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Abstract

Hearing loss is increasingly becoming a common disabling condition that

affects the global population. Functional and structural changes occur in the

developing auditory cortex after the onset of auditory deprivation. This study

aims at measuring and modeling these changes, which can help understand

the pathology of hearing loss and support research on treatment. Specifically,

it describes a pipeline of automatically extracting inner and outer cortical

surfaces from MRI images and measuring morphological metrics. Then, a two-

component finite element mechanical model mimicking gray matter and white

matter is used to investigate the causes of measured structural differences

between cats with normal hearing and hearing loss. Mechanical parameters,

such as shear and bulk modulus, are varied with a view to studying their influ-

ence on cortical folding patterns. Compared to hearing cats, cats with hearing

loss have decreased cortical curvature and folding index, and increased thick-

ness. By varying the shear modulus and bulk modulus of the gray and white

matter at different locations, the mechanical model reveals distinct stable

folding patterns. Specific combinations of parameters and locations lead to

changes in curvature, folding index, and thickness. The methods used in this

study can also be extended to examine cortical morphological characteristics
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associated with other abnormalities in the developing brain.
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Chapter 1

Introduction

1.1 Hearing Loss and Brain Development

Hearing loss is indicated by decreased auditory sensitivity, increased hearing

threshold, auditory system dysfunction, and deafness. Abnormalities of the

auditory system, including the hair cells, the auditory nerve, or the auditory

cortex, will reduce auditory function, causing difficulty with communication.

There are multiple causes of hearing loss, such as genetic factors, aging, noise,

and ototoxicity. According to World Health Organization (WHO) survey, 5

% of the world’s population have disabling hearing disorder (WHO, 2021),

so WHO estimates that nearly 450 million people will have diasbling hearing

loss by 2050, so hearing loss is increasingly becoming a common condition

that affects the development as well as the quality of life.

Congenital hearing loss is often caused by abnormalities of the outer,

middle, and inner ear, including structural malformations, cochlear hair cell

damage, and auditory neuropathy (Korver et al., 2017). However, not limited

to these areas, hearing loss also affects the central auditory system. Since the
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brain has neuroplasticity, the normal establishment of auditory function in

development depends on sound stimulation in the early postnatal period. The

ability to receive auditory signal input is significantly reduced or even lost in

children with hearing loss. Therefore, the development of the auditory cortex,

auditory-sensory cortex, and visual-sensory cortex is affected, which eventu-

ally leads to structural and functional changes and reorganization of several

related brain areas (Manno et al., 2021; Ratnanather, 2020). Consequently,

people with hearing loss not only have abnormal auditory cortex functions,

but also have difficulties in speech perception and comprehension.

Studies on cochlear abnormalities have shown that although earlier inter-

vention results in more activation of the auditory cortex, reduced function

persists even after cochlear implantation (Feng et al., 2018; Kral et al., 2002;

Kral et al., 2006). The reason may be irreversible neurological plasticity in

brain development, since auditory neurons play a crucial role in the functional

and physical structure of brain. Therefore, hearing loss is more than an audi-

tory problem. It can lead to neurological disorder that affects several neural

networks jointly participating in brain function remodeling. A key question

is, what functional and structural changes occur in the auditory cortex after

the onset of hearing loss or after treatment.

Many studies of the functional and structural changes in the central audi-

tory system due to hearing loss stem from animal model experiments. White

cats are a common model animal for studying hearing loss (Ryugo & Menotti-

Raymond, 2012; Ryugo et al., 1997). Studies have found that inherited con-

genital deafness in cats occurs almost exclusively in blue-eyed white cats due
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to their genetics (Bergsma & Brown, 1971; Heid et al., 1998). Their deafness

is correlated with structural abnormalities in the inner ear and may produce

unilateral or bilateral deafness (Ryugo & Menotti-Raymond, 2012). In Heid

et al. (1998), 72% of the sample was completely deaf. The organ of Corti

degenerated during the first few weeks of life. Auditory stimuli did not elicit

brainstem responses during these weeks, suggesting that these cats did not

experience any auditory sensation. A few months later, their spiral ganglia

also begin to degenerate. However, even in adult cats, auditory afferent nerves

remain functional. Leake et al. (1999) observed an increased survival rate of

spiral ganglion neurons with cochlear implant for long-term electrical stim-

ulation. Kral et al. (2000) found a functional defect in the primary auditory

cortex of congenitally deaf cats by comparing synaptic activity in different cor-

tices. These results imply that the auditory nerve is initially well preserved in

congenitally deaf cats, and that lack of auditory stimulation can affect afferent

nerve and central nervous system development.

1.2 Morphological Metrics and Models

There are multiple anatomical differences in animals with hearing loss com-

pared to animals with normal hearing, such as reductions in the volume of

the cochlear nucleus and the size of the primary auditory cortex (Butler &

Lomber, 2013). The differences seem to be related to the onset age of hearing

loss. However, in addition to volume, other complex morphological features

of the auditory cortex and its developmental process are not well understood.

A crucial part of brain development and morphogenesis is cerebral cortex
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folding. Most mammals have a highly-folded cortex, whereas the brains of

small animals, such as mice, are smooth (Garcia et al., 2018). Research suggests

that cortical folding is associated with higher cognitive performance, possibly

because this maximizes the use of the brain’s computational units and reduces

communication costs (Gautam et al., 2015). This thesis provides evidence that

cortical folding is associated with function, so it can be a valuable metric for

studying brain structure and cognition functions. Metrics of cortical folding,

such as curvature, folding index and thickness, may reflect the impact of

hearing loss on auditory cortex development. Advanced imaging techniques

and mathematical methods are essential to measure these metrics and thus

describe the complexity of the auditory cortical structure quantitatively and

objectively.

Recently, advances in brain imaging technology have provided powerful

tools to explore the cortical changes caused by hearing loss (Ratnanather,

2020). It can help understand the mechanisms of hearing loss development

more comprehensively, thus providing a theoretical basis for rehabilitation

treatment. Commonly used brain imaging techniques include high-resolution

optical imaging, magnetic resonance imaging (MRI), diffusion tensor imaging

(DTI), positron emission computed tomography (PET) and x-ray computed

tomography (CT). Optical imaging can achieve the highest spatial resolution,

but is usually invasive or in vitro. Among the non-invasive techniques, MRI

has an excellent spatial resolution, so it is suitable for morphological studies.

