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Abstract 

Anisotropic colloidal particles are receiving more attention because of their potential 

applications in different aspects of scientific fields. It is important to reveal the principle driving 

the particle-field interaction to direct the manipulation and further introduce the assembly of 

anisotropic particles. Anisotropic particles made of photoresist material with different shapes and 

aspect ratios are fabricated using photolithography method, and the behavior of single particle in 

the non-uniform AC electric field is observed and recorded using optical microscopy. Boltzmann 

Inversion is applied to realize the quasi-2D analysis. From the generated position and orientation 

dependent energy landscapes, it is found that the ellipsoidal theory accurately models the behavior 

of elliptical prisms with only the particle conductivity as the adjustable parameter. To solve the 

discrepancy between elliptical theory and experimental result for the rectangular prisms with sharp 

rounded corners, other parameters related to the geometry of particle need to be introduced, and a 

great agreement between modified ellipsoidal model and experiment for rectangular prism can be 

found with the introduction of adjustable parameters along with physical restriction. 
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1. Introduction 

Controllable materials could significantly improve soft robotics,1 active sensor2 and 

advanced printing,3 and thus their production and development is significant to both the scientific 

and industrial fields. One way to make it a reality is the promising ability of manipulating basic 

particles in micron-scale size as they can act as the building blocks of bulk materials.4 As a key to 

realize many aspects of nano and micro technologies, the manipulation of colloidal particles is 

vital to be fully understood to direct the formation of high-tech materials. So far, many have studied 

the ways of controlling colloidal particles with external fields without direct contact5. As been 

reported by precedent work, optical tweezers,6-10 magnetic field,11-18 electric field,19-22 and further 

developed plasmonic tweezers,23 and optothermal manipulation based on the light induced 

temperature field24 have been successfully utilized to manipulate the colloidal particles. Recently, 

some even combined the utilization of several tweezers to produce the mobile magnetic swimmers 

enabling the capability of trapping colloidal particles with optical field while controlling magnetic 

robots simultaneously,25 which leaves a promising future on the polyphase manipulation of 

micron-scale matter.  

Now, anisotropic particles are receiving much more attention because of their intriguing 

potential to bring into the field and industry of biomedicine26 and assembly.27 Precedent work has 

reported the realization of the fabrication of anisotropic particles27-31 and thus having made the 

assembly of new anisotropic particles a reality. While applying external fields is one of the 

promising methods to take colloidal particles under control, the basic theory of manipulating 

anisotropic particles with external fields needs to be addressed as it is still uncertain as compared 

to the isotropic spherical particles. The requirement of rapid development in material and the 

demand from related fields demonstrate the urgent need of the understanding of principle driving 
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the manipulation of anisotropic particles. Thus, it is vital to further investigate the interaction of 

anisotropic particle when it is placed in external fields.  

Many have focused on how the adjustment of external electric field determines the state of 

colloidal particle.32 The dielectric particle is induced as dipole when being placed in electric field, 

but the equilibrium status is different when different kinds of electric fields are applied. DC electric 

field can trap the charged particle toward to edge that is oppositely charged.33 By contrast, the AC 

electric field is versatile as the force it exert can be easily tuned by changing field parameters, and 

the particle can be at either the minima or maxima according to the condition of applied electric 

field.34 The published works focusing on realizing the tunable colloidal assembly with rotating 

electric field35 and controlling the assembly of Janus particles36 also demonstrate the features of 

electric fields. 

Precedent work has revealed some of the mysteries beneath the behavior of anisotropic 

particle under external field. Established theories are derived based on the polarization of spherical 

and ellipsoidal particles.37 As has been proved by Rupp et al,34 this ellipsoidal theory accurately 

modelled rod-like anisotropic particles with some adjustable parameters. However, the various 

shapes possessed by different anisotropic particles will further define the behavior of a particle in 

the field. Thus, although some has made some progress on understanding the particle-field 

interaction of rod-like particles, it is still necessary to study particles of other shapes to comprehend 

the difference brought by various geometries. Once single particle properties are better understood 

and the principle driving particle-field interaction is discovered, we can work towards applications 

of self-assembly that require several kinds of interactions. The particle-wall interaction, particle-

particle interaction and particle-field interaction will combine as the net potential directing the 

self-assembly of colloidal particles. But, in order to simplify the complicated self-assembly 
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problem, it is essential to investigate each interaction separately to better understand the physical 

principles driving the behavior of anisotropic colloidal particles.  

Herein, in our work, we successfully fabricated anisotropic particles in the shape of 

elliptical prisms and rectangular prisms. Developed using UV light, the particles are made of 

photoresist material SU-8 2002 and their patterns are directed by a pre-designed mask. We 

observed, recorded and studied the behavior of single anisotropic particles when they are placed 

under non-uniform AC electric fields. The particle-field interaction between induced dipole and 

electric field is investigated using the quasi-2D analysis involving the position and orientation 

dependent energy landscape of the newly prepared anisotropic particles. The particle conductivity 

is adjusted to meet the agreement between theory and experiment for elliptical prisms while the 

geometry factor related to the geometry of anisotropic particle is adjusted as the parameter for 

rectangular prisms to demonstrate the difference brought by the sharp rounded corners of 

rectangular prisms. 

