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Abstract

The manner in which localized spins interact in magnetic insulators is a strongly

correlated many-body problem. To date, very few exactly solvable models of such spin

interactions exist and those that do are often highly idealized. Therefore, intense ex-

perimental effort is devoted to characterizing the ground states of such “quantum

magnets.” As nature offers a plethora of materials with various symmetries, geome-

tries, and interactions, the resultant ground states vary from conventional, where the

spins essentially behave as classical vectors, to truly quantum, where the quantum

mechanical nature of spin cannot be ignored. This thesis focuses on the characteri-

zation of magnetic ground states by examining their low energy excitations through

their interaction with light. A method for extracting the complex magnetic suscepti-

bility in a transmission measurement is developed and utilized to study the magnetic

field and temperature dependence of such excitations. A combination of techniques

which probe from the microwave to the terahertz range are used to provide a holistic

view of the low energy electrodynamics of these materials. By comparing our results

to existing models, we uncover unique magnetic ordering due to low symmetry en-
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vironments, classical grounds states with unconventional interactions, and quantum

ground states with long range entanglement and exotic fractionalized excitations.

Primary Reader: N. Peter Armitage

Secondary Reader: Collin Broholm
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Chapter 1

Introduction

Magnetism has captured the imagination of the human species for millennia, dat-

ing back to at least 600 B.C. when the ancient Greeks first discovered that the mineral

Lodestone possessed a strange attraction to iron [10]. Since then, research in mag-

netism has evolved from a primarily philosophical pursuit to a rigorously quantitative

science, “attracting” some of the most prominent thinkers in history along the way.

What began with William Gilbert’s 1600 masterpiece De Magnete [11] sparked a

300 year long classical pursuit of the fundamentals of magnetism, culminating in

Maxwell’s comprehensive theory of electricity and magnetism [12] near the end of the

19th century.

Yet, by the beginning of the 20th century observations which were unexplain-

able by the classical theories formulated in the previous centuries were beginning to

emerge. In 1896, Pieter Zeeman demonstrated that spectral lines of incandescent
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gases were split into odd multiplets when subjected to intense magnetic fields [13].

Later that same year, a classical theory put forth by Hendrik Lorentz, Zeeman’s own

teacher, was able to account for the effect by assuming the electron was attached to

the atom by a spring whose resonant frequency was tuned by magnetic field [14]. How-

ever, continuing experiments with enhanced resolution quickly revealed experimental

results outside the paradigm of Lorentz’s theory. It was found that spectral lines

sometimes split into even multiplets, such as the famed sodium D-lines, which was

unexplainable with Lorentz’s classical theory and suggested additional unaccounted

for degrees of freedom of the electron.

Meanwhile, quantitative theories of magnetism in solids were in their infancy. In

the early 1900’s Pierre Curie developed an empirical formula to describe the tem-

perature dependence of the magnetic susceptibility of paramagnets, materials which

develop a magnetization in the presence of a magnetic field but do not retain their

magnetization once the field is removed [15]. He found that the magnetic suscepti-

bility of a paramagnet had the functional temperature dependence χ = C/T where

C is a material dependent constant. Inspired by Curie’s results, Peter Weiss derived

a similar result for ferromagnets, materials which possess a finite magnetization even

in zero applied field, by assuming that the material possessed an internal “molecular

field” which acted to align all the magnetic molecules of the solid [16]. His generalized

“Curie-Wiess” law, χ = C/(T − ΘCW ), where ΘCW is a measure of the strength of

the internal “Weiss” field, was found to be remarkably successful in describing the
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thermodynamics of ferromagnetic materials. However, not only was a physical origin

for Weiss’s molecular field a mystery, it also appeared to be a direct contradiction of

the Bohr-Van Leeuwen theorem [17, 18], which demonstrated that statistical mechan-

ics always predicted the thermal average magnetization of a solid to be zero. Thus

providing no classical explanation for any form of magnetism in solids.

Such controversies would be only be remedied in the follow decades with the rapid

advent of quantum theory. In 1922, the famous Stern-Gerlach experiment definitively

demonstrated that the angular momentum of an atom was quantized [19]. In 1925

Goudsmit and Uhlenbeck, who at the time were students of Ehrenfest, postulated the

existence of an additional intrinsic electron angular momentum of ~/2 [20], thereby

discovering the electron’s spin. That same year Wolfgang Pauli derived his famous

exclusion principle for electrons [21] and soon after the spin matricies that would also

bear his name [22].

With a solid quantum foundation in place, Dirac [23] and Heisenberg [24] indepen-

dently, but almost simultaneously, derived the form of the most prominent interaction

between spins, the exchange interaction, which for the first time provided an account

of the principles of ferromagnetism. As the interaction is derived from the exclu-

sion principle, it is a purely quantum mechanical effect, thereby demonstrating why

no classical explanation could be offered. Unbeknownst to them at the time, the

discovery of the exchange Hamiltonian would launch an entire field devoted to study-

ing such quantum interactions within solids, which today is referred to as “quantum
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magnetism.”

Today, quantum magnetism has blossomed into an eclectic field encompassing

many subsets and applications. This thesis focuses on one such subset, magnetic

insulators, in which the spins are localized to their ions at specific sites within the

lattice. As we will see in this chapter, applying the exchange Hamiltonian in an insu-

lating magnet constitutes a strongly correlated many-body problem which is rarely,

except generally in the simplest possible cases, exactly solvable. Thus, there contin-

ues to be intense experimental effort devoted to studying how the underlying spin

interactions within the lattice of a given material result in a particular magnetic

ground state. With a plethora of quantum magnets, all of which possess various

lattice geometries, symmetries, interactions, and magnetic elements, and continuing

advances in solid state chemistry and materials characterization techniques, the field

of quantum magnetism is undoubtedly in its prime.

The technological needs of the 21st century will revolve around energy-dense, and

therefore strongly correlated, materials as well as faster more efficient computation

methods. Quantum magnetism is on the forefront of addressing such needs. Many

strongly correlated materials possess magnetic phases in proximity, and therefore pos-

sibly related, to additional phases with technological applications. For instance, the

parent compound of high-Tc superconductors are antiferromagnetic Mott insulators

which only become superconducting when charge doped. The role that magnetism

may play in the superconducting properties of these materials is currently a topic of
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investigation. Meanwhile, many recently proposed quantum computation methods

have centered around exploiting the unusual statistics of fractional quasiparticles in

certain classes of unusual quantum magnets. If such proposals are to be a reality then

further research into quantum magnetism must persist.

This chapter is meant as a very brief introduction to the field of quantum mag-

netism, a subject so broad and diverse that only the very basics can be touched

upon here. We begin by deriving the most conventional form of quantum interac-

tions between spins, the Heisenberg Hamiltonian. Next we will discuss applying the

Heisenberg Hamiltonian by examining a fundamental model of magnetism, the Ising

model, to gain an understanding of the complexity of such systems and introduce

topics which will arise in the context of this thesis. We then discuss excitations of

the magnetic lattice and demonstrate how the ground state properties manifest in

the excitation spectrum. Finally, we will move beyond the Heisenberg Hamiltonian

and demonstrate how the underlying interactions between spins depend heavily on

the symmetry and environment of the space in which they are embedded. We will

discover that the resultant magnetic ground states can range from classical to, under

special circumstances, truly quantum.
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1.1 Magnetic Interactions In Solids

1.1.1 Magnetic Dipole Interactions

When a ferromagnet is cooled below some characteristic temperature Tc, known

as the Curie temperature, the spins of all the electrons of the material spontaneously

align such that long range magnetic order and a magnetization onset. This suggests

that the spins of the ferromagnet are strongly correlated and that the long range align-

ment of all spins is energetically favorable. But what is the form of this interaction

that drives the transition to a long range ordered phase?

From a classical physics standpoint, it is reasonable to assume that each electron

behaves as a semiclassical magnetic dipole such that they interact via the conventional

dipole-dipole interaction of the form:

UDip =
1

r3
[m1 ·m2 − 3(m1 · r̂)(m2 · r̂)] (1.1)

where m1 and m2 are the magnetic dipoles of the two electrons and r is the distance

between them. We can get an approximate feel for the scale of these interactions by

recalling that the dipole moment of an electron has a typical magnitude of order the

Bohr magneton µB = e~/mec. Inserting this into Eq. 1.1 tells us that the energy

6
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scale of dipole interactions is of order:

UDip ≈ (µB)
2

r3
≈ 0.1 meV or 1 T (1.2)

where a typical atomic spacing of order 1 Å has been assumed [25].

This should be compared however to the actual energy scale of interactions in

a ferromagnet which can be approximated by UEx ≈ kBTc. With a typical Curie

temperature for conventional ferromagnets (e.g. Fe, Co, Ni, Gd) ranging from Tc ≈

102 K - 103 K [1], we find that the interaction energy is of order:

UEx ≈ µBTc ≈ 10− 100 meV or 100− 2000 T (1.3)

Therefore we see that dipole interactions are orders of magnitude too weak to account

for the ferromagnetism in solids.

1.1.2 Quantum Magnetism: The Heisenberg

Hamiltonian

So then what is the form of the interactions between spins in solids? Our goal is

to derive this interaction by beginning with the simplest possible case, that of two

interacting electrons. Here we present a condensed version of the Heitler-London

model [26] as presented in Ref. [1]. We begin by assuming that two electrons in

7



CHAPTER 1. INTRODUCTION

a solid, both of which possess spin and orbital angular momentum, are interacting

through the Hamiltonian:

H =
2∑

i=1

p2i
2m

+ V (r1, r2) (1.4)

For now we disregard interactions between the electrons and the lattice although they

in principle could be included in Eq. 1.4.

One can see that the Hamiltonian of Eq. 1.4 is independent of the electron’s

spin and therefore its eigenstates can be written as a product of an orbital state,

|φ(r)〉, and a spin state, |S,ms〉. However, not all combinations of |φ(r)〉 and |S,ms〉

are permissible. As the two electrons are identical fermions they must obey the Pauli

exclusion principle, which mandates the antisymmetry of the total wavefunction under

particle exchange. Therefore the allowed eigenstates of the two electron system are:

|Ψ〉 = |φ(r)〉± |S,ms〉∓ (1.5)

where the superscripts denote the sign under particle exchange.

The addition of the spin angular momenta of two electrons is a well known result.

The spins can either couple to form an antisymmetric singlet state:

|0, 0〉 = 1√
2
(|↑↓〉 − |↓↑〉) (1.6)

8
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or one of three symmetric triplet states:

|1; 1〉 = |↑↑〉

|1; 0〉 = 1√
2
(|↑↓〉+ |↓↑〉) (1.7)

|1;−1〉 = (|↓↓〉

Which spins state is preferred is entirely chosen by the symmetry of the orbital

state due to the Pauli exclusion principle. Therefore, the allowed eigenstates are:

|Ψ1〉 = |φ(r)〉+ |0, 0〉

|Ψ2〉 = |φ(r)〉− |1,ms〉
(1.8)

with energies:

H |φ(r)〉+ = Es |φ(r)〉+

H |φ(r)〉− = Et |φ(r)〉−
(1.9)

where the subscripts “s” and “t” refer to the singlet and triplet states respectively.

Whether the parallel or antiparallel alignment of spins is preferred depends on

whether Es or Et is the lowest energy. Again, the choice is entirely made by the

spin independent Hamiltonian Eq. 1.4. However, it would be ideal if we could derive

an equally valid spin dependent Hamiltonian which produced the same spectrum as

the Hamiltonian of Eq. 1.4. To derive such a Hamiltonian, note that for spin 1/2

9
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electrons:

S2 |S,ms〉 = ~
2S(S + 1) |S,ms〉 = ~

23

4
|S,ms〉 (1.10)

and therefore in a similar manner the total spin of the two electron states can be

written:

S2 = (S1 + S2)
2 = S(S + 1)~2 = S2

1 + S2
2 + 2S1 · S2 =

3~2

2
+ 2(S1 · S2) (1.11)

Upon rearranging we find that:

1

~2
(S1 · S2) =

1

2
S(S + 1)− 3

4
(1.12)

Therefore, the Hamiltonian:

Hex =
1

4
(E+ + 3E−)− (E+ − E−)

1

~2
S1 · S2 = J0 + J12S1 · S2 (1.13)

results in the exact same energy eigenvalues as the spin independent Hamiltonian in

Eq. 1.4:

Hex |φ(r)〉 |0, 0〉 = Es |φ(r)〉 |0, 0〉

Hex |φ(r)〉 |1,ms〉 = Et |φ(r)〉 |1,ms〉
(1.14)

and is therefore equivalent. With a simple redefining of the zero energy we arrive at

10
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the spin dependent exchange Hamiltonian:

Hex = J12S1 · S2 (1.15)

where J12 = (1/~2)(E+ − E−) is known as the exchange constant.

The spin interaction of Eq. 1.15, which was first independently derived in 1926 by

both Dirac [23] and Heisenberg [24], is known today as the Heisenberg Hamiltonian

and constitutes the most prominent form of spin interactions in solids. It should be

noted that we arrived at the Heisenberg Hamiltonian via the Pauli exclusion principle,

which acts to minimize Coulomb repulsion by separating parallel spins (although

perhaps at the cost of kinetic energy). Therefore, the interaction in Eq. 1.15 is a

distinctly quantum effect with the spins S1 and S2 in the Heisenberg Hamiltonian

being quantum mechanical operators, not classical vectors. One can see by Eq. 1.15

that the strength of this interaction is parameterized by the exchange constant J12,

the sign of which determines whether the singlet, i.e. antiferromagnetic, or triplet, i.e.

ferromagnetic, alignment is of lower energy and therefore preferred. Today, the field

devoted to studying such interactions in solids is known as “quantum magnetism.”

1.1.3 Generalization To Solids

The calculation presented in the previous section demonstrated the coupling be-

tween two spins is captured by Eq. 1.15, the Heisenberg Hamiltonian. However, it

11
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is not at all clear how, or even if, such a Hamiltonian should be generalized from

the simple system of two interacting electrons to a complex solid with N interacting

electrons. Proving the validity of the application of the Heisenberg Hamiltonian to a

magnetic solid is a highly non-trivial and complex matter. An in depth discussion on

the topic can be found here [27].