Since 1980, MRI has been frequently used to obtain anatomical images of small

animals (Hansen et al., 1980). MRI-based studies can provide an accurate and
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reproducible assessment of structural changes in hearing loss (Nichols et al.,

2017; Ratnanather, 2020; Tarabichi et al., 2018). In a meta-analysis of MRI

studies, in subjects with congenital hearing loss, grey matter in and white

matter underlying the frontal lobe decreased most, with the right hemisphere

being more affected than the left (Manno et al., 2021).

Due to the curved shape of the cortex, grey matter thickness can not be

measured accuratly along a straight line in an Euclidean coordinate system

(Bok, 1959). Thus many methods for approximating cortical thickness in

the curved cortex have been proposed, such as Laplacian and registration-

based cortical coordinate systems (Das et al., 2009; Jones et al., 2000; Leprince

et al., 2015; Ratnanather et al., 2020; Waehnert et al., 2014). Columnar-like

coordinate system based on diffeomorphism can generate more realistic 3D

coordinates and provide more reliable metrics measurements (Ratnanather et

al., 2020). These complex coordinate systems often need a substantial amount

of computational resources.

Furthermore, image-based analysis can show structural differences be-

tween cats with normal hearing and hearing loss, so here comes the question:

how these differences are formed. Continuum mechanics models can simulate

tissue behavior in 2D or 3D to study the cortical folding process. Experiments

based on mechanical models show that the inhomogeneity of cortex geometry,

mechanical properties of the gray and white matter, thickness, or growth

can all affect the folding pattern of the cortex (Budday et al., 2015; Budday

& Steinmann, 2018; da Costa Campos et al., 2021; Garcia et al., 2018; Toro &

Burnod, 2005).
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Chapter 2

Surface Reconstruction and
Measurements of Structural
Metrics

This chapter describes a pipeline of MRI-based metric calculations of auditory

cortical structures in cats. The experimental subjects were seven cats: three

hearing cats, three bilaterally deaf cats, and one left-sided deaf cat, as shown

in Table 2.1.

Cat Hearing Loss
WK7E3E No
WK1A66 No
WK7288 No
WK7398 Bilateral
WK00CE Bilateral
WK7290 Bilateral
WK7281 Left

Table 2.1: Subjects’ hearing condition.

As shown in figure 2.1, the first step is to segment the cortex in the MRI

image. The second step is to extract a 3D triangular mesh surface model from

the segmentation. Next, divide the inner and outer surfaces of the cortex
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Figure 2.1: A pipeline of measuring structural metrics based on cat MRI images.
Rounded rectangles represent data. Rectangles represent operations.

into two models. Calculate the curvature of each vertex using a weighted

sum approximation. Create an outer hull surface of the cortex and calculate

the folding index (FI) based on corresponding surface points. Register the

inner surface to the outer surface, then the cortical thickness is given by the

deformation field.

2.1 Segmentation, Surface Reconstruction and Sep-
aration

Seed-based binary segmentation of MRI images was performed using 3D Slicer

(Fedorov et al., 2012) to extract the cortical segmentation of the ROI region.

Due to the limited resolution of MRI, narrow brain sulci boundaries could be

mislabeled. Moreover, some errors cause the outer and inner cortical surfaces

to be connected at specific locations, usually at the bottom of a sulcus, affecting
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the automatic surface separation and measurement. Therefore, manual edits

are involved in order to improve the segmentation for easier and more accurate

measurement.

After obtaining the segmentation, there are two methods to generate a 3D

triangular mesh model of the cortical surfaces, the Marching Cubes and Delau-

nay Triangulation methods (Chew, 1989; Lorensen & Cline, 1987). Marching

Cubes is one of the first and most popular methods, having high speed and

simplicity. It creates a triangular mesh by finding those intersect with isosur-

face in cubes composed of 8 vertexes, and interpolating on cubes’ surfaces.

However, a cube may have multiple different but all correct triangle divisions,

so there are continuity and topological problems between the output mesh and

the isosurface. Delaunay Triangulation method can generate more uniform

triangular meshes by imposing restrictions on the shape of the triangles. The

3D surface model generated by the latter method is significantly smoother,

but it consumes more time and memory. By decimating and smoothing the

model generated by the Marching Cubes method, a smoother model can also

be obtained. There are subtle shape differences between the two models, espe-

cially at locations of large curvature, but the measurements only have limited

voxel-level differences. Therefore, in future, when more cat brain images are

processed, different methods can be chosen depending on the computational

resources.

In order to calculate cortical thickness, it is necessary to divide the inner

and outer surfaces of the cortex. There are semi-automatic and automatic

methods (Ratnanather et al., 2003). The semi-automatic method is to manually
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select the vertices at the boundary in Paraview software, connect them into

a dividing line, and automatically separate the surfaces on both sides of the

dividing line. The automatic method is to find the boundary vertices of the

inner and outer surfaces in each frame of the segmentation image, generate

the dividing line automatically based on vertices’ coordinates in 3D space,

and then separate the surfaces using the dividing line. The specific steps are

as follows.

Step 1: Apply erode, dilate and median blur filters to the original image, in

order to simplify the skeleton and make the boundary smoother.

Step 2: Perform skeletonization using FilFinder (Koch & Rosolowsky, 2015),

Figure 2.2: Visualization of steps of dividing the inner and outer surfaces of the cortex.
(a) A frame of the original segmentation. (b) Result of applying erode, dilate, and
median blur filters. (c) Skeleton of image. (d) The primary path of the skeleton. (e)
The extended path(green) and its intersection(yellow) with the contour. (f) Dividing
line (red) on the surface model. (g) Divided inner (green) and outer (purple) cortical
surfaces.
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and select the longest one as the primary path.

Step 3: Generate the contour of binary segmentation using OpenCV (Bradski,

2000).

