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Abstract

Benefit-risk assessment is a crucial step in the medical decision process.

In many biomedical studies, both longitudinal marker measurements and time

to a terminal event serve as important endpoints for benefit-risk assessment.

The e↵ect of an intervention or a treatment on the longitudinal marker process,

however, can be in conflict with its e↵ect on the time to the terminal event. Thus

questions arise on how to evaluate treatment e↵ects based on the two endpoints,

for the purpose of deciding on which treatment is most likely to benefit the

patients. In this dissertation, we present a unified framework for benefit-risk

assessment using the observed longitudinal markers and time to event data. We

propose a cumulative weighted marker process to synthesize information from

the two endpoints, and use its mean function at a pre-specified time point as

a benefit-risk summary measure. We consider nonparametric estimation of the

summary measure under two scenarios: (i) the longitudinal marker is measured

intermittently during the study period, and (ii) the value of the longitudinal

marker is observed throughout the entire follow-up period. The large-sample

properties of the estimators are derived and compared. Simulation studies and

the application to an AIDS clinical trial exhibit that the proposed methods are

easy to implement and reliable for practical use.

In many follow-up or surveillance studies, marker data are collected con-

ditioning on the occurrence of recurrent events. In contrast with the above

situation that the marker measurements exists at any time before the termi-

nal event, sometimes marker measurements are triggered by the occurrence of
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recurrent events. Examples include the medical cost for inpatient or outpa-

tient cares, length-of-stay for hospitalizations, and prognostic or quality-of-life

measurement repeatedly measured at multiple infections related to a certain

disease. A recurrent marker process, defined between a pre-specified time origin

and a terminal event, is composed of recurrent events and repeatedly measured

marker measurements. We consider nonparametric estimation of the mean re-

current marker process in the situation when the occurrence of terminal event is

subject to competing risks. Statistical methods and inference are developed to

address a variety of questions and applications, for the purposes of estimating

and comparing the integrated risk in relation to recurrent events, marker mea-

surements and time to the terminal event for di↵erent competing risk groups. A

SEER-Medicare linked database is used to illustrate the proposed approaches.
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Chapter 1

Introduction

1.1 Overview of Statistical Problems

1.1.1 Benefit-risk assessment using marker process and
time-to-event data

Assessing benefits and risks is a crucial step in the medical decision making pro-

cess. The purpose of benefit-risk assessment is to determine whether the benefits

of an intervention or treatment outweigh its risks based on a given measure. In

many clinical trials or biomedical studies, a conventional way of risk assessment

is to analyze the time to an event of interest. Statistical methods such as the

log-rank test and Cox’s proportional hazards model are widely used for risk as-

sessment based on the event time. On the other hand, longitudinally measured

patient-centered outcomes or biomarkers are also frequently collected, because

they characterize patients’ health status and quality of life over time. For exam-

ple, in the Didanosine/Zalcitabine trial conducted by Terry Beirn Community

Programs for Clinical Research on AIDS (CPCRA) (Abrams et al., 1994), time

to AIDS progression or death is the primary endpoint; moreover, the Karnof-

sky score, which quantifies patients’ general well-being and physical quality of
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life, is assigned by study investigators at each follow-up visit. The longitudinal

marker measurements, such as quality of life score, o↵er insights into patients’

experience and perceptions and serve as important endpoints in evaluating a

treatment. Thus question arises on how to assess benefits and risks based on

both time to event and longitudinal marker, for the purpose of deciding on

which treatment is most likely to benefit the patients.

1.1.2 Recurrent marker process in the presence of com-
peting terminal events

In biomedical or prospective follow-up studies, longitudinal data are typically

collected or observed with pre-specified or random sampling times where sam-

pling times do not have specific biological or medical implications. In contrast,

recurrent marker data are a type of repeated measurements, where the sam-

pling times are recurrent event times, and a marker measurement is collected

or observed conditioning on the occurrence of a recurrent event. In many situ-

ations, marker measurement does not even exist unless a recurrent event takes

place. Examples include multiple medical cost for inpatient or outpatient cares,

prognostic or quality-of-life measurement repeatedly measured at incidences of

infections, and length-of-stay measurement for recurrent hospitalizations. In

reality, the recurrent marker process could be terminated by a failure event

such as death, and competing risks arise when subjects are exposed to several

causes of terminal event (Kalbfleisch and Prentice, 2002). Besides analyzing

recurrent marker data over time without discriminating the types of terminal

event, investigators are also interested in the performance of recurrent marker

process for subjects with a specific type of terminal event. This article presents
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a framework for nonparametric estimation of recurrent marker process in the

presence of competing terminal events.

1.2 Motivating Examples

1.2.1 CPCRA ddI/ddC data

The Community Programs for the Clinical Research on AIDS (CPCRA) was

established to study the e↵ectiveness of various treatments for HIV. Comprised

of 17 research units that represent a significant diversity of ethnicity, geography

and risk group, the CPCRA provides opportunity of clinical research on patients

underrepresented in traditional, university-based HIV studies. The CPCRA

ddI/ddC study was designed to address the important clinical question of which

one of the currently available nucleoside analogues should be given to a patient

who can no longer tolerate or has failed ZDV therapy.

The CPCRA ddI/ddC study opened in December 1990 and enrolled 467

patients by September 20, 1991. Among the 467 subjects, 230 were randomized

to receive ddI and 237 to receive ddC. All patients were followed for at least one

year after the last patient was enrolled. As mentioned above, Karnofsky score is

measured at each follow-up visit. Moreover, occurrence of all the opportunistic

infections, which indicates deterioration in patients’ health, is also recorded. At

the end of study, 88 patients from the ddC group and 100 patients from the ddl

group died; and the death terminates the existence of Karnofsky score as well

as the occurrence of opportunistic infections. In this study, prolonged survival

time is desired, but is not the only goal of the treatments. In chapter 3, we

develop statistical methods for deciding which treatment is better based on (i)
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Karnofsky score and time to death, (ii) Opportunistic infections and time to

death.

1.2.2 SEER-Medicare linked database for breast cancer

The linked Surveillance, Epidemiology, and End Results (SEER)-Medicare data

are a large population-based source of information for cancer-related health

services research in the United States. The SEER-Medicare data for breast

cancer patients provide detailed information about Medicare beneficiaries with

breast cancer, including clinical, demographic, cause-of-death information and

the Medicare claims for covered health care services from the time of a person’s

Medicare eligibility until death. Specifically, each Medicare claim includes the

date of service, diagnostic codes and amounts for charges. The medical cost

accumulation process is an example for recurrent marker process, since charges

was recorded when each recurrent health service occurred.

There are di↵erent possible types of death for a breast cancer patient, in-

cluding death from a toxic reaction to the therapy, an isolated local recurrence,

development of a second type of cancer and so on. Thus, in addition to study

the total medical cost, information on medical costs attributed to di↵erent types

of failure may also be useful. Our work is the first attempt to develop statisti-

cal methods to study medical cost accumulation process when competing risk

is present.

1.3 Organization

In this dissertation, we consider two types of marker process with terminal

events, and develop statistical methods and inference to address a variety of
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questions and applications related with the two types of data.

For the first type of data, marker exist at any time before the terminal

event, for example, the marker can be quality of life or biomarkers. In the

context of synthesizing information from both the terminal event process and

the longitudinal marker process, we develop a unified framework for benefit-risk

assessment to to facilitate decision-making. A summary measure integrating

the two outcomes is proposed, including the expected quality-adjusted survival

time as a special case. We consider di↵erent nonparametric approaches for the

summary measure under two scenarios: (i) the longitudinal marker is measured

intermittently until terminal event or loss to follow-up, and (ii) the value of the

longitudinal marker is observed throughout the entire follow-up period. The

contents of this topic are organized as follows: In Chapter 3.1, we define cu-

mulative weighted marker process and use its mean function at a pre-specified

time point as a summary measure for benefit-risk assessment. In Chapter 3.2,

we consider nonparametric estimation of the mean function of the cumulative

weighted marker process when the longitudinal marker is intermittently ob-

served. In Chapter 3.3, a nonparametric estimator of the mean function is

proposed when the longitudinal marker is continuously observed. In Chapter

3.4, two-sample tests based on the proposed summary measure is developed. In

Chapter 3.6, we report the results of some simulation studies.

For the second type of data, the marker measurement exists conditioning

on the occurrence of a recurrent event, for example, the marker can be medical

cost or length of stay associated with each hospitalization. In Chapter 4.1, a

point process for recurrent events is generalized to a recurrent marker process by

accounting for additional information from markers as well as risk types. A mean

5



function is defined with or without competing risks specification. In Chapter 4.2,

we consider nonparametric estimation for the mean function without competing

risks specification. In Chapter 4.3, a di↵erent approach is proposed for the

mean function with competing risks specification. In Chapter 4.4, an improved

estimator of the mean function under competing risks model is proposed for an

e�ciency gain. In Chapter 4.5, simulation studies are presented.

In Chapter 5, we present the statistical analysis of two sets of data. First,

the CPCRA ddI/ddC data serve as an example of how to conduct benefit-

risk assessment based on quality of life and survival time. Second, analysis of

the SEER-Medicare breast cancer data is presented to illustrate the proposed

methodology on recurrent marker process, with a special focus on competing

risks model. The medical costs for sujbects with di↵erent causes of death are

carefully studied to understand the cost accumulation patterns.

Finally, discussion and directions for future research are provided in Chapter

6.
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Chapter 2

Literature Review

2.1 Statistical Methods for Longitudinal marker
and Time-to-Event Data

Because the longitudinal measurements and time to the event are often corre-

lated in nature, the occurrence of the terminal event can induce informative

drop-out to the collection of longitudinal markers. Thus a conventional longitu-

dinal data analysis which fails to account for the correlated terminal event can

result in biased estimation. In the literature, many authors have proposed to

employ a joint model of the longitudinal marker process and the terminal event

time process to make valid inference. For example, Wu and Carroll (1988),

Tsiatis et al. (1995) and Hogan and Laird (1997) linked the two outcome pro-

cesses via subject-specific random e↵ects, while Henderson et al. (2000), Wang

and Taylor (2001) and Xu and Zeger (2001) considered using a time-varying

latent process to link the two processes. Although the joint modeling approach

is appropriate for describing treatment e↵ects on the longitudinal marker and

the time to the terminal event separately, it may be inadequate for decision-

making. If a treatment has favorable e↵ects on both endpoints, the decision is
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straightforward; however, if one treatment shows an advantage on survivorship

but a disadvantage on longitudinal marker, then the decision is more di�cult

to make. In the latter scenario, a summary measure that integrates information

from event time and longitudinal marker is desired, and decision can be made

by comparing the summary measure across di↵erent treatments.

Quality-adjusted survival analysis (Gelber et al., 1989; Glasziou et al., 1990)

is a useful tool that incorporates survival time and quality of life into a summary

measure. By weighting the durations of di↵erent health states by their respec-

tive utility values, a single endpoint is constructed to summarize the duration

of survival and the quality of life. Nonparametric estimation of the expected

quality-adjusted survival time has been studied by many authors, including

Huang and Louis (1999), Shen et al. (1999), Zhao and Tsiatis (1999) and Mur-

ray and Cole (2000). When the transitions between health states are unclear or

if they do not adequately reflect variations in quality of life, Hwang et al. (1996)

and Glasziou et al. (1998) considered using quality of life measures over time as

the utility weight, instead of assigning a fixed weight to a specific health state.

In Hwang et al. (1996), in addition to a cohort study from which the survival

function of the time to the terminal event is readily estimable, another cross-

sectional survey needs to be conducted in order to estimate the quality-of-life

weight. The validity of the estimator then relies on the assumption that the

subjects in the cross-sectional survey must be a random sample from the origi-

nal cohort study population. To ensure an accurate decision-making process, it

is desirable to develop standardized and validated methodologies for studying

quality-adjusted survival.
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2.2 Statistical Methods for Cost/Utility Data

In the absence of competing risks, numerous nonparametric methods have been

developed for estimating the total utility or cost at a pre-specifed time hori-

zon. Huang and Louis (1998) studied nonparametric estimation of the joint

distribution of a survival time and a mark variable or vector, where an impor-

tant example of mark variable is the lifetime utility or cost. Lin et al. (1997),

Bang and Tsiatis (2000), Strawderman (2000), Zhao and Tian (2001) proposed

nonparametric estimators of the mean of the mark variable. Moreover, Huang

(2002) and Sun et al. (2009) developed semiparametric models for inference on

mark variable and survival outcome. In the literature, estimation of recurrent

marker processes under competing risks models has never been considered. In

the presence of competing risks, because the failure type is typically unknown

for censored subjects, existing methods in the aforementioned papers are not

directly extendable to estimate the mean utility or cost attributed to a specific

failure type. In this dissertation, we analyze the recurrent marker data over

time, with a special focus on competing risks model. The proposed methods

are also relevant to the quality-of-life research. Specifically, when the marker

is a quality-of-life measurement, the methodology can be extended to quality-

adjusted survival analysis (Glasziou et al., 1990) when the terminal event occurs

with competing risks.
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Chapter 3

Benefit-risk Assessment Using
Marker Process in the Presence
of a Terminal Event

3.1 Cumulative Weighted Marker Process and
Benefit-Risk Assessment

Let {Y (t), t � 0} be a longitudinal marker process, where Y (t) is a nonnegative

marker measurement at time t. Denote the time to the terminal event of interest

byD, whereD is possibly correlated with marker process Y (·). Here we consider

benefit-risk assessment based on the time to the terminal event and the longi-

tudinal marker process before the terminal event, that is, {Y (t), D; 0  t  D},

as the value of Y (·) after D is either not defined or not of interest. For ease

of discussion, we assume that a larger marker value indicates a more favorable

result throughout this paper. Define the cumulative weighted marker process

M(t) =

Z t

0

w(u)Y (u)I(D � u)du,

where w(u) is a pre-specified weight function and Y (u)I(D > u) is a marker

process that takes the value 0 after the terminal event. In the special case
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where w(·) = 1, M(t) is the area under the marker trajectory before the time

point t or the terminal event, whichever occurs first, as shown in Figure 3.1.

Note that M(t) can be viewed as an endpoint that integrates information from

both the longitudinal marker process and the survival time. An ideal treatment

or intervention should prolong survival while maintaining higher marker values

over time, thus leading to a large value of M(t) at any time point.

M
ar

ke
r

Time
terminal event

M(t)

t

M
ar

ke
r

Time
terminal event

M(t)

t

Figure 3.1: M(t) (area of shaded region) when terminal event occurs before t
(left panel) and terminal event occurs after t (right panel), in the special case
where w(·) = 1.

Taking expectation of M(t), we define the cumulative mean function

µ(t) = E{M(t)} =

Z t

0

w(u)E{Y (u)I(D � u)}du.

This gives the area under curve for the weighted mean function w(u)E{Y (u)

I(D � u)}. In the special case where w(·) = 1 and Y (·) = 1, µ(t) reduces to the

restricted mean survival time up to t (Irwin, 1949); moreover, in the absence of

the terminal event, µ(t) =
R t

0 E{Y (u)}du is the area under the expected marker

trajectory up to t (Sun and Wu, 2003). The weight function w(·) can be set to

reflect the clinical importance of a marker at di↵erent time points. For example,
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if achieving a high marker value at earlier time points is more important than

that at later time points, then w(·) can be set as a nonincreasing function of

time. We propose to use µ(⌧), the cumulative mean function at a pre-specified

time point ⌧ , as a benefit-risk summary measure, where a treatment with higher

value of µ(⌧) is preferred. In what follows, we consider two scenarios to illustrate

the use of the proposed summary measure.

