathogen discovery [35–38]. Following this step, the remaining

sequencing reads are compared to reference genomic databases, such as RefSeq [5]

or the NCBI nt database [4], using a variety of alignment and classification tools,

including BLAST, Bowtie2, and Kraken [12,32,39].
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3.1.2 Challenges in relying on reference databases

3.1.2.1 Database Composition

Although databases of sequenced pathogens have grown dramatically larger over the

past decade, the dependence on reference databases still presents challenges when used

for diagnosis, for at least two reasons: (1) no database contains the full spectrum of

all potential human pathogens, and (2) existing reference databases have been found

to contain contamination.

Over the past two decades, microbial genome projects have predominantly focused on

bacteria and viruses. Two of the most widely used genomic databases are the NCBI

GenBank and NCBI RefSeq. The NCBI GenBank repository [4, 40] contains the

majority of genome sequence data submitted by laboratories around the world while

the NCBI RefSeq repository [5] is a curated subset of the GenBank genome sequences.

As of January 2018, GenBank contained genome entries representing over 54,000

bacterial organisms but only 1,791 fungi and 389 protozoa (Table 3.1). RefSeq also

reflected the focus on bacterial and viral genomes, with ∼ 37, 000 bacterial organisms

and more than 7,500 viral organisms represented. By contrast, RefSeq contained

genomes for only 251 fungi and 82 protozoa.

Between 2018 and 2020, the total number of organisms in RefSeq and Genbank in-

creased by more than 45%, with significantly more bacterial and viral genomes. How-
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ever, fungi and protozoa continue to represent only∼ 3% of the Genbank genomes and

∼ 0.5% of Refseq genomes available. As of June 2020, GenBank contained genome

entries representing over 72,000 bacterial organisms but only 3,018 fungi and 514 pro-

tozoa. The NCBI RefSeq project grew to contain 51,000 bacterial genomes and more

than 9,700 viral genomes. By contrast, RefSeq contains genomes for only 329 fungi

and 94 protozoa (3.1).

The composition of the reference databases is not representative of the species com-

position of the natural world, but rather reflects a focus on human pathogens, other

Table 3.1: Organisms in GenBank and RefSeq: January 2018 vs. June
2020. The number of vertebrates listed is the total number of organisms with either
chromosome-level and complete assemblies. All other counts represent the number of
complete genomes alone.

Draft and Complete Genomes Complete Genomes
GenBank RefSeq GenBank RefSeq

2018 2020 2018 2020 2018 2020 2018 2020
Bacteria 54,153 72,182 37,399 51,439 5,372 8,152 5,121 7,851
Viruses 10,412 21,677 7,509 9,787 10,339 20,280 7,484 9,404
Archaea 1,861 2,514 533 818 272 346 235 320
Vertebrates 376 1,076 238 346 71* 235 55* 136
Plants 320 713 102 127 3 4 3 3
Fungi 1,791 3,018 251 329 26 53 8 11
Protozoa 389 514 82 94 3 14 2 3
Total 69,302 101,694 46,144 62,940 16,086 29,084 12,908 17,728

Bacteria 78.1% 71.0% 81.1% 81.7% 33.4% 28.0% 39.7% 44.3%
Viruses 15.0% 21.3% 16.3% 15.6% 64.3% 69.6% 58.0% 53.0%
Archaea 2.7% 2.5% 1.2% 1.3% 1.7% 0.1% 1.8% 1.8%
Vertebrates 0.5% 1.0% 0.5% 0.6% 0.4% 0.1% 0.4% 0.8%
Plants 0.5% 0.7% 0.2% 0.2% 0.0% 0.0% 0.0% 0.0%
Fungi 2.6% 3.0% 0.5% 0.5% 0.2% 0.2% 0.1% 0.1%
Protozoa 0.6% 0.5% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0%
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species of interest to humans, and the challenges of isolating and sequencing DNA

from various species [41]. In many cases, microorganisms are difficult to isolate from

their surrounding environments, living among thousands of other species in com-

plex ecosystems [42, 43]. Some microorganisms live in extreme conditions and have

gone undiscovered until recently [44]. Other microorganisms are difficult to grow in

culture to provide sufficient DNA from which to derive a reference genome. As a

result of these constraints, most early research into microorganisms focused on a few

easily culturable bacteria [45]. However, studies over the last two decades suggest

that culturable bacteria represent only a small fraction of the microorganisms on

earth [41,45–47].

Eukaryotic pathogens comprise an underrepresented group of microorganisms in ge-

nomic databases, although they are critically important for the diagnosis of human

infections. This group includes a diverse group of species that infect multiple ar-

eas in the body; e.g., apicomplexans such as Plasmodium falciparum, which causes

most cases of human malaria [48], and Toxoplasma gondii [49], which may cause

neurological defects. Other examples include multiple fungal species belonging to

the Fusarium, Aspergillus, Curvularia, and Candida genera, and amoebae species be-

longing to the Acanthamoeba genus, the latter of which causes a majority of human

corneal infections [50, 51]. These are only a small sample of the hundreds of known

eukaryotic pathogens of humans.
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Table 3.2: EuPathDB genome representation in RefSeq. This table shows
the number of genomes from the eukaryotic pathogen database that also exist in the
NCBI RefSeq database along with the breakdown of their assembly status.

RefSeq 2018 RefSeq 2020
Complete Genome 3 6
Chromosome 41 48
Scaffold 46 77
Contig 5 13
Not Represented 150 244
Total 245 388

EuPathDB is a database that, as of January 2018, represents 245 eukaryotic mi-

croorganisms [52], including both known pathogens and other closely related non-

infectious eukaryotic species. Because no eukaryotic pathogen has yet been com-

pletely sequenced, this resource comprises primarily draft genomes at varying degrees

of completeness, some of which have had little curation since their initial sequencing.

However, EuPathDB is more comprehensive than the RefSeq database, containing

more than 150 genomes that are absent from the RefSeq protozoa and fungi databases

(see Table 3.2). By June 2020, EuPathDB-46 contained 388 eukaryotic genomes, 244

of which are absent in the RefSeq databases.

3.1.2.2 Database Contamination

In recent years, multiple studies revealed contamination in the public genome se-

quences of many organisms, particularly for draft genomes. In 2011, Longo et al.

identified 492 non-primate public databases from NCBI, UCSC, and Ensembl con-

taining human genome sequences [8]. A 2014 study found that portions of the com-
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plete genome for Neisseria gonorrhoeae TCDC-NG08107 belonged to the cow and

sheep genomes [53]. Another study in 2015 identified over 18,000 microbial isolate

genome sequences that were contaminated with PhiX174, a bacteriophage used as a

control in Illumina sequencing runs [9]. 10% of those 18,000 genomes were published

in the literature. In 2016, Kryukov et al. identified 154 non-human genome assem-

blies containing human sequence fragments that were at least 100bp long [10]. As one

example, they discovered that more than 330,000 bp in the reference genome of Plas-

modium gaboni, a relative of Plasmodium falciparum, appears to be contaminating

human sequence.

Contamination and incompleteness in reference databases causes bioinformatics anal-

ysis of sequencing reads to yield both false positive and false negative results, thereby

decreasing the overall reliability of NGS in pathogen diagnostics. False positives,

where the wrong pathogen is identified, might in turn lead to inaccurate treatments,

with the potential to harm rather than help patients.

3.2 Methods for the Removal of Genomic

Contamination

In this study, I present a new method for eliminating genomic contamination that

can be used on both complete and draft reference genomes. I first test the method on
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EuPathDB-28 (released in 2018), yielding a cleaned and filtered eukaryotic pathogen

database ready for use in bioinformatics pipelines, including those intended for NGS

diagnostics, with decreased false positive and false negative rates. I then repeat the

method for EuPathDB-46 (released at the end of 2019) to generate an updated and

improved eukaryotic pathogen database.

The eukaryotic pathogen genomes underwent a multi-step cleaning process to remove

both contaminating and non-informative sequences (see Figure 3.1). Each genome

was first split into 100bp overlapping pseudo-reads, with each pseudo-read begin-

ning every 50bp along the genome. The pseudo-reads were then compared to three

unique databases, using the Kraken [12] and Bowtie2 [32] classification and alignment

programs.

Kraken labels reads only if they contain an exact 31 base-pair (31-mer) match to any

31-mer in the database sequences [12]. For this process, pseudo-reads were classi-

fied with Kraken against two unique Kraken databases. The first Kraken database

contains 15,000 genomic sequences from the human, human CHM1, mouse, bacte-

ria, archaea, viral, and plant RefSeq databases as of November 30th, 2017. I also

included contaminating sequences such as the UniVec database, EmVec database,

and phiX174 vector in the first Kraken database. The second Kraken database con-

tains all complete and chromosomal-level assemblies of non-human and non-mouse

vertebrate sequences (representing 56 vertebrate species). Kraken requires that the
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Figure 3.1: Masking procedure A) The original genome is split into 100bp over-
lapping pseudo-reads. B) The pseudo-reads are then classified using Kraken first
against the common contaminating vector sequences and the plant, viral, bacterial,
archaeal, human, and mouse RefSeq database. The pseudo-reads are also classified
using Kraken against non-human and non-mouse vertebrate RefSeq genomes. C)
Bowtie2 is then used to align all pseudo-reads against the human genome. D) All
pseudo-reads that were classified in the previous steps are masked out of the original
genomes. Any remaining non-masked sequence with less than 100p is also masked.
E) Finally, Dustmasker is used to mask additional low-complexity sequences.
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selected database is first loaded into RAM prior to classification. I used two databases

in order to reduce RAM usage at a single time, allowing sequential classification of

the pseudo-reads to each database.

Bowtie2 aligns sequencing reads against any reference sequence, allowing for gaps

or mismatches [32]. I created a bowtie2 index of GRCh38.p11 (the human refer-

ence genome) and Human CHM1 (another haploid human genome) and aligned the

pseudo-reads against it. Note that even though I include GRCh38.p11 in the Kraken

database, which enables Kraken to find human reads, Bowtie2’s more sensitive align-

ment algorithm can align some sequences that Kraken will miss.

Any pseudo-read that was classified in these steps represents either a contaminating

sequence in the pathogen genome or a low-complexity sequence that matches a distant

species only by chance. In either case, these sequences could lead to false positive

identifications if they are used for metagenomics analysis. Therefore, I masked any

portion of a database genome that corresponded to a pseudo-read that was classified

or aligned in the previous steps. (Masking can be done in a variety of ways; I simply

replaced the sequence with Ns to keep the overall genome length the same.) If, after

this initial masking step, I created non-masked sequences that were ¡100 bp in length,

I masked those sequences as well. I then used Dustmasker [54] to mask additional

low-complexity sequences (Figure 3.1).
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3.3 Contamination Removal Results

I tested my method for eliminating contamination on the draft genomes contained

in EuPathDB release 28 (released in 2018) [52], which contains 245 genomes cate-

gorized into the following sub-databases: AmoebaDB (29 genomes), CryptoDB (11),

FungiDB (87), GiardiaDB (6), MicrosporidiaDB (25), PiroplasmaDB (8), PlasmoDB

(9), ToxoDB (30), TrichDB (1), and TriTrypDB (39).

Figure 3.2 and Table 3.3 show how much of each of the 245 genomes was masked

in each step of the cleaning procedure and the final lengths of the cleaned pathogen

genomes.

Genome lengths in EuPathDB ranged from 2Mbp to 186Mbp prior to our cleaning

procedure. Post-cleaning genome lengths ranged from 1.7Mbp to 182Mbp, with an

average of 11% of each genome identified as contaminating or low-complexity se-

quences. As Figure 3.2 illustrates, a few genomes were outliers with over 50% of

the genome being masked, but most genomes lost ¡10% of their length through this

process.

In the first masking step, pseudo-reads across all EuPathDB genomes are classified

against two Kraken databases containing bacterial, archaeal, viral, human, mouse,

vertebrate, and contaminating vector genomes (Figure 3.1). Reads classified as ver-

tebrates are further broken down into sub-classifications such as fish or bird species.

48



CHAPTER 3. EUKARYOTIC PATHOGEN GENOMES

Figure 3.2: Masking results. C) provides an overview of sequence lengths
for each eukaryotic pathogen genome masked in each step and the sequence
lengths of the final cleaned genomes. As low-complexity sequences and vertebrate
masked sequences are much smaller compared to the final genome length or hu-
man/bacterial/viral/plant/vector sequences, these were additionally plotted in A)
andB) for each eukaryotic pathogen genome. Low-complexity sequences were masked
as a final step as well. Masked sequence lengths are also presented as percentages of
the original genome length to show the percent of each genome remaining and the
percent masked in each step D).
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Figure 3.3: Pseudo-read Kraken classifications. This plot shows the 20 eu-
karyotic pathogen genomes with the greatest numbers of pseudo-reads that Kraken
identified as matching foreign species when searching against database containing
bacteria, viruses, archaea, and a limited set of vertebrate genomes. Vertebrate classi-
fications are grouped by common categories, such as fish, birds, rodents, or primates.
Primate and rodent numbers do not include human and mouse, which are counted
and shown separately.

Figure 3.3 shows the breakdown of these classifications for the 20 pathogen genomes

with the largest numbers of classified pseudo-reads. Figure 3.4 shows a similar break-

down focusing specifically on the 20 genomes with the most pseudo-reads labelled as

mouse or human.