 

2. Theory 

2.1 Anisotropic particle-field interaction 

The three-dimensional anisotropic particle has six degrees of freedom, with three related 

to its position and three related to its orientation. The problem led by the different distribution of 

electric field set on different coordinates coordinate can be solved by setting lab and particle 

coordinate systems. The combined lab coordinate (x, y, z) system that aligns with the glass 

substrate, and particle coordinate (x’, y’, z’) directions that align with the particle axes is set as the 

base for the general coordinate of three-dimensional anisotropic particle. The set angles (θ, φ, ψ) 

are defined for the orientation of anisotropic particle (Fig. 1a) with respect to the lab coordinates. 
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The general net potential of a single particle in electric field is given as 

 unet x,y,z,q,f,y( ) = u pw +u pf , (1) 

where upf is the particle-field interaction and upw is the particle-wall interaction. 

Here, we investigate the particle-field interaction of anisotropic particles in the electric 

field along with the gravitational potential. For anisotropic particle, the gravitational potential is 

given as 

 ( ) ,pf

g p p mu v gz = −  (2) 

where vp is the volume of particle, ρp is the density of particle, ρm is the density of medium, z is the 

distance between substrate wall and particle center, and g is the gravitational acceleration. The 

volume (vp) for anisotropic particles changes with varying aspect ratio and geometry. For the tested 

particles, the volumes are given as 

 
, 2 ,p e x y zv r r r=  (3) 

 
, 8 ,p r x y zv r r r=  (4) 

where vp,e refers to the volume of elliptical prism, vp,r refers to the volume of rectangular prism, 

and rx, ry, rz are the length of particle's semi-axes in each direction (Fig. 1b). 

The general derived ellipsoidal particle-field interaction for a dielectric particle in a high 

frequency AC electric field is given as37 
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where E’ electric field expressed in the particle coordinate system, and fCM is the Clausius-Mossotti 

factor, defined along particle’s each axis as37 
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where 𝐿𝑖
′  is the shape-dependent depolarization factor, given as38 
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where fi is the defined adjustable multiplier for the shape-dependent depolarization factor, ri is the 

corresponding semi-axis length of the particle. The initial values of fi are 1 in all directions. 

The complex permittivities are given as 
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= −
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 (8) 

where ε is the permittivity, ε0 is the free space permittivity, ω is frequency of electric field, and σ 

is the conductivity with the subscripts p and m referring to particle and medium respectively.  

It should be noted that as an anisotropic particle is placed in solution, a surrounding 

electrostatic double layer will be formed above the particle surface. Thus, when the electric field 

is applied, the actual particle conductivity should be much higher than the material conductivity 

of SU-8 2002 due to polarization of the double layer ions. 

2.2 Electric Field 

The particle coordinate based electric field, E’, needs to be transformed from E, which is 

the electric field based on the lab coordinate using rotation transformation matrix A. E’ is defined 

as  

 ( ) ( ) ( )' , , , , , , , , , ,E x y z A E x y z     =   (9) 

where the coordinate-based rotation transformation matrix A is given as 
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The electric field E of a parallel coplanar electrode has two directions (Fig. 1d), given as39 
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 (11) 

where d is the electrode gap distance, V0 is the voltage of electric field, and x̂ = p x + d( ) / 2d +p / 4  

and ẑ = pz / 2d . 

2.3 Quasi-2D analysis 

As been reported by the precedent work,34 the reduction of a six-dimensional (6D) energy 

landscape including 6 degrees of freedom to a two-dimensional (2D) energy landscape is required 

in order to be comparable to experiments where only position x and orientation θ can be observed. 

This is given by 
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where the transformation between probability and potential energy is obtained from Boltzmann 

Inversion. The reduced 2D probability can further be projected to a lower dimension and 

transformed to projected potential energy using Boltzmann Inversion as 
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It is feasible to generate one-dimensional (1D) position dependent and orientation 

dependent energy landscapes with separate comparison between theory and experiment. 

It should be noted that although the anisotropic particles have six degrees of freedom, only 

five degrees of freedom are considered since the parallel electrode does not apply any field in the 

y direction, as seen in Eq. (11). The experiments, shown in Fig. 1(c) mean there is no y direction 

distribution for the electric field and the electric field only has distribution in x and z directions, as 

shown in Fig. 1(d). 