Example 3.1.1 (Quality of life and survival). With advances in treatment and

supportive care, treatment decision-making for patients with advanced cancer

are increasingly complex. Because cure is elusive for thse patients, it has been

recognized that prolonging survival is not the only goal of treatment and that

maintaining quality of life is also an important outcome, as patients may be

unwilling to accept worse quality of life to achieve longer survival. To integrate

quality of life and survival into clinical decision analysis, we let D be the time

to death and Y (t) be the quality of life measurement at t. In the special case

where w(·) = 1, µ(⌧) is the mean quality-adjusted survival time restricted to

time ⌧ . Comparison based on µ(⌧) can assist investigators to evaluate trade-o↵s

between survival and quality of life.

Example 3.1.2 (Multiple events and survival). In many longitudinal studies,

the occurrence of multiple events are commonly encountered and serve as im-

portant endpoints. For the Beta-Blocker Evaluation of Survival Trial (The Beta

Blocker Evaluation of Survival Trial Investigators, 2001), an advanced chronic

heart failure clinical trial, in addition to overall survival, which is the primary

endpoint of the study, clinical outcomes such as hospitalization, myocardial in-

farction, and heart transplantation are also of interest. We denote by T1, T2
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and T3, the time of the three secondary endpoints, and by D the time to death.

To incorporate information from the multiple event process, one can define

Y (t) =
P3

i=1 I(Ti � t) + 1. Then the stochastic process Y (·), which decreases

by 1 when any one of the three non-fatal events occurs, can be viewed as a score

that reflects patients’ disease burden and health condition over time. By setting

w(·) = 1, the summary measure µ(⌧) = E{
P3

i=1 min(Ti, D, ⌧) + min(D, ⌧)} is

the expected sum of four types of event-free survival times up to ⌧ (Claggett et

al., 2014 - manuscript in preparation).

Note that in the first scenario the longitudinal maker process Y (·) is usually

measured at intermittent time points, while in the second scenario Y (·) is com-

pletely observed throughout the follow-up period. We then develop di↵erent

estimating procedures corresponding to the two types of observed data.

3.2 Nonparametric Estimation of µ(t)WhenMarker
is Intermittently Observed

In this section, we consider nonparametric estimation of the cumulative mean

function µ(t) (0  t  ⌧) in the case where the longitudinal marker process Y (·)

is measured intermittently. In practice, the survival time D is subject to right

censoring due to study end or premature dropout. We denote the censoring time

by C and assume that C is independent with {Y (·), D}. Define X = min(D,C)

and � = I(D  C). Let N⇤(·) be the counting process for the potential

data collecting times of the marker Y (·), where the rate function of N⇤(·) is

�⇤(t), that is, E{dN⇤(t)} = �⇤(t)dt, t � 0. Then the counting process N(t) =

I(X � t)N⇤(t) gives the number of observations of the marker before time t,
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that is, Y (·) is observed only at the time points where N(·) jumps. We further

assume that N⇤(·) is independent with {D,C, Y (·)}, then the rate function of

the observation time process N(t) is �(t) = SX(t)�⇤(t) with SX(t) = Pr(X � t).

In other words, �(t) gives the instantaneous “risk” of the marker being measured

at time t. The observations {Xi,�i, Yi(t)dNi(t), 0  t  ⌧, i = 1, . . . , n} are

assumed to be independent replicates of {X,�, Y (t)dN(t), 0  t  ⌧}.

Two major challenges lie in the estimation of µ(t) = E{M(t)}. First, be-

cause Y (·) is observed at discrete time points during the course of follow-up,

the cumulative weighted marker process M(t) is not evaluable. Second, even in

the ideal case that Y (·) is completely observed up to X, the induced informa-

tive censoring hampers the development of statistical methods. Although it is

usually reasonable to assume that the terminal event time D and the censoring

time C are independent, M(D) and M(C) are usually positive correlated. For

example, a healthier subject may maintain a higher marker value over time,

hence having larger M(C) as well as M(D). The naive method of treating

{Mi(Xi),�i : i = 1, . . . , n} as right censored data and estimating the distribu-

tion of M(D) using the Kaplan-Meier estimator can result in substantial bias.

In what follows, we propose two consistent estimators for µ(t) and study their

large-sample properties.

3.2.1 A kernel smoothing approach

To construct a nonparametric estimator for µ(t) =
R t

0 w(u)E{Y (u)I(D � u)}du,

we first note that the function µ(t) can be decomposed as

µ(t) =

Z t

0

w(u)SD(u)E{Y (u) | D � u}du, (3.2.1)
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where SD(u) = Pr(D � u) is the survival function of D and r(u) = E{Y (u) |

D � u} is the expected marker value of survivors at time u. Under independent

censoring, subjects in the risk set at time u are a representative sample of event-

free individuals at time u in the target population. As a result, it can be shown

that E{Y (u) | D � u} = E{Y (u) | X � u}. We propose to estimate r(u) with

r̂h(u) =

Pn
i=1

R ⌧

0 Kh(u� s)Yi(s)I(Xi � s)dN⇤
i (s)

Pn
i=1

R ⌧

0 Kh(u� s)I(Xi � s)dN⇤
i (s)

, u 2 [h, ⌧ � h], (3.2.2)

where Kh(x) = h�1K(x/h) is a kernel function with bandwidth h, and K(·)

satisfies
R 1

�1 K(x)dx = 1 and
R 1

�1 xK(x)dx = 0. It is easy to see that r̂h is

a locally weighted average of nearby marker values and is a natural extension

of the Nadaraya-Watson estimator. If the uniform kernel is employed, that

is, K(x) = I(|x| < 1)/2, the denominator of r̂h(u) is the total number of

observations in the time interval [u� h, u+ h], while the numerator is the sum

of all the observed marker value in [u� h, u+ h]. To avoid biased estimates in

the boundary region [0, h) and (⌧ � h, ⌧ ], we set r̂h(u) = r̂h(h) for u 2 [0, h),

and r̂h(u) = r̂h(⌧ � h) for u 2 (⌧ � h, ⌧ ]. It is shown in Appendix 3.6.3 that

r̂h(·) is uniformly consistent on [0, ⌧ ].

Replacing E{Y (u) | D � u} with r̂h(u) and SD(u) with the Kaplan-Meier

estimator ŜD(u) in (3.2.1), we propose to estimate µ(t) by

µ̂A(t) =

Z t

0

w(u)ŜD(u)r̂h(u)du. (3.2.3)

Theorem 3.2.1 summarizes the large-sample properties of µ̂A(t). DefineMD
i (t) =

ND
i (t)�

R t

0 I(Xi � u)d⇤D(u), where ⇤D(t) is the cumulative hazard function of

D and ND
i (t) = I(Di  t,�i = 1).
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Theorem 3.2.1. Under Assumptions (A1)-(A5) in Appendix 3.6.1, the stochas-

tic process n1/2{µ̂A(t)� µ(t)} (0  t  ⌧) has an asymptotically i.i.d. represen-

tation n1/2{µ̂A(t)� µ(t)} = n�1/2
Pn

i=1 i(t) + op(1), where

 i(t) =

Z t

0

µ(u)dMD
i (u)

SX(u)
� µ(t)

Z t

0

dMD
i (u)

SX(u)
+

Z t

0

w(u)SD(u)Yi(u)I(Xi � u)dN⇤
i (u)

�(u)
�

Z t

0

w(u)SD(u)E{Y (u)I(X � u)}I(Xi � u)dN⇤
i (u)

�(u)SX(u)
.

Moreover, as n ! 1,
p
n{µ̂A(t)� µ(t)} (0  t  ⌧) converges weakly to a zero

mean Gaussian process with the variance-covariance function E{ 1(s) 1(t)}.

It is worthwhile to point out that the main technical challenge in proving
p
n-

consistency of µ̂A(t) is that the Kaplan-Meier estimator ŜD(·) is
p
n-consistent

while the kernel-type estimator r̂h(·) is
p
nh-consistent, thus commonly used

techniques such as functional delta method can not be directly applied. It

is shown in Appendix 3.6.1 that, by under smoothing r(u) using bandwidth

h = O(n�⌫) (1/4 < ⌫ < 1/2), µ̂A(t) can achieve
p
n-consistency.

Remark 3.2.1. Although, as a common practice, marker values of survivors

are summarized and analyzed for treatment comparison, caution should be paid

when interpreting the function r(u) = E{Y (u) | D � u}, because the survivor

population changes over time and may not be representative of the originally

randomized population defined at time zero. To see this, suppose D and Y (·)

are correlated through a frailty Z, where a larger value of Z inflates the risk of

the terminal event and decreases the value of marker process simultaneously. If

a treatment decreases the risk of the terminal event but does not a↵ect Y (·), it

can be shown that E(Z | D � u) of the treatment group is larger than or equal
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to that of the control group at any time u. As a result, the survivors, based

on which inference for r(u) are drawn, are not comparable between treatment

and controls as the terminal event occur along the time. In this case, r(u) of

treatment group may be lower than or equal to that of the control group. Hence

comparisons based on r(u) may yield incorrect conclusion about the treatment

e↵ects on the longitudinal marker process.

3.2.2 A computationally more e�cient approach

In practice, numerical integration is employed to approximate the integral in

(4.2.2). Thus the estimated curve r̂h(u) needs to be evaluated at a large number

of grid points. To reduce the computational burden, we consider an alternative

estimator that does not require numerical integration in evaluating the estima-

tor. Specifically, the second estimator is motivated by the equality

E{Y (u)I(X � t)dN⇤(u)} = E{Y (u) | D � u}�(u)du,

which holds under the assumption that N⇤(·) is independent of {Y (·), D, C}

and C is independent of {Y (·), D}. Provided �(u) > 0 for u 2 [0, t], we have

µ(t) =

Z t

0

w(u)SD(u)�(u)
�1E{Y (u)I(X � u)dN⇤(u)}.

Note that Y (u)I(X � u)dN⇤(u) is a stochastic process that takes nonzero values

only at the time when dN⇤(u) > 0, so the stochastic process is completely

observed and its mean function E{Y (u)I(X � u)dN⇤(u)} can be consistently

estimated by its empirical average n�1
Pn

i=1 Yi(u)I(Xi � t)dN⇤
i (u). Then a

nonparametric estimator for µ(t) is given by

µ̂B(t) =
1

n

n
X

i=1

Z t

0

w(u)ŜD(u)Yi(u)I(Xi � u)dN⇤
i (u)

�̂h(u)

17



where �̂h(u) = n�1
Pn

i=1

R ⌧

0 Kh(u� s)dNi(s) is a nonparametric smoothed esti-

mator estimator for the rate function �(u). Note that �̂h(·) can be viewed as

an extension of kernel density estimator proposed by Wang and Chiang (2002).

As before, we set �̂h(u) = �̂h(h) for u 2 (0, h] and �̂h(u) = �̂h(⌧ � h) for

u 2 [⌧ � h, ⌧ ] to avoid boundary e↵ect of the kernel estimator. Theorem 3.2.2

summarizes the large sample properties of µ̂B(t), with proofs given in Appendix

3.6.1.

Theorem 3.2.2. Under the assumptions in Theorem 3.2.1, the stochastic pro-

cess n1/2{µ̂B(t) � µ(t)} (0  t  ⌧) has an asymptotically i.i.d. representa-

tion n1/2{µ̂B(t) � µ(t)} = n�1/2
Pn

i=1 i(t) + op(1). Moreover, as n ! 1,

p
n{µ̂B(t) � µ(t)} (0  t  ⌧) converges weakly to a zero mean Gaussian pro-

cess with the variance-covariance function E{ 1(s) 1(t)}.

Interestingly, the two nonparametric estimators µ̂A(t) and µ̂B(t) are asymp-

totically equivalent. Note that the latter evaluates the smoothed function �̂h(·)

only at the time when marker values are observed, while the former evaluates

the smoothed function r̂h(·) on a much finer grid for numerical integration.

Hence µ̂B(t) is computationally more convenient than µ̂A(t). The simulation

study in Section 5 shows that the two estimators have similar performance with

finite sample size, we then recommend the use of µ̂B(t) to estimate µ(t). For

the standard error estimation, the variance-covariance function E{ 1(s) 1(t)}

can be consistently estimated by n�1
Pn

i=1
b i(s)b i(t) under the assumptions in
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Theorem 3.2.1, and

b i(t) =

Z t

0

µ̂B(u)dM̂D
i (u)

ŜX(u)
� µ̂B(t)

Z t

0

dM̂D
i (u)

ŜX(u)
+

Z t

0

w(u)ŜD(u)Yi(u)I(Xi � u)dN⇤
i (u)

�̂h(u)
�

Z t

0

w(u)ŜD(u)r̂h(u)I(Xi � u)dN⇤
i (u)

�̂h(u)
,

where ⇤̂D(t) = n�1
Pn

i=1

R t

0 ŜX(u)�1dND
i (u) is the Nelson-Aalen estimator of

⇤D(t), and M̂D
i (t) = ND

i (t)�
R t

0 I(Xi � u)d⇤̂D(u).

3.3 Nonparametric Estimation of µ(t)WhenMarker
is Continuously Observed

In this section, we consider estimation of µ(t) when the longitudinal marker

process Y (·) is completely observed before the terminal event or censoring. The

observed data {Xi,�i, I(Xi � t)Yi(t) : 0  t  ⌧, i = 1, . . . , n} are assumed to

independent replicates of {X,�, I(X � t)Y (t) : 0  t  ⌧}. As in Section 3,

the key step is to estimate the function r(u) = E{Y (u) | D � u}. Under the

independent censoring assumption, for u 2 [0, ⌧ ], we propose to estimate r(u)

by the moment type estimator

r̃(u) =

Pn
i=1 Yi(u)I(Xi � u)
Pn

i=1 I(Xi � u)
.

Thus a straightforward estimator of µ(t) is

µ̃(t) =

Z t

0

w(u)ŜD(u)r̂(u)du.

Note that the moment-type estimator r̃(u) is a
p
n-consistent estimator for

r(u), while the kernel-type estimator r̂h(u) in (3.2.2) has a
p
nh convergence

rate. Interestingly, µ̃(t) can be shown to be more e�cient than µ̂A(t) and µ̂B(t).
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Theorem 3.3.1 states the asymptotic properties of µ̃(t), with proof given in

Appendix 3.6.2.

Theorem 3.3.1. Under Assumptions (A1) and (A2) in Appendix 3.6.1, the

stochastic process n1/2{µ̃(t) � µ(t)} (0  t  ⌧) has an asymptotically i.i.d.

representation n1/2{µ̃(t)� µ(t)} = n�1/2
Pn

i=1 Ui(t) + op(1), where

Ui(t) =

Z t

0

µ(u)dMD
i (u)

SX(u)
� µ(t)

Z t

0

dMD
i (u)

SX(u)
+

Z t

0

w(u)SD(u)Yi(u)I(Xi � u)

SX(u)
du�

Z t

0

w(u)SD(u)E{Y (u)I(X � u)}I(Xi � u)

SX(u)2
du.

Moreover, as n ! 1,
p
n{µ̃(t) � µ(t)} (0  t  ⌧) converges weakly to a zero

mean Gaussian process with the variance-covariance function E{U1(s)U1(t)}.

Moreover, E{U1(t)}2  E{ 1(t)}2 for all t 2 [0, ⌧ ].

An important application of the proposed methods is benefit-risk assessment

that combines information from a multiple event process and a terminal event

(see Example 3.1.2 in Section 3.1). Let O(·) denote the multiple event counting

process that increase by one when a non-terminal event occurs. For ease of

discussion, assume that a smaller value of O(·) at any time point is preferred.