Most genome masking occurred after the first Kraken screen against the database of

bacterial, archaeal, viral, human, mouse, and vector genomes. As a result of this step,

I masked on average ∼ 10% of each of the EuPathDB genomes. After classifying the
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Table 3.3: Genomes in EuPathDB-28
Type Genome Orig Length Final Length
AmoebaDB Acanthamoeba astronyxis Unknown 74,102,518 60,248,454 81.3%
AmoebaDB Acanthamoeba castellanii Ma 77,971,411 63,240,657 81.1%
AmoebaDB Acanthamoeba castellanii str. Neff 39,443,455 31,934,200 81.0%
AmoebaDB Acanthamoeba culbertsoni A1 48,610,170 42,492,065 87.4%
AmoebaDB Acanthamoeba lenticulata PD2S 59,106,818 50,456,191 85.4%
AmoebaDB Acanthamoeba lugdunensis L3a 90,244,278 73,682,923 81.6%
AmoebaDB Acanthamoeba mauritaniensis 1652 99,275,674 83,231,758 83.8%
AmoebaDB Acanthamoeba palestinensis Reich 73,493,067 63,560,786 86.5%
AmoebaDB Acanthamoeba quina Vil3 75,960,588 63,017,593 83.0%
AmoebaDB Acanthamoeba rhysodes Singh 64,616,007 53,929,813 83.5%
AmoebaDB Acanthamoeba sp Galka 78,249,914 63,414,386 81.0%
AmoebaDB Acanthamoeba sp Incertae sedis 77,638,095 71,166,671 91.7%
AmoebaDB Acanthamoeba sp T4b-type 83,119,178 64,574,355 77.7%
AmoebaDB Acanthamoeba triangularis SH621 94,707,426 74,305,684 78.5%
AmoebaDB Entamoeba dispar SAW760 22,825,791 9,112,384 39.9%
AmoebaDB Entamoeba histolytica DS4-868 19,756,966 8,717,509 44.1%
AmoebaDB Entamoeba histolytica HM-1:CA 17,729,387 8,023,015 45.3%
AmoebaDB Entamoeba histolytica HM-1:IMSS-A 12,285,409 6,337,751 51.6%
AmoebaDB Entamoeba histolytica HM-1:IMSS-B 12,661,880 6,608,724 52.2%
AmoebaDB Entamoeba histolytica HM-1:IMSS 20,734,772 9,046,626 43.6%
AmoebaDB Entamoeba histolytica HM-3:IMSS 13,617,072 6,867,090 50.4%
AmoebaDB Entamoeba histolytica KU27 15,171,051 7,490,305 49.4%
AmoebaDB Entamoeba histolytica KU50 11,893,480 5,739,198 48.3%
AmoebaDB Entamoeba histolytica MS96-3382 19,015,936 8,369,644 44.0%
AmoebaDB Entamoeba histolytica Rahman 23,309,729 8,688,150 37.3%
AmoebaDB Entamoeba invadens IP1 40,506,505 23,410,257 57.8%
AmoebaDB Entamoeba moshkovskii Laredo 22,738,010 14,687,127 64.6%
AmoebaDB Entamoeba nuttalli P19 14,351,590 7,063,189 49.2%
AmoebaDB Naegleria fowleri ATCC 30863 28,634,883 23,333,454 81.5%
Type Genome Orig Length Final Length
CryptoDB Cryptosporidium baileyi TAMU-09Q1 8,502,994 4,027,024 47.4%
CryptoDB Cryptosporidium hominis 9,050,842 6,395,187 70.7%
CryptoDB Cryptosporidium hominis TU502 8,741,121 6,177,062 70.7%
CryptoDB Cryptosporidium hominis TU502 2012 9,110,085 6,421,811 70.5%
CryptoDB Cryptosporidium hominis UKH1 9,141,398 6,446,679 70.5%
CryptoDB Cryptosporidium meleagridis

UKMEL1
8,973,224 6,567,905 73.2%

CryptoDB Cryptosporidium muris RN66 9,238,736 6,644,382 71.9%
CryptoDB Cryptosporidium parvum Iowa II 9,083,766 6,423,289 70.7%
CryptoDB Chromera velia CCMP2878 193,306,556 140,041,267 72.4%
CryptoDB Gregarina niphandrodes 13,637,874 12,535,606 91.9%
CryptoDB Vitrella brassicaformis CCMP3155 71,768,977 58,191,116 81.1%
Type Genome Orig Length Final Length
FungiDB Aspergillus aculeatus ATCC 16872 35,185,919 31,227,227 88.7%
FungiDB Aphanomyces astaci APO3 58,572,258 55,052,220 94.0%
FungiDB Albuco candida 2VRR 32,793,462 31,551,199 96.2%
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FungiDB Ajellomyces capsulatus G186AR 30,238,072 26,141,840 86.5%
FungiDB Ajellomyces capsulatus NAm1 30,625,832 27,342,692 89.3%
FungiDB Aspergillus carbonarius ITEM5010 34,247,686 31,339,808 91.5%
FungiDB Aspergillus clavatus NRRL1 27,885,697 24,720,573 88.6%
FungiDB Aspergillus flavus NRRL3357 36,829,644 35,106,178 95.3%
FungiDB Aspergillus fumigatus Af293 28,841,706 27,625,228 95.8%
FungiDB Aphanomyces invadans NJM9701 41,452,125 40,541,975 97.8%
FungiDB Albugo laibachii Nc14 32,766,339 31,411,454 95.9%
FungiDB Allomyces macrogynus ATCC38327 52,682,416 46,663,619 88.6%
FungiDB Aspergillus nidulans FGSCA4 29,817,723 28,864,062 96.8%
FungiDB Aspergillus niger ATCC1015 34,853,277 32,727,858 93.9%
FungiDB Aspergillus niger CBS513-88 33,930,387 31,903,326 94%
FungiDB Aspergillus oryzae RIB40 37,117,683 35,381,650 95.3%
FungiDB Aspergillus terreus NIH2624 29,197,939 27,705,997 94.9%
FungiDB Batrachochytrium dendrobatidis

JEL423
23,403,618 22,029,972 94.1%

FungiDB Botryotinia fuckeliana B05.10 38,867,192 34,959,939 89.9%
FungiDB Candida albicans SC5314 14,320,608 10,725,103 74.9%
FungiDB Coprinopsis cinerea okayama7#130 36,150,108 34,628,883 95.8%
FungiDB Cryptococcus deuterogattii R265 17,161,958 16,157,647 94.1%
FungiDB Cryptococcus gattii WM276 18,361,682 17,012,564 92.7%
FungiDB Candida glabrata CBS 138 12,317,942 10,937,497 88.8%
FungiDB Coccidioides immitis H538.4 25,599,272 23,699,859 92.6%
FungiDB Coccidioides immitis RS 28,438,790 26,105,184 91.8%
FungiDB Coccidioides immitis RMSCC 2394 25,231,528 23,330,655 92.5%
FungiDB Coccidioides immitis RMSCC 3703 29,015,619 26,657,761 91.9%
FungiDB Cryptoccocus neoformans B-3501A 18,519,479 17,393,527 93.9%
FungiDB Cryptoccocus neoformans var. grubii

H99
18,899,441 17,706,084 93.7%

FungiDB Cryptoccocus neoformans JEC21 19,050,062 17,883,144 93.9%
FungiDB Coccidioides posadasii C735 27,013,379 24,901,832 92.2%
FungiDB Coccidioides posadasii CPA 0001 25,967,020 23,853,535 91.9%
FungiDB Coccidioides posadasii CPA 0020 24,838,067 22,974,283 92.5%
FungiDB Coccidioides posadasii CPA 0066 25,523,284 23,454,107 91.9%
FungiDB Coccidioides posadasii RMSCC 1037 24,674,763 22,858,408 92.6%
FungiDB Coccidioides posadasii RMSCC 1038 23,601,803 21,932,692 92.9%
FungiDB Coccidioides posadasii RMSCC 2133 27,099,173 25,033,449 92.4%
FungiDB Coccidioides posadasii RMSCC 3488 28,086,866 25,863,576 92.1%
FungiDB Coccidioides posadasii RMSCC 3700 23,429,173 21,943,486 93.7%
FungiDB Coccidioides posadasii str. Silveira 27,427,344 25,330,651 92.4%
FungiDB Fusarium graminearum PH-1 36,223,641 34,755,316 95.9%
FungiDB Fusarium oxysporum sp. lycopersici

4287
59,936,783 57,585,630 96.1%

FungiDB Fusarium verticillioides 7600 41,700,345 39,989,208 95.9%
FungiDB Hyaloperonospora arabidopsis Emoy2 70,831,685 67,916,852 95.9%
FungiDB Mucor circinelloides CBS 277.49 36,587,022 32,884,834 89.9%
FungiDB Malassezia globosa CBS 7966 8,958,094 8,651,600 96.6%
FungiDB Melampsora larici-populina 98AG31 97,682,699 86,308,373 88.4%
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FungiDB Magnaporthe oryzae 70-15 41,504,533 38,052,678 91.7%
FungiDB Neurospora crassa OR74A 41,061,603 34,500,349 84%
FungiDB Neurospora discreta FGSC8579 37,145,397 32,331,446 87%
FungiDB Neosatorya fischeri NRRL 181 31,760,917 29,820,025 93.9%
FungiDB Neurospora tetrasperma FGSC2508 38,490,826 33,482,562 87%
FungiDB Pythium aphanidermatum 34,264,281 33,318,281 97.2%
FungiDB Pythium arrhenomanes 42,813,264 40,437,665 94.5%
FungiDB Phycomyces blakesleeanus NRRL 1555 53,368,881 37,402,174 70.1%
FungiDB Phytophthora capsici LT1534 56,042,007 54,100,541 96.5%
FungiDB Phanerochaete chrysosporium RP-78 32,504,098 31,154,123 95.8%
FungiDB Phytophthora cinnamomi CBS 144.22 58,248,003 55,862,880 95.9%
FungiDB Puccinia graminis f.sp. Tritici CRL

7-536-700-3
81,521,292 69,040,482 84.7%

FungiDB Phytophthora infestans T30-4 190,133,476 182,998,942 96.2%
FungiDB Pythium irregulare DAOM BR486 42,676,619 40,260,460 94.3%
FungiDB Pythium iwayamai DAOM BR22034 41,665,904 39,368,273 94.5%
FungiDB Pneumocystis jirovecii SE8 8,152,511 4,527,610 55.5%
FungiDB Phytophthora parasitica INRA-310 53,871,265 52,042,370 96.6%
FungiDB Phytophthora ramorum strain Pr102 54,424,536 51,287,109 94.2%
FungiDB Phytophthora sojae strain P6497 79,331,234 75,782,571 95.5%
FungiDB Pythium ultimum BR650 35,611,117 33,254,115 93.4%
FungiDB Pythium ultimum DAOM BR144 42,791,577 40,425,968 94.5%
FungiDB Pythium vexans DAOM BR484 33,582,665 31,805,220 94.7%
FungiDB Rhizopus delemar RA 99-880 45,303,457 36,279,280 80.1%
FungiDB Saccharomyces cerevisiae S288c 12,157,105 10,560,358 86.9%
FungiDB Saprolegnia diclina VS20 40,460,948 39,216,331 96.9%
FungiDB Schizosaccharomyces japonicus yFS275 11,216,055 10,320,906 92%
FungiDB Sordaria macrospora k-hell 39,814,042 36,162,566 90.8%
FungiDB Schizosaccharomyces octosporus 11,307,207 9,772,309 86.4%
FungiDB Saprolegnia parasitica CVS 223.65 48,138,513 46,578,255 96.8%
FungiDB Schizosaccharomyces pombe 972h 12,630,977 10,649,585 84.3%
FungiDB Spizellomyces punctatus DAOM

BR117
23,906,001 22,722,876 95.1%

FungiDB Sporisorium reilianum SRZ2 17,998,092 16,533,450 91.9%
FungiDB Sclerotinia sclerotiorum 38,001,451 33,827,555 89%
FungiDB Talaromyces marneffei ATCC 18224 28,467,480 26,991,013 94.8%
FungiDB Tremella mesenterica DSM 1558 27,987,508 25,965,761 92.8%
FungiDB Trichoderma reesei QM6a 33,348,438 29,762,710 89.2%
FungiDB Talaromyces stipitatus ATCC 10500 35,558,430 34,098,032 95.9%
FungiDB Ustilago maydis 521 19,641,656 18,814,259 95.8%
FungiDB Yarrowia lipolytica CLIB122 20,501,810 18,893,458 92.2%
Type Genome Orig Length Final Length
GiardiaDB Giardia intestinalis A isolate WB 10,703,889 10,467,715 97.8 %
GiardiaDB Giardia intestinalis A2 isolate DH 11,192,174 10,918,617 97.6 %
GiardiaDB Giardia intestinalis B isolate GS 10,998,431 10,757,478 97.8 %
GiardiaDB Giardia intestinalis B isolate GS B 12,009,619 11,767,306 98.0 %
GiardiaDB Giardia intestinalis E isolate P15 11,521,527 11,237,712 97.5 %
GiardiaDB Spironucleus salmonicida ATCC 50377 12,893,052 9,474,143 73.5 %
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Type Genome Orig Length Final Length
MicrosporidiaDB Anncaliia algerae PRA109 13,851,317 5,200,550 37.5%
MicrosporidiaDB Anncaliia algerae PRA339 9,877,948 3,924,651 39.7%
MicrosporidiaDB Anncaliia algerae Undeen 13,803,782 6,147,817 44.5%
MicrosporidiaDB Edhazardia aedis USNM 41457 46,603,333 12,448,222 26.7%
MicrosporidiaDB Enterocytozoon bieneusi H348 3,859,221 2,375,928 61.6%
MicrosporidiaDB Encephalitozoon cuniculi EC1 2,240,501 2,149,920 96.0%
MicrosporidiaDB Encephalitozoon cuniculi EC2 2,241,415 2,152,041 96.0%
MicrosporidiaDB Encephalitozoon cuniculi EC3 2,235,625 2,146,050 96.0%
MicrosporidiaDB Encephalitozoon cuniculi GB-M1 2,496,714 2,357,956 94.4%
MicrosporidiaDB Encephalitozoon hellem Swiss 2,182,433 2,065,044 94.6%
MicrosporidiaDB Encephalitozoon intestinalis ATCC

50506
2,216,798 2,050,267 92.5%

MicrosporidiaDB Encephalitozoon romaleae SJ-2008 2,187,587 2,047,833 93.6%
MicrosporidiaDB Hamiltosporidium tvaerminnensis

OER-3-3
13,270,809 6,120,415 46.1%

MicrosporidiaDB Mitosporidium daphniae UGP3 5,636,645 5,133,874 91.1%
MicrosporidiaDB Nosema bombycis CQ1 14,356,492 8,163,893 56.9%
MicrosporidiaDB Nosema ceranae BRL01 7,860,219 3,313,417 42.2%
MicrosporidiaDB Nematocida ausubeli 4,649,639 3,948,126 84.9%
MicrosporidiaDB Nematocida parisii ERTm1 4,029,056 3,056,154 75.9%
MicrosporidiaDB Nematocida parisii ERTm3 4,121,387 3,132,651 76%
MicrosporidiaDB Nematocida ausubeli 4,228,442 3,624,837 85.7%
MicrosporidiaDB Ordospora colligata OC4 2,290,527 2,098,057 91.6%
MicrosporidiaDB Spraguea lophii 42 110 4,979,932 1,720,891 34.6%
MicrosporidiaDB Trachipleistophora hominis 7,706,555 6,131,376 79.6%
MicrosporidiaDB Vittaforma corneae ATCC 50505 3,148,732 2,754,939 87.5%
MicrosporidiaDB Vavraia culicis subsp. floridensis 6,033,822 5,448,931 90.3%
Type Genome Orig Length Final Length
PiroplasmaDB Babesia bigemina strain BOND 13,840,936 13,152,126 95.0%
PiroplasmaDB Babesia bovis T2Bo 8,179,705 7,793,821 95.3%
PiroplasmaDB Babesia microti strain RI 6,392,336 5,626,076 88%
PiroplasmaDB Cytauxzoon felis strain Winnie 9,110,257 6,621,491 72.7%
PiroplasmaDB Theileria annulata strain Ankara 8,357,924 6,054,564 72.4%
PiroplasmaDB Theileria equi strain WA 11,674,476 11,027,791 94.5%
PiroplasmaDB Theileria orientalis strain Shintoku 9,006,764 7,652,828 85.0%
PiroplasmaDB Theileria parva strain Muguga 8,353,489 6,313,179 75.6%
Type Genome Orig Length Final Length
PlasmoDB Plasmodium coatneyi Hackeri 27,691,932 18,780,353 67.8%
PlasmoDB Plasmodium cynomolgi strain B 25,338,238 15,993,945 63.1%
PlasmoDB Plasmodium falciparum IT 22,608,450 3,623,247 16%
PlasmoDB Plasmodium gallinaceum 8A 16,919,478 2,725,441 16.1%
PlasmoDB Plasmodium reichenowi CDC 23,777,383 3,956,350 16.6%
PlasmoDB Plasmodium vivax -like Pvl01 26,960,177 16,696,343 61.9%
PlasmoDB Plasmodium yoelii yoelii 17X 22,573,807 4,256,123 18.9%
PlasmoDB Plasmodium yoelii yoelii 17XNL 22,923,632 4,268,426 18.6%
PlasmoDB Plasmodium yoelii yoelii YM 21,430,035 4,047,021 18.9%
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Type Genome Orig Length Final Length
ToxoDB Cyclospora cayetanensis strain

