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Abstract 

Cell shape changes associated with processes like cytokinesis and motility proceed on 

several second time-scales.  However, they are derived from much faster molecular 

events, including protein-protein interactions, filament assembly, and force generation.  

How these molecular dynamics define cellular outcomes remain unknown.  While 

accumulation of cytoskeletal elements during shape change is often driven by signaling 

pathways, mechanical stresses also direct proteins.  A myosin II-based mechanosensory 

system controls cellular contractility and shape during cytokinesis and under applied 

stress.  In Dictyostelium, this system tunes myosin II accumulation under mechanical 

stress by feedback through the actin network, particularly through the crosslinker 

cortexillin I.  Cortexillin-binding IQGAP proteins are major regulators of this system.  

We examined the dynamic interplay between these key cytoskeletal proteins using 

fluorescence recovery after photobleaching (FRAP) and fluorescence correlation 

spectroscopy (FCS), defining the short time-scale dynamics of these players during 

cytokinesis and under mechanical stress.  Actin and its polar cortex-enriched crosslinkers 

showed sub-second recovery, while equatorially enriched proteins including cortexillin I, 

IQGAP2, and myosin II recovered in 1-5 seconds.  Mobility of these equatorial proteins 

was greatly reduced at the furrow, compared to their interphase dynamics.  This mobility 

shift did not arise from a single biochemical event, but rather from global inhibition of 

protein dynamics by mechanical stress-associated changes in cytoskeletal structure.  

Thus, the equatorial proteins are stabilized under mechanical stress, which likely enables 

them to generate contractility at the furrow.  We further expanded our genetic and 

biochemical understanding of this mechanosensory system using a proteomics approach 
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to identify relevant protein-protein interactions.  We identified that, in addition to binding 

to each other, both cortexillin I and IQGAP2 also interact with myosin II under 

conditions that prevent myosin II-F-actin binding.  Thus, cooperativity between various 

mechanosensitive elements through macromolecular assemblies may provide a new 

mechanism for regulating cellular contractility.  Mechanical tuning of contractile protein 

dynamics provides robustness to the cytoskeletal framework responsible for regulating 

cell shape and contributes to the fidelity of cytokinesis. 
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1. INTRODUCTION 

 

Regulation of cell division is critical for normal development as well as disease.  An 

important step in such regulation is ensuring proper cytokinesis, which is the physical 

separation of a dividing cell into two daughter cells.  Cytokinesis proceeds through a 

series of stereotypical cell shape changes where the cell first rounds up, then elongates 

forming a cleavage furrow near the middle, whose constriction finally results in the 

separation of the daughter cells (Fig. 1.1).  Cytokinesis failure results in tetraploidy, 

which leads to anueploidy and can cause cancer.  In contrast, uncontrolled cell division 

will cause improper partitioning of genetic and cellular material, resulting in cell death.  

Thus, a detailed analysis of the molecular mechanisms of cytokinesis and their regulation 

is essential for understanding cellular outcomes and for development of new therapeutic 

strategies for diseases such as cancer. 

 

 

Figure 1.1: Stages of cytokinesis – A schematic diagram depicting the progression of cytokinesis in an 

amoeboid cell.  As the cell elongates during anaphase, a cleavage furrow forms where the contractile 

actomyosin network is recruited.  The furrow continues to ingress to form an intercellular bridge that 

subsequently separates to form two daughter cells. 
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The father of modern cytokinesis research, Ray Rappaport said “When I began working 

on cytokinesis, I thought I was tinkering with a beautifully made Swiss watch, but what I 

was really working on was an old Maine fishing boat engine: overbuilt, inefficient, never-

failed, and repaired by simple measures.” [1].  This statement highlights the complexity 

and built-in redundancy of cytokinesis, which involves crosstalk between several 

biochemical and mechanical pathways [2-4].  The interplay between these pathways 

confers the cell with the ability to robustly divide in diverse conditions.  The actin 

cytoskeleton and its associated proteins provide the framework for cytokinesis.  The 

mechanoenzyme myosin II generates contractile force, which causes the cell to constrict 

in the equatorial region.  Different actin crosslinkers and anchoring proteins play 

structural roles and help propagate forces within the actin network.  The spatiotemporal 

localization of these proteins at the cell cortex during cell division is critical to ensure 

successful cytokinesis. 

 

1.1. Important players in cytokinesis: A partial parts list 

In most eukaryotic cell types, actin and the motor protein myosin II are known to form a 

contractile structure in the equatorial region of a dividing cell, whose ingression drives 

cytokinesis.  Actin controls the cell mechanics by forming a highly dynamic network of 

semi-flexible filaments.  During the myosin II power stroke, myosin II pulls on the actin 

filaments as it releases the ATP hydrolysis products, thereby generating mechanical 

force.  Two myosin II heavy chains combine with two essential and two regulatory light 

chains (ELC and RLC respectively) to form a myosin II hexameric monomer.  Two 

monomers combine to form a parallel myosin II dimer, which then assembles into 



3 
 

functional bipolar thick filaments (BTFs) by dimer addition [5, 6].  Rho-kinase (ROCK) 

directs BTF assembly by activating myosin II through the phosphorylation of RLC.  

Additionally, heavy chain phosphorylation also controls BTF assembly and disassembly, 

both of which are required for normal cytokinesis [7].  Though myosin II is the major 

mechanoenzyme during cytokinesis, it is not necessary for cytokinesis.  Adherent 

Dictyostelium cells can divide fairly normally in the absence of myosin II using traction 

forces to help with the initial cell elongation followed by cortical tension-driven furrow 

thinning [8, 9].  The effects of cortical tension, which serves to minimize the surface 

area-to-volume ratio, are highly reminiscent of the surface tension of a liquid droplet, 

which also helps drive droplet breakup. 

 

In addition, several other actin-binding proteins, such as anillin and α-actinin in mammals 

and cortexillin I in Dictyostelium, help form a cross-linked actin network in the cell 

cortex and regulate the mechanical properties of the cortex during cytokinesis [10, 11].  

These proteins differ in their structure, actin-binding kinetics, force sensitivity and 

cellular localization.  The actin crosslinkers and myosin II collectively bear the force in 

the cortex.  Some crosslinkers also contain lipid-binding domains (such as the pleckstrin-

homology (PH) domain) that facilitate membrane attachment of the actin meshwork.  In 

animal cells, anillin is a potential scaffolding protein that may provide membrane 

anchoring and link Rho, actin and myosin II in the furrow [10].  Rho is a major regulator 

of animal cytokinesis, as it controls both actin polymerization through formins and 

myosin II activation through ROCK [12, 13].  The levels of GTP-bound active Rho in the 
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cleavage furrow are controlled by the guanidine-exchange factor (GEF) ECT2 and the 

GTPase-activating protein (GAP) MgcRacGAP [14].  

 

The microtubules and its associated proteins are also important for spatiotemporal 

regulation of cytokinesis.  In most cells, cytokinesis occurs in the plane perpendicular to 

the mitotic spindle near the center of the cell.  Thus, the spindle can deliver signals to the 

cell cortex that modulate cortical mechanics and direct cleavage-site selection and 

actomyosin contractile structure formation.  This signal can either be in the form of a 

biochemical factor or a purely mechanical cue like a change in cortical tension or 

membrane potential.  Many microtubule-based proteins such as the kinesin-6 family of 

proteins (mitotic kinesin-like protein-1, MKLP-1) are known to be important in 

cytokinesis and may localize asymmetrically in a dividing cell [14].  These proteins are 

believed to promote communication between the central spindle and the cell cortex. The 

astral microtubules, which point away from the spindle, are also important for regulating 

mechanics and inhibiting contractility in the polar cortex [15, 16]. 

 

Even though the plasma membrane is thought to have a relatively limited contribution to 

the cellular mechanical properties, proteins involved in membrane dynamics, membrane 

fission and fusion, and vesicle transport are important in cytokinesis.  The surface area of 

a dividing cell increases significantly as the furrow constricts [3, 17]. This requires the 

deposition of new membrane in the furrow region.  In addition, constant membrane 

remodeling is required to relieve mechanical stress.  Also, the plasma membrane is an 

important scaffold for many signaling proteins.  As the search for new genes that regulate 
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cytokinesis continues, many non-protein factors, including lipids and small metabolites, 

are also being examined as regulators of cytokinesis.  For example, the phosphoinositol-

4,5-bisphosphate (PIP2) is enriched in the cleavage furrow and can control the 

accumulation and retention of PIP2-binding proteins during cytokinesis  [18, 19].  In 

addition, many mechanical parameters, such as those described in the mechanics of 

cytokinesis section, can affect the kinetics of cell division.  To ensure robustness of 

cytokinesis, current models support the existence of multiple interacting, as well as 

parallel, mechanisms, thereby making the compilation of a comprehensive cytokinesis 

parts list challenging.   

 

1.2. Mechanics of cytokinesis 

Cytokinesis is fundamentally a mechanical process that requires major reorganization of 

the actin cytoskeleton and its associated proteins to promote cellular contractility at the 

cleavage site.  Hence, it is essential to supplement biochemical and genetic information 

with biophysical and mechanical studies to understand force generation, sensing, and 

transduction in a dividing cell.  A diverse tool set is available to study cell mechanics 

during cytokinesis, allowing characterization of various mechanical parameters [20]. 

While micropipette aspiration (MPA) studies are used to determine the elastic modulus 

and effective cortical tension, atomic force microscopy (AFM) measures the bending 

modulus. The elastic modulus determines the deformability of the cell surface, and the 

cortical tension is a complex parameter that measures the energy cost per unit increase in 

cell surface area [3]. The bending modulus reflects the stress required for bending a 

material. During cytokinesis, the initial deformation of a roughly spherical cell requires 
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deviation from its quasi-steady state. This is resisted by the cortical surface tension, 

which favors a spherical cell. However, as the furrow continues to ingress, the curvature 

in the cleavage furrow changes so that the cortical tension actually favors bridge thinning 

and abscission [3, 21]. Laser tracking microrheology (LTM) can be used to measure 

cortical viscoelasticity non-invasively. Viscoelasticity represents the time-dependent 

cellular response to stresses and affects the kinetics of furrow ingression by dampening 

the mechanical deformation, thereby allowing sufficient time for activation and 

stabilization of biochemical factors [3, 21]. 

 

Disruption of actin filaments by compounds such as latrunculin-A has established that the 

actin cytoskeleton is the main contributor of cell mechanics, though the cell membrane 

and microtubules also make some contribution [16, 22]. The actin cytoskeleton also 

undergoes remodeling with internally or externally generated mechanical stresses. The 

impact of these mechanical stresses has been uncovered using micropipette aspiration, 

which allows the application of a defined, localized stress on the cell, similar in 

magnitude to stresses experienced during cytokinesis [23]. Many proteins such as myosin 

II, which localize to the cleavage furrow cortex, also accumulate at sites where 

mechanical stress has been applied [6, 24, 25].  

 

In addition to the mechanical activation of biochemical reactions, the mechanical 

properties of the cell can be controlled biochemically. Knockdown or deletion of many 

actin crosslinkers and associated proteins softens the cell cortex significantly, leading to 

altered furrow ingression kinetics and a reduced ability to perform cytokinesis in 
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suspension culture (where cell-substrate adhesion is absent) [6, 25-27]. The biochemical 

constitution of the cell cortex governs its physical properties and determines how proteins 

respond to mechanical stresses.  For example, in the absence of myosin II, certain 

crosslinkers such as α-actinin show greater accumulation to sites of applied mechanical 

stress, while the myosin II mechanosensory response is amplified in mutants depleted of 

the small GTPase RacE which affects several polar crosslinkers [28]. Structurally, these 

crosslinkers can be divided based on their actin binding properties as those which form 

actin bundles and those which promote the formation of a crosslinked meshwork, which 

drives the sensitivity of their response to mechanical stress and accompanying network 

deformations [28].     

 

In Dictyostelium, the cortex becomes highly mechanoresponsive upon the onset of 

anaphase, where myosin II and cortexillin I show accumulation at lower pressures [24, 

28].  Interestingly, the overall deformability of the furrow is lower than the polar cortex, 

even though furrow undergoes major deformation during cytokinesis, which is attributed 

to an asymmetric cortical distribution of mechanosensitive proteins during cytokinesis 

[27]. This further illustrates the role of biochemical pathways in regulating cell 

mechanics. These findings demonstrate the intricate interplay between biochemical and 

mechanical pathways during cytokinesis.  

 

1.3. Feedback regulation of cytokinesis and mechanosensing 

As illustrated above, cytokinesis involves several proteins having multiple modes of 

regulation that controls when and where division occurs.  This multi-level regulation can 
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be emphasized using Dictyostelium cytokinesis as an example.  The amoeba 

Dictyostelium discoideum is a powerful model for cytokinesis studies due to its genetic 

homology and mechanical similarity to many mammalian cells, as well as its amenability 

for genetic, biochemical and mechanical perturbations. 

 

As the cell starts to divide, myosin II is enriched in the equatorial region where the 

cleavage furrow forms.  Cortexillin I, an actin crosslinker, also accumulates at the furrow 

where it regulates contractility along with myosin II [6].  The cooperative interactions 

between myosin II and cortexillin I are mechanosensitive and are mediated by actin 

filaments [5].  Both these proteins are also recruited to sites of applied stress during 

micropipette aspiration [5, 6].  Thus, these proteins form the core of a mechanoresponsive 

contractile unit, where myosin II is the force-generating element and cortexillin I anchors 

the actin network, and helps propagate forces through this network.  During cytokinesis, 

signals from the mitotic spindle direct the symmetry breaking and the initial recruitment 

of these proteins to the cell equator (Fig. 1.2).  Subsequently, the mechanical feedback 

between myosin II and cortexillin I controls the protein amount, and the contractility, at 

the furrow.  Further, two cortexillin I-binding proteins, IQGAP1 and IQGAP2, provide 

additional regulation of this mechanoresponsive system [25] (Fig. 1.2).  In the absence of 

IQGAP2, myosin II and cortexillin I fail to accumulate in response to applied stress due 

to inhibition by IQGAP1.  However, double mutant lacking both IQGAPs is highly 

mechanoresponsive indicating the IQGAPs are not required for mechanoresponsiveness, 

and only play regulatory roles.  Further, IQGAP2 also transduces the readout from the 

mechanosensor back to the spindle signaling proteins.  It is required for directing stress-
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dependent accumulation of the mitotic kinesin-like protein (MKLP) Kif12 and the 

chromosome passenger complex protein INCENP to the cell cortex upon aspiration [25] 

(Fig. 1.2).   

