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Abstract 

 

Birth outcomes such as gestational age, or environmental exposures like mercury, 

serve either as one of the strongest predictors for neonatal, adolescent, and adult 

morbidity and mortality or associated with common diseases such as cancer, 

cardiovascular disease, and neurological disorders through unknown mechanisms. 

Identification of genomic loci undergoing epigenetic changes, specifically DNA 

methylation, would increase our understanding of these unknown mechanisms. To 

address this, we performed CHARM 2.0, a genome-wide array-based analysis of DNA 

methylation, in 141 newborns collected in Baltimore, Maryland using bump-hunting 

based novel statistical methodology to identify genomic regions associated with 

gestational age. Through this analysis, we identified three DMRs at genome-wide 

significance levels associated with gestational age near three genes (NFIX, RAPGEF2 

and MSRB3) and one DMR commonly associated with total and methyl mercury 

exposure (TCEANC2). All of the three regions associated with gestational age were 

validated, and the region associated with both mercury exposure types were replicated by 

bisulphite pyrosequencing. Of the genes near or containing the DMRs, RAPGEF2 and 

TCEANC2 gene showed an inverse correlation between DNA methylation level and its 

expression level. For all of the gestational age DMRs, the DNA methylation levels at 

these regions appear similar or more extreme than those of the latest gestational ages in a 

heterogeneous population of adults. Together, the existence of gestational age DMRs 

suggests that epigenetic changes can occur not only during embryogenesis, but also 

during later stages of gestation. Also, The existence of mercury DMRs raise the 
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possibility that environmental exposures, particularly heavy metals during pregnancy, 

would serve as inducing/mediating factors for epigenetic changes in neonates. 

 

 

 

 

 

 

 

 

Readers: 

Margaret Daniele Fallin, Ph.D 

Andrew P. Feinberg, M.D., M.P.H. 

 

Thesis Advisor: 

Andrew P. Feinberg, M.D., M.P.H. 

 

 

 



 iv 

Acknowledgments 

 

During the journey of my graduate school years, there are many people who 

helped me go through the process with precious advice, guidance, support and comments. 

Although it’s impossible to mention everybody here, I would like to show my best kind 

to recognize people who made this work possible. 

 

First, and foremost, I would like to thank Dr. Andrew P. Feinberg as a great thesis 

advisor and mentor. After joining the lab, he provided wonderful research opportunities 

and encouraged me to fully commit on learning how to conduct rigorous, fun and rightful 

science. Also, he put his efforts on training me as an independent scientist, including how 

to read and write scientific literatures, and in particular, how to present scientific work.  

Without Dr.Feinberg’s guidance, training, and care, I would never have been able to 

grow as a trained scientist and graduate before my military deadline. I will always 

remember his guidance and advice and in my future career. 

 

I would also like to acknowledge Dr. M. Daniele Fallin and Dr. Lynn R. Goldman 

as closely working collaborators, mentors for publication and grants, and as thesis 

committee members, particularly Dr.Fallin as a committee chair and thesis reader. To be 

frank, epidemiology was a new field to me, and I would have never completed my thesis 

work without their gracious support and academic guidance.  

 

In addition, I would like to thank Dr. Sean Taverna and Dr. Michael Wolfgang as 



 v 

thesis committee member. Their scientific suggestions helped developing my thesis as a 

more complete piece of work.        

 

I would also like to thank Dr. Andrew Jaffe, who closely worked with me as a 

biostatistician and co-first author for identification of gestational age DMRs. I enjoyed 

discussing about our work, and will remember his enthusiasm towards science. 

 

Plus, I would like to thank all of our current and former lab members for all the 

helps they provided me to be established in the lab, and open to both scientific and non-

scientific discussions. Especially, I thank Dr. Kelly Bakulski, Carolina Montano, and 

Jason Feinberg for their contribution to this thesis work. 

 

I would also want to thank Colleen Graham, Leslie Lichter, Dr.Rajini Rao, my 

Cellular and Molecular Medicine program colleagues, and the basketball members for 

their support, kindness, and friendship. 

 

I would like to thank all of the members who contributed to coordinate and 

establish all the epigenetic and epidemiological data in THREE and NCS Vanguard study. 

Without their work and commitment, this thesis work would never have even started.  

 

I would like to thank my parents, family members and friends, in particular Luke 

Hwang, who always supported me with all of their heart and soul. After I born as a pre-

term and low birthweight with various health issues, their unconditional love and support 

enabled me to become a healthy scientist. 



 vi 

Also, I would like to thank Samsung Scholarship for the funding support 

throughout my graduate school and the human networks among the scholarship recipients. 

 

Lastly, I thank God that I am graduating before the military deadline. I will 

remember everybody’s support during the journey of graduate school. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

Table of Contents 

Abstract……..……..……..……..……..……..……..……..……..……..……..………….ii 

Acknowledgements……..……..……..……..……..……..……..……..……..…………..iv 

Table of Contents……..……..……..……..……..……..……..……..……..……..……...vii 

List of Tables……..……..……..……..……..……..……..……..……..……..…………viii 

List of Figures……..……..……..……..……..……..……..……..……..……..…………..x 

Chapter 1: Background……..……..……..……..……..……..……..……..………..1 

Chapter 2: Introduction……..……..……..……..……..……..……..……..……...10 

Chapter 3: Materials and Methods……..……..……..……..……..……………17 

1. Study Samples……..……..……..……..……..……..……..……..…………..18 

2. Laboratory Analyses……..……..……..……..……..……..……..…………..20 

a. CHARM DNA methylation……..……..……..……..……..………...20 

b. Infinium HumanMethylation450 assay……..……..……..…………..21 

c. Bisulphite Pyrosequencing……..……..……..……..……..………….22 

d. Quantitative real-time PCR……..……..……..……..……..…………23 

3. Statistical Analyses……..……..……..……..……..……..……..……..……..24 

Chapter 4: Results – Identification of Gestational Age DMRs…………..37 

Chapter 5: Results – Identification of mercury associated DMRs……...57 

Chapter 6: Discussion……..……..……..……..……..……..……..……..…………76 

Curriculum Vitae……..……..……..……..……..……..……..……..……..………….88 



 viii 

List of Tables 

 

Table 3.1 : Bisulfite Sequencing Primers………………………………………..………28 

Table 3.2 : Real-time PCR Primers for Expression Analyses…………..……..……...…34 

Table 4.1 : Characteristics of THREE study newborns included in this epigenetics  

project……………….……..……..……..……..……..……..……….………49 

Table 4.2 : Top 30 list of DMRs associated with gestational age at birth identified via  

CHARM 2.0…….……..……..……..……..……..……..……..……..………50 

Table 4.3 : Candidate significant DMRs associated with gestational age identified via  

CHARM 2.0……………….……..……..……..……..……..……..…………52 

Table 4.4 : Co-efficient (95% CIs) of linear relationship between potential confounders  

and gestational age at birth or average methylation at each of the identified 

DMRs…..……..……..……..……..……..……..……..……..……..………..53 

Table 4.5 : Comparison of regression coefficients [95% CI] for relationship between  

methylation and gestational age with and without adjustment for potential  

confounders……..……..……..……..……..……..……..……..……..……..54 

 



 ix 

Table 4.6 : Results for univariate and multivariate regression analyses of methylation on  

birthweight and/or gestational age……..……..……..……..……..………….55 

Table 5.1 : Characteristics of THREE and NCS Vanguard study newborns included in  

this project……..……..……..……..……..……..……..……..……..…..........69 

Table 5.2 : Distribution of total/methyl mercury from THREE and NCS Vanguard study  

newborns included in this project……..……..……..……..……..….……….70 

Table 5.3 : Candidate significant DMRs associated with total (a) and methyl (b) mercury  

exposure in THREE study……..……..……..……..……..……..…….…….71 

Table 5.4 : Linear relationship coefficient [95%CI] between potential confounders and  

total (a) and methyl (b) mercury exposure or average methylation at DMR 

inside TCEANC2 gene……..……..……..……..……..……..……...………..72 

Table 5.5 : Comparison of regression coefficients [95% CI] for association between  

DNA methylation and total (a) and methyl (b) mercury exposure with and 

without adjustment for race……..……..……..……..……..……..………….73 

Table 5.6 : Correlation between estimated blood cell counts and total mercury exposure  

in NCS Vanguard study……..……..……..……..……..……..……..……….74 

 

 



 x 

List of Figures 

 

Figure 4.1 : Distribution of gestational age at birth among 141 newborns in the THREE  

Study……..……..……..……..……..……..……..……..……..……..……...44 

Figure 4.2 : Methylation plots for three identified DMRs for gestational age at birth…..45 

Figure 4.3 : Bisulfite pyrosequencing results for each DMR……..……..……..………..46 

Figure 4.4 : Methylation plots for three identified DMRs for gestational age at birth with  

adult methylation results included……..……..……..……..……..……..…..47 

Figure 4.5 : Correlations between gene expression and DNA methylation for each DMR  

and its nearest gene……..……..……..……..……..……..……..……..…….48 

Figure 5.1 : Methylation plots for DMR inside TCEANC2 associated with methyl and  

total mercury exposure……..……..……..……..……..……..……..……….63 

Figure 5.2 : Methylation plots for other identified DMRs associated with total  

mercury exposure……..……..……..……..……..……..……..……..……...64 

Figure 5.3 : Bisulfite pyrosequencing results for DMR inside TCEANC2........…………65 

Figure 5.4 : Bisulfite pyrosequencing results for DMR inside ANGPT2, PRPF18 and near 

FOXD2…..……..……..……..……..……..……..……..……..……..……..……...……..66 



 xi 

Figure 5.5 : DNA methylation levels at four Infinium HumanMethylation450  

probe sets located near/inside the DMR inside TCEANC2…..……..……...67 

Figure 5.6 : Correlation between DNA methylation level at TCEANC2 DMR and  

TCEANC2 gene expression level……..……..……..……..……..……..…..68 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
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Epigenetics is defined as the study of heritable marks other than the primary DNA 

sequence itself. Although DNA methylation is the only epigenetic mark proven to meet 

the traditional definition as a heritable mark through cell division, epigenetics now cover 

far more marks due to the complex nature and interactions between different marks 

including DNA methylation. Epigenetic marks now cover DNA cytosine modifications 

(hydroxylation, formylation and carboxylation), histone post-translational modifications 

(methylation, acetylation, phosphorylation, ubiquitination, sumonylation, crotonylation), 

and histone variants (H3.3, H2AZ, macroH2A, γH2AX). Together, these marks 

determine the chromatin environment inside nucleus such as nucleosome occupancy, 

high order chromatin structures like Large Organized Chromatin K modifications 

(LOCKs) (Wen et al., 2009), hypomethylated blocks (Hansen et al., 2011), Partially 

Methylated Domains (PMDs) (Lister et al., 2009) and Lamin Associated Domains (LADs) 

(Guelen et al., 2008). Although not an epigenetic mark itself, non-coding RNAs such as 

long intergenic non coding RNAs (lincRNAs) and enhancer RNAs (eRNAs) in 

mammalian system are included due to their role of mediating changes in epigenetic 

marks and chromatin structure (Mousavi et al., 2013; Tsai et al., 2010). Collectively, 

epigenetic marks, chromatin environment, and non-coding RNAs are important in both 

establishment of cellular identity and in disease context, such as cancer or common 

diseases.  