2.4 Error minimization algorithm 

The calculated error used in the process of acquiring the best fitted adjustable parameter is 

given as  

 ( )
2

exp ,pfError u u= −  (15) 

where uexp is the experimental potential energy. The found value of adjustable parameter with the 

minimal error is output as the best fitted result. 

A weighted error (𝜉) taking the error and the relative difference between the fitted value of 

fi and the initial value of fi into account is used to obtain the best fitted multiplier for the geometry 

factor, it is given as 
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3. Materials & Methods 

3.1 Particle Fabrication 

 

Figure 1. The schematic diagram of the elliptical prism and the electrode (a). The 3D diagram of 

elliptical prism with both the lab coordinate (x, y, z) system, and particle coordinate (x’, y’, z’) along with the 

set orientation angles (θ, φ, ψ) (b). The dimensions (rx, ry, rz) of elliptical prism and the image from optical 

microscopy with the 1-micron white scale bar (c). The quasi-2D analysis (x, θ) when a particle is placed in 

the electrode gap as viewed from above (d). The electric field generated by the coplanar parallel electrode 

including two directions (x, z) 
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Anisotropic colloidal particles are fabricated using photolithographic method. Omnicoat 

(MicroChem) is first spin coated and cured on a silicon wafer as the base layer, then SU-8 2002 

(MicroChem) is spin coated on the wafer as the material layer, which is then used to fabricate 

particles. Directed by a pre-designed photolithographic mask with a constant exposure energy for 

about 10 seconds, SU-8 2002 is cured by UV light with desired shapes sculpted. Developed by PG 

Developer (MicroChem) and rinsed using Isopropyl Alchohol, the SU-8 2002 material layer that 

have been cured by UV light is left on the wafer with residual SU-8 2002 washed off.  

The SU-8 2002 material layer is charged by immersing in Sulfuric Acid for one minute. 

After rinsing off the residual Sulfuric Acid using DI water and being dried using pressured air, 

particles are released using PG Remover (MicroChem). The releasing process can be fastened by 

sonication. The PG Remover in solution is replaced by Isopropyl Alchohol during several times 

of centrifugation, and then Isopropyl Alchohol is replaced by DI water. Consequently, charged 

anisotropic particles are dispersed in DI water.  

3.2 Experimental device 

The gold patterned electrode is printed on a glass slide with specific geometry and a certain 

electrode gap (about 100 μm). The glass piece is sonicated in Acetone for 30 minutes, Isopropyl 

Alchohol for 30 minutes and placed still in Nochromix (Godax) for 25 minutes to clean the gold 

electrode. After cleansing, o-rings (McMaster-Carr) are attached to each edge of the electrode 

using high vacuum grease and copper wires are attached to the leads of the electrode. 30 mL of 

prepared solution with released particles is injected into the inner space created by o-rings and a 

cover slide is used to seal the experiment cell. The copper wires are connected to the Electricity 

Generator (Agilent 33220A) to insert AC signal.  

3.2 Optical microscope and video analysis 



 

   
10 

Inverted Optical Microscopy (Zeiss) with a 63x objective along with CCD camera 

(Hamamatsu, Orca-ER) and Streampix (Norpix) are used to observe and record the position and 

orientation of particles. The recorded videos are 30 minutes long with 9000 frames at 5 fps. The 

position and orientation of particle are analyzed using a tracking program in MATLAB with the 

focus on using the brightness thresholding to tell the surrounding environment (dark) and the 

particle center with assigned length of semi-axes (bright). 

 

4. Results & Discussion 

4.1 Geometry and dimension of anisotropic colloidal particle 

As been indicated by precedent work that the existing ellipsoidal theory works for rod-like 

particles,34 elliptical prisms and elliptical prisms are successfully fabricated to further study the 

applicability of the ellipsoidal theory on particles with other shapes. The selected fabricated 

particles are shown in Fig. 2, with Fig. 2(a) - (c) showing the captured microscopy images for 

elliptical prisms with different aspect ratios using optical microscopy, and Fig. 2(d) - (f) shows the 

shapes of rectangular prisms with rounded sharp corners. The actual thickness varies for each 

particle, however, in order to eliminate the effect of z height in quasi-2D analysis, the thickness of 

all particles is fixed at an approximate value of 2 μm, as expected by the SU-8 material spin coating 

speed. As the patterns of selected particles are shown in Fig. 2, it can be stated that an ellipse is 

the most accurate top-view shape for (a-c), or elliptical prisms in 3D while (d-f) are the rectangles 

with slightly rounded corners, or as a rectangular prism in 3D. Thus, there should be some 

differences between the fabricated rectangular prisms and the true rectangular prisms, but it is 

reasonable to test these particles with some small flaw as this difference should have negligible 

effects on the corresponding results.  
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Laser optical microscopy is used to measure the dimensions of our particles, which means 

it is supposed to have an uncertainty of about 0.3 μm in accordance with the wavelength of visible 

light. Thus, in order to reduce the bias that may be caused by the accuracy issue of visible light, 

we measured the inner (the smallest size according to the brightness of particle in Fig. 2) and outer 

(the biggest size) dimension of particles using scale bar. The measured scale bar pixel is used to 

calculate the particle dimension by making a comparison with the particle dimension pixels using 

ImageJ, and the mean dimension is taken as the definite dimension after having inner and outer 

sizes. The shape-dependent depolarization factor (𝐿𝑖
′ ) can also be understood as a geometry factor, 

as seen in Eq. (6) and Eq. (7). The multipliers (fi) for geometry factor are defined as 1 initially to 

observe the difference between the experimental results and existing ellipsoidal theoretical results.  