 

In addition to regulation at the cleavage furrow, the global cell mechanics are also highly 

controlled during cytokinesis.  Many actin crosslinkers such as dynacortin and fimbrin 

are enriched in polar cortex, and contribute to cortical dynamics [26, 27].  The small 

GTPase RacE is a global regulator of cortical mechanics and cytokinesis [29], and acts 

upstream of many actin crosslinkers including dynacortin and coronin [3, 21, 30] (Fig. 

1.2).  The overexpression of polar crosslinker inhibits myosin II mechanoresponsiveness, 

while the absence of RacE or dynacortin makes myosin II more responsive.  During 

cytokinesis, the equatorial mechanoresponsive unit (comprising of myosin II and 

cortexillin I) and the polar module (comprising RacE and other actin crosslinkers) exhibit 

inverse concentration gradient, promoting furrow ingression.  Though the equatorial and 

polar modules have complementary roles during cytokinesis, there is crosstalk between 

these modules.  RacE also acts upstream of 14-3-3, which is enriched in the polar cortex 

where it regulates cortical tension and steady state microtubule length [16] (Fig. 1.2).  14-

3-3 also binds to the myosin II heavy chain and promotes myosin II bipolar thick filament 

turnover at the furrow [16].  Thus, myosin II contractility at the furrow is regulated by the 

interplay between the equatorial regulatory module and the polar cortex proteins [4].   
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Figure 1.2: Pathways regulate cell mechanics and contractility during cytokinesis.  An equatorial 

module, comprising of myosin II, cortexillin I, IQGAPs and kif12/INCENP, tunes myosin II recruitment at 

the furrow.  The RacE-14-3-3-myosin II pathway and the polar crosslinkers control cortical tension at the 

poles. The signals from the mitotic spindle as well as the astral microtubules are central in directing the 

spatiotemporal function of these modules during cytokinesis [4]. 

  

Though the roles of myosin II and many actin crosslinkers in cytokinesis and contractility 

have been examined carefully, the molecular mechanisms for the recruitment and 

retention of these proteins remain unknown.  For example, a myosin II mutant lacking the 

motor domain can be enriched to the furrow region, though it is not tightly incorporated 

in the cortex suggesting that additional pathways may regulate myosin II furrow 

recruitment [31].  A genetic selection has identified novel roles for many proteins, 

including RMD1 (regulator of microtubule dynamics-1) and mmsdh (methylmalonate 

semialdehyde dehydrogenase), in rescuing defects in myosin II BTF assembly and furrow 

enrichment [32].  Thus, multiple parallel pathways regulate myosin II furrow localization 

and cellular contractility, thereby providing robustness to the cellular cytokinesis 

machinery.  Hence, Rappaport appropriately concluded that cytokinesis is indeed a 

complex shape change process, which is over-built and is hard to fail.  
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2. MATERIALS AND METHODS 

 

2.1. Cell strains and Culture 

A complete list of the strains used is provided in Table 1. Cells were grown in Hans’ 

enriched 1.5X HL-5 media (enriched with 8% FM medium) containing penicillin and 

streptomycin at 22
0
C on polystyrene petri dishes. Wild type strains used were KAx3 [33], 

Ax3:Rep orf+ (HS1000) [30] and rescued strains. Mutant cell lines used have been 

described previously – myoII [33], ctxA, ctxB, and ctxA/B [30, 34], iqg1, iqg2 and iqg1/2 

[34], and racE [30].  The plasmids for RFP-tubulin, GFP-cortexillin-I, GFP-IQGAP2, 

GFP-actin, mCherry-myosin-II and GFP have been described previously [24, 25, 28, 34].  

Cells were transformed with expression plasmids by electroporation using a Genepulser-

II electroporator (Bio-Rad, Hercules, CA).   

 

For the coimmunoprecipitation studies, FLAG-GFP-tagged constructs were made for 

cortexillin I, IQGAP2 and RacE by cloning into the pDM181vector.  The FLAG-GFP 

plasmid was used as a negative control.  A FLAG-GFP DNA fragment was amplified by 

polymerase chain reaction using the following primers: 

5’BglII-RBS-FLAG-SacI-GFP (Forward primer):  

5’ AAA AAA AGA TCT CTA TTA AAA TGG ATT ATA AAG ATG ATG ACG ATA 

AAG AGC TCA TGG ATC CAT CGA AAG GTG AAG 3’ 

 

3’SalI-Linker-SacI-GFP (Reverse primer):  

5’ AAA AAA GTC GAC GGA TCT TGA TAT CTT ACC TGA ACC TGA ACC GAG 

CTC TTT GTA TAG TTC ATC CAT GCC ATG TG 3’ 
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The amplified DNA was then cloned into pDM181 vector using BglII and SalI restriction 

enzymes.  Subsequently, cortexillin I, IQGAP2 or RacE were cloned into this plasmid 

using SalI and NotI sites in the vector.  The plasmid map for FLAG-GFP-pDM181 is 

given below. 

 

Figure 2.1: Plasmid map for FLAG-GFP-pDM181. 

 

Cells were then grown in selection medium containing 15 µg/mL G418 or 40 µg/mL 

hygromycin or both drugs when transforming two plasmids.  Expression levels were 

checked by fluorescence imaging or Western blotting.  Cells with comparable fluorescent 

protein expression were used for the experiments. 

 

2.2. Compression by Agarose Overlay 

Agarose overlay has been established as a method for applying uniform global 

mechanical stress, and has previously been shown to drive mechanosensitive 

accumulation of certain proteins at the cell cortex [25] (Fig. 2.2).  For compression, thin 

sheets of 2% agarose in MES starvation buffer (50 mM MES pH 6.8, 2 mM MgCl2 and 

Sac I 348...353
FLAG 321...347

ColE1 origin 5246...4564

AmpR 6003...5344

NeoR G418 R 6638...7494

Flag_SacI_GFP_
SacI_linker 

pDM181
7519 bp

Bgl II 307...312

GFP S65T Dicty bias 354...1073
Sac I 1074...1079
linker 1080...1109
Sal I 1110...1115
Not I 1124...1131
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0.2 mM CaCl2) were prepared according to the protocol described by Fukui et al. [35, 36] 

and modified by Kee et al. [25].  The cells were plated in imaging chambers for 1 hour.  

The culture medium was aspirated and cells were washed with MES starvation buffer 

twice to reduce the background fluorescence.  The buffer was removed completely and a 

sheet of agarose was carefully placed to cover the cells.  Imaging was started after the 

cells were completely flattened (about 2 minutes).  To ensure proper cell health, the 

flattened cells were not used beyond 10 minutes and were replaced during experiments.  

 

Figure 2.2: Myosin II accumulates along the lateral edges upon compression in regions of 

maximum stress. 3D-reconstruction of GFP-myosin II expressing Dictyostelium cells in absence 

or presence of compression.  

 

2.3. Latrunculin-A and Jasplakinolide Treatment 

Latrunculin-A and Jasplakinolide were obtained from Sigma-Aldrich.  All cells were pre-

treated with 0.1% DMSO for 4-6 hours.  For phalloidin and anti-actin staining, the cells 

were incubated with the drugs for 15 minutes.  For live cell imaging, drug stocks were 

freshly made in MES starvation buffer.  The cells plated in imaging chambers were 

washed with MES starvation buffer + 0.1% DMSO, followed by the addition of the drug-

containing buffer.  Imaging was performed after a 10 minute incubation, and each slide 

was imaged for 15 minutes before it was replaced with a new slide. 
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2.4. Fluorescence Recovery after Photobleaching (FRAP) 

FRAP experiments were performed using a Zeiss Axiovert 200 inverted microscope with 

LSM510-Meta confocal module, with a 63x (NA 1.4) objective. Cells expressing GFP-

tagged proteins were plated in glass-bottom imaging chambers for an hour.  The culture 

medium was replaced with MES starvation buffer immediately before imaging. A small 

region of the cell cortex was bleached using a 488 nm Argon laser, and the fluorescence 

recovery was recorded until recovery saturated (150 frames, 45-150 ms/frame depending 

on the protein).  The size and placement of the bleach region was kept relatively constant 

across measurements. 

 

For each frame, the average intensity of the bleached cortical region, reference 

(unbleached) region, and background was quantified using ImageJ (National Institutes of 

Health, Bethesda, MD) (Fig. 2.3A-B).  For photobleaching correction, the reference 

theoretical intensity (RTI) was calculated by fitting the background subtracted reference 

intensity to an exponential decay equation as follows: 

                      (1) 

Where, A, B and C are fitting parameters. 

 

The intensity of the bleached region was background subtracted and normalized to RTI 

(Fig. 2.3C). The normalized intensity (NI) was obtained by normalizing this to the pre-

bleach intensity (average of 4 pre-bleach images), and was fitted to a single exponential 

as follows: 

                         (2) 
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Where, m1, m2 are fitting parameters and k is the recovery rate. 

 

The recovery time, , and the immobile fraction, Fi were measured as: 

Recovery time,  =         (3) 

Immobile fraction, Fi = 
    

       
   (4)  

 

We also plotted the derivative of normalized intensity for each protein to confirm that our 

data fit a single-exponential, and did not require more complicated models.  The recovery 

times and immobile fractions calculated from FRAP are summarized in Tables 2-3. 

 

Figure 2.3: Calculation of immobile fraction and recovery time from FRAP. (A) An example 

confocal image of a GFP-cortexillin I-expressing cell illustrating the bleach, reference and 

background region used for FRAP measurements.  (B) Example fluorescence intensity curves 

showing changes in intensity of bleached and reference regions during a FRAP experiment.  (C) 

Example traces showing fluorescence recovery of GFP-cortexillin I in interphase and cleavage 

furrow cortex. 

 

2.5. Fluorescence Correlation Spectroscopy (FCS) 

FCS experiments were performed using a Zeiss AxioObserver with 780-Quasar confocal 

module & FCS, with a C-Apochromat 40x (NA 1.2) water objective. For purified 

proteins and dyes, the imaging plane was set 200 μm above the coverslip.  10 repetitions 

of 5 seconds each were collected and the average spectrum was used for measuring 

diffusion times.  For diffusion measurements in cells, the imaging plane was set through 
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the middle of the cell.  The acquisition time was reduced to 2 seconds to avoid 

complications from long range cellular and intracellular movement.  The average from 2-

7 repetitions was used to calculate diffusion times.  Any trace showing a persistent 

deviation from the mean or significant photobleaching was discarded.  The 

autocorrelation data was then fit to a single component, 3D-diffusion model with triplet 

state dynamics using the following equation: 

              
 

 
    

 

  
       

 

    
        (5) 

Where, 

  = correlation time 

   = diffusion time 

N = number of particles 

  = structural parameter 

         
              

  
 

(   = fraction of particles in triplet state and    = relaxation time for triplet state). 

 

100 nM Rhodamine 6G was used for pinhole alignment and structural parameter 

calculation (Fig. 2.4).  The measured value of the structural parameter was used for 

diffusion time calculation of other proteins.  All imaging was done in uncoated 35 mm-

glass bottom dishes (Coverslip No. 1.5) (MatTek Corp., Ashland, MA). 

 

In compressed cells, the cell height is comparable to the z-dimension of the FCS confocal 

volume.  Therefore, we also analyzed the FCS data using a 2D-diffusion model and 
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observed no significant differences in diffusion times as compared to those calculated 

using the 3D-diffusion model.   

 

Figure 2.4: Calibration of FCS experiments: (A) Example autocorrelation curves for rhodamine 6G 

diffusion as measured by FCS.  The autocorrelation data was fitted to a 1-component 3D diffusion model 

with triplet state dynamics.  The panel on right is the residual curve showing the goodness of fit.  (B) The 

distribution of diffusion times and structural parameter measured for rhodamine 6G by FCS.   

 

2.6. Calculation of Diffusion Coefficients 

Rhodamine 6G was used as a standard for calculating diffusion coefficients.  As the 

diffusion coefficient is inversely proportional to the diffusion time, we used the published 

value of the diffusion coefficient for rhodamine 6G and measured diffusion times for 

rhodamine 6G and the proteins of interest to calculate effective diffusion coefficients 

(    ). 

     
         

  
    (6) 

Where,   

    = diffusion coefficient for rhodamine 6G (= 426 μm
2
/s [37]) 

      = measured diffusion time for rhodamine 6G = 33 ± 2 μs 

   = measured diffusion time. 
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We used purified mCherry to validate our diffusion coefficient calculation.  Our 

measured diffusion coefficient for mCherry (94 μm
2
/s) matched closely the published 

value for purified GFP (95 μm
2
/s [37]) under the same conditions (Table 4).  All 

diffusion time measurements and estimated diffusion coefficients are summarized in 

Table 4. 

 

2.7. F-actin Quantification by Phalloidin and Anti-actin Staining 

For quantifying the relative amount of F-actin, the cells were fixed and stained with 

TRITC-phalloidin (Sigma Aldrich) or anti-actin monoclonal antibody (Developmental 

Studies Hybridoma Bank, University of Iowa) as described in Luo et al. [5].  

Dictyostelium cells were plated on sterile 22x22 mm glass coverslips in 6-well 

polystyrene dishes at 70-80% confluency for 1 hour. The media was aspirated and 

replaced with 2 mL drug-containing media for 15 minutes.  The cells were washed with 

1X PBS, and immediately fixed on ice using acetone at -20
0
C for 3 minutes. The 

coverslips were transferred to a new 6-well dish and washed once with 1X PBS, followed 

by blocking in blocking buffer (1X PBS + 0.05% Triton X-100 + 0.5% BSA) for 30 min. 