To perform benefit-risk assessment based on {X,�,I(X � t)O(t) : 0  t  ⌧},

we set Y (t) to be a function of O(t), say, Y (t) = f{O(t)}, where f is a pre-

specified non-increasing function with f(·) � 0. In this case, Y (t) can be viewed

as a score that characterizes patient’s disease burden and health condition, and

a larger value of Y (t) is desired. Without loss of generality, we set w(·) = 1

since the weight function can be absorbed into f .

In practice, the function f can be determined by the investigators. We

consider two choices of f for illustration. As suggested by Claggett et al.
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(manuscript in preparation), a simple approach is to define a truncated reverse

counting process with f(x) = (K � x)I(K � x) + 1, where K is a pre-specified

integer. In this way, only the firstK non-terminal events are of interest and Y (·)

stays 1 after the Kth event until the terminal event occurs. Another approach

is to define f(x) = ax, where 0 < a < 1. Then each subject starts with a score

of 1, and the occurrence of a non-terminal event at time t discounts a patient’s

score Y (t) by a factor of a. In contrast with the truncated reverse counting

process approach, all the non-terminal events are of interest. We recommend

the use of second approach when the number of event of interest that can be

potentiallly observed is not fixed.

3.4 Two-Sample Test

In this section, we consider nonparametric tests for comparing the benefit-risk

summary measure µ(⌧). Suppose there are two groups, say, group 1 and group

2. The notation used in this section is defined in a way similar to that in

Section 3.2, with subscript j indicating the jth group. Assume that both

groups can be potentially observed up to time ⌧ . Let µj(⌧) be the mean func-

tion of the cumulative weighted marker process at time ⌧ for group j, that is,

µj(⌧) =
R ⌧

0 w(u)E{Yj1(u)I(Dj1 � u)}du, j = 1, 2. Consider the null hypothe-

sis H0 : µ1(⌧) = µ2(⌧) for two-sample comparison. Let nj be the number of

subjects in the jth group, n = n1 + n2, and let ⇡j = limn!1 nj/n, j = 1, 2.

In this section, w(·) is either known for can be consistently estimated from

data by ŵ(t). A possible choice of ŵ(t) is the Gehan-type weight function

ŵ(t) = {nŜX1(t)ŜX2(t)}/{n1ŜX1(t) + n2ŜX2(t)}, where ŜXj(t) is the empirical
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survival function of Xj1, j = 1, 2.

We consider testing H0 in two scenarios: (i) When the marker process Y (·)

is intermittently observed, corresponding to the two estimators in Section 3.2,

two simple test statistics can be constructed as

WA = µ̂A1(⌧)� µ̂A2(⌧) and WB = µ̂B1(⌧)� µ̂B2(⌧),

where µ̃j(⌧) =
R ⌧

0 ŵ(u)ŜDj(u)r̃jh(u)du and µ̂Bj(⌧) =
R ⌧

0 ŵ(u)�̂jh(u)�1ŜDj(u)Ê{Yj1(u)dNj1(u)}

for j = 1, 2. (ii) When Y (·) is continuously observed, a test statistics can be

constructed as

W̃ = µ̃1(⌧)� µ̃2(⌧),

where µ̃j(⌧) =
R ⌧

0 ŵ(u)ŜDj(u)r̃j(u)du. Let  ji and b ji be straightforward mod-

ifications of  i and b i given in Theorem 3.2.1, and Uji and bUji be straightfor-

ward modifications of Ui and bUi given in Theorem 4.3.3. Theorem 3.4.1 states

the asymptotic distribution of the test statistics WA and WB under the null

hypothesis H0.

Theorem 3.4.1. Let ⇡̂j = nj/n be a consistent estimate of ⇡j, j = 1, 2.

Case with intermittently observed Y (·): With the regularity conditions

in Theorem 3.2.1 being satisfied for each group, under H0 : µ1(⌧) = µ2(⌧),

(n1n2/n)1/2WA and (n1n2/n)1/2WB converge in distribution to a zero-mean

normal random variable with variance ⇡2E { 1i(⌧)}2 + ⇡1E { 2i(⌧)}2. The

asymptotic variance can be consistently estimated by ⇡̂2 ·
Pn1

i=1
b 1i(⌧)2/n1+ ⇡̂1 ·

Pn2

i=1
b 2i(⌧)2/n2.

Case with continuously observed Y (·): With the regularity conditions

in Theorem 4.3.3 being satisfied for each group, under H0 : µ1(⌧) = µ2(⌧),
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(n1n2/n)1/2W̃ converges in distribution to a zero-mean normal random variable

with variance ⇡2E {U1i(⌧)}2 + ⇡1E {U2i(⌧)}2. The asymptotic variance can be

consistently estimated by ⇡̂2 ·
Pn1

i=1
bU1i(⌧)2/n1 + ⇡̂1 ·

Pn2

i=1
bU2i(⌧)2/n2.

Note that the test statistics WA, WB and W̃ estimate µ1(⌧)� µ2(⌧), which

can be interpreted as the weighted average di↵erence in ⌘j(t) = E{Yj1(t)I(Dj1 �

t)} over the interval [0, ⌧ ], j = 1, 2. Consider the null hypothesis H 0
0 : ⌘1(t) =

⌘2(t) for all t 2 [0, ⌧ ] and the alternative that ⌘1(t) � ⌘2(t) for all t 2 [0, ⌧ ]

and ⌘1(·) 6= ⌘2(·). Then a natural statistics on which to base a test procedure

would be WA or W̃ . Testing H 0
0 based on WA or W̃ is a generalization of

the distance test in Pepe and Fleming (1989). When setting Yji(·) = 1 for

i = 1, . . . , nj and j = 1, 2, WA and W̃ reduce to the weighted Kaplan-Meier

statistic WKM =
R ⌧

0 ŵ(t){ŜD1(t) � ŜD2(t)}dt for testing the null hypothesis

H 00
0 : SD1(t) = SD2(t).

3.5 Simulation Studies

A series of simulation experiments are carried out to examine the finite-sample

properties of the proposed methods. In Section 3.5.1, when Y (·) is intermit-

tently observed, we examine the performance of µ̂A(t), µ̂B(t) for one-sample

estimation and WA,WB for two-sample test. In Section 3.5.2, when Y (·) is a

function of a recurrent event process and is continuously observed, we consider

the performance of test statistic W̃ with di↵erent choice of f .

3.5.1 Simulation when Y (·) is intermittently observed

In the following simulations, the association between D and Y (·) is induced

by a shared subject-specific random e↵ect Z, where Z is generated from a
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normal distribution with mean 0 and variance �2
1. Specifically, given Z, the

terminal event time D is generated from exponential distribution with rate

parameter � = a0 + (Z + k�1)2. Moreover, the longitudinal marker process is

generated from Y (t) = g(t) +Z + ✏(t); where the error term ✏(t) is a mean zero

Gaussian process with independent increments and a time-invariant variance

�2
2. Straightforward algebra gives E{Y (t) | D � t} = g(t) � 2k�3

1t/(1 + 2�2
1t)

and P (D � t) = (1 + 2�2
1t)

�1/2 exp (�a0t� k2�2
1t/(1 + 2�2

1t)). Note that when

k = 0, surviors’ expected marker value E{Y (t) | D � t} is g(t), which is

the same as E{Y (t)}; moreover, the di↵erence between E{Y (t) | D � t} and

E{Y (t)} becomes larger as |k| increases. The model implies that subjects with

Z close to �k�1 have smaller rate parameter for the terminal event, and tend

to have longer survival time.

In our simulations for one-sample estimation, we set k = 1, a0 = 0.1, �1 =

0.5, �2 = 0.1, w(t) = 1, g(t) = t + 1. The censoring time is generated from

the uniform distribution on [0, 5]. The observation times are generated from

I(X � t)dN⇤(t) and N⇤(t) is a Poisson process with constant rate �⇤(t) = 5.

We examine the performance of µ̂A(t) and µ̂B(t) when using the Epanechnikov

kernel with bandwidth h = n�1/3, n�2/5, as the regularity condition (A5) given

in the appendix is h = O(n�⌫), 1/4 < ⌫ < 1/2. We also consider leave-one-out

cross validation for choosing bandwidth as an extension of that for Nadaraya-

Watson estimator. The averaged square error (Härdle et al., 2004) is a com-

monly used criteria that measures how close the estimate r̂h is to the true curve

r, which can be defined as n�1
Pn

i=1

R t

0{r(u) � r̂h(u)}2dNi(u) in our case. We

choose h that minimizing CV (h) = n�1
Pn

i=1

R t

0{Yi(u)�r̂h,�i(u)}2dNi(u), where

r̂h,�i(u) is the estimate for r(u) leaving out the ith observation, since minimizing
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CV (h) is on average equivalent to minimizing n�1
Pn

i=1

R t

0{r(u)�r̂h(u)}2dNi(u).

Table 4.1 presents the summary statistics for µ̂A(t) and µ̂B(t) based on 2000

replications. The performances of the estimators are not sensitive to the choice

of bandwidth. As expected, the variances of the estimators increase as t in-

creases and decrease as sample size n increases. Our proposed procedure per-

forms well in finite-sample studies.

For two sample testing, we first consider scenarios that Y is observed at

intermittent time points. Suppose group 1 is the treatment group and group 2

is the control group, and the data of group 1 and 2 are generated from the one-

sample model above with di↵erent a0j,kj and gj(t) for jth group, j = 1, 2. We

consider the following five scenarios: (I) a01 = a02 = 0.1, k1 = k2 = 1, g1(t) =

g2(t) = g(t). (II) a01 = a02 = 0.1, k1 = 0, k2 = 1, gj(t) = 2kj�3
1t(1 + 2�2

1t)
�1 +

p

1 + 2�2
1t exp{k2

j�
2
1t/(1 + 2�2

1t)
�1}, j = 1, 2. (III) a01 = 0.1, a02 = 0.2, k1 =

k2 = 1, g1(t) = g2(t) = g(t). (IV) a01 = a02 = 0.1, k1 = k2 = 1, g1(t) =

g2(t) + 0.2, g2(t) = g(t). (V) a01 = 0.1, a02 = 0.2, k1 = k2 = 1, g1(t) = g2(t) +

0.2, gB(t) = g(t). The empirical powers of the proposed tests based on WA and

WB are summarized in Table 3.2, with nominal Type I error rate 0.05. We

also list the empirical power of the test based on the integrated di↵erence in

weighted Kaplan-Meier estimators as a reference, where the test statistics is

WKM =
R ⌧

0 w(t){ŜD1(t)� ŜD2(t)}dt. We set w(·) = 1 in our simulations.

For Scenario I, there is no di↵erence in the longitudinal marker process or

survival between group 1 and 2, thus null hypothesis H0 holds and the pro-

posed tests maintain the nominal Type I error rate. For Scenario II, group 1

performs better in terms of survival, while the summary measure of the two

groups are equal. Our proposed tests o↵er a criterion for decision-making and
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Table 3.1: Simulation summary statistics for µ̂A(t) and µ̂B(t)

µ̂A(t) µ̂B(t)

µ(t) Bias SE CP Bias SE CP SEE

n = 100, h = n�1/3

t = 1 1.076 0.016 0.062 0.932 0.015 0.061 0.938 0.061
t = 2 2.274 0.011 0.155 0.946 0.014 0.155 0.946 0.157
t = 3 3.540 0.001 0.302 0.948 0.014 0.301 0.945 0.301

n = 100, h = n�2/5

t = 1 1.076 0.008 0.062 0.943 0.009 0.061 0.945 0.061
t = 2 2.274 0.002 0.155 0.948 0.009 0.155 0.947 0.156
t = 3 3.540 0.011 0.302 0.944 0.009 0.301 0.944 0.300

n = 100, data-adaptive bandwidth

t = 1 1.076 0.008 0.061 0.938 0.007 0.060 0.948 0.060
t = 2 2.274 0.003 0.160 0.936 0.008 0.161 0.936 0.156
t = 3 3.540 0.004 0.301 0.946 0.010 0.301 0.944 0.301

n = 200, h = n�1/3

t = 1 1.076 0.010 0.044 0.934 0.010 0.043 0.936 0.043
t = 2 2.274 0.008 0.111 0.945 0.010 0.112 0.944 0.111
t = 3 3.540 0.001 0.220 0.946 0.007 0.220 0.949 0.215

n = 200, h = n�2/5

t = 1 1.076 0.005 0.044 0.938 0.006 0.043 0.946 0.043
t = 2 2.274 0.002 0.112 0.942 0.006 0.112 0.944 0.111
t = 3 3.540 0.007 0.220 0.945 0.004 0.220 0.948 0.214

n = 200, data-adaptive bandwidth

t = 1 1.076 0.003 0.045 0.938 0.003 0.044 0.942 0.043
t = 2 2.274 0.001 0.116 0.942 0.003 0.116 0.941 0.111
t = 3 3.540 0.006 0.222 0.939 0.004 0.222 0.940 0.215

Note: Bias is the empirical bias; SE is the empirical standard error; SEE is the empirical

mean of the standard error estimates, and the two estimators have the same SEE; CP is the

empirical coverage probability of the 95% confidence interval.
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still maintain the nominal Type I error rate. For Scenario III, IV and V, there

is no conflict of treatment e↵ects on longitudinal marker process and time to

terminal event, and group 1 performs better than group 2. Tests based on WA

or WB can be viewed as testing the existence of treatment e↵ect using synthe-

sized information from both longitudinal marker process and survival outcome,

while test based on WKM can be viewed as testing the existence of treatment

e↵ect using only survival outcome. For Scenario III, there is only a di↵erence

in survival outcome between two groups, the proposed tests and the test based

on comparing integrated di↵erence in survival function have similar powers in

detecting treatment e↵ect. For scenario IV and V, taking into account the longi-

tudinal marker process helps to increase the power of detecting treatment e↵ect

and make correct decisions.

Table 3.2: Empirical power of two-sample test when Y (·) is intermittently ob-
served

n1 = n2 = 100 n1 = n2 = 200

Scenario WA WB WKM WA WB WKM

I 0.04 0.04 0.05 0.05 0.05 0.05
II 0.05 0.05 0.45 0.05 0.04 0.75
III 0.18 0.19 0.18 0.32 0.32 0.30
IV 0.22 0.23 0.05 0.35 0.34 0.05
V 0.53 0.55 0.17 0.83 0.84 0.28

3.5.2 Simulation when Y (·) is continuously observed

We also consider the scenario where we have a recurrent event process with a

terminal event. Suppose Z ⇠ Gamma(↵,↵) is the subject-specific random ef-

fect. For the jth group, the recurrent event process is generated from a Poisson
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process with rate parameter Zcj, and the terminal event time follows exponen-

tial distribution with rate parameter Zdj. Note that larger ↵ indicates that

the two event processes are less correlated, and when ↵ = 1, the two event

processes are independent. We consider the following five scenarios: (VI) ↵ = 4,

d1 = d2 = 0.2, c1 = c2 = 2. (VII) ↵ = 1, d1 = d2 = 0.2, c1 = c2 = 2. (VIII)

↵ = 4, d1 = 0.2, d2 = 0.3, c1 = c2 = 2. (IX) ↵ = 4, d1 = d2 = 0.2, c1 = 2, c2 = 3.

(X) ↵ = 4, d1 = 0.2, d2 = 0.3, c1 = 2, c2 = 3. Table 3.3 presents the empirical

power of the proposed tests in Section 3.5 using di↵erent pre-specified functions

f : (a) f1(x) = (3�x)I(x  3)+1, (b) f2(x) = 0.8x, (c) f3(x) = I(x  1). Note

that and f3 corresponds to the composite endpoint approach (Meinert, 2012).