However, it should be noted that in the limit of large spatial separations, such

that the wavefunction overlap between electrons is very small, the exchange constant

between two spins Si and Sj can be mathematically expressed as:

Jij =

∫
dridrj[φi(ri)φj(rj)]Hint[φj(ri)φi(rj)] (1.16)

where Hint is the interacting Hamiltonian of the two electrons with themselves and

the lattice. As the orbital functions φi(ri) are highly localized about their ions, the

exchange constant Jij falls off rapidly with distance. For this reason, it is generally

sufficient to only consider interactions between nearest neighboring pairs of spins in

which case we arrive at the two interacting electron scenario described above.

In magnetic insulators, which will be the topic of this thesis, the wavefunction over-

lap between magnetic electrons is zero and no direct exchange exists between magnetic

ions. Instead, exchange is often mediated by neighboring anions, for instance by the

p orbitals of intermediary oxygen ions, in a mechanism known as superexchange [1].

Just as above, the coupling from superexchange interactions can be ferromagnetic or
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antiferromagnetic which can be determined by the empirical Goodenough-Kanamori

rules [28, 29, 30]. Amazingly, although this mechanism of exchange is different than

the direct exchange described above, the Heisenberg Hamiltonian summed over next

neighboring pairs still applies. Thus, the Heisenberg Hamiltonian:

H =
∑

<ij>

JijSi · Sj (1.17)

is the starting point for many investigations of magnetic insulators.

1.2 Models Of Interacting Spins

While the complexity of performing the sum in Eq. 1.17 is reduced when only

interactions between neighboring pairs of spins are considered, with ∼ 1023 magnetic

electrons in a solid, the sum still contains an enormous number of terms. It is clear

that the Heisenberg Hamiltonian describes a many-body system of strongly correlated

electrons. Frankly, it is truly amazing that Eq. 1.15 ever possesses an exact solu-

tion. However, exact results can be obtained [31], although often in highly idealized

situations such as in reduced dimensions, on simple lattices, or with only uniform

exchange constants. Still, while materials which approximate these idealized models

are generally rare, the models themselves provide insight into more physical systems.

For instance, universality guarantees that the critical exponents of phase transitions

of distinct systems are identical if the Hamiltonians of the systems possess the same
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dimensionality and symmetry. Therefore, while we may not be able to exactly solve

the Heisenberg Hamiltonian for a given system, we may already know the critical

exponents of its phase transition if it can be compared to an already solved model

with identical symmetry. In this fashion, these simple models provide insight to the

physics of actual systems.

This section is meant as a brief introduction in applying the Heisenberg Hamilto-

nian. The goal is to gain a feel for the complexity of the calculations involved as well

as to introduce certain themes which will arise in the context of this thesis, such as

the effect of applied magnetic fields, development of spontaneous magnetization, and

critical points. We begin by solving the Heisenberg Hamiltonian on a one dimensional

chain in which only the z components of the spins interact, an exactly solvable model

known as the Ising model. We then discuss generalizing the model to two and three

dimensions.

1.2.1 The 1D Ising model

The Ising model was developed by Wilhelm Lenz in 1920 [32] and given to his

then graduate student Ernst Ising as a thesis project. The goal of the model was to

identify a transition temperature at which a 1-dimensional ferromagnet spontaneously

orders. Ising solved the model in 1-dimension in his 1924 thesis [33] but failed to find

a spontaneous phase transition at finite temperature. Still, the Ising model today is

widely regarded as the most important exactly solvable model of magnetism. Before
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Figure 1.1: Schematic of the 1-dimensional Ising model in which each spin Si is
placed on equally spaced lattice sites N = 1, 2, ..., N and coupled to only next
nearest neighbors through identical ferromagnetic exchange of strength J . Each spin
is constrained to lie along the z direction, such that the only two possible states are
“up” and “down.”

proceeding, it should be noted that the 1-dimensional S = 1/2 antiferromagnet is

an additional exactly solvable model whose solution was provided by Bethe in 1931

[34]. This model is interesting in its own right, with substantially different properties

compared to the ferromagnetic Ising case solved below. However, for the sake of

brevity this model will not be discussed.

Fig. 1.1 displays a diagram of the 1-dimensional Ising model. The model consists

a one dimensional array of equally spaced spins Si which sit at sites labeled from N

= 1, 2, ..., N . Each spin is coupled to only its nearest neighbors by a ferromagnetic

exchange constant J = (0, 0, Jz) such that each spin is in one of two states, either

“up” (Sz = +1) or “down” (Sz = −1). We additionally assume periodic boundary

conditions such that SN+1 ≡ S1. The Heisenberg Hamiltonian is then:

H = −J
N∑

i=1

Sz
i S

z
i+1 − µBB

N∑

i=1

Sz
i (1.18)
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where the second term accounts for Zeeman coupling to a magnetic field B applied in

the z direction. Later we will examine both the zero field and finite field properties

of the system.

Here we follow the Onsager transfer matrix method solution [35]. We define the

transfer function fi,i+1 as:

fi,i+1 = exp
(
jSz

i S
z
i+1 +

1

2
b(Sz

i + Sz
i+1)

)
(1.19)

where j = J/kBT and b = µBB/kBT . The transfer function is convenient as the

partition function will contain terms such as:

exp (−βH) = f1,2f2,3...fN,1 (1.20)

where β = 1/kBT and the periodic boundary conditions have been utilized.

We can represent the two states of each individual spin, either up or down, by the

column vectors:

|Sz
i = +1〉 =



1

0


 ; |Sz

i = −1〉 =



0

1


 (1.21)

Our goal is then to define a transfer matrix such that:

〈Sz
i | T̂ |Sz

i+1〉 = fi,i+1 (1.22)
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The transfer functions, fi,i+1, suggest that the transfer matrix must have the form:

T̂ =



ej+b e−j

e−j ej−b


 (1.23)

which possesses eigenvalues of:

E± = ej cosh(b)± ej
√
cosh2(b)− 2e−2j sinh(2j) (1.24)

With the transfer matrix determined, we can now explicitly calculate the partition

function as:

ZN(T,B) = Tr(exp(−βH) = Tr(T̂N) = EN
+ + EN

− (1.25)

As E+ > E−, in the thermodynamic limit (N → ∞) the partition function will

be dominated by EN
+ . Therefore, we finally arrive at the partition function for the

1-dimensional Ising model:

ZN(T,B) = EN
+ =

[
ej cosh(b) + ej

√
cosh2(b)− 2e−2j sinh(2j)

]N
(1.26)

With the partition function in hand, we are free to calculate any thermodynamic

quantity we please. Of particular importance are the magnetization per spin of the
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system:

m(T.B) = − 1

N

∂

∂B
ln(ZN(T,B)) = µB

sinh(βµBB)√
cosh2(βµBB)− 2 exp (2βJ) sinh (2βJ)

(1.27)

and the zero field susceptibility:

χM = µ0(
∂m

∂B
)B→0 = βµ2

Bµ0e
(2βJ) (1.28)

Fig. 1.2 displays plots of the (a) magnetization per spin and (b) inverse suscep-

tibility, given by Eq.’s 1.27 and 1.28 respectively, of the 1-dimensional Ising model.

These plots demonstrate the counteracting effects of temperature and applied mag-

netic field. In zero field, thermal fluctuations overwhelm magnetic correlations such

that no spontaneous transition to a long range ordered state occurs. The only critical

point of the system is at zero temperature. In contrast, applied magnetic fields work

against thermal fluctuations such that the system may develop a finite magnetization

at a nonzero temperature. This magnetization saturates at large enough fields to the

expected ±1 µB per spin. A similar effect is observed in the inverse susceptibility

by increasing the exchange constant. The dashed lines and colored regions repre-

sent the temperature range in which the inverse susceptibility is linear, as expected

from Curie’s law for paramagnetism. Increasing the exchange constant, which can be

thought of as increasing the effective internal magnetic field, results in a deviation

from Curie’s law at higher temperatures.
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Figure 1.2: (a) Magnetization per spin and (b) inverse magnetic susceptibility of the
1-dimensional Ising model as a function of temperature, magnetic field, and exchange
constant J . Dashed lines in and colored regions in (b) are the approximate tem-
perature ranges that the inverse susceptibility obeys Curie’s law, as expected for a
paramagnet.

1.2.2 The 2D Ising Model

Models in two dimensions are substantially more complex than those in one di-

mension and, not surprisingly, exact results are therefore harder to achieve. However,

the Ising model can be generalized to 2-dimensions, which it turns out is also an

exactly solvable model, although only in zero applied magnetic field. Unlike the 1-

dimensional model, the 2-dimensional model possesses a spontaneous phase transition

at finite temperatures and is heralded today as perhaps the simplest exactly solvable

model that demonstrates such a transition. The presence of a critical temperature in

the model was first demonstrated in 1941 by Kramers and Wannier who were able

to solve for the critical temperature by comparing expressions derived in the low and

high temperature limits of the model [36]. The full derivation of the free energy of
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Figure 1.3: Schematic representation of the Ising model on the 2-dimensional square
lattice. Each pair of spins separated horizontally are coupled by exchange constant
J1 while vertical spins are coupled by exchange J2.

the 2-dimensional Ising model was provided in 1944 by Lars Onsager [35] whose proof

was based on the transfer matrix method used in the 1-dimensional case above. The

proof is far too rigorous to provide here, but we briefly define the model and quote a

few of its more relevant results.

Fig. 1.3 displays the 2-dimensional Ising model on the square lattice. Like the

1-dimensional model, each spin only interacts with its nearest neighbors. However, in

2-dimensions there are now 4 nearest neighbors per spin. We generalize by allowing

different exchange constants in the x and y directions, labeled J1 and J2 respectively

in Fig. 1.3, but assume both are ferromagnetic. We also again assume periodic

boundary conditions in both directions. The Heisenberg Hamiltonian can then be
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Figure 1.4: Normalized magnetization as a function of temperature of the 2-
dimensional Ising model for several values of the exchange constant J . A clear phase
transition to an ordered state can be seen at Tc = 2J / [kB ln(1 +

√
(2))].

expressed as:

H = −J1
∑

<i,j>

Si · Sj − J2
∑

<i,j>

Si · Sj (1.29)

The additional complexity when compared to the 1-dimensional case is now obvious.

In 1-dimension, each spin interacts with its two nearest neighbors such that the total

number of interactions, and therefore terms in the sum of the Heisenberg Hamiltonian,

is of order N . In 2-dimensions we now have an N × N array of spins which results

in a total number of interactions of order N2.

As mentioned above, a remarkable result of the model is the presence of a spon-

taneous phase transition to a long range ordered state at finite temperature. Within

the context of the model it has been rigorously shown that the phase transition occurs
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at the critical temperature Tc given by:

J

kBTc
=

1

2
ln(1 +

√
2) = 0.44069 (1.30)

Below this critical temperature, a temperature dependent magnetization onsets which

can be expressed in normalized form as:

M(T ) = (1− sinh−4(
2J

kBT
))1/8 for T ≤ Tc (1.31)

where isotropic exchange constants, J1 = J2, have been assumed. Fig. 1.4 displays

the temperature dependent magnetization of the 2-dimensional Ising model plotted

for a few values of the exchange constant J . Obvious critical points can be observed

at which point thermodynamic quantities possess power law singularities. One can

see from the expression for the magnetization given in Eq. 1.31 that the critical

exponent of the magnetization β = 1/8, while other critical exponents of the model

have also been calculated [1]. The ability to exactly calculate the critical exponents of

the model is a major advantage as these can be generalized to systems which belong

to the same universality class.
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Ferromagnet A-Type Antiferromagnet C-Type Antiferromagnet G-Type Antiferromagnet 

Figure 1.5: Conventional Ising-like ground states on the cubic lattice. Each arrow
represents the z component of the spin with red arrows being Sz = 1 and blue arrows
being Sz = -1. Aside from the ferromagnetic case, there are also antiferromagnetic
ground states which possess opposing alignments of spins in 1, 2, or 3 directions of
cube. Many other antiferromagnetic ground states exist which are not shown here.

1.2.3 3D Ising Ground States

The Ising model in 3-dimensions is not exactly solvable, although the presence of

a phase transition has been proven through quasi-exact extrapolation methods [1]. In

the simplest case, the lattice of the 3-dimensional model is cubic with a single spin

at each corner. Much like before we sum over all neighboring pairs of spins, which

in 3-dimensions results in of order N3 interactions. The Heisenberg Hamiltonian can

then be written as:

H = ±J1
∑

<i,j>

Si · Sj ± J2
∑

<j,k>

Sj · Sk ± J3
∑

<k,i>

Sk · Si (1.32)

where for the sake of generality we have allowed the exchange constants to be of

different magnitude and sign along the three principle directions of the lattice. Fig.

1.5 displays a few of the more conventional Ising-like ground states typically found
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on the cubic lattice. Aside from the obvious ferromagnetic ground state, there are

also antiferromagnetic ground states which can possess antiferromagntic interactions

between spins along 1, 2, and 3 dimensions of the cube. Many other ground state

arrangements for this lattice exist.

1.3 Excitations Of The Magnetic Lattice

In the previous section we introduced the complexity of solving the Heisenberg

Hamiltonian. We found that no exact solution for the 3-dimensional Ising model

exist, even though the model is highly idealized. For real materials, which are of-

ten much more complex than the Ising model treated above, approximate solutions

to the Heisenberg Hamiltonian can be theoretically attained either through various

approximations, such as the mean field approximation, or numerical methods, such

as Monte-Carlo simulations. Therefore, magnetic ground states are ultimately de-

termined experimentally. As this thesis pertains to optical spectroscopy of magnetic

materials, this section demonstrates how the excitations and dynamics of the mag-

netic lattice can be used to distinguish ground states. We begin with a calculation

of the low energy excitations, i.e. spin-waves, of two simple, but important, mag-

netic ground states; the isotropic ferromagnet and two sublattice antiferromagnet.