The cells were stained with 0.16 µM TRITC-phalloidin for 1 hour or with anti-actin 

antibody overnight followed by 2 hour incubation with TRITC goat-anti-mouse 

secondary. All coverslips were washed 4 times with 1X PBT (1X PBS + 0.05% Triton X-

100) for 5 minutes each, and then once with 1X PBS. The coverslips were then mounted 

on glass slides using 10 µL mounting buffer (90% glycerol in 1X PBS). 
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To quantify the relative amount of F-actin, all coverslips were imaged under identical 

conditions on a motorized Olympus IX71 microscope using a 40x (NA 1.3) objective 

with a 1.6x optovar (Olympus, Center Valley, PA). The integrated fluorescence intensity 

of the cells was quantified using ImageJ. At least 100 cells from more than 10 different 

fields were quantified. The intensity was normalized to the average fluorescence intensity 

of the untreated control for a given experiment.  The data shown represents three 

biological replicates. 

 

2.8. Cortical Tension Measurement Using Micropipette Aspiration 

The experimental set-up has been previously described in detail in Effler et al. (2006).  

0.01-0.6 nN/µm
2
 pressures were applied to a smooth region of the cell cortex through a 

~5 µm internal diameter glass micropipette (Rp = 2.3-3 μm).  A low pressure was first 

applied to form a pressure seal. The cell protrusion was allowed to stabilize for 30 

seconds before imaging. Subsequently, the pressure was gradually increased and imaging 

was resumed after the protrusion stabilized.  This was continued until the protrusion 

length became large (Lp > Rp) or the cell blebbed.  At each pressure, the protrusion length 

from five consecutive frames was averaged.  The critical pressure (ΔPcrit) was identified 

as the pressure where Lp = Rp, and the cortical tension (Teff) was calculated using the 

following equation: 

Δ              
 

  
 

 

  
    (7) 
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2.9. Anti-FLAG Coimmunoprecipitation 

The cytoskeletal fractionation protocol was modified from Reines and Clarke [38].  The 

cells were gently dislodged from the plate and centrifuged at 4000g for 5 minutes.  The 

cells were washed with 1X PBS and resuspended to a final concentration of 5x10
7
 

cells/mL for the ‘cytoskeletal’ sample (C) and 1x10
7
 cells/mL for the ‘soluble’ sample 

(S).  The cells were centrifuged at 5000g for 5 minutes, resuspended in 500 μL Lysis 

Buffer (100 mM PIPES pH 6.8, 2.5 mM EGTA, 1 mM MgCl2, 1 mM ATP, 0.5% Triton 

X-100 and protease inhibitor cocktail) and incubated on ice for 10 minutes with 

intermittent vortexing.  The samples were centrifuged at 15000g for 5 minutes at 4
0
C.  

The supernatant from ‘soluble’ sample was transferred to a fresh tube and kept on ice for 

coimmunoprecipitation.  The pellet from the ‘cytoskeletal’ sample was dissolved in 

Release Buffer (100 mM PIPES pH 6.8, 2.5 mM EGTA, 1 mM MgCl2, 1 mM ATP, 200 

mM NaCl and protease inhibitor cocktail), and incubated on a tube rotator for 15 minutes 

at 4
0
C.  The ‘cytoskeletal’ sample was then centrifuged at 15000g for 5 minutes at 4

0
C, 

and the supernatant was processed for coimmunoprecipitation.   

 

Forty-microliters IgG-Agarose beads and 40 μL anti-FLAG M2 Affinity Gel (Sigma 

Aldrich) per sample were aliquoted and washed three times with 1X TBS (50 mM Tris 

pH 7.4 and 150 mM NaCl). To reduce non-specific binding, the supernatants from 

cytoskeletal fractionation were incubated with 40 μL IgG-Agarose beads for 30 minutes 

at 4
0
C with continuous mixing.  The samples were centrifuged at 5000g for 1 minute, and 

the supernatants were transferred to tubes containing 40 μL pre-washed anti-FLAG resin, 

and incubated overnight at 4
0
C.  The resin was washed four times with 1X TBS, and 
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eluted with 0.1 M glycine, pH 3.5.  The eluted samples were then analyzed by mass 

spectrometry to identify potential binding partners.   

 

2.10. Mass Spectrometric Analysis 

Forty-microliters of eluted samples were incubated with 10 mM of tris-2 carboxyethyl 

phosphine (Sigma) for 20 min at RT with shaking, followed by alkylation with 10 mM of 

IAA (Sigma) for 20 min, at ambient RT, protected from light.  The reduced and alkylated 

proteins were acetone precipitated to remove solutes not compatible with downstream 

LC/MS/MS analysis.  Final pellet was air-dried.  5 μg of endoproteinase Lys-C 

(Promega, Madison, WI)) was reconstituted in 650 μL of digestion solution (0.1% 

RapiGest (Waters, Milford, MA), 20% ACN, 50 mM Ammonium Bicarbonate).  20 μL 

of that solution was added to each acetone precipitated sample.  Protein pellet was 

allowed to digest for 2 hours at 37
0
C with constant shaking.  Following addition of 1 μg 

of trypsin (Promega, Madison, WI) in 20 μL of digestion solution, enzymatic proteolysis 

continued overnight under the same conditions.  TFA was added to deactivate enzymes.  

Samples were desalted using UltraMicro Spin C18 columns (NestGroup, Southborogh, 

MA) according to the manufacturers instructions.  Collected peptides were lyophilized 

and reconstituted in 10 μL of water with 0.1% fluoroacetic acid (FA) Optima (Thermo 

Fisher Scientific).   

 

Four-microliter aliquots of each tryptic protein digest solution were analyzed on EASY n-

LC 1000 (Thermo Scientific) coupled to Orbitrap-Elite (Thermo Fisher) mass 

spectrometer.  Peptides were separated on Acclaim PepMap RSLC column (Thermo 
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Scientific), with 50 μm inner diameter, 15 cm length, packed with C18 reversed phase 2 

μm particles, 100 A pore size), using mobile phase linear gradient from 5% B to 20% B 

in 40 min continued to 35% B in 10 min at 300 μL/min flow rate, where mobile phase A 

was composed of 0.1% (v/v) Formic acid in water and mobile phase B 0.1% (v/v) Formic 

acid in acetonitrile. 

 

2.11. Tandem Mass Spectrometric Analysis (LTQ-Orbitrap XL) 

Eluting peptides were ionized via Nanospray Flex ion source (Thermo Scientific) 

operated at following settings: source voltage 2.00V, capillary temperature 275.00 C and 

S-lens RF level 60.  

 

The Orbitrap –Elite mass spectrometer was operated in data dependent mode. MS 

precursor scan spectra (m/z 350-1800) were acquired in the Orbitrap with mass resolution 

of 60,000 full-width half-maximum (at m/z 400).  The fifteen most intense ions from 

each MS scan were automatically targeted for CID (collision induced dissociation) 

fragmentation (MS/MS) in the LTQ (linear ion trap) with dynamic exclusion 90 sec.  For 

MS1, AGC (automatic gain control) target was set to 1x10
6
 with maximum accumulation 

time 250 ms.  Only ions of 1000 minimum signal intensity were selected for MS2 

fragmentation.  MS2 spectra were acquired in a rapid scan mode in the LTQ (linear ion 

trap) using targeted setting of 10x10
4
 ions and accumulation time of 150 ms.  Normalized 

collision energy was set at 35%.  The default charge state was set at two.  The isolation 

window for the ion gate was fixed at two Daltons.  The activation Q was set at 0.25. 
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2.12. Peptide Identification via MASCOT Database Search  

Raw MS data were searched against the UniProt Dictyostelium discoideum database. 

(37,261 entries; October, 2013 version) using Sorcerer 2™-SEQUEST® (Sage-N 

Research, Milpitas, CA) with postsearch analysis performed using the Trans-Proteome 

Pipeline, implementing PeptideProphet and ProteinProphet  algorithms.  Sequest 

(Thermo Fisher Scientific, San Jose, CA: version 1.0) was set up with following search 

parameters: semienzyme digest using trypsin (after Lys or Arg) with up to two missed 

cleavages; monoisotopic precursor mass range of 400–4500 amu; and oxidation (Met), 

carbamidomethylation (Cys), and acetylation(Lys) were specified as variable 

modifications. Peptide mass tolerance was set to 50 ppm, fragment mass tolerance was 

set to 1 amu, fragment mass type was set to monoisotopic, and the maximum number of 

modifications was set to four per peptide.  

 

Scaffold (version Scaffold_4.4.1.1, Proteome Software Inc., Portland, Or) was used to 

validate peptide and protein identifications.  Error rates (false discovery rates) and 

peptide probabilities (p) were calculated by Peptide Prophet, accepted peptide 

identifications had greater than 95% probability with Scaffold delta-mass correction. 

Protein Probabilities were assigned by Protein Prophet algorithm, only proteins 

identification at greater than 95% probability, which contained at least two identified 

peptides were reported. 
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2.13. Comparative analysis of binding partners 

The normalized spectral counts were used for identifying proteins that were up- or down-

regulated in the experimental samples as compared to the control group based on 

quantifying the protein total spectral count.  We applied the G-test of independence to 

determine the significance of difference in the normalized spectral count (average of 3 

replicates) for the experimental and control group.  We defined f1 = normalized spectral 

counts/protein in the control sample (FLAG-GFP), f2 = normalized spectral 

counts/protein in the experimental sample (FLAG-GFP-cortexillin I, for example).  When 

a protein was absent from one of the samples, it was assigned the normalized spectral 

count of 0.0001.  The G value was calculated as  

        
  

     
        

  
     

  

Where avgf1 = avgf2 = (f1 + f2)/2 

 

A Chi-squared distribution with one degree of freedom was assumed, with a p value less 

than 0.05 considered significant.  Thus, a protein was considered differentially expressed 

if the calculated G value was greater than 3.841. 

    



25 
 

3. RESULTS AND DISCUSSION 

Cytokinesis is a complex shape change process involving a large number of proteins 

which work together in a highly coordinated manner.  The crosstalk between various 

cytoskeletal modules ensures high fidelity of cytokinesis. Previous genetic and 

mechanical studies in Dictyostelium have identified a mechanoresponsive control system 

that regulates contractility at the cleavage furrow of a dividing cell.  The mitotic spindle 

and mechanical stress direct recruitment of contractile proteins – myosin II and 

cortexillin I – at the furrow, driving furrow ingression.  Cellular contractility is further 

regulated by the cortexillin-binding IQGAP proteins, providing tunability to the 

mechanosensory system.  However, how these proteins interact at a molecular level to 

affect mechanosensory responses remains unknown.   

 

In this study, we examined the dynamics and mobility of key mechanoresponsive 

proteins using fluorescence recovery after photobleaching (FRAP) and fluorescence 

correlation spectroscopy (FCS) to understand how they are recruited to and retained at 

the cleavage furrow.  We observed that the mechanoresponsive proteins, including 

myosin II, cortexillin I and IQGAP2, show marked reduction in mobility at the cleavage 

furrow compared to the interphase cortex. This indicates that these proteins are forming 

stable complexes at the furrow.  Further, the shift in protein mobility at the furrow is 

driven by mechanical stress, and is robust to many genetic perturbations.  In addition, we 

used proteomics to identify protein-protein interactions important for 

mechanoresponsiveness. We found that myosin II can associate with both cortexillin I 

and IQGAP2, further suggesting the existence of large scale assemblies of 
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mechanoresponsive complexes.  Thus, this study gives new insight into how different 

cytoskeletal elements can work together to respond to mechanical stress, and regulate 

contractility during cytokinesis. 

 

3.1.  Equatorial proteins have slower recovery times than polar 

crosslinkers, and exhibit reduced mobility at the cleavage furrow 

The short time-scale dynamics of proteins regulate their recruitment and localization.  

Actin-associated proteins may be classified into two groups – the equatorially enriched 

cleavage furrow proteins and the polar or globally distributed proteins ([27], Fig. 3.1A).  

We used fluorescence recovery after photobleaching (FRAP) to examine the dynamics of 

these groups in interphase and dividing Dictyostelium cells, and to explain differences in 

their spatiotemporal localization.  We measured the fluorescence intensity in the bleached 

region until the recovery curve saturated (10-25 s), allowing accurate calculation of 

recovery times and immobile fractions for key cytoskeletal proteins (Fig. 2.3).  The 

characteristic recovery time is dominated by binding-unbinding rates, while the immobile 

fraction represents the population that does not turn over during the experiment (Fig. 

3.1B).  As Dictyostelium cells are highly motile, longer acquisitions can show additional 

long-scale recovery due to cellular motility instead of protein dynamics.  Thus, for this 

study we only measure the fast dynamic recovery and mobility.  In interphase cells, GFP-

actin recovers within a second, establishing the dynamicity of the actin network (Fig. 

3.1C, D, Table 2).  The cortical actin recovery times and immobile fractions were 

significantly higher than for GFP or cytoplasmic GFP-actin (Fig. 3.1C, 1D).  Thus, the 
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cortical FRAP measurements report on the dynamics of the cortical cytoskeletal network, 

even though ~70% of the total actin (250 μM) in Dictyostelium cells is monomeric [39].    