The empirical powers are summarized in Table 3.3. For Scenario VI and VII,

group 1 and group 2 have equal summary measure, and the tests maintain the

nominal Type I error rate 0.05. For Scenario VIII, IX and X, group 1 performs

better than group 2, and we are interested in the power of the three tests in

detecting treatment e↵ect. Tests using f1 and f2 have similar powers. However,

the test using f3 does not perform well in Scenario IX, since the composite event

is very likely to be the first recurrent event and the recurrent event processes of

group 1 and 2 follow the same distribution. Moreover, the composite endpoint

approach is not as powerful as the other two test in Scenario X.
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Table 3.3: Empirical power of two-sample test where Y (·) is a function of re-
current event process

n1 = n2 = 100 n1 = n2 = 200

Scenario f1 f2 f3 f1 f2 f3

VI 0.04 0.05 0.05 0.06 0.05 0.05
VII 0.05 0.04 0.06 0.05 0.05 0.05
VIII 0.45 0.52 0.46 0.76 0.83 0.75
IX 0.14 0.16 0.05 0.27 0.30 0.05
X 0.75 0.80 0.52 0.96 0.98 0.81

3.6 Proofs

3.6.1 Proof of Theorem 3.2.1 and 3.2.2

Assumptions (A1)-(A5) are the regularity conditions in Theorem 3.2.1:

(A1) The censoring time Ci is independent of {Di, N⇤
i (·), Yi(·)} and P (Xi �

⌧) > 0.

(A2) The marker process Yi(t) is bounded.

(A3) The counting process N⇤
i (·) is independent of {Di, Ci, Yi(·)}. The obser-

vation time process I(Xi � t)N⇤
i (t) is bounded and the second derivative

of its rate function �(t) is bounded. Moreover, �(t) > 0 on [0, ⌧ ].

(A4) Define ⇠(t) such that ⇠(t)dt = E[Y (t)I(X � t)dN⇤(t)], the second deriva-

tive of ⇠(t) is bounded on [0, ⌧ ].

(A5) K(·) is a symmetric kernel function with bounded support and bounded

variation, and h = O(n�⌫), 1/4 < ⌫ < 1/2.
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We first present two technical lemmas used in the proof. Lemma 3.6.1 states

the uniform consistency of the proposed kernel-type estimators, and Lemma

3.6.2 is used when deriving the i.i.d. representation of µ̂A and µ̂B. The two

lemmas are proved later in Section 3.6.3 and 3.6.4.

Lemma 3.6.1. Under Assumptions (A1)–(A5), let

⇠̂h(t) = 1/n
n
X

i=1

Z

Kh(t� u)Yi(u)I(Xi � u)dN⇤
i (u)

for t 2 [h, ⌧ � h], ⇠̂h(t) = ⇠̂h(h) for t 2 [0, h) and ⇠̂h(t) = ⇠̂h(⌧ � h) for t 2

(⌧ � h, ⌧ ]. Then for t 2 [0, ⌧ ], ⇠̂h(t), �̂h(t) and r̂h(t) uniformly converge in

probability to ⇠(t), �(t) and r(t), respectively.

Lemma 3.6.2. Under Assumptions (A1)–(A5), for t 2 [0, ⌧ ],

p
n

Z t

0

�̂h(u)du =
1p
n

n
X

i=1

Z t

0

I(Xi � u)dN⇤
i (u) + op(1).

Similarly,

p
n

Z t

0

⇠̂h(u)du =
1p
n

n
X

i=1

Z t

0

Yi(u)I(Xi � u)dN⇤
i (u) + op(1).

We first prove the large-sample properties for µ̂A(t). For µ̂A(t),

p
n{µ̂A(t)� µ(t)} =

Z t

0

p
n{ŜD(u)� SD(u)}

⇠̂h(u)

�̂h(u)
du+

p
n

Z t

0

SD(u)

(

⇠̂h(u)

�̂h(u)
� ⇠(u)

�̂h(u)

)

du+

(3.6.1)

p
n

Z t

0

SD(u)

(

⇠(u)

�̂h(u)
� ⇠(u)

�(u)

)

du

Suppose ⇤D is the cumulative hazard function of D and

⇤̂D(t) = n�1
n
X

i=1

Z t

0

ŜX(u)
�1dND

i (u)
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is the Nelson-Aalen estimator, where ND
i (u) = I(Di  u,�i = 1). By the

uniform consistency of �̂h and ⇠̂h, the first term in Equation (3.6.1) is equal to

Z t

0

p
n{ŜD(u)� SD(u)}

⇠(u)

�(u)
du+ op(1)

= �
Z t

0

p
n{⇤̂D(u)� ⇤D(u)}dµ(u) + op(1).

The above equation holds because of the asymptotic equivalence of ŜD and

e�⇤̂D . Moreover,

p
n(⇤̂D(t)� ⇤D(t)) =

1p
n

n
X

i=1

Z t

0

SX(u)
�1dMD

i (u) + op(1),

and MD
i (t) = ND

i (t) �
R t

0 I(Xi � u)d⇤D(u). By the uniform consistency of �̂h

and Lemma 2, and following similar steps as Mammen and Nielsen (2007), the

second term in Equation (3.6.1) is equal to

Z t

0

SD(u)

�(u)

p
n{⇠̂h(u)� ⇠(u)}du+ op(1)

=
1p
n

n
X

i=1

Z t

0

SD(u)

�(u)
Yi(u)I(Xi � u)dN⇤

i (u)�
p
nµ(t) + op(1).

Similarly, the third term in Equation (3.6.1) is equal to

�
Z t

0

SD(u)⇠(u)

�(u)2
p
n{�̂h(u)� �(u)}du+ op(1).

= � 1p
n

n
X

i=1

Z t

0

SD(u)⇠(u)

�(u)2
I(Xi � u)dN⇤

i (u) +
p
nµ(t) + op(1).
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Thus
p
n{µ̂A(t)� µ(t)} = 1/

p
n
Pn

i=1 i(t) + op(1). For µ̂B(t), we have

p
n{µ̂B(t)� µ(t)} =

p
n

Z t

0

ŜD(u)

�̂h(u)
d{R̂(u)�R(u)}+

p
n

Z t

0

ŜD(u)� SD(u)

�̂h(u)
dR(u)+

(3.6.2)

p
n

Z t

0

SD(u)

(

1

�̂h(u)
� 1

�(u)

)

dR(u)

DefineR(t) =
R t

0 E[Y (u)I(X � u)dN⇤(u)] and R̂(t) =
R t

0 Ê[Y (u)I(X � u)dN⇤(u)],

where Ê[Y (u)I(X � u)dN⇤(u)] = 1/n
Pn

i=1 Yi(u)I(Xi � u)dN⇤
i (u). By the

uniform consistency of �̂h and asymptotic equivalence of ŜD and e�⇤̂D
, the first

term in Equation (3.6.2) is equal to

p
n

Z t

0

SD(u)

�(u)
d{R̂(u)�R(u)}+ op(1)

=
1p
n

n
X

i=1

Z t

0

SD(u)

�(u)
Yi(u)I(Xi � u)dN⇤

i (u)�
p
nµ(t) + op(1).

The second term is equal to �
R t

0

p
n{⇤̂D(u)�⇤D(u)}dµ(u)+op(1). And by the

uniform consistency of �̂h and Lemma 2, the second term in Equation (3.6.2) is

�
Z t

0

1

�(u)2
p
n
n

�̂h(u)� �(u)
o

dR(u) + op(1)

= � 1p
n

n
X

i=1

Z t

0

r(u)

�(u)2
I(Xi � u)dN⇤

i (u) +
p
nµ(t) + op(1).

Thus
p
n{µ̂B(t)� µ(t)} = 1/

p
n
Pn

i=1 i(t) + op(1). Since  i(t) can be written

as sums of monotone functions in t and are therefore manageable, then the weak

convergence of
p
n{µ̂B(t)�µ(t)} and

p
n{µ̂A(t)�µ(t)} holds. The consistency

of the variance estimates 1/n
Pn

i=1
b i(s)b i(t) follows from the arguments used

in the proof of Lin et al. (1998).
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3.6.2 Proof of Theorem 3.3.1 and comparison of asymp-
totic variance of µ̂A(t) and µ̃(t)

The proof of Theorem 3.3.1 follows similar steps as Theorem 3.2.1. For µ̃(t),

we have

p
n{µ̃(t)� µ(t)} =

Z t

0

p
n{ŜD(u)� SD(u)}

n�1
Pn

i=1 Yi(u)I(Xi � u)

n�1
Pn

i=1 I(Xi � u)
du+

p
n

Z t

0

SD(u)

⇢

n�1
Pn

i=1 Yi(u)I(Xi � u)

n�1
Pn

i=1 I(Xi � u)
� E{Y (u)I(X � u)}

n�1
Pn

i=1 I(Xi � u)

�

du+

p
n

Z t

0

SD(u)

⇢

E{Y (u)I(X � u)}
n�1

Pn
i=1 I(Xi � u)

� E{Y (u)I(X � u)}
SX(u)

�

du

Similar as the proof for Theorem 3.2.1, we have

p
n{µ̃(t)� µ(t)} = �

Z t

0

p
n{⇤̂D(u)� ⇤D(u)}dµ(u) +

1

n

n
X

i=1

Z t

0

SD(u)

SX(u)
Yi(u)I(Xi � u)du�

1

n

n
X

i=1

Z t

0

SD(u)E{Y (u)I(X � u)}
SX(u)2

I(Xi � u)du+ op(1)

=
1

n

n
X

i=1

Ui(t) + op(1)

Moreover, by defining

bUi(t) =

Z t

0

µ̃(u)dM̂D
i (u)

ŜX(u)
� µ̃(t)

Z t

0

dM̂D
i (u)

ŜX(u)
+

Z t

0

ŜD(u)Yi(u)I(Xi � u)

ŜX(u)
du�

Z t

0

ŜD(u)r̂(u)I(Xi � u)

ŜX(u)
du,

the covariance at (s, t) can also be consistently estimated by 1/n
Pn

i=1
bUi(s)bUi(t).

We now prove thatE{ i(t)2} � E{Ui(t)2}. Taking fi(u) = SD(u)[SX(u)Yi(u)I(Xi �

u)�E{Y (u)I(X � u)}I(Xi � u)]/SX(u)2, then i(t) = Ai(t)+
R t

0 fi(u)/�
⇤(u)dN⇤

i (u)
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and Ui(t) = Ai(t)+
R t

0 fi(u)du, whereAi(t) =
R t

0 SX(u)
�1µ(u)dMD

i (u)�µ(t)
R t

0 SX(u)
�1dMD

i (u).

Thus,

E{ i(t)
2}� E{Ui(t)

2}

= 2E



Ai(t)

⇢

Z t

0

fi(u)/�
⇤(u)dN⇤

i (u)�
Z t

0

fi(u)du

��

+ E

⇢

Z t

0

fi(u)/�
⇤(u)dN⇤

i (u)

�2

�

E

⇢

Z t

0

fi(u)du

�2

= 2EX,Y



Ai(t)EN⇤|X,Y

⇢

Z t

0

fi(u)/�
⇤(u)dN⇤

i (u)�
Z t

0

fi(u)du

��

+

EX,YEN⇤|X,Y

⇢

Z t

0

fi(u)/�
⇤(u)dN⇤

i (u)

�2

� EX,Y

⇢

Z t

0

fi(u)du

�2

= EX,YEN⇤|X,Y

⇢

Z t

0

fi(u)/�
⇤(u)dN⇤

i (u)

�2

� EX,Y

⇢

Z t

0

fi(u)du

�2

� EX,Y

⇢

EN⇤|X,Y

Z t

0

fi(u)/�
⇤(u)dN⇤

i (u)

�2

� EX,Y

⇢

Z t

0

fi(u)du

�2

� EX,Y

⇢

Z t

0

fi(u)du

�2

� EX,Y

⇢

Z t

0

fi(u)du

�2

= 0.

Therefore we prove that the asymptotic variance of µ̃(t) is smaller than that of

µ̂A(t) and µ̂B(t).
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3.6.3 Proof of Lemma 3.6.1

We prove the result for ⇠ and the proof for � is similar. For t 2 [h, ⌧ � h], we

have

⇠̂h(t) =

Z

Kh(t� u)dR̂2(u),

and by integration by part

sup
t2[h,⌧�h]

�

�

�

⇠̂h(t)� E{⇠̂h(t)}
�

�

�

= sup
t2[h,⌧�h]

�

�

�

�

Z t+h

t�h

{R̂2(u)�R2(u)}dKh(t� u)

�

�

�

�

 h�1 sup
t2[0,⌧ ]

|R̂2(t)�R2(t)| · V (K).

where V (K) is the variation of the kernel function K. The functions R2i(t) =
R t

0 Yi(u)I(Xi > u)dN⇤
i (u) are monotone and bounded, therefore have pseudodi-

mension at most 1. From Pollard (1990) p.37, supt2[0,⌧ ]
p
n | R̂2(t)�R2(t) | has

uniformly subgaussian tail, that is, there exists a constant C such that

P ( sup
t2[0,⌧ ]

p
n | R̂2(t)�R2(t) |> t) < e�Ct2 .

Then for any ✏ > 0

P ( sup
t2[0,⌧ ]

1

h
| R̂2(t)�R2(t) |> ✏) = P ( sup

t2[0,⌧ ]

p
n | R̂2(t)�R2(t) |>

p
nh✏) < e�Cnh2✏2 .

So supt2[h,⌧�h]

�

�

�

⇠̂h(t)� E{⇠̂h(t)}
�

�

�

converge to 0 in probability when nh2 ! 1.

Also,

sup
t2[h,⌧�h]

�

�

�

E{⇠̂h(t)}� ⇠(t)
�

�

�

= O(h),

and supt2[0,h] | ⇠(t) � ⇠(h) |= O(h), supt2[⌧�h,⌧ ] | ⇠(t) � ⇠(⌧ � h) |= O(h).

Therefore, the uniform consistency holds. Given the uniform consistency for �̂h

and ⇠̂h, r̂h uniformly converges in probability to r on [0, ⌧ ].
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3.6.4 Proof of Lemma 3.6.2

Now we prove that for s 2 [0, ⌧ ],

p
n

Z s

0

�̂h(t)dt =
1p
n

n
X

i=1

Z s

0

dNi(u) + op(1).

Define �i(t) =
R ⌧

0 Kh(t� u)dNi(u) for t 2 [h, ⌧ � h],�i(t) = �i(h) for t 2 [0, h),

and �i(t) = �i(⌧ � h) for t 2 (⌧ � h, ⌧ ]. Then �̂h(t) =
Pn

i=1 �i(t). We the above

equation under four scenarios (a) 0 < s  h, (b) h < s  3h, (c) 3h < s  ⌧ �h

and (d) ⌧ � h < s  ⌧ .