CHN HEN01
46,076,418 40,885,607 88.7%

ToxoDB Eimeria acervulina Houghton 45,677,409 23,000,742 50.4%
ToxoDB Eimeria brunetti Houghton 65,020,649 31,842,885 49.0%
ToxoDB Eimeria falciformis Bayer Haberkorn 41,633,439 30,420,208 73.1%
ToxoDB Eimeria maxima Weybridge 45,874,462 25,082,861 54.7%
ToxoDB Eimeria mitis Houghton 66,895,571 32,426,613 48.5%
ToxoDB Eimeria necatrix Houghton 54,911,932 32,308,343 58.8%
ToxoDB Eimeria praecox Houghton 55,968,490 26,973,281 48.2%
ToxoDB Eimeria tenella strain Houghton 51,173,562 30,699,534 60.0%
ToxoDB Hammondia hammondi strain H.H.34 67,460,985 57,295,789 84.9%
ToxoDB Neospora caninum Liverpool 59,079,711 52,342,634 88.6%
ToxoDB Sarcocystis neurona 117,871,271 84,838,398 72.0%
ToxoDB Toxoplasma gondii ARI 63,082,652 55,370,610 87.8%
ToxoDB Toxoplasma gondii CAST 63,046,868 55,340,458 87.8%
ToxoDB Toxoplasma gondii COUG 63,695,689 55,558,767 87.2%
ToxoDB Toxoplasma gondii CtCo5 62,620,635 54,910,445 87.7%
ToxoDB Toxoplasma gondii FOU 61,897,817 54,334,863 87.8%
ToxoDB Toxoplasma gondii

GAB2-2007-GAL-DOM2
62,977,178 55,266,195 87.8%

ToxoDB Toxoplasma gondii GT1 63,916,432 56,172,934 87.9%
ToxoDB Toxoplasma gondii MAS 61,483,819 54,038,607 87.9%
ToxoDB Toxoplasma gondii ME49 65,463,023 57,092,239 87.2%
ToxoDB Toxoplasma gondii p89 61,877,399 54,370,919 87.9%
ToxoDB Toxoplasma gondii RH 4,034,738 3,539,244 87.7%
ToxoDB Toxoplasma gondii RUB 62,609,256 55,003,468 87.9%
ToxoDB Toxoplasma gondii TgCATBr5 61,636,148 54,079,463 87.7%
ToxoDB Toxoplasma gondii TgCATBr9 61,824,191 54,377,809 88.0%
ToxoDB Toxoplasma gondii TgCatPRC2 62,981,717 55,005,780 87.3%
ToxoDB Toxoplasma gondii TgCkUg2 41,929,350 37,103,249 88.5%
ToxoDB Toxoplasma gondii VAND 62,334,980 54,725,606 87.8%
ToxoDB Toxoplasma gondii VEG 63,535,336 55,816,152 87.9%
Type Genome Orig Length Final Length
TrichDB Trichomonas vaginalis G3 175,592,576 133,413,618 76.0%
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Type Genome Orig Length Final Length
TriTrypDB Endotrypanum monterogeii LV88 32,006,254 25,442,985 79.5%
TriTrypDB Leishmania aethiopica L147 30,987,107 26,122,578 84.3%
TriTrypDB Leishmania amazonensis

MHOM/BR/71973/M2269
29,003,854 24,729,684 85.3%

TriTrypDB Leishmania arabica LEM1108 30,769,451 26,094,063 84.8%
TriTrypDB Leishmania braziliensis

MHOM/BR/75/M2903
32,474,516 27,565,352 84.9%

TriTrypDB Leishmania braziliensis
MHOM/BR/75/M2904

31,996,772 27,334,656 85.4%

TriTrypDB Leishmania donovani strain BHU 1220 31,201,868 26,747,829 85.7%
TriTrypDB Leishmania donovani strain BPK282A1 31,252,135 26,776,266 85.7%
TriTrypDB Leishmania enriettii strain LEM3045 30,426,963 26,787,339 88.0%
TriTrypDB Leishmania gerbilli strain LEM452 30,817,898 25,943,276 84.2%
TriTrypDB Leishmania infantum JPCM5 32,101,728 27,259,756 84.9%
TriTrypDB Leishmania major strain Friedlin 32,855,082 27,609,648 84.0%
TriTrypDB Leishmania major strain LV39c5 31,923,298 26,995,213 84.6%
TriTrypDB Leishmania major strain SD 75.1 31,157,115 26,458,979 84.9%
TriTrypDB Leishmania mexicana

MHOM/GT/2001/U1103
32,074,503 26,912,815 83.9%

TriTrypDB Leishmania panamensis
MHOM/COL/81/L13

30,964,489 26,462,045 85.5%

TriTrypDB Leptomonas pyrrhocoris H10 30,266,257 25,517,685 84.3%
TriTrypDB Leptomonas seyomouri ATCC 30220 27,617,457 24,322,244 88.1%
TriTrypDB Leishmania sp. MAR LEM2494 30,528,139 26,182,127 85.8%
TriTrypDB Leishmania tarentolae Parrot-TarII 30,440,719 26,681,639 87.7%
TriTrypDB Leishmania tropica L590 31,322,741 26,386,117 84.2%
TriTrypDB Leishmania turanica strain LEM423 30,870,945 25,680,606 83.2%
TriTrypDB Trypanosoma brucei gambiense DAL972 22,110,721 18,709,859 84.6%
TriTrypDB Trypanosoma brucei Lister strain 427 25,703,564 21,093,540 82.1%
TriTrypDB Trypanosoma brucei brucei TREU927 35,816,880 29,307,744 81.8%
TriTrypDB Trypanosoma congolense IL3000 34,080,344 29,545,872 86.7%
TriTrypDB Trypanosoma cruzi strain CL Brener 25,827,529 20,606,810 79.8%
TriTrypDB Trypanosoma cruzi CL Brener

Esmeraldo-like
36,032,823 30,297,678 84.1%

TriTrypDB Trypanosoma cruzi CL Brener
Non-Esmeraldo-like

27,751,085 22,461,132 80.9%

TriTrypDB Trypanosoma cruzi DM28c 27,304,309 22,335,463 81.8%
TriTrypDB Trypanosoma cruzi strain Esmeraldo 34,967,951 28,007,865 80.1%
TriTrypDB Trypanosoma cruzi JR cl. 4 40,114,148 32,504,101 81.0%
TriTrypDB Trypanosoma cruzi marinkellei strain B7 34,233,090 27,383,012 80.0%
TriTrypDB Trypanosoma cruzi Sylvio X10//1 38,589,511 31,510,663 81.7%
TriTrypDB Trypanosoma cruzi Tula cl2 74,005,907 60,022,805 81.1%
TriTrypDB Trypanosoma evansi strain STIB 805 25,432,062 21,367,606 84.0%
TriTrypDB Trypanosoma grayi ANR4 20,809,961 17,856,524 85.8%
TriTrypDB Trypanosoma rangeli SC58 14,016,406 11,878,107 84.7%
TriTrypDB Trypanosoma vivax Y486 41,775,787 36,041,565 86.3%
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Figure 3.4: Human/Mouse classified pseudo-reads. This plot shows the 20
genomes with the most number of pseudo-reads classified as either human or mouse.
Perhaps not surprisingly, the mouse strain of malaria, P. yoelii, contains a substantial
number of contaminant reads from mouse.

remaining pseudo-reads against the vertebrate database, I masked a much smaller

amount of sequence, with only 0.1% of each genome matching vertebrate sequences

in this step.

The most contaminated eukaryotic pathogen genomes are the three Plasmodium

yoelii genomes (strains 17XNL, YM, and 17X), with approximately 60% of the

genomes identified as human/bacterial/viral/archaeal (Figures 3.3 and 3.4). The pri-

mary sources of contamination in these three genomes were Methylococcus capsulatus

(16,000 pseudo-reads) and the mouse genome (12, 000 pseudo-reads). The genome

for Plasmodium vivax Sal-1, which causes malaria in humans, contained the greatest
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amount of human contamination, with more than 4, 000 pseudo-reads classified as

Homo sapiens. Entamoeba histolytica Rahman, a human intestinal parasite, is also

notably contaminated, with nearly 50% of its genome identified as either human or

bacteria (Figures 3.3 and 3.4).

Other eukaryotic pathogens that underwent significant masking due to contamina-

tion include Plasmodium gallinaceum 8A (62% masked), Plasmodium falciparum IT

(57% masked), Plasmodium reichenowi CDC (55% masked). Each of these pathogens

contained significant contamination likely due to host DNA, as the masked pseudo-

reads were identified as matching their original host. For example, Plasmodium galli-

naceum causes malaria in poultry and 11,700 pseudo-reads were identified as chicken

DNA [55]. Although Plasmodium falciparum is a human malarial parasite, it origi-

nated from the gorilla malarial parasite [56]. More than 450 pseudo-reads for Plas-

modium falciparum were identified as gorilla. Similarly, Plasmodium reichenowi is a

malarial parasite in chimpanzees and was one of only two Plasmodium genomes to

have chimpanzee pseudo-reads [56]. Interestingly, Edhazardia aedis had 55% of its

genome length masked, but had very few classified pseudo-reads. Instead, the major-

ity of its non-masked sequences to begin with were stretches of DNA less than 100bp.

Over 358, 000 individual sequences were very small contigs, shorter than 100bp which

are masked due to length.
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3.4 Eukaryotic Pathogen Detection in Hu-

man Cornea Samples

To measure the effectiveness of this database cleaning method for NGS diagnosis of

human infections, I evaluated a set of 20 human cornea samples recently described

by Li et. al 2018 [57] against our EuPathDB-clean. The 20 corneal samples include 4

bacterial infections, 9 eukaryotic pathogen infections, 3 herpes virus infections, and 4

controls. Details about these samples and the true positive pathogens in each sample

are listed in Table 3.4.

I first used Bowtie2 to align all corneal sample reads against the human genome

reference, GRCh38.p7, and extracted any unaligned reads for each sample (Table

3.4). The non-human reads from each sample were then classified against Kraken

databases generated from 1) the original eukaryotic pathogen genomes, 2) the eu-

karyotic pathogen genomes after removal of bacterial, viral, archaeal, and plant con-

tamination and 3) the final cleaned eukaryotic pathogen genomes. The second set of

genomes did not yet undergo removal of human and vertebrate contamination.

Figure 3.5 summarizes the results when using each of databases to identify the

pathogens in these samples. The classifications differed greatly depending on the

database used, demonstrating the importance of database selection prior to the com-

putational analysis of any NGS sample. However, in the case of diagnostics, the
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Table 3.4: Cornea sample true positives. This table summarizes the pathogens
present in each of the corneal samples. Metagenomic shotgun sequencing was per-
formed on all samples as described in [31] generating from 20–46 million pairs of 75-bp
reads per sample. Sequencing was done in two batches of 10 samples each, where the
10 samples were multiplexed.

Case # True Positives Total Reads Non-Human Reads
Case 1 Staphyloccoccus aureus 35,947,243 8,166
Case 2 Streptococcus agalactiae 42,281,022 2,354,821
Case 3 Mycobacterium 32,321,057 1,440,343
Case 4 Mycobacterium chelonae 31,259,428 2,927,088
Case 5 Candida parapsilosis 22,572,576 3,615,840
Case 6 Fusarium solani 43,187,311 3,048,256
Case 7 Candida albicans/dubliensis 45,410,366 1,993,853
Case 8 Curvularia 42,359,755 3,181,901
Case 9 Aspergillus flavus 46,033,752 2,875,199
Case 10 Anncaliia algerae 20,060,037 2,756,229
Case 11 Acanthamoeba 43,742,352 2,880,293
Case 12 Acanthamoeba 46,648,496 3,602,638
Case 13 Acanthamoeba 44,554,101 3,472,961
Case 14 Herpes simplex type 1 22,460,961 1,470,059
Case 15 Herpes simplex type 1 25,512,845 1,411,580
Case 16 Herpes simplex type 1 23,749,398 3,874,558
Case 17 None 43,643,461 2,637,693
Case 18 None 45,824,224 2,341,716
Case 19 None 25,623,975 1,071,939
Case 20 None 25,202,226 1,823,615

contamination in the raw (unprocessed) genome databases creates false positive sig-

nals that overwhelm the true pathogen of the samples. For example, classification

with the original EuPathDB presents Toxoplasma gondii as one of the primary in-

fections in all but one of the corneal samples (Figure 3.5A). However, none of the

cornea samples had infections by Toxoplasma gondii [57], making this classification

a false positive.

The contamination removal process masked on average 5% of each Toxoplasma gondii
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Figure 3.5: Top 15 species identified in corneal samples when classified with
the original EuPathDB-28 database. The non-human reads from the 20 corneal
samples were classified against three Kraken databases: the original EuPathDB (A),
EuPathDB without bacterial/archaeal/viral/plant contamination (B), and the final
EuPathDB-28 with additional removal of human/vertebrate contamination (C). The
plot above focuses on the 15 species with the most classified reads when classifying the
corneal samples against the original EuPathDB. The plot compares how the number
of classified reads changed when contaminating sequences were removed from the
eukaryotic pathogen genomes.

genome. For example, the initial Toxoplasma gondii ME49 genome is ∼ 60 Mb long

and the final masked genome is 57 Mb. Fortunately, removing this relatively small

proportion of the genome produced a cleaned database with a far better classification

profile for the corneal samples. As shown in Figure 3.5C, the correct eukaryotic in-

fections for Cases 7, 9, 10, 11, and 12 are immediately evident with the new database.

Instead of thousands of reads identified as Toxoplasma gondii, the new database shows

very high (and correct) read counts for Anncaliia algerae in Case 10, Candida albi-
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Figure 3.6: Classified reads for the true positive genera in the corneal sam-
ples for the EuPathDB-28 databases. The above plot compares the number
of classified reads for the true eukaryotic pathogens in the infected samples when
classifying the samples against: the original EuPathDB (A), EuPathDB without
bacterial/archaeal/viral/plant contamination (B), and the final EuPathDB-28 with
additional removal of human/vertebrate contamination (C). The true pathogens are
Fusarium (Case 6), Candida (Case 7), Aspergilllus (Case 9), Anncaliia (Case 10),
and Acanthamoeba (Cases 11-13).

cans in Case 7, Aspergillus in Case 9, and Acanthamoeba in Cases 11 and 12, all true

positive infections. With EuPathDB-clean, the maximum number of reads labeled as

Toxoplasma gondii in any single sample was 24.