At the end of the chapter we discuss how such excitations can be studied through

their interaction with light in an optical spectroscopy experiment.
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1.3.1 The Isotropic Ferromagnet

Consider a 3-dimensional system with all spins coupled ferromagnetically to their

nearest neighbors by the exchange constant J . We begin with the Heisenberg Hamil-

tonian:

H = −
∑

i,j

JijSi · Sj (1.33)

Recall that the spins in Eq. 1.17 are quantum mechanical operators and therefore

follow the algebra and commutation relations appropriate for angular momentum in

quantum mechanics. We can then rewrite the scalar spin product in Eq. 1.17 in terms

of the raising and lowering operators, S+ = Sx + iSy and S− = Sx − iSy respectively,

such that the Heisenberg Hamiltonian becomes:

Si · Sj =
1

2
(S+

i S
−
j + S−

i S
+
j ) + Sz

i S
z
j (1.34)

which, with Jij = Jji, reduces the Heisenberg Hamiltonian to:

H = −
∑

i,j

Jij(S
+
i S

−
j + Sz

i S
z
j ) (1.35)

To in order to determine the excitations of this model, it would be convenient

if we could somehow transform the problem into one that we already know how to

solve. This can be achieved by the famous Holstein-Primakoff transformation [37]

which maps the problem of interaction fermions in the Heisenberg model to one of
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non-interaction bosons under the appropriate approximations. The transformation of

spin operators is as follows [1]:

1

~
Sz
i = S − n̂i

1

~
S+
i =

√
2Sφ(n̂i)ai

1

~
S−
i =

√
2Sa†iφ(n̂i)

(1.36)

where a†i and ai are the bosonic creation and annihilation operators in second quan-

tization, and n̂i and φ(n̂i) are operators given by:

n̂i = a†iai

φ(n̂i) =

√
1− n̂i

2S

(1.37)

In terms of the Holstein-Primakoff operators, the Heisenberg Hamiltonian can be

rewritten as:

H = −N~
2S2J0+2S~2J0

∑

i

n̂i− 2S~2
∑

ij

Jijφ(n̂i)aia
†
jφ(n̂j)− ~

2
∑

ij

Jijn̂in̂j (1.38)

where J0 =
∑

i Jij =
∑

j Jij. This equation can be simplified by expanding the square

root in φ(n̂i) of Eq. 1.37 in powers of 1/S as:

φ(n̂i) = 1− n̂i

4S
− n̂2

i

23S2
− n̂3

i

128S3
− ... (1.39)
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We make the “spin-wave approximation” in which the spin is assumed to be large

and therefore only the first two terms in the expansion of φ(n̂i) need to be kept. The

Hamiltonian then reduces to:

H = −N~
2S2J0 + 2S~2J0

∑

i

n̂i − 2S~2
∑

i,j

a†iaj (1.40)

which upon Fourier transforming can be rewritten as:

H = −N~
2S2J0 + 2S~2

∑

k

(J0 − J(k))a†qaq (1.41)

Here J(k) = 1
N

∑
i,j Ji,j exp (ik(Ri −Rj)) and the sum is performed over all the

wavevectors k in the first Brillouin zone.

One can see that the Hamiltonian Eq, 1.41 contains two contributions. The first

term, Eg = −N~
2S2J0 is the ground state energy of the ferromagnet. The second

term represents the gain in energy which results from excitations of the magnetic

lattice, which have the form of uncoupled harmonic oscillators in Eq. 1.17. The

energy of these excitations is then:

E(k) = ~ω(k) = 2S~2(J0 − J(k)) (1.42)

This expression can be expanded in the small wavevector limit. For instance, for
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Figure 1.6: Semiclassical picture of spin-waves in a ferromagnet. Figure adapted from
Ref. [1].

a cubic lattice with exchange constant J and lattice spacing a the energy becomes:

~ω(k) = 2SJ~a2k2 + gjµBB0 (1.43)

where a Zeeman term which accounts for coupling to an applied field has been added.

The excitations discovered in the above calculation are known as “spin-waves,”

delocalized collective excitations of the magnetic lattice. In direct analogy to phonons

being quantized lattice vibrations in solids, these “magnons” are the quanta of spin-

waves. A semiclassical picture of a magnon in a ferromagnet is shown in Fig. 1.6.

One can see from the excitation energy of Eq. 1.43 that each magnon reduces the
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overall magnetic moment of the system by ~, thereby revealing magnons to be bosonic

quasiparticles. In the spin-wave approximation, magnons are strictly non-interacting

with normalized one magnon states given by:

|k〉 = 1

~
√
2SN

S−(k) |0〉 (1.44)

where the state |0〉 represents the fully aligned ground state of the ferromagnet.

1.3.2 The Two Sublattice Antiferromagnet

We now repeat the spin-wave calculation for the case of a simple antiferromagnet.

We consider a two sublattice antiferromagnet such that each spin only interacts with

its nearest neighbors, all of which belong to the other sublattice. We allow for easy axis

anisotropy, which we assume is along the z direction, and taken into account through

the anisotropy field BA. We begin with the Heisenberg Hamiltonian in magnetic field:

H = −
n∑

i,j

JijSi · Sj − gj
µB

~
(B0 +BA)

A∑

i

Sz
i − gj

µB

~
(B0 − BA)

B∑

i

Sz
i (1.45)

where the last two terms account for the application of the magnetic field over sublat-

tices A and B. The calculation then follows in a similar matter as the ferromagnetic

case, the Holstein-Primakoff transformation is applied and the expansion truncated

to harmonic order. The details will not be discussed here for the sake of brevity but
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can be found in Ref. [1].

The magnon energies in the antiferromagnetic case are given by:

~ω±(k) =
√
4S2~4(J2

0 − J2(k)) + gjµBBA(gjµBBA − 4SJ0~2)± gjµBB0 (1.46)

Much like the ferromagnetic case, this expression can be expanded in the small k

limit where the energies are then found to be:

~ω±(k) = (2S~|J0|a
√

2

z
)k ± gjµBB0 (1.47)

in the limit of small anisotropy.

1.3.3 Optical Spectroscopy Of Magnetic Excita-

tions

What the calculations presented in the previous sections demonstrate is that the

excitation spectrum in even the simplest ferromagnets and antiferromagnets are dras-

tically different, possessing quadratic dispersion in the ferromagnet and linear disper-

sion and higher degeneracy in the antiferromagnet. The excitations we examined

in the low energy limit are the Goldstone modes [38] of these systems which arise

due to the broken symmetries of their magnetic order. However, the excitation spec-

trum of most magnetic materials will also contain gapped spin-wave excitations that
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are excitable with light and therefore known as optical magnons. In general, the

less symmetric the magnetic ordering of a material is, the more spin-wave excita-

tions the material will possess. In this fashion, the excitation spectrum of a material

serves as a fingerprint for the ground state magnetic order and interactions. Further

understanding can be obtained by applying magnetic field, which as we see in the an-

tiferromagnetic spectrum of Eq. 1.47, splits the degeneracy of magnetic excitations.

This thesis will present low energy optical spectroscopy experiments in which

we will uncover many such optical magnons. The probability of exciting a magnon

through an interaction with light is given by Fermi’s golden rule as:

Ps→s′ =
2π

~2
| 〈s′ |HMD |s〉 |2δ(ω − ωs′ + ωs) (1.48)

where HMD is the magnetic dipole operator:

HMD = − q

2m
(L+ 2S) · B (1.49)

The symmetries of the magnetic dipole operator and the matrix element in Eq. 1.48

result in strict selection rules for making such excitations. Spin excitations can only

occur if ∆J = 0,±1 (except J = 0 → J = 0), ∆mJ = 0,±1, and if there is no

parity change between initial and final states. Such selection rules may be exploited

to uncover additional information regarding the origins of magnetic excitations.
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1.4 Influences On Magnetic Interactions

The models presented in the previous section are idealizations of the actual inter-

actions which occur in magnetic materials. In reality, nature displays a plethora of

couplings, symmetries, lattice geometries, anisotropies, etc. all of which influence the

interactions which work in tandem to result in a magnetic ground state. Except for in

the simplest cases, real materials are much too complex to be completely described by

the nearest neighbor Heisenberg model. Thus, the Heisenberg Hamiltonian is merely

a starting point in investigations into quantum magnetism.

This thesis examines how the local environment of spins can influence the under-

lying interactions and therefore the magnetic ground state of a material. Far more

has been written on this topic than could ever be summarized here. Instead, this sec-

tion will give a brief overview of how a few of such factors may influence the ground

state magnetic interactions of a solid. The examples given below are specific to the

materials which will be discussed in this thesis.

1.4.1 Geometric Frustration

Thus far, our discussion of quantum magnetism has been primarily classical. In

the Ising model each spin was treated as a classical vector, pointing either in the up

or down direction. Even our spin-wave calculation, which began by using the purely

quantum mechanical commutation relations of angular momentum, was eventually
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mapped to a simple harmonic oscillator which we only arrived at by implicitly assum-

ing a large (and therefore classical) spin in the expansion of the Holstein-Primakoff

operators. While the fundamental interactions of these systems are indisputably

quantum, the resulting ground states and excitations are often not.

We can categorize such classical ground states as product states, in which the

macroscopic wave function of the system is simply the product of individual single

particle wavefunctions [39]. Put another way, the system possess no quantum entan-

glement. Conventionally, the low temperature ground states of these systems break

a symmetry, which gives rise to a macroscopic classical field, e.g an order parame-

ter. For instance, the polarized state of a ferromagnet breaks rotational symmetry,

resulting in a magnetization which can be measured and used to parameterize the

system. In this sense classical physics comes to the rescue in that it allows us to un-

derstand a ground state without having to consider the enormous amount of quantum

interactions which made up the ground state in the first place.

However, beyond the simplicity of the previous sections lies truly quantum ground

states which do not fit this classical paradigm. These systems break no symmetries

and therefore do not possess a classical order parameter. Instead such systems can

only be classified by the topological properties of their wavefunctions. The quantum

nature of such systems becomes apparent when one examines their excitation spec-

trums. Unlike the spin-waves found above, the excitations of quantum systems are

often fractionalized as if the spin and charge degrees of freedoms of fundamental par-
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ticles have deconfined. Such materials are currently the focus of intense investigation

in solid state physics.

To see how we might arrive at such a quantum state, consider three Ising spins

on the triangular lattice as shown in Fig. 1.7. If the interactions between the spins

are ferromagnetic then only two ground states exist, either all the spins point up or

they point down. However, what happens if the interactions are antiferromagnetic

instead? Regardless of how the first two spins are oriented, the third spin cannot

align in such a fashion as to be antiferromagnetic with both of the first two spins.

An unpreferred ferromagnetic alignment between two spins, shown as the red side of

each triangle in Fig. 1.7, is unavoidable. As a consequence, the ground state of a

single triangle grows to 6-fold degenerate.

Systems which are unable to satisfy all pairwise interactions in this fashion are

known as frustrated, in this case geometrically frustrated as the frustration is based off

the geometry of the lattice [40]. The effect of frustration is to dramatically enhance the

ground state degeneracy of the system. If we extrapolate the example in Fig. 1.7 to a

triangular lattice of N spins then the ground state quickly becomes macroscopically

degenerate. For instance, the ground state entropy of the triangular lattice has been

shown to be remarkably large, S = 0.323kBN [41]. With such large degeneracy the

system has many ways that it can fluctuate without ever leaving the ground state

manifold.

There is currently a lot of interest in such frustrated systems as these fluctuations
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Figure 1.7: Frustrated antiferromagnetic Ising spins on the triangular lattice. All
pairwise interactions cannot be satisfied resulting in a large 6-fold ground state de-
generacy. Figure adapted from Ref. [2].

may result in the evasion of long range magnetic order, even at low temperatures. The

ground state is then a correlated “spin liquid” as opposed to the long range ordered

“spin solid” that are typically found in conventional systems. Such fluctuations can

result from either classical or quantum origins. Classical fluctuations are driven by

thermal energy in systems with large spins, S > 1/2. These systems may evade long

range order until the thermal energy kBT becomes much smaller than the exchange J

at which point the spins must then either freeze or order. However systems with S =

1/2, which are much more perceptible to the uncertainty principle, may possess quan-

tum zero point fluctuations preventing long range order down to absolute zero. The

latter case, known as “quantum spin liquids” (QSL), were first proposed by Anderson
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Figure 1.8: Schematic of a fluctuating 2-dimensional quantum spin liquid in which
each spin participates in a highly entangled singlet. The ground state is then a highly
degenerate superposition of many possible arrangements of valence bonds due to long
range entanglement. Figure adapted from Ref. [2].

[42] and latter suggested as the underlying physics of high Tc superconductors [43].

Today the search a definitive QSL constitutes a major pursuit of modern condensed

matter research.

As explained above, QSL ground states are believed to occur in materials with

strong geometric frustration, whose lattices are often built off the triangle motif of Fig.

1.7 in 2-dimensions or corner sharing tetrahedra, shown in Fig. 1.9, in 3-dimensions.

A sense of the frustration of a system can be obtained by examining the temperature

dependence of the inverse susceptibility of the sample. In the paramagnetic state,

χ−1 ∝ T - ΘCW , where ΘCW is the Curie-Weiss constant, a measure of the sign and

strength of the interactions as ΘCW ∝ J . Therefore, ΘCW represents the expected
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Figure 1.9: A schematic of a spin ice on the pyrochlore lattice. The excitations of
these systems are magnetic monopole and anti-monopole pairs which are connected
through a series of flipped spins, violating the “ice rules.” Figure adapted from Ref.
[2].

temperature that an unfrustrated system will magnetically order. However, frustrated

systems may not magnetically order until a temperature Tc ≪ |ΘCW |. Thus, a

measure of the frustration is captured by the frustration parameter f = |ΘCW | / Tc,

which can be as high as f > 103 in some highly frustrated systems.

Although the susceptibility of these systems within their liquid regimes may re-

semble that of a paramagnet, it should be noted that unlike a paramagnet a QSL is a

highly correlated system often possessing power law correlations between spins [40].

Consider the spins shown in Fig. 1.8 on the triangular lattice which is a prototype of

a non-magnetic QSL ground state known as a resonating valence bond state. Each

spin participates in a valence bond, a maximally entangled singlet state with another
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spin. Due to the high degeneracy of the ground state and the long correlation length,

no ordered pattern of valence bonds is preferred. Instead the system undergoes quan-

tum fluctuations between states with a different valence bond arrangements. As this

state breaks no symmetries, it possesses no classical order parameter and instead can

only be classified by the topological descriptions on its gauge fluctuations [40].