Step 4: Extend the main path outward in the direction of the end, and find

the intersection points with the contour. These two intersection points

are the dividing points between the inner and outer surfaces. Record

the 2D coordinates of the dividing points plus the frame index as 3D

coordinates.

Step 5: For each frame, perform steps 1-4 to obtain the coordinates of the

dividing points. Convert their coordinates to the 3D model space.

Find the closest vertex to each point among the vertices of the 3D

model. They are the dividing vertices of the outer and inner cortical

surfaces.

Step 6: Find the shortest paths between adjacent dividing vertices using cur-

vature based dynamic programming (Dijkstra et al., 1959; Ratnanather

et al., 2003). Combine all paths to form the dividing line.

Step 7: Remove the vertices through which the dividing line passes. Find the

connected components of the 3D model. Theoretically, there should be

two connected components, i.e., inner and outer surfaces. However,

inaccurate segmentation may generate isolated fragmented pieces,

resulting in more than two connected components. These pieces are

usually tiny and do not affect the final results. Therefore, select the
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two connected components with the maximum number of cells as the

inner and outer surfaces.

2.2 Curvature

Curvature describes the degree to which a curve deviates from a straight line

or a surface deviates from a plane. The number of curves past a point on a

surface is infinite, so is the number of curvatures. These curvatures are called

normal curvatures. The normal curvature with the maximum value is k1. k2

is the curvature perpendicular to the normal plane associated with k1. k1

and k2 are the principal curvatures, having maximum and minimum value.

The tangent directions of the corresponding curves are called the principal

curvature directions, which are the steepest and smoothest directions.

Although the two principal curvatures are more informative, one would

Figure 2.3: An example of surface curvature.
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Figure 2.4: An example of triangular mesh model. v is a vertex. f1 and f2 are two
neighbor faces of v, intersecting at edge e. α f1,v is the angle of f1 at v. le is the length
of e. θe is the exterior dihedral angle between f1 and f2

prefer a single shape indicator rather than a pair of numbers, such as the mean

curvature and the Gaussian curvature.

The mean curvature, H = (k1 + k2)/2, is the average of the principal

curvatures, equal to the average of all normal curvatures. It measures the

degree of curving of a surface embedded in space.

The Gaussian curvature, K = k1 ∗ k2, is equal to the product of principal

curvatures. It measures the intrinsic curvature of a surface, which remains

constant under isometric transformations of the surface. Any non-stretching

transformation of a surface will not change its Gaussian curvature. For ex-

ample, a plane has a Gaussian curvature of 0. If it is bent into the side of

a cylinder, its Gaussian curvature is still 0. Therefore, it can represent the

intrinsic characteristics of the surface.

Our triangular mesh model is a discrete surface consisting of vertices

and triangle faces, as shown in Figure 2.4. Its curvature is estimated using a
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weighted sum. The formulas are as follows.

Mean Curvature : H(v) = 1
ne

∑e le ∗ θe

Gaussian Curvature: K(v) = 2 ∗ π − ∑ f α f ,v
(2.2.1)

where v indicates vertex, f and e are face and edge neighbors of v. α f ,v is

the angle of face f at v. θe is exterior dihedral angle between the two faces

intersecting at edge e. ne and le are the number and length of edge e. The Mean

curvature is calculated by averaging neighboring edge curvature H(e) =

2 sin (θe/2) le (Sullivan, 2008). Because the surface is relatively smooth, the

exterior dihedral angle θe is usually very small. Then H(e) is approximately

equal to le ∗ θe. A curvature density can be obtained by dividing the curvature

by the surface area associated to the vertex v, A(v) := 1
3 ∑ f Area( f ).

2.3 Folding Index

This section follows the anisotropic wavefront propagation method proposed

by Lyu et al. (2018). The amount of cortical folding is typically measured

within local cortical regions covered by a Euclidean sphere or equidistant

geodesic kernel. However, such a kernel may cross several sulci and gyrus.

It can smooth out folding details and blurs local gyrification measurements.

The anisotropic wavefront propagation can generate a novel kernel shape

to quantify cortical gyrification within sulcal and gyral regions locally (Lyu,

2017). The wavefront propagation speed is faster along with the gyral crowns

and sulcal fundi.

There are five steps of calculating the folding index.
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Step 1: Outer hull creation and correspondence establishment by Laplace and

RK4 based streamline computation method. Apply a morphological

closing operation to create outer hull. Laplace-PDE solves for a scalar

field u(x) between the cortical surface ω and the outer hull surface H.

∇2u(x) = 0
u(x) = uΩ, x ∈ Ω
u(x) = uH, x ∈ H

(2.3.1)

dl, a differential of length along a streamline, should be parallel to the

gradient vector ∇u.

dl ×∇u =

⎧⎨⎩
dx
dy
dz

⎫⎬⎭×

⎧⎪⎨⎪⎩
∂u
∂x
∂u
∂y
∂u
∂z

⎫⎪⎬⎪⎭ = det

⃓⃓⃓⃓
⃓⃓⃓ i j k

dx dy dz
∂u
∂x

∂u
∂y

∂u
∂z

⃓⃓⃓⃓
⃓⃓⃓ = 0 (2.3.2)

Since a mesh is composed of discrete vertices and cells, the PDE can

be reduced to an ordinary differential equation (ODE) ui at any vertex

xi by the method of lines (Schiesser, 2012). Thus, the system of ODEs

can be solved by 4th order Runge-Kutta method (Dormand & Prince,

1980).

Step 2: Sulcal and gyral region segmentation via sulcal and gyral curve extrac-

tion. Select candidate points that have a maximal negative principal

curvature greater than a threshold. Employ the line simplification

method to check if points remain after simplification (Ramer, 1972).

Connect the neighboring sulcal points with minimal distance along

the local principal direction.

Step 3: Cortical region segmentation by computing the geodesic distance be-

tween the sulcal and gyral regions. Given a surface ω and its boundary
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∂ω, the minimum travel-time T(x) from sources on the boundary to a

point x in surface, follows the Eikonal equation, a non-linear partial

differential equation encountered in problems of wave propagation

(Sethian, 1999).