(a) For 0 < s  h, we have

E

⇢

Z s

0

�i(t)dt�
Z s

0

dNi(u)

�

= E

⇢

Z s

0

Z 2h

0

Kh(h� u)dNi(u)dt�
Z s

0

r(u)dNi(u)

�

=

Z s

0

Z 2h

0

Kh(h� u)�(u)du · dt�
Z s

0

�(u)du

=

Z s

0

�(h) · dt�
Z s

0

�(u)du+O(h2)

= O(h2). (3.6.3)

Moreover,
R s

0 �i(t)dt is a bounded monotone function in s, thus 1/
p
n
Pn

i=1[
R s

0 �i(t)dt�
R s

0 dNi(u) � E{
R s

0 �i(t)dt �
R s

0 dNi(u)}] converge weakly to a Gaussian process

with variance less thanM1h, whereM1 is a constant. Thus 1/
p
n
Pn

i=1{
R s

0 �i(t)dt�
R s

0 dNi(u)} = O(
p
nh2) + op(1).
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(b) When h < s < 3h, we have

Z s

0

�i(t)dt�
Z s

0

dNi(u)

=

⇢

Z h

0

�i(t)dt�
Z h

0

dNi(u)

�

+

⇢

Z s

h

�i(t)dt�
Z s

h

dNi(u)

�

=

⇢

Z h

0

�i(t)dt�
Z h

0

dNi(u)

�

+

⇢

Z s�h

0

Z u+h

h

Kh(t� u)dtdNi(u)+

Z 2h

s�h

Z s

h

Kh(t� u)dtdNi(u) +

Z s+h

2h

Z s

u�h

Kh(t� u)dtdNi(u)�
Z s

h

dNi(u)

�

=

⇢

Z h

0

�i(t)dt�
Z h

0

dNi(u)

�

+

⇢

Z 2h

0

Z u+h

h

Kh(t� u)dtdNi(u)�
Z 2h

h

dNi(u)

�

+

⇢

Z s

s�h

Z s

u+h

Kh(t� u)dtdNi(u) +

Z s+h

s

Z s

u�h

Kh(t� u)dtdNi(u)

�

def
= ⇧1 + ⇧2 + ⇧3.

We then prove E(⇧1+⇧2+⇧3) = O(h2). By Equation (3.6.3), we have E(⇧1) =
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O(h2). Suppose �̇ is the first derivative of �. For ⇧2, we have

E(⇧2) = E

⇢

Z 2h

0

Z u+h

h

Kh(t� u)dtdNi(u)�
Z 2h

h

dNi(u)

�

=

Z 2h

0

Z 1

1�u/h

K(x)dx�(u)du�
Z 2h

h

�(u)du

=

Z h

0

Z 1

1�u/h

K(x)dx�(u)du+

Z 2h

h

Z �1

1�u/h

K(x)dx�(u)du

=

Z h

0

Z 1

1�u/h

K(x)dx{�(u)� �(0)}du�
Z 2h

h

Z 1�u/h

�1

K(x)dx{�(u)� �(0)}du

=

Z h

0

Z 1

1�u/h

K(x)dx�̇(0)udu�
Z 2h

h

Z 1�u/h

�1

K(x)dx�̇(0)udu+O(h2)

= O(h2) +O(h2) = O(h2).

For ⇧3, we have

E(⇧3) = E

⇢

Z s

s�h

Z s

u+h

Kh(t� u)dtdNi(u) +

Z s+h

s

Z s

u�h

Kh(t� u)dtdNi(u)

�

= �
Z s

s�h

Z 1

(s�u)/h

K(x)dx�(u)du+

Z s+h

s

Z (s�u)/h

�1

K(x)dx�(u)du

= �
Z s

s�h

Z 1

(s�u)/h

K(x)dx{�(u)� �(0)}du+

Z s+h

s

Z (s�u)/h

�1

K(x)dx{�(u)� �(0)}du

= O(h2).

Thus E{
R s

0 �i(t)dt�
R s

0 dNi(u)} = O(h2). Again, we have E
�R s

0 �i(t)dt�
R s

0 dNi(u)
 

=

O(h2) and E
�R s

0 �i(t)dt�
R s

0 dNi(u)
 2  M2h, where M2 is a constant. Then

we have the equation n�1/2
Pn

i=1{
R s

0 �i(t)dt �
R s

0 dNi(u)} = O(
p
nh2) + op(1)

hold.
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(c) When 3h < s  ⌧ � h,

Z s

0

�i(t)dt�
Z s

0

dNi(u)

=

⇢

Z h

0

�i(t)dt�
Z h

0

dNi(u)

�

+

⇢

Z 2h

0

Z u+h

h

Kh(t� u)dtdNi(u)�
Z 2h

h

dNi(u)

�

+

⇢

Z s+h

s�h

Z s

u�h

Kh(t� u)dtdNi(u)�
Z s

s�h

dNi(u)

�

=⇧1 + ⇧2 + ⇧3.

Similarly as the arguments for h < s  3h, we have n�1/2
Pn

i=1{
R s

0 �i(t)dt �
R s

0 dNi(u)} = O(
p
nh2) + op(1).

(d) When ⌧ � h < s  ⌧ , we have

Z s

0

�i(t)dt�
Z s

0

dNi(u)

=

⇢

Z ⌧�h

0

�i(t)dt�
Z ⌧�h

0

dNi(u)

�

+

⇢

Z s

⌧�h

�i(⌧ � h)dt�
Z s

⌧�h

dNi(u)

�

= O(h2) + op(n
�1/2) +

⇢

Z s

⌧�h

�i(⌧ � h)dt�
Z s

⌧�h

dNi(u)

�

.

And

E

⇢

Z s

⌧�h

�i(⌧ � h)dt�
Z s

⌧�h

dNi(u)

�

=

Z s

⌧�h

Z ⌧

⌧�2h

Kh(⌧ � h� u)�(u)du · dt�
Z s

⌧�h

�(u)du

=

Z s

⌧�h

�(⌧ � h)dt�
Z s

⌧�h

�(u)du+O(h2)

= O(h2) +O(h2) = O(h2).
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Moreover, we have
R s

⌧�h �i(⌧ � h)dt �
R s

⌧�h dNi(u) = O(h2) + op(n�1/2). Thus

the equation n�1/2
Pn

i=1{
R s

0 �i(t)dt�
R s

0 dNi(u)} = O(
p
nh2)+ op(1) also holds.

So if we take h = n�↵, where 1/4 < ↵ < 1/2, we have

p
n

Z s

0

�̂h(t)dt�
1p
n

n
X

i=1

Z s

0

dNi(u) = op(1).

Along the same line as above, the equation
p
n
R s

0 ⇠̂h(t)dt =
1p
n

Pn
i=1

R s

0 Yi(u)I(Xi >

u)dN⇤
i (u) + op(1) is proved by changing dNi(·) to Yi(·)dNi(·).
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Chapter 4

Recurrent Marker Process in the
Presence of Competing Terminal
Events

4.1 Recurrent Marker Processes

Let {N(t), t � 0} be a recurrent event process with N(t) representing the total

number of recurrent events occurring at or prior to t. Suppose the occurrence

of a recurrent event at t, i.e., dN(t) = 1, is marked by a measurement Y (t), and

for ease of discussion, we assume that Y (t) is nonnegative. Then, Y (t) can be

considered as a marker measurement for the recurrent event occurring at t, and

we represent the marked recurrent event process by {N(t), Y (t)|dN(t)=1; t � 0}.

Consider the case where a terminal event is present, and the marked recur-

rent event process {N(t), Y (t)|dN(t)=1; t � 0} vanishes after the terminal event.

Specifically, in situations where the marker Y (·) is a utility measurement such

as medical cost or length of stay in hospital, the main interest would natu-

rally be the utility consumed by survivors in the population. Let the time

to a terminal event be represented by D, which is possibly correlated with

{N(t), Y (t)|dN(t)=1; t � 0}, then the stochastic process {Y (t)dN(t), 0  t  D}
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is frequently of interest.

In the presence of a terminal event without competing risks, the recurrent

marker process is defined as

M total(t) =

Z t

0

Y (u)I(D > u)dN(u), (4.1.1)

and we use the superscript “total” to distinguish (4.1.1) from recurrent marker

processes under competing risks model, which is defined later in this section.

The mean function (MF) is defined as

�(t) = E{M total(t)} = E

⇢

Z t

0

Y (u)I(D � u)dN(u)

�

.

When Y (·) is a utility measure, the MF �(t) corresponds to the average of

cumulative utility consumed before the terminal event during time interval [0, t],

which is the utility of real life in case death is the terminal event. Also note

that by setting Y (·) = 1, the recurrent marker process reduces to recurrent

event process and M total(t) = N(min(D, t)). Define �(t) as the derivative of

�(t), that is, d�(t) = E{Y (t)I(D � t)dN(t)} = �(t)dt. The function �(t) is

the rate of change of the MF at time t, which can be regarded as a counterpart

of the rate function for a recurrent event process.

Now further consider recurrent marker process in the presence of a terminal

event with competing risks. Suppose the occurrence of the terminal event is

caused by one of J di↵erent types of risks, where the risk-type indicator is

denoted by ⇧ 2 {1, . . . , J}. Let ⌧ be a pre-specified constant; for example, ⌧

could be the maximum length of follow-up time or the length of time where

investigators in a research project wish to study the recurrent marker process.

For practical consideration, due to limited follow-up time, subjects with D < ⌧
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are classified according to the original risk-type of terminal event ⇧ = j (j =

1, . . . , J), and subjects with D � ⌧ are classified into the last category of risk-

type, J + 1. In applications, subjects of risk-type J + 1 can be thought of as

those “long-term survivors”or “cured cases”.

For 0  t  ⌧ and j = 1, 2, . . . , J , the recurrent marker process with type-j

terminal event is defined as

Mj(t) =

Z t

0

Y (u)I(⇧ = j, u  D < ⌧)dN(u),

and the recurrent marker process with type-(J +1) terminal event is defined as

MJ+1(t) =

Z t

0

Y (u)I(D � ⌧)dN(u).

Taking expectation of Mj(t), the type-j MF at time t is

�j(t) = E{Mj(t)}, j = 1, 2, . . . , J + 1.

For j = 1, 2, . . . , J +1, the MF �j(t) is the expectation of cumulative recurrent

marker prior to time t attributed to type-j risk. To connect the function �(t)

with �j(t), it is clear that for each t 2 [0, ⌧ ], we have

�(t) =
J+1
X

j=1

�j(t). (4.1.2)

In practice, another quantity of interest is the conditional mean function of

recurrent marker process given risk-type j, that is,

�c
j(t) =

(

E{M total(t) | ⇧ = j,D  ⌧} j = 1, . . . , J,

E{M total(t) | D � ⌧} j = J + 1.

Note that �c
j(t) is the expectation of cumulative recurrent marker up to time t

of subpopulation with type-j risk. We shall consider nonparametric estimation

of �(t), �j(t) and �c
j(t) (j = 1, . . . , J + 1) in later sections.
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4.2 Nonparametric Estimation in Non-Competing
Risks Model

We first consider nonparametric estimation of �(t) without the complication

of competing risks. In practice, the terminal event time D is subject to right

censoring due to study end or premature dropout, and the recurrent marker

process cannot be observed after censoring. We denote the censoring time by

C and assume that C is independent of {D, Y (t)dN(t); 0  t  ⌧}. The

observed terminal event time is X = min(D,C) with a censoring indicator

� = I(D < C). The observed data {Xi,�i, Yi(t)I(Xi � t)dNi(t), I(Xi �

t)Ni(t) : 0  t  ⌧, i = 1, . . . , n} are assumed to be independent replicates of

{X,�, Y (t)I(X � t)dN(t), I(X � t)N(t) : 0  t  ⌧}.

Let SD(·) be survival function of the terminal event time D. Under the

independent censoring assumption, subjects in the risk set at time u are a rep-

resentative sample of event-free individuals at time u in the target population,

and we note that

�(u)du = SD(u) · E{Y (u)dN(u)| D � u} = SD(u) · E{Y (u)dN(u)| X � u}.

Thus, for 0 < t  ⌧ , we have

�(t) =

Z t

0

SD(u) · E{Y (u)dN(u) | X � u}. (4.2.1)

To estimate �(t), one can use the moment estimator of E{Y (u)dN(u) | X � u}

based on subjects in the risk set {i : Xi � u} and estimate SD(u) by the

Kaplan-Meier estimate ŜD(u), then a nonparametric estimator of �(t) can be

constructed as

�̂(t) =

Z t

0

ŜD(u) ·
Pn

i=1 Yi(u)I(Xi � u)dNi(u)
Pn

i=1 I(Xi � u)
. (4.2.2)
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The estimator in (4.2.2) can be viewed as an extension of the nonparametric

estimator of mean frequency function in Ghosh and Lin (2000), where the special

case Y (·)|dN(·)=1 = 1 was considered. To study large sample properties of �̂(t),

the following notations are introduced. Let SC and ⇤C be the survival function

and cumulative hazard function of the censoring time C, respectively; and let

SX denote the survival function of the observed failure time X. We then define

NC
i (t) = I(Ci  t,�i = 0) and MC

i (t) = NC
i (t) �

R t

0 I(Xi � u)d⇤C(u).

Theorem 4.2.1 summarizes the asymptotic property of �̂(t), with proof given in

Appendix 4.6.1.

Theorem 4.2.1. Under Assumption (A1) and (A2) in Appendix, for t 2 (0, ⌧ ],

the stochastic process n1/2{�̂(t) � �(t)} has an asymptotically i.i.d. represen-

tation n1/2{�̂(t)� �(t)} = n�1/2
Pn

i=1 ai(t) + op(1), where

ai(t) =

Z t

0

SC(u)
�1Yi(u)I(Xi � u)dNi(u)� �(t) + �(t)

Z t

0

SX(u)
�1dMC

i (u)

�
Z t

0

�(u)SX(u)
�1dMC

i (u).

Moreover, as n ! 1, n1/2{�̂(t)� �(t)} converges weakly to a zero-mean tight

Gaussian process whose covariance function at (t1, t2) can be consistently esti-

mated by n�1
Pn

i=1 âi(t1)âi(t2) for t1, t2 2 (0, ⌧ ], with âi(t) defined in Appendix

4.6.1.

Remark. To estimate the rate function �(t) for t 2 (0, ⌧ ], one can use the

following kernel estimate,

�̂h(t) =
1

nŜC(t)

n
X

i=1

Z ⌧

0

Kh(t� u)Yi(u)I(Xi � u)dNi(u),
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where Kh(x) = h�1K(x/h) is a kernel function with bandwidth h, with K(·)

satisfing
R 1

�1 K(x)dx = 1 and
R 1

�1 xK(x)dx = 0. Note that �̂h(t) can be viewed

as an extension of the kernel-type estimator proposed by Wang and Chiang

(2002).

4.3 Nonparametric Estimation in Competing
Risks Model

When the terminal event occurs with competing risks, nonparametric estimation

of the MF will need to take into account the data structure that the risk-type

indicator, ⇧, is available only when the terminal event is observed. Under

competing risks model, the censoring time C is assumed to be independent

of {D,⇧, Y (t)dN(t); 0  t  ⌧}. The observed data {Xi,�i,⇧i, Yi(t)I(Xi �

t)dNi(t), I(Xi � t)Ni(t) : 0  t  ⌧, i = 1, . . . , n} are assumed to be indepen-

dent replicates of {X,�,⇧, Y (t)I(X � t)dN(t), I(X � t)N(t) : 0  t  ⌧}.

Similar to the formula in (4.2.1), for j = 1, . . . , J and 0  t  ⌧ , one derives

�j(t) =

Z t

0

E{Y (u)I(⇧ = j, u  D < ⌧)dN(u)}

=

Z t

0

SD(u) E{I(⇧ = j)Y (u)dN(u) | X � u}� SD(⌧)E{I(⇧ = j)M total(t) | X � ⌧}.