The truly quantum nature of a QSL becomes apparent when one considers its

excitation spectrum. One form of excitations in a QSL are spinons, half magnon-like

quasiparticles with S = 1/2 but no charge. In a QSL the energy cost of separating

spinons does not depend on their distance form one another and they are therefore

deconfined. Other excitations, such as triplons, a bound pair of spinons, exist as

well. Generally, the longer range the correlations the weaker the valence bonds will

be resulting more low energy excitations [2].

An additional fractionalized excitation occurs in a particular spin liquid state

known as a spin ice (Fig. 1.9). These materials exist on the pyrochlore lattice which

is formed by a series of corner sharing tetrahedra. The spins of the tetrahedra are

Ising-like and point along the local [1,1,1] direction due to anisotropy [40]. The ground

state of a single tetrahedra is a 6-fold degenerate “two-in, two-out” arrangement of

spins in analogy to the Bernal-Fowler ice rules [44] for the proton configurations of

water ice. Flipping a single spin of a tetrahedra creates a pair magnetic monopole -

antimonopoles in neighboring tetrahedra (shown as red and green spheres in Fig. 1.9)

[2]. The monopoles can then be deconfined by flipping a series of spins, creating a
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“string” of magnetic flux between them. Like spin liquids, spin ices can be classical, in

which fluctuations and monopole motion are driven by thermal energy, or quantum,

in which non-Ising terms in the Hamiltonian govern coherent monopole tunneling

between tetrahedra. Such states are currently a topic of intense interest in solid-state

physics.

1.4.2 Antisymmetric Exchange

The Heisenberg Hamiltonian represents the symmetric exchange between spins as

it is invariant if the spins S1 and S2 are interchanged. However, additional antisym-

metric exchange mechanisms may exist in low symmetry environments. For instance,

if inversion symmetry is broken then the antisymmetric Dyzloshinskii-Moyria (DM)

exchange interaction:

HDM =
∑

ij

Dij · Si × Sj (1.50)

is permitted [45, 46]. One can see that broken inversion symmetry is required as

the cross product is not invariant if Si and Sj are interchanged. The vector Dij,

which parameterizes the strength of the interaction, is constrained to lie in the ri

× rj direction by symmetry where ri is the distance from the “ith” ion to the non-

magnetic ion through which the superexchange interaction is mediated.

The effect of this exchange is unique from the symmetric exchange in that it

is minimized by a perpendicular arrangement of the spins S1 and S2. However,
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DM interactions are derived from spin-orbit coupling and are therefore generally

much weaker than symmetric Heisenberg exchanges. i.e. |Dij| ≪ |Jij|. Thus, this

interaction is often a source of weak ferromagnetism in antiferromagnets and visa

versa.

1.4.3 Orbital Degeneracy

Thus far, we have only considered interactions between spins. However, spins can

also couple to any additional degree of freedom which may behave as a spin, i.e. a

pseudospin. In the context of this thesis we will find that under certain conditions

the orbital angular momentum of an electron may act as such a psuedospin. This

effect becomes particularly important when a system possesses orbital degeneracy,

i.e. when two orbital states possess the same energy such that neither is preferred. In

this case, Kugel and Khomskii [47] derived a superexchange interaction Hamiltonian

between spins and orbital degrees of freedom of the form:

H = J
∑

<ij>

[
4(Si · Sj)(τ

α
i − 1

2
)(ταj − 1

2
) + (ταi +

1

2
)(ταj +

1

2
)− 1

]
(1.51)

where the τi are orbital psuedospin operators with total moment S = 1/2.
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1.4.4 Higher Order Couplings

Additional spin coupling beyond the bi-linear interactions of the Heisenberg

Hamiltonian and DM interaction are also possible. Such interactions are typically

assumed to be much weaker than the aforementioned couplings but in certain situa-

tions when they are symmetry permitted they can be large enough to influence the

ground state in a measurable fashion. For instance, in HoMnO3 we will encounter an

unusual trigonal exchange mechanism between distinct magnetic sublattices of the

form:

H = K
∑

ij

Sz
HiS

y
Mj[3(S

x
Mj)

2 − (Sy
Mj)

2], (1.52)

where SH and SM refer to the Ho and Mn spins, which are both magnetic in HoMnO3,

respectively [48].

1.5 Thesis Overview

This thesis investigates the role that symmetry, frustration, and unusual couplings

play in the development of the low temperature magnetic ground states of quantum

magnets by examining the low energy electrodynamics of their excitations. In Ch. 2,

I introduce time-domain terahertz spectroscopy - the primary experimental technique

of this thesis. I explain why such a technique is beneficial for the study of quantum

magnetism before detailing specifics such as the modified experimental design and

equipment used in our lab. I also give an in-depth description of the data analy-
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sis procedure in which the magnetic susceptibility can be extracted from an optical

transmission measurement. In Ch. 3, I introduce an additional optical technique,

microwave cavity perturbation technique, which will be used to access the optical

response of samples at a lower frequency than what is available with time-domain

terahertz spectroscopy. Chapters 4 - 7 present an analysis of the low energy electro-

dynamics of several quantum magnets: FeSc2S4, CuOSeO3, HoMnO3, and Yb2Ti2O7.

From these analyses we will find that the underlying spin interactions depend heavily

on the symmetry of the space in which they are embedded. Accordingly, the ground

states of these materials will be shown to range from conventional to quantum. In

Ch. 8, I summarize the work presented in this thesis.

In the appendices, I summarize work that I did during my Ph.D. thesis that does

not fit neatly into the field of quantum magnetism, but are areas that I have still

made contributions. Appendix A presents an analysis of the low energy electrody-

namics of the potential topological Kondo insulator SmB6. We will find an anomalous

amount of dissipation within the Kondo gap of SmB6 which we demonstrate does not

fit the phenomenology of impurities. We additional use a detailed error analysis to

put limits on the surface state conductance in this potential topological insulator.

Appendix B presents an analysis of the temperature dependent optical conductiv-

ity of the potential topological superconductor Tl5Te3. We will find that the data

is generally consistent with s-wave superconductivity but with a large residual con-

ductivity at low temperatures. We suggest that such conduction may result from
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topological surface states which exist within the superconducting phase. Appendix

C presents a guide for operating the microwave cavity perturbation experiment used

in the Armitage group.
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Chapter 2

Time-Domain Terahertz

Spectroscopy

2.1 History Of Time-Domain THz Spec-

troscopy

Picosecond time scales have historically been challenging to probe as their natural

terahertz (THz) frequencies lie within an experimentally difficult region of the elec-

tromagnetic spectrum to generate and detect light. This so called “terahertz gap”,

spanning from roughly 100 GHz - 3 THz, lies above the capabilities of traditional elec-

tronics but below the range of optical generators and detectors (Fig. 2.1). However,

advances in recent years of terahertz generation and detection methods have resulted
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Figure 2.1: The electromagnetic spectrum with the THz range highlighted. Tradi-
tionally, the THz range has been a difficult region of the spectrum to generate and
detect light as these frequencies lie between the accessible ranges of electronic and
optical techniques. Shown at the bottom is a conversion guide of 1 THz in various
units.

in a multitude of techniques with dramatically improved capabilities in the terahertz

spectral range. Among these techniques, time domain terahertz spectroscopy (TDTS)

[49, 50] has evolved into a common tool in both commercial applications as well as

academic research.

The origins of TDTS can be traced back to the 1980’s when David Auston found

that certain photo-conductive switches, today known as “Auston switches,” effec-

tively coupled low energy single cycle picosecond pulses of radiation to free space

[51, 52]. The design was later improved upon by Grischkowsky, who implemented a

substrate lens on top of the Auston switch, reducing the impedance mismatch be-
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tween the switch and free space and thereby enhancing the forward coupling of THz

radiation [53]. Amazingly, Auston switches can also act as coherent detectors of THz

pulses. Prior to these discoveries, frequencies up to about 1 THz were generated with

backwards wave oscillator (BWO) techniques that possessed limited frequency ad-

justability, suffered from experimental artifacts related to standing wave resonances

in the instrument, and relied on He-3 or pumped He-4 systems to sufficiently cool

bolometers for detection [54]. With the advent of the Auston switch, broadband

THz radiation could now be generated and detected at room temperature with vastly

improved resolution over BWOs and similar techniques. Today, TDTS has almost

entirely replaced BWO techniques as the preferred method of spectroscopy in the

THz range.

The utility of TDTS becomes obvious when one considers the ubiquity of natural

phenomena which exhibit energy scales of 0.5 meV - 20 meV or time scales of 0.5 ps

- 10 ps. For instance, the resonant period of electrons in semiconductors, relaxation

times of frustrated molecular rotations, protein folding/unfolding times, and the scat-

tering times of electrons in metals all exist within this range. In condensed matter we

are often interested in the elementary collective excitations of solids, many of which

also can often be found in the THz range. For instance, low energy optical phonons,

the Cooper pair binding energy in conventional superconductors, and the energy and

scattering rate of spin waves or “magnons” in magnetic materials are all observable

phenomena that occur within the range of TDTS. In addition to academic research,
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Figure 2.2: A typical TDTS experimental set-up with photoconductive Auston
swtiches as generators and detectors of THz radiation.

TDTS has also made significant contributions to industrial applications in the fields

of pharmaceuticals [55], medical imaging [56, 57, 58, 59, 60], protein detection [61],

and biohazard applications [62, 63].

A typical TDTS experimental set up is shown in Fig 2.2. The experiment begins

when a femtosecond laser pulse of infrared radiation (λ ≈ 800nm) is split by a beam

splitter. One infrared pulse is directed through an optical delay before being incident

on a photoconductive Auston switch. Upon illumination by the infrared laser, the

Auston switch, known as “the emitter,” generates a pulse of THz light. The THz

radiation is then directed through the spectrometer by off-axis parabolic mirrors

before being incident on an identical Auston switch, known as “the receiver,” which

acts as a detector. Much like the emitter, the receiver is only “on” when illuminated

by an infrared laser pulse. Therefore, the second infrared pulse travels around the

spectrometer and arrives at the backside of the receiver just as the THz pulse is
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Figure 2.3: (left) An Auston switch is comprised of a strip line antenna separated
by a small gap. When illuminated by an infrared laser pulse, photocarriers excited
in the semiconductor are accelerated by an applied bias voltage, emitting radiation.
Figure adapted from Ref. [3]. (right) An in-house built Auston switch with two gold
antennas evaporated on a LT-GaAs substrate developed by Luke Bilbro [4].

arriving at the front. Now turned on by the infrared laser pulse, the incoming THz

electric field generates a photocurrent in the receiver which is measured, amplified,

and read by a lock-in amplifier. By adjusting the length of the optical delay, the

complex electric field of the THz pulse can be coherently measured as a function of

real time.

2.2 THz Generation, Coupling To Free

Space, and Detection

2.2.1 THz Generation

An Auston switch consists of a semiconducting substrate (LT-GaAs in the present

work) with a small metallic antenna patterned on its surface (Fig. 2.3). The most
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conventional design is two parallel stripline electrodes separated by a small gap. An

external bias voltage is applied across the gap which is known as the “active region”

[64]. The choice of bias voltage depends on the specifications of the Auston switch

but it is preferable to keep the electric field in the active region below 1 V/µm. Both

a DC or AC bias can be used however improved resolution from reduced 1/f noise can

be achieved with an AC bias. In our experiments, a bias voltage of either 15V - 25V

DC or 25V - 35V AC at 15 kHz, is used. Before illumination by the femtosecond laser

pulse, the switch is in the “off” state as there is no free charge in the semiconductor

that can respond to the bias voltage. However, upon illumination from the infrared

laser, whose energy is greater than the band gap of the semiconductor, electron-hole

pairs are created in the semiconductor which are then accelerated across the antenna

by the bias voltage generating a transient time dependent photocurrent ~jemit(t) and

associated dipole moment ~p(t) [64]. The time dependent dipole moment radiates

electromagnetic waves whose electric field can be expressed via Maxwell’s equations

in the far field limit as [3]

~ETHz(~r, t) =
1

4πǫ0, c2r
[~r × (~r × d2~p(t)

dt2
)] (2.1)

THz generation stops when the photocarriers excited in the semiconductor recombine,

returning the switch back to the off state. Repetition of this process, from illumination

to recombination, creates single cycle pulses of THz radiation.
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The frequency content of the emitted THz pulse is generally determined by the

structure of the antenna as well as the intrinsic time scales of the generation process.

The peak power of the THz pulse occurs at the resonant frequency of the antenna

structure. One can show that a spacing L between the antenna striplines results

in a resonant frequency f0 = c/2L. The resonant frequency also partially sets the

low frequency content of the THz pulse as smaller dipoles will have higher resonant

frequencies but then lower power at frequencies below f0.

The upper frequency limit of the THz pulse is determined by the time scales

of the generation process, namely the infrared laser pulse width τL, the momentum

relaxation time of the semiconductor τc, and the semiconductor carrier recombination

time τr. One can see from Eq. 2.1 that the time duration of the emitted THz

electric field is determined by the second derivative of the transient dipole moment:

~ETHz(t) ∝ d2~p(t)/dt2. As shorter time scales correspond to a larger bandwidth in

frequency [54], it stands to reason that the shortest time scale of the generation

process determines the highest frequency contained within the THz pulse. With

typical time scales of τL ≈ 50 fs, τc ≈ 200 fs, and τr ≈ 1 ps one can see that the

infrared laser pulse width is the shortest time scale and therefore the determining

factor. For a more in depth and thorough investigation into the effects of these time

scales on the THz pulse content I would refer the reader to Ref. [4].

It is therefore advantageous to use a pulsed femtosecond laser with the narrowest

bandwidth possible. The majority of the experiments performed in our lab use a In-
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a) 

b) 

c) 

d) 

Figure 2.4: (a) Auston switch without a Si lens results in much of the THz radiation
being reflected back into the substrate due to the impedance mismatch with free
space. (b) A hemispherical Si lens effectively couples the THz radiation to free space
but over a large solid angle. (c) A hyper-hemispherical Si lens begins to collimate the
emitted THz radiation but shifts the position of the effective focus. (d) The ideal case
where a hyper-hemispherical Si lens of the correct dimensions results in a collimated
THz beam. See text for details. Figure adapted from Ref. [4].

tegral model Ti:Sapphire solid state laser purchased from Femtolasers. This turnkey

system produces pulses of infrared radiation with a center frequency of 800 nm, band-

width of about 40 nm, and repetition rate of 80 MHz. We additionally use a Toptica

ultrafast fiber laser which operates with similar specifications as the Integral system.