∥∇T(x)∥F = 1, x ∈ Ω ⊂ R2

T(x) = 0, x ∈ ∂Ω
(2.3.3)

F is the propagation speed. A special form is when F = 1, the velocity

at any vertex has unit speed, so solution T(x) is equivalent to the

geodesic distance (Evans, 1998; Sethian & Popovici, 1999).

Step 4: Compute the principal propagation directions and speeds from the

geodesic distance map. A principal propagation direction v1 is given

by the direction of the gradient of the minimum travel-time map.

The other principal propagation direction v2 satisfies v1 ⊥ v2. The

principal propagation speed along v1 is maximum, and that along

v2 is minimum, thus yielding a shape-adaptive kernel shape. Linear

interpolation gives a normalized travel-time map S. Assigning S and

S−1 to the speed associated with v1 and v2 can guarantee that the

amount of propagation is constant as 1.

Step 5: Calculate the folding index using the ratio of areas. A surface is a

two-dimensional manifold in a three-dimensional space, so it will

be easier to operate only on the manifold. ω can be parametrized

to obtain a 2D coordinate system. Since surfaces are represented by

vertices and faces, a natural example is to use the row and column
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index to encode surface vertices.

Given a small positive value δ, vertex x has a set of neighbor vertices

within travel-time δ. The area around x is given by the sum of faces

areas containing all neighbor vertices. Thus, we can compute the

folding index as the ratio of surface area for Ω and H

FI(x; δ) =
AΩ(x; δ)

AH(x; δ)
(2.3.4)

2.4 Cortical Thickness

The inner and outer surfaces of the cortex have a morphological correspon-

dence. The deformation field can be obtained by non-rigid registration of

the inner and outer surface models. Then, the distance that each vertex trav-

els during deformation can be calculated, which is regarded as the cortical

thickness. Since the travel path between template vertex and target vertex is a

curve, the length of the curve is different from the Euclidean distance between

two vertices. Therefore, the cortical thickness calculated in this way is more

accurate and reliable.

The registration method used in this section is based on the Large De-

formation Diffeomorphic Metric Mapping with imposed normal constraints

(Ratnanather et al., 2020).

Thirion (1998) first proposed the diffusion model in which the diffusion

equation determines the deformation, together with the Demons algorithm.

Later, several studies based on this model and differential manifolds appeared,

some of which were combined with other models (Christensen et al., 1996).
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The diffeomorphic model is based on the mathematical representation of

the deformation velocity field. LDDMM registration is a method of locally

optimizing the speed of deformation. It generates deformation paths that are

not the shortest paths, but paths that minimize the incremental cost of each

step. This method has the advantage of solving large deformation problems

and is computationally intensive. Since there are large differences between the

shapes of the inner and outer cortical surfaces, it is suitable for this method.

A diffeomorphic mapping is smooth and reversible, and the inverse map-

ping is also smooth. In specific calculations, the Jacobian value of each grid

point in the deformation field needs to be greater than zero. It implies a

one-to-one and reversible deformation between the inner and outer cortical

surfaces. This property ensures that the topology does not change before

and after the deformation, including continuity, separability, and smoothness.

As a result, more correct correspondences between inner and outer surfaces

can be obtained. Some other commonly used algorithms do not guarantee

topological correctness, such as the optical flow algorithm (Horn & Schunck,

1981), which may rearrange the brain sulci and gyri and cause errors.

Normal constraints ensure that the velocity field at each vertex is perpen-

dicular to the evolving surfaces. A neuroscience interpretation is that this

coordinate system can better mimic the columnar and laminar structure of the

cortex.
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2.5 Results

Figures 2.5, 2.6, and 2.7 show the 3D cortical surface model and color-coded

structural metrics, including curvature, folding index and thickness.

Figure 2.5: Curvature of cat WK7288.

Statistical analysis was performed on all seven subjects. Histograms and

Kernel Density Estimate (KDE) plots are shown in figures 2.8,2.9 and 2.10.

The density estimator models the probability distribution of the data. The

point of highest probability, at the peak of density, is seen as an indicator of

the difference between hearing and non-hearing cats. The resampling method

can be used to obtain more accurate estimates and measure the degree of

uncertainty. Since KDE shape changes as the width and range of bins vary,

multiple bin sizes are experimented. After obtaining the highest probability

values of each subject, average the values of cats with normal hearing and

hearing loss respectively. The results are shown in Table 2.2.
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Figure 2.6: Folding index of cat WK7288.

Figure 2.7: Cortical thickness of cat WK7288.

The distributions of curvature are approximately normal distributions. The

reason could be that the number of sulci and gyri correspond to each other,

resulting in some extent of symmetry in curvature. However, all distributions
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Figure 2.8: Curvature density histogram and KDE plots.

Figure 2.9: Folding index density histogram and KDE plots.

are slightly skewed to the right, indicating that the convex area of the cortical

surface is larger than the concave area. All distributions are concentrated

around the zero point, implying that most of the cortical surface is relatively
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Figure 2.10: Cortical thickness density histogram and KDE plots.

Bin
Width

Curvature Folding Index Thickness
Hearing HL Hearing HL Hearing HL

0.1 0.189 0.120 1.094 1.075 2.040 2.093
0.01 0.187 0.120 1.093 1.075 2.037 2.095
0.001 0.189 0.120 1.090 1.076 2.037 2.094

Table 2.2: Average metrics values with the highest probability density of cats with
normal hearing and hearing loss(HL). Despite varying bin width, the changes in
metrics are consistent. The curvature and folding index of cats with hearing loss are
smaller than those of hearing cats, while the thickness increases.

flat. Bilaterally deaf subjects WK00CE and WK7290 have shorter and broader

distributions. Left-sided deaf subject WK7281 has a different distribution than

others, which appears to have two peaks. The left peak is located at the zero

point, indicating WK7281 has more flat regions.

The distributions of folding index are of the same shape, having greatest

density at FI = 1. WK7281’s distribution has the highest density around FI = 0,

which is also related to its large flat regions. Table 2.2 shows that the average
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curvature associated with maximum density of non-hearing cats decreases, as

well as the folding index. These results suggest that hearing loss is associated

with less highly folded cortex.