 

Figure 2. The geometry of anisotropic particles with different shapes and aspect ratios as viewed 
from above by optical microscopy (a). The elliptical prism with an aspect ratio of 1.28 (b). The elliptical 
prism with an aspect ratio of 1.30 (c). The elliptical prism with an aspect ratio of 1.75 (d). The rectangular 
prism with an aspect ratio of 2.11 (e). The rectangular prism with an aspect ratio of 2.12 (f). The rectangular 
prism with an aspect ratio of 2.29. All white scale bars are 1 micron. 
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4.2 Trajectory, probability and energy 

The behavior of anisotropic SU-8 particles in non-uniform AC electric fields was measured 

by recording equilibrium motion of a single particle at a fixed frequency and voltage. Fig. 3 shows 

the analysis protocol of an experiment video recording. The trajectory of particle in the electrode 

gap is obtained from the recorded video to track the behavior of single particle. The particles in 

the recorded videos are captured and analyzed based on the brightness contrast they have against 

the environment, and the corrected absolute positions and orientations are saved as the 

experimental data.  

From tracked video recordings, the position detail (x, y) of a single particle center in non-

uniform AC electric field is shown as Fig. 3(a) with the relative (x, y) position to the electrode gap 

 

Figure 3. The conversion from trajectory of a particle sampling positions and orientations to a 2D 
energy landscape (a). The 2D trajectory from tracking video of a single particle with its x position and y 
position varying based on time (b). The zoomed in section with specific orientation schematics with a time 
interval of 0.2 seconds between two adjacent points (c). The 2D trajectory based on the particle’s x position 
and orientation angle with the color bar representing time (d). The normalized relative probability (p) 
distribution based on the emergence frequency of each position and orientation, with values of p/max(p) 
(e). The 2D energy landscape converted from probability using Boltzmann Inversion using Eq. (12) 
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over a 30-minute 5fps recording under the electric field of 5MHz and 3V. Each point on the plot 

represents a single occurrence of a specific position and orientation with 9000 total points with an 

interval of 200 ms between each. The parallel electrode defines the distribution of applied electric 

field. Attached at the edges of the parallel electrode, the electric field only has a x and a z direction 

distribution, indicating that the particle is confined in x direction while free to move in y direction. 

The particle is also confined in z direction due to the gravitational force and substrate force 

(downward force) being greater than the electrical force (upward force). Fig. 3(b) shows a zoomed 

in section with additional information about particle orientation at each timepoint. Considering a 

recording interval of 200 ms, the particle would spend a total of 3 seconds sampling positions and 

orientations in this area. As what is talked in theory section, the movement of particle along y 

direction has no contribution on the redistribution of the formation of electrostatic double layer 

surrounding the particle because of the parallel electrode used in experiment. Consequently, the 

movement in y direction does not have an effect on the actual dipole-field interaction energy 

landscape, therefore the general theory in this work is actually five-dimensional (5D). It should be 

noted that we used quasi-2D analysis to study the dipole-field interaction of these anisotropic 

particles, which means what is observed and analyzed is the change of x position and θ orientation 

that is later converted to probability distribution, as shown in Fig. 3(c), combining the position and 

orientation status of single particle at over 30 minutes.  

The probability of the emergence of the particle at a specific position can be calculated 

based on the frequency of a specific position generated from the trajectory in Fig. 3(a). The 

positions and orientations of particle are arranged due to their values, respectively, and histogram 

is formed based on the group the data is arranged according to the range of their values and the set 

bin value. The position (x) where the highest probability is found is taken as the relative zero 
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position for the calculation of relative probability. Similarly, the same protocol is applied to the 

analysis of the orientation (θ) with the relative zero orientation is taken where the maximum 

probability is found. The probability of the other positions and orientations based on the relative 

zero position and relative zero orientation showing the relative emerging probability is calculated 

based on the relative emergence frequency and shown as Fig. 3(d). Fig. 3(d) shows the normalized 

probability distribution of single particle, in which where the probability is closer to 1 means the 

particle is closer to the most probable state. From Fig. 3(c, d), what can be observed is that the 

most probable position and orientation are both 0, and excursions beyond x = 3 μm and θ = 15 

degrees are rarely seen, indicating the particle is trapped at such a specific state. As shown in Eq. 