 

 

 

Figure 3.1: Cytoskeletal protein dynamics measured by FRAP. (A) Cytoskeletal proteins are 

asymmetrically localized during cytokinesis.  (B) From FRAP analysis, the network release rate is 

inversely proportional to the recovery time (), while the immobile fraction (dark red circles) represents the 

protein population that does not turnover during the experiment.  The protein mobile fraction is represented 

by light orange circles.  The thick and thin lines represent the immobile and mobile populations of actin, 

respectively.  (C) Recovery times and immobile fractions for soluble GFP and cytoskeletal proteins at the 

cell cortex and in the cytoplasm in interphase cells as measured by FRAP.  Cytoskeletal proteins show 

slower recovery in the cortex than in the cytoplasm.  (D) Distribution of recovery times and immobile 

fractions for soluble GFP and cytoskeletal proteins at the cell cortex and in the cytoplasm. Asterisks 

represent the significance of difference between interphase and furrow measurements where ns: p >0.05, *: 

p <0.05, **: p <0.005, ***: p <0.0005 based on ANOVA with Fischer’s LSD post-test. 
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Genetic, biochemical and mechanical studies have demonstrated cross-talk between the 

polar and equatorial modules [3, 16].  However, how these proteins interact dynamically 

to control these processes is unknown.  Here, we study the dynamics of proteins 

important for cytokinesis to develop a mechanistic understanding of how cells divide and 

regulate their shape.  This would provide insight into how the fast molecular events 

governing cytokinesis, including motor activity, actin filament turnover and 

rearrangement, and crosslinker interactions, regulate much slower cell shape changes.   

 

Interestingly, we observed that actin dynamics changed during cytokinesis as the 

recovery time increased and the immobile fraction decreased in the furrow (Fig. 3.2, 

Table 2).  In comparison, the dynacortin and fimbrin recovery times at the furrow 

increased significantly, while their mobility was unaffected (Fig. 3.2, [27]).  The polar 

cortex dynamics of dynacortin and fimbrin were similar to interphase values, while actin 

showed increased mobility at the poles (data not shown).  Myosin II, cortexillin I and 

IQGAP2, which localize to the cleavage furrow, recovered more slowly (1.5-5 s) than 

actin or polar crosslinkers in the interphase cortex (Fig. 3.2, Table 2).  Their much 

slower recovery than that of soluble GFP demonstrates that the fluorescence recovery is 

dominated by unbinding events at the cortex instead of diffusion.  Further, their 

cytoplasmic recovery times are significantly faster than those in the cortex (Fig. 3.1C, 

D), indicating that the equatorial proteins form stable complexes at the cortex with slower 

unbinding.  Cortexillin I recovery was slower at the furrow than in interphase, while 

myosin II and IQGAP2 showed no change.  In contrast, myosin II recovery slows in 

anaphase as compared to metaphase in Drosophila S2 cells [40].  
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The equatorial proteins had high mobility during interphase compared to other proteins 

(Fig. 3.2).  The mobility of cortexillin I and IQGAP2 in the interphase cortex were 

comparable to those in the cytoplasm (Fig. 3.1C, D).  However, the immobile fractions 

for these proteins increased significantly at the cleavage furrow (Fig. 3.2, Table 2).  The 

magnitude of mobility shift for cortexillin I and IQGAP2 was higher than for myosin II 

[16, 27, 41].  Thus, we focused on cortexillin I and IQGAP2 dynamics for the remainder 

of this study.  The reduction in protein mobility at the furrow suggests that these proteins 

are stabilized at the cortex during furrow ingression, consistent with their slower recovery 

times.  The high immobile fractions also likely promote their furrow enrichment. 

Therefore, determining the factors that cause this mobility shift is essential to explaining 

how the contractile proteins accumulate and remodel during furrow ingression.    

 

Figure 3.2: Changes in cytoskeletal protein dynamics during cytokinesis. Recovery times and immobile 

fractions of different cytoskeletal proteins in the interphase cortex and at the cleavage furrow.  Equatorially 

enriched proteins – myosin II, cortexillin I and IQGAP2 – have markedly reduced mobility at the cleavage 

furrow.  Values plotted are mean ± SEM; sample sizes are listed on the bars (see Table 3.1).  Asterisks 

represent the significance of difference between interphase and furrow measurements where ns: p >0.05, *: 

p <0.05, **: p <0.005, ***: p <0.0005 based on ANOVA with Fischer’s LSD post-test.  #: FRAP data for 

myosin II is reproduced from [16] and for dynacortin and fimbrin from [27]. 
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3.2.  Genetic control of protein dynamics is suppressed at the furrow 

Previous genetic studies established the functional interplay between myosin II, 

cortexillin I, and the IQGAPs in governing protein accumulation and contractility at the 

cleavage furrow and in responding to mechanical stress [25] (Fig. 3.3A). Thus, we tested 

whether the same genetic relationships also dictate protein dynamics, regulating their 

furrow accumulation.  We conducted FRAP on cortexillin I and IQGAP2 at the 

interphase cortex and the furrow in cell lines lacking key components of this 

mechanoresponsive system (Fig. 3.3B).   

 

 

Figure 3.3: Cortexillin I and IQGAP2 dynamics at the cleavage furrow.  (A) A myosin II-cortexillin I-

actin-based mechanosensory system regulates contractility at the furrow, and IQGAP proteins regulate 

accumulation of the contractile proteins.  (B) Confocal images showing photobleaching and fluorescence 

recovery of GFP-cortexillin I and GFP-IQGAP2 in the cortex of interphase cells and at the cleavage 

furrow.  Scale bar is 5 μm. 

 

Cortexillin I recovery time increased at the furrow compared to the interphase cortex in 

wild type (WT) cells (Fig. 3.4A, C, Table 2).  However, this slower recovery was not 

observed in myosin II (myoII) and iqgap2 (iqg2) null cells (Fig. 3.4A, C, Table 2).  In 

contrast, while IQGAP2’s recovery time was unaltered at the furrow in WT cells, 

IQGAP2 had significantly higher recovery time at the furrow in myoII cells (Fig. 3.4B, 

D, Table 2).  Both cortexillin I and IQGAP2 had >2-fold higher immobile fractions at the 
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cleavage furrow (Fig. 3.4A-D, Table 2).  Cortexillin I immobile fractions were higher in 

interphase myoII and iqg2 compared to WT, but were unchanged at the furrow in these 

mutants (Fig. 3.4A, C, Table 2).  This demonstrates that while myosin II and IQGAP2 

are important for maintaining a mobile pool of cortexillin I, additional factors such as 

mechanical stress could dominate cortexillin I mobility at the furrow, ensuring its 

recruitment during cytokinesis, as cortexillin I also shows mechanical stress-dependent 

accumulation [6, 25].  Consistently, the cleavage furrow localization of cortexillin I was 

not affected in any of the mutants tested.  IQGAP2 immobile fraction was also higher in 

interphase myoII as compared to WT (Fig. 3.4B, D, Table 2), suggesting that myosin II 

drives the dynamic remodeling of the cytoskeletal network.  Myosin II’s full power 

stroke is required for this mobility regulation, as the 10-fold slower S456L mutant 

myosin II, which only takes a 2-nm step (1/4 of WT) [6, 27, 42], fails to rescue the 

IQGAP2 and cortexillin I mobility defects seen in myoII cells (Fig. 3.5).  Although 

myosin II regulates the actin cortex dynamics in epithelial cells [43, 44], deletion of 

myosin II, cortexillin I or IQGAP2 had no impact on actin dynamics (Fig. 3.6). 

 

 



32 
 

 

Figure 3.4: Changes in cortexillin I and IQGAP2 dynamics at the cleavage furrow in genetic mutants. 
(A, B) Recovery times and immobile fractions for GFP-cortexillin I (A) and GFP-IQGAP2 (B) in different 

genetic mutants in the cortex of interphase and dividing cells.  (C, D) Distribution of recovery times and 

immobile fractions for GFP-cortexillin I (C) and GFP-IQGAP2 (D) in different genetic mutants in 

interphase and dividing cells.  Values plotted are mean ± SEM; sample sizes are listed on the bars (see 

Table 2).  p values represented as ns: p >0.05, *: p <0.05, **: p <0.005, ***: p <0.0005 based on ANOVA 

with Fischer’s LSD post-test.  Asterisks above the furrow measurement represent significance of difference 

from interphase values.  Comparisons across mutants are represented by asterisks above the connecting 

lines. 
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Figure 3.5: Effect of myosin II motor activity on cortexillin I and IQGAP2 dynamics.  Distribution of 

recovery times and immobile fractions for GFP-cortexillin I (A) and GFP-IQGAP2 (B) in WT, myoII and 

S456L myoII cells.  p values are represented as ns: p >0.05, *: p <0.05, **: p <0.005, ***: p <0.0005 based 

on ANOVA with Fischer’s LSD post-test. 

 

 

Figure 3.6: Actin dynamics are unchanged in different genetic mutants (A) Recovery times and 

immobile fractions for GFP-actin in different genetic mutants in the interphase cortex.  (B) Distribution of 

recovery times and immobile fractions of GFP-actin in the interphase cortex of different mutants.  Values 

plotted are mean ± SEM; sample sizes are listed on the bars (See Table 2).  

 

The deletion of IQGAP1 (iqg1) did not affect the interphase or furrow dynamics of either 

cortexillin I or IQGAP2 (Fig 3.4, Table 2), in agreement with its role as a damper of 

stress-dependent protein accumulation [25].  Because IQGAP1 and IQGAP2 interact with 

distinct domains of cortexillin I [34, 45, 46], we also studied cortexillin I dynamics in the 

iqg1/2 double mutant.  Here, cortexillin I still showed faster recovery at the furrow as 

compared to WT, similar to iqg2 (Fig. 3.7, Table 2).  However, the immobile fraction at 
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the furrow was higher in the double mutant compared to the WT or iqg2 mutant (Fig. 3.7, 

Table 2).  The iqg1/2 cells show enhanced stress-dependent protein accumulation, while 

iqg2 cells are unresponsive due to IQGAP1 inhibition [25]. Thus, the reduced mobility of 

cortexillin I at the furrow is likely due to mechanical stresses locking in the cytoskeletal 

network of these highly mechanoresponsive cells. 

 

Figure 3.7:  IQGAP2 affects cortexillin I dynamics (A) Mean recovery times and immobile fractions for 

GFP-cortexillin I in WT, iqg2 single, and iqg1/2 double mutants.  (B) Distribution of recovery times and 

immobile fractions for GFP-cortexillin I in WT, iqg2 single, and iqg1/2 double mutants.  Values plotted are 

mean ± SEM; sample sizes are listed on the bars (See Table 2).  p values are represented as ns: p >0.05, *: 

p <0.05, **: p <0.005, ***: p <0.0005 based on ANOVA with Fischer’s LSD post-test. 

  

To examine molecular scale events driving the protein dynamics changes, we used 

fluorescence correlation spectroscopy (FCS) to measure the in vivo diffusion of 

cortexillin I and IQGAP2 across various mutant backgrounds.  FCS experiments were 

performed in the cytoplasm as cell movement precluded positioning the confocal volume 

at the cortex.  We compared the diffusion time for cortexillin I and GFP in the cytoplasm 

to that of purified proteins in vitro. GFP had 5-fold reduction in diffusion time in cells 

while cortexillin I showed >8-fold slower diffusion (Fig. 3.8A, Table 4), confirming that 

cortexillin I is a part of large molecular assemblies.  The deletion of myosin II did not 

impact the cytoplasmic diffusion of either cortexillin I or IQGAP2 though it increased the 

immobile fraction of both proteins at the cortex (Fig. 3.8B, C), implying that myosin II 

affects protein dynamics by regulating contractility and cytoskeletal structure.  The 

diffusion time for cortexillin I was increased by ~30% in iqg2 cells (Fig. 3.8B, Table 4).  
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This suggests that without IQGAP2, the effective mass of the cortexillin I complex 

roughly doubles as diffusion time is approximately proportional to the cube root of the 

effective molecular weight of the diffusing species.  As expected, cortexillin I diffusion 

also showed a similar trend in the iqg1/2 double mutant (Fig. 3.8B, Table 4).  Thus, the 

changes in cortexillin I mobility could arise from changes in biochemical interactions in 

the absence of IQGAP2.  

 

 

Figure 3.8: Diffusion times for cortexillin I and IQGAP2 measured by FCS (A) Diffusion times for 

purified mCherry and GFP-cortexillin I in vitro, and GFP and GFP-cortexillin I in cellular cytoplasm as 

measured by FCS. (B, C) Cytoplasmic diffusion times measured by FCS for GFP-cortexillin I (B) and 

GFP-IQGAP2 (C) in different mutants.  Calculated diffusion coefficients are provided in Table 4.  p values 

are represented as ns: p >0.05, *: p <0.05, **: p <0.005, ***: p <0.0005 based on ANOVA with Fischer’s 

LSD post-test. 

 

Collectively, the FRAP and FCS experiments enabled us to attribute changes in 

cortexillin I mobility to either protein-protein interactions (in iqg2 and iqg1/2) or to 

cortex re-structuring (in myoII).  We demonstrated that the dynamics of cortexillin I and 

IQGAP2 at the cleavage furrow are well conserved across mutants, though differences 

emerge during interphase (Fig. 3.9).  As cleavage furrow contractility is common to all 

cells, we hypothesized that mechanical stresses acting at the furrow could override the 

biochemical signals to define cleavage furrow protein dynamics.  Physical mechanisms 

such as myosin II-mediated force generation, Laplace pressure-mediated furrow thinning, 
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and protrusive forces from the polar cortex drive furrow ingression [9].  Thus, we next 

examined whether mechanical stresses at the cleavage furrow were sufficient to shift the 

dynamics of these mechanoresponsive proteins. 

    

 

Figure 3.9: Schematic showing the effect of key cytoskeletal proteins on the dynamics of cortexillin I 

and IQGAP2, based on FRAP measurements. 

 

3.3. Mechanical stress drives the reduction in cleavage furrow 

mobility of cortexillin I and IQGAP2 

In addition to enrichment at the cleavage furrow, myosin II, cortexillin I and IQGAP2 

accumulate to sites of externally applied mechanical stress, thereby allowing the cell to 

retract against this stress [6, 24, 25].  Hence, we applied compression using agarose 

overlay to test if mechanical stress, as compared to biochemical signaling, affects protein 

dynamics changes at the cleavage furrow.  Flattening of the cells drives the accumulation 

of the mechanoresponsive proteins studied here to the cell cortex to counter the 

compressive stress [25, 28].  The ratio of fluorescence intensity in the cortex to that in the 

cytoplasm is dependent on the thickness of agarose and plating density (T. Luo and 

Robinson, unpublished data), confirming that the increase in cortical intensity is driven 
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by mechanical stress and is not simply due to volume effects.  Further, soluble GFP does 

not change in cortical intensity upon compression [25].  