The distributions of cortical thickness appears to have one to three peaks.

Since the data is uneven, it is difficult to identify peaks except for the primary

one. Only WK7398’s distribution clearly shows two peaks. All distributions

have centers in the range of 2.0 and 2.5, and are significantly skewed to the left.

It means that thinner parts are larger than thicker parts. Based on observations

of color-coded 3D models, such as figure 2.7, gyri are generally thicker than

sulci. The observation is consistent with previous research (Holland et al.,

2018). According to table 2.2, hearing loss is related with increasing thickness.

Hypothesis testing methods are used to examine the statistical significance

of differences between two groups of data. For each cat, 2000 samples are

randomly selected. Samples of 3 hearing cats are considered together as the

normal hearing group. Samples of 4 hearing loss cats are considered together

as the hearing loss group. The most commonly used hypothesis test is the

t-test, which usually assumes that the variables have normal distributions

(Student, 1908). Welch’s t-test is a variation for unequal variances (Welch,

1947). Curvature data is approximately normally distributed. The Welch

t-test result of curvature data of two groups shows that p<0.01. Since folding

index and thickness data are not normally distributed, the nonparametric

Mann-Whitney U (MWU) test is more appropriate (Mann & Whitney, 1947).

MWU test result is p<0.001 for both folding index and thickness of two groups.

It shows that the metrics distributions have statistically significant differences
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between cats with normal hearing and hearing loss.
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Chapter 3

Mechanical Model of Cortical
Folding

In the previous chapter, cortical morphological metrics of cats with normal

hearing and hearing loss were obtained. Observations are that cats with hear-

ing loss have decreased curvature and folding index, and increased thickness.

However, it remains unclear what factors contribute to these changes. It is

possible that the cortex of cats with hearing loss has different mechanical prop-

erties. The influence of mechanical parameters on the folding pattern can be

investigated by modeling the brain as a biomechanical model. The modeling

results reproduce the cortical folding features obtained in the previous chapter.

In that case, the mechanical parameters involved may be relevant to the cause

of the abnormal cortical development in cats with hearing loss.

3.1 The Hypothesis of Cortical Folding

Higher primates usually have more complex communication systems. In

order to cope with complex environments and cognitive needs, primates need
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to incorporate more neurons in a limited space. The cerebral cortex generates

sulci and gyri through folding, significantly increasing the number of neurons

and bringing them closer to each other. Thus, neurons’ communication speed

boosts, leading to a greater cognitive information processing speed and better

working memory.

There are multiple hypotheses for the mechanism of cortical folding. It

was first suggested that the skull may restrict the growth of the brain, leading

to compressive stress and flexion (Welker, 1990). Then, it was proposed

that axons connecting adjacent areas of the cerebral cortex could pull these

areas together (Van Essen, 1997). However, experiments provided evidence

against both views (Barron, 1950). Another possible reason is that neurons

and glial cells grow in different programmed patterns, expanding more in

some areas than others (Kriegstein et al., 2006; Reillo et al., 2011). However,

there is evidence that the folded cortex pulls on the underlying tissue, not the

underlying tissue pushes outward on the cortex and force it to fold (Xu et al.,

2010). Therefore, the neurons and glial cells differences may have affected

only the early stage of primary folding.

In recent years, a popular hypothesis is the tangential expansion hypothesis

based on the different properties of gray and white matter (Richman et al.,

1975). The tangential expansion of the outer region is larger than that of the

inner region and causes folding through mechanical instability. Many studies

are based on this hypothesis because it can be modeled both in vivo and

numerically (Bayly et al., 2013; Dervaux & Amar, 2008; Tallinen et al., 2014;

Tallinen et al., 2016). This chapter uses such a finite element model to study
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the effect of different shear modulus and bulk modulus of gray and white

matter on the folding of the cortex.

3.2 Model

Figure 3.1: An example of 2D mechanical model. The upper region represents the
gray matter, while the lower region represents the white matter.

The finite element model consists of a uniform triangular mesh, as shown

in figure 3.1. It has two components, an upper component representing the

gray matter and a lower component representing the white matter. The upper

component has a tangential expansion parallel to the tangent of the surface.

The white matter does not expand on its own, but deforms together with the

gray matter due to elastic forces. The model material is Neo-Hookean solid

with compressible hyper-elastic property. The neo-Hookean energy-density

function models nonlinear elasticity.

Consider a displacement field ui(xj). The deformation gradient is

Fij = δij +
∂ui

∂xj
(3.2.1)
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Let B denote the left Cauchy-Green deformation tensor,

B = F · FT, Bij = FikFjk (3.2.2)

There are several invariants of B, including

Ī1 =
tr(B)
J2/3 ; J =

√︂
det(B) (3.2.3)

The stress-strain relation follows as

σij =
µ

J5/3

(︃
Bij −

1
3

Bkkδij

)︃
+ K(J − 1)δij (3.2.4)

where µ is the shear modulus, K is the bulk modulus.

The corresponding strain energy density is

Ū =
µ

2
( Ī1 − 3) +

K
2
(J − 1)2 (3.2.5)

The cortical tissue is assumed to be incompressible. To limit compressibility,

K must be much larger than µ. Here we set K = 103µ. In the finite element

model, each vertex has its own value of shear modulus, bulk modulus and

growth. In each iteration, the Cauchy stress is calculated by equation 3.2.4.

The force on each triangle is evenly distributed to the three vertices. Based

on quasi-static approximation, the energy of system needs to be minimized at

each step. It means that the system changes so slow that after every step, it

reaches a new equilibrium. The equations are as follows.

∆vi =
Fi−vi∗γ

a ∗ ∆t
∆ui = vi ∗ ∆t

(3.2.6)
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where a is the volume occupied by a vertex, γ is the damping factor.

The finite element model of high-density mesh has high computational

complexity. Assuming the model is symmetric, it can be seamlessly connected

by translation, allowing faster computation. Boundary conditions are added

to the edge vertices of the model: the corresponding starting and ending

vertices have the same forces and velocities.