One of the epigenetic marks is DNA methylation, which occurs at the fifth carbon 

position of the DNA cytosine nucleotide in vertebrates.  Generally, DNA methylation 

occurs in the context of CpG dinucleotides, but non-CpG methylation has also been 

observed in stem cells (Lister et al., 2009; Lister et al., 2011; Ramsahoye et al., 2000). 
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Methylation of DNA is catalyzed by DNA methyltransferases (DNMTs) by transferring 

methyl group from S-Adenosyl Methionine (SAM) to cytosine. Of the DNMTs, DNMT1 

serves as a maintenance methyltrasnferase by methylatng hemimethylated DNA during 

the DNA replication process. DNMT3A and B are de novo methyltransferases. 

Demethylation of DNA can occur passively by not replicating methylation patterns to 

daughter strand, or actively through combination of base excision repair (BER), 

nucleotide excision repair (NER) pathway and Ten Eleven Translocation (TET) enzymes 

(Wu and Zhang, 2010). Specifically, TET enzymes catalyze the oxidation of 5-

methylcytosine to 5-hydroxymethylcytosine (Tahiliani et al., 2009), and further catalyze 

to 5-formylcytosine and 5-carboxycytosine, and finally excised by Thymine-DNA 

Glycosylase (TDG) (He et al., 2011; Ito et al., 2011). These demethylation intermediate 

marks were observed in many tissue types, but most abundantly in early embryos, 

embryonic stem cells, primordial germ cells, purkinje neurons, and hippocampal dental 

gyrus (Guo et al., 2011; Kriaucionis and Heintz, 2009).   

One of the recent technological developments relevant for DNA methylation 

research is the establishment of genome-scale DNA methylation assay, either utilizing 

array-based or sequencing based systems. One of the array based genome-scale 

methylation technology used in this thesis study and other published studies is called 

Comprehensive High-throughput Array-based Relative Methylation (CHARM) assay, 

which utilized McrBC, a methyl-sensitive restriction enzyme. The original CHARM 

array design (custom designed NimbleGen HD2) interrogates 4.6 million CpGs across the 

genome, and covers almost all of the CpG islands, promoters, and non-repetitive lower 

CpG dense regions (Irizarry et al., 2008; Ladd-Acosta et al., 2010). Through this unique 
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array system, investigators not only found methylation signature patterns across different 

cell and tissue types but also identified new discoveries which could not be found from 

using CpG-island focused arrays, including the finding that most methylation changes 

observed between different tissues (brain, liver and spleen), colon cancer, hematopoiesis 

and iPSC system are not at CpG islands but at CpG island shores, defined as sequences 

up to 2kb distant from CpG islands (Doi et al., 2009; Irizarry et al., 2009; Ji et al., 2010). 

Other array based genome-scale assays such as Infinium HumanMethylation450 

BeadChip assay are also widely used in various DNA methylation research areas. One of 

the sequencing based DNA methylation assays called Whole Genome Bisulfite 

Sequencing is by far the most comprehensive genome-scale DNA methylation assay. 

This assay is based on treating bisulfite on genomic DNA, which converts unmethylated 

cytosine to uracil, whereas methylated cytosine remains unconverted (Krueger et al., 

2012). Thus, bisulfite treatment creates sequence differences based on cytosine 

methylation status of DNA. After shearing genomic DNA, bisulfite treatment, the 

prepared sequence library is subjected to next generation sequencer. This approach 

enabled us to create genome-wide, single-base resolution DNA methylation map on 

various organisms including Arabidopsis thaliana (Cokus et al., 2008; Lister et al., 2008), 

and in human system (Lister et al., 2013; Lister et al., 2009; Lister et al., 2011). In 

addition, this technology directed us to new discoveries such as identification of non-

CpG methylation and large methylation structures (PMDs and blocks), which blocks 

found to display stochastic variation in several types of tumor tissues with large-scale 

hypomethylation (Hansen et al., 2013; Hansen et al., 2011).  
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One of the rising epigenetic research fields along with the described technological 

advancements in genome-scale DNA methylation assay is epigenetic epidemiology, or 

Epigenome-Wide Association Studies (EWAS). These population-level genome scale 

studies are important since it’s possible that epigenetic marks influence disease 

phenotypes by affecting the expression of target genes independent of or interacting with 

any sequence variation within or nearby the gene and the environmental factors 

(Bjornsson et al., 2004). EWAS started to replace traditional approaches to conduct 

epigenetic assays targeting selected candidate genes previously known to be involved in 

diseases, and they hold great promise for systematically dissecting out the role of 

epigenetic variation in health and disease (Michels et al., 2013). One of the several 

challenges for EWAS is to establish statistical methodology to properly deal with large-

scale epigenetic data combined with epidemiological database. Although recent EWAS 

adopted GWAS-like approach to identify association between the phenotype of interest 

and DNA methylation at individual CpG level, more advanced strategies to analyze DNA 

methylation data by identification of Differentially Methylated Regions (DMRs) can be 

more productive (Bock, 2012). Recent work suggested novel statistical analysis tool 

called bump-hunting in order to identify DMRs based on techniques that borrows 

statistical power from adjacent CpGs to produce estimates that are substantially more 

precise than methods focusing on individual CpGs for EWAS (Jaffe et al., 2012b). 

In the subsequent chapters, two perinatal EWAS to identify DNA methylation 

differences associated with birth outcomes and environmental exposure, particularly 

gestational age and mercury exposure levels are described. Experimentally, CHARM 2.0, 

an upgrade version of CHARM assay, was used to obtain genome-scale methylation data, 
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which further described in Laboratory Analyses part in Materials and Methods chapter. 

For biostatistical analysis, bump-hunting algorithm was used to identify DMRs 

associated with our variables of interest, which further described in Statistical Analyses 

part in Materials and Methods chapter.  
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Childhood disorders such as autism spectrum disorders (ASD) present lifetime 

challenges for children and their families with huge impact on public health. For example, 

ASDs may affect as many as 1 in 150 children with showing symptoms such as absent or 

delayed non-verbal communication, impaired social interactions, and rote or repetitive 

behaviors (Rice et al., 2007). The identification of causes and mechanisms for the 

progression of such disorders would have profound impact on the diagnosis, prevention, 

and possible treatment of these public health problems. The causes of childhood disorders 

could be environment (either in utero or post-birth), inherent genetics and epigenetic 

signatures such as DNA methylation. Thus, integration of the environmental exposure 

status, birth outcomes, genetics, and epigenetics of neonates would be the most 

comprehensive way to find the ultimate cause for the disorders.  

Gestational age is the age of fetus in utero, and serves as one of the birth 

outcomes. Gestational age is the most important indicator of perinatal mortality in 

developed countries (Goldenberg et al., 2008), and also contributes to childhood and 

adult morbidity and mortality (Crump et al., 2011; Saigal and Doyle, 2008; Swamy et al., 

2008).  In 2005, approximately 13% of infants in the USA were born pre-term (<37 

weeks), a rise from <10% in 1990 (Martin et al., 2007). The mechanism by which pre-

term birth (PTB) increases morbidity and mortality is largely unknown. Recognition of 

specific genes that are still undergoing regulatory change prior to birth would not only 

increase our understanding of the developmental changes that are occurring during late 

pregnancy, but also it would aid in identifying genetic, epigenetic and environmental 

factors that could lead to PTB. The risks of negative public health consequences of PTB 

are many, including mortality, learning disabilities and respiratory illnesses (Beck et al., 
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2010). Identification of epigenetic factors has the potential to prevent or ameliorate these 

adverse impacts. 

Mercury, one of the toxic heavy metals, act as an environmental factor causing 

severe health consequences with symptoms such as sensory disturbance, visual field 

constriction, ataxia and deafness (Edwards, 1865).  Of the several forms of inorganic and 

organic mercury, the major form of the mercury exposure in human is through methyl 

mercury (WHO, 2010). The known major sources of methyl mercury exposure are diet, 

particularly large fish and seafood, and socioeconomic status (Golding et al., 2013). The 

toxicity of high level methyl mercury exposure has been shown by multiple historical 

episodes such as Minamata disease and Iraq poison grain syndrome, affecting more on 

fetus due to in utero exposure with similar health consequences comparing to adults 

(Bakir et al., 1973; Social Scientific Study Group on Minamata Disease, 1999).  

Furthermore, a case from Swedish family with infants suffering from mental retardation 

and severe deficient in motor development without any effect on the mother emphasized 

the fetal effect of methyl mercury exposure in utero (Engleson and Herner, 1952). Not 

only high-level methyl mercury exposures show these fetal disorders, low-level methyl 

mercury exposure can also affect fetus in utero, showing association with brain function 

deficits (Grandjean et al., 1997). Identification of epigenetic factors associated with the 

exposure levels would reveal potential mechanisms inducing the adverse health outcomes 

and possibly prevent or ameliorate them. 

From the point of view of a developmental change that is associated with health 

risk and environmental mediators, epigenetic changes in the fetus are potentially 

important, since epigenetic information affects gene expression, and its function varies 
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within an individual across developmental stages. A significant challenge in 

understanding the role of epigenetic changes in epidemiology is integrating novel 

molecular, epidemiological and biostatistical tools at a genome-scale level. Unlike 

classical genome sequence analyses, the methods and study designs for whole genome 

epigenetic epidemiology are not yet well established. The approach we have taken here is 

to design a genome-scale epidemiological analysis a priori from this joint conceptual 

perspective. We focused on DNA methylation because it is a key primary epigenetic 

process, with a well-established mechanism for propagating non-sequence-based 

information during cell division. The DNA methylation analysis presented here can serve 

as a paradigm for other epidemiological studies intending to characterize epigenetic 

profiles in specimen repositories, in which DNA methylation but not other epigenetic 

marks (e.g. histone modifications) are preserved. We have applied a significant 

technological extension of our previously described comprehensive high-throughput 

array-based relative methylation (CHARM) approach (Irizarry et al., 2008) that can now 

detect 5.2 million cytosine–guanine dinucleotide (CpG) sites which can be subject to 

DNA methylation. We also formally define an epigenetic variable, termed differentially 

methylated region (DMR), which we have used previously, but now have advanced its 

genome-wide detection to include novel statistical strategies to improve signal to noise 

detection, as well as the concept of regional methylation detection (Jaffe et al., 2012b).  