 

We examined cortexillin I and IQGAP2 interphase dynamics in presence or absence of 

compression across mutants studied above (Fig. 3.10, Table 2).  Cortexillin I exhibited a 

slower recovery time under compression, but IQGAP2’s recovery time was unaffected 

(Fig. 3.11A-D).  Both cortexillin I and IQGAP2 showed a >2-fold increase in the 

immobile fraction under compression (Fig. 3.11), similar to the observation at the furrow 

(Fig. 3.4).  By FCS, the cortexillin I diffusion time also doubled under compression, 

while IQGAP2 diffusion was unaffected (Fig. 3.13, Table 4).  Both the recovery time 

and immobile fraction for IQGAP2 increased in compressed myoII compared to WT (Fig. 

3.11B, D, 3.12, Table 2).  Cortexillin I and IQGAP2 dynamics under compression did 

not change in other mutants as compared to WT (Fig. 3.11, 3.12, Table 2).  The 

cortexillin I mobility shift in iqg2 cells under compression was higher than that observed 

at the furrow (Fig. 3.11A, 3.4A), suggesting that under compression cortexillin I directly 

responds to mechanical stress, compared to the cleavage furrow where biochemical 

signals through IQGAP2 also contribute to cortexillin I mobility.  Importantly, both 

compression and cleavage furrow showed a consistent, >2-fold increase in immobile 

fractions of both cortexillin I and IQGAP2 compared to the unstressed, interphase cortex 

across various mutants (Fig. 3.4, 3.11).  This validates the importance of mechanical 

stress in driving the dynamics of equatorially enriched proteins at the cleavage furrow, 

thereby ensuring their robust localized accumulation.   
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Figure 3.10: Changes in cortexillin I and IQGAP2 dynamics upon compression. Confocal images 

showing photobleaching and fluorescence recovery of GFP-cortexillin I and GFP-IQGAP2 in the cortex of 

interphase uncompressed and compressed cells.  Scale bar is 5 μm. 

 

 
Figure 3.11: Changes in cortexillin I and IQGAP2 dynamics upon compression in genetic mutants.  

(A, B) Recovery times and immobile fractions for GFP-cortexillin I (A) and IQGAP2 (B) in different 

genetic mutants in absence or presence of compressive stress.  (C, D) Distribution of recovery times and 

immobile fractions for GFP-cortexillin I (C) and IQGAP2 (D) in different genetic mutants in absence or 

presence of compressive stress.  Values plotted are mean ± SEM; sample sizes are listed on the bars (See 

Table 2). p values are represented as ns: p >0.05, *: p <0.05, **: p <0.005, ***: p <0.0005 based on 

ANOVA with Fischer’s LSD post-test. 
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Figure 3.12: Schematic showing the effect of key cytoskeletal proteins on the dynamics of cortexillin I 

and IQGAP2 under compression, based on FRAP measurements. 

 

 

Figure 3.13: Protein diffusion under compression. Diffusion times for GFP, cortexillin I and IQGAP2 

measured by FCS in WT and myoII cells.  Calculated diffusion coefficients are provided in Table 4.  p 

values are represented as ns: p >0.05, *: p <0.05, **: p <0.005, ***: p <0.0005 based on ANOVA with 

Fischer’s LSD post-test. 

 

In addition, by measuring dynamics of cortexillin I and IQGAP2 in cells lacking the 

small GTPase racE (racE), we assessed the contribution of cortical tension on protein 

dynamics, as racE is a major regulator of cortical mechanics [21, 27, 30].  For cortexillin 

I, the immobile fraction was higher and the recovery time was shorter in racE cells, while 

IQGAP2 dynamics were unchanged (Fig. 3.14).  Thus, cortexillin dynamics are not only 

affected by mechanical stress but also by general cortical mechanics.  Furthermore, the 

mobility and recovery times of GFP-actin were not affected by compression.  Overall, 

cortexillin I dynamics are more sensitive to compressive stresses than the dynamics of 

IQGAP2, actin and GFP are.    
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Figure 3.14: The effect of RacE on cortexillin I and IQGAP2 dynamics. (A) Average recovery times 

and immobile fractions of GFP-cortexillin I and GFP-IQGAP2 in WT and racE null cells.  (B) Distribution 

of recovery times and immobile fractions of GFP-cortexillin I and GFP-IQGAP2 in WT and racE null 

cells. Values plotted are mean ± SEM; sample sizes are listed on the bars. p values are represented as ns: p 

>0.05, *: p <0.05, **: p <0.005, ***: p <0.0005 based on ANOVA with Fischer’s LSD post-test. #: The 

immobile fraction for cortexillin I in racE null cells is bimodal (see panel B); hence SEM is not shown. 

 

As compression reduced cell height by up to 4-fold, we measured GFP dynamics to 

examine the impact of altered protein transport and cellular structure upon compression. 

The immobile fraction and diffusion time for GFP nearly doubled (Fig. 3.15, 3.13), 

suggesting sieving effects may become significant under compression.  The altered GFP 

dynamics under compression confirm that network structure and intracellular 

environment are important contributors to mechanical stress-dependent protein dynamics.  

However, in myoII cells, GFP FRAP dynamics did not change upon compression, rather 

GFP diffusion was faster in compressed myoII cells (Fig. 3.15, 3.13),  suggesting that 

myosin II is important for stabilizing the cortex under mechanical stress, and in its 

absence the cortical dynamics are dominated by passive diffusive behaviors [47].  As the 

actin cytoskeleton forms a highly dense meshwork in Dictyostelium, structural changes 

between interphase and furrow cortex cannot be resolved by confocal and electron 

microscopy [27].  Thus, we next chemically perturbed the cytoskeleton to determine how 

these network properties affect protein mobility and dynamics.  
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Figure 3.15: GFP dynamics under compression. (A) Average recovery time and immobile fraction for 

GFP in WT and myoII cells.  (B) Distribution of recovery time and immobile fraction for GFP in WT and 

myoII cells.  Values plotted are mean ± SEM; sample sizes are listed on the bars (See Table 2). p values are 

represented as ns: p >0.05, *: p <0.05, **: p <0.005, ***: p <0.0005 based on ANOVA with Fischer’s LSD 

post-test. 

 

3.4.  Alterations to cortical structure and mechanics shift mobility of 

cortexillin I 

To test the effect of cytoskeletal structure on protein dynamics, we perturbed the actin 

cytoskeleton by treating the cells with either latrunculin-A or jasplakinolide.  

Latrunculin-A prevents F-actin assembly by sequestering free G-actin monomers, while 

jasplakinolide enhances actin filament nucleation.  We quantified changes in F-actin 

amount upon treatment with latrunculin-A and jasplakinolide by measuring the relative 

fluorescence intensity of cells stained with phalloidin 15-minutes post-drug treatment [5] 

(Fig. 3.16).  Anti-actin staining was also used to visualize changes in actin level and 

cytoskeletal morphology (Fig. 3.16).  Interestingly, even with 5 μM latrunculin-A, cells 

still had ~50% residual F-actin (~35 μM) (Fig. 3.16B), suggesting sufficient F-actin 

binding sites for the ~1 μM actin crosslinkers [28, 48, 49].  The residual F-actin mostly 

concentrated in puncta illustrating discontinuity of the cytoskeletal network (Fig. 3.16A). 

Latrunculin-A had a drastic effect on cellular mechanics, as 1 μM latrunculin-A-treated 

cells had 12-fold lower cortical tension as measured by micropipette aspiration (Fig. 

3.17), consistent with the 85% reduction in viscoelasticity previously reported for 
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latrunculin-B treatment [26].  5 μM latrunculin-A-treated cells were too soft for 

mechanical measurements.  In contrast, jasplakinolide enhanced the cellular F-actin 

levels ~4-fold inducing the formation of F-actin clusters (Fig. 3.16), and increased 

cortical tension slightly (Fig. 3.17).  Jasplakinolide also increased the recovery time of 

soluble GFP while not affecting its immobile fraction or diffusion (Fig. 3.18).  The 

discontinuity of the cytoskeleton upon latrunculin-A treatment is also reflected by the 

increase in the recovery time and immobile fraction of GFP even though its diffusion is 

unaffected (Fig. 3.18).  Thus, we were able to directly probe the impact of changes in 

cytoskeletal structure and mechanics on protein dynamics by using these two compounds. 

 

Figure 3.16: Perturbation of actin cytoskeleton by latrunculin-A and jasplakinolide. (A) Confocal 

images of TRITC-phalloidin-stained GFP myosin II expressing cells and anti-actin stained cells show 

changes in the cytoskeletal architecture 15 minutes post-treatment with 5 μM latrunculin-A or 2 μM 

jasplakinolide.  (B) Quantification of relative F-actin amount based on the fluorescence intensity of TRITC-

phalloidin and anti-actin staining.  (C) Distribution of normalized fluorescence intensity of TRITC-

phalloidin and anti-actin staining. 
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Figure 3.17: Effect of latrunculin-A and jasplakinolide on cell mechanics (A) DIC images of 

micropipette aspiration experiments with DMSO, 1 μM latrunculin-A and 2 μM jasplakinolide  (B) Cortical 

tension measurements for DMSO, 1 μM latrunculin-A and 2 μM jasplakinolide-treated cells measured by 

micropipette aspiration (C) Distribution of cortical tension measured by micropipette aspiration on cells 

treated with DMSO, 1 μM latrunculin-A or 2 μM jasplakinolide. 

 

Latrunculin-A or jasplakinolide treatment did not significantly affect cortexillin I 

recovery time, but both compounds appreciably increased its immobile fraction (Fig. 

3.18A, B, Table 3).  Latrunculin-A also increased the recovery time and immobile 

fraction of IQGAP2 (Fig. 3.18A, B, Table 3).  IQGAP2 diffusion was insensitive to both 

drugs (Fig. 3.18C, Table 4).  However, cortexillin I showed two differently diffusing 

populations with latrunculin-A treatment – one with a similar diffusion time as the 

control (~2 ms) and another much slower population (~8 ms) (Fig. 3.18C, Table 4).  This 

slower population likely reflects the diffusion of cortexillin I in actin clusters observed 

upon F-actin staining.  Though jasplakinolide treatment promoted F-actin cluster 

formation, its effect on protein dynamics was not as pronounced (Fig. 3.18, Tables 3-4 ). 

These results demonstrate that the connectivity of the cytoskeleton network is extremely 

important for maintaining normal protein dynamics.  Remarkably, cortexillin I remained 
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localized at the furrow in latrunculin-A-treated cells, though its distribution was non-

uniform (Fig. 3.19A).  Its recovery time and mobility in the furrow were unaffected by 

latrunculin-A (Fig. 3.19B, C).  Thus, the cortexillin I immobile fraction under 

mechanical stress is either saturated or becomes independent of network structure.  In 

contrast, myosin II completely lost its cortical localization upon latrunculin-A treatment 

and formed puncta throughout the cell (Fig. 3.16A) [5].   

 

 

Figure 3.18: Effect of latrunculin-A and jasplakinolide on protein dynamics.  (A) Recovery times and 

immobile fractions of soluble GFP, GFP-actin, GFP-cortexillin I and GFP-IQGAP2 in untreated, 5 μM 

latrunculin A or 2 μM jasplakinolide treated cells as measured by FRAP (see Table 3). (B) Distribution of 

recovery times and immobile fractions for GFP, GFP-actin, GFP-cortexillin I and GFP-IQGAP2 in DMSO, 

5 μM latrunculin-A or 2 μM jasplakinolide-treated cells.  (C) Diffusion times for GFP, GFP-cortexillin I 

and GFP-IQGAP2 in untreated, 5 μM latrunculin-A or 2 μM jasplakinolide treated cells as measured by 

FCS (see Table 4). Cortexillin I shows two differently diffusing populations upon latrunculin-A treatment, 

while the diffusion of GFP and IQGAP2 is unaffected by the pharmacological treatment.  Values plotted 

are mean ± SEM; sample sizes are listed on the bars.  Asterisks represent significance of difference from 

DMSO control, where p values represented as ns: p >0.05, *: p <0.05, **: p <0.005, ***: p <0.0005 based 

on ANOVA with Fischer’s LSD post-test.   
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Figure 3.19: Effect of latrunculin-A on cortexillin I dynamics in dividing cells.  (A) Confocal images 

showing cleavage furrow recruitment of GFP-cortexillin I in untreated and 5 μM latrunculin-A-treated 

cells. (B) Recovery times and immobile fractions of GFP-cortexillin I in interphase and dividing cells with 

or without 5μM latrunculin-A treatment.  (E) Distribution of recovery times and immobile fractions of 

GFP-cortexillin I in interphase and dividing cells with or without 5 μM latrunculin-A.  Values plotted are 

mean ± SEM; sample sizes are listed on the bars.  Asterisks represent significance of difference from 

DMSO control, where p values represented as ns: p >0.05, *: p <0.05, **: p <0.005, ***: p <0.0005 based 

on ANOVA with Fischer’s LSD post-test. 

 

Latrunculin-A also increased actin mobility and recovery rate, while jasplakinolide had 

no effect (Fig. 3.18A, B).  The increased actin mobility with latrunculin-A is 

quantitatively similar to that at the furrow (Fig. 3.18A, 3.2), further validating the 

importance of cytoskeletal restructuring during cytokinesis (Fig. 3.20).  These dynamic 

features also explain why actin does not show a significant accumulation at the cleavage 

furrow or upon micropipette aspiration [27, 28]. Overall, perturbations to the cytoskeletal 

structure are sufficient to affect changes in the dynamics of cytoskeletal proteins.  