Another way to look at the data is to examine the read counts for the true posi-

tive genera only, as shown in Figure 3.6. Here I show the number of reads in each

sample that were assigned to the 5 eukaryotic pathogens known to be present in at

least one of the samples. With the original EuPathDB, the non-infected samples,
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alongside the truly infected samples, all appear to have numerous reads classified as

Acanthamoeba or Aspergillus (Figure 3.6A). Upon removal of bacterial, archaeal,

and viral contamination, Acanthamoeba reads were mainly identified in the Case 12

and 13 corneal sample while Aspergillus reads were mainly identified in the Case

9 corneal sample (Figure 3.6B). However, the corneal samples without eukaryotic

pathogen infections continued to have a few thousand false positives. By comparison,

the final EuPathDB-clean (where human and vertebrate contamination was also re-

moved), identified less than 10 Aspergillus flavus reads in all non-Aspergillus-infected

samples while maintaining a strong signal for Aspergillus flavus in Case 9.

3.5 EuPathDB-46

As of November 6, 2019, the most up to date Eukaryotic Pathogen Database is Eu-

PathDB release 46 (released on November 6, 2019), which now contains 388 genomes

[52]. Table 3.5 displays the increased number of genomes between 2018 and 2020

for each sub-database. The increase in the number of genomes is largely due to the

addition of genomes representing various strain of a single species. For example,

EuPathDB-28 only contained one Plasmodium falciparum genome representing Plas-

modium falciparum IT while EuPathDB-46 now contains 16 different Plasmodium

falciparum strains. Similarly, in FungiDB-28, there is only one Fusarium oxyspo-

rum genome; in FungiDB-46, there are seven Fusarium oxysporum genomes, each
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Table 3.5: Composition of EuPathDB-28 and EuPathDB-46.

Sub-Database EuPathDB-28 EuPathDB-46
AmoebaDB 29 30
CryptoDB 11 18
FungiDB 87 164
GiardiaDB 6 10
MicrosporidiaDB 25 35
PiroplasmaDB 8 10
PlasmoDB 9 45
ToxoDB 30 33
TrichDB 1 1
TriTrypDB 39 42
Total 245 388

representing a different strain. In addition to the increased representation of some

species, there are 94 new species introduced in EuPathDB-46 that were not present

in EuPathDB-28 (Table 3.6).

Following the release of the new database version, I repeated the previously described

contamination removal process for the EuPathDB-46 genomes. Figure 3.7 sum-

marizes the masked sequence length for each step. Following the removal of low-

complexity, bacterial, viral, plant, vector, and vertebrate sequences, the majority

of the eukaryotic pathogen genomes retained at least 80% of their original genome

length. On average, the remaining genome length after cleaning is 87% of the original

genome length.

However, while the majority of sequences retained a significant portion of their genome

length, Plasmodium genomes on average had 50% of their genome length remaining. A

significant portion of Plasmodium genome lengths were masked due to low complexity
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Figure 3.7: EuPathDB-46 Masking results D) provides an overview of sequence
lengths masked in each step and the sequence lengths of the final cleaned genomes.
As low-complexity sequences and vertebrate masked sequences are much smaller com-
pared to the final genome length or bacterial/viral/plant/vector sequences, these were
additionally plotted in A) and B) for each eukaryotic pathogen genome. Human
masked sequences are plotted in C). Masked sequence lengths are also presented
as percentages of the original genome length to show the percent of each genome
remaining and the percent masked in each step E).
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Table 3.6: New Species in EuPathDB-46. This table lists, for each sub-database,
the new species represented in EuPathDB-46 that were not previously represented in
EuPathDB-28.

C
ry
p
to

Cryptosporidium andersoni

F
u
n
g
i

Clavispora lusitaniae

G
ia
rd

ia Giardia Assemblage
Cryptosporidium sp. Cryptococcus gattii Giardia muris
Cryptosporidium tyzzeri Cryptococcus neoformans Monocercomonoides exilis
Cryptosporidium ubiquitum Cyphellophora europaea

M
ic
ro
sp

o
ri
d
ia Enterocytozoon hepatopenaei

F
u
n
g
i

Amauroascus mutatus Exophiala mesophila Enterospora canceri
Amauroascus niger Exophiala oligosperma Hepatospora eriocheir
Aspergillus brasiliensis Fonsecaea pedrosoi Nematocida ausubeli
Aspergillus campestris Fusarium fujikuroi Nematocida displodere
Aspergillus fischeri Fusarium proliferatum Pseudoloma neurophilia
Aspergillus glaucus Histoplasma capsulatum

P
ir
o
p
la
sm

a
/
P
la
sm

o

Babesia divergens
Aspergillus kawachii Hyaloperonospora arabidopsidis Babesia ovata
Aspergillus luchuensis Kwoniella bestiolae Plasmodium adleri
Aspergillus novofumigatus Kwoniella dejecticola Plasmodium berghei
Aspergillus ochraceoroseus Kwoniella heveanensis Plasmodium billcollinsi
Aspergillus steynii Lomentospora prolificans Plasmodium blacklocki
Aspergillus sydowii Malassezia restricta Plasmodium chabaudi
Aspergillus tubingensis Naganishia albida Plasmodium fragile
Aspergillus versicolor Paracoccidioides brasiliensis Plasmodium gaboni
Aspergillus wentii Paracoccidioides lutzii Plasmodium inui
Aspergillus zonatus Penicillium rubens Plasmodium knowlesi
Botrytis cinerea Phytophthora palmivora Plasmodium malariae
Byssoonygena ceratinophila Phytophthora plurivora Plasmodium ovale curtisi
Candida auris Puccinia triticina Plasmodium praefalciparum
Candida duobushaemulonis Phytopythium vexans Plasmodium relictum
Candida haemulonis Rhizophagus irregularis Plasmodium vinckei
Candida parapsilosis Scedosporium apiospermum Toxo Cystoisospora suis
Candida tropicalis Sporothrix brasiliensis

T
ri
ch

Blechomonas ayalai
Cenococcum geophilum Sporothrix schenckii Bodo saltans
Chrysosporium queenslandicum Trichoderma virens Leptomonas seymouri
Cladophialophora carrionii Uncinocarpus reesii Paratrypanosoma confusum
Cladophialophora immunda Zymoseptoria tritici Trypanosoma theileri

sequences, in accordance with existing literature on the prevalence of low complexity

regions in Plasmodium genomes [58,59].

In addition to the low-complexity sequences, vertebrate, bacterial, viral, plant, vector,

and human sequences were detected across all Plasmodium genomes. For additional

insight into these contaminating sequences, I analyzed the Plasmodium pseudo-read

classifications (Figure 3.8). Notably, the masked pseudo-reads indicated that host

DNA continues to be present in these draft genomes as discovered previously; chicken

pseudo-reads were mainly found in the poultry malarial parasite Plasmodium galli-
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Figure 3.8: Pseudo-read Classifications in EuPathDB-46 Plasmodium
genomes. The top left panel displays the lengths of genome sequences masked in each
masking step (human sequences in purple, bacterial/viral/plant/vector sequences in
orange, vertebrate sequences in pink, and low complexity sequences in green) along
with the length of the remaining genome sequence length. The bottom left panel
shows the percentage of the original sequence length removed in each step and the
percentage of genome sequence length remaining. The plot on the right displays the
pseudo-reads classifications of each of the Plasmodium genomes.

naceum [55], mouse pseudo-reads found in the mouse malarial parasite Plasmodium

yoellii, and primate pseudo-reads found in the human/chimpanzee malarial parasite

Plasmodium vivax [56].

The ToxoDB genomes in EuPathDB-46 also exhibited higher levels of contamination

as compared to the remaining eukaryotic pathogen genomes. Figure 3.9 shows the

breakdown of the pseudo-read classifications for all ToxoDB genomes. Specifically, the

8 Eimeria genomes revealed high levels of contamination, resulting in approximately
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Figure 3.9: Pseudo-read Classifications in EuPathDB-46 Toxoplasma
genomes. The top left panel displays the lengths of genome sequences masked in each
masking step (human sequences in purple, bacterial/viral/plant/vector sequences in
orange, vertebrate sequences in pink, and low complexity sequences in green) along
with the length of the remaining genome sequence length. The bottom left panel
shows the percentage of the original sequence length removed in each step and the
percentage of genome sequence length remaining. The plot on the right displays the
pseudo-reads classifications of each of the Toxoplasma genomes.

40% of each Eimeria genome being masked, mainly due to host DNA. The Eimeria

genera, while not infectious to humans, is closely related to the human intestinal

pathogen Cyclospora [60] which is also represented in the ToxoDB sub-database. The

Eimeria organisms instead infect a variety of various animals including fish, poultry,

rodents, and bats. [61]. For example, Eimeria mitis is a known infectious agent

of chickens [62] and in our analysis, more than 1 Mb of the Eimeria mitis genome

was masked due to approximately 14,500 of its pseudo-reads classified as bird DNA.
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The Eimeria genomes were also significantly contaminated with fish DNA, as several

Eimeria species are known fish parasites [63].

3.5.1 Human Cornea Samples vs. EuPathDB-46

As previously described, I evaluated the effectiveness of the contamination removal

process by classifying the human cornea samples from Li et. al 2018 [57] against

EuPathDB-46. Details about these samples are listed in Table 3.4. For a thorough

investigation into the importance of each masking step, I generated multiple Kraken

databases from the eukaryotic pathogen genomes at each step of the cleaning process.

I then classified the non-human reads from each of the corneal samples against each

of the Kraken databases.

Figure 3.10 summarizes the change in classified reads for the top 15 species origi-

nally identified in the corneal samples when using the original EuPathDB-46 genomes.

Figure 3.10A shows how Toxoplasma gondii and Naegleria fowleri are found across

all 20 corneal samples, despite each sample being infected by different pathogens.

Additionally, the distribution of the 15 species is identical across each sample. After

removing bacterial, viral, and archaeal DNA from EuPathDB-46, Figure 3.10B re-

veals significantly lower levels of Toxoplasma gondii across all samples. Additionally,

the removal of these contamination sources also revealed clear true positive signals for

Anncaliia algerae in Case 10 and Candida albicans in Case 7. Removal of non-human
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vertebrate DNA from the EuPathDB-46 genomes further reduced the Toxoplasma

gondii signal in all samples and reduced the number of Plasmodium falciparum reads

in the Case 1 corneal sample (Figure 3.10C). Finally, additional removal of human

DNA resulted in a much cleaner EuPathDB-46 (Figure 3.10D), significantly reduc-

Figure 3.10: Top 15 species identified in corneal samples when classified
with the original EuPathDB-46 database. The non-human reads from the
20 corneal samples were classified against four Kraken databases: the original Eu-
PathDB (A), EuPathDB without bacterial/archaeal/viral/plant contamination (B),
EuPathDB with additional removal of vertebrate contamination (C) and the final
EuPathDB-46 with additional removal of human contamination (D). The plot above
focuses on the 15 species with the most classified reads when classifying the corneal
samples against the original EuPathDB, comparing the number of classified corneal
reads for each database.
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Figure 3.11: Classified reads for the true positive genera in the corneal
samples for the EuPathDB-46 databases. The above plot compares the num-
ber of classified reads for the true eukaryotic pathogens in the infected samples
when classifying the samples against: the original EuPathDB (A), EuPathDB
without low-complexity sequences (B), and the final EuPathDB-46 with removal
of human/bacterial/archaeal/viral/plant/vertebrate contamination (C). The true
pathogens are Fusarium (Case 6), Candida (Case 7), Aspergilllus (Case 9), Anncaliia
(Case 10), and Acanthamoeba (Cases 11-13).

ing the number of false positive Hammondia hammondi reads across all samples.

I then compared the read counts across databases for the true positives in the corneal

samples: Fusarium (Case 6), Candida (Case 7), Aspergillus (Case 9), Anncaliia (Case

10), and Acanthamoeba (Cases 11-13). Notably, Curvularia in Case 8 is also a eukary-

otic pathogen, but the Curvularia genome does not exist in EuPathDB-46. Figure

3.11A shows the read counts for these genera across all samples when classifying

the corneal samples against the original EuPathDB-46. As with EuPathDB-28, the
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original database limits the visibility of the truly infected samples, with signals for

all five eukaryotic pathogens showing up in all 20 corneal samples, including the 4

control samples. However, after low-complexity sequences are removed, the result-

ing EuPathDB-46 already shows improvement, with the number of Fusarium reads

reduced across all samples (Figure 3.11B). The remaining cleaning steps yielded a

final EuPathDB-46 that allows for correct identification of the true positive genera in

their respective samples.

3.6 Conclusion

In principle, next-generation sequencing can identify all microbial organisms within

any sample, making it a potentially a revolutionary method for the diagnosis of human

infections. However, this method relies heavily on the computational analysis that

compares sequencing reads against reference databases, such as RefSeq and Gen-

Bank. Although new genomes are being sequenced daily, the reference databases

remain incomplete and, because most new genomes are in draft form, inaccurate.

Recent studies have identified contamination in many published genomes, hindering

our ability to use them for accurate diagnosis.

I therefore developed a comprehensive contamination removal process, identifying

human, vertebrate, bacterial, viral, archaeal, and vector contamination in the 245 eu-

72



CHAPTER 3. EUKARYOTIC PATHOGEN GENOMES

karyotic pathogen draft genomes of EuPathDB-28 and then again in the 388 genomes

of EuPathDB-46. By removing contamination and low-complexity sequences, I have

created a much cleaner database that minimizes false positives and provides better

identification of true positive pathogens in NGS diagnostic samples.
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CHAPTER 4. BRACKEN

4.1 Introduction

When it was first published in 2014, the Kraken metagenomics classifier provided

an extremely fast and accurate method for classifying sequencing reads by comparing

exact-match kmers [12]. As compared to existing tools, the Kraken classifier provided

a major enhancement in speed for analyzing large metagenomics sequencing data,

running over 900 times faster than MegaBlast [54], the closest competitor at the

time. Kraken’s success and accuracy rely on its use of a very large, efficient index of

short sequences of length k, which it builds into a specialized database. If k is chosen

appropriately, then most sequences of length k in the database will be unique to a

single species, and many will also be unique to a particular strain or genome. Larger

values of k will yield a database in which even more of each genome is uniquely covered

by k-mers; obviously, though, k should not be longer than the length of a sequencing

read, and metagenomics projects currently generate reads as short as 75–100 base

pairs (bp). Longer k-mers are also more likely to contain errors, meaning that more

reads will be left unclassified if k is too long. Smaller k-mers, in contrast, will yield

higher sensitivity because the minimum match length is shorter.

When used to identify the taxonomic label of metagenomics sequences, the Kraken

system for classification of metagenomics sequences is extremely fast and accurate

[12]. When classifying raw sequence reads, though, many reads correspond to iden-

tical regions between two or more genomes. (The number of such ambiguous reads
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decreases as reads get longer.) Kraken solves this problem by labeling the sequence

with the lowest common ancestor (LCA) of all species that share that sequence, as

discussed further below.