While one would expect large-scale epigenetic changes to occur between early 

embryogenesis and the end of gestation, at present nothing is known about epigenetic 

changes in the fetus that occur relatively late in pregnancy, covering intervals relevant to 

the variation in gestational ages at birth that represent dramatic changes in health 
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outcomes. Epigenetic changes in placental samples across gestation have been observed, 

implying the importance of such modifications for support of a growing fetus (Novakovic 

et al., 2011), but genome-scale and site-specific methylation data on the fetus itself, and 

with respect to the late gestational ages associated with most births, have not yet been 

reported before our publication. Also, no genome-scale study has been yet performed to 

discover the association between metal exposures, particularly mercury. The integration 

of the findings from these two genome-scale studies and other studies would enhance our 

knowledge of how epigenetics would be involved in the birth outcomes and exposures, 

and direct possible changes in the medical policy for pregnant women. For these reasons, 

we performed a genome-scale comprehensive analysis of DNA methylation on 141 

newborns to identify regions of the genome with DNA methylation levels correlated to 

gestational age at birth and mercury exposure. We then validated and replicated these 

microarray results via bisulphite sequencing. For gestational age DMRs, we further 

characterized the relationship between developmental age and DNA methylation at the 

DMRs by comparing these newborn results to the same regions among adult DNA 

samples. 
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1. Study Samples 
 

 

Cord blood clot samples were obtained from the Baltimore Tracking Health 

Related to Environmental Exposures [THREE] Study (Apelberg et al., 2007). THREE is 

a cross-sectional sample of newborns born at the Johns Hopkins Hospital in Baltimore, 

MD, between November 2004 and March 2005. Of the 603 children delivered during that 

time window, 300 were eligible (24 twin births removed, 291 did not have any or ample 

cord blood available). Of these, 187 contributed a cord blood clot from which DNA could 

be isolated for the epigenetic project. Clots were saved during the second half of the data 

collection period.  

Cord blood buffy coat samples and maternal first and third trimester blood buffy 

coat samples were obtained from the Vanguard Study, which is a pilot study of National 

Children's Study [NCS]. Briefly, a total of 384 (147 maternal first and third trimester 

period peripheral blood, 90 cord blood) buffy coat samples were collected from seven 

different locations across U.S (Duplin County, NC; Queens County, NY; Orange County, 

CA; Waukesha County, WI; Salt Lake City, UT; Montgomery County, PA; composite 

location of four adjacent counties in South Dakota and Minnesota). Of those, 147 

maternal first trimester period peripheral blood buffy coat samples and 90 cord blood 

buffy coat samples were subjected to DNA isolation and Infinium HumanMethylation450 

assay (Illumina). 85 cord blood buffy coat samples were subjected to bisulfite 

pyrosequencing assay. 

For both of the birth cohorts, similar distribution for total and methyl mercury 

exposure, gestational age, race, birthweight, maternal age, smoking status, body mass 
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index and n-3 fatty acid level were shown between the population subjected to this study 

and the rest of the study population. Study personnel abstracted data from maternal and 

infant medical records and study clinicians reviewed a 10% random sample for accuracy; 

gestational age was taken as the best obstetrical estimate. Information on potential 

confounders was based on clinical records. Women who reported smoking during 

pregnancy or had an umbilical cord serum cotinine measurement > 10 ng/ml were 

considered active smokers; the remainder were considered passive smokers or non-

smokers (not reporting smoking and cotinine <1 ng/ml) (Bernert et al., 1997). Copper 

(previously found to be associated with gestational age in this population) and selenium 

were measured in umbilical cord serum using inductively coupled plasma dynamic 

reaction cell mass spectrometry (ICP–DRC– MS) (CDC, 2008) at Centers for Disease 

Control and Prevention (CDC) laboratories, with 4 mg/dl as the limit of detection. Total 

and methyl mercury and lead levels were measured by high performance liquid 

chromatography linked with inductively coupled plasma mass spectrometry (HPLC-ICP-

MS). For analysis of n-3 fatty acid levels, cord serum samples were transferred to United 

States National Institute of Alcohol Abuse and Alcoholism (NIAAA) via automated fast 

gas chromatography (Wells et al., 2011).  The THREE study was reviewed and approved 

by the Johns Hopkins School of Medicine Institutional Review Board, and the NCS 

Vanguard Study samples were collected under the authority of the NIH and study center 

IRBs. 

For comparison of newborn methylation results with adult samples, CHARM 2.0 

data were available on 156 adult samples obtained as unrelated controls for a 

schizophrenia case–control epigenetics consortium (Aliyu et al., 2006; Calkins et al., 
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2007; Gur et al., 2007). This sample was 40% male and had a broad age range of between 

16 and 89 years (interquartile range 31–55 years). DNA was obtained from the Rutgers 

University Cell & DNA Repository (RUCDR). DNA had been isolated from whole blood 

using Qiagen Autopure LS and pellets were hydrated in 1% Tris-EDTA (TE) buffer. 

Sample concentration and integrity were verified locally using NanoDrop and gel 

electrophoresis. DNA methylation was measured using the CHARM 2.0 assay. 

 

2. Laboratory Analyses  

 

a. CHARM DNA methylation 

 

DNA was isolated from cord blood clot samples using the DNeasy
®
 Blood & 

Tissue kit (Qiagen), following the manufacturer’s instructions. From the 187 fetal cord 

blood clot samples available, 167 (89.3%) yielded enough DNA for methylation array 

analysis. DNA methylation was measured via the CHARM 2.0 assay, a customized 

microarray method extended from our previous CHARM procedure, a genomescale 

microarray technique for DNA methylation that identifies differential DNA methylation 

without assumptions regarding where such changes would be, interrogating all CpG 

islands, as well as CpG island ‘shores’ (Irizarry et al., 2009). CHARM 2.0 now includes 

2.1 million probes, which cover 5.2 million CpGs arranged into probe groups (where 

consecutive probes are within 300 bp of each other) that tile regions of at least moderate 

CpG density. It includes all annotated and non-annotated promoters and microRNA sites 

on top of the features that are present in the original CHARM method. The design 
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specifications are freely available on our website (rafalab.jhu.edu). For the CHARM 2.0 

assay, 5 mg of purified genomic DNA was sheared, digested, purified, amplified, labeled 

as described (Ladd-Acosta et al., 2010), but hybridized onto our new CHARM 2.0 array. 

We dropped 26 arrays with <80% of their probes above background intensities, resulting 

in 141 samples for DNA methylation analysis. We then filtered probes where signal was 

below background in <25% of arrays (542,055) and removed sex chromosomes (39,454) 

to improve the batch correction methods, leaving 1,569,888 autosomal probes covering 

4,254,946 CpGs spread across 114,984 probe groups. Subsequent pre-processing, 

normalization and correction for batch effects are described in the Statistical Methods 

subsection. CHARM hybridization and processing for these samples were performed 

across 5 separate days, with the following numbers of samples per day: 40, 36, 38, 21, 6, 

reflecting a potential source of batch effects that was addressed through the surrogate 

variable analysis (SVA) described in the Statistical Methods subsection. 

 

b. Infinium HumanMethylation450 assay 

 

For estimating the blood cell type distribution, we performed Infinium 

HumanMethylation450 assay on 147 maternal first trimester period peripheral blood 

buffy coat samples and 90 cord blood buffy coat samples from NCS Vanguard study. 

Isolation of DNA from NCS Vanguard study samples was performed using Agencourt 

Genefind v2 (Beckman Coulter) on the Biomek NXp laboratory automation workstation 

according to manufacturer’s instruction. Genomic DNA from each sample was quantified 

via Picogreen (Invitrogen). Agarose gel electrophoresis (1% agarose) was performed to 
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check the quality of extracted DNA. Genomic DNA was normalized/aliquotted to 1ug per 

each sample and sent to Center for Inherited Disease Research (CIDR) for further 

bisulfite conversion of genomic DNA and subjected to Infinium HumanMethylation450 

(Illumina) assay. 

 

c. Bisulphite Pyrosequencing 

 

Individual CpGs inside the DMRs meeting our significance threshold were chosen 

for validation based on MethPrimer software (Li and Dahiya, 2002). Of the 141 samples 

for which CHARM data were generated, 139 had ample DNA for subsequent 

pyrosequencing validation for DMRs associated with gestational age. For replication of 

mercury-associated DMRs, 85 (94%) out of 90 cord blood buffy coat samples from NCS 

Vanguard study, had enough DNA for pyrosequencing. Also, 35 DNA samples extracted 

from a subset of THREE study cord blood clot samples containing TCEANC2 gene 

expression data underwent pyrosequencing inside TCEANC2 DMR. Genomic DNA (200 

ng) from each sample was bisulphite treated using an EZ DNA Methylation-GoldTM Kit 

(Zymo research) according to the manufacturer’s instructions. Bisulphite-treated genomic 

DNA was PCR amplified using unbiased nested primers, and DNA methylation was 

subsequently assessed quantitatively by pyrosequencing using a PSQ HS96 (Biotage). 

Quantitative measurements (percentage methylation at each CpG) from the 

pyrosequencing results were determined using the Q-CpG methylation software (Biotage). 

Control titration standards of 0, 25, 50, 75 and 100% methylated samples were generated 
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using appropriate mixtures of Whole Genome Amplified (WGA) Human Genomic DNA: 

Male (Promega) using a REPLI-g Mini Kit (Qiagen) and SSsI-treated WGA DNA. 

Primer sequences used for the bisulphite pyrosequencing reactions can be found in Table 

3.1. 

 

d. Quantitative real-time PCR 

 

To examine the correlation between DNA methylation and gene expression in 

cord blood clots for each of the top three DMRs associated with gestational age and a 

DMR associated with both methyl and total mercury exposure, we performed real-time 

PCR assays. Primers were designed to determine the mRNA expression of the gene 

closest to each DMR. Since this analysis required isolation of mRNA from cord blood 

clots, we were only able to perform these expression analyses on a subset of newborns 

with cord blood clots available. For the genes near gestational age DMRs, there were 10 

babies with gestational age at birth <35 weeks, 15 with gestational age at 40 weeks and 

17 with gestational ages 541 weeks, with a total of 42 samples. For TCEANC2 gene 

containing both methyl and total mercury DMR, we performed the assay on 42 samples 

and removed four babies based on the criteria of Ct standard deviation less than 0.25, 

which reflects maximum Ct difference between the technical replicates is within 1. Thus, 

a total of 38 babies with similar distribution of total and methyl mercury exposure levels 

comparing to the THREE study samples subjected to CHARM 2.0 analysis (methyl 

mercury exposure: 0.92 (0.62-1.34), total mercury exposure: 1.37 (0.85-1.68)). For 

isolation of RNA, fetal cord blood clot samples were treated with TRIzol (Invitrogen) and 
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RNA was purified using a PureLinkTM RNA Mini Kit (Invitrogen) according to the 

manufacturer’s instructions. cDNA was synthesized using a QuantiTect Reverse 

Transcription Kit (Qiagen) and random hexamers. Real-time PCR amplification was 

performed by using a Fast SYBR_ Green Master Mix (Applied Biosystems), and 

transcript levels were quantified using an ABI 7900 Sequence Detection Systems 

(Applied Biosystems). Relative expression level for each gene was calculated based on 

the standard curve and normalized by the relative expression of beta-actin. Primer sequences 

used for the real-time PCR reactions are in Table 3.2. 