Similarly, protein dynamics are also affected by mechanical stress which leads to 

accumulation of equatorial proteins during cytokinesis (Fig. 3.20).  
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Figure 3.20: A schematic showing the changes in protein mobility arise from cytoskeletal 

rearrangement under mechanical stress or upon latrunculin-A treatment.  Under high stress, the 

crosslinkers show reduced mobility leading to accumulation, while actin mobility increases even though 

filament amount is relatively unchanged.  Upon latrunculin-A treatment, F-actin amount is reduced and 

actin mobility increases while the crosslinker mobility decreases significantly.   

 

3.5. Proteomic analysis reveals interactions between myosin II, cortexillin I and 

IQGAP2 

The cytokinesis and micropipette aspiration studies have demonstrated how the myosin 

II-cortexillin I mechanosensor and its regulation by IQGAPs is critical for cellular 

contractility and response to mechanical stresses [25].  The protein dynamics experiments 

emphasize the crosstalk between these stress-sensitive elements and their stabilization by 

mechanical stress.  However, the molecular interactions potentiating the mechanosensory 

response remain unknown.  Previous immunoprecipitation studies have shown that 

IQGAP1 and IQGAP2 interact with carboxy- and amino-terminal ends of cortexillin I 

respectively [34, 45, 46] (Figure 3.21).  Since the cortexillin I-binding sites for both 

IQGAPs are distinct, stress-induced changes in IQGAP binding may result in the 

switching between a mechanosensitive and a non-mechanosensitive population of 

cortexillin I.  However, it is likely that other protein-protein interactions might be 

important for regulating myosin II recruitment in the cleavage furrow and other sites of 

stress.   
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The localization of IQGAP2 and cortexillin I at the cleavage furrow is independent of 

many of the proteins known to be involved in mechanosensing.  This hints towards the 

presence of unknown factors that govern protein recruitment.  For example, cortexillin I 

has a PIP2-binding domain [50] and could be directly or indirectly linked to the plasma 

membrane.  IQGAP2 has also been shown to localize at membrane blebs [25], which are 

regions where the plasma membrane becomes detached from the cell cortex.  Thus, the 

possibility of IQGAP2 binding to lipids or membrane proteins needs to be explored.  The 

direct binding between myosin II and IQGAP1 or 2 is also a possible way by which these 

proteins affect mechanosensing. IQGAP has been shown to directly bind myosin tail in 

budding [51] and fission [52] yeast, and is required for myosin recruitment to the actin 

ring during cell division.  In Dictyostelium, IQGAP2 also mediates a 

mechanotransduction pathway that feeds onto the mitotic spindle through the mitotic 

kinesin like protein Kif12.  A previous study using mammalian cells has reported that a 

microtubule end-binding protein interacts with IQGAP1 and small GTPases to regulate 

cell polarity [53].  Similar associations could be important for the mechanosensory 

response of myosin II in Dictyostelium.   
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Figure 3.21: Domain organization of cortexillin I and IQGAP1/2.  Cortexillin I has a calponin 

homology-family actin-binding domain (CH ABD), a coiled coil and a novel ABD and PIP2-binding 

domain at the carboxyl-terminal tail (CT domain; orange).  IQGAP2 is reported as binding to the CH 

domain, and IQGAP1 is reported as binding to the CT domain.  The GAP-related domain (GRD) of the 

IQGAPs is thought to interact with Rac1-family proteins, cortexillin I and filamin. 

 

Thus, we used a proteomic approach for the identification of binding partners for 

cortexillin I and IQGAP2.  We expressed FLAG-tagged constructs of these proteins, and 

used immunoprecipitation to isolate the associated protein complexes.  We used 

cytoskeletal fractionation to distinguish the protein complexes in the cytoskeleton versus 

those in the cytoplasm.  Mass spectrometric analysis identified 12 and 46 cortexillin I-

binding proteins in cytoskeletal and cytoplasmic samples respectively (Table 5).  For 

IQGAP2, 12 and 14 proteins were found in the cytoskeletal and cytoplasmic samples 

respectively (Table 6).  In addition to confirming the binding between cortexillin I and 

IQGAP2, we could also detect cortexillin I binding to Rac1, IQGAP1 and cortexillin II, 

as reported before [34, 45, 46, 54].  We did not detect any interaction between IQGAP2 

and IQGAP1, supporting that these proteins likely bind different populations of 

cortexillin I, and thus have opposite effect on mechanosensing.  Interestingly, both 

cortexillin I and IQGAP2 associate with myosin II, suggesting that these proteins could 

form a macromolecular complex that governs contractility.  The experiments were 

conducted in the presence of Mg
2+

•ATP to prevent myosin II-binding to actin filaments.  
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Further, the myosin II-IQGAP2 interaction is also independent of cortexillin I, based on 

the proteomic analysis for samples from ctxA/ctxB cells expressing FLAG-GFP-IQGAP2 

(Table 7).  Interestingly, mass spectrometry also shows an interaction between RacE and 

myosin II (Table 8), which suggests that the polar cortex proteins could affect myosin II 

function through binding interactions consistent with 14-3-3-regualtion of myosin II 

dynamics [16].  In addition to myosin II, many cytoskeletal and structural proteins having 

known roles in cytokinesis and contractility were also identified as binding partners for 

cortexillin I or IQGAP2 (Fig. 3.22).  For example, mmsdh is found to associate with 

cortexillin I.  Previously, mmsdh overexpression was shown to rescue the cleavage 

furrow localization of the assembly incompetent myosin mutant (3x Asp) [32].  This 

suggests that multiple parallel pathways are involved in cytokinesis regulation.  Further 

characterization of these novel interactions will shed new light on how cells control their 

shape and division.  We will use pair wise coimmunoprecipitation and two-color 

fluorescence cross-correlation spectroscopy to confirm and characterize these 

biochemical associations.  

  

 
Figure 3.22: Selected potential proteins interacting with cortexillin I or IQGAP2, identified by 

proteomic analysis.  
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4. CONCLUSIONS 

 

Mechanical stresses are important for driving cellular processes like cell division and 

motility, and play a major role in determining cell fate [25, 55, 56].  Understanding the 

effect of mechanical stress on protein dynamics is critical for having predictive power 

over these cellular behaviors.  Here we identified that equatorial protein mobility 

significantly reduces at the cleavage furrow, while that of polar crosslinkers is 

unchanged.  Both biochemical associations and myosin II-mediated remodeling affect 

protein dynamics.  In addition to cleavage furrow contractility, compressive stress 

applied externally also leads to reduced protein mobility.  Even when key contractile 

proteins are eliminated, the cytoskeleton is capable of maintaining fairly normal 

dynamics.  Interestingly, most of the mutant phenotypes in protein dynamics are seen in 

the unstressed, interphase cortex, while the dynamics are unchanged across mutants 

during cytokinesis or upon compression.  Thus, the cell’s contractile system is built as a 

highly adaptive machine, maintaining fairly normal dynamics under mechanical stress 

ensuring fidelity of protein recruitment.  In contrast, in other scenarios mechanical stress 

can exaggerate many mutant phenotypes.  For example, myoII null cells cannot perform 

cytokinesis without substrate adhesion or when challenged by mechanical stress [8, 24].  

Further, changes to cytoskeletal structure are sufficient to drive similar changes in protein 

dynamics, highlighting the importance of network properties in governing protein and 

cellular behaviors.  Myosin II emerges as the major driver of active processes in the 

cortex, in accordance with previous studies [47]. 
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The mechanical tuning of protein dynamics and recruitment is an important mode of 

regulating cellular responses to physical stimuli, and requires protein-protein interactions 

to be stabilized or disrupted under mechanical load.  Protein-protein stabilization can 

induce protein clustering and provide signal amplification, while disruption can lead to 

signal dissipation.  This is the classical paradigm for any signal transduction system.  

Basic molecular mechanisms for protein clustering in response to mechanical stress 

include catch bond formation and structural cooperativity, while slip bonds allow for 

force-induced disassembly.  These fundamentals are important in directing 

macromolecular assembly of actin crosslinking proteins [5, 28, 57, 58].  Here we have 

demonstrated that these mechanisms are also applicable to scaffolding proteins like 

IQGAP2, emphasizing the importance of network structure and higher order self-

assembly in governing cellular behavior.  Indeed, cellular systems are engineered as 

smart materials where many of the constituents are mechanoresponsive.  

 

Proteomic analysis shows that in addition to binding to each other, both cortexillin I and 

IQGAP2 also associate with myosin II.  Further, the IQGAP2-myosin II interaction is 

independent of cortexillin I.  These findings point towards the existence of 

macromolecular assemblies containing these proteins, which are responsive to 

mechanical stresses in the cortex.  These biochemical interactions could also explain the 

mechanism by which all these proteins are stabilized at the furrow or under stress, as seen 

by the stress-dependent protein mobility shifts.  The exact nature of these interactions is 

yet to be determined. 
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5. Future Work 

 

5.1. Biochemical basis of mechanosensing 

Numerous studies have characterized the effect of mechanical stresses on myosin II 

biochemistry.  The myosin II-actin filament binding lifetime is stress-dependent.  Further, 

upon binding to actin filament, myosin II induces conformational changes in the filament 

which promote cooperative binding of additional myosin II heads [5].  Myosin II also 

shows cooperative interactions with cortexillin I, which in turn promote the accumulation 

of these proteins in response to mechanical stress [5].   In vivo studies have shown that 

IQGAP proteins regulate cortexillin I accumulation and dynamics [25].  However, the 

exact nature of these interactions is unknown.  A variety of cellular and biochemical 

assays can be used to study these molecular mechanisms in detail. 

 

5.1.1. In vivo characterization of protein-protein interactions 

The mass spectrometric analysis has identified potential interactions between myosin II-

cortexillin I and IQGAP2. However, the relevance of these interactions in 

mechanosensing is uncharacterized.  For example, certain protein complexes may only 

form when the cytoskeleton is under mechanical stress.  To study in vivo formation of 

these protein complexes, we will use two-color fluorescence cross-correlation 

spectroscopy (FCCS).  This will allow calculation of spatiotemporal changes in apparent 

binding coefficients for protein pairs under physiological conditions.  Also, by studying 

these interactions in different genetic mutant backgrounds, we can analyze the additional 

factors that are important for the formation of these protein complexes.  We will use 
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linked and unlinked GFP-mCherry fusions to calibrate the extent of binding.  Due to 

technical limitations of in vivo FCCS which include low signal-to-noise ratio, poor 

control on protein expression and phototoxicity, we will also extend the analysis to cell 

lysates.   

 

5.1.2. In vitro characterization of the myosin II, cortexillin I and IQGAP 

interactions  

To achieve a molecular understanding of how IQGAPs regulate cortexillin I function, we 

can reduce the system to individual protein interactions.  We have previously purified 

cortexillin I and myosin II [6, 16].  To express and purify the IQGAP proteins, we have 

designed and constructed a highly modular expression vector system based on the pBiEx 

series of vectors (Novagen).  This system can be used for protein expression in either 

bacteria or insect cells, and contains cloning sites compatible with our Dictyostelium 

expression vectors.  The vectors also contain a purification tag, carboxy- or amino- 

terminal fluorophores, and a TEV protease site to allow purification of labeled or 

unlabeled proteins from a single plasmid.  Using this system, we have already expressed 

and partially purified IQGAP2. 

 

We will confirm the in vitro binding of IQGAPs with cortexillin I using an analytical 

Superdex S200 10/30 size exclusion column.  This column offers high resolution 

separation and Stokes radius measurement [59, 60], enabling us to differentiate protein 

complexes from individual proteins and test for competitive binding between the 

IQGAPs.  Size exclusion also allows us to test for oligomerization of IQGAP1 and 
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IQGAP2, and the formation of higher order assemblies.  Since cortexillin I is a known 

actin crosslinking and bundling protein [61-63], we will also determine whether IQGAPs 

affect cortexillin I-actin binding through in vitro co-sedimentation assays and negative 

staining electron microscopy.  Additionally, we can also use quantitative assays such as 

fluorescence polarization anisotropy and isothermal titration calorimetry to measure the 

binding affinities for these proteins.  

 

Myosin assembles into bipolar thick filaments (BTFs) in a salt-dependent manner.  The 

ability to form these filaments is central to myosin II’s force-bearing ability.  One 

possible mode of regulating myosin II contractility could be the modulation of its 

filament forming ability by cortexillin I or IQGAP2.  Thus, we will perform myosin II 

assembly assays with or without purified cortexillin I or IQGAP2.  Collectively, these 

experiments will allow us to answer mechanistic questions about myosin II-cortexillin I-

IQGAP complexes, and how they affect mechanosensing. 

 

5.2. Reconstitution of contractile networks to determine the effect of 

mechanical stress on protein function and dynamics 

After characterizing the myosin II-cortexillin I-IQGAP interactions in vitro, we will then 

test how the IQGAPs impact cortexillin I function using reconstituted actin networks.  

Reconstituted systems are uniquely poised for testing such mechanistic models, as they 

provide the desired level of complexity while eliminating the redundancies commonly 

found in biological systems.  We have developed a custom-built uniaxial stretching 

device to apply force to actin networks (Fig. 5.1), which we can use to characterize the 
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effect of stress on IQGAP and cortexillin I function.  We will measure the dynamics of 

cortexillin I under varying force to determine stress-dependence of actin-cortexillin I 

binding.  By titrating in different amounts IQGAP2 and/or IQGAP1, we can examine 

how IQGAPs affect cortexillin I dynamics and whether they show competitive binding.  

By doing FRAP on the IQGAPs, we can test if there is a change in binding preference of 

cortexillin I for IQGAPs under mechanical stress.  Further, we can test how cortexillin I 

affects the structure of stressed actin networks by imaging fluorescent actin filaments 

under TIRF, and if the IQGAPs regulate the crosslinking properties of cortexillin I.  