4.1.1 Ambiguity among microbial species and strains

As the database of bacterial genomes has grown, an increasing number of genomes

share large portions of their sequence with other genomes. In many cases, these

genomes are nearly identical; indeed, sequencing has revealed to scientists that many

formerly distinct species and genera are far closer than were known prior to sequenc-

ing. Many species have been renamed as a result, in a process that is continual and

ongoing, but many other species have retained their old names, often for historical or

other reasons.

For example, the species Mycobacterium bovis is over 99.95% identical to Mycobac-

terium tuberculosis [64], and many cases of human tuberculosis are caused by M.

bovis (which also infects cows) rather than M. tuberculosis [65]. Their high sequence

identity indicates that they should be considered as two strains of a single species,

but they retain different species names. As a compromise, taxonomists have created

the category Mycobacterium tuberculosis complex [66] to represent a collection of taxa

that now includes more than 100 strains of five different species. This category sits

above the species level but below the genus level in the current microbial taxonomy,
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but it can best be described as a species.

Other examples are numerous and still growing. The three species Bacillus anthracis

(the causative agent of anthrax), Bacillus cereus, and Bacillus thuringiensis are well

over 99% identical and should all be designated as a single species [67], although their

names have not been changed despite their near-identity revealed by sequencing. As

a compromise, taxonomists created the category Bacillus cereus group, between the

level of species and genus, to include these three species and at least five others [68],

all of which are extremely similar to one another. In some cases, two organisms that

should be called the same species may even have different genus names. For example,

Escherichia coli and Shigella flexneri are classified in different genera, but we know

from sequence analysis that they represent the same species [69].

Failure to recognize the mutability of the bacterial taxonomy can lead to erroneous

conclusions about the performance of metagenomic classifiers. For example, one re-

cent study [70] created a mock community of 11 species, one of which was Anabaena

variabilis ATCC 29413, not realizing that this genome had been renamed and was

synonymous with species in the genus Nostoc [71]. When Anabaena was removed

from the database, Kraken correctly identified the reads as Nostoc, but Peabody et

al. erroneously considered all these reads to be misclassified.
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4.1.2 Classification versus abundance estimation

Kraken attempts to assign a taxonomy label to every read in a metagenomics sample

using a custom-built database that may contain any species the user chooses. Among

the current set of finished bacterial and archaeal genomes, hundreds of species can

be found for which large fractions of their sequence are identical to other genomes

belonging to distinct strains, species, or even genera. The reads arising from common

regions in these species result in a tie when analyzed with Kraken’s classification

algorithm, so Kraken correctly reports only the lowest common ancestor (LCA) [12].

It follows that for well-populated clades with low genome diversity, Kraken only

reports species-level assignments for reads from unique regions, and a true indication

of total abundance can only be made by taking both species and genus (or higher)

level assignments into account. This implies that for some species, the majority of

reads might be classified at a higher level of the taxonomy. Kraken thus leaves many

reads “stranded” above the species level, meaning that the number of reads classified

directly to a species may be far lower than the actual number present.

Therefore, any assumption that Kraken’s raw read assignments can be directly trans-

lated into species- or strain-level abundance estimates (e.g., [72]) is flawed, as ignoring

reads at higher levels of the taxonomy will grossly underestimate some species, and

creates the erroneous impression that Kraken’s assignments themselves were incor-

rect.
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Nonetheless, metagenomics analysis often involves estimating the abundance of the

species in a particular sample. Although Kraken cannot unambiguously assign each

read to a species, I sought to estimate how much of each species is present, specifically

by estimating the number or percentage of reads in the sample. Several software

tools have been developed to estimate species abundances in metagenomics samples

[MetaPhlAn, ConStrains, GAAS, GASiC, TAEC, GRAMMy] [73–78]. These tools,

however, employ different strategies for read-level classification which are not always

as accurate and efficient as Kraken’s k-mer approach [79]. Rather than re-engineer

Kraken to address the ambiguous read classification issue and to provide abundance

estimates directly, I implemented the new species-level abundance estimation method

described here as a separate program. This preserves both backwards compatibility

for existing Kraken users, and offers the ability to generate more accurate species

abundance estimates for datasets already processed by Kraken. Note that if Kraken

fails to identify a species (e.g., if the species was missing from the Kraken database),

Bracken too will not identify that species.

4.2 Materials and Methods

My new method, Bracken (Bayesian Reestimation of Abundance after Classification

with KrakEN), estimates species abundances in metagenomics samples by probabilis-

tically re-distributing reads in the taxonomic tree. Reads assigned to nodes above
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Figure 4.1: Schematic showing a partial taxonomic tree for the Mycobacte-
riaceae family.

the species level are distributed down to the species nodes, while reads assigned at

the strain level are re-distributed upward to their parent species. For example, in

Figure 4.1 we would distribute reads assigned to the Mycobacteriaceae family and

the Mycobacterium genus down to M. marinum and M. avium, and reads assigned

to each M. marinum strain would be reassigned to the M. marinum species. As I

show below, Bracken can easily reestimate abundances at other taxonomic levels (e.g.,

genus or phylum) using the same algorithm.

In order to re-assign reads classified at higher-level nodes in the taxonomy, I need to

compute a probabilistic estimate of the number of reads that should be distributed

to the species below that node. To illustrate using the nodes in Figure 4.1, I need

to allocate all reads assigned to Mycobacterium (G1) to M. marinum (S1) and M.
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avium (S2) below it, and reads assigned to the Mycobacteriaceae would have to be

allocated to M. marinum (S1), M. avium (S2), and Hoyosella altamirensis (S3).

Reallocating reads from a genus-level node in the taxonomy to each genome below

it can be accomplished using Bayes’ theorem, if the appropriate probabilities can be

computed. Let P (Si) be the probability that a read in the sample belongs to genome

Si, P (Gj) be the probability that a read is classified by Kraken at the genus level Gj,

and P (Gj|Si) be the probability that a read from genome Si is classified by Kraken as

the parent genus Gj. Then the probability that a read classified at genus Gj belongs

to the genome Si can be expressed as Eq.4.1:

P (Si|Gj) =
P (Gj|Si)P (Si)

P (Gj)
(4.1)

Note that because I began by assuming that a read was classified at node Gj, P (Gj) =

1.

Next I consider how to compute P (Gj|Si), the probability that a read from genome

Si will be classified by Kraken at the parent genus Gj. I estimate this probability

for reads of length r by classifying the sequences (genomes) that we used to build

the database using that same database, as follows. For each k-mer in the sequences,

Kraken assigns it a taxonomy ID by a fast lookup in its database. To assign a

taxonomy ID for a read of length r, Kraken examines all k-mer classifications in that
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read. For example, for k = 31 and r = 75, the read will contain 45 k-mers. My

procedure examines, for each genome in the database, a sliding window of length r

across the entire genome.

To find the taxonomy ID Kraken would assign to each window, I simply find the

deepest taxonomy node in the set of k-mers in that window. Since each k-mer in a

database sequence is assigned to a taxonomy ID somewhere along the path from the

genome’s taxonomy ID to the root, the highest-weighted root-to-leaf path (and thus

the Kraken classification) corresponds to the deepest node.

For each genome Si of length Li I thus generate (Li− r+1) mappings to taxonomical

IDs. For node Gj, I then count the number of reads from Si that are assigned to it,

NGj(Si). P (Gj|Si) is then the proportion of reads from Si that were assigned to the

genus node Gj; i.e., P (Gj|Si) = NGj(Si)/(Li − r + 1). I also calculate the proportion

of reads from Si that were assigned to every node from genome Si to the root node

of the taxonomy tree.

The final term that I must calculate from Eq. 4.1 is P (Si), the probability that a

read in the sample belongs to genome Si, which is computed in relation to other

genomes from the same genus. For example, if the sample contains three genomes in

the same genus, and if 30% of all reads from those three genomes belong to Si, then

P (Si) = 0.3. I estimate this probability using the reads that are uniquely assigned

by Kraken to genome Si, as follows.
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If I let USi
be the proportion of genome Si that is unique, then

USi
=

NSi

Li − r + 1
(4.2)

where NSi
is the number of k-mers of length r that are uniquely assigned to genome

Si by Kraken, and Li is the genome length. For example, if Li = 1 Mbp and only

250, 000 k-mers are unique to genome Si, then USi
= 0.25.

Then, using the number of reads KSi
from a sample that Kraken actually assigns to

Si, I can estimate the number of reads that likely derive from Si as:

K̂Si
=

KSi

USi

(4.3)

For example, if Kraken classifies 1, 000 reads as genome Si and 25% of the reads from

Si are unique, then I would estimate that 4, 000 reads (1, 000/0.25) from

If genus Gj contains n genomes, I estimate the number of reads K̂S for each of the n

genomes and then calculate P (Si) by:

P (Si) =
K̂Si∑︁n
a=1 K̂Sa

(4.4)
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Using this result in Eq.4.1 above allows me to compute P (Si|Gj) for each genome

Si. Each probability P (Si|Gj) is then used to estimate the proportion of the reads

assigned to genus Gj that belong to each of the genomes below it.

These calculations are repeated for each taxonomic level above the genus level (family,

class, etc.), with read distribution at each level going to all genomes classified within

that taxonomic subtree.

To compute species abundance, any genome-level (strain-level) reads are simply added

together at the species level. In cases where only one genome from a given species is

detected by Kraken in the dataset, I simply add the reads distributed downward from

the genus level (and above) to the reads already assigned by Kraken to the species

level. In cases where multiple genomes exist for a given species, the reads distributed

to each genome are combined and added to the Kraken-assigned species level reads.

The added reads give the final species-level abundance estimates.

This method can also estimate abundance for other taxonomic levels. In such cases,

only higher nodes within the taxonomy tree undergo read distribution. After dis-

tributing reads downward, I estimate abundance for a node at the level specified by

combining the distributed reads across all genomes within that node’s subtree.
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4.2.1 Software and data availability

Bracken is written in Perl and Python and is freely available for download at http://

ccb.jhu.edu/software/bracken/. The reads from the skin microbiome experiment

are freely available from NCBI under BioProject PRJNA316735.

4.3 Kraken/Bracken Results and Discus-

sion

I applied the statistical re-assignment method described here to create species-level

abundance estimates for several metagenomics data sets. The overall procedure works

as follows. First, I compute a set of probabilities from the Kraken database by com-

puting, for every sequence of length R in every genome, where it will be assigned in the

taxonomy (see ‘Methods’). For my experiments, I set R = 75 as our datasets contain

75-bp reads. Bracken can use these probabilities for any metagenomics data set, in-

cluding data with different read lengths, although the estimates might be slightly im-

proved by re-computing with a read length that matches the experimental data.

Second, I run Kraken on the dataset to produce read-level taxonomic classifications.

I then apply our abundance estimator, Bracken, which uses the numbers of reads as-

signed by Kraken at every level of the taxonomy to estimate the abundances at a single
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level (e.g., species). Note that to exclude × positives, Bracken ignores species with

counts below a user-adjustable threshold. In my experiments, I selected a threshold

of 10 reads.

4.3.1 Experiments on a 100-genome metagenomics

data set

For my first experiments, I used a data set containing simulated Illumina reads from

100 genomes. This data, which I call here the i100 dataset, was used previously

in a comparison of metagenomic assembly algorithms [80]. The data contains 53.3

million paired reads (26.7M pairs) from 100 genomes representing 85 species. The

reads have error profiles based on quality values found in real Illumina reads [80].

The i100 dataset includes several very challenging genomes for this task, including

multiple strains and species in the genera Bacillus and Mycobacteria, some of which

are nearly identical to one another. The i100 data are freely available at http:

//www.bork.embl.de/~mende/simulated_data.

The difficulty of estimating species abundance increases as the database itself contains

more species. For example, it would clearly be easier to estimate abundances in the

i100 dataset if I used a Kraken database containing only the 100 genomes in that

dataset. To make the problem more realistic, I built two different databases and
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Figure 4.2: Estimates of species abundance in the i100 metagenomics
dataset computed by Kraken (blue) and Bracken (blue + orange). For this
result, the Kraken database contained 693 genomes that included the i100 genomes.
The smaller graph displays results for the subset of species for which Bracken made
the largest adjustments. The black line shows the true number of reads from each
species.

estimated abundance using both. The first (“small”) database contains 693 genomes

including the i100 genomes; this is the full database from the simulation study by

Mende et al. [80]. The results when using the small database for classification are

shown in Figure 4.2. For several species, the initial Kraken numbers (reads assigned

to a particular species) are far too low, because many of the reads (for some genomes,

a large majority) were assigned labels at the genus level or above. After reestimation

with Bracken, these reads were redistributed to the species level, with the result that

87



CHAPTER 4. BRACKEN

Figure 4.3: Estimates of species abundance computed by Kraken (blue) and
Bracken (blue + orange) for the i100 metagenomics data. For this result,
the Kraken database contained 2,635 distinct bacterial and archaeal taxa. The black
line shows the true number of reads from each species. The smaller graph displays
results for the subset of species for which Bracken made the largest adjustments.

almost all the abundance estimates were 98–99% correct, as shown in the figure.

The second (“large”) database contains all genomes used in the synthetic and spike-in

experiments, as well as a broad background of bacterial genomes. In particular, it

includes all complete bacterial and archaeal genomes from RefSeq as of 25 July 2014

(archived at ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq), which

total 2596 distinct taxa, plus those i100 genomes that were not present in the RefSeq

data. (We excluded draft genomes because they often contain vector sequences or

other contaminants.) We also added the nine genomes used in our skin bacteria

88

ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq


CHAPTER 4. BRACKEN

spike-in experiment (described below) resulting in a total of 2635 distinct taxa. The

resulting Kraken database has a size of 74 GB.

Figure 4.3 shows results when using the large database to estimate abundance for

the i100 genomes. This test is much more difficult because of the large number of

similar and near-identical genomes in the database. Many more reads are ambiguous,

mapping identically to two or more species, which means that Kraken assigns them

to the LCA of those species. Nonetheless, Bracken brings the estimated abundance

of all species within 4% of the true abundance, and most fall within 1%. Note that

when the re-estimation procedure distributes reads from higher nodes in the taxonomy

down to multiple species within a single genus, it may over-estimate one species and

underestimate its sister species if the re-allocation is imperfect.

For a quantitative evaluation of Bracken’s ability to capture the true species abun-

dances, I evaluated the modified Mean Absolute Percentage Error (MAPE) which

compares the difference between the true read counts (Tg) for a given genus and the

measured read counts (Ag) for that same genus.

MAPE =
n∑︂

g=1

Tg∑︁n
g=1 Tg

× |Ag − Tg|
Tg

(4.5)

where n is the number of species in the i100 data. When using the small database,

the MAPE of Bracken is 1.90% across all 85 species in the i100 data. For the larger
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database, the average relative error is 1.97%. I also calculated the false positive rates

for the i100 data as the percentage of total reads incorrectly classified after Bracken

abundance estimation. For the small database, the false positive rate is 0.13% and

for the large database, the false positive rate is 0.24%.