 

3. Statistical Analyses  

 

 Descriptive statistics (median and interquartile range (IQR)) of THREE study and 

NCV Vanguard study samples were calculated for variables such as sex, maternal age, 

maternal race, gestational age, birthweight, total and methyl mercury levels, and n-3 fatty 

acids. Also, descriptive statistics (median or percentage) for gestational age at birth and 

potential confounders were calculated and compared using chi-squared tests for 

categorical variables and Mann–Whitney U-tests for continuous variables.  

The CHARM microarray data were pre-processed and normalized as previously 

described (Aryee et al., 2011; Jaffe et al., 2012a). We employed a novel statistical 

approach for identifying regions of the epigenome associated with gestational age in days. 

Briefly, we fit a linear model predicting methylation at each probe as a function of either 

gestational age at birth or natural log-transformed methyl/total mercury exposure levels, 

adjusted for surrogate variables estimated via SVA (Leek and Storey, 2007) to account 
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for unmeasured potential confounding often due to batch effects. SVA identifies 

combinations of probes in the data associated with heterogeneity of DNA methylation, 

conditioned on the covariate of interest, in this case, gestational age or methyl/total 

mercury level, and then constructs a ‘surrogate variable’ for each set. A value for each 

individual based on each surrogate variable can then be used for adjustment in 

subsequent regression. Measured variables in our data set most associated with these 

surrogate variables (assessed through pruned regression trees of all possible variables) 

were array quality control score and hybridization date/batch. We did not adjust for sex, 

but did remove sex chromosome probes from the initial genome-wide screen. The 

estimated regression coefficients from these linear models for gestational age at each 

probe were then smoothed within the CHARM array’s pre-defined probe groups. 

Consecutive smoothed slopes above a fixed cut-off of either 99.5
th

 percentile (for 

identification of gestational age DMRs) or 99.995
th

 percentile (for identification of 

mercury level associated DMRs) of all smoothed slopes were summed into a region-level 

statistic reflecting the area of the DMR. We then ranked DMRs by their areas and 

calculated two measures of statistical uncertainty, a P-value and q-value, for each DMR 

by permutation that accounts for genome-wide testing. Either Gestational ages or 

methyl/total mercury exposure levels were permuted 1000 times, and each time, the 

above regression, smoothing, and thresholding procedure was repeated exactly as on the 

observed data to get 1000 sets of declared DMRs that occurred solely by chance. 

Empirical P-values, defined as the fraction of the maximum areas from each permutation 

greater than the observed area, were calculated (Pmax) to compare with a specified family-

wise error rate control of 10% (for gestational age DMRs) or 20% (methyl and total 
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mercury DMRs). False discovery rate (FDR) q-values were obtained by pooling all areas 

across all permutations, calculating the proportion of these ‘null’ areas greater than the 

observed area, then converting this to a q-value for comparison to an FDR control of 5% 

(for gestational age DMRs) or 10% (methyl or total mercury DMRs) (Storey and 

Tibshirani, 2003). DMRs with an empirical Pmax < 0.10/0.20 or an FDR q-value < 

0.05/0.1 were examined visually via plots of the methylation curve within the DMR. 

Average methylation for each newborn across all probes within a DMR was plotted 

against gestational age at birth with slopes and P-values estimated via linear regression 

and Wald statistics.  

Univariate relationships between potential confounders and methylation at DMRs 

were also estimated via linear regression. Although some potential confounding due to 

these variables may already be addressed via the SVA adjustment, we also explicitly 

estimated relationships between average DNA methylation for each DMR and each 

confounder through linear models adjusted for the same surrogate variables used in our 

discovery. To do this, we applied SVA analysis to the methylation data first, and then 

took SVA-adjusted methylation as the methylation metric for linear regression with the 

covariate, to ensure the same SVA adjustment was applied in each analysis. Also, as a 

sensitivity analysis to assess the influence of sex on our list of identified DMRs, we 

repeated the original DMR identification procedure adjusting for sex. For gestational age 

DMRs, we further performed the original discovery procedure after omitting samples 

with mothers who had pregnancy-induced hypertension (PIH), intrapartum fever or 

diabetes, separately, to assess influence of these variables on our results. To assess the 

influence of race on TCEANC2 DMR, we repeated the original analysis procedure after 
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adjusting for race after combining the African Americans and Asians as one race 

category. 

For analysis of DNA methylation data from pyrosequencing, we fit a linear model 

at every CpG inside gestational age DMRs predicting DNA methylation as a function of 

gestational age. For methyl/total mercury DMRs, we fit a linear model at every CpGs 

predicting DNA methylation as a function of log-transformed total or methyl mercury 

exposure. We assessed the functional implications of differential methylation at NFIX, 

RAPGEF2, and MSRB3 gene by fitting linear models at each CpG assessing the linear 

association between DNA methylation and gene expression. For TCEANC2 gene, we 

used spearman’s rank order correlation between DNA methylation and gene expression 

with respect to each CpG. Heavily skewed gene expression values were transformed to 

log2 scale. 

For assessing the relationship between blood cell type distribution and DNA 

methylation at TCEANC2 DMR, we used a publicly available database containing DNA 

methylation signatures for 6 sorted blood cell types (Reinius et al., 2012). Four probe sets 

from the Reinius et al. Illumina 450k dataset (cg01109333, cg01986665, cg02270108, 

and cg02626873), which positioned inside TCEANC2 DMR, were chosen.  We plotted 

the DNA methylation levels at each of these probe set across the sorted blood cell types 

(B cells, CD4
+
 T cells, CD8

+
 T cells, granulocytes, monocytes, natural killer cells, and 

whole blood). For assessing the relationship between blood cell type distribution and total 

mercury exposure levels from NCS Vanguard study samples, we inferred relative cell 

type proportions in this population using an epigenetic signature prediction algorithm 

(Houseman et al., 2012).  
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Table 3.1 Bisulfite Sequencing Primers  
    

       Gene Primer Sequence (5' → 3') Chr CG1 CG2 CG3 

NFIX Forward TTTTTAATTTTTTGTTTTGGGAAAG 19 13131545 13131565 13131573 

  Reverse AAAATAAAAACAACAACAATCCCAC 
    

  Nested_forward TTTTTTTGTTAAGAGAGTTTTGAGG 
    

  Nested_reverse /5Biosg/ATTAAAAAAACAAAACAAAATACAC 
    

  Sequencing 1(F) GTAGGTTTTTGAGGTTTTATTGAGA 
    

  Sequencing 2(F) TTGATTTTTAATTTTTTTTTAGGAG         

MSRB3 Forward AAATTTAAGTATTTTGTTGTGAAAAATTAT 12 65671893 65671906 65671912 

  Reverse AACCAAAAACCTATAAAAAAAC 
    

  Nested_forward TGTTTGGGTTTTATATATGGTGTTTAA 
    

  Nested_reverse /5Biosg/AACAAAAACAAAACTACCAATTAATTACTT 
    

  Sequencing 1(F) TATTTATTTTTTTTTGTTAGAGAGG         

RAPGEF2 Forward TTTTTAAGAATATTGTTTTAAGTGTTAAGT 4 160026608 160026685 160026983 

  Reverse TTTAATAAAACAAATAAACTACCTTCC 
    

  Nested_forward TTTTTTTGGTTGTTTTTGGATAAGT 
    

  Nested_reverse CCATAATCTCCCAAATATAACAACTC 
    

  Forward2 TTTTTTTTGATGTTGATTATTATTTAT 
    

  Reverse2 AAAATCTACTTTTCCTTCACACTAAAAC 
    

  Nested_forward2 TTGTGGGGAGAGTATAATAAAATAGATTT 
    

  Nested_reverse2 /5Biosg/AAAACAAAATCAATACAAAACATTCCT 
    

  Sequencing 1(F) GATAAGTTTTAAGAGTGGTATTTGGT 
    

  Sequencing 2(F) TGTTTTTGGATAAGTTTTAAGAGTG 
    

  Sequencing 3(F) TATTTGGGAGATTATGGATAGATTG         

TCEANC2 Forward TTTTGGGTTAGGTAGAGAGGAAAAT 1 54562272 54562295 54562346 
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  Reverse ATCCTTAACATATTCACAATAAAAT 

      Nested_forward TTGATGTTGGTTGTGTTAGATTTTT 

      Nested_reverse /5biosg/CATCACCCTTTCACCATATTAAATAATA 

      Sequencing 1(F) GTAGGAATGTGTTTTATTAGTTGTA 

      Sequencing 2(F) GTTGGTTGTGTTAGATTTTTTTATG         

ANGPT2 Forward1 AGAATTGTGTTGTTGTTTTTTGTGT 8 6418033 6418040 6418044 

  Reverse1 AACTCCACACCTATTCTCCCAA 

      Nested_forward1 TTATAGGTGATAAAATATAGGAGAAAAATA 

      Nested_reverse1 /5biosg/CCTAAAAAAAACAATTTACACTCTC 

      Forward2 GTGTAAATTGTTTTTTTTAGGTGTA 

      Reverse2 ATAAACAAAACTCATATTTCTTTCTTAAAT 

      Nested_forward2 TTGGGAGAATAGGTGTGGAGTT 

      Nested_reverse2 /5biosg/TAAACAACAATAACACAATAATATTTCAAA 

      Forward3 TAGTTTTGTATTTGGTTTAGTATTT 

      Reverse3 ATCACTATAATTTACTTTTAAACATCTTCT 

      Nested_forward3 TTTTTATGTTTTTTGGTTGTTTTTT 

      Nested_reverse3 /5biosg/TAATTAATAACTTTCCCACATCCAC 

      Sequencing 1(F) TTTGTTTTTATTTTTAAGTTAGAAG 

      Sequencing 2(F) GATAAATATTAAGTTATTTTTGGGG 

      Sequencing 3(F) GTAGATTAGAATATTTATTGTAGTG         

PRPF18 Forward1 TTGTTGATTTTTTATTTTTGGGAATA 10 413684055 413684060 413684275 

  Reverse1 CCAAAATACCATTTCAAAAAAACTC 

      Nested_forward1 TTTTTTATAAATGTGGTTGTGTGTTT 

      Nested_reverse1 /5biosg/AATCTCCAACAAAATCATTTCACTAC 

      Forward2 TTATTATAATTTTATGGGTTTTTGAAATTA 

      Reverse2 CAAACAATAAATCTCCAACAAAATC 

      Nested_forward2 TAGGTTTTTTAGTTTTGTTGGAGTA 
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  Nested_reverse2 /5biosg/CACACAACCACATTTATAAAAAAAA         