Collectively, these experiments will allow us to understand how IQGAPs regulate 

cortexillin I function during mechanosensing. 

 

Figure 5.1: Device for imaging actin networks under stretch. A. Cartoon depicts the stretcher device.  

B. Assembled over a passivated imaging coverslip, the actin network includes biotin-labeled actin, which 

allows adhesion to the avidin-coated, stretching coverslips.  The network can be controllably stretched 

while imaged by different modes (e.g. confocal, TIRF). 
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5.3. Mechanosensing regulation in dividing mammalian cells 

We have developed a sophisticated understanding of the mechanosensory system in 

Dictyostelium that tunes contractility during cell division.  The next step is to extend 

these studies to other systems, including mammalian cytokinesis.  We have shown that 

myosin II is recruited to the aspiration site in interphase Drosophila S2 cells and HeLa 

cells (Fig. 5.2).  We are also studying stress-dependent protein accumulation in mitotic 

HeLa cells using micropipette aspiration.  To enhance the fraction of mitotic cells, we 

treated the cells with (+)S-Trityl-L-Cysteine (STLC) which results in metaphase arrest by 

forming a monopolar spindle [64].  Anaphase onset was induced using the Cdk1 

inhibitor, Purvalanol [64].  We have shown that myosin IIA and IIB can accumulate at 

the aspiration site in both metaphase and anaphase cells, though the degree of 

accumulation varies through the cell cycle (Fig. 5.3).   

 

 

Figure 5.2: Myosin II accumulates upon micropipette aspiration in HeLa and S2 cells. 
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Figure 5.3: Myosin IIB is less responsive in anaphase HeLa cells. 

 

We will next determine how other cleavage furrow proteins, such as anillin, MKLP1 and 

RhoA, respond to externally applied stress.  We will also test if the application of 

mechanical stress affects the direction of spindle symmetry breaking during monopolar 

cytokinesis.  Through these studies we will elucidate the pathways regulating 

mechanosensing and cytokinesis in mammalian cells. 
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Appendix 

Table 1: Cell strains used in this study 

Strain Genotype Experimental Applications 

WT Ax3(Rep orf+) 

Phalloidin staining/F-actin 

quantification; MPA (cortical 

tension) 

WT::GFP 
Ax3(Rep orf+)::Hyg

R
:pDRH; GFP, 

G418
R
:pDM181 

FRAP, FCS 

WT::GFP 
myoII(HS1)::mCH-myoII, Hyg

R
:pDRH; 

GFP, G418
R
:pDM181 

FRAP 

WT::GFP-actin 
KAx3(RF)::Hyg

R
:pDRH; GFP-actin, 

G418
R
:pDM181 

FRAP 

WT::GFP-actin 
myoII(HS1)::mCH-myoII, Hyg

R
:pDRH; 

GFP-actin, G418
R
:pDM181 

FRAP 

WT::GFP-cortexillin I 
KAX3(RF)::GFP-cortI, Hyg

R
:pDRH; 

G418
R
:pDM181 

FRAP, FCS 

WT::GFP-IQGAP2 
KAX3(RF)::RFP-α-tubulin, Hyg

R
:pDRH; 

GFP-IQGAP2, G418
R
:pEXP4 

FRAP, FCS 

WT::FLAG-GFP 
KAX3(RF):: Hyg

R
:pDRH; FLAG-GFP, 

G418
R
:pDM181 

Proteomics 

myoII::GFP-actin 
myoII(HS1)::RFP-α-tubulin, Hyg

R
:pDRH; 

GFP-actin, G418
R
:pDM181 

FRAP 

myoII::GFP-cortexillin I 
myoII(HS1)::GFP-cortI, Hyg

R
:pDRH; 

G418
R
:pDM181 

FRAP, FCS 

myoII::GFP-IQGAP2 
myoII(HS1)::RFP-α-tubulin, Hyg

R
:pDRH; 

GFP-IQGAP2, G418
R
:pEXP4 

FRAP, FCS 

myoII::GFP 
myoII(HS1)::Hyg

R
:pDRH; GFP, 

G418
R
:pDM181 

FRAP, FCS 

S456L::GFP-cortexillin 

I 

myoII(HS1)::GFP-cortI, Hyg
R
:pDRH;  

myoII(S456L), G418
R
:pBIG 

FRAP 

S456L::GFP-IQGAP2 

myoII(HS1)::CFP-myoII(S456L), 

Hyg
R
:pDRH; GFP-IQGAP2, 

G418
R
:pEXP4 

FRAP 

ctxA::GFP-actin 
cortI(RF)::RFP-α-tubulin, Hyg

R
:pDRH; 

GFP-actin, G418
R
:pDM181 

FRAP 

ctxA::GFP-IQGAP2 
cortI(RF)::RFP-α-tubulin, Hyg

R
:pDRH; 

GFP-IQGAP2, G418
R
:pEXP4 

FRAP, FCS 

ctxA::FLAG-GFP-

cortexillin I 

cortI(RF):: Hyg
R
:pDRH; FLAG-GFP-cort 

I, G418
R
:pDM181 

Proteomics 
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ctxA/B::FLAG-GFP-

IQGAP2 

cortI/II(RF):: Hyg
R
:pDRH; FLAG-GFP-

IQGAP2, G418
R
:pDM181 

Proteomics 

iqg2::GFP-actin 
iqgap2(RF)::RFP-α-tubulin, Hyg

R
:pDRH; 

GFP-actin, G418
R
:pDM181 

FRAP 

iqg2::GFP-cortexillin I 
iqgap2(RF)::GFP-cortI, Hyg

R
:pDRH; 

G418
R
:pDM181 

FRAP, FCS 

iqg2::FLAG-GFP-

IQGAP2 

iqgap2(RF):: Hyg
R
:pDRH; FLAG-GFP-

IQGAP2, G418
R
:pDM181 

Proteomics 

iqg1::GFP-cortexillin I 
iqgap1(RF)::GFP-cortI, Hyg

R
:pDRH; 

G418
R
:pDM181 

FRAP 

iqg1::GFP-IQGAP2 
iqgap1(RF)::RFP-α-tubulin, Hyg

R
:pDRH; 

GFP-IQGAP2, G418
R
:pEXP4 

FRAP 

iqg1/2::GFP-cortexillin I 
Iqgap1/2(RF)::GFP-cortI, Hyg

R
:pDRH; 

G418
R
:pDM181 

FRAP, FCS 

racE::GFP-actin 
racE

24EH6
::RFP-α-tubulin, Hyg

R
:pDRH; 

GFP-actin, G418
R
:pDM181 

FRAP 

racE::GFP-cortexillin I 
racE

24EH6
::GFP-cortI, Hyg

R
:pDRH; 

G418
R
:pDM181 

FRAP 

racE::GFP-IQGAP2 
racE

24EH6
::RFP-α-tubulin, Hyg

R
:pDRH; 

GFP-IQGAP2, G418
R
:pEXP4 

FRAP 
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Table 2: Mean recovery times () and mean immobile fractions (Fi) for 

proteins in interphase cells, at the cleavage furrow and in compressed 

cells; FRAP Analysis 
 

GFP-cortexillin I 

  Interphase  Furrow  Compression 

WT  2.1 ± 0.2 s, 0.14 ± 0.02 (23)  4.7 ± 0.6 s, 0.36 ± 0.04 (17)  2.9 ± 0.3 s, 0.46 ± 0.06 (14) 

myoII  3.2 ± 0.5 s, 0.26 ± 0.04 (18)  4.1 ± 0.3 s, 0.43 ± 0.04 (23)  2.6 ± 0.5 s, 0.57 ± 0.06 (15) 

iqg2  2.9 ± 0.2 s, 0.29 ± 0.05 (21)  3.6 ± 0.3 s, 0.36 ± 0.05 (23)  2.7 ± 0.3 s, 0.56 ± 0.03 (17) 

iqg1  2.5 ± 0.3 s, 0.20 ± 0.04 (15)  5.8 ± 0.9 s, 0.44 ± 0.05 (15)  2.4 ± 0.3 s, 0.50 ± 0.05 (15) 

iqg1/2  2.4 ± 0.2 s, 0.27 ± 0.04 (23)  2.7 ± 0.4 s, 0.56 ± 0.05 (17)    

racE  1.1 ± 0.2 s, 0.31 ± 0.07 (9)       

S456L  3.4 ± 0.4 s, 0.34 ± 0.03 (23)       

 

GFP-IQGAP2 

  Interphase  Furrow  Compression 

WT  1.6 ± 0.2 s, 0.10 ± 0.02 (14)  2.1 ± 0.2 s, 0.48 ± 0.04 (16)  1.7 ± 0.1 s, 0.27 ± 0.04 (20) 

myoII  1.6 ± 0.2 s, 0.30 ± 0.04 (18)  3.3 ± 0.3 s, 0.48 ± 0.05 (15)  2.7 ± 0.5 s, 0.64 ± 0.04 (15) 

ctxA  1.5 ± 0.2 s, 0.06 ± 0.02 (13)  2.0 ± 0.3 s, 0.36 ± 0.04 (13)  2.1 ± 0.2 s, 0.30 ± 0.02 (14) 

iqg1  1.5 ± 0.3 s, 0.16 ± 0.03 (18)  2.7 ± 0.3 s, 0.43 ± 0.04 (17)  2.3 ± 0.3 s, 0.33 ± 0.04 (16) 

racE  1.4 ± 0.4 s, 0.17 ± 0.04 (16)       

S456L  1.8 ± 0.2 s, 0.22 ± 0.04 (13)       

 

GFP-actin 

  Interphase  Furrow  Compression 

WT  0.75 ± 0.15 s, 0.39 ± 0.05 (17)  1.3 ± 0.2 s, 0.28 ± 0.04 (17)  0.70 ± 0.06 s, 0.29 ± 0.01 (14) 

myoII  0.68 ± 0.12 s, 0.43 ± 0.05 (11)       

ctxA  0.61 ± 0.12 s, 0.35 ± 0.05 (10)       

iqg2  0.46 ± 0.03 s, 0.34 ± 0.05 (15)       

racE  0.61 ± 0.18 s, 0.25 ± 0.07 (10)       

 

GFP 

  Interphase  Furrow  Compression 

WT  0.26 ± 0.03 s, 0.12 ± 0.02 (27)  0.27 ± 0.07 s, 0.12 ± 0.03 (12)  0.66 ± 0.12 s, 0.26 ± 0.04 (14) 

myoII  0.35 ± 0.03 s, 0.14 ± 0.03 (15)     0.50 ± 0.06 s, 0.11 ± 0.02 (15)  

 

The values represent mean ± SEM for recovery times and immobile fractions. The number of 

measurements is given in parentheses.  
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Table 3: Mean recovery times () and mean immobile fractions (Fi) for proteins latrunculin-A or 

jasplakinolide treated cells; FRAP Analysis 

 

  DMSO  5 μM Latrunculin-A  2 μM Jasplakinolide 

GFP cortI 

(interphase) 

 2.5 ± 0.4 s, 0.25 ± 0.04 (14)  3.5 ± 0.6 s, 0.53 ± 0.05 (13)  2.2 ± 0.4 s, 0.46±0.06 (15) 

GFP cortI 

(furrow) 

 4.6 ± 0.8 s, 0.53 ± 0.10 (9)  6.2 ± 1.1 s, 0.60 ± 0.04 (16)    

GFP IQGAP2  1.5 ± 0.2 s, 0.19 ± 0.03 (14)  2.0 ± 0.2 s, 0.26 ± 0.03 (19)  1.1 ± 0.1 s, 0.14±0.02 (23) 

GFP actin  0.66 ± 0.05 s, 0.36 ± 0.02 (68)  1.1 ± 0.13 s, 0.25 ± 0.03 (41)  0.82 ± 0.08 s, 0.44±0.03 (22) 

GFP  0.26 ± 0.03 s, 0.12 ± 0.02 (27)  0.40 ± 0.03 s, 0.20 ± 0.02 (15)  0.39 ± 0.03 s, 0.10±0.02 (15) 

 

The values represent mean ± SEM for recovery times and immobile fractions. The number of measurements is given in parentheses.  
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Table 4: Cytosolic diffusion times (  ) and diffusion coefficients (    ) for proteins as measured by FCS 

 

Diffusion in PBS at 22
0
C 

 Molecular weight (kDa) Diffusion time (  ) Diffusion Coefficient (Deff) 

Rhodamine 6G 0.48 kDa 0.033 ± 0.002 ms (34) 426 µm
2
/s* 

His-mCherry 28 kDa 0.15 ± 0.01 ms (11) 94 µm
2
/s 

(Reported value: 95 µm
2
/s*) 

His-GFP-cortexillin-I 80 kDa 0.28 ± 0.02 ms (11) 50.2 µm
2
/s 

 

Diffusion in cytoplasm at 22
0
C 

Cell line Cortexillin I IQGAP2 GFP 

WT control 2.4 ± 0.2 ms (20), Deff = 5.8 µm
2
/s 2.9 ± 0.3 ms (18), Deff = 4.8 µm

2
/s 0.78 ± 0.05 ms (20), Deff = 18 µm

2
/s 

WT + compression 4.0 ± 0.3 ms (17), Deff = 3.5 µm
2
/s 3.4 ± 0.4 ms (16), Deff = 4.1 µm

2
/s 1.5 ± 0.1 ms (16), Deff = 9.4 µm

2
/s 

myoII 2.6 ± 0.2 ms (18), Deff = 5.4 µm
2
/s 2.9 ± 0.2 ms (11), Deff = 4.8 µm

2
/s 1.4 ± 0.2 ms (15), Deff = 10 µm

2
/s 

myoII + compression 3.9 ± 0.4 ms (12), Deff = 3.6 µm
2
/s - 0.69 ± 0.06 ms (14), Deff = 20 µm

2
/s 

iqg2 3.1 ± 0.2 ms (16), Deff = 4.5 µm
2
/s - - 

iqg1/2 3.7 ± 0.3 ms (16), Deff = 3.8 µm
2
/s - - 

ctxA - 2.6 ± 0.3 ms (12), Deff = 5.4 µm
2
/s - 

 

Treatment Cortexillin I IQGAP2 GFP 

DMSO 2.8 ± 0.4 ms (12), Deff = 5.0 µm
2
/s 2.7 ± 0.4 ms (15), Deff = 5.2 µm

2
/s 0.75 ± 0.10 ms (13), Deff = 19 µm

2
/s 

5 μM latrunculin-A 
P1:2.4 ± 0.1 ms (8), Deff = 5.8 µm

2
/s 

P2:8.1 ± 0.5 ms (7), Deff = 1.7 µm
2
/s 

3.6 ± 0.4 ms (16), Deff = 3.9 µm
2
/s 1.1 ± 0.1 ms (25), Deff = 13 µm

2
/s 

2 μM jasplakinolide 3.2 ± 0.2 ms (20), Deff = 4.4 µm
2
/s 3.2 ± 0.4 ms (18), Deff = 4.4 µm

2
/s 0.86 ± 0.07 ms (18), Deff = 16 µm

2
/s 

 

The values represent mean ± SEM for diffusion times. The numbers of measurements is given in parentheses. 