While the Toptica system outputs far less power when compared to the Intergral, 50

mW compared to 450 mW, it outperforms the Integral in terms of stability and price.
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2.2.2 Coupling THz To Free Space

In the ideal case the antenna of the Auston switch behaves as a point source of

radiation which broadcasts THz to the surrounding free space. However, the finite

size of the antenna dipole and the presence of the semiconducting substrate leads

to nonidealities in the emitted THz wavefronts [54]. Additionally, the impedance

mismatch between the GaAs substrate (n ≈ 3.3) and free space (n ≈ 1) results in

much of the generated THz radiation to be reflected back into the substrate [54] (Fig.

2.4a). These issues can be partially corrected by the placement of a Si lens [65],

which has an index of refraction similar to GaAs, on the back of the Auston switch.

One can see in Fig. 2.4b that the placement of a hemispherical Si lens couples THz

radiation directly to free space but over a large solid angle. As the Si lens is tuned

from hemispherical to hyper-hemispherical (Fig. 2.4c), by increasing the height h

compared to the radius r, the emitted THz radiation tends toward collimation. The

ideal case (Fig. 2.4d) in which a collimated beam is emitted from the Si lens occurs

when the height of the hyper-hemispherical lens equals

h = r
ns

ns − 1
− d (2.2)

where ns is the index of refraction of the substrate and d is the substrate thickness

[66].
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2.2.3 THz Detection

Conveniently, THz radiation is detected via an identical Auston switch which

we refer to as the receiver. Much like the emitter, a hyper-hemispherical Si lens is

placed on top of the receiver to focus the incoming THz radiation from free space

on the dipole. The difference is that while the emitter is biased by an externally

applied voltage, the receiver is instead biased by the incoming transient electric field

of the THz pulse. In the same fashion as the emitter, the receiver is in the off state

unless illuminated by an infrared laser pulse. Therefore a THz pulse can only be

measured when the infrared pulse arrives at the back of receiver at the same time

that the THz pulse arrives at the front. To achieve this, an optical delay with a

scanning stage is placed in the infrared beam path on either the emitter or receiver

side of the experiment. In our lab we use a retroreflector mounted to a Physik

Instrumente M-511.DD linear delay state with maximum scanning length of 100 mm

as an optical delay. By scanning the delay stage, thereby tuning the effective path

difference between the emitter and receiver arms of the experiment, one can map out

the electric field of the THz pulse in real time.

It is important to note that the generated photocurrent at the receiver is propor-

tional to the electric field of the THz pulse, ~jrec(t) ∝ ~ETHz(t). Therefore the detection

process is coherent, attaining both the magnitude and phase of the THz electric field.

As we will show later, this coherent detection allows for the extraction of both the

real and imaginary parts of the complex response of a sample. This sets TDTS apart
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Figure 2.5: (left) The electric field of a typical THz pulse as a function of real time
generated and detected by photoconductive Auston switches. (right) the Fourier
transform of the pulse shown to the left revealing the spectral content of the pulse.
One can see that frequencies from about 100’s GHz to several THz are obtained.

from many other spectroscopy techniques which measure only the intensity of the de-

tected electric field, I ∝ | ~E(t)|2. With only the intensity measured, these techniques

rely on measuring the real part of the response over as broad a frequency range as

possible (ideally infinite) and then performing a Kramers-Kronig transform to attain

the imaginary part of the optical response. Of course the accessible frequency range

in any real experiment is never infinite which potentially leads to artifacts when the

Kramers-Kronig transform is computed. These concerns are not a factor in TDTS

experiments. Additionally, the coherent nature of detection dramatically reduces sen-

sitivity to background thermal noise unlike traditional detectors such as bolometers

[67].

The generated photocurrent in the receiver is then measured by an ammeter,

amplified and converted to a voltage by a transimpedance amplifier, and then averaged
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and recorded by a lock-in amplifier. A reference signal from either an optical chopper,

if a DC bias is used, or the AC voltage, if an AC bias is used, is fed into the lock-in

to measure the THz pulse. The time dependent electric field of a typical THz pulse

generated and detected by photoconductive Auston switches is shown on the left in

Fig. 2.5. A simple Fourier transform, shown on the right of Fig. 2.5, is then performed

to obtain the frequency content of the THz pulse. One can see that frequencies of

order 100’s GHz to several THz are achieved with the Auston switches used in our

lab.

2.3 THz Propagation: Modifying The 8f

Design

Despite significant progress in developing TDTS, limiting factors of the technique

remain. Perhaps the largest constraint is the technique’s requirement for exception-

ally large sample sizes due to large THz focal spots at the sample position. While large

focal spots are partially caused by the difficulty of tightly focusing long wavelength

THz radiation, 1 THz = 0.3 mm, the observed focal spot sizes of nearly 10 mm in

conventional systems are far larger than the wavelength would suggest. Instead, large

focal spots result from optical aberrations of the off-axis parabolic mirrors (OAPs),

used to direct and focus THz radiation, and finite sized source effects [68, 69]. Cor-

respondingly, conventional TDTS experiments typically require samples in excess of
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roughly 3mm × 3mm in cross section in order to achieve sufficient signal to noise.

Therefore, methods for reducing optical aberrations from OAPs in TDTS systems

need to be developed. In this section we discuss the design of a new TDTS system

based off a novel configuration of OAPs. We show that significantly reduced optical

aberrations and smaller focal spot sizes can be achieved via this particular OAP con-

figuration, thus easing the requirement of large sample sizes in TDTS spectroscopy.

2.3.1 The Conventional 8f design

Experimental configurations for directing THz radiation onto a sample under test

are based on an alignment scheme of off-axis parabolic mirrors (OAPs) known as the

“8f configuration.” This geometry, in which the total THz beam path is 8 times the

reflected focal length of one OAP, allows for the passage of both low and high frequen-

cies through the system in a consistent fashion. One can gain some understanding of

wave propagation through this system from a ray optics perspective. Fig. 2.6 shows

the beam path of both the low (red) and high (blue) frequencies for spectrometers

based on the conventional 8f configuration. The THz emitter is placed at the focal

spot of a 90 degree off-axis parabolic mirror, OAP 1, of reflected focal length f . A

collimating hyper-hemispherical lens is placed directly after the emitter to correct

finite size source effects and to more efficiently couple THz radiation to free space.

In the low frequency limit, the wave fronts emerge from the hyper-hemispherical lens

and quickly diverge in a Gaussian manner before OAP 1. OAP 1 then collimates
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Conventional 8f Geometry 

Figure 2.6: A TDTS spectrometer designed in the conventional 8f configuration. In
this geometry the total THz path length is 8 times the reflected focal length of a
single off-axis parabolic mirror (OAP). Dotted lines represent the general behavior in
a ray optics perspective of both the low (red) and high (blue) frequencies contained
within a THz pulse as it propagates through the system. While this design allows for
the consistent passage of low and high frequency THz radiation through the system,
the focal spot at the sample position is distorted from optical aberrations inherent in
this design.

the low frequencies onto OAP 2 which then focuses the light halfway between OAPs

2 and 3. The high frequencies behave in the reverse manner as they emerge from

the hyper-hemispherical lens collimated, are focused by OAP 1, and collimated again

by OAP 2. This results in a nearly frequency independent focus, or Gaussian beam

waist, formed between OAPs 2 and 3 where the sample under test is placed. The

second half of the system is simply the inverse of the first half as shown in Fig. 2.6.
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This analysis provides perspective on the light propagation through the system, but

does not give insight into the above described optical aberrations of the system. As

we discuss below, the conventional 8f design results in a large and distorted focal

spot at the sample position due to optical aberrations that are inherent in its design.

2.3.2 Optical Aberrations Of OAPs

Off-axis parabolic mirrors are beneficial for imaging in the sub-millimeter range

due to their achromatic and nearly lossless reflection properties. However, previous

theoretical classical aberration analyses and ZEMAX optical design software simula-

tions have shown that the reduction of symmetry in their off-axis design introduces

optical aberrations in their imaging capabilities [68, 69]. It is known that OAPs suf-

fer from two forms of optical aberration, coma and astigmatism, the ratio of which

depends on geometrical properties of the OAP.

Our motivation for building a new TDTS system is based off the work of Brückner

et al.[68], who found through numerical simulations that the imaging capability of a

set of OAPs depends greatly on the alignment of one OAP to the next. While no

alignment of two OAPs resulted in a complete cancellation of all optical aberrations,

it was found that certain alignments perform significantly better than others. For

instance, the 180 degree alignment of two OAPs, where the second OAP is a 180

degree rotation of the first (left, Fig. 2.7), resulted in an enhancement of the optical

aberrations of the two OAPs and correspondingly the worst imaging capabilities of
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Figure 2.7: Two OAPs aligned in either the (left) conventional geometry or (right)
modified geometry. Shown in blue are the results of our ZEMAX ray tracing sim-
ulations. Collimated light was sent into the first OAP to simulate the behavior of
the high frequency light in TDTS spectrometers. Spot diagrams were generated by
projecting the image onto a plane at the focal spot of the second OAP. One can see
that the focus of the conventional geometry is highly distorted and two orders of
magnitude larger than that of the modified geometry. Typical TDTS spectrometers
are often based on the conventional geometry which has poor imaging capabilities.

all alignments studied. We refer to this alignment as the “conventional geometry” as

it is the alignment upon which the conventional 8f configuration is based. However,

it was found that if the second OAP is aligned such that it is the mirror image of

the first OAP (right, Fig. 2.7), in which case the two parent parabolas share an axis,

then the principle aberrations of the first OAP are compensated by the second OAP,

resulting in a diffraction limited image. This alignment produced the best imaging

results. We correspondingly refer to this alignment as the “modified geometry.” Fig.

2.7 shows two OAPs aligned in the conventional (left) and modified (right) geometries

with some further analysis which will be discussed below.
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2.3.3 ZEMAX Simulations

The analysis of Brückner et al.[68] showed the modified geometry has reduced

optical aberrations but only when light is sent into OAP 1 diverging from the focus.

As discussed above, this is only consistent with the behavior of the low frequencies

in the 8f geometry. The effects of optical aberrations for the high frequency light,

which come into OAP 1 collimated (i.e. propagating into OAP 1 ”backwards”), are

unknown. To investigate, we collaborated with Robert Barkhouser of the Instrument

Development Group at JHU who performed ZEMAX ray tracing simulations in which

collimated light was sent into OAP 1. A 200 mm focal length ideal lens was used to

focus the light so that the imaging performance of both the conventional and modified

OAP configurations could be studied. Spot diagrams were generated by projecting

the image onto a plane placed at the focus of the ideal lens.

Fig. 2.7 shows our ray tracing results for the conventional (left) and modified

(right) geometries respectively. We find the image in the conventional geometry to be

highly distorted from coma, as seen in the spot diagram in the left panel of Fig. 2.7.

Additionally, we find the image size in this geometry to be approximately twice the

image size formed by a single OAP, confirming that the aberrations are enhanced in

this configuration. However, the spot diagram for the modified geometry, right panel

of Fig. 2.7, shows the image to be undistorted and diffraction limited. It should be

noted that the scale of the spot diagram in the modified geometry is two orders of

magnitude smaller than that of the conventional geometry. This suggests that the
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optical aberrations in the high frequency light are also compensated in the modified

geometry. Thus the modified geometry has significantly reduced optical aberrations

for the entire range of frequencies present in a typical THz pulse as shown by both

our and Brückner et al.’s [68] ray tracing analysis.

2.3.4 The Modified 8f Design

As discussed above, TDTS spectrometers in the 8f configuration are composed

of two copies of the OAP configurations shown in Fig. 2.7. Fig. 2.8 shows an 8f

spectrometer based off the modified configuration of OAPs shown in the right panel of

Fig. 2.7. We refer to this as the “modified 8f geometry.” Much like the conventional

8f geometry, this system has a focal spot formed at the sample position between

OAPs 2 and 3. However, as shown above the quality of that focal spot is determined

by the relative alignment of OAPs 1 and 2 as well as OAPs 3 and 4. One can see

that the conventional 8f geometry (Fig. 2.6) consists of the 180 degree alignment

of OAPs 1 and 2 that was previously shown to produce the poorest image quality.

However, our modified 8f geometry is based on the mirror image alignment of OAPs

1 and 2 that results in the compensation of the principle aberration and an ideally

diffraction limited focal spot.
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Figure 2.8: A TDTS spectrometer designed in the modified 8f geometry. One can see
that the relative alignment of OAPs 1 and 2 (as well as OAPs 3 and 4) is based off the
modified geometry of OAPs which was shown to possess the best imaging capabilities.
With this design a tighter more symmetric focal spot at the sample position can be
achieved.

2.3.5 Construction Of The Bilbro-Laurita-Cheng

(BLC) THz Spectrometer

To test our theoretical results, a home-built TDTS spectrometer was constructed

in the modified 8f geometry as shown in Fig. 2.8. The system utilizes aluminum

coated OAPs with a diameter and reflected focal length of 2 in and 4 in respectively.

All OAP degrees of freedom are locked by mounting the OAPS to aluminum holders

which are fixed in position by screws and slip fit dowel pins. We find this greatly
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eases the alignment of the system as only the Si lens position needs to be adjusted to

fully tune up the system.

The following figures are design templates I made for the fabrication of the system.

All figures are drawn completely to scale. Fig. 2.9 shows a mock-up of the system

with all components in place with views from the top and side of the spectrometer

respectively. Fig. 2.10 displays the design for the bottom plate, to which the all

the optical components of the spectrometer are mounted. Different colors represent

different screws and dowel pins used for each component, given by the legend at the

top. The top figure shows the design template with only the screw and dowel pin

positions of the OAPs and optical rails shown. The optical rails are used to mount

the assemblies which house the Auston switches. Mounting to a rail in this fashion

allows for linear adjustment to ensure the Auston switch is at the focus of OAP 1 for

the emitter and OAP 4 for the receiver. The bottom diagram of Fig. 2.10 shows the

design template for the bottom plate with all tapped holes shown. The gray circles

represent 1/4-20 tapped holes used for mounting routine optics, e.g. polarizers, irises,

etc., in between the OAPs and Auston switches. Fig. 2.11 shows a similar template

for the top plate of the spectrometer which houses the cryostat. The top plate has

three axis adjustability so that the sample can be positioned directly in the focus of

the spectrometer.