FOXD2 Forward1 TTTTTTGGGTATTTTTTTTATTTGTTT 1 48059802 48059934 48060162 

  Reverse1 CACCCTCATCTTAAAACTAAAACTCA 

      Nested_forward1 GGAGTTTTTATGAAGGTTTAGGGTT 

      Nested_reverse1 /5biosg/TAAACAACAAAACAAAATTTACACCA 

      Forward2 GGTTTTTAAATTTATTTTTTATGTTTTTAT 

      Reverse2 ACCACTCCTTTCTAACAAATTAACT 

      Nested_forward2 TTTTAAAAGTATTAGAGAGAGGTTGGAATA 

      Nested_reverse2 /5biosg/AAAAAAACACCAAACAAAACCTTAC 

      Forward3 AAGGTTTTGTTTGGTGTTTTTTTTA 

      Reverse3 CACCAACACTAAAAATCAAATTTCA 

      Nested_forward3 TTTTTAGTTGGGTAATGGGGTTAG 

      Nested_reverse3 /5biosg/CCAACTCTTAAAAAATACCCACTTC 

      Sequencing 1(F) GATAGAGATTGAGTAGTAGTGGAGG 

      Sequencing 2(F) GAGTAAGATTAGTTATATATTTGGG         
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Table 3.1 Bisulfite Sequencing Primers 

continued  
     

         Gene Primer CG4 CG5 CG6 CG7 CG8 CG9 CG10 

NFIX Forward 13131612   

       Reverse 
  

       Nested_forward 
  

       Nested_reverse 
  

       Sequencing 1(F) 
  

       Sequencing 2(F)               

MSRB3 Forward 65671924 65671942 

       Reverse 
  

       Nested_forward 
  

       Nested_reverse 
  

       Sequencing 1(F)               

RAPGEF2 Forward 
  

       Reverse 
  

       Nested_forward 
  

       Nested_reverse 
  

       Forward2 
  

       Reverse2 
  

       Nested_forward2 
  

       Nested_reverse2 
  

       Sequencing 1(F) 
  

       Sequencing 2(F) 
  

       Sequencing 3(F)               

TCEANC2 Forward 54562368 
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  Reverse 

         Nested_forward 

         Nested_reverse 

         Sequencing 1(F) 

         Sequencing 2(F)               

ANGPT2 Forward1 6418111 6418147 6418172 6418449 6418469 6418511 6418530 

  Reverse1 

         Nested_forward1 

         Nested_reverse1 

         Forward2 

         Reverse2 

         Nested_forward2 

         Nested_reverse2 

         Forward3 

         Reverse3 

         Nested_forward3 

         Nested_reverse3 

         Sequencing 1(F) 

         Sequencing 2(F) 

         Sequencing 3(F)               

PRPF18 Forward1 

         Reverse1 

         Nested_forward1 

         Nested_reverse1 

         Forward2 

         Reverse2 

         Nested_forward2 
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  Nested_reverse2               

FOXD2 Forward1 48060221 48060268 

       Reverse1 

         Nested_forward1 

         Nested_reverse1 

         Forward2 

         Reverse2 

         Nested_forward2 

         Nested_reverse2 

         Forward3 

         Reverse3 

         Nested_forward3 

         Nested_reverse3 

         Sequencing 1(F) 

         Sequencing 2(F)               
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Table 2. Real-time PCR Primers for Expression Analyses 

   
Gene Primer Sequence (5' → 3') 

NFIX Forward AGGAGATGCGGACATCAAA 

  Reverse TACTCTCACCAGCTCCGTCA 

MSRB3 Forward AGTAGCCCTTCGAGCCTGT 

  Reverse GTTAGCCGCTTCCTCAGTTC 

RAPGEF2 Forward CAGACAAAGCACATCCCAAC 

  Reverse TGGCAAGTCAGGAGTAGCAC 

TCEANC2 Forward CAGCTACCAGGGCTGCTT 

  Reverse GGGACTCCGACTACCTTGAC 
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Chapter 4: Results – 

Identification of gestational age DMRs 

 

 

This chapter is reproduced from published article in International Journal of 

Epidemiology (Lee et al. 2012) 
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To identify epigenetic changes that occur throughout later stages of gestation in 

an unselected population of newborns, we performed the CHARM 2.0 assay, which now 

includes approximately one-third of all single-copy CpG sites including all islands and 

shores, as well as all annotated promoters and microRNAs. Bisulphite pyrosequencing 

and real-time PCR were performed to validate DNA methylation levels and functional 

significance of the DMRs associated with gestational age at birth. Of the 141 newborns 

with CHARM data, there were 18 PTBs (<37 weeks) and the range of gestational ages in 

days was 208–292 (Figure 4.1 for full distribution). The pre-term newborns did not differ 

in the distributions of sex or maternal age, race or diabetes status compared with 

newborns born after 37 weeks (Table 4.1). Birthweight differed strongly between the two 

groups, as did smoking and serum copper levels, which had been previously reported for 

the full study sample of 300 newborns (Wells et al., 2011).  

Previous research indicates that increasing gestational ages at birth through 39–41 

weeks is advantageous for neurodevelopment (Davis et al., 2011; Yang et al., 2010) and 

confers a lower risk of respiratory morbidity (Hansen et al., 2008), suggesting the need to 

study gestational age on a continuum. Thus, treating gestational age as a continuous 

variable in linear regression, compared with pre-term and term birth categories can be 

useful. Using this approach, we identified 8611 candidate DMRs associated with 

gestational age at birth (top 30 showed in Table 4.2), of which the top three DMRs met 

our genome-wide threshold of protecting family-wise error rates <10% and false 

discovery rates <5% (Table 4.3). The first of these DMRs was found to be positioned in 

the first intron of the nuclear factor I/X (NFIX) gene, encoding a transcription factor 

known to be responsible for fetal-specific transcription regulation during skeletal muscle 
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development (Messina et al., 2010). Another was positioned in the first intron of the 

alternative transcript of the Rap guanine nucleotide exchange factor (RAPGEF2) gene, 

which encodes one of the RAS protein family activators that maintains the GTP-bound 

state of RAS. Although this DMR was not located at the promoter of the canonical gene, 

the DMR contains strong DNase I hypersensitive sites and a number of strong 

transcription factor-binding sites including Gata-2 and PU.1, which are the critical 

transcription factors in haematopoiesis (Ramirez et al., 2010; Vicente et al., 2012). The 

third DMR was located next to the promoter region of the methionine-Ssulphoxide 

reductase 3 (MSRB3) gene, which encodes the enzyme involved in the methionine cycle 

and is responsible for antioxidant repairing by converting methionine sulphoxide to 

methionine (Marchetti et al., 2005). Two of the three DMRs are located at the CpG island 

shore, suggesting that these DMRs may be associated with alternative transcription or 

splicing.  

The methylation values at each probe for each of these DMRs are shown in Figure 

4.2 according to gestational age in weeks (calculated from days). Smoothed lines indicate 

the average methylation curve for each week of gestational age at birth, and show a dose–

response trend between gestational age and methylation levels across all weeks for each 

DMR. To further illustrate this point, Figure 4.2 also shows the relationship between the 

average methylation across all probes in the DMR and gestational age, and the linear fit 

of this relationship (see insets in each panel). For the DMR near NFIX, DNA methylation 

levels of each probe are greater in high gestational age neonates when compared with low 

gestational age neonates (Figure 4.2a), and the average DNA methylation level of each 

sample in the DMR exhibits a linear correlation with gestational age, with an estimated 
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increase of 1.57% DNA methylation per week of gestation [95% confidence interval (CI) 

1.02–2.12], or an increase of 7.85 between Weeks 35 and 40, roughly corresponding to 

late pre-term vs term births (P=8.6X10
8
 for Wald statistic; see Figure 4.2a, inset). In 

contrast, the DMRs at RAPGEF2 and MSRB3 show lower DNA methylation levels of 

each probe in higher gestational age neonates when compared with lower gestational age 

neonates (Figure 4.2b and c), and the average DNA methylation levels of each sample in 

these DMRs exhibit inverse linear correlation with gestational age. For RAPGEF2, there 

is a 1.33 decrease in %DNA methylation (95% CI -1.76 to -0.9) per week of gestation or 

a decrease of 6.65 between Weeks 35 and 40; (Wald P=9.9X10
9
) and for MSRB3, a 2.08 

decrease (95% CI -2.51 to -1.64) per week or 10.4 between Weeks 35 and 40 (Wald 

P=1.3X10
16

; see Figure 4.2b and c insets). Also note the progressive change in DNA 

methylation within each gestational age bin, a dose–response relationship consistent with 

a functional relationship between methylation and gestational age.  

To validate these findings on a separate platform, we designed bisulphite 

pyrosequencing assays for CpGs within each DMR (indicated as red blocks in Figure 4.2). 

The individual CpG results within each DMR were correlated (average pair-wise 

correlation for neighboring CpG methylation was 0.85 for NFIX, 0.68 for RAPGEF2 and 

0.82 for MSRB3) and confirmed the CHARM differences in methylation by gestational 

age. For NFIX, four CpGs were assayed (see Figure 4.2 for locations), each showing an 

incremental increase in methylation with increase in gestational age at birth, consistent 

with the pattern detected in CHARM (Figure 4.3a). All three of the CpGs assayed in 

RAPGEF2 (see Figure 4.2 for locations) showed greater methylation with early 

gestational age at birth, consistent with the CHARM results (Figure 4.3b). For MSRB3, 
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all five CpGs assayed showed greater methylation in earlier gestational age samples as 

seen in CHARM (Figure 4.3c). Thus, these DNA methylation analyses on an independent 

measurement platform confirmed the differential methylation by gestational age for each 

of the three genes identified via CHARM.  

Since the three DMRs we identified reflect variability in methylation 

corresponding to late-stage development in utero, we considered whether adult DNA 

methylation at these same sites would show any variability and whether adult levels 

would be similar to those of full-term births. We compared CHARM 2.0 data for each 

DMR among healthy adult blood DNA samples with our newborn sample results. 

Although the three DMRs appear very dynamic and progressive with gestational age in 

the newborn sample, these exact same regions have little variability in the adult 

population. Given the span of adult ages represented, this suggests that these sites are 

stable in adulthood. The magnitude of adult DNA methylation levels is similar to or more 

extreme than those of the latest gestational ages in a direction consistent with the 

newborn sample correlations to gestational age (Figure 4.4). These results provide 

compelling support for maturation-related  hanges in DNA methylation at these loci, and 

also indicate that the process continues beyond birth, but reaches a maximum at some 

time at or before adult life.  