It needs to be ensured that the surface of the model does not intersect. That

is, the surfaces on both sides of a sulcus during folding will stop growing

after contacting each other because of squeezing. Since the vertices under the

top surface will not pass the vertices on the surface, only the repulsive forces

between the vertices and triangles on the surface need to be calculated. In

each iteration, search for the neighboring triangles within a specific range of

each vertex. If the distance between a vertex v and a neighboring triangle f is

smaller than a threshold value, a repulsive force will be applied to v. Based on

the relative position of v to f , add a repulsive force in the opposite direction

to f ’s vertices in a calculated proportion.

In order to better mimic gray matter and white matter, the thickness of the

lower region is considerably thicker than the upper one. However, folding

occurs mainly in the upper region, while the bottom part remains almost

unchanged. Therefore, the height of each row in the lower region is increased

exponentially to reduce mesh density and improve computational speed, as

shown in figure 3.1.

The model has 2D and 3D versions. In 2D model, the gray matter grows

only in x-direction. In 3D model, the gray matter grows in x- and z-direction.
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Among all the biomechanical parameters related with cortical folding,

the most critical ones are shear modulus and bulk modulus. Shear modulus

indicates the rigidity of an object. If a force is applied to the surface of an

object parallel to the surface, the surface of the object will be pushed to one

side, producing an angular deformation. The smaller the shear modulus, the

softer the object and the easier it is to deform. Bulk modulus, also known as

incompressibility, is the ratio between the increase in force and the resulting

decrease in volume of the object. The smaller the bulk modulus, the more

easily an object can be compressed.

In the numerical experiments, the model’s initial shear modulus is 1.0, and

the bulk modulus is 1000 times the shear modulus. We have explored values

that reduce or increase the modulus of gray matter or white matter within

the central area or all areas. Then, the curvature, folding index, and cortical

thickness of the 2D and 3D model folding results are investigated based on

the methods described in the previous chapter. The calculation is simplified

because the model already gives the deformation field and the correspondence

between vertices.

The simulation code is adapted from Tallinen’s source code of soft matter

mechanics numerical models (Tallinen et al., 2014). Input parameters include

the length and number of vertices in each direction, total simulation time,

time step, auto-save interval, initial shear modulus and bulk modulus. For

different settings, the code finds the index of vertices in the region of interest

(ROI) based on position, and assigns them a different modulus. There are

three presets of ROI, the lower region, the center of the lower region, and
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the center of both regions. When starting the simulation, input includes the

number of preset and the modified modulus. During simulation, at the set

interval, data containing structure and stress information is output to a result

folder in POV-Ray format (Persistence of Vision Pty. Ltd.). After simulation,

POV-Ray-based images and VTK files of multiple models at desired timestep

are generated in batch.

3.3 Results of 2D Models

Figure 3.2: Folding progress of the initial model from time step 72000 to 400000. Shear
modulus is 1.0; Bulk modulus is 1000.0. The boundary of the upper region is labeled
in pink. Green, yellow and red indicate increasing stress. The model first forms a
shallow sulcus on the right side, then spreads out to the left and right. Finally, a
periodic wave-shaped folding pattern is generated.

The folding progress of the initial model is shown in figure 3.2. After

generating a stable wave-shaped periodic folding pattern, the upper region

grows in the y-direction and increases the amplitude, while its wavelength
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remains unchanged. This is consistent with previous research, indicating that

there is an optimum wavenumber that minimizes the total free energy, which

is proportional to the initial thickness (Groenewold, 2001). Figure 3.3 shows

that the thickness of gyri is larger than that of sulci, consistent with previous

observations in computational simulations, polymer experiments, and the

human brain (Holland et al., 2018).

Figure 3.3: Cortical thickness of the initial model at time step 400000. The minimum
thickness is 0.04097. The max thickness is 0.07854. The average value is 0.07301. Since
the model has no actual physical sizes, all variables can be linearly transformed in
the same scale. Therefore, there is no need for units of variables and metrics.

There are two types of variations to the initial model with a shear modulus

of 1.0.

1. Change the shear modulus to 0.8, 0.9, 1.1, or 1.2. Bulk modulus is set to

1000.0 times shear modulus.

2. Change the region of modifying shear modulus. The region can be the

whole lower region, the center of both regions, and the center of the

lower region.

By combining the two variations, various parameter settings can be ob-

tained. Changing the modulus of the entire lower region mainly affects the

number and length of cycles. For example, increasing it from 1.0 to 1.2 results
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Figure 3.4: Stable folding patterns of various modulus settings. Different models
reach a relatively stable state at different times, depending on their mechanical
properties.

in an increased periodic number, from 5 to 6. Models with decreased modu-

lus in the central part of both regions will form the first gyrus at the center,

because a small modulus means that the material is easy to deform. This first

gyrus is formed earlier and thus squeezed by both sides to develop into a

narrowed gyrus.

Changing only the central lower region will result in regularity. If the

modulus is increased, the model will form a wide central gyrus. If the modulus

is decreased, the model will form a narrow central gyrus. This is because the

area with a large modulus is more difficult to deform and curve. The width of

the central gyrus is positively correlated with the modulus being altered. In

addition, the cortical thickness decreases as the modulus rises, as shown in
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figure 3.5.

3.4 Results of 3D Models

Figure 3.6, 3.7, 3.8, and3.9 show the results of modifying the modulus in

the center of both regions or only lower region of 3D models. The density

histograms of center vertices and non-center vertices are labeled red and

yellow respectively. Values with the highest probability are calculated based

on KDE and plotted in figure 3.10.

As the modulus increases, the difference of curvature distribution between

Figure 3.5: Thickness of models varying the modulus of central lower region. The
minimum, maximum, and average thickness all have a positive correlation with the
changes modulus.
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Figure 3.6: Folding results of 3D models. Stress is color-coded. When modulus is
decreased, the surface is more highly folded, and the sulci grow deeper.

center and noncenter vertices increases. The curvature of center vertices

shows a positive correlation with modulus, while that of noncenter vertices

shows a negative correlation. It suggests that the spatial inhomogeneity of

modulus cause different sharpness of folds in different areas, and a higher

center modulus may enlarge this difference.