This spectrometer is referred to in our lab as the “BLC” in honor of the students

who designed the original spectrometer and those who redesigned the system in the
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modified geometry as discussed above.
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Figure 2.9: To scale drawings the BLC system with all optical components in place
with views from the top and side respectively.
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BLC Bottom Plate Design 

¼-20 tapped holes, ¼ in deep into plate 

¼-20 tapped holes, ¼ in deep into plate ¼-20 through holes, counter-sunk (bulk screw head)  

0.25” slip fit dowel pin holes, 0.25” deep 

5/16 counter-sunk through holes from the bottom of plate (angled screw head) 

Figure 2.10: To scale drawings of the bottom plate of the BLC system. The top
figures shows only the screw holes and dowel pin alignments for the OAPs and optical
rails. The bottom picture displays the bottom plate with all the screw holes shown,
including those used to mount routine optics.
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Figure 2.11: Design of the top plate of the BLC which holds the cryostat.
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2.3.6 Comparison Of The Conventional and Mod-

ified 8f Configurations

To investigate the imaging capabilities of the modified 8f system, data was taken

with an aperture placed at the focal spot, the size of which was then varied. The

apertures used were metallic circular apertures attached to a mount with x̂, ŷ, and ẑ

axis adjustment. The focal spot was defined as the position in which the maximum

amount of signal was transmitted through the smallest aperture. For comparison,

an identical aperture experiment was performed on a separate home-built THz spec-

trometer designed in the conventional 8f geometry. While this conventional system

utilizes OAPs with slightly longer reflected focal lengths, we believe it to be fairly

representative of the conventional 8f geometry.

We define the integral over all frequency of the magnitude of the Fourier transforms

squared as a figure of merit to characterize each system. This quantity is identical to

the integral of the electric field squared as a function of time via Parseval’s theorem

and is therefore proportional to the total power contained in each THz pulse.

Ptotal ∝
∫ ∞

−∞
|E(t)|2dt =

∫ ∞

−∞
|E(ω)|2dω (2.3)

This figure of merit is chosen because it allows us to quantify the focal spot size of

both TDTS systems. The transmitted power P (r, z) of a Gaussian beam incident on
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a circular aperture of diameter d at position z is given by the equation [70],

P (r, z) = P0[1− e−2d2/w(z)2 ]. (2.4)

In this expression P0 represents the total power, i.e. the power with no aperture is

present, and w(z) is beam waist diameter at position z. With an aperture placed at

the focal position, w(z) is a constant and represents the focal spot diameter. Thus

by fitting our figure of merit to Eq. 2.4, the focal spot diameter for our TDTS

spectrometers in both the conventional and modified 8f geometries can be extracted.
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Figure 2.12: Total transmitted power as a function of aperture size for TDTS systems
designed in both the modified (red, crosses) and conventional (blue, circles) config-
urations. Solid lines are fits of the data to Eq. 2.4 as discussed in the text. The
extracted focal spot sizes for the conventional and modified geometries are 10.5 mm
and 6.6 mm respectively, revealing a nearly 40% reduction in the THz focal spot size
in the modified geometry.
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Fig. 2.12 shows the normalized transmitted power as a function of aperture size

for both the modified 8f (red, crosses) and conventional 8f (blue, circles) geometries.

Normalization was performed by dividing the transmitted power of each aperture size

by that of the transmitted power with no aperture present. In this way, we remove

any systematic differences between the two TDTS systems. One can immediately see

from Fig. 2.12 that the modified 8f geometry results in a dramatic improvement for

all aperture sizes studied. We find more than double the signal in the modified 8f

geometry than in the conventional 8f geometry for aperture sizes less than 8 mm.

More importantly, the best improvement over the conventional 8f system is found

for the smallest apertures. We find the transmitted power through a 2 mm aperture

to be 4 times greater in the modified 8f geometry as compared to the conventional

8f geometry, greatly easing the typically constraining need for large sample sizes in

TDTS.

Also shown in Fig. 2.12 are the fits for both the conventional 8f and modified 8f

geometries to Eq. 2.4. As explained above, the focal spot diameter can be extracted

by fitting these data to Eq. 2.4. We extract values of 10.5 mm and 6.6 mm for

the conventional 8f and modified 8f geometries respectively. One should note that

Eq. 2.4 only applies for monochromatic Gaussian beams which, as shown by the ray

tracing results of Fig. 2.7, is not applicable to the conventional 8f system. However,

we believe the larger extracted focal spot diameter is a phenomenological description

of the conventional 8f system and still emblematic of the larger optical aberrations
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in this geometry.

2.3.7 Conclusions

We demonstrated that a simple rearrangement of the off-axis parabolic mirrors

results in a significantly reduced focal spot size and correspondingly improved per-

formance of time domain terahertz spectrometers. This improvement is caused by

reduced optical aberrations in our “modified 8f geometry” as compared to systems

designed in the “conventional 8f geometry.” We demonstrated through simulations

that the aberrations in the modified geometry are compensated from one OAP to the

next, instead of enhanced as they are in the conventional geometry and found that

a system designed in the modified 8f geometry significantly out-performs a similar

system designed in the conventional 8f geometry with the largest improvement seen

at the smallest aperture size. A near 40% reduction in THz focal spot size in the

modified 8f geometry as compared to the conventional 8f system was found. This

design enables the study of smaller samples than what has previously been capable

of in TDTS experiments.
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2.4 Cryogenic Experimental Setups

2.4.1 Continuous He4 Cryostat

Zero field measurements displayed in this thesis were performed using a continuous

flow He4 optical cryostat capable of reaching temperatures ranging from 1.6K - 300K.

In order to reach temperatures below that of liquid He4 (4.2K), the cryostat must be

filled with liquid helium by completely opening the needle valve which controls the

flow of He4 into the cryostat and waiting for 10 minutes. After 10 minutes, closing the

needle value allows the pump attached to the cryostat to reduce the vapor pressure of

the condensed He4 in the system, thereby reducing the temperature below 4K. While

temperature control above 4K is controlled via a LakeShore 332, temperature control

below 4K must be done manually by adjusting the valve attached to the pump.

All samples are mounted to circular apertures which are then placed in the THz

beam through the use of a insert which mates with our cryostat. All samples are

referenced to an empty aperture of identical size. By moving the insert up and down

one is able to switch between either the aperture or sample in the THz beam focus.
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2.4.2 Closed-Cycle Cryostat With A 7T Supercon-

ducting Magnet

Much of the data presented in this thesis will be shown as a function of mag-

netic field. Field dependent data was taken on a closed cycle Janis cryostat with a

superconducting magnet capable of reaching fields of up 7T. Cooling on this system

is achieved by introducing small amounts of ultra-pure He4 dry gas into the sample

chamber which acts as exchange gas with the cold head. This system is also capable

of reaching temperatures below 4K by transferring liquid He4 through a value on the

cryostat insert. In similar manner as to the zero field cryostat, one is able to condense

liquid He4 in the sample space. Once full, the transfer of He4 should be stopped and

then the liquid He4 can be pumped on to reach temperatures as low as 1.6K. The

hold time for doing experiments in condensed He4 depends on which temperature the

experiment is performed. Generally, the lower the temperature the less hold time.

I’ve found that experiments performed at 1.6K will generally last 35 - 45 minutes

before the He4 is depleted. However, experiments performed at 3K can last for over

90 minutes. Refilling the cryostat with liquid He4 is a simple procedure and only

takes approximately 30 minutes.
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2.5 Data Acquisition and Analysis

2.5.1 Experimentally Measuring The Complex

Transmission T̃ (ω)

The ultimate goal of a TDTS experiment is to measure the complex transmission

T̃ (ω) of the sample. In a sense, the complex transmission constitutes the “raw”

data of a TDTS experiment as other quantities of interest, for instance the complex

conductivity or complex magnetic susceptibility, can be calculated from the complex

transmission under certain assumptions. To calculate the complex transmission, we

first write down the experimentally measured electric field at the receiver Ẽreferance(t)

as a convolution [71] of the infrared laser pulse L̃IR(t), the generated THz electric

field of the emitter Ẽemit(t), and the response function of the detector R̃rec(t):

Ẽreference(t) = L̃IR(t)⊗ Ẽemit(t)⊗ R̃rec(t) (2.5)

We now repeat the experiment with the sample placed in the THz beam path. In a

similar fashion, the electric field at the detector Ẽsample(t) can be written as:

Ẽsample(t) = L̃IR(t)⊗ Ẽtrans(t)⊗ R̃rec(t) (2.6)
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where Ẽtrans(t) represents the transmitted electric field through the sample. As con-

volution in the time domain is simply multiplication in the frequency domain, upon

Fourier transforming the above expressions we obtain:

Ẽreference(ω) = L̃IR(ω)Ẽemit(ω)R̃rec(ω) (2.7)

Ẽsample(ω) = L̃IR(ω)Ẽtrans(ω)R̃rec(ω) (2.8)

Once can see that while the exact form of L̃IR(ω) and R̃rec(ω) are not known, the

transmitted electric field both with and without a sample in the THz beam path

possesses an identical dependence of these quantities. Therefore, we can isolate the

transmitted electric field through the sample by taking the ratio of these two measured

electric fields. This ratio defines the complex transmission of the sample:

T̃ (ω) =
Ẽsample(ω)

Ẽreference(ω)
=
Ẽtrans(ω)

Ẽemit(ω)
(2.9)

The complex transmission is the fundamental quantity that is measured in a TDTS

experiment.
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2.5.2 The Analytic Expression For The Complex

Transmission T̃ (ω)

In this section we derive the analytic expression for the complex transmission

through a thick crystal of thickness d. It should be noted that the vast majority of

TDTS experiments are performed either on thin films, which are too thin to measure

a magnetic response, or on thick insulators where only the dielectric properties are

sought. Therefore, many analytic derivations of the complex transmission begin with

the assumption of a non-magnetic material, i.e. µ = 1. As this thesis pertains to the

THz response of magnetic insulators, this assumption does not apply and we must

derive the transmission assuming the sample possesses both dielectric and magnetic

properties, i.e. ǫ 6= 1 and µ 6= 1. In the end, certain assumptions with have to be

made as both ǫ and µ are complex quantities and therefore represent four unknowns.

Whereas in a TDTS measurement only two quantities are measured, the real and

imaginary parts of the complex transmission. Therefore, the real and imaginary

parts of both ǫ and µ are never independently extracted in a single pass transmission

experiment. However, often either the electric or magnetic response can be isolated

under certain assumptions or in certain limits as shown below.

We begin by assuming that a plane wave of frequency ω undergoes normal inci-

dence on a thick slab of sample with index of refraction ns =
√
ǫµ, wave impedance

Zs =
√
µ/ǫ, and thickness d. The impedance mismatch between the sample and free
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space, which possesses n0 = 1 and Z = Z0 ≈ 377 Ω, will cause a partial reflection and

partial transmission of the electromagnetic wave at the first interface of air to sample.

The reflection and transmission coefficients are described by the Fresnel relations as

[72]:

r =
Zs − Z0

Z0 + Zs

(2.10)

t =
2Zs

Z0 + Zs

(2.11)

The transmitted wave will accumulate a phase while traveling through the sample

given by:

P (d, n, ω) = exp (i
ωd

c
ns) (2.12)

At the second interface, from sample to air, the light will again undergo a trans-

mission and reflection given by the Fresnel relations above. Therefore we can write

the total transmission through the sample as:

tsample(ω) =
4Z0Zs

(Z0 + Zs)2
exp (i

ωd

c
ns) (2.13)

We now repeat the above calculation in the absence of the sample which is used as

a reference. It is best to think of this case as representing transmission of a “sample”

of air with identical thickness d. In this case the magnitude of the transmission is

1, as there is no impedance mismatch to reflect radiation, however the phase that is

accumulated is distinct due to the difference in index of refraction of air compared to
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the sample. The reference transmission is then:

tref(ω) = exp (i
ωd

c
n0) = exp (i

ωd

c
) (2.14)

The complex transmission through the sample in the most general form is then:

T̃ (ω) =
tsample(ω)

tref(ω)
=

4Z0Zs

(Z0 + Zs)2
exp (i

ωd

c
(ns − 1)) (2.15)

It should be noted that the expression for thin films can be greatly simplified from

the thick crystal result. For the derivation for thin films, I would refer the reader again

to Ref. [4].

For a nonmagnetic material with µ = 1 the transmission expression reduces to

T̃ (ω) =
4ns

(1 + ns)2
exp (i

ωd

c
(ns − 1)) (2.16)

which only contains two unknown quantities, the real and imaginary parts of the

index of refraction. With both the experimentally measured transmission of the

sample and the analytic expression given above one is able to use a Newton-Raphson

based numerical algorithm [73] for extracting the complex index of refraction. In a

non-magnetic sample one is often interested in the complex optical conductivity of

the sample which can be calculated from the index of refraction.
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2.5.3 Calculating The Complex Magnetic Suscep-

tibility

The samples discussed in this thesis will be magnetic insulators in which the

ultimate goal is to extract the magnetic response, generally in the form of the complex

magnetic susceptibility χM , of the sample from the complex transmission. However,

this is generally problematic for the reasons explained above, the transmission depends

on both Zs and ns, both complex quantities, while only the complex transmission is

measured. Assumptions must be made. To see how the situation is remedied we can

expand the expression for the complex transmission given in Eq. 2.15 as:

T̃ (ω) =
4
√
µǫ

(
√
µ+

√
ǫ)2

exp (i
ωd

c
(
√
µǫ− 1)) (2.17)

With µ = 1 + χM , we can expand
√
µ ≈ 1 + χM/2 under the assumption that

χM ≪ 1. We can then write the complex transmission as:

T̃ (ω) =
4
√
ǫ(1 + χM/2)

((1 + χM/2) +
√
ǫ)2

exp (i
ωd

c
(
√
ǫ(1 + χM/2)− 1)) (2.18)

Here is it is obvious that the optical response will be dominated by the exponen-

tial term in Eq. 2.18. Therefore, we can isolate χM by making two measurements of

the sample at two distinct temperatures, one above and one below the onset of mag-

netism or magnetic phenomena. To see how this works, let us assume that at some
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temperature, referred to as Tref , the assumption µ ≈ 1 applies. We then perform a

TDTS transmission measurement of the sample at this temperature and extract the

index of refraction, nref =
√
ǫ, by numerical inversion of Eq. 2.16.