To address potential confounding by sex, maternal age, race, maternal smoking, 

presence of PIH, intrapartum fever, maternal smoking and serum copper levels, we 

estimated the linear relationships between each of these variables and gestational age at 

birth. Consistent with the general characteristics comparing pre-term babies to the rest of 

the newborns, maternal smoking, PIH and serum copper were associated with gestational 
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age (Table 4.4). To further address whether these potential confounders were associated 

with methylation at the identified DMRs, we estimated the linear relationship between 

these variables and the average methylation value per DMR as well. PIH and serum 

copper were also associated with methylation at each of these DMRs (Table 4.4), 

suggesting the potential for confounding. However, the strong association between 

methylation and gestational age remained even after adjusting for PIH and copper in both 

CHARM and pyrosequencing data. For example, in the CHARM data, the coefficient for 

gestational age at birth in linear models predicting average methylation at each DMR 

with and without adjustment for copper (which had a stronger effect than PIH) changed 

from 1.57 to 1.37 for NFIX, -1.33 to -1.17 for RAPGEF2 and -2.08 to -1.87 for MSRB3, 

and all remained statistically significant. We in fact examined the potential influence of 

each potential confounder on the detected associations with these three DMRs and saw 

no substantial change in effect sizes after adjustment for any of these covariates (Table 

4.5).  

Birthweight was also correlated with both gestational age and with methylation at 

each of the three DMRs. This is expected given the strong relationship between 

gestational age and birthweight. Gestational age is the best indicator of maturation of the 

newborn including growth parameters. Since birthweight is largely a consequence of 

gestational age, removing birthweight variability would almost completely restrict 

variability for gestational age in our analyses, so we did not condition on birthweight for 

these analyses. When we considered birthweight for gestational age as a separate 

phenotype, we saw no relationship to methylation at the three DMRs (Table 4.6).  
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To explore the functional significance of the differential methylation, we 

measured the expression of the NFIX, RAPGEF2 and MSRB3 using real-time PCR. 

RAPGEF2 showed an inverse linear correlation between expression and DNA 

methylation levels in two of the three CpGs at this DMR (CpG1: P=0.37; CpG2: P=0.013, 

CpG3: P=0.014, Figure 4.5). 
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Figure 4.1 Distribution of gestational age at birth among 141 newborns in the 

THREE Study. 
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Figure 4.2 Methylation plots for three identified DMRs for gestational age at birth.  
 

(a) NFIX, (b) RAPGEF2, (c) MSRB3. Top half of panels show individual methylation 

levels at each probe by genomic position, with coloured lines reflecting the average 

methylation curve for samples binned by gestational age—gestational ages in weeks were 

split into equal sized bins, and the average age for each bin is shown in the legend. 

Bottom half of panels show location of CpG dinucleotides (black tick marks) and CpGs 

validated by bisulphite pyrosequencing (black tick marks contained in red box) as well as 

the CpG density by position (black curve) and the location of refseq annotated genes (bar, 

+ and - represent the direction of the gene, green bar indicates CpG island). Vertical lines 

represent boundaries of the DMR. Inset box: linear regression plot of average  

methylation across the DMR (Avg %M) per sample by gestational age (GA) 
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Figure 4.3 Bisulphite pyrosequencing results for each DMR.  
 

(a) NFIX, (b) RAPGEF2, (c) MSRB3. Circles represent methylation values (y-axis) at individual CpGs for their corresponding 

gestational age in weeks (x-axis). Lines represent predicted values from linear regression. Reconstitution controls (represented as 

black dots) with explicitly designed % methylation (x-axis) are located at the right of each panel (Recon). The numbers on the bottom 

of each figure represent effect size/slope estimate from the regression of methylation on gestational age and P-value for a Wald test of 

this slope 
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Figure 4.4 Methylation plots for three identified DMRs for gestational age at birth 

with adult methylation results included. 

Individual adult methylation levels are represented as grey lines, and the black line 

represents mean adult methylation level.(a) NFIX, (b) RAPGEF2 and (c) MSRB3 
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Figure 4.5 Correlations between gene expression and DNA methylation for each DMR and its nearest gene.  

Panel A: NFIX, panel B: RAPGEF2, panel C: MSRB3. Black dots represent methylation values (y-axis) at individual CpGs and their 

corresponding normalized expression level (x-axis). Lines represent fit of a linear regression. The numbers on the bottom of each 

figure represent effect size/slope estimate from linear regression and p-value for a Wald statistic for this slope estimate
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Table 4.1. Characteristics of THREE study newborns included in this epigenetics project 
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Table 4.2. Top 30 list of DMRs associated with gestational age at birth identified via CHARM 2.0 

Chr name 

DMR 

area 

Mean 

Slope Pval_max Qval 

DMR Start 

Position 

DMR end 

position description 

19 NFIX 0.343 0.010 1.0E-03 1.2E-03 13130686 13133039 inside intron 

4 RAPGEF2 0.223 -0.008 4.7E-02 2.9E-02 160026138 160028079 upstream 

12 MSRB3 0.197 -0.014 9.8E-02 4.1E-02 65671230 65672140 promoter 

8 INTS10 0.160 -0.010 2.3E-01 8.8E-02 19615409 19616461 upstream 

10 C10orf140 0.147 0.008 3.2E-01 9.4E-02 21803713 21804972 inside exon 

3 IQSEC1 0.144 -0.006 3.5E-01 9.4E-02 12937650 12939468 overlaps 3' 

14 BCL11B 0.138 0.007 4.1E-01 9.8E-02 99725056 99726396 inside intron 

4 LEF1 0.132 0.006 4.7E-01 1.0E-01 109085956 109087500 covers exon(s) 

6 PREP 0.130 0.007 5.1E-01 1.0E-01 106034980 106036264 upstream 

14 BCL11B 0.122 0.006 5.8E-01 1.0E-01 99706752 99708241 inside intron 

12 LEMD3 0.120 -0.010 6.1E-01 1.0E-01 65564532 65565296 overlaps exon downstream 

1 C1orf83 0.118 -0.005 6.4E-01 1.0E-01 54561298 54563187 overlaps exon upstream 

19 UQCRFS1 0.116 -0.006 6.7E-01 1.0E-01 29696666 29697995 downstream 

4 TRIM2 0.115 0.005 6.8E-01 1.0E-01 154125212 154126966 overlaps 5' 

17 TNFSF13 0.114 -0.009 7.0E-01 1.0E-01 7462633 7463465 covers exon(s) 

14 BCL11B 0.112 0.005 7.2E-01 1.0E-01 99709752 99711218 inside intron 

14 FBLN5 0.112 -0.006 7.2E-01 1.0E-01 92412243 92413573 overlaps exon downstream 

5 CRHBP 0.107 -0.012 7.8E-01 1.2E-01 76248520 76249150 overlaps 5' 

8 DEFA4 0.101 -0.006 8.6E-01 1.2E-01 6792265 6793315 close to 3' 

14 APEX1 0.100 -0.007 8.6E-01 1.2E-01 20924708 20925624 covers exon(s) 

6 WRNIP1 0.100 -0.007 8.6E-01 1.2E-01 2769840 2770750 covers exon(s) 

1 ITPKB 0.098 0.005 8.8E-01 1.2E-01 226900271 226901597 inside intron 

3 IFT80 0.097 0.007 8.9E-01 1.2E-01 159941894 159942728 downstream 

9 SLC24A2 0.097 -0.007 8.9E-01 1.2E-01 19493250 19494306 downstream 
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14 RNASE10 0.096 -0.006 9.0E-01 1.2E-01 20978625 20979745 covers 

3 CTDSPL 0.095 -0.006 9.0E-01 1.2E-01 37904056 37905258 inside intron 

14 NPAS3 0.095 0.006 9.0E-01 1.2E-01 33400717 33401757 upstream 

13 DLEU2 0.095 0.008 9.0E-01 1.2E-01 50702836 50703608 upstream 

12 CCND2 0.094 -0.006 9.1E-01 1.2E-01 4324191 4325241 upstream 
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Table 4.3. Candidate significant DMRs associated with gestational age identified via CHARM 2.0 
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Table 4.4. Co-efficient (95% CIs) of linear relationship between potential confounders and gestational age at birth or average 

methylation at each of the identified DMRs 
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Table 4.5. Comparison of regression coefficients [95% CI] for relationship between 

methylation and gestational age with and without adjustment for potential 

confounders 

Model: M* = b1GA + b2Z 

     NFIX RAPGEF2 MSRB3 

Z b1 b1 b1 

N/A (unadjusted) 1.57 [1.02,2.12] -1.33 [-1.76,-0.90] -2.08 [-2.51,-1.64] 

Copper 1.37 [0.79,1.94] -1.17 [-1.62,-0.72] -1.87 [-2.32,-1.42] 

Male sex 1.54 [1.03,2.05] -1.32 [-1.74,-0.89] -2.07 [-2.51,-1.63] 

PIH 1.39 [0.82,1.95] -1.25 [-1.70,-0.80] -2.00 [-2.45,-1.54] 

Smoking 1.75 [1.17,2.34] -1.47 [-1.93,-1.00] -2.25 [-2.71,-1.79] 

Birthweight 1.70 [0.99,2.40] -1.28 [-1.83,-0.74] -2.18 [-2.73,-1.62] 
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Table 4.6. Results for univariate and multivariate regression analyses of methylation on birthweight and/or gestational age 

DMR Model b1 pval   b2 pval 

NFIX M* = b1GA 1.57 8.0E-08 

   

 

M* = b1BW 0.0029 5.0E-03 

   

 

M* = b1BW + b2GA -0.0007 0.58 

 

1.69 4.70E-06 

 

M* = b1(BW|GA) -0.0007 0.62 

   

       RAPGEF2 M* = b1GA -1.33 9.9E-09 

   

 

M* = b1BW -0.0029 3.0E-04 

   

 

M* = b1BW + b2GA -0.0002 0.80 

 

-1.28  8.7e-06 

 

M* = b1(BW|GA) -0.0002 0.83 

   

       MSRB3 M* = b1GA -2.07 1.3E-16 

   

 

M* = b1BW -0.0040 1.4E-05 

   

 

M* = b1BW + b2GA 0.0005 0.57 

 

-2.20  1.9e-12 

  M* = b1(BW|GA) 0.0005 0.65       
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Chapter 5: Results – Identification of 

mercury associated DMRs 
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To identify candidate genomic regions showing epigenetic differences associated 

with total and methyl mercury exposure, we utilized previously obtained CHARM 2.0 

DNA methylation data originally used for identifying gestational age DMRs (Lee et al., 

2012). Descriptive statistics for Baltimore THREE and NCS Vanguard cohort samples 

used for this study are given in Table 5.1. Distribution of sex and gestational age between 

the two cohorts were similar. Higher maternal age and birthweight were observed in NCS 

Vanguard cohort. Total and methyl mercury exposures are higher in THREE cohort 

samples, which further described in Table 5.2. Although the distribution is different, both 

cohorts only contain two samples with methyl mercury exposure levels higher than the 

reference dose (5.8ug/L), suggesting the exposure levels in both cohorts are within the 

normal exposure range. Both cohorts also display different race distribution, which 

African Americans are dominant in THREE cohort, whereas Caucasian contributes as a 

major population in NCS Vanguard cohort. Uniquely, n-3 fatty acids (EPA and DHA), an 

essential nutrient for healthy neurological development and may counter the toxic effect 

from mercury exposure (National Research Council, 2007), were measured in THREE 

cohort to assess n-3 fatty acids as a potential confounder. 