In figure 3.10b, folding index fluctuates around a downward trend as

modulus increases. The downward trend is consistent with the fact that a

large modulus results in difficulty to deform.

When changing the modulus of the center lower region, the thickness

is positively correlated with the modulus. The thickness of center vertices

becomes greater than that of noncenter vertices as modulus increase, and
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Figure 3.7: Density histogram and KDE plot for curvature of 3D models.

Figure 3.8: Density histogram and KDE plot for curvature of 3D models.
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Figure 3.9: Density histogram and KDE plot for curvature of 3D models.

smaller as modulus decrease. The upward trend of average thickness is

consistent with 2D simulations. When changing both regions, the thickness of

center vertices decreases in both directions of modulus varied from the initial

value of 1.0.
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(a) Curvature

(b) Folding Index

(c) Thickness

Figure 3.10: Metrics values with the highest probability density. C (orange) means
modifying the center modulus of both regions. LC (green) means modifying the
center modulus of lower region. Center (solid line) labels the vertices whose modulus
is changed, and Noncenter (dash line) labels the unchanged vertices.
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Chapter 4

Discussion

4.1 Discussion

The first part of this work proposes a pipeline for automatically measuring

cortical morphological metrics based on MRI images, and statistically analyzes

the results of hearing cats and non-hearing cats. By automatically preprocess-

ing MRI images, including extracting 3D surface models from segmentation

and separating the inner and outer surfaces, manual work can be saved. It can

speed up data processing and support brain morphology research. The second

part uses a finite element mechanical model to simulate cortical folding and

study the influence of different biomechanical parameters on folding patterns.

The 3D model can directly use the mentioned pipeline to calculate metrics and

perform statistical analysis. This framework can also be extended for many

other neural disorders or brain development researches.

Data analysis based on MRI images showed that, compared with hearing

cats, the average curvature and folding index of cats with hearing loss de-

creased, while the thickness increased. In the experiments of 2D mechanical
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models, increasing the shear modulus and bulk modulus in the central white

matter region can lead to the formation of a wider and flatter gyrus. Reducing

the modulus of the central white matter region or both regions can result in

an increased thickness. However, raising the modulus of the entire white

matter region can also result in an increased thickness. In 2D and 3D models,

reducing the modulus of the center of both regions will result in a larger

maximum thickness. These results seem to be contradictory and need to be

discussed.

First, increasing the modulus of the entire white matter region will not

change the uniform waveform folding pattern, but will affect the periodic

length and number. Because the modulus of gray matter does not change,

the surface grows outwards. The white matter is difficult to deform, so the

thickness increases until the elasticity is enough to force the white matter to

deform and fold. At this time, the thickness was already very large. The

greater the modulus, the greater amount of gray matter’s deformation is

required, resulting in greater thickness.

Mechanical modeling results provide evidence that folding can inhibit

thickness growth. In the early stages of folding, a gyrus and two sulci form,

and this region is thinner than flat areas. It may be because the cortex grows

in the tangential direction, but it is squeezed to grow in the surface normal

direction. If the region’s modulus is small and is easy to fold, it only needs to

grow and fold along the surfaces, so the stress and the growth in the surface

normal direction are reduced. There may even be an opposite force causing

the thickness to decrease. In addition, the thickness of a sulcus itself is smaller
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than that of flat areas, which affects the average thickness.

Reducing the modulus of the central white matter region can also increase

the thickness. If the modulus of the central white matter region is reduced in

the experiments, the model will first form a gyrus and two sulci in the center.

The smaller the modulus, the narrower the central gyrus. Since white matter

is more easily deformed than gray matter, these two sulci will grow deeper,

while the width of the gyrus is almost unchanged. Therefore, the central part

mainly undertakes the pressure of tangential growth. The side parts do not

fold in the early stage. They grow outwards, increasing the thickness of the

grey matter region. After that, the pressure spreads from the center to the

sides, and the sides begin to fold. The lower the modulus is, the slower the

propagation speed of folding, the more that sides can grow outward, resulting

in larger maximum thickness and average thickness. If the modulus is large

than the initial values, the deep brain sulcus is formed on the sides, the center

area becomes flatter and thicker than the sides. The greater the modulus, the

faster the folding propagates to the center, and the smaller the thickness of the

center area can reach in the early stage.

If change the modulus of the center of both regions, the effect is similar

to that of only changing the white matter region, but it did not show much

regularity. Generally, when the modulus is reduced, the central gyrus of the

former is narrower, the fold spreads faster, and the maximum and average

thickness are larger. When the modulus is increased, the central gyrus becomes

wider and flatter, and the maximum thickness is larger, while the average

thickness is almost equal. These results imply that the different properties of
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gray matter and white matter will influence the cortical folding pattern.

When reducing the modulus of the entire white matter region, the smaller

the modulus, the larger the absolute average curvature value, which is neg-

ative. It is probably because objects with small modulus are easy to deform,

fold and form brain sulci. When changing the modulus of the central white

matter region, the greater the modulus, the greater the average folding index.

When changing the modulus of the entire white matter region, the average

folding index increases as the modulus decreases.

The mechanical properties of brain tissue depend on its histological com-

position and structure. The gray matter consists of neuronal cell bodies, glial

cells, unmyelinated axons, and capillaries. The white matter consists mainly of

myelinated axons (Purves et al., 2008). Several studies have found gray matter

to be more rigid than white matter (Budday et al., 2017; Green et al., 2008), but

there is also evidence against this conclusion (Kruse et al., 2008; McCracken

et al., 2005; Velardi et al., 2006). Budday et al. (2017) shows that white matter

is not significantly anisotropic, even though the distribution of nerve fibers

can be highly anisotropic. Some studies observed more stiffness along the

fiber direction than in the perpendicular direction (Feng et al., 2013; Jin et al.,

2013; Velardi et al., 2006; Yousefsani et al., 2018), but others have suggested

otherwise (Budday et al., 2017; Prange & Margulies, 2002). A simulation

study found stress concentrations near small axons when fiber diameters are

different (Yousefsani et al., 2018).