(12), the projected energy potential can be calculated using the Boltzmann Inversion. It is clear 

that the potential energy will be lower if the corresponding probability is higher, thus, we can find 

the lowest energy at the relative zero position and relative zero orientation where the highest 

probability can always be found. By applying the Boltzmann Inversion, Fig. 3(e) is generated to 

show the details of the 2-dimensional energy landscape versus position and orientation. Energy 

potentials greater than 5 kT is neglected as the recorded videos cannot provide sufficient statistics 

to analyze the particle status with such low probability. 

4.3 Fitting between ellipsoidal theory and experiments for elliptical prisms 

Fig. 4 shows the analysis result for one tested elliptical prism using the protocol stated in 

Fig. 3 with the used constants shown in Table 1.  The experimental result relating energy potential 

Table 1. Parameters used in the experiments to fit the theory to energy landscape and generate Fig. 3 to 
Fig. 6. Values obtained from: amanufacturer values (MicroChem), bhandbook values,40 cprevious work,41 
dprevious work,42 eAC electric field generator read out, foptical microscopy.  

parameter value parameter value 

εp/ε0
a 3.2 σm (μS/cm)c 12.6 

εm/ε0
b 78 h (nm) c, d 150 

ρp (kg/m3)a 1200 f (MHz)e 5 

ρm (kg/m3)b 1000 Voltage (V)e 3 

κ-1 (nm)c 30 dg (μm)f 97 
 



 

   
15 

and position (x) and orientation (θ) is shown as Fig. 4(a). In order to make the theory comparable 

to experiment, the reduction from 5D to 2D energy landscape needs to be processed. One feasible 

way is to use the integral to get rid of the effect of redundant parameters, which is called 

projection.34 As shown in Eq. (12), to realize the projected theory, the 5D dipole-field interaction 

energy potential is generated and Boltzmann Inversion is used to transform the energy potential to 

probability, and the other three redundant parameters (z, ϕ, ψ) can be eliminated using integral. 

The 2D potential energy can be obtained using Boltzmann Inversion. The particle conductivity (σp) 

in Eq. (8) has been considered as an adjustable parameter to meet the agreement between 

experiment and theory in precedent work. Rupp et al. demonstrated their work on investigating the 

dipole-field interaction for superellipsoid anisotropic particles.34 In their work, they made the 

conductivity of particle a variable depending on the geometry of each axis, keeping the 

conductivity in x and y axis the same while the conductivity in z axis different. However, as a 

material property, we believe the particle conductivity should be a constant. Thus, the conductivity 

of particle is again made an adjustable variable in this work, however, it is considered as a constant 

whichever axis it is for. In order to determine the particle conductivity with the best agreement 

between experiment and theory, an error minimization algorithm (Eq. (15)) in MATLAB was used 

to find the minimal difference between theoretical result and experimental result when inserting 

different values. After the conductivity value with a minimal error is found, the value is inserted 

back in the theory to observe the actual gap between theory and experiment. As shown in Fig. 4(b), 

the theoretical result is a 2D energy landscape with (x, θ) based on the quasi-2D analysis using 

projected theory with the found best fitted conductivity. The 2D energy landscape shows the 

energy potential versus position and orientation for the tested particle, and when the color gets red, 

the corresponding energy is higher, closer to 5 kT, and the corresponding energy is lower when the 
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color gets blue, closer to 0 kT. By making a comparison between the experimental energy 

landscape (Fig. 4a) and theoretical energy landscape (Fig. 4b), the difference between them can be 

observed more clearly as shown in Fig. 4(c). In Fig. 4(c), the difference is closer to 0 kT when the 

color is green, and the difference is getting bigger when the color is orange or red. As shown by 

Fig. 4(c), the difference between theory and experiment is slight with excellent agreement, thus 

proving the ellipsoidal theory has a good fitting agreement with the experimental result. 

To demonstrate the validity of ellipsoidal theory for elliptical prism more clearly, 1D 

energy landscapes are also generated as Fig. 4(d). The 2D energy landscape is separated into two 

individual 1D energy landscape using Eq. (13) and Eq. (14), the gap between points (experimental 

data) and lines (theoretical data) can be more clearly observed from Fig. 4(d), where blue is for 

the position dependent energy landscape and red is for the orientation dependent energy landscape. 