Now we repeat the above procedure, but at a temperature below the onset of

magnetic phenomena where the assumption that µ ≈ 1 no longer applies. We again

carry out an identical TDTS transmission measurement of the sample. Taking the

ratio of these two transmissions gives:

T̃ (ω)

T̃ref (ω)
≈ exp (iωd

c
(
√
ǫ(1 + χM/2)− 1))

exp (iωd
c
(
√
ǫ− 1))

= exp (i

√
ǫωd

2c
χM) (2.19)

Eq. 2.19 can then be solved for χM to give:

χM(ω) ≈ 2ic√
ǫωd

ln(
Tref (ω)

T (ω)
) (2.20)

The assumption that is made here is that the dielectric properties of the sample

do not appreciably change from Tref to lower temperatures, which is generally a good

assumption for insulating samples with Tref chosen wisely. The best reference tem-

perature to use depends on the specific details of the sample under consideration. In

the best case scenario Tref would be a temperature just above a magnetic ordering

temperature of the sample or a temperature above the onset of magnetic fluctuations,

for instance the Curie or Néel temperature for a ferromagnetic or antiferromagnetic

sample respectively. In other cases magnetic excitations, such as magnetically ac-
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tive crystal field levels, may persist to much higher temperatures. In these cases one

must chose Tref carefully but as a general rule I would not recommend using a ref-

erence temperature above 100K if it can be avoided due to proximity to the Debye

temperature of most solids.

The above derivation represents a valid method for extracting the magnetic suscep-

tibility of the sample. However, I’ve found that a slightly easier and very moderately

more accurate method is to treat the sample as if it were nonmagnetic, Eq. 2.16, and

then extract the index of refraction with the Newton-Raphson inversion in the normal

way. This method makes the same assumption as the derivation above, that χM ≪ 1,

but treats the permittivity as a “generalized permittivity” containing both the elec-

tric and magnetic responses. Therefore, the prefactor in the transmission expression

Eq. 2.17 isn’t completely ignored. Once the index of refraction is extracted as a

function of temperature then a reference temperature is chosen in the same fashion

as the reference temperature for the transmission above. The index of refraction at

the reference temperature is given by:

nTref =
√
ǫ (2.21)

While the index of refraction at a temperature where the sample is magnetic is given

by:

nT =
√
ǫ(1 + χM) (2.22)
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In a similar fashion as above, the ratio of these two indicies of refraction gives:

nT

nTref

=
√

(1 + χM) (2.23)

Which can be solved for χM as:

χM = (
nT

nTref

)
2

− 1 (2.24)

I’ve found the two methods described above to give nearly indistinguishable re-

sults, with the second method perhaps resulting in a slight improvement particularly

at lower frequencies. However, the second method is generally more convenient due

to the ease of running the Newton-Raphson inversion and extracting the index of

refraction.

2.5.4 Transformation To The Circular Basis and

Polarimetry

Often in a TDTS experiment we are not only concerned with the magnitude

of the transmission but also the rotation of the plane of polarization of THz light

upon transmission, i.e. Faraday rotation, or in some cases upon reflection, i.e. Kerr

rotation. These effects become particularly important for experiments performed

in magnetic fields as certain magneto-optical phenomena manifest as polarization

81



CHAPTER 2. TIME-DOMAIN TERAHERTZ SPECTROSCOPY

rotations. In these cases we represent the complex transmission of the sample in the

Jones calculus [74] as a 2×2 complex matrix of the form:

T̂ =



Txx Txy

Tyx Tyy




The transmitted electric field through the sample is then given by:



Txx Txy

Tyx Tyy






Ei

x

Ei
y


 =



Et

x

Et
y


 (2.25)

where the superscript i and t refer to incident and transmitted electric fields respec-

tively and the subscript x and y refer to a coordinate axis with respect to the crystal

structure.

In the most general case, the transmission matrix contains four independent re-

sponses of the sample which can be probed by varying the incident polarization angle

to the crystal structure of the material. However, the transmission matrix of a ma-

terial must obey the same symmetries that are inherent to the material itself [75],

which, except in the case of a sample with very low symmetry, generally reduces the

number of independent elements in the transmission matrix. The majority of the

measurements presented in this thesis were performed in Faraday geometry in which

~kTHz ‖ ~Hdc. In this case a material with four fold rotational symmetry, i.e. cubic, or

even three fold rotational symmetry, i.e. hexagonal, is enough to restrict the transmis-
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sion matrix such that it is fully antisymmetric, i.e. Txx = Tyy and Txy = −Tyx [75].

Fully antisymmetric transmission matricies can be diagonalized by a circular basis

transformation, suggesting experiments performed in Faraday geometry are best un-

derstood in the circular basis. Under a circular basis transformation the transmission

matrix becomes:

T̂ =



Tl 0

0 Tr




where Tl and Tr refer to the transmission of left and right hand circularly polarized

light, the eigenpolarizations of the system, respectively.

When the transmission matrix if fully antisymmetric then off diagonal elements

in the linear basis correspond to rotations of the plane of polarization by the sample.

Polarization rotation experiments presented in this thesis were done through the use

of a rotating wire grid polarizer [76] technique, which allows for measurement of two

elements of the transmission matrix, for instance Txx and Tyx, simultaneously. If the

transmission matrix is fully antisymmetric then this rotating polarizer technique is

able to determine the entire transmission matrix of the sample a single measurement.

More information on this rotating polarizer technique can be found in Ref. [76]. The

complex rotation angle is then given by the relation θ = tan−1(Tyx

Txx
) in the linear basis

or θ = tan−1(−i(Tl−Tr

Tl+Tr
)) in the circular basis. Much of the data in this thesis will be

presented either in the circular basis or as a polarization rotation as described above.
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Chapter 3

Microwave Cavity Perturbation

Technique

3.1 Introduction

Measurements performed in the microwave frequency range, (≈ 100 MHz - 300

GHz), have historically occurred through the use of microwave cavity resonator tech-

niques. In the perturbation method of cavity resonators [77, 78, 79], a typical exper-

iment begins with the measurement of the resonant frequency, ω0, and bandwidth,

Γ0, of an empty cavity resonator. An identical measurement is then performed after

the insertion of a small sample into the cavity. Upon introduction of the sample,

the cavity’s resonant frequency, (ωs), and bandwidth, (Γs), are observed to shift due

to the material properties of the sample. Assuming the sample constitutes a small
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perturbation on the electromagnetic fields contained within the cavity, the complex

response of the sample can be related to the frequency shifts ∆ω = ωs − ω0 and

∆Γ = Γs − Γ0. While measurements are constrained to only occur at the discreet

resonant frequencies of the cavity, the “on resonance” nature results in unprecedented

sensitivity, as quality factors, Q = ω0/Γ0, as high as Q ≈ 1010 can be achieved with

superconducting cavities at low temperatures.

In recent years, new non-resonant techniques capable of performing high resolu-

tion broadband microwave spectroscopy have emerged. For instance, measurements

performed in Corbino geometry are capable of extracting the complex response of a

sample from 10 MHz - 40 GHz with both low temperature and high magnetic field

capabilities [80, 81]. In these measurements, microwaves are sent down a coaxial cable

which is terminated by a sample arranged in the particular “Corbino” geometry. The

amplitude and phase of the reflected microwaves off the sample are then measured

and related to the material’s complex response. Meanwhile, an additional technique

capable of performing highly sensitive microwave measurements of ultra-low-loss sam-

ples has been developed [82]. In this method, a sample and a metallic reference are

placed inside a rectangular transmission line to which microwaves are then inputted.

By carefully measuring the increase in sample temperature resulting from absorbed

microwave power, and comparing to the metallic reference, one is able to extract the

surface resistance of the sample with an exceptional resolution of ≈ 1 µΩ [82].

However, both of these techniques are not without their faults. Corbino mea-
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surements require very exacting calibrations due to the often strong temperature

dependence of the impedance properties of the coaxial cables themselves [83]. Ad-

ditionally, the technique is restricted to samples which possess impedances within

a few orders of magnitude of that of the coaxial cable, nominally 50 Ω. While al-

though the transmission line technique possesses high resolution, only the real part

of response is measured whereas the complex response is often sought. Therefore,

while more modern broadband techniques have been developed, the high sensitivity,

relative simplicity, and ability to extract the sample’s complex response have resulted

in the continued use of cavity resonator techniques, as well as many other resonant

techniques (see [84]), to this day.

In this chapter we detail the basics of microwave cavity perturbation technique

(MCPT), in which the sample is entirely enclosed within the cavity resonator. We

begin by discussing the basics of the cavity resonator and derive the allowed standing

wave configurations, or modes, within the cavity. We then discuss the effects of

introducing the sample on the modes. We will find that, in the limit of small samples,

the frequency shifts of the cavity can be simply related to the complex response of

the sample. At the end of this chapter I’ll detail the specifics of our experimental

MCPT set-up at JHU.
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3.2 The Cavity Resonator

A cavity resonator is defined to be a hollow enclosed structure inside which electro-

magnetic fields can form standing wave configurations, or “modes” [85]. Each mode

corresponds to a unique spatially varying electric and magnetic field pattern within

the cavity - all oscillating at the mode’s resonant frequency ω0. Upon resonance,

a maximum of the cavity’s response is achieved. In the context of this thesis, the

response will be characterized by transmitted microwave power through the cavity.

As we will see, the resonant frequencies of a cavity resonator are determined solely

by the size and geometry of the cavity. Since each resonance corresponds to an integer

number of half wavelengths between the walls of the cavity, the dimensions of the

cavity are of order of the free space wavelength. With typical resonant frequencies of

1 - 100 GHz, cavity dimensions are therefore of order 1 - 10 cm. The electromagnetic

fields within the cavity are easiest to calculate when the cavity is highly symmetric,

i.e. of spherical, cubic, or cylindrical geometry. However, highly symmetric cavity

designs result in degeneracies of resonant frequencies. That is, two or more modes

with the same resonant frequency but different field configurations. Therefore, a

middle ground between high and low symmetry cavity designs are preferable. For

this reason, right circular cylindrical cavities whose height and diameter differ by

roughly 50%, have become fairly standard [78]. Such a design will be the focus of the

rest of this chapter.
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3.2.1 Resonant Modes Of A Cylindrical Cavity

Resonator

The goal of this section is to calculate the spatial and time dependent electro-

magnetic fields and corresponding resonant frequencies of each mode of a cylindrical

cavity resonator. The cavity under consideration is assumed to be ideal, i.e. pos-

sessing perfectly conducting walls, with dimensions of radius R and height h. The

derivation below closely follows the exposition of Ref. [86].

We begin our calculation with Maxwell’s equations:

∇ · E = ρ

∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0J+ µ0ǫ0
∂E

∂t

(3.1)

As there are no sources of charge or current inside the cavity, we can set J = ρ = 0.

Additionally, we assume that all fields have the usual sinusoidal time dependence

e−iωt. Applying these conditions and uncoupling Maxwell’s equations reveals that

both the electric and magnetic fields must obey the Helmholtz wave equation given

by:

(∇2 + µǫ0ω
2){E

B
} = 0 (3.2)
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At this stage there are still six unknowns, the three spatial components of the

vectors E and B. However, thanks to Maxwell’s equations, the field components are

not entirely independent. In fact, it is sufficient for us to solve for only Ez or Bz, from

which all transverse components of the fields can be derived. Solutions to Eq’s. 3.2

come in three varieties: transverse electric (TE) in which Ez = 0, transverse magnetic

(TM) in which BZ = 0, or transverse electromagnetic (TEM) in which both Ez = 0

and Bz = 0. However, cavity resonators can only support TM or TE modes. Here

we choose the solution for TE modes, as these modes will be more relevant for the

remainder of this chapter. However, the derivation for the TM modes follows very

closely and can be found in Ref. [86].

Before proceeding with the calculation, we must first specify boundary conditions.

For a perfectly conducting cavity, continuity across the cavity wall dictates the bound-

ary conditions n×E = 0 and n ·B = 0, where n is a unit vector perpendicular to the

surface of the cavity. For TE modes these reduce to ∂Bz/∂n|s = 0. Additionally, the

end plates of the cavity ensure that Bz = 0 at z = 0 and z = h. These constraints

suggest the longitude component of the magnetic field has the form:

Hz = Ψ(r, θ) sin (
pπz

h
) (p = 1, 2, 3, ...) (3.3)

Inserting Eq. 3.3 into Eq. 3.2 reveals that the function Ψ(r, θ) must then satisfy the
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transverse wave equation:

(∇t + γ2)Ψ(r, θ) = 0 (3.4)

where ∇t is the transverse part of the Laplacian operator and γ is a constant given

by:

γ2 = µ0ǫ0ω
2 − (

pπ

h
)2 (3.5)

All that remains now is to solve Eq. 3.4 for Ψ(r, θ). Once known, all field compo-

nents are explicitly defined by Maxwell’s equations:

Ez = 0

Et = −(
iωµ0

γ2
) sin (

pπz

h
)[ẑ ×∇tΨ(r, θ)]

Hz = ψ(r, θ) sin (
pπz

h
)

Ht = (
pπ

dγ2
) cos (

pπz

h
)∇tΨ(r, θ)

(3.6)

The resonant frequencies of each mode are then found by solving for ω in Eq. 3.5.

Eq. 3.4 can be solved by a standard separation of variables approach. The radial

equation is solved by the cylindrical Bessel functions Jm(γmnr) with m = (0, 1, 2, ...)

while the azimuthal equation is solved in the normal fashion by exp (±imφ). Together,

these form the general solution:

Ψ(r, θ) = H0Jm(γmnr) exp (±imθ) (m = 0, 1, 2, ...) (3.7)
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xm1 xm2 xm3

m = 0 3.832 7.016 10.173
m = 1 1.841 5.331 8.536
m = 2 3.054 6.706 9.970
m = 3 4.201 8.015 11.336

Table 3.1: The first few roots of the first derivative of the cylindrical Bessel functions,
i.e. the “xmn” in Eq. 3.8.