Studies have shown that auditory deprivation affects the development of

myelin in the cortex (Kohrman et al., 2021; Long et al., 2018). Myelin promotes
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the speed of neuronal communication and is therefore essential for auditory

function. Primates are born with almost no myelin in the auditory cortex and

reach the highest amount of myelin after adulthood (Miller et al., 2013). Myelin

has plasticity, so its development will be affected by experience deprivation,

including social activity, vision, tactile and auditory experiences (Barrera et

al., 2013; Etxeberria et al., 2016; Hribar et al., 2014; Makinodan et al., 2012;

Smith et al., 2011). Studies based on Magnetic Resonance Elastography and

Atomic Force Microscopy found that demyelination decreases shear modulus

(Heredia et al., 2007; Schregel et al., 2012). Therefore, auditory deprivation

may result in reduced myelin formation in the white matter and thus reduced

modulus.

Auditory deprivation can also reduce dendritic tree size or density and

number of neurons (Bose et al., 2010; Gröschel et al., 2010; Klinke et al.,

1999; McMullen et al., 1988; Ouda et al., 2016). Clemo et al. (2017) found

significantly increased spine density in the supragranular layers of deaf cats,

and significantly decreased spine density of spiny non-pyramidal neurons in

the granular layer. They also found that spine head diameter was significantly

increased in the supragranular layers, and decreased in the infragranular

layers. The increased density may be related to reduced synaptic pruning

affected by experience deprivation (Cardon et al., 2012; Jiang et al., 2009).

Yang et al. (2020) found that the average elastic modulus of spines was much

larger than that of gray matter and white matter, and it had no significant

correlation with spine size. It suggests that the overall modulus may increase

with increasing spine density. Thus, auditory deprivation may increase the
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modulus in supragranular layers and decrease that in granular layers.

In addition to neuron and fiber, interconnections and capillary density also

affect brain tissue stiffness (Budday et al., 2017). Additionally, Sunnerberg

et al. (2019) demonstrated a negative correlation between cell volume and

modulus.

4.2 Limitations and Future Work

A major limitation is the impact of the limited spatial resolution of MRI on

cortex segmentation. If the two sides of a brain sulcus are close to each other,

accurate segmentation is not guaranteed even with manual editing. An im-

provement idea is to involve histological brain slice imaging for multimodal

surface reconstruction (Ewert et al., 2018; Mancini et al., 2020). Although

histological optical imaging is usually in vitro or invasive, it allows for the

best spatial resolution and thus a more precise segmentation. Registering his-

tological images to MRI images of the same subject can repair the distortions

of brain slices. In addition to the binary cortical segmentation, brain regions

can be labeled using these high-resolution images. Brain-region-specific statis-

tical analysis of data can help to measure the structural metrics for interested

regions and better understand the relationship between regions.

The mechanical cortex model used in this work is only a simplified model

with few mechanical properties and basic shapes. A model of primary corti-

cal folding can be obtained by smoothing out the highly-folded features of

the surface model extracted from MRI. Assigning mechanical properties to a

three-dimensional model like an embryonic brain may allow a more realistic
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imitation of the higher-order folding process of the cortex. It can help with

investigating the effect of different biomechanical parameters in brain develop-

ment. Moreover, the model in this work has only two components, mimicking

the gray and white matter. It will be helpful to study the role of different

cortical layers by adding more components to the model. Also, the cellular

and molecular mechanisms of cortical enlargement, thickening, and folding

have been examined (Liu et al., 2017). The programmed growth pattern of

neurons and other cells can be relevant to cortical folding. A possible research

direction is to combine cellular mechanisms with finite element models and

add more anisotropic biomechanical parameters to mimic cells’ behaviors.
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Appendix A

Software and Data

A.1 Software

Description Location
Instructions of cortical morphology
analysis and mechanical modeling

/cis/project/deafcat/mri/cortmorph/README.md,
/cis/project/deafcat/mri/mechmodel/README.md

Convert segmentation to surface -
Delaunay Triangulation

/cis/project/deafcat/mri/cortmorph/daniel/seg2Surf/
seg2Surf.m

Convert segmentation to surface -
Marching Cubes

/cis/project/deafcat/mri/cortmorph/vtkUtils/volume2vtk.m

Separate the outer and inner corti-
cal surfaces - automatically

/cis/project/deafcat/mri/cortmorph/vtkUtils/surface_cut.py

Separate the outer and inner corti-
cal surfaces - manually

/cis/project/deafcat/mri/cortmorph/conniejhe/Surface-
Cutting/

Calculate curvature /cis/project/deafcat/mri/cortmorph/vtkUtils/curv.py
Calculate folding index /cis/project/deafcat/mri/cortmorph/LocalGyrificationIndex/
Calculate thickness /cis/project/deafcat/mri/cortmorph/registration/
Register histology images to MRI
images

/cis/project/deafcat/mri/cortmorph/his2mri/

Operate VTK files - smooth, reduce
the number of vertices, subdivide,
convert other formats to VTK, etc.

/cis/project/deafcat/mri/cortmorph/vtkUtils/

2D mechanical model - simulation
and analysis

/cis/project/deafcat/mri/mechmodel/2d/code

3D mechanical model - simulation
and analysis

/cis/project/deafcat/mri/mechmodel/3d/code

Table A.1: Software locations.
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A.2 Data

Description Location
Cat MRI and segmentations /cis/project/deafcat/mri/Cats_data/mriSeg/
Surface models with curvature, fold-
ing index and thickness data

/cis/project/deafcat/mri/Cats_data/results/

2D mechanical model - simulation
and analysis results

/cis/project/deafcat/mri/mechmodel/2d/results,
/cis/project/deafcat/mri/mechmodel/2d/analysis

3D mechanical model - simulation
and analysis results

/cis/project/deafcat/mri/mechmodel/3d/results,
/cis/project/deafcat/mri/mechmodel/3d/analysis

Table A.2: Data locations.
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