From the plotted lines and generated points, we can state that the theoretical lines have excellent 

agreement with experimental points, and thus demonstrating that the ellipsoidal theory is working 

well for elliptical prisms with no needed modifications.  
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Besides projection, another possible way to do the reduction is using most probable (slice) 

theory to directly calculate the 2D dipole-field interaction with the redundant parameters fixed at 

the most probable value. The heavy dielectric plastic anisotropic particle staying at a fixed height 

and orientation relative to the electrode provides the possibility of applying slice theory on our 

model. In our model, based on the coordinate set for anisotropic particle as shown in Fig. 1(a), the 

most probable status of a particle when the electric field is applied is parallel to the electric field, 

 

Figure 4. The fitting result of the theoretical ellipsoidal model to statistics from an elliptical prism 
with an aspect ratio of 1.15 (a). The experimental energy landscape generated from position and 
orientation statistics from a tracking video (b). The theoretical energy landscape of an ellipsoid of equivalent 
aspect ratio using Eq. (2) - (12) (c). The difference between 2D experimental and theoretical results (d). 
The projected and sliced1D energy landscape using Eq. (13) - (14), where red line and points are for 
orientation dependent energy landscape, blue line and points are for position dependent energy landscape, 
and black dash lines are for position and orientation dependent sliced theory 
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which means the long axis of the particles should be perpendicular to the edge of the electrode gap. 

In this status, the angles (ϕ, ψ) should be both 0. The specific z height, which is also known as the 

particle center elevation, is considered to be 5 times the length of Debye length based on precedent 

work,42 and this gives the most probable height (h) equivalent to 1.5 rz. The 1D sliced theoretical 

results are shown as black dash lines in Fig. 4(d), indicating that both ways accurately model the 

experiment.  

Apart from the result shown in Fig. 4, other elliptical prisms are tested to fulfil the validity 

of applying ellipsoidal theory on elliptical prisms. As shown in Fig. 5, when the same protocol is 

applied for other elliptical prisms with different aspect ratios, a good fitting agreement between 

theory and experiment can always be found in both 2D and 1D energy landscapes. As shown in 

Fig. 2, the change of aspect ratio results in an obvious differentiation of geometry, so that the 

particle-field interaction is meant to be changed as many related parameters, including the 

dimension, volume and geometry factor are going to change corresponding to the geometric 

diversity as shown in Eq. (2) - (7). The results shown in Fig. 4 and Fig. 5 for the tested elliptical 

prisms with different aspect ratios along with the discovered conductivity values of 108, 114, 111 

and 114 for each particle indicates each tested particle has a quite small discrepancy between 

theory and experiment with relatively similar conductivity values. The results from figures and 

Table 2 verify the applicability of ellipsoidal theory on elliptical prism. This result again supports 

the hypothesis that the conductivity, as a material property, should be consistent and independent 

Table 2. Particle dimensions and obtained conductivity values from fitting between ellipsoidal theory and 
experiment of elliptical prisms. Particle conductivity (σp) in the table is the fitted value to make the ellipsoidal 
theory match the 2D experimental energy landscape for elliptical prisms. Values obtained from: aoptical 
microscopy 

Particle rx, ry, rz (μm)a Aspect Ratio σp (μS/cm) Multiplier ( fx, fy, fz ) 

1 3.9, 3.4, 1 1.15 108 1, 1, 1 

2 3.7, 2.9, 1 1.28 114 1, 1, 1 

3 3.5, 2.7, 1 1.30 111 1, 1, 1 

4 3.5, 2.0, 1 1.75 114 1, 1, 1 
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of axis length. The results of conductivity are quite similar, and if the average of these results is 

taken as the general conductivity value for SU-8 2002 in DI water, an approximate value of 110 

can be taken as the general conductivity value and be used in further investigation.  
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Figure 5. The fitting result of the theoretical ellipsoidal model to statistics from elliptical prisms with 
various aspect ratios. The first row is the experimental energy landscapes generated from (x, θ) statistics 
from particle tracking videos. The second row is for the theoretical energy landscape of an ellipsoid with an 
equivalent aspect ratio using Eq. (2) - (12). The third row shows figures showing differences between 2D 
experimental and theoretical results. The fourth row shows the 1D orientation dependent energy 
landscapes with red points for experimental results, red solid lines for projected theory and black dash lines 
for slice theory. The fifth row shows the 1D position dependent energy landscapes where blue points are 
for experimental results, red solid lines are for projected theory and black dash lines are for slice theory (a). 
The fitting result for the elliptical prism with an aspect ratio of 1.28 (b). The fitting result for the elliptical 
prism with an aspect ratio of 1.30 (c). The fitting result for the elliptical prism with an aspect ratio of 1.75 
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4.4 Fitting between ellipsoidal model and experiment for rectangular prism 

In Fig. 6, the same method is applied to a rectangular prism with an aspect ratio of 2.11 at 

the same voltage and frequency of 3V and 5MHz. The analysis process of experimental data uses 

the same procedure of calculating histogram and Boltzmann Inversion to first generate the 

probability and then generate the 2D energy landscape of the tested rectangular prism as the quasi-