Therefore, for j = 1, . . . , J , along the same line of the estimator �̂(t) in (4.2.2),

a hypothetical estimator of �j(t) that utilizes the recurrent marker history data

from all the subjects can be obtained as,

�̂H
j (t) =

Z t

0

ŜD(u) ·
Pn

i=1 I(Xi � u,⇧i = j)Yi(u)dNi(u)
Pn

i=1 I(Xi � u)

� ŜD(⌧)

Pn
i=1 I(Xi � ⌧,⇧i = j)M total

i (t)
Pn

i=1 I(Xi � ⌧)
. (4.3.1)
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And for risk type J + 1, an estimator of �J+1(t) = SD(⌧)E{M total(t) | X � ⌧}

can be constructed as

�̂H
J+1(t) = ŜD(⌧)

Pn
i=1 I(Xi � ⌧)M total

i (t)
Pn

i=1 I(Xi � ⌧)
.

Clearly, the estimator �̂H
j (t) (j = 1, . . . , J) depends on data information of ⇧

from all subjects in the risk set at the observed recurrent event times. In reality,

however, knowledge of ⇧ is rarely available from subjects whose terminal event

are censored (� = 0), therefore the hypothetical estimator in (4.3.1) fails to

serve as a proper estimator for most of the applications. We next propose an

estimation approach which is useful for commonly encountered recurrent marker

data with competing terminal events.

For di↵erent risk types j = 1, . . . , J , we define Hj(t,m, u) = Pr(⇧ =

j,M total(t)  m,D  u). With straightforward algebra, the mean function

for type-j risk is

�j(t) =

Z 1

0

mHj(t, dm, ⌧).

Note that for u 2 [0, ⌧ ], Hj(t,1, u) = Pr(⇧ = j,D  u) is the cumulative inci-

dence function in standard competing risks model (Prentice et al., 1978; Gray,

1988; Fine and Gray, 1999). Define Uj(t,m, u) = Pr(⇧ = j,M total(t)  m,� =

1, X  u). Under the assumption that C is independent of {D,⇧, Y (t)dN(t); 0 

t  ⌧}, one derives

Hj(t,m, u) =

Z u

0

SD(v)
Hj(t,m, dv)

SD(v)
=

Z u

0

SD(v)
Uj(t,m, dv)

SX(v)
,

where SX is the survival function of the observed failure time X. Note that

when a terminal event is uncensored, the risk type is observed and therefore

47



Uj(t,m, u) can be estimated by its empirical average, that is, Ûj(t,m, u) =

n�1
Pn

i=1 I(⇧i = j,M total
i (t)  m,�i = 1, Xi  u). By plugging into the

Kaplan-Meier estimate ŜD and the empirical estimates (ŜX , Ûj), Hj(t,m, u)

can be nonparametrically estimated by

Ĥj(t,m, u) =

Z u

0

ŜD(v)
Ûj(t,m, dv)

ŜX(v)
. (4.3.2)

Thus, an estimator of �j(t) (j = 1, . . . , J) can be constructed as

�̂j(t) =

Z 1

0

mĤj(t, dm, ⌧). (4.3.3)

and �J+1(t) is still estimated by

�̂J+1(t) ⌘ �̂H
J+1(t) = ŜD(⌧)

Pn
i=1 I(Xi � ⌧)M total

i (t)
Pn

i=1 I(Xi � ⌧)
.

Theorem 4.3.1 summarizes the large-sample properties of �̂j(t), j = 1, . . . , J+

1, with proof given in Appendix 4.6.2.

Theorem 4.3.1. Under Assumption (A1’) and (A2) in Appendix, for t 2 (0, ⌧ ]

and j = 1, . . . , J +1, the stochastice process n1/2{�̂j(t)��j(t)} has an asymp-

totically i.i.d representation n1/2{�̂j(t) � �j(t)} = n�1/2
Pn

i=1 bji(t) + op(1),

where for j = 1, . . . , J ,

bji(t) =M total
i (t)I(⇧i = j,Di  ⌧)�iSC(Di)

�1 � �j(t) + �j(t)

Z ⌧

0

SX(u)
�1dMC

i (u)

�
Z ⌧

0

E{I(⇧ = j,D  u)M total(t)}SX(u)
�1dMC

i (u),

and for j = J + 1,

bji(t) = I(Xi � ⌧)M total
i (t)SC(⌧)

�1 � �J+1(t) + �J+1(t)

Z ⌧

0

SX(u)
�1dMC

i (u).
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Moreover, as n ! 1, n1/2{�̂j(t)��j(t)} converges weakly to a zero-mean tight

Gaussian process with covariance function E{bj1(t1)bj1(t2)} for t1, t2 2 (0, ⌧ ],

and the covariance can be consistently estimated by n�1
Pn

i=1 b̂ji(t1)b̂ji(t2), with

b̂ji(t) defined in Appendix 4.6.2.

4.4 Improved Estimation in Competing Risks
Model

As the estimator �̂j(t) utilizes marker information only from uncensored sub-

jects, the estimation may be ine�cient when censoring is heavy; in contrast, for

the estimation of �(t), the estimator �̂(t) in Section 3.1 utilizes marker history

data from both censored and uncensored subjects. Thus, it is of no surprise that

�̂(t) is more e�cient than
PJ+1

j=1 �̂j(t) for estimating �(t). When formulating

estimators for type-j MF �j(t), a question arises as to whether it is possible to

borrow information from �̂(t) to improve the estimation of �j(t).

Note that, based on (4.1.2), we can construct an alternative estimator of

�j(t) as

�̃j(t) = �̂(t)�
X

k 6=j

�̂k(t).

In general, �̃j(t) may or may not be more e�cient than �̂j(t), even though

the former estimator involves marker information from both censored and un-

censored subjects and the latter only uses marker information from uncen-

sored ones. In what follows, we propose an estimator that is more e�cient

than �̃j(t) and �̂j(t). We consider a class of linearly combined estimators

Wjt = {wjt�̂j(t) + (1 � wjt)�̃j(t) : wjt 2 R} and propose the use of the most

e�cient estimator from this class. Let �̄j(t) = wjt�̂j(t) + (1 � wjt)�̃j(t) be a
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weighted average of �̂j(t) and �̃j(t). Clearly, �̂j(t) and �̃j(t) both belong to

Wjt. Using results from Theorem 4.2.1 and 4.3.1, estimators in Wjt are consis-

tent and asymptotically normal. Thus, a question of interest is to identify the

estimator in Wjt which has the minimal asymptotic variance.

To study the asymptotic variance of the estimators inWjt, we define⌃j(t1, t2) =

{�jpq(t1, t2)}2⇥2 for t1, t2 2 [0, ⌧ ], where �j11(t1, t2), �j12(t1, t2), �j21(t1, t2) and

�j22(t1, t2) are the asymptotic covariance of [
p
n{�̂j(t1)��j(t1)},

p
n{�̂j(t2)�

�j(t2)}], [
p
n{�̂j(t1)��j(t1)},

p
n{�̃j(t2)��j(t2)}], [

p
n{�̃j(t1)��j(t1)},

p
n{�̂j(t2)�

�j(t2)}] and [
p
n{�̃j(t1)� �j(t1)},

p
n{�̃j(t2)� �j(t2)}], respectively. We fur-

ther assume that ⌃j(t, t) is a nonsingular matrix for t 2 (0, ⌧ ]. Define the

vector wjt = (wjt, 1�wjt)T, then the asymptotic variance of
p
n{�̄j(t)��j(t)}

iswT
jt⌃j(t, t)wjt. We consider the optimization of asymptotic variance to obtain

the most e�cient estimator in the class of Wjt:

minimize
wjt

wT
jt⌃j(t, t)wjt.

By the method of Lagrange multipliers, the optimal weight can be derived as

w⇤
jt =

⌃j(t, t)�1e

eT⌃j(t, t)�1e
,

where we define e = (1, 1)T. And using this optimal weight w⇤
jt, the asymptotic

variance of
p
n{�̄j(t) � �j(t)} is {eT⌃j(t, t)�1e}�1. By the Cauchy-Schwartz

inequality, for any weight wjt, we have

{wT
jt⌃j(t, t)wjt}{eT⌃j(t, t)

�1e} � (wT
jte)

2 = 1,

or equivalently,

wT
jt⌃j(t, t)wjt � {eT⌃j(t, t)

�1e}�1. (4.4.1)
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Thus, in the classWjt, using the weightw⇤
jt results in the estimator with smallest

asymptotic variance. In real applications, the optimal w⇤
jt involves ⌃j(t, t),

which is unknown and needs to be estimated from data. By applying the results

of Theorem 4.2.1 and 4.3.1, we can consistently estimate ⌃j(t, t) by b⌃j(t, t),

with details given in the Appendix 4.6.3. We propose the following improved

estimator for �j(t),

�̂imp
j (t) = ŵ⇤

jt�̂j(t) + (1� ŵ⇤
jt)�̃j(t), (4.4.2)

where ŵ⇤
jt = (ŵ⇤

jt, 1� ŵ⇤
jt)

T = b⌃j(t, t)�1e/eT
b⌃j(t, t)�1e. Here we indicate that

the estimator using the estimated weight ŵ⇤
jt possesses the same e�ciency as the

estimator with w⇤
jt as the weight. Theorem 4.4.1 summarizes the large-sample

properties of �̂imp
j (t) and the proof is given in Appendix 4.6.3.

Theorem 4.4.1. Under Assumption (A1’),(A2) and (A3) in Appendix, for

j = 1, . . . , J + 1,
p
n{�̂imp

j (t) � �j(t)}(0 < t  ⌧) converges weakly to a zero-

mean tight Gaussian process with

eT⌃j(t1, t1)�1⌃j(t1, t2)⌃j(t2, t2)�1e

eT⌃j(t1, t1)�1eeT⌃j(t2, t2)�1e

as the covariance function at (t1, t2) for t1, t2 2 (0, ⌧ ], and the covariance can be

consistently estimated by n�1
Pn

i=1 f̂ji(t1)f̂ji(t2), with f̂ji(t) defined in Appendix

4.6.3.

Clearly, the result of Theorem 4.1 implies that the asymptotic variance of
p
n{�̂imp

j (t)��j(t)}, {eT⌃j(t, t)�1e}�1, is smaller than or equal to the asymp-

totic variance of
p
n{�̂j(t)� �j(t)} and

p
n{�̃j(t)� �j(t)}.

In real data applications, it would also be of interest to estimate the mean

recurrent marker process within each risk group, �c
j(t). For j = 1, . . . , J , since
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the equation �c
j(t) = �j(t)/P (⇧ = j,D  ⌧) holds, we propose the following

estimator,

�̂c
j(t) =

�̂imp
j (t)

Ĥj(0,1, ⌧)
,

where Ĥj(0,1, ⌧) is defined in equation (4.3.2). For risk-type j = J + 1, since

we have �c
J+1(t) = �J+1(t)/P (D � ⌧), we propose the estimator

�̂c
J+1(t) =

�̂imp
J+1(t)

ŜD(⌧)
.

Corollary 4.2 summarizes the large-sample properties of �̂c
j(t), with proof given

in Appendix 4.6.4.

Corollary 4.4.2. Under Assumption (A1’),(A2) and (A3) in Appendix, for

j = 1, . . . , J + 1, the stochastic process n1/2{�̂c
j(t) � �c

j(t)}(0 < t  ⌧) con-

verges weakly to a zero-mean tight Gaussian process with covariance function

E{gj1(t1)gj1(t2)} for t1, t2 2 (0, ⌧ ], and the covariance function can be con-

sistently estimated by n�1
Pn

i=1 ĝji(t1)ĝji(t2), with ĝji(t) defined in Appendix

4.6.4.

4.5 Simulation Studies

A series of simulation experiments are carried out to examine finite-sample per-

formance of the proposed methods. We simulate the data so that the association

among the random variables {D, Y (·)|dN(·)=1, N(·),⇧} is induced by a subject-

specific random e↵ect Z, where Z is generated from a gamma distribution with

shape parameter ↵ = 2 and rate parameter � = 0.5. Specifically, given Z, the

terminal event time D is generated from Weibull distribution with rate param-

eter .01 ⇥ Z and shape parameter ⌫ = 3; the recurrent event process N(·) is a
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Poisson process with rate function �(t) = I(Z > z0)+1, where z0 is the median

of Z; and the marker process is generated from Y (t)|dN(t)=1 = 1 + t+ Z + ✏(t);

where the error term ✏(t) is a mean zero Gaussian process with independent

increments and a time-invariant standard deviation � = 0.1. We assume there

are two types of terminal event, and that the cause of death is determined by

Z: we set ⇧ = 1 when Z  z0 and set ⇧ = 2 when Z > z0. Moreover, we set

⌧ = 5, and subjects with D > 5 belong to the third risk type. The censoring

time C is generated from Uniform[0, 19] to produce a 25% censoring rate. We

set the sample size n = 200 and n = 400. The simulation results are based on

2000 replications and are summarized in Table 1.

It can be seen that the proposed estimators �̂j, �̃j and �̂imp
j all perform

well with moderate sample sizes. In our simulation, note that �̂j has smaller

standard error than �̃j for j = 1, 3, while the standard error of �̃2 outperforms

that of �̂2. In whichever case, the improved estimator �̂imp
j is either more

e�cient than or as e�cient as �̂j and �̃j. And, as expected, the standard error

of the proposed estimators increase with time and decrease with sample size.

4.6 Proofs

We first introduce a few regularity conditions used in the theorems:

(A1) The censoring time C is independent of {D, Y (t)dN(t); t 2 [0, ⌧ ]} and

P (X � ⌧) > 0.

(A1’) The censoring time C is independent of {D, Y (t)dN(t),⇧; t 2 [0, ⌧ ]} and

P (X � ⌧) > 0.
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Table 4.1: Simulation summary statistics for �̂imp
j , �̂j and �̃j

�̂imp
j �̂j �̃j

Bias SE SEE CP Bias SE Bias SE

n = 200
�1(t) t = 1 0.001 0.095 0.093 0.935 0.002 0.095 0.004 0.152

t = 2 0.003 0.189 0.185 0.937 0.005 0.189 0.011 0.277
t = 3 0.002 0.297 0.291 0.939 0.002 0.297 0.006 0.406

�2(t) t = 1 0.014 0.307 0.298 0.936 0.004 0.324 0.002 0.308
t = 2 0.020 0.589 0.587 0.946 0.008 0.613 0.002 0.590
t = 3 0.021 0.893 0.889 0.941 0.012 0.924 0.008 0.895

�3(t) t = 1 0.012 0.175 0.170 0.932 0.003 0.179 0.006 0.197
t = 2 0.020 0.355 0.349 0.932 0.003 0.361 0.008 0.384
t = 3 0.028 0.587 0.575 0.928 0.001 0.595 0.005 0.617

n = 400
�1(t) t = 1 0.001 0.067 0.066 0.947 0.001 0.067 0.000 0.109

t = 2 0.001 0.131 0.132 0.947 0.001 0.131 0.003 0.199
t = 3 0.001 0.206 0.207 0.948 0.002 0.207 0.005 0.291

�2(t) t = 1 0.006 0.211 0.212 0.951 0.003 0.221 0.004 0.211
t = 2 0.012 0.420 0.417 0.946 0.003 0.438 0.002 0.420
t = 3 0.010 0.644 0.630 0.943 0.010 0.664 0.007 0.646

�3(t) t = 1 0.003 0.121 0.122 0.949 0.001 0.123 0.002 0.138
t = 2 0.006 0.249 0.250 0.945 0.003 0.253 0.001 0.272
t = 3 0.014 0.411 0.410 0.945 0.002 0.418 0.002 0.433

Note: Bias is the empirical bias; SE is the empirical standard error; SEE is the empirical

mean of the standard error estimates; CP is the empirical coverage probability of the 95%

confidence interval.
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(A2) The stochastic process N(t) and Y (t)dN(t) are bounded for t 2 [0, ⌧ ].