Within the i100 genomes, the five species belonging to the Mycobacterium genus (M.

tuberculosis, M. bovis, M. avium, M. marinum, and M. sp. JLS ) pose a particular

challenge for abundance estimation due to the similarities among their individual

genomes. For example, Kraken classified only 9,733 M. tuberculosis reads at the

species level, and classified the remaining 285,414 reads as either Mycobacterium (a

genus) or M. tuberculosis complex (a taxonomic class intermediate between genus and

species), as shown in Figure 4.4 and Table 4.1. For these Mycobacteria genomes,

Bracken reallocated the reads from higher-level nodes to yield species abundance esti-

mates within 4% of the true abundance. Figure 4.4 and Table 4.1 show the number

Figure 4.4: Number of reads within the Mycobacterium genus as assigned
by Kraken (blue), estimated by Bracken (purple) and compared to the
true read counts (green). Initially, Kraken assigned only 325,073 reads to My-
cobacterium sp. JLS although 722,880 reads originated from this species. Bracken
reassigned 370,601 reads from the Mycobacterium genus to M. sp. JLS. Bracken’s
re-estimated abundance for M. sp. JLS is much closer to the true read count. Table
4.1 contains precise numbers for all species shown here.
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Table 4.1: Mycobacterium Bracken Re-estimates. This table lists the Kraken
assigned reads for various Mycobacterium species and for the Mycobacterium genus
and the Mycobacterium tuberculosis complex (MTB complex ). The table demon-
strates how Bracken redistributed the reads and compares the final read estimates to
the true read counts.

Name TaxID Reads
assigned

by Kraken

Added from
Mycobacterium

Added from
MTB complex

Added from
Higher Up

M. sp. JLS 164757 325073 370601 0 519
M. avium 1764 308864 3652 0 841
M. marinum 1781 203097 229780 0 83
M. TB 1773 9733 386 296463 209
M. bovis 1765 8965 329 247453 181

Mycobacterium 1763 606334
MTB complex 77643 550752

Total 604747 543916

Name TaxID Reads
assigned

by Kraken

Total reads
added by
Bracken

Final Bracken
read estimate

True read
count

M. sp. JLS 164757 325073 371120 696193 722880
M. avium 1764 308864 4493 313357 316134
M. marinum 1781 203097 229863 432960 431254
M. TB 1773 9733 297059 306792 295147
M. bovis 1765 8965 247962 256927 288400

of reads assigned to each species by Kraken, the true number of reads, and the number

of reads assigned to each species by Bracken after abundance reestimation.

The five species of the Mycobacterium genus also provide an example of potential

overestimation by Bracken. Bracken apportions all ambiguous reads classified by

Kraken at the genus level (and above) to the existing species identified by Kraken.

Because Bracken uses a probabilistic method in distributing the reads, one species

may receive too many reads while another may receive too few. For example, Kraken

assigned 543,916 reads to M. tuberculosis complex. Bracken re-allocated 296,543 of
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these reads to M. tuberculosis and the remaining 247,453 reads to M. bovis. When

added to Kraken’s original assignments, Bracken estimated that 306,792 reads be-

longed to M. tuberculosis (11,645 reads more than the true number) that 256,927

reads belonged to M. bovis (31,473 reads less than the true number). It is likely that

some of the additional reads Bracken allocated to M. tuberculosis originated from M.

bovis instead. However, despite the over- and under-estimation, Bracken’s estimates

fell within 4% of the true number of reads for both species.

If M. bovis were excluded from the database, the 8,965 reads unique to M. bovis, as

identified by Kraken, would be unclassified, while all 543,916 reads assigned to the

M. tuberculosis complex would assigned to M. tuberculosis by Kraken. These reads

would no longer be ambiguous because no other Mycobacterium species from the M.

tuberculosis complex would be present in the database. In general, reads belonging to

species excluded from the database will either be assigned to species with very high

similarity to the missing species or will remain unclassified.

4.3.2 Experiments on a real metagenomics sample

created from known species

For a more realistic test, I evaluated the performance of Bracken using a mock com-

munity of bacteria commonly found on healthy human skin. This mock community
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was assembled by Peter Thielen by combining purified DNA from nine isolates

that were identified and sequenced during the initial phase of the Human Microbiome

Project [81]: Acinetobacter radioresistens strain SK82, Corynebacterium amycola-

tum strain SK46, Micrococcus luteus strain SK58, Rhodococcus erythropolis strain

SK121, Staphylococcus capitis strain SK14, Staphylococcus epidermidis strain SK135,

Staphylococcus hominis strain SK119, Staphylococcus warneri strain SK66, and Pro-

pionibacterium acnes strain SK137. To generate the skin microbiome community,

purified DNA was obtained from the Biodefense and Emerging Infections Research

Resources Repository (BEI Resources). Each of the nine bacterial isolates was grown

under conditions recommended by BEI Resources, collected by centrifugation during

log growth phase at a 600nm optical density (OD600) of 0.8–1.2, and genomic DNA

was isolated using MasterPure DNA isolation reagents (Epicentre). Purified genomic

DNA was quantified using the high sensitivity picogreen assay (Invitrogen), pooled

in equal amounts by mass, and prepared for sequencing using Nextera XT library

preparation reagents (Illumina). The resulting mock community was sequenced on

a HiSeq sequencer, generating a total of 78,439,985 million read pairs (157 million

reads), all of them 100 bp in length. I then classified the sample using Kraken, which

concatenates the two reads from each pair and assigns them to a single taxonomic

category.

I then used Bracken to estimate both species and genus-level abundance in the skin

microbiome community. In the Bracken results, the nine true species comprise over
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99% of the species-level abundance estimates. The mixture was created with approx-

imately equal amounts of each of the nine genomes, so the expectation was that each

species would account for ∼ 11% of the total. However, as shown in Figure 4.5, the

estimates varied from 7.3% to 14.8%. Details for the exact number of reads assigned

by Kraken and the abundance estimates by Bracken are shown in Table 4.2.

Deviations from the expected abundance could arise from a variety of factors. The

process of quantifying DNA and mixing in equal amounts can be influenced by pipet-

ting consistency. Second, library amplification by PCR, an integral step in the Nex-

tera library preparation process, can exaggerate small differences in quantities and

lead to significant biases in abundance [82]. I examined a sample of the classified

reads by hand, and could find no evidence that Kraken mis-classified reads from M.

Figure 4.5: Estimates of species abundance made by Bracken for the metage-
nomics community containing isolates of nine bacterial species commonly
found on human skin. Exact numbers are listed in Table 4.2
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Table 4.2: Bracken results when classifying the data from the skin micro-
biome community using the large Kraken database

Species
True

Positive
Kraken Bracken
Reads Added Final

Reads
Fraction

Acinetobacter radioresistens ✓ 11,574,480 37,574 11,612,054 0.148
Staphylococcus hominis ✓ 10,675,573 227,657 10,903,230 0.139
Corynebacterium amycolatum ✓ 9,566,003 19,003 9,585,006 0.122
Staphylococcus capitis ✓ 8,992,784 90,594 9,083,378 0.116
Propionibacterium acnes ✓ 8,585,085 20,219 8,605,304 0.110
Rhodococcus erythropolis ✓ 8,493,987 20,624 8,514,611 0.109
Staphylococcus warneri ✓ 6,577,061 417,992 6,995,053 0.089
Staphylococcus epidermidis ✓ 6,271,832 310,927 6,582,759 0.084
Micrococcus luteus ✓ 5,678,927 42,474 5,721,401 0.073
synthetic construct × 359,702 25,301 385,003 0.005
Staphylococcus aureus × 25,611 59,955 85,566 0.001
Staphylococcus haemolyticus × 29,658 1,237 30,895 0.00
Acinetobacter baumannii × 26,939 1,103 28,042 0.000
Staphylococcus pasteuri × 20,643 3,596 24,239 0.000

Genus
True

Positive
Kraken Bracken
Reads Added Final

Reads
Fraction

Staphylococcus ✓ 33,646,053 88,782 33,734,835 0.433
Acinetobacter ✓ 11,635,903 4,426 11,640,329 0.150
Corynebacterium ✓ 9,600,993 6,870 9,607,863 0.123
Propionibacterium ✓ 8,601,649 3,739 8,605,388 0.110
Rhodococcus ✓ 8,500,082 15786 8,515,868 0.109
Micrococcus ✓ 5,678,927 48439 5,727,366 0.074
Delftia × 1,655 25 1,680 0.000
Lactobacillus × 1,604 12 1,616 0.000
Bacillus × 1,036 67 1,103 0.000
Candidatus Hamiltonella × 1,016 19 1,035 0.000
Enterococcus × 993 18 1,011 0.000
Listeria × 900 4 904 0.000
Mycoplasma × 661 5 666 0.000

luteus (the smallest portion of the community, estimated at 7.3%) to any of the other

species or genera. The abundances found in this data, therefore, may correspond

fairly closely with the true abundances.

The genus-level abundance estimates computed by Bracken also correspond closely

to the expected abundances for the six genera included in the sample. Four of the
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nine species belong to the genus Staphylococcus, which was thus expected to comprise

44% (4 x 11%) of the sample. The Bracken estimate was 43.3%. Each of the other

genus classifications has only one species present, and their abundance estimates are

the same for both genus and species.

The comparison between the Kraken classification of reads and Bracken’s reassign-

ment revealed that the nine species are sufficiently distinct to allow Kraken to classify

a large majority of reads at the species level, with very few reads being classified at

higher levels of the taxonomy. Specifically, Kraken classified 76.4 million reads to the

nine species included in the sample. Only 1.3 million reads out of the 78.2 million

total (1.6%) were classified by Kraken at the genus level or above. (The remaining

reads were unclassified.) In this case Bracken does not provide a substantial benefit,

because reassignment of the 1.3 million reads could yield at most a 1.6% change in

the estimated composition of the sample.

4.3.3 Bracken timing and resource requirements

Execution of Bracken requires two main steps 1) building of the Kraken/Bracken

database followed by 2) running a sample through Kraken and Bracken. In the initial

i100 data experiment with the large database, the Kraken build time with 10 threads

required 7 hours and 22 minutes, using 94.1 gigabytes (GB) of RAM and generating a

database requiring 70.6 GB of space. The subsequent Bracken build took ¡ 45 minutes,
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using 75 GB of RAM to generate database files requiring 1.5 GB of space.

Kraken classification of the i100 dataset (53.3 million paired reads) took 10 minutes,

using 10 threads and 73.6 GB of RAM. This step is limited by the size of the database,

which is loaded into RAM during classification. Bracken alone runs in under a second,

using 13 MB of RAM. The Kraken classification file for the i100 data is 1.9 GB, while

Bracken abundance estimation files require ∼ 20 KB of space.

4.4 Kraken 2 and Bracken

In 2018, Kraken 2 was released to improve upon the memory usage and speed of

Kraken while utilizing the same classification algorithm and maintaining the same

high accuracy [13]. In a direct comparison, classification with Kraken 2 required 85%

less memory than Kraken 1 by utilizing a probabilistic, compact hash table to save

the k-mer information.

4.4.1 Kraken 2/Bracken: i100 metagenomics ex-

periment

In order to test the continued compatibility of Kraken 2 with Bracken, I first re-

peated the i100 metagenomics experiment using the large database. The Kraken 2

97



CHAPTER 4. BRACKEN

Figure 4.6: Comparison of Bracken (red/light red) i100 species abundance
when used alongside Kraken 1 (light green) vs. Kraken 2 (blue) for select
species with the large database. The black line shows the true number of reads
from each species.

and Bracken results differed only slightly from the original Kraken 1 and Bracken

abundance estimation results, with less than 1% change in MAPE. The final read

counts for Kraken 2/Bracken were on average ¡ 1% different from the read counts with

Kraken 1/Bracken. Figure 4.6 shows the direct comparison between the two abun-

dance estimation experiments for the species where Bracken performed the largest

readjustment in read counts. In all cases, the final species read estimate was nearly

identical to the true abundances.

While the accuracy of Bracken is maintained with Kraken 2, the build times and

runtimes improved significantly. Originally, building of the Kraken 1 and Bracken
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database files using 10 threads required more than 8 hours in total. However, build-

ing of the Kraken 2 and Bracken database files required only 1 hour on the same

computing system. Similarly, classifying and performing abundance estimation on

the i100 data using Kraken 1/Bracken required 12 minutes while Kraken 2/Bracken

performed the same steps in under 5 minutes. Table 4.3 lists detailed timing, RAM,

and space requirements for each file and step of the Bracken abundance estimation

algorithm.

Table 4.3: Kraken 1, Kraken 2, and Bracken timing and resource require-
ments for classifying the i100 data using the small Kraken database. This
table describes the time, RAM, and disk space required required for each abundance
estimation step when Bracken is used either with Kraken 1 or Kraken 2. Disk space
is measured for the generated files of each abundance estimation step. Notably, the
timing, RAM, and space requirements differ between Kraken 1 and Kraken 2.

Kraken 1 + Bracken (Large Database)
Step Threads Timing (H:MM:SS) RAM Space
1. Build Kraken Database 10 7:22:27 94.14 Gb 70.6 Gb
2. Generate database.kraken 10 0:30:38 74.5 Gb 1.0 Gb
3. Generate database75mers.kraken 10 0:11:05 1.7 Gb 1.1 Mb
4. Generate database75mers.distrib 1 0:00:00 12.5 Mb 466.8 Kb
5. Classify data 10 0:10:01 73.6 Gb 1.9 Gb
6. Generate report file 1 0:02:07 655.9 Mb 246 Kb
7. Run Bracken 1 0:00:00 12.6 Mb 16.8 Kb
Steps 1-4 Total (once per database) 8:16:19 94.14 Gb 72 Gb
Steps 5-7 Total (once per dataset) 0:12:08 73.6 Gb 2 Gb

Kraken 2 + Bracken (Large Database)
Step Threads Timing (H:MM:SS) RAM Memory
1. Build Kraken Database 10 0:34:28 11.3 Gb 10.7 Gb
2. Generate database.kraken 10 0:07:32 12.2 Gb 2.4 Gb
3. Generate database75mers.kraken 10 0:13:48 3.1 Gb 1.2 Mb
4. Generate database75mers.distrib 1 0:00:01 12.8 Mb 504.8 Kb
5. Classify data 10 0:02:28 73.6 Mb 2.2 Gb
6. Generate report file 1 0:02:17 656.5 Mb 273 Kb
7. Run Bracken 1 0:00:00 13.2 Mb 20.4 Kb
Steps 1-4 Total (once per database) 1:00:32 12.2 Gb 13 Gb
Steps 5-7 Total (once per dataset) 0:04:45 656.5 Mb 2.4 Gb
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4.4.2 Kraken 2/Bracken: Clade Exclusion Exper-

iment

For additional testing, Derrick Wood and I executed the following strain exclusion

experiment as described in [13]. Derrick Wood selected 40 prokaryotic genomes and

simulated 1000 paired-end reads from each genome. Each of these genomes was then

removed from the reference genome set used to generate the Kraken 1 and Kraken

2 databases and the corresponding Bracken database files. I then used Bracken to

estimate both genus and species abundance estimation. These results are summarized

in Figure 4.7

Although the true strain-level taxa are excluded from the database, Bracken recap-

tured most of the true genus-level and species-level sequence abundances using both

Kraken 2 and Kraken 1 classification results. Comparing the results, the Bracken es-

timates were more accurate with Kraken 2 than with Kraken 1 at both the genus and

species levels, likely owing to Kraken 2’s higher sensitivity. For these experiments,

Kraken 2 provided substantial increases in processing speed, performing classification

over 5 times faster than Kraken 1. Bracken ran in less than 1 s.
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Figure 4.7: Bracken performance on strain exclusion simulated prokaryotic
data. Each of the 40 genomes examined was removed from the reference genome
set and each used to simulate 1000 paired-end reads. The same reference set was
then used to build Kraken 1 and Kraken 2 databases and to classify each simulated
fragment. I then used Bracken with both programs to estimate (a) genus sequence
abundance estimation and (b) species sequence abundance estimation. “MAPE” is
mean absolute percentage error.