2D analysis is used for rectangular prisms. The volume of rectangular prism (Eq. (4)) is used in 

the analysis process. The experimental energy landscape is shown in Fig. 6(a) and the theoretical 

energy landscape is shown in Fig. 6(b). For the theoretical model, as a general conductivity value 

for SU-8 2002 in DI water has been obtained, the conductivity of 110 is thus applied for the 

analysis of rectangular prisms. However, it is shown in Fig. 6(c, d) that there is large discrepancy 

between experimental points and theoretical lines if the ellipsoidal theory is applied. This means 

the existing ellipsoidal theory does not model the behavior of rectangular prisms with sharp 

rounded corners.  
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Thus, instead, inspired by the difference between elliptical prisms and rectangular prisms, 

some parameters are introduced to solve the noncompliance issue as the multiplier (fi) for geometry 

factor (𝐿𝑖
′ ) as shown in Eq. (7). The multiplier (fi) is introduced as the essential difference of 

elliptical prism and rectangular prism is the geometric diversity taking the sharp corners of 

rectangle into account. As a three-dimensional particle, we introduced the multiplier for geometry 

factor in every direction of the coordinate (fx, fy, fz) to be adjustable to solve the noncompliance 

 

Figure 6. The fitting result of the ellipsoidal model to position and orientation statistics of a 

rectangular prism with an aspect ratio of 2.11. (a). The experimental energy landscape generated from 

(x, θ) statistics from tracking video (b). The theoretical energy landscape of an ellipsoid of equivalent aspect 

ratio using Eq. (2) - (12) (c). The difference between experimental and theoretical results (d). The projected 

and sliced1D energy landscape using Eq. (13) - (14), where red line and points are for orientation dependent 

energy landscape, blue line and points are for position dependent energy landscape, and black dash lines 

are for position and orientation dependent sliced theory 
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problem. The initial values of (fx, fy, fz) are all 1, and various values of (fx, fy, fz) in the range of 0 

to 2 are inserted in the error minimization algorithm to help adjust the geometry factor (𝐿𝑖
′ ) 

corresponding to the depolarization difference led by the specific geometry of rectangle. Fig. 7 

shows the results of adjusting the multiplier for the same rectangular prism in Fig. 6. The 

experimental energy landscape is shown as Fig. 7(a). From Fig. 7(b), it is clear that a combination 

of 0.28, 0.54, 1.2 for (fx, fy, fz) can be found with the minimal error that results in excellent 

agreement between theory and experiment. However, as we dug deeper into the intrinsic meaning 

of fi in order to explain the difference it brought about, it is found that several combinations of fi 

can be found with a quite small error. They are also acceptable as the systematic error in 

experimental points can hardly be completely removed thus leaving a possibility that multiple 

combinations can be accepted since we have to tell the stand or fall of these results by observing 

the difference visually. As shown in Fig. 7(c), a combination of 1, 0.95, 1.2 for (fx, fy, fz) only 

adjusting fy and fz while keeping fx constant at 1 is working for the fitting program. Therefore, based 

on what has been discovered so far, a general conclusion of the meaning of fi is not achievable and 

some physical restrictions are needed to constrain the adjustment of fi and thus obtain the physical 

principles for rectangular prisms. 



 

   
24 

To solve the fluctuating result of adjusting the multiplier for geometry factor, we applied 

the physical principle that adding up geometry factor (𝐿𝑖
′ ) in all directions should be equal to 1, 

which was indicated in precedent work.43-44 A weighted error, shown in Eq. (16), is used to 

consider the difference between theory and experiment and the relative difference from the initial 

 

Figure 7. The fitting result of the modified ellipsoidal model to position and orientation statistics of 

a rectangular prism with an aspect ratio of 2.11 with the multiplier for geometry factor as the 

adjustable parameter. The first row shows the theoretical energy landscape of an ellipsoid with an 

equivalent aspect ratio using Eq. (2) - (12). The second row shows the differences between 2D experimental 

and theoretical results. The third row shows the 1D orientation dependent energy landscapes with red 

points for experimental results, red solid lines for projected theory and black dash lines for slice theory. The 

fourth row shows the 1D position dependent energy landscapes where blue points are for experimental 

results, red solid lines are for projected theory and black dash lines are for slice theory (a). The experimental 

energy landscape generated from (x, θ) statistics from tracking video (b). The fitting result between 

experiment and modified ellipsoidal theory with multipliers (fx, fy, fz) of (0.28, 0.54, 1.2) (c). The fitting result 

with multipliers (fx, fy, fz) of (1, 0.95, 1.2). 
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value of fi simultaneously. The fitting result is shown as Fig. 8. As shown in Fig. 8(a), the result 

of fitting modified ellipsoidal theory to experiment for a rectangular prism with an aspect ratio of 

2.11 with the multiplier as the adjustable parameter indicates that a result of 0.75, 0.73, 1.19 for 

(fx, fy, fz) works well to fulfill the applied restriction. And it gives the trend that (fx, fy) are smaller 

than 1 while fz is bigger than 1. Fig. 8(b) also shows the same trend for another rectangular prism 

with an aspect ratio of 2.12 with a result of 0.88, 0.67, 1.21 for (fx, fy, fz), which is shown in Table 

3. This result shows that introducing multiplier for geometry factor as the adjustable parameter to 

modify the existing ellipsoidal theory is working for rectangular prisms with similar fitting 

outcome for different particles. 