(A3) The covariance matrix ⌃j(t, t) is nonsingular for t 2 (0, ⌧ ].

4.6.1 Proof of Theorem 4.2.1

Assumptions (A1) and (A2) are the regularity conditions for Theorem 4.2.1.

Define NC
i (t) = I(Ci  t,�i = 0), we consider Nelson-Aalen estimator for the

cumulative hazard function of censoring time, ⇤C(·),

⇤̂C(t) =
1

n

n
X

i=1

Z t

0

dNC
i (u)

ŜX(u)
,

where ŜX(t) = n�1
Pn

i=1 I(Xi � t) is the empirical estimator for SX(t). Note

that SC(t) can be estimated by e�⇤̂C(t), which is asymptotically equivalent to

the Kaplan-Meier estimator. We use ŜC(t) = e�⇤̂C(t) in what follows. For

0 < t  ⌧ ,

�(t) =

Z t

0

SD(u)

SX(u)
E{Y (u)I(X > u)dN(u)}

=

Z t

0

E{Y (u)I(X > u)dN(u)}
SC(u)

=

Z t

0

e⇤C(u)dB(u),

where B(t) =
R t

0 E{Y (u)I(X > u)dN(u)} and can be estimated by B̂(t) =

n�1
Pn

i=1

R t

0 Yi(u)I(Xi > u)dNi(u); By the martingale central limit theorem, we

have

p
n{⇤̂C(t)� ⇤C(t)} = n�1/2

n
X

i=1

Z t

0

SX(u)
�1dMC

i (u) + op(1),

where MC
i (t) = NC

i (t)�
R t

0 I(Xi � u)d⇤C(u).
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Given the estimator �̂(t) =
R t

0 e
⇤̂C(u)dB̂(u), by the functional delta method

(van der Vaart, 2000; Theorem 20.8, Lemma 20.10), the functional (F1, F2) 7!
R t

0 e
F1dF2 is Hadamard-di↵erentiable as a map into the set of cadlag functions

D[0, ⌧ ], and the derivative is (h1, h2) 7!
R t

0 e
F1dh2+

R t

0 e
F1h1dF2, thus

p
n{�̂(t)�

�(t)} converge weakly to a Gaussian process. Moreover,

p
n{�̂(t)� �(t)}

=
p
n

Z t

0

e⇤C(u)d{B̂(u)� B(u)}+
p
n

Z t

0

e⇤C(u){⇤̂C(u)� ⇤C(u)}dB(u) + op(1)

=
p
n

Z t

0

e⇤C(u)d{B̂(u)� B(u)}+
p
n

Z t

0

{⇤̂C(u)� ⇤C(u)}d�(u) + op(1)

=
1p
n

n
X

i=1

ai(t) + op(1),

where

ai(t) =

Z t

0

I(Xi � u)Yi(u)dNi(u)

SC(u)
��(t)+�(t)

Z t

0

dMC
i (u)

SX(u)
�
Z t

0

�(u)
dMC

i (u)

SX(u)
.

The limiting covariance function at (t1, t2) is E{a1(t1)a1(t2)}, which can

be consistently estimated by n�1
Pn

i=1 âi(t1)âi(t2) where âi(t) is obtained by

replacing all the unknown parameters in ai(t) with their respective empirical

estimators. The consistency of the variance estimator can be proved using

arguments similar to, for example, the proof of Theorem 3 of Lin et al. (1998).
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4.6.2 Proof of Theorem 4.3.1

Assumptions (A1’) and (A2) are the regularity conditions for Theorem 4.2.1.

We first consider the large sample properties for �̂j(t), j = 1, . . . , J . By straight-

forward algebra, we derive

�̂j(t) =

Z 1

0

mĤj(t, dm, ⌧)

=
1

n

n
X

i=1

�iI(⇧i = j,Di  ⌧)M total
i (t)

ŜC(Di)

=
1

n

n
X

i=1

Z ⌧

0

I(⇧i = j)M total
i (t)

ŜC(u)
dND

i (u)

=

Z ⌧

0

Ĝj(du, t)

ŜC(u)
,

whereND(t) = I(D  t,� = 1), and Ĝj(u, t) = n�1
Pn

i=1 I(⇧i = j)M total
i (t)ND

i (u)

is an estimator of G(u, t) = E{I(⇧ = j)M total(t)ND(u)}. Moreover, we have

Z ⌧

0

Gj(du, t)

SC(u)
=

Z ⌧

0

E{I(⇧ = j)M total(t)dND(u)}
SC(u)

= E[I(⇧ = j)M total(t)I(D  ⌧)E
�

�SC(D)�1 | D,M total(t),⇧
 

]

= E{I(⇧ = j)M total(t)I(D  ⌧)}

= �j(t).

Note that �̂j(t) can be viewed as a functional (F3(u), F4(u, t)) 7!
R ⌧

0 eF3(u)F4(du, t)

from the domain D[0, ⌧ ]⇥BVM [0, ⌧ ]2 to D[0, ⌧ ], where BVM [0, ⌧ ]2 means the set

of cadlag functions F4 : [0, ⌧ ]⇥ [0, ⌧ ] 7! [0,M ] with supt2[0,⌧ ]
R ⌧

0 |F4(du, t)| < M .

SinceM total(t) is increasing with t andND(u) is increasing with u, the functional
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class {I(⇧ = j)M total(t)ND(u), t, u 2 [0, ⌧ ]} is Donsker by Lemma 4.1 and

Corollary 9.32 in Kosorok (2007). Thus, the stochastic process
p
n{Ĝj(u, t) �

Gj(u, t)} converges weakly to a Gaussian process. Applying techniques simi-

lar to Lemma 20.10 in van der Vaart (2000), the functional (F3(u), F4(u, t)) 7!
R ⌧

0 eF3(u)F4(du, t) is Hadamard-di↵erentiable and

p
n{�̂j(t)� �j(t)}

=
p
n

Z ⌧

0

e⇤
C(u){Ĝj(du, t)�Gj(du, t)}+

p
n

Z ⌧

0

e⇤
C(u){⇤̂C(u)� ⇤C(u)}Gj(du, t) + op(1)

=
1p
n

n
X

i=1

bji(t) + op(1)

where

bji(t) = M total
i (t)I(⇧i = j)

Z ⌧

0

dND
i (u)

SC(u)
� �j(t) + �j(t)

Z ⌧

0

dMC
i (u)

SX(u)

�
Z ⌧

0

E{I(⇧ = j)M total(t)I(D  u)}dM
C
i (u)

SX(u)
.

For �̂J+1(t), we have

p
n{�̂J+1(t)� �J+1(t)} =

1p
n

n
X

i=1



I(Xi � ⌧)M total
i (t)

SC(⌧)
� E{I(X � ⌧)M total(t)}

SC(⌧)

�

+

E{I(X � ⌧)M total(t)}
p
n
h

exp{⇤̂C(t)}� exp{⇤C(t)}
i

+ op(1)

=
1p
n

n
X

i=1

⇢

I(Xi � ⌧)M total
i (t)

SC(⌧)
� �J+1(t) + �J+1(t)

Z ⌧

0

dMC
i (u)

SX(u)

�

+

op(1)

=
1p
n

n
X

i=1

bJ+1,i(t) + op(1) .
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For j = 1, . . . , J + 1, note that the stochastic process bj(t) (0 < t  ⌧) has zero

mean and can be written as the sum of monotone cadlag processes and is there-

fore Donsker (Lemma 4.1, Kosorok (2007)). We then have n�1/2
Pn

i=1 bji(t) (0 <

t  ⌧) converges weakly to a tight and zero-mean Gaussian process. Again, the

variance-covariance function can be consistently estimated by n�1
Pn

i=1 b̂ji(t1)b̂ji(t2),

where b̂ji(t) is obtained by replacing all the unknown parameters in bji(t) with

their respective empirical estimators. Specifically, for j = 1, . . . , J , the estima-

tor for E{I(⇧ = j)M(t)I(D  u)} can be constructed as
R u

0
Ĝj(dv,t)

ŜC(v)
.

4.6.3 Proof of Theorem 4.4.1

Assumptions (A1’), (A2) and (A3) are the regularity conditions for Theorem

4.4.1. We first derive the optimal weight function. Consider the Lagrange

function defined by

V (wjt, k) = wT
jt⌃j(t, t)wjt + k(wT

jte� 1).

Taking derivative of V (wjt) with respective to wjt, we have

(

@V (wjt,k)
@wjt

= 2⌃j(t, t)wjt + ke = 0
@V (wjt,k)

k = wT
jte� 1 = 0

And solving the equations gives us

(

k = � 2
eT⌃j(t,t)�1e

wjt =
⌃j(t,t)�1e

eT⌃j(t,t)�1e

Together with the inequality, we know that w⇤
jt ⌘ (w⇤

jt, 1 � w⇤
jt)

T = ⌃j(t,t)�1e
eT⌃j(t,t)�1e

is the weight that minimize wT
jt⌃j(t, t)wjt. We then use b⌃j(t1, t2), that is,

1

n

 

Pn
i=1 b̂ji(t1)b̂ji(t1)

Pn
i=1 b̂ji(t1){âi(t2)�

P

k 6=j b̂ki(t2)}
Pn

i=1{âi(t1)�
P

k 6=j b̂ki(t1)}b̂ji(t2)
Pn

i=1{âi(t1)�
P

k 6=j b̂ki(t1)}{âi(t2)�
P

k 6=j b̂ki(t2)}

!

,
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to estimate ⌃j(t1, t2), and use ŵ⇤
jt =

b⌃j(t,t)�1e

eT b⌃j(t,t)�1e
to estimate the optimal weight

w⇤
jt.

To obtain the i.i.d. representation of �̂imp
j (t), we have

p
n{�̂imp

j (t)� �j(t)} =
p
nŵ⇤

jt{�̂j(t)� �j(t)}+
p
n(1� ŵ⇤

jt){�̃j(t)� �j(t)}

= n�1/2
n
X

i=1

[w⇤
jtbji(t) + (1� w⇤

jt){ai(t)�
X

k 6=j

bki(t)}] + op(1)

⌘ n�1/2
n
X

i=1

fji(t) + op(1).

It’s easy to see that
p
n{�̂imp

j (t)��j(t)} (0 < t  ⌧) converges weakly to a tight

and zero-mean Gaussian process. The covariance at (t1, t2) can be consistently

estimated by n�1
Pn

i=1 f̂ji(t1)f̂ji(t2), where f̂ji(t) = ŵ⇤
jtb̂ji(t) + (1� ŵ⇤

jt){âi(t)�
P

k 6=j b̂ki(t)}.

4.6.4 Proof of Corollary 4.4.2

We assume Hj(0,1, ⌧) > 0. First, note that
p
n{Ĥj(0,1, ⌧)�Hj(0,1, ⌧)} =

n�1/2
Pn

i=1 dji(⌧) + op(1), where

dji(⌧) =

Z ⌧

0

I(⇧i = j)dND
i (u)

SC(u)
�Hj(0,1, ⌧) +Hj(0,1, ⌧)

Z ⌧

0

dMC
i (u)

SX(u)
�

Z ⌧

0

E{I(⇧ = j,D  u)}dM
C
i (u)

SX(u)
.
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For j = 1, . . . , J , we have

p
n{�̂c

j(t)� �c
j(t)}

=
1

Hj(0,1, ⌧)

p
n{�̂imp

j (t)� �imp
j (t)}� �j(t)

Hj(0,1, ⌧)2
{Ĥj(0,1, ⌧)�Hj(0,1, ⌧)}+ op(1)

=
1p
n

n
X

i=1

⇢

fji(t)

Hj(0,1, ⌧)
� �j(t)dji(⌧)

Hj(0,1, ⌧)2

�

+ op(1)

def
=

1p
n

n
X

i=1

gji(t) + op(1).

Also, note that gj(t) (0 < t  ⌧) can be written as sum of monotone cadlag

processes and is Donsker, thus
p
n{�̂c

j(t)��c
j(t)} (0 < t  ⌧) converges weakly

to a tight and zero-mean Gaussian process, whose covariance function can be

consistently estimated by n�1
Pn

i=1 ĝji(t1)ĝji(t2), where we define

ĝji(t) =
f̂ji(t)

Ĥj(0,1, ⌧)
�
�̂imp

j (t)d̂ji(⌧)

Ĥj(0,1, ⌧)2
.
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Chapter 5

Analysis of Quality-of-life
outcomes and Medical Costs
Data: Application to AIDS and
Cancer Studies

5.1 Analysis of Quality of life and Survival: CPCRA
ddI/ddC Trial

We illustrate the proposed methods by analyzing data from a clinical trial con-

ducted by Terry Beirn Community Programs for Clinical Research on AIDS,

a federally funded national network of community-based research groups. The

study compared didanosine (ddI) and zalcitabine (ddC) as treatments for HIV-

infected patients who were intolerant or had failed treatment with zidovudine.

The trial randomized 230 patients to receive ddI treatment and 237 to receive

ddC. The primary endpoint is time to disease progression or death. The sec-

ondary endpoints include changes in the Karnofsky performance score and op-

portunistic infections, where a reduction in the Karnofsky score and the occur-

rence of opportunistic disease indicate a deterioration in health. Both survival
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time and quality of life are regarded as important indexes for treatment suc-

cess. The analysis in Abrams et al. (1994) suggested that ddC treatment may

have provided a survival advantage over ddI treatment, with borderline signif-

icance based on a proportional hazards model. We investigated the treatment

e↵ects on the cumulative weighted marker process for a more comprehensive

assessment of the benefits and risks of the treatments. In our analysis, death

is the terminal event of interest, and Karnofsky score and incidence of oppor-

tunistic infections are used as measures for quality of life. The analysis with

Karnofsky score illustrates the proposed methodology in the case whre the lon-

gitudinal marker is intermitently observed, while the analysis with incidence of

opportunistic infections illustrates the situation where the longitudinal marker

is completely observed throughout the follow-up period.

In the first set of analysis, we divide the Karnofsky score by 100 and trans-

form it to a 0 to 1 scale and set w(·) = 1. The results are summarized in Table

5.2. The mean of the cumulative weighted marker process at 500th day (⇡ 1.37

year) is 0.876 for the ddI group and is 0.907 for the ddC group. The two-

sided p-value deriived from the proposed two-sample test is 0.38. Our analysis

suggests that ddC performs slightly better than ddI in terms of the proposed

summary measure, though the di↵erence is not statistically significant. Figure

5.1 displays the estimated cumulative mean function µ(t), survival function and

mean Karnofsky score of survivors in the ddI and ddC treatment groups. The

plots show that ddC performs better in terms of survival but worse in terms of

survivors’ physical quality of life, and the estimated summary measures for the

two treatments are very close.

In the second set of analysis, we consider benefit-risk assessment based on
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Figure 5.1: Estimated cumulative mean functions µ(t) using Karnofsky score
and time to death (left), survival functions (middle) and mean Karnofsky score
of survivors E{Y (t) | D � t} (right) for ddI (solid line) and ddC (dashed line)
treatment groups.

opportunistic infections and death. A total of 363 confirmed or probable op-

portunistic diseases indicating disease progression (Neaton et al., 1994) were

reported. The number of opportunistic infections per subject ranges from 0 to

5, with median 1 and mean 0.78. Denote by O(u) the total number opportunis-

tic infections occurred at or before time u, and set Y (·) = 0.8O(·). Then the

occurrence of opportunistic infection at time t discounts a patient’s score Y (t)

by 0.8. Then the estimated summary measure is 0.998 for the ddI group and

1.028 for the ddC group. The p-value derived from the proposed two-sample

test is 0.27. Our analysis again suggests that ddC outperforms ddI in terms of

the proposed summary measure on survival and opportunistic disease, although

the advantage is not statistically significant.
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Table 5.1: Analysis of ddI/ddC trial of CPCRA

ddI ddC

Marker Estimate 95% CI Estimate 95% CI p-Value

Karnofsky score 0.876 (0.828, 0.925) 0.907 (0.858, 0.955) 0.38

OI 0.998 (0.932, 1.063) 1.028 (0.959, 1.097) 0.27

Note: Estimate is the estimated µ(⌧) (⌧ ⇡ 1.37year) , 95% CI is the 95% confidence interval

based on standard error estimate. OI stands for opportunistic infection.