The boundary condition Hz
∂Ψ
∂r
|R = 0 mandates that the γmn = xmn/R where the

xmn are the“nth” roots of the first derivative of the “mth” cylindrical Bessel function.

Table 3.1 displays the first few xmn for TE modes.

With Ψ(r, θ) determined, the problem is now solved as all field can be calculated

explicitly from Eq. 3.6. The resonant frequencies are then determined by substituting

the γmn into Eq. 3.5 and solving for ω from which we find:

ωTE
mnp =

1√
ǫ0µ0

√
x2mn

R2
+
p2π2

h2





m = (0, 1, 2, ...)

n = (1, 2, 3, ...)

p = (1, 2, 3, ...)

(3.8)

respectively. Thus, the all fields and resonant frequencies have been found.

Since the cylindrical Bessel functions (and their derivatives) have an infinite num-

ber of roots, there are an infinite number of modes which can resonate for a particular

cavity geometry. Fig. 3.1 displays the resonant frequency of the 20 lowest TE (blue)

and TM (red) modes found from Eq. 3.8 with h = 18mm and R = 12 mm. One

can see from Table 3.1 and Fig. 3.1 that the lowest frequency TE mode is the TE111
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Figure 3.1: Resonant frequencies of the 20 lowest TE (blue) and TM (red) modes
of a cylindrical cavity resonator of height h = 18mm and radius R = 12mm. The
intensity of each mode has been normalized to unity.

mode. No resonances can exist for frequencies below that of this mode. This low

frequency cut-off physically corresponds to the inability to fit an integral number of

half wavelengths between the walls of the cavity. Above the TE111 mode there are an

infinite number of resonances with increasing resonant frequencies, becoming more

densely spaced as the orders of the modes increase.

By far the most important mode in cavity resonator experiments is the TE011

mode. As we will show later, the TE011 mode possesses a relatively simple, but

very important, field configuration which results in the highest achieved Q-factor of

all resonances [77, 78]. For this reason, many cavity experiments, including all of

our own, exclusively measure with this resonance. Fig. 3.2 displays a simulation
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Field Configurations Of The TE011 Mode 

Electric 

Field 
(Top Row) 

Magnetic 

 Field 
(Bottom Row) 

t = 0 t = 1/8T t = 1/4T 

t = 3/8T t = 1/2T t = 5/8T t = 6/8T 

Figure 3.2: Simulations of the electric field (top row) and magnetic field (bottom
row) of the TE011 mode of a cylindrical cavity resonator found by numerically solving
Maxwell’s equations inside the cavity. Each panel corresponds to a snapshot of the
fields at some fraction of the overall period T .
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of the electric field (top row) and magnetic field (bottom row) of the TE011 mode

of a cylindrical cavity resonator found by numerically solving Maxwell’s equations

inside the cavity. More details regarding the TE011 mode will be provided later in

this chapter.

3.2.2 Introducing Dissipation

As shown in section 3.2.1 and Fig. 3.1, an ideal perfectly conducting cavity

resonates at discrete resonant frequencies. The frequency profiles of these resonances

are delta functions, possessing infinitely narrow width and therefore infinite lifetimes.

Of course, real cavities do not possess perfectly conducting walls and finite dissipation

will occur. To see how this loss changes the resonance profile, we follow the derivation

of Ref. [86] by defining the quality factor, or Q-factor, of the cavity as:

Q = 2π
Total energy contained in resonator

Energy dissipated per period
(3.9)

If the total energy stored in the cavity is U(t) then 3.9 can be written mathematically

as:

Q = ω0
U(t)

dU(t)/dt
(3.10)
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Figure 3.3: The frequency profile of a cavity resonance is a Lorentzian peak centered
at f0 with full width at half the maximum of Γ0. Shown here is a resonance with f0
= 18.5 GHz and a width of Γ0 = 0.2 GHz. In actual cavities the width will often be
orders of magnitude smaller than what is shown here.

where ω0 is the resonant frequency of the lossless cavity. Solving this differential

equation for U(t) gives:

U(t) = U0 exp (−
ω0

Q
t) (3.11)

Eq. 3.11 demonstrates that the energy stored in the cavity decays exponentially

with a time constant τ = Q/ω0. This suggests that the time dependence of the fields

can be written as

E(t) = E0 exp (−
ω0t

2Q
) exp (−(ω0 + δω)t) (3.12)

where a small shift in resonant frequency, δω results from the damping.

The frequency profile of the transmitted power through the cavity on resonance
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can then be found by squaring and Fourier transforming Eq. 3.12 to give:

P (ω) ∝ |E(ω)|2 ∝ 1

(ω − ω0 − δω)2 + (ω0/2Q)
(3.13)

Eq. 3.13 reveals that the power transmitted through the cavity near resonance

is a Lorentzian peak centered at ω0 + δω with full width at half maximum of Γ0

= ω0/Q (Fig. 3.3). Thus we see that loss in the cavity results in a broadening

of the resonance peak, and therefore a finite lifetime, by an amount related to the

dissipation. Additionally, this calculation shows that the resonance properties of the

cavity can be entirely characterized by only two parameters, ω0 and Γ0. These are

precisely the quantities measured in an MCPT experiment.

3.2.3 Maximizing Cavity Q-Factor

One can see from section 3.2.2 that the Q-factor is also indicative of measure-

ment sensitivity as higher Q’s correspond to narrower resonance peaks and therefore

enhanced ability to measure resonant frequencies. Therefore, every effort when de-

signing resonant cavities should be made to minimize dissipation and correspondingly

maximize the Q-factor. Extreme care must be taken when designing a resonant cav-

ity as the cavity dimensions, fabrication material, and choice of resonance mode all

influence the ultimate Q-factor of the cavity. In this section I will elaborate on some

of the more important choices that go into the design and fabrication of an excep-
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tionally sensitive microwave cavity resonator. For a more in depth discussion see Ref.

[78].

Energy loss in cavity resonators predominantly stems from two sources: dissipation

in the cavity walls and coupling to the cavity. These two loss mechanisms, and others

if present, reduce the total Q-factor by inversely adding as:

1

QTot

=
1

Qwalls

+
1

QCoupling

+ ... (3.14)

If large Q-factors are to be obtained, then every effort must be taken to reduce loss

from these mechanisms. This is singly handedly the most important and most difficult

aspect of designing an MCPT system.

Reducing loss from dissipation in the cavity walls is the easier of the two mech-

anisms to combat. High Q-factor cavities are often fabricated from superconducting

materials, i.e. Pb or Nb, to reduce dissipation from currents running in the walls of

the cavity. It is often preferable to use a superconductor with the highest Tc possi-

ble as higher Tc’s correspond to larger temperature ranges in which high resolution

measurements can be performed. One downside of the superconducting cavity design

is that it limits the ability to perform experiments as a function of magnetic field,

as strong magnetic fields may drive the cavity to the normal state. For measure-

ments which require applied magnetic fields, cavities are typically constructed out of

oxygen-free copper. However, the Q-factors attained with these cavities are orders of
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magnitude lower then their superconducting counterparts.

LargerQ-factors can also be achieved through careful choice of the resonance mode

used for measurements. The conventional cavity design consists of a right circular

cylinder constructed in three separate parts - a top plate, a cylindrical body, and a

bottom plate. These pieces are usually screwed together to form the resonator. While

fabricating the cavity out of a superconducting material limits loss within one piece

of the cavity, losses which occur from currents running between pieces of the cavity

remain a serious issue as the contact resistance at these junctions can be comparatively

large. This is precisely why the TE011 mode possesses the highest Q-factor and is the

preferred mode of resonance for cavity measurements. The transverse electric nature

of this mode, i.e. Ez = 0, ensures no current runs between any of the three pieces of

the cavity. All currents in this mode run circumferentially.

Unfortunately, in cylindrical cavities the TE011 mode is degenerate in resonant

frequency with the TM111 mode. If measurements are to be performed with the

TE011 mode then this degeneracy must be broken. One method of doing so is by

cutting grooves into the top and bottom of the cavity where the fields of the TM111

mode are maximum but the fields of the TE011 mode are weak. This makes the cavity

appear effectively larger to the TM111 mode, thereby shifting it’s resonance frequency

well below that of the TE011 mode. Figure 3.4 displays the results of cutting such

grooves into one of our cavities in which a groove of only ≈ 1-2% of the cavity

diameter is enough to split the modes by ≈ 100 MHz. At low temperatures, within

98



CHAPTER 3. MICROWAVE CAVITY PERTURBATION TECHNIQUE

TM111 

TE011 

Profile View Of Cavity 

Grooves For 

Breaking 

Mode 

Degeneracy 

Figure 3.4: (left) Grooves cut into the top and bottom of the cylindrical body of the
cavity can used to split the degeneracy between the TM111 and TE011 modes. (right)
Room temperature frequency scan showing the TM111 and TE011 resonance peaks of
such a resonator in our lab. Splitting of these modes by ≈ 100 MHz was achieved
by cutting small square grooves of only 0.25 mm × 0.25 mm into a cavity with a
diameter of 20 mm. One can see that the TM111 mode is significantly broader due to
the enhanced dissipation of currents running between pieces of the cavity. Although
the TE011 mode is sitting on the “tail” of the TM111 mode at room temperature,
these modes will narrow considerably at low temperatures when the cavity is in the
superconducting phase such that they will be well separated in frequency.

the superconducting phase of the cavity, these resonance peaks will substantially

narrow such that they are well separated in frequency, allowing for measurements of

only the TE011 mode to be performed.

Optimizing the coupling to the cavity is a much more formidable task. Coupling

can be achieved either by capacitive coupling to the electric field or inductive coupling

to the magnetic field of the mode of resonance. For the TE011 mode, the conventional

method is by placing inductive antenna loops soldered to the ends of coaxial cables
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at the maximum of the magnetic field of the TE011 mode which occurs at the ends

of the cavity at roughly half the radius away from the center. When microwaves

are sent down one cable, they generate a time varying current in the antenna loop

which then broadcasts a time varying magnetic field to the cavity. As the antenna

lies at the maximum of the magnetic field of the TE011 mode, this naturally couples

to this particular standing wave configuration. An identical antenna, which lies at an

identical position on the other side of the cavity, carries the transmitted microwave

signal out of the cavity in the reverse manner.

The above description reveals exactly how coupling reduces the Q-factor of the

cavity - the role of the receiving antenna is to remove energy from the cavity. Finding

the correct balance between over-coupling, where the intensity of the resonance peak

will be large and easily measured but the Q-factor will suffer, and under-coupling,

where the Q-factor will be large but the intensity will be weak, is a major challenge

of these techniques. This is further complicated by the fact that the temperatures at

which you ideally want to adjust the coupling is below the superconducting transition

of the cavity. The groups who perform these measurements exceptionally well have

experimental set-ups where the coupling can be changed in situ by literally moving

the coaxial cables attached to the antenna in and our of the cavity by hand. This

adaptive coupling mechanism ensures the Q-factor can be optimized for every sample

measurement. For experimental set-ups which do not possess this ability, optimal

coupling must be achieved through a “trial and error” fashion.
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Cavities which are carefully designed with the above considerations will routinely

possess Q-factors on the order of 104 - 108 which corresponds to the ability to resolve

resonant frequencies in the GHz range to within 1-100 Hz.

3.3 Microwave Cavity Perturbation Tech-

nique

In this section we detail how to mathematically relate the shifts in resonant fre-

quency ∆ω = ωs − ω0 and bandwidth ∆Γ = Γs − Γ0 of a cavity resonator upon

introduction of a sample to the complex response of that sample. The techniques

relies on the fact that the introduction of the sample is a small perturbation on the

overall structure of the electromagnetic standing wave pattern within the cavity and

is therefore adiabatic. In this case, only linear effects need to be considered which

greatly reduces the complexity of the calculation. After deriving the general result for

cavity perturbation analysis, we discuss two distinct limits. First, the “depolarization

regime,” in which the microwaves completely penetrate the sample, and second, the

“skin-depth regime,” in which the microwaves are confined to a small regions near

the sample surface.
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3.3.1 The Cavity Perturbation Equation

The goal of this section is to derive the general result for cavity perturbation tech-

niques before dealing with specific cases. Before proceeding with the calculation, we

must first define the “complex frequency.” It should be noted that different conven-

tions of this definition exist. Here I use the definition provided in Ref. [85], in which

the “complex” frequency shift is defined as:

∆ω̃ = ∆ω − i

2
∆Γ = ωs − ω0 −

i

2
(Γs − Γ0) (3.15)

where the subscripts “0” and “s” refer to the unloaded (or empty) cavity and the

loaded (containing a sample) cavity respectively.

Let us assume that the electric and magnetic fields inside the unloaded cavity in

a particular resonance mode can be described as:

E = E0e
iωt (3.16)

H = H0e
iωt (3.17)

where E0 and H0 are functions of space. Upon introduction of a small, perturbative

sample into the cavity. The fields are modified as:

E
′

= (E0 + E1)e
i(ω+∆ω)t (3.18)
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H
′

= (H0 +H1)e
i(ω+∆ω)t (3.19)

The goal is now relate ∆ω to the complex fields within the cavity. The remainder

of this calculation involves an enormous amount of vector calculus and algebra and is

not particularly enlightening. Therefore, I will only quote the result here and would

direct readers to Refs. [85] or [87] for the full derivation.

The result of the calculation is:

∆ω̃

ω
=

∫
Vsample

[(E1 ·D0 − E0 ·D1)− (H1 ·B0 −H0 · B1)]dV∫
Vcavity

(E0 ·D0 −H0 ·B0)dV
(3.20)

This equation is the main result of microwave cavity perturbation. Eq. 3.20 demon-

strates that a measurement of ∆ω̃ and knowledge of the fields of the unperturbed

cavity can be used to calculate the fields within the sample. The fields can then

be related to the sample’s complex response, i.e. optical conductivity or magnetic

susceptibility. This is