Since methyl mercury exposure as a most relevant mercury species related to 

adverse health outcomes and site-specific DNA methylation changes shown to be 

associated with methyl mercury exposure levels (Basu et al., 2013; Goodrich et al., 2013), 

we sought to first identify DMRs associated with methyl mercury exposure after natural 

log transformation of the exposure data due to its lognormal distribution. By this 

approach, we identified 130 candidate DMRs associated with methyl mercury exposure, 

of which one candidate DMR associated with methyl mercury exposure passed our 
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genome-wide threshold of family wise error rates < 20% and false discovery rate < 10% 

(Table 5.3). The candidate DMR with genome-wide significance was located in the exon 

of Transcription Elongation Factor A (SII) N-Terminal And Central Domain Containing 

2 (TCEANC2) gene, which encodes a putative transcription elongation factor. 

Figure 5.1 demonstrates the methylation plots for TCEANC2 DMR negatively 

associated with either methyl (Figure 5.1a) or total (Figure 5.1b) mercury exposure. Each 

dot represents the methylation values at each probe for each neonate sample. Smoothed 

line represents the average methylation curve for each exposure level quartile, which 

show dose-dependent negative trend for both types of the exposure levels. Methylation 

plots for the other three candidate DMRs associated with total mercury exposure are 

shown in Figure 5.2 a-c, and Figure 5.2 d-f represents the overlapping regions plotted by 

quartiles of methyl mercury exposure. The DMR inside ANGPT2, which encodes 

Angiopoietin 2, represents positive correlation between the methylation and both of the 

exposure levels. Negative association between the methylation and exposure levels for 

both total and methyl mercury were shown in DMR inside PRPF18 gene, encoding Pre 

mRNA Processing Factor 18, and DMR near FOXD2 gene, which encodes a transcription 

factor Forkhead Box D2. 

To replicate these findings on a separate methylation assay platform, bisulphite 

pyrosequencing assays were performed on four CpGs within the TCEANC2 DMR (red 

blocks in Figure 5.1). DNA methylation at all of the four CpGs displayed decrease in 

DNA methylation level along with increase in both methyl mercury (Figure 5.3a) and 

total mercury (Figure 5.3b) exposure level, consistent with the pattern detected in 

CHARM 2.0. Thus, the association between DNA methylation levels at TCEANC2 DMR 
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and exposure levels identified by CHARM 2.0 is replicated using an independent 

measurement platform with independent set of cohort samples. Other three DMRs which 

displayed association between DNA methylation and total mercury exposure were also 

tested for replication via bisulfite pyrosequencing (Figure 5.4). The DNA methylation 

trend identified from the CpGs inside three DMRs was not consistent with the pattern 

detected from CHARM 2.0, meaning that the other three DMRs weren't able to replicate. 

To address potential confounding by sex, maternal age, race, birthweight, 

gestational age and lead, selenium, copper and n-3 fatty acid levels, we estimated the 

linear association between each of these variables and total or methyl mercury exposure 

level obtained from THREE study samples. Consistent with the previous reports (Wells 

et al., 2011), race and n-3 fatty acid levels were associated with both types of mercury 

exposure levels (Table 5.4). We then also estimated the linear relationship between these 

potential confounders and the average methylation level at TCEANC2 DMR to further 

address for potential confounding. Race, not n-3 fatty acid level, was also associated with 

methylation at TCEANC2 DMR, suggesting the potential for confounding. However, the 

association between average methylation at the DMR and total or methyl mercury 

exposure levels after adjusting for race (Table 5.5) remained statistically significant even 

after adjusting. 

Different cell type distribution has been suggested as a potential confounder, in 

particular for DNA methylation studies using whole blood samples due to cell type 

distribution shifts due to the nature of the disease or the exposure, and has been addressed 

in several publications (Joubert et al., 2012; Liu et al., 2013). To examine whether the 

relationship between blood DNA methylation and total mercury level was confounded by 
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cell type, we used a publicly available database containing DNA methylation signatures 

for sorted blood cells (Reinius et al., 2012). Within or near our DMR (chr1: 54562102 – 

54562548), there were four probe sets from the Illumina 450k dataset (cg01109333, 

cg01986665, cg02270108, and cg02626873). We plotted the DNA methylation levels at 

each of these probe sets across the sorted blood cell types (B cells, CD4+ T cells, CD8+ 

T cells, granulocytes, monocytes, natural killer cells, and whole blood) (Figure 5.5). 

There were six replicates of each cell type. Across three of the probe sets, DNA 

methylation was not heterogeneous and there was no relationship between cell type and 

DNA methylation. For one of the probe sets (cg01986665), DNA methylation levels were 

heterogeneous and there was some variability across cell type. It is possible that DNA 

methylation varies by cell type at this locus. 

To address whether the relationship between DNA methylation and mercury to be 

confounded by cell type, we looked to our Infinium HumanMethylation450 assay data 

from NCS Vanguard study samples. We were able to infer relative cell type proportions 

in this population using an epigenetic signature prediction algorithm (Houseman et al., 

2012). Maternal blood total mercury levels measured during first trimester were not 

associated with proportions of cell types inferred by DNA methylation levels in maternal 

first trimester whole blood buffy coat samples, as well as by cord blood buffy coat 

samples (Table 5.6). Since there was no relationship observed between estimated blood 

cell distribution and total mercury levels, cell type thus is not a confounder of the DNA 

methylation and mercury association in our study. 

To examine the functional significance of the methylation difference at 

TCEANC2 DMR, we measured the expression level of the TCEANC2 gene using real-
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time PCR assay. All of the four assessed CpGs show an inverse correlation between 

expression and DNA methylation levels, although not statistically significant (spearman 

correlation p-value of 0.29 for CG1, 0.16 for CG2, 0.11 for CG3, and 0.061 for CG4, 

Figure 5.6). 
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Figure 5.1. Methylation plots for DMR inside TCEANC2 associated with methyl and 

total mercury exposure  

(a) TCEANC2 DMR with color codes representing quartiles of methyl mercury exposure 

and (b) total mercury exposure. Top half of panels show individual methylation levels at 

each probe by genomic position, with colored lines reflecting the average methylation 

curve for samples. The median exposure level for each quartile is shown in the legend. 

Bottom half of panels show location of CpG dinucleotides (black tick marks) and CpGs 

validated by bisulphite pyrosequencing (black tick marks contained in red box) as well as 

the location of refseq annotated genes (bar, + and - represent the direction of the gene, 

green bar indicates CpG island). 
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Figure 5.2. Methylation plots for other identified DMRs associated with total 

mercury exposure  

(a), (b), and (c) represent DMR inside or near ANGPT2, PRPF18 and FOXD2 with color 

codes representing quartiles of total mercury exposure. (d), (e), and (f) represents same 

DMRs with color codes representing quartiles of methyl mercury exposure. 
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Figure 5.3. Bisulfite pyrosequencing results for DMR inside TCEANC2  

 

Circles represent methylation values (y-axis) at individual CpGs for their corresponding 

methyl mercury exposure levels (a) or total mercury exposure levels (b) on the x-axis. 

Fitted lines represent predicted values from linear regression. Reconstitution controls 

(represented as black dots) with predicted % methylation (x-axis) are located at the right 

bottom corner (Recon). The numbers on the top of each figure represent effect size/slope 

estimate from the regression of methylation on mercury expsosure and P-value for a 

Wald test of this slope  
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Figure 5.4. Bisulfite Pyrosequencing Results for DMR inside ANGPT2, PRPF18 and 

near FOXD2 

 

Pyrosequencing results for (a) ANGPT2, (b) PRPF18, and (c) FOXD2. Circles represent 

methylation values (y-axis) at individual CpGs for their corresponding total mercury 

exposure levels on the x-axis.  
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Figure 5.5. DNA methylation levels at four Infinium HumanMethylation450 probe 

sets located near/inside the DMR inside TCEANC2 

Each box represents the four probes near or inside the TCEANC2 DMR. Boxplots 

represent percent methylation levels (y axis) for each given blood cell types (x axis). The 

labels on the top of each box represent the probe ID assigned on the 

HumanMethylation450 array and the chromosomal location of the CpG inside the probe. 
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Figure 5.6. Correlation between DNA methylation level at TCEANC2 DMR and 

TCEANC2 gene expression level 

Circles represent the normalized expression level of TCEANC2 (x axis) with respect to 

DNA methylation level (y axis) for each CpG subjected to pyrosequencing. Fitted line 

represents predicted values from linear regression. The numbers on the top of each figure 

represent spearman’s rank correlation coefficients with p-values derived from spearman’s 

rank test 
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Table 5.1. Characteristics of THREE and NCS Vanguard study newborns included 

in this project 
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Table 5.2. Distribution of total/methyl mercury from THREE and NCS Vanguard 

study newborns included in this project 
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Table 5.3. Candidate significant DMRs associated with total (a) and methyl (b) 

mercury exposure in THREE study 
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Table 5.4. Linear relationship coefficient [95%CI] between potential confounders 

and total (a) and methyl (b) mercury exposure or average methylation at DMR 

inside TCEANC2 gene 
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Table 5.5. Comparison of regression coefficients [95% CI] for association between 

DNA methylation and total (a)/methyl (b) mercury exposure with and without 

adjustment for race 
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Table 5.6. Correlation between estimated blood cell counts and total mercury 

exposure 

 

Cell Type 
Pearson's 

Correlation 95% CI Mean (IQR) 

Maternal Trimester 1   

CD8+ T cells -0.0512 (-0.22, 0.12) 1.74 (0,2.45) 

CD4+ T cells 0.0465 (-0.12, 0.21) 10.39 (7.77,12.32) 

Natural killer cells -0.0012 (-0.17, 0.17) 4.7 (2.46,6.62) 

B cells 0.1116 (-0.06, 0.27) 4.89 (3.45,5.96) 

Monocytes -0.1019 (-0.26, 0.07) 9.74 (8.22,11.09) 

Granulocytes -0.0020 (-0.17, 0.17) 61.63 (57.42,67.39) 

Fetal Cord Blood    

CD8+ T cells -0.1250 (-0.33, 0.10) 2.14 (0,3.77) 

CD4+ T cells -0.0803 (-0.29, 0.14) 14.15 (10.27,17.67) 

Natural killer cells -0.1783 (-0.38, 0.04) 5.73 (1.57,9.31) 

B cells -0.0540 (-0.27, 0.17) 13.05 (9.93,15.35) 

Monocytes 0.1833 (-0.04, 0.39) 11.8 (9.71,13.04) 

Granulocytes 0.1152 (-0.11, 0.33) 49.33 (44.26,55.09) 
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Chapter 6: Discussion 
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Using a genome-wide custom DNA methylation array technology and novel 

statistical methods, we have identified three differentially methylated regions associated 

with gestational age at birth and one DMR associated with both methyl and total mercury 

exposure level. Array-based methylation results for all three regions were validated or 

replicated via bisulphite pyrosequencing.  