Table 3. Particle dimension and obtained multiplier values from fitting between theory and experiment of 
rectangular prisms. fx, fy, fz in the table are the fitted values of multipliers to make the theoretical ellipsoidal 
model to match the 2D experimental energy landscape for rectangular prism. Values obtained from: aoptical 
microscopy 

Particle rx, ry, rz (μm)a Aspect Ratio σp (μS/cm) Multiplier ( fx, fy, fz) 

1 3.8, 1.8, 1 2.11 110 

0.28, 0.54, 1.2 

1, 0.95, 1.2 

0.75, 0.73, 1.19 

2 3.6, 1.7, 1 2.12 110 0.88, 0.67, 1.21 
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Figure 8. The fitting results of the modified ellipsoidal model to position and orientation statistics 

of rectangular prisms with different aspect ratios with the multiplier for geometry factor as the 

adjustable parameter and physical restriction applied. The first row shows the experimental energy 

landscapes generated from (x, θ) statistics from particle tracking videos. The second row shows the 

theoretical energy landscape of an ellipsoid with an equivalent aspect ratio using Eq. (2) - (12). The third 

row shows the differences between experimental and theoretical results. The fourth row shows the 1D 

orientation dependent energy landscapes with red points for experimental results, red solid lines for 

projected theory and black dash lines for slice theory. The fifth row shows the 1D position dependent energy 

landscapes where blue points are for experimental results, red solid lines are for projected theory and black 

dash lines are for slice theory (a). The fitting result between experiment and modified ellipsoidal theory with 

multipliers (fx, fy, fz) of (0.75, 0.73, 1.19) for the particle with aspect ratio of 2.11 (c). The fitting result with 

multipliers (fx, fy, fz) of (0.88, 0.67, 1.21) for the particle with aspect ratio of 2.12. 
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In the previous discussion, we have proven that both the projection and slice work for the 

fitting between theory and experiment. They should have a quite similar result since they are all 

based on the quasi-2D analysis, but sometimes we can still notice a slight difference between 

projection and slice because of the specific value of redundant parameters, as shown in the fifth 

row in Fig. 8(a, b). For the sliced theory, we need three specific values for (z, ϕ, ψ) respectively. 

But in the degradation process of projection, the discovered most probable height may be slightly 

deflected because of the geometric difference rectangular prism brings about. However, the slight 

discrepancy between projection and slice is still acceptable. This demonstrates that the simpler 

calculations at the most probably height z, and rotations ϕ, ψ can still accurately model particle-

field behavior with less computational complexity. Therefore, further research in quasi-2D can use 

a simplified model while systems with higher degrees of freedom can still be modelled using five 

degrees of freedom. Thus, a simpler model can be applied on further research on investigating the 

meaning of fi for rectangular prisms and it will help us find out the principle driving the interaction 

for more anisotropic particles. 

 

5. Conclusion 

Anisotropic particles in the shape of elliptical and rectangular prisms are fabricated to study 

their particle-field interactions with external AC electric field. It is found that the ellipsoidal theory 

works for elliptical prisms with a newly found consistent particle conductivity value while the 

adjustable multiplier for geometry factor is introduced to solve the bad agreement between 

ellipsoidal theory and experiment for rectangular prisms. Based on precedent work investigating 

the interaction for superellipsoid particles, new anisotropic particles are fabricated using 

photolithographic method, and we further observed and analyzed the translational and 
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orientational motion of newly made dielectric anisotropic particles in equilibrium electric field 

conditions. To reduce the difference between theory and experiments, a general conductivity value 

of 110 leads to excellent agreement in particle-field potentials for all tested particles is found. The 

generated 2D and 1D energy landscapes shows that a good agreement between theory and 

experiment can be found for elliptical prisms with various aspect ratios with a similar particle 

conductivity. The multiplier for geometry factor needs to be introduced to address the 

disagreement caused by geometric issue for rectangular prisms with sharp rounded corners. This 

modification is reasonable since the main difference between the two anisotropic particles is the 

sharp rounded corners that rectangular prism possesses. From the generated results and figures, 

some acceptable agreements between theory and experiments can be found, and a general 

conclusion can be obtained with the application of physical restriction showing that the multiplier 

for geometry factor in x and y direction are always smaller than 1 while the one in z direction is 

bigger than 1 with similar results for different rectangular prisms. In the future, more work should 

be done to reveal the meaning of multiplier for geometry factor and the derivation of dipole-field 

interaction for other anisotropic particles. 
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