5.2 Analysis of Censored Medical Cost Data:
SEER-Medicare Linked Database

The proposed methods are applied to SEER–Medicare linked database; see

Warren et al. (2002) for an overview of the data. For illustration, we assess

the medical cost of breast cancer patients diagnosed at age 65+ in 1994 among

Medicare enrollees. We take the time of first diagnosis of breast cancer to be

the time origin, and D is the time from first diagnosis of breast cancer to death.

N(·) is the counting process that characterizes the number of inpatient or out-

patient cares, and upon the occurrence of inpatient or outpatient cares, Y (t) is

the cost charged for medical treatment. As a well known fact, cardiovascular

disease competes with breast cancer as the leading cause of death for older fe-

males diagnosed with breast cancer (Patnaik et al., 2011). In particular, we are

interested in three competing terminal events within ten years since diagnosis of

breast cancer: (i) breast cancer mortality (⇧ = 1), (ii) death from a cardiovas-

cular disease (⇧ = 2), (iii) mortality from other causes (⇧ = 3). The subjects

are divided into two groups by the historic stage determined at diagnosis: 6156

subjects with localized stage and 2540 subjects with regional stages. In the

65



following analysis, the cost accumulation process from first diagnosis to ⌧ = 10

years is of interest, and people who survives more than 10 years are classified

to the fourth category (long-term survivors).

We begin with estimating the cumulative incidence in standard competing

risks model. For patients diagnosed with localized stage, the 10-year cumula-

tive incidence was 8.5% (SE : 0.5%) for breast cancer (BC) deaths, 12.4% (SE :

0.5%) for cardiovascular disease (CVD) death, and 25.7% (SE : 0.7%) for other

cause mortality. For patients diagnosed with regional stage, the 10-year cumula-

tive incidence was 30.8% (SE : 1.2%) for breast cancer deaths, 13.4% (SE : 0.9%)

for cardiovascular disease death, and 24.6% (SE : 1.1%) for other cause mor-

tality. Thus at the end of the tenth year, the regional stage group has larger

proportion of patients with breast cancer death than the localized stage group,

and the two groups has similar proportions of cardiovascular disease death and

death due to other causes.

We then analyze the medical cost up to a time horizon ⌧ = 10 years with

our proposed methods. The results are presented in Table 2. When we do not

distinguish the three types of death, the estimator in Section 3.1 is employed to

estimate the total medical cost. It can be seen that the regional stage group has

higher average ten-year medical cost than the localized stage group. We further

take into account the three competing risks, ⇧ = 1, 2, 3, and the estimates are

obtained by using the improved estimators in Chapter 4.4. For each of the lo-

calized and regional stage groups, the average cost of patients with CVD death

(�c
2(⌧)) di↵ers slightly from the average cost of patients with other mortality

(�c
3(⌧)), but is much higher than the average cost of patients with BC mortality

(�c
1(⌧)). In contrast, for the overall spending of medical cost, �j(⌧), patients
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with other mortality spent the most when compared with BC and CVD mortal-

ity, which is largely explained by the large proportion of patients of with other

cause of death at the tenth year.

For a better plot presentation, we consider the average medical cost over time

from first diagnosis of breast cancer to the tenth year after diagnosis. The med-

ical costs over time of localized and regional stage group are presented in Figure

1, and regional stage group has consistently higher medical cost over time. The

estimated medical costs over time for competing risk types ⇧ = 1 and 2 are

shown in Figure 2. For the overall spending of medical cost (�j(t), j = 1, 2), it

can be seen that the expected cost attributed to BC mortality of regional stage

patients is much higher than that of localized stage patients, which is mainly

due to the higher 10-year cumulative incidence of BC mortality of regional stage

patients. The average costs of patients with each cause of death (�c
j(t), j = 1, 2)

are similar between localized and regional group, though the cost over time for

CVD mortality patients is consistently higher than the cost for BC mortality

patients.
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Figure 5.2: Estimated total mean cost over time since first diagnosis of breast
cancer and point-wise 95% confidence intervals
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NOTE: Costs for patients with localized stage (estimate: solid line; CI: dotted
line) and regional stage(estimate: long-dash line; CI: dashed line).

Table 5.2: Analysis of SEER-Medicare Data

Localized Regional

Estimate SE Estimate SE

Total �(⌧) 86794.9 2173.1 91761.8 3504.0

BC mortality �1(⌧) 6958.5 603.33 22573.6 1502.6

�c
1(⌧) 81580.1 5540.9 73279.5 3952.3

CVD mortality �2(⌧) 14661.5 1088.7 15296.6 1681.2

�c
2(⌧) 117963.1 7082.9 114158.2 10012.0

Other mortality �3(⌧) 31374.9 1652.7 29170.1 2562.0

�c
3(⌧) 122222.9 5452.9 118937.0 8907.5

Long-term survivors �4(⌧) 63330.0 2343.5 24682.7 2198.8

�c
4(⌧) 45911.9 1364.7 79116.7 6342.7

NOTE: Estimate is the cost in US Dollar at ⌧ = 10 year, SE is the standard error estimate.

BC is for breast cancer and CVD is for cardiovascular disease.
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Figure 5.3: Cost analysis for breast cancer mortality and cardiovascular disease
mortality
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NOTE: The left panels are estimated mean cost since first diagnosis of breast
cancer for BC mortality �1(t) (Upper) and CVD mortality �2(t) (Lower) with
point-wise 95% confidence intervals (CI). The right panels are estimated con-
ditional mean cost of BC mortality �c

1(t) (Upper) and CVD mortality �c
2(t)

(Lower). The solid lines are estimates for patients with localized stage (CI:
dotted line) and the dashed line are estimates for patients with regional stage
(CI: dashed line).
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Figure 5.4: Cost analysis for other causes mortality and long-term survivors
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NOTE: The left panels are estimated mean cost since first diagnosis of breast
cancer for other-cause mortality �3(t) (Upper) and long-term survivors �4(t)
(Lower) with point-wise 95% confidence intervals (CI). The right panels are
estimated conditional mean cost of other-cause mortality �c

3(t) (Upper) and
long-term survivors �c

4(t) (Lower). The solid lines are estimates for patients
with localized stage (CI: dotted line) and the dashed line are estimates for
patients with regional stage (CI: dashed line).
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Chapter 6

Discussion

In this dissertation, we first consider benefit-risk assessment based on longitu-

dinal marker measurements and time to event data. The proposed method is

especially useful when conflict results about the treatment e↵ects are reported

for the two outcomes. Our estimation and testing procedures are more robust

than the existing methods, such as Hwang et al. (1996), in the sense that the sta-

tistical procedures can be derived from one single data set. Statistical inference

properties are established for point estimate and hypothesis testing, hence the

proposed methodology is expected to be attractive for practitioners to facilitate

accurate decision-making.

The proposed methodologies have a wide range of applicability in biomedical

and publich health research. Besides the examples discussed in Section 3.1, the

longitudinal measure Y (·) can also be the value of an surrogate biomarker for

the survival outcome of interest; for example, CD4 cell count has been used as

a surrogate for progression to AIDS or death in many AIDS studies. In the case

where the follow-up duration is not long enough to accumulate adequate num-

ber of events for meaningful analysis, the clinical study may have insu�cient
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power to detect treatment e↵ects on the survival outcome. Compared with the

conventional survival analysis, the proposed methods utilize additional infor-

mation from the surrogate marker and possess the potential to increase power

in detecting real treatment e↵ects. Finally, instead of using a single marker

process, a benefit-risk summary measure integrating multiple marker processes

and time to event is under investigation.

In this work, we have focused on the one- and two- sample problems, and

the proposed summary measure is estimated using kernel smoothing techniques.

It would be interesting to consider extending the methodology to a regression

setting.

For example, we may consider the following frailty model. Let V represents

the covariates, then the summary measure adjusted for covariates can be defined

as µ(⌧ | V ) =
R ⌧

0 E{Y (u)I(D � u) | V }du. We can estimate µ(⌧ | V ) based

on a joint model of longitudinal and survival data. For example, we assume

E{Y (t) | V, Z} = g(t) + V � + Z and hazard function h(t | V, Z) = Zh0(t)eV �,

where the frailty random variable Z is independent of V and has a gamma

distribution with unit mean and variance 1/↵. When ↵ ! 1, the correlation

of Y (·) and D goes to 0. It can be further shown that E{Y (t)I(D � t) | V } =

↵↵+1{↵+H0(t)eV �}�↵�1 + ↵↵{↵+H0(t)eV �}�↵{V � + g(t)}. Suppose V is the

treatment indicator, coded 0 if control and coded 1 if treated, then µ(⌧ | V = 1)

and µ(⌧ | V = 0) are deterministic functions of (�, �). If � > 0 and � < 0, both

longitudinal and survival components for the treatment group would be better.

If � < 0 and � < 0, survival outcome for the treatment group is better but

longitudinal outcome is worse, then it would be di�cult to make decision based

on the two separate components. Our proposed summary measure o↵ers a way
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to summarize joint modeling results for a conclusive benefit-risk assessment,

that is, we can compare µ(⌧ | V = 1) and µ(⌧ | V = 0) for decision-making.

The work can also be extend to the situation where the terminal event

time is subject to left truncation. One can modify the risk-set indicator to get

estimation under left truncation.

This dissertation also proposed nonparametric estimators of the mean recur-

rent marker process, with specific focus on competing risks model. In Section

4.2, we considered a nonparametric estimation approach which uses marker his-

tory information from both censored and uncensored subjects, but the estimator

cannot be generalized to handle problems involving competing risks because the

risk type information is unknown for those censored subjects. A consistent and

asymptotically normally distributed estimator of type-j mean function is then

constructed in Section 4.3 under competing risks model, where the proposed

estimator only uses risk type information from uncensored subjects. Further-

more, using auxiliary information from the estimate of the non-competing risks

mean function, an optimal estimator among a class of weighted estimators is

proposed in Section 4.4 to improve the estimation e�ciency over the estimator

proposed in Section 4.3.

In this article, we mainly considered one-sample estimation, the authors

are considering to extend the non-parametric estimation to regression setting.

For example, we may consider the following marginal models. We assume the

survival time in the target population follows the Cox proportional hazards

model

h(t | V ) = h0(t) exp(↵V ),
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where �(t) is an unspecified baseline hazard function and ↵ is the coe�cient.

For the marked recurrent event process, we define the conditional rate function

given D = t and V = v, that is, ⌘(u, t | v)du = E{Y (u)dN(u) | D = t, V = v}.

Then we consider the following proportional rate model

⌘(u, t | v) = ⌘0(u, t) exp(�v), 0  u  t (6.0.1)

where h(u, t) is an unspecified baseline rate function at time u given D = t.

Note that h(u, t | v) is the rate of accumulation of cost or utility at u given

that survival time is t and covariate is v. In many studies, survival time is

typically the primary endpoint whereas lifetime medical cost is a secondary

outcome, thus it is meaningful to compare the cost/utility accumulation process

among subjects with the same survival time. Moreover, medical costs usually

increase during the time period prior to death because of the intensive care

for dying patients, and the patterns of medical costs is often closely linked

to the death time (Liu et al., 2007). Therefore, it is natural to model cost

trajectory conditional on terminal event time. Define H(t | v) =
R t

0 ⌘(u, t |

v)du = E{
R D

0 Y (u)dN(u) | D = t, V = v}, which is the expected lifetime cost

or utility given survival time t and covariate v. Note that (6.0.1) implies

H(t | v) = H0(t) exp(�v), (6.0.2)

where H0(t) =
R t

0 ⌘0(u, t)du is the baseline lifetime cost/utility given survival

time is t. Compared to equation (6.0.1), equation (6.0.2) makes stronger as-

sumption of the stochastic process Y (·)dN(·) before the terminal event. Esti-

mating equations can be constructed using similar methods in Chan (2009).

In conclusion, the nonparametric methods proposed in this dissertation for

marker processes with a terminal event may initiate a variety of future works

74



on both statistical methods and applications, which could facilitate a compre-

hensive understanding of the marker process and survival time.
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The Glaxo SmithKline Award, Johns Hopkins University, 2011

• Honors outstanding achievement on the first-year comprehensive exam

The First Prize Scholarship and Excellent Thesis Award, Zhejiang University,
2007-2010

Research Experience

Research Assistant September 2014 - present
Supervisor: Dr. Gary Chan, Department of Biostatistics, University of Wash-
ington
Research in e�cient estimation of accelerated failure time model with length-
biased data
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Research Assistant September 2012 - August 2014
Supervisors: Dr. Xiaobin Wang and Dr. Xiumei Hong, Department of Pop-
ulation, Family, and Reproductive Health, JHSPH
Research in Genome-wide association study and DNA methylation analysis
on child-hood food allergy and preterm birth

Papers and Publications

1. Hong X, Hao K, Ladd-Acosta C, Hansen K D, Tsai H-J, Liu X, Xu X,
Thornton T A, Caruso D, Keet C A , Sun Y, Wang G, Luo W, Kumar R,
Fuleihan R, Singh A M, Kim J S, Story R E, Gupta R S, Gao P, Chen Z,
Walker S O, Bartell T R, Beaty T H, Fallin M D, Schleimer R, Holt P G,
Nadeau K C, Wood R A, Pongracic J A, Weeks D E and Wang X (2015).
“Genome-wide association study identifies peanut allergy-specific loci and
evidence of epigenetic mediation in US children”.Nature Communications

6. Article number: 6304.

2. Sun Y, Huang C-Y and Wang M-C (2015). “Nonparametric Benefit-risk
Assessment Using Marker Process in the Presence of a Terminal Event.”In
revision at Journal of the American Statistical Association.

* An earlier version won the Best Paper Award, 2015 ASA Section

on Risk Analysis Student Paper Competition

3. Sun Y andWang M-C (2015). “Recurrent Marker Process in the Presence
of Competing Terminal Events.”In revision at Journal of the American

Statistical Association.

4. Sun Y, Chan G and Qin J (2015). “Fast Over-identified Rank Estimation
for Right-censored Length-biased Data.”To be submitted.

5. Chan G, Sun Y, Huang C-Y and Wang M-C (2015). “Semiparametric
Joint Modeling of Recurrent Marker Process and a Terminal Event in the
Presence of Left Truncation.” In Preparation.

6. Sun Y, Huang C-Y and Qin J (2015). “Missing Information Principle for
Left-truncated and Right-censored data with a Known Truncation Time
Distribution.”In Preparation.

7. Marr K A, Tsai H-L, Sun Y, Avery R K, Shoham S, Alp S, LaRue R,
Ostrander D, Lu N, Jones R, Montgomery R and Huang C-Y. “Infections
after Organ and Hematopoietic Stem Cell Transplantation: A Prospective
Cohort Study.”To be submitted.
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Professional Service

Review: Life Time Data Analysis

Professional Development

Language Skills: English (Fluent); Chinese (Fluent)
Computer Skills: R, Matlab, Stata, SAS, C/C++
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