DMRs associated with gestational age target areas of the genome likely to be 

under developmental regulation in late gestation, which may have implications for 

understanding the reasons for immediate as well as long-term health effects of gestational 

age at birth. The observed incremental progression between methylation and gestational 

age at birth is further supported by the observation that adults are not variable at these 

DMRs, but rather appear to be stable at levels similar to or more extreme than newborns 

with the latest gestational ages at birth. The genes nearest the identified DMRs may play 

important roles in late-stage fetal development. NFIX is known to be responsible for 

regulating skeletal muscle (Messina et al., 2010), brain and bone development (Campbell 

et al., 2008; Driller et al., 2007; Mason et al., 2009), which show substantial  growth 

during late gestation. This finding offers face validity that our approach can identify 

epigenomic regions relevant to late gestational development. RAPGEF2 plays a critical 

role in embryonic haematopoiesis (Satyanarayana et al., 2010) and brain development (i.e. 

commissures) (Bilasy et al., 2011). Although this DMR was not located at the promoter 

of the canonical gene, the DMR contains strong DNase I hypersensitive sites and a 

number of strong transcription factor-binding sites including Gata-2 and PU.1, which are 

the critical transcription factors in haematopoiesis (Ramirez et al., 2010; Vicente et al., 

2012). In utero, a fetus has a higher haematocrit (given lower available oxygen in utero), 
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low B-cell function (given ready transplacental passage of maternal antibodies) as well as 

lower platelet counts than seen in babies (born at term). This methylation change with 

gestational age could be involved in the ontogeny of the haematopoietic system and the 

switch from production of erythrocytes to increased production of B-lymphocytes and 

megakaryocytes in preparation for birth and, respectively, secretion of antibodies in 

response to antigenic assaults as well as production of platelets to prepare for possible 

birth trauma. Furthermore, anaemia of prematurity is known to cause morbidity in pre-

term infants; disruption of regulation of this system may contribute to anaemia of 

prematurity, due to higher haematocrits and restricted erythropoiesis at birth. The 

differential methylation detected in our newborn sample did correlate with expression of 

RAPGEF2 in cord blood cells, lending support for involvement in development of the 

haematopoietic system. Finally, MSRB3 encodes a methionine sulphate reductase enzyme 

involved in antioxidant repair, converting methionine sulphoxide to methionine. This 

specific reductase has been found to be present in many tissues including the human lens 

and the cochlea and has been suspected to be involved in cataracts caused by oxidative 

damage to lens cells (Marchetti et al., 2005). Most congenital cataracts are idiopathic; 

however, PTB and the administration of certain drugs in utero have been identified as 

risk factors (Rahi and Dezateux, 2000), pointing to a possible role for oxidative stress for 

cataract formation in infants as well as adults. Generally, a number of morbid conditions 

associated with term birth have been tied to oxidative stress, from administration of 

oxygen, including retinopathy of prematurity, bronchopulmonary dysplasia, necrotizing 

enterocolitis and intraventricular haemorrhage (Walsh et al., 2009). MSRB3 and other 

Methionine Sulfoxide Reductases (MSRs) may play a role in this sensitivity to oxidative 
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stress. Mutations in MSRB3 also cause hereditary deafness (Ahmed et al., 2011) and 

variants in this gene have been associated with primary tooth development during infancy 

in a recent genome-wide association study (Pillas et al., 2010).  

The DMR associated with both methyl and total mercury target TCEANC2 gene 

which encodes Transcription Elongation Factor A (SII) N-Terminal And Central Domain 

Containing 2, a hypothetical transcription elongation factor based on the sequence 

domain homology. Although no publication in regards to the function of TCEANC2 

protein itself has yet been reported, methyl mercury can increase RNA synthesis in vitro 

at least partly through stimulating chain elongation by RNA Polymerase II (Chao and 

Frenkel, 1983; Frenkel and Ducote, 1987; Frenkel and Randles, 1982). Together with the 

negative association between TCEANC2 gene expression and methylation changes at the 

DMR from our result, there is a possibility of potential function for TCEANC2 by 

mediating between the methyl mercury exposure and increase in RNA transcription.    

These results do not appear to be sensitive to confounding by measured variables. 

Furthermore, it is possible that methylation may be part of the mechanism relating factors 

to gestational age at birth or mercury exposure levels. In these cases, one would not want 

to adjust for such factors in analysis. Thus, we were conservative in our approach to 

adjustment. Nonetheless, inclusion of potential confounders in our models did not 

attenuate the relationship between methylation and gestational age or mercury exposure 

levels at these DMRs. Our use of SVA to reduce the impact of measurement issues, such 

as batch effects, may also have adjusted for potential residual confounding not captured 

by a measured variable. It is worth noting that serum copper levels have previously been 

shown in this sample to be related to gestational age at birth and, therefore, a potential 
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confounder. Nonetheless, the relationship between DMR methylation and gestational age 

did not attenuate after adjustment for copper. We did, however, observe a relationship 

between copper levels and methylation in these adjusted models, suggesting an 

independent effect of copper on methylation, consistent with the growing interest in 

environmental impacts on the epigenome and their implications for human health 

(Dolinoy and Jirtle, 2008; Sutherland and Costa, 2003). We also observed a relationship 

between race and methylation in adjusted model, also suggesting an independent effect of 

race on methylation at TCEANC2 DMR. Although we saw a relationship between 

birthweight and gestational age DMRs, this appeared to be a function of the relationship 

between gestational age and birthweight, rather than specific to birthweight itself. 

Although a recent report did see a relationship between global DNA methylation and 

birthweight for gestational age (Michels et al., 2011), we did not see an association with 

these particular DMRs when considering birthweight adjusted for gestational age 

(Supplementary Table 5).  

An important caveat in this study is that we measured DNA methylation from a 

surrogate tissue, blood, for which methylation changes may not reflect those of tissues 

undergoing developmental epigenetic changes. Despite this, one of the genes near 

gestational age DMRs, RAPGEF2, and TCEANC2 gene containing mercury-associated 

DMR showed the expected inverse relationship of DNA methylation and gene expression. 

Consistent with this idea, RAPGEF2 regulates embryonic haematopoiesis (Satyanarayana 

et al., 2010), and TCEANC2 is expressed in blood, whereas NFIX and MSRB3 play in the 

development of organs such as brain, tooth, skeletal muscle and bone (Campbell et al., 

2008; Mason et al., 2009; Messina et al., 2010; Pillas et al., 2010). Thus, differential 
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expression by methylation patterns of the latter two genes may not be detectable in cord 

blood, or these DMRs may regulate the enhancer function of distal genes or focally 

modify the high-order chromatin structure and thus not manifest a change in cord blood 

expression of NFIX or MSRB3. These results are quite encouraging for epigenetic 

epidemiology in general, since they indicate that DNA methylation differences may be 

widespread, and methylation profiles in blood may be a useful indicator of developmental 

change even in tissues that do not utilize the differentially methylated genes in normal 

developmental processes.  

Overall, the results obtained here by genome-wide DNA methylation analysis are 

encouraging for the field of epigenetic epidemiology, since they indicate that DNA 

methylation differences are detectable with this strategy. Specifically, this work identifies 

epigenetic changes associated with gestational age at birth and mercury exposure. The 

underlying reason for this correlation cannot be determined in this cross-sectional study 

or the replication study, but there are several implications of these findings for the 

epidemiology of PTB and mercury exposure. 

First, regions of the genome that are still undergoing DNA methylation variation 

late in gestation may be functionally related to the health consequences of PTB, and our 

findings can inform new epidemiologic research and biological mechanisms towards 

understanding the reasons for negative outcomes in premature babies and lessening these 

negative infant, childhood or even adult health consequences related to gestational age at 

birth.  

Secondly, it is possible that these results reflect involvement of DNA methylation 

in the aetiology of PTB. There are a number of mechanisms (including infections leading 
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to inflammation (Leitich and Kiss, 2007), preeclampsia (Moldenhauer et al., 2003) and 

stress (Smith, 2007)) and risk factors (African American race, bacterial vaginosis, 

cigarette smoking and low maternal pregnancy body mass index (Behrman, 2007; 

Kramer et al., 2011)) associated with PTB, which could be associated with epigenetic 

changes themselves, although this explanation is less consistent with the function of the 

particular genes identified in our study. In addition, the use of assisted reproductive 

technology and nutritional deficiencies have been identified as possible risk factors for 

PTB (Dunlop et al., 2011; Henderson et al., 2012) and also have the potential to alter the 

epigenome (Chmurzynska, 2010; DeBaun et al., 2003). Identification of epigenetic 

changes associated with PTB potentially could be useful for identifying, among the many 

factors associated with PTB, which are most likely to be causal factors, although our 

design did not contain a large number of spontaneous PTBs and thus the relationship 

between methylation and causes of PTB may be best suited for subsequent studies in 

different samples.  

Thirdly, the findings in our study further implicates about the biological effect of 

low level mercury exposure, particularly methyl mercury, in neonates. Although 

historical cases such as Minamata disease or Iraq poison grain syndrome showed negative 

health outcomes due to high level methyl mercury exposure on both adults and 

children(Bakir et al., 1973; Social Scientific Study Group on Minamata Disease, 1999), 

low level methyl mercury exposure in utero is also associated with brain function deficits 

in childhood (Grandjean et al., 1997), and the negative effect of the exposure on 

cognitive development in children is more apparent when adjusting with maternal fish 

intake, which contains beneficial nutrients for dampening mercury toxicity (Budtz-
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Jorgensen et al., 2007; Strain et al., 2008). Our results provide further evidences along 

with these reports by showing that mercury exposure mostly within normal exposure 

range is associated with epigenetic differences in neonates. Also, methylation changes 

associated with mercury exposure is not confounded by n-3 fatty acid levels, which 

serves as one of the indicators for maternal fish consumption, suggesting that the 

methylation differences we observed would be more associated with negative health 

outcomes. Thus, our findings would help understanding more about the potential 

mechanisms of negative health outcomes on neonates by mercury exposure, particularly 

methyl mercury, in utero. 

Further work is required to determine whether the detection of DNA methylation 

in non-primary proxy tissues (in this instance, blood) indeed is a useful indicator of 

developmental change in the primary tissue for expression of affected genes or functional 

changes induced by mercury exposure. However, the work presented here shows that 

DNA methylation changes progressively during late fetal development or changes 

associated with mercury exposure, thus opening the door to studies of the epigenetic 

epidemiology, and possibly helpful by providing reference data which would be part of 

integrating environmental exposure status, birth outcomes, genetics, and epigenetics of 

neonates. Together with other findings, the findings presented in this thesis would help to 

find ultimate cause for childhood disorders.  
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