4.5 Conclusion

Estimating the abundance of species, genera, phyla, or other taxonomic groups is a

central step in the analysis of many metagenomics datasets. Metagenomics classifiers

like Kraken provide a very fast and accurate way to label individual reads, and at

higher taxonomic levels such as phyla, these assignments can be directly translated

to abundance estimates. However, many reads cannot be unambiguously assigned to

a single strain or species, for at least two reasons. First, many bacterial species are

nearly identical, meaning that a read can match identically to two or more distinct
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species. Second, the bacterial taxonomy itself is undergoing constant revisions and

updates, as genome sequencing reveals the need to re-assign species to new names.

These revisions sometimes create new taxa that share near-identical sequence with a

distinct species. In these situations, Kraken correctly assigns the read to a higher-level

taxonomic category such as genus or family. This creates a problem in that Kraken’s

classifications cannot be used directly for species abundance estimation.

Bracken addresses this problem by probabilistically re-assigning reads from inter-

mediate taxonomic nodes to the species level or above. As I have shown here, these

re-assignments produce species-level abundance estimates that are very accurate, typ-

ically 98% correct or higher. For genus-level abundance, accuracy is even higher

because fewer reads have ambiguous assignments at that level.

The release of Kraken 2 in 2018 contributed to improved performance and usability

of Bracken. Kraken 2 allows for faster generation of Kraken and Bracken database

files and reduced memory requirements for both programs. Additionally, Bracken

maintains its accuracy in species and genus-level abundance estimation with Kraken

2.
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5.1 Introduction

Since the 1970s, sequencing of the 16S ribosomal RNA gene has been used for ana-

lyzing and identifying bacterial communities [83,84]. This technology targets the 16S

rRNA gene, which has regions that are both highly conserved and highly variable

(hypervariable) among bacterial species. The highly conserved regions allow for the

design of “universal” PCR primers to target and amplify the 16S sequence, while

the hypervariable regions allow for discrimination among different bacterial clades.

These properties allow 16S sequencing experiments to capture nearly all of the bac-

teria in a microbial community, which can then be compared to large 16S databases

to determine their identities.

Researchers have utilized 16S rRNA sequencing for a very broad range of environmen-

tal and clinical studies. For example, the Earth Microbiome Project [85] and other

environmental studies have used 16S sequencing to reveal the bacterial diversity of

soil [86,87], beach sand [88], and ocean environments [89]; while other studies targeted

the microbiome of plants [90–92]. In the clinic, 16S rRNA has been used for diag-

nostic purposes to identify infectious bacterial species [93–95] and to characterize the

role of bacterial diversity in diseases such as diabetes [96], Alzheimer’s disease [97],

cancer [98], and autism [99]. The international Human Microbiome Project has used

16S data to characterize the bacterial community present in the human gut, feces,

skin, and other areas of the body [81,100,101].
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5.1.1 16S Classification

Analysis of the bacterial community from a 16S rRNA sequencing experiment in-

volves comparing the reads to reference database. The tool most widely used for 16S

classification today is the Quantitative Insights into Microbial Ecology (QIIME) soft-

ware package [14], which compares sequencing reads against a 16S reference database.

The three standard 16S databases, each of which has somewhat different content, are

Greengenes [102], SILVA [103], and RDP [104].

First released in 2011, QIIME 1 [14] provided 4 classification algorithms for 16S rRNA,

respectively based on the RDP classifier [105], BLAST [39], UCLUST [106], and

SortMeRNA [107]. In 2018, QIIME 2’s q2-feature-classifier was released [15], adding

3 new classification algorithms based on scikit-learn’s näıve Bayes algorithm [108],

VSEARCH [109], and BLAST+ [110]. By default, QIIME 1 uses the UCLUST

algorithm for classification while QIIME 2 suggests usage of the näıve Bayes algo-

rithm.

In 2018, Almeida et al. performed benchmark tests comparing QIIME 2 to its pre-

decessor, QIIME 1, and to two additional 16S classification tools, MAPseq [111] and

mothur [112]. Almeida et al. evaluated the performance of each tool by classifying

16S rRNA reads that were simulated from bacteria known to be present in human

gut, soil, and ocean microbiomes. That study concluded that QIIME 2 provides the

best accuracy on the basis of recall and F-score. However, they also noted that QI-
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IME 2 was the most computationally expensive, requiring substantially more CPU

time and more memory than other tools.

5.1.2 Kraken, Kraken 2, and Bracken

The Kraken program uses an alignment-free algorithm that, when first released in

2014, was hundreds of times faster than any previously described program for shotgun

metagenomics sequence analysis, with accuracy comparable to BLAST and superior

to other tools [12]. Using a single thread, Kraken can classify metagenomics sequence

data at a rate of >1 million reads per minute.

In 2016, Bracken was released as an extension to Kraken to estimate species abun-

dance from Kraken’s output [113]. As originally designed, Kraken attempts to classify

each read as specifically as possible, allowing reads to be classified at any taxonomic

level depending on how many genomes share the same sequence. For example, a

read that has identical matches to two species will be classified at the genus level.

Bracken adds the capability of abundance estimation to Kraken; i.e., using Kraken’s

read counts and prior knowledge of the database sequences, it estimates read counts

for all species, genera, or higher-level taxa in a sample. For example, when Bracken

is asked to estimate species counts, it will re-distribute all reads that Kraken assigns

at the genus level (or higher) down to the species level.
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Kraken 2, released in 2018, implemented significant changes to the database struc-

ture and classification steps to make databases smaller and classifications faster while

maintaining compatibility with Bracken [13]. Because it uses the same classification

algorithm, Kraken 2 has nearly the same precision and sensitivity as Kraken 1. How-

ever, Kraken 2 now also provides direct support for 16S classification with any of

the three standard 16S databases: Greengenes, SILVA, and RDP. This new feature

allowed direct comparison of Kraken 2 and Bracken to the current state-of-the-art

programs for 16S classification, as described below.

5.1.3 Kraken 2 versus QIIME 2

In 2016, Lindgreen et al. evaluated 14 metagenomics classifiers, including Kraken 1

and QIIME 1 (UCLUST) [79]. That study showed that Kraken achieved the lowest

false positive rate, 0%, while QIIME had a false positive rate of 0.28%. Kraken also

had higher sensitivity than QIIME, correctly labeling 70% of the reads while QIIME

was correct on 60%. Finally, Kraken obtained a Pearson correlation between the

known and predicted abundances of phyla and genera of 0.99, versus 0.78 for QIIME.

However, that study used different databases and different input data (reads produced

by metagenomic shotgun sequencing) to evaluate these tools. For Kraken 1, Lindgreen

et al. measured its performance on all input sequences from a shotgun metagenomics

experiment, using a database containing all complete bacteria and archaeal genomes
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from RefSeq, while for QIIME 1, they analyzed its performance only on 16S rRNA

sequences against the 16S Greengenes database.

Because QIIME is designed for 16S sequencing projects and Kraken has previously

been used primarily for metagenomics shotgun sequencing projects, the tools have

not been directly compared. Here, I compare QIIME 2 and Kraken 2 using the 16S

rRNA reads generated in the Almeida et al. benchmark study [114], using both the

Greengenes and SILVA 16S databases. I also show results for Kraken on the RDP

database, which is not compatible with QIIME 2. Because I only tested the most

recent version of each tool, I will henceforth refer to QIIME 2 as QIIME and Kraken

2 as Kraken.

5.2 Methods

5.2.1 Almeida Simulated Data

QIIME 2, Kraken 2, and Bracken were evaluated using the A500 synthetic microbiome

samples generated by Almeida et al. [114] and available at ftp://ftp.ebi.ac.uk/

pub/databases/metagenomics/taxon_benchmarking/. The A500 set contains 12

samples representing three different microbial environments: the human gut, ocean,

and soil. For each of these environments, genomic sequences for their most abundant

genera were extracted and randomly sampled. These human gut, ocean, and soil
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genomes then were sub-sampled four times to simulate 16S rRNA profiling using

four different primer sets, generating ∼ 200, 000, 250-bp paired-end reads per primer

sequence. The sub-sampling introduced a 2% random mutation to each sequencing

read. Almeida et al. then performed pre-processing and quality control to filter

sequences with ambiguous base calls. With three microbial environments and four

primer sets, Almeida et. al. thereby generated 12 sets of synthetic communities for

testing. Information about the software and primers used in dataset generation is

further described in the Methods section of Almeida et al.

5.2.2 Software and Databases

The software packages tested are Kraken 2 (downloaded on 2020/03/05), Bracken

v2.5 and QIIME 2 v2017.11. Kraken and Bracken database files were generated for

Greengenes 13 8, SILVA 132, and RDP 11.5 database releases. QIIME 2 database

files were generated for Greengenes 13 8 and SILVA 132.

5.2.3 Error Rate Calculations

For evaluating the accuracy of Kraken 2, Bracken, and QIIME 2, I calculated two

different error metrics which compare the true genera distributions against those re-

ported by each program. The first error metric is a modified mean absolute proportion
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error (MAPE) which compares the difference between the true read counts (Tg) for a

given genus and the measured read counts (Ag) for that same genus.

MAPE =
n∑︂

g=1

Tg∑︁n
g=1 Tg

× |Ag − Tg|
Tg

(5.1)

Each difference is calculated as a fraction of the true counts and then weighted by the

fraction of the total sample. n is the total number of true genera in the sample.

The second metric, Bray-curtis dissimilarity [115], is a similar measurement of the dis-

similarity between the true genera distribution and the measured genera distribution.

The formula for Bray-curtis dissimilarity is:

BCij = 1− 2Cij

Si + Sj

(5.2)

where Cij is the sum of lesser reads for genera in common and Si = Sj is the total

number of reads. In other words, for every true genus g in the sample, if Tg <

Ag, Cij = Cij + Tg. Otherwise if Tg > Ag, Cij = Cij + Ag.

MAPE and BC values both fall between 0 and 1, where larger values indicate

a greater difference between samples and smaller values indicate a greater similar-

ity.
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5.2.4 Sensitivity and Precision (PPV) Calculations

As Kraken 2 provides taxonomic assignments for every read, I can use the taxonomic

tree of each read to calculate sensitivity and precision at all taxonomic levels. For

this example, I describe calculations of sensitivity and precision at the genus level.

First, I calculate true positive (TP ), vague positive (V P ), false positive (FP ), and

false negative (FN) read counts. TP is the number of reads correctly classified at

the genus level. This includes reads that are classified as any species within the true

genus. Vague positive (V P ) reads account for the possibility that a read is classified

as any ancestor of the true taxon. Therefore, V P reads include TP reads and reads

assigned to ancestor taxa of the true genus. FN reads are all classified reads that are

not V P reads. This includes reads classified at any taxa not within the direct lineage

of the true genera. Finally, I define FN as the number of unclassified reads. Notably,

in all experiments, Kraken 2 did not label any read as unclassified (FN = 0).

From these values, I define sensitivity and precision (measured by positive-predictive-

value, PPV ) using the following two equations:

Sensitivity =
TP

TP + V P + FN + FP

=
TP

TP + V P + FP

(5.3)

PPV =
TP

TP + FP
(5.4)
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5.3 Results

Prior to classification, Kraken requires users to first build a specialized database

consisting of three files: taxo.k2d, opts.k2d, and hash.k2d. The user also can choose

the value k that determines the length of the sequences that Kraken uses for its

index; every sequence (or k-mer) of length k is associated with the species in which

it occurs. K-mers that occur in two or more species are associated with the lowest

common ancestor of those species. The database files contain the taxonomy and

k-mer information for the specified database. Following generation of these files,

Bracken requires users to generate a k-mer distribution file. Kraken and Bracken

additionally allow the use of multiple threads to accelerate database construction.

I tested building all files for the 16S Greengenes 13 8, SILVA 132, and RDP 11.5

databases using 1, 4, 8, and 16 threads. Table 5.1 summarizes the contents of each

of these databases.

Table 5.1: 16S Databases used for the metagenomics classifiers in this study.
For each of the most recently released versions of three 16S databases, this table
describes the total number of sequences and the number of “traditional” nodes rep-
resented in their respective taxonomies. The Greengenes numbers refer to the 99%
OTU database, and the SILVA values reflect the Ref NR 99 database.

Database Version Release Date Sequences
Greengenes 13 8 08/15/2013 203,452
SILVA 132 12/13/2017 695,171
RDP 11.5 09/30/2016 3,356,808
Database Domains Phyla Classes Orders Family Genera Species
Greengenes 2 89 248 404 513 2102 2952
SILVA 5 228 514 1277 1531 9379 -
RDP 2 60 99 154 384 2466 -

For QIIME, users generate the database (called a “classifier”) by first converting
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sequence and taxonomy files into QIIME compatible .qza files. QIIME classifier

generation is single-threaded. I built QIIME näıve-bayes classifiers for Greengenes

13 8 and SILVA 132.

Figure 5.1A compares the combined database building time for Kraken/Bracken

against the classifier generation time of QIIME. Kraken was at least 9x faster than

QIIME for database creation; e.g., it took 9 min to build the Greengenes database

index, while QIIME required 78 minutes for the same database. For the SILVA

database, Kraken required only 34 minutes while QIIME required more than 58 hours

to build the same database.

To compare the accuracy of Kraken, Bracken, and QIIME, I classified 12 samples

generated by Almeida et. al. [114]. These 12 samples, each containing just under

200,000 reads, represent 3 different metagenomes (human, ocean, and soil) and 4

different 16S primers (V12, V34, V4, and V45). The number of reads in each sample

is shown in Table 5.2.

Table 5.2: Sample Read Counts. The read counts in each metagenome-primer
sample. Each sample was generated as described in the Supplementary Methods.