* Diffusion coefficients for rhodamine 6G and GFP were reported in Petrášek and Schwille (2008) [37]. 
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Table 5: List of potential cortexillin I-binding proteins 

Gene Name Protein Name Control Cort I G-value 

Cytoskeletal fraction 

ctxA Cortexillin-1 0.0 16.5 22.8 

rgaA IQGAP1 0.0 16.4 22.7 

ctxB Cortexillin-2 0.0 13.4 18.5 

mhcA Myosin-2 heavy chain 2.3 12.1 7.3 

mfap1 Protein MFAP1 homolog 0.0 4.9 6.8 

gapA IQGAP2 0.0 4.9 6.8 

DDB_ 

0218327 
Putative uncharacterized protein 0.0 3.7 5.1 

DDB_ 

0186471 

RNA-binding region RNP-1 domain-containing 

protein 
0.0 3.4 4.8 

efbA Elongation factor 2 0.0 3.3 4.6 

rac1A Rho-related protein rac1A 0.0 3.3 4.6 

ndufa12 
NADH dehydrogenase[ubiquinone]1 alpha 

subcomplex subunit 12 
0.0 3.0 4.1 

patB Probable plasma membrane ATPase 0.0 2.9 4.1 

mlcE Myosin essential light chain 0.0 2.6 3.6 

  
   

  

Cytoplasmic fraction 

act22 Putative actin-22 0.0 32.2 44.6 

DICPUDRAFT 

_90232 
Putative uncharacterized protein 0.0 29.1 40.3 

rgaA IQGAP1 0.0 25.6 35.5 

mhcA Myosin-2 heavy chain 2.0 31.8 31.5 

ctxA Cortexillin-1 0.0 22.3 30.9 

fkbp5 FK506-binding protein 5 0.0 14.8 20.6 

ctxB Cortexillin-2 0.0 14.6 20.2 

cdcD Cell division cycle protein 48 26.3 65.5 17.3 

gapA IQGAP2 0.0 11.5 16.0 

ctr9 RNA polymerase II complex component 0.0 9.6 13.4 

pyr1-3 Protein PYR1-3 0.0 8.0 11.1 

efbA Elongation factor 2 0.0 6.7 9.3 

DICPUDRAFT 

_93127 
Putative uncharacterized protein 0.0 6.7 9.3 

DDB_ 

0188474 
DUF814 family protein 0.0 6.1 8.4 

eef1a1 Elongation factor 1-alpha 3.9 16.1 7.9 

rps3a 40S ribosomal protein S3 1.4 10.3 7.6 

DDB_ 

G0291301 
Putative bifunctional amineoxidase 0.0 5.5 7.6 

leo1 RNA polymerase-associated protein 0.0 5.4 7.5 
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acpB F-actin-capping protein subunit alpha 0.0 5.3 7.4 

paf1 RNA polymerase II-associated factor 1 0.0 5.0 6.9 

ifdA 
DEAD/DEAH box helicase domain-containing 

protein 
0.0 4.9 6.7 

tufm Elongation factor  Tu, mitochondrial 0.0 4.8 6.6 

DDB_ 

G0282483 
Uncharacterized transmembrane protein 0.0 4.4 6.1 

cdc73 RNA polymerase II complex component 0.0 4.1 5.7 

acly Probable ATP-citrate synthase 0.0 4.0 5.5 

DDB_ 

0169491 
Putative uncharacterized protein 0.0 4.0 5.5 

rpl13 60S ribosomal protein L13 0.0 3.8 5.3 

DD8-14 AAA ATPase domain-containing protein 0.0 3.8 5.2 

metK S-adenosyl methionine synthase 0.0 3.7 5.2 

rps23 40S ribosomal protein S23 0.0 3.5 4.9 

DDB_ 

G0277077 
UvrB/UvrC domain-containing protein 0.0 3.5 4.9 

DDB_ 

0187217 
Putative uncharacterized protein 0.0 3.4 4.7 

mcfQ Mitochondrial substrate carrier family protein Q 0.0 3.3 4.6 

DICPUDRAFT_ 

52099 
40S ribosomal protein S26 0.0 3.2 4.5 

abpC Gelation factor 0.0 3.2 4.4 

tubB Tubulin beta-chain 0.0 3.1 4.3 

rpl30 60S ribosomal protein L30 3.2 10.7 4.3 

mmsdh 
Probable methylmalonate-semialdehyde 

dehydrogenase[acylating], mitochondrial 
0.0 3.1 4.2 

wdr61 WD repeat-containing protein61 0.0 3.1 4.2 

cyc1 Cytochrome c1, heme protein, mitochondrial 0.0 3.1 4.2 

mcfZ Mitochondrial substrate carrier family protein Z 0.0 3.0 4.1 

rpl18 60S ribosomal protein L18 0.0 3.0 4.1 

pdhC 

Dihydrolipoyllysine-residue acetyltransferase 

component of pyruvatede hydrogenase 

complex, mitochondrial 

0.0 2.8 3.9 

DICPUDRAFT_ 

48405 
Putative uncharacterized protein 0.0 2.7 3.7 

rac1A Rho-related protein rac1A 0.0 2.7 3.7 

odhB 

Dihydrolipoyllysine-residue succinyltransferase 

component of 2-oxoglutarate dehydrogenase 

complex, mitochondrial 

0.0 2.7 3.7 

mlcE Myosin essential light chain 0.0 2.7 3.7 
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Table 6: List of potential IQGAP2-binding proteins 

Gene Name Protein Name Control IQGAP2 

G-

value 

Cytoskeletal fraction 

act1 Major actin 0.0 27.3 37.91 

hspA 60kDa heat shock protein, mitochondrial 4.7 24.1 14.40 

gapA IQGAP2 0.0 9.8 13.54 

act24 Putative actin-24 0.0 8.8 12.19 

dscA Discoidin-1 subunit A 0.0 6.2 8.60 

ctxB Cortexillin-2 0.0 6.1 8.41 

ctxA Cortexillin-1 0.0 5.1 7.08 

act18 Actin-18 0.0 4.8 6.66 

DDB_ 

0218327 Putative uncharacterized protein 0.0 4.4 6.16 

rpl12 60S ribosomal protein L12 0.0 4.4 6.07 

mlcE Myosin essential light chain 0.0 3.5 4.81 

rplp2 60S acidic ribosomal protein P2 7.9 17.8 3.94 

efbA Elongation factor 2 0.0 2.8 3.91 

  

   

  

Cytoplasmic fraction 

dscA Discoidin-1 subunit A 0.0 17.0 23.60 

mhcA Myosin-2 heavy chain 2.0 19.3 16.14 

gapA IQGAP2 0.0 9.9 13.66 

ctxB Cortexillin-2 0.0 8.0 11.07 

ctxA Cortexillin-1 0.0 7.6 10.49 

dcsC Discoidin-1 subunitB/C 7.2 24.8 10.31 

fkbp5 FK506-binding protein 5 0.0 7.3 10.18 

leo1 RNA polymerase-associated protein 0.0 6.4 8.85 

rplp2 60S acidic ribosomal protein P2 8.3 22.0 6.45 

dscE Discoidin-2 4.6 15.6 6.38 

cadA Calcium-dependent cell adhesion molecule 0.0 4.0 5.55 

rplp1 60S acidic ribosomal protein P1 1.4 8.1 5.27 

cdcD Cell division cycle protein 48 26.3 43.6 4.32 

acpB F-actin-capping protein subunit alpha 0.0 3.0 4.19 

DICPUDRAFT 

_74418 Putative uncharacterized protein 0.0 2.9 4.01 
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Table 7: List of potential IQGAP2-binding proteins in ctxA/B null cells 

Gene Name Protein Name Control IQGAP2 G-value 

Cytoskeletal fraction 

act18 Actin-18 0.0 3.3 4.61 

gapA IQGAP2 0.0 2.6 3.66 

  

   

  

Cytoplasmic fraction 

mhcA Myosin-2 heavy chain 2.0 66.1 76.13 

fkbp5 FK506-binding protein 5 0.0 11.0 15.27 

leo1 RNA polymerase-associated protein 0.0 5.7 7.84 

acpB F-actin-capping protein subunit alpha 0.0 5.4 7.55 

cdcD Cell division cycle protein 48 26.3 49.2 7.07 

ctr9 RNA polymerase II complex component 0.0 4.6 6.40 

mlcE Myosin essential light chain 0.0 4.3 6.00 

gapA IQGAP2 0.0 4.3 5.95 

mcfZ Mitochondrial substrate carrier family protein Z 0.0 3.0 4.12 
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Table 8: List of potential RacE-binding proteins 

Gene Name Protein Name Control RacE G-value 

Cytoskeletal fraction 

mppA2 
Mitochondrial-processing peptidase subunit 

alpha-2 
2.2 19.4 15.80 

racE Rho-related protein racE 0.0 9.3 12.85 

efbA Elongation factor 2 0.0 8.0 11.08 

atp5b ATP synthase subunit beta, mitochondrial 4.0 18.9 10.64 

mppB 
Mitochondrial-processing peptidase subunit 

beta 
0.0 6.6 9.09 

atp5C1 
ATP synthase subunit gamma, 

mitochondrial 
0.0 6.1 8.41 

DICPUDRAFT 

_52984 
ATP synthase subunit beta 0.0 5.6 7.81 

if1 
F1F0-ATPase putative regulatory protein 

IF1 
0.0 5.1 7.01 

rpl12 60S ribosomal protein L12 0.0 4.8 6.61 

atp5O ATP synthase subunit O, mitochondrial 0.0 4.6 6.39 

acly Probable ATP-citrate synthase 0.0 4.5 6.22 

arcE Actin-related protein2/3 complex subunit 5 0.0 4.4 6.09 

ndufa12 
NADH dehydrogenase[ubiquinone]1 alpha 

subcomplex subunit 12 
0.0 4.4 6.06 

DDB_0167260 Putative uncharacterized protein 0.0 4.4 6.03 

smt1 
Probable cycloartenol-C-24-

methyltransferase 1 
0.0 4.3 5.99 

DDB_0185950 Putative uncharacterized protein 7.3 19.8 5.98 

leo1 RNA polymerase-associated protein 0.0 4.2 5.79 

acpB F-actin-capping protein subunit alpha 0.8 6.3 4.95 

cyc1 Cytochrome c1, hemeprotein, mitochondrial 0.0 3.5 4.89 

DDB_G0283843 Uncharacterized protein 0.8 6.2 4.87 

atp1 ATP synthase subunit alpha, mitochondrial 0.9 6.7 4.86 

sdhA 
Succinate dehydrogenase[ubiquinone] 

flavoprotein subunit, mitochondrial 
0.0 3.2 4.47 

pks16 Probable polyketide synthase 16 0.0 3.2 4.39 

mecr Trans-2-enoyl-CoAreductase, mitochondrial 0.0 3.1 4.36 

DDB_0169073 Putative uncharacterized protein 0.0 3.1 4.29 

DDB_0205386 Putative uncharacterized protein 0.0 3.1 4.29 

sdhB 
Succinate dehydrogenase[ubiquinone] iron-

sulfur subunit, mitochondrial 
0.0 3.0 4.19 

DDB_0186283 Putative uncharacterized protein 0.0 3.0 4.17 

DDB_0191803 Putative uncharacterized protein 0.0 3.0 4.17 

mlcE Myosin essential light chain 0.0 3.0 4.16 
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DDB_0186471 
RNA-binding region RNP-1 domain-

containing protein 
0.0 3.0 4.14 

cmfB Conditioned medium factor receptor 1 0.0 2.9 4.07 

act18 Actin-18 0.0 2.8 3.94 

rps23 40S ribosomal protein S23 0.0 2.8 3.84 

rpl13 60S ribosomal protein L13 0.0 2.8 3.84 

ddj1 Heat shock protein 0.0 2.8 3.84 

DDB_G0282483 Uncharacterized transmembrane protein 0.0 2.8 3.84 

cdcD Cell division cycle protein 48 16.3 29.4 3.84 

tubB Tubulin beta chain 0.0 2.3 3.22 

     
Cytoplasmic fraction 

mhcA Myosin-2 heavy chain 2.0 74.9 87.89 

act22 Putative actin-22 0.0 37.9 52.55 

racE Rho-related protein racE 0.0 5.7 7.95 

leo1 RNA polymerase-associated protein 0.0 5.4 7.46 

dscA Discoidin-1 subunit A 0.0 4.7 6.57 

mlcR Myosin regulatory light chain 0.0 4.6 6.44 

fkbp5 FK506-binding protein 5 0.0 4.0 5.50 

cdcD Cell division cycle protein 48 26.3 44.7 4.81 

mlcE Myosin essential light chain 0.0 3.2 4.48 

acpB F-actin-capping protein subunit alpha 0.0 2.8 3.84 
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