Read Counts V12 V34 V4 V45 Total

Human microbiome 186,689 189,972 193,787 192,319 762,767
Soil microbiome 196,254 193,564 196,226 194,325 780,369
Ocean microbiome 193,867 193,962 196,198 195,135 779,162

QIIME classifiers require one single file containing all de-multiplexed reads. There-

fore, I provided QIIME with one file per metagenome, each containing reads from all
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Figure 5.1: Build and Classification Statistics A) Required time to build each
database for Kraken/Bracken and QIIME. Kraken and Bracken allow for multi-
threading while QIIME is single-threaded. B) Average classification runtime in min-
utes for each database. Kraken/Bracken combined runtime is reported for only 1
thread as all runtimes are < 1 min and bars are too small to be visible at this scale.
QIIME was only run using 16 and 8 threads for SILVA. C) Classification runtime
for Kraken and Bracken in seconds for all multi-threading options. D) Computa-
tional memory usage (RAM) for QIIME and Kraken/Bracken, shown in gigabytes
(Gb). Kraken/Bracken RAM requirements reported only for 1 thread as Kraken and
Bracken require < 0.5Gb of RAM regardless of thread count. E) Computational
memory usage (RAM) for Kraken/Bracken shown in megabytes (Mb).

114



CHAPTER 5. 16S

4 primer sets. However, Kraken and Bracken classify samples one at a time, requiring

each of the 12 samples to be processed individually.

Kraken and QIIME provide multi-threading options to speed up classification. I

therefore tested Kraken and the QIIME Greengenes classifier using 1, 4, 8, and 16

threads. The QIIME SILVA classifier with 8 threads required approximately 1.5 days

of run time, and for this reason I only tested it using 16 and 8 threads and did not

evaluate the QIIME 2 SILVA classifier using 1 or 4 threads.

Figure 5.1B compares the average time in minutes required by QIIME as compared

to Kraken/Bracken to classify a single metagenome using the 16S Greengenes and

SILVA databases. Due to the very large difference in run time between tools, this

figure compares the multi-threaded options of QIIME against the single-threaded

classification time of Kraken/Bracken. Figure 5.1C reports the classification times

of Kraken/Bracken in seconds.

Another important consideration for software selection is the computational memory

resources required. I evaluated this by measuring the RAM in gigabytes (GB) required

for both classifiers. Figure 5.1D compares the RAM required for the single-threaded

runs of Kraken/Bracken against the multi-threaded runs using QIIME. Notably, all

Kraken/Bracken runs used less than 0.5 GB of RAM, which appears in the figure

as zero GB. To provide more detail on RAM usage, Figure 5.1E reports the RAM

required by Kraken/Bracken in megabytes (MB) for all multi-threading options.
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Figure 5.2: Genera Distribution for Simulated Microbiota This plot compares
the true genus abundances against those abundances estimated by Kraken, Bracken,
and QIIME, for each of the three simulated microbiome samples (A = human gut
microbiome, B = ocean microbiome, C = soil microbiome). Only the correct genera
are represented by different bars while read assignments to any incorrect taxon is
included in “Other”.
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Figure 5.2 compares the true distribution of genera in each metagenomics sample

against the genus-level counts reported by Kraken 2, Bracken, and QIIME 2. For

clarity, this figure shows the combined read counts across the V12, V34, V4, and V45

samples for each metagenome.

I used two different metrics to evaluate the genus distribution accuracy: Mean Ab-

Figure 5.3: MAPE and Bray-Curtis Dissimilarity This plot evaluates clas-
sification accuracy by using the inverse of two error metrics: Mean Absolute
Proportion Error (MAPE) and Bray-Curtis Dissimilarity (BC). A compares
the accuracy of Kraken, Bracken, and Qiime when predicting the genus read
counts across all samples for given metagenome/database. B compares the ac-
curacy between the individual primers averaged across all 3 metagenomes for a
given software/database. The top plots calculate accuracy as 1−MAPE while
the bottom plots evaluate 1−BC.
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solute Percentage Error (MAPE) and Bray-Curtis dissimilarity (BC). Both error

rates measure how different the predicted sample distribution is from the true genera

counts. Given these two metrics, I evaluate accuracy as 1−MAPE and 1−BC. Fig-

ure 5.3A compares the accuracy of each tool when calculating the correct combined

read counts at the genus level for each metagenome. For further insight into how

the choice of 16S primer affects genus distribution accuracy, I evaluated the average

MAPE and average BC across all 3 metagenome samples for each program/database.

Figure 5.3B uses these averages to compare the accuracy between 16S primers.

Figure 5.4: Kraken Per-Read Accuracy As Kraken is the only tool tested
that provides per-read taxonomy assignments, I evaluate the sensitivity and
precision (PPV ) of Kraken 2’s taxonomy assignments at each major taxonomic
level
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While all tools tested provide general read counts per genus, Kraken is the only tool

that directly assigns each read with a taxonomic label. Using this information, I can

calculate Kraken’s accuracy when classifying reads at major taxonomic levels in terms

of sensitivity and precision. I measure precision by positive predictive value (PPV,

see Supplemental Methods for more details). Figure 5.4 displays Kraken’s average

sensitivity and PPV for each database used (Figure 5.4A) and for each 16S primer

used in generating the samples (Figure 5.4B).

5.4 Discussion

In this study, I evaluated three systems for classification and abundance estimation of

16S sequencing data sets: Kraken 2, Bracken, and QIIME 2. For Kraken and Bracken,

I used three 16S databases: Greengenes, SILVA, and RDP; while for QIIME, I only

evaluated Greengenes and SILVA. I then used these tools/databases to classify 12

samples generated by Almeida et. al [114], which represent 3 simulated metagenomes

(human gut, ocean, and soil) and 4 different 16S primers (V12, V34, V4, and V45).

In total, I collected 36 different results using Kraken/Bracken and 24 different results

using QIIME.
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5.4.1 Database Building Time

For all systems compared here, database build time is a function of the number of

sequences in the database. Because 16S Greengenes is the smallest database (with

∼ 200, 000 sequences) and 16S RDP is the largest (with ∼ 3.4 million sequences),

generation of database files is fastest with Greengenes and slowest with RDP.

When comparing single-threaded Kraken/Bracken against QIIME, Kraken and Bracken

combined require far less build time. For the smallest 16S database, Greengenes,

QIIME required more than an hour to generate the näıve Bayes classifier (Figure

5.1A). By comparison, single-threaded Kraken and Bracken combined required less

than 10 minutes to create the database files. For 16S SILVA, with nearly 700,000

sequences, QIIME 2 required more than 58 hours for classifier generation while the

single-threaded Kraken/Bracken required only ∼30 minutes. I additionally note that

the largest 16S database, RDP, required a little more than an hour for single-threaded

Kraken 2 and Bracken to create the database files. As mentioned above, the RDP

database is incompatible with QIIME 2. The multi-threaded nature of Kraken 2 and

Bracken further accelerate the database building process, with 4 threads halving the

required build time (Figure 5.1A).
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5.4.2 Classification Time/Memory Requirements

As observed by Almeida et. al. [114], QIIME 2 requires more computational resources

than other methods during classification. With the use of 16 CPU threads, QIIME

required ∼ 35 minutes on average to classify the human, ocean, and soil metage-

nomic samples using the Greengenes database (Figure 5.1B). The QIIME’s SILVA

classifier required ∼ 16 hours on average. By comparison, single-threaded Kraken 2

and Bracken required on average 1 minute per metagenomic sample. This runtime

decreases from 1 minute to 15, 10, and 6 seconds for 4, 8, and 16 threads respectively

(Figure 5.1C). The runtime of Kraken 2 and Bracken was nearly the same for all

three databases. Thus Kraken or Braken is at least 350 times faster (6 seconds vs.

35 minutes) than QIIME 2 when run with 16 parallel threads.

The amount of computer memory (RAM) required by each system also varied widely

(Figure 5.1D). For all three databases, single-threaded Kraken required < 260 MB of

RAM. However, the single-threaded QIIME Greengenes classifier required ∼ 3.6 GB

of RAM. Increasing the number of threads for Kraken also increases the total RAM

used, with 16 threads using ∼ 400−500 MB of RAM for each of the Kraken databases

(Figure 5.1E). However, for QIIME, increasing the number of threads decreased the

total RAM: the QIIME Greengenes classifier with 16 threads used ∼2.7 GB, and the

QIIME SILVA classifier with 16 threads used 48 GB of RAM (Figure 5.1D).
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5.4.3 Accuracy of abundance estimation

Finally, I compared the accuracy of all three tools based on their ability to recreate

the true genus distribution of the simulated samples (Figure 5.2). I quantified the

accuracy of these distributions using both MAPE and Bray-Curtis dissimilarity.

In all cases, Bracken performed better than Kraken 2, which was expected because

Kraken is a classification tool, not an abundance estimation system. Kraken classifies

reads at any level in the taxonomy, which means that some reads might be assigned to

a higher level genus; e.g., any read that has equally good matches to two genera will

be assigned to the family containing them. For the simulated datasets in this study,

Kraken assigned from 7-30% of the reads to levels above genus. These reads are not

incorrectly classified, but the result is that Kraken underestimates the abundances of

their genera. By contrast, Bracken is designed to use Kraken’s classification data to

estimate all read counts at the genus level, thereby improving on Kraken’s genus-level

distribution.

On average, Bracken performed the best, having the lowest average error rates across

all three 16S databases. Bracken also had the lowest error rate for 8/9 combinations

of samples and databases. The only sample where QIIME 2 had a lower error rate

than Bracken was in the classification of the ocean samples against the 16S Green-

genes database (Figure 5.3A). However, QIIME 2 had the highest error rate when

classifying the human sample against Greengenes or SILVA, regardless of whether
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measured by MAPE or Bray-Curtis dissimilarity.

In analyzing the trends across the databases using both MAPE and Bray-Curtis,

Bracken performed the best using the 16S SILVA database and performed the worst

using the 16S RDP database. 16S RDP yielded on average 0.391 MAPE and 0.221

BC Index while 16S SILVA only yielded a 0.286 MAPE and a 0.153 BC Index. 16S

Greengenes with Bracken had an average of 0.313 MAPE and a 0.165 BC Index.

Although QIIME 2 was not tested on 16S RDP, QIIME 2 yielded the same trends

when comparing 16S Greengenes and SILVA, with 16S SILVA outperforming 16S

Greengenes in almost all cases.

In addition to evaluating the different tools, I also evaluated the accuracy of each of

the primer sets (V12, V34, V4, and V45) that were used by Almeida et. al. [114].

Figure 5.3B shows the average accuracy of each primer set across all 3 metagenomes

for a given software/database pairing. For both Greengenes and SILVA, the samples

generated using V34 and V12 performed slightly better. However, for RDP, the

difference in accuracy between primer samples is further magnified. When classifying

with the RDP database, both Kraken and Bracken had significantly better results for

the V12 and V34 samples (Figure 5.3B).
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5.4.4 Per-Read Classification Accuracy

Kraken is the only program of the three tested here that provide per-read assignments

by default, allowing us to compute the read-level accuracy of its taxonomy assign-

ments. Per-read accuracy is somewhat dependent on the reference database, but

highly dependent on the 16S primer set (Figure 5.4B). In particular, Kraken had

three times higher sensitivity (60%) and PPV (65%) when classifying reads generated

using V12 primers versus those generated from V45 primers (20% and 21%).

As expected, sensitivity and precision increased with taxonomic level, with class and

phylum sensitivity and precision exceeding 0.95 for all sample sets and all databases.

5.4.5 Taxonomy Inconsistencies

In our experiments, I discovered that the accuracy of 16S analysis is highly dependent

on the choice of 16S database. The 170 distinct genera present in our human, ocean,

and soil metagenomes were selected from the NCBI taxonomy, but none of the three

16S database taxonomies contains precisely the same genera. Each 16S database is

independently curated from different reference sets, resulting in substantial differences

among the taxonomies [116]. Among the 170 unique genera uses here, 22 are missing

from Greengenes, 19 have different names or are mapped to multiple genera in RDP,

and 16 have different names in Silva. For example, Agrobacterium, Burkholderia, and
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Rhizobium are not unique genera in the 16S SILVA taxonomy, but are combined into

a single “Allorhizobium-Neorhizbium-Pararhizobium-Rhizobium” genus. Escherichia

and Shigella are also combined into the “Escherichia-Shigella” genus in 16S SILVA.

The Clostridium sequences in 16S SILVA are split between 19 different genera, each

with the prefix of “Clostridium sensu stricto” followed by a number 1-19.

5.5 Conclusion

Although each of the 16S databases represents a large number of bacterial organisms,

the accuracy of metagenomics classifiers varied substantially among them. In our

experiments, 16S SILVA provided the lowest error rates and highest per-read accu-

racy regardless of the software used in classification. Across all databases, Kraken

2 and Bracken outperformed QIIME 2 in terms of computational requirements, run-

time, and accuracy. Single-threaded Kraken/Bracken was nearly 8x faster than QI-

IME 2 at building the 16S Greengenes database and 100x faster at building a 16S

SILVA database. Kraken and Bracken also allow for multi-threaded database building,

which allows any 16S database to be built in less than 20 minutes. For classification,

Kraken/Bracken used 20 times less RAM, performed 300 times faster, and achieved

better genus-level resolution than QIIME 2.
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Conclusion

In the constantly evolving and growing field of metagenomics, SkewIT, the Eu-

PathDB, Kraken, and Bracken provide new methods and resources for accurate anal-

ysis of microbial genomes. Each of these projects addresses different but related

needs in metagenomics research, allowing insight into microbial organisms related to

human diseases or living in microscopic communities worldwide. Therefore, each of

these projects provides future opportunities for improving the quality of microbial

genomes and investigating additional microbial environments.

Although SkewIT has provided insight into the 15,000+ bacterial complete genomes in

NCBI’s RefSeq database, new bacterial genomes are generated daily, representing new

bacterial species or related strains of existing species. Applying SkewIT to these new
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genome assemblies will provide a simple quantitative measurement of the nucleotide

distribution across the genome. With these measurements, SkewIT will reveal the

similarities or differences between the genomic structure of related bacterial organisms

while highlighting potential mis-assemblies.

The cleaned EuPathDB-46 is a valuable resource for identifying eukaryotic pathogens

in human diseases or for accurate identification of the eukaryotic microorganisms in

environmental samples. However, with the lack of eukaryotic microorganism genomes

in main genomic databases (such as NCBI RefSeq), the cleaning method used for re-

moving contamination in the EuPathDB genomes is equally important. Applying the

cleaning method to new draft genomes for eukaryotic microorganisms will minimize

the false positives when using the genomes in metagenomics classification experi-

ments. The resulting genomes can then be added to existing databases of bacterial

and viral organisms that previously lacked the representation of these species.

Finally, the classification methods of Kraken 1 and Kraken 2 and the abundance

estimation methods of Bracken continue to be important for the broad metagenomics

community. As previously described, these methods allow for insight into the human

gut microbiome or skin microbiome environments, but also have the possibility of

being applied to other human samples. Furthermore, while Kraken and Bracken have

been applied to identify microbes in soil or ocean water, these tools allow analysis of a

wide range of sequenced environmental samples, such as sand, lake, ocean, and forest
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samples. Lastly, Kraken and Bracken can also characterize the microbes coexisting

with other non-human organisms, such as symbionts of fish, poultry, cows, etc.

In addition to various sample types, the metagenomics community is also evolv-

ing to incorporate new sequencing technologies, with long-read sequencing, such as

Nanopore sequencing, presenting new challenges for metagenomics. With the adapta-

tion of long-read sequencing technologies for metagenomics experiments, tools such as

Kraken and Bracken must evolve to accommodate much longer DNA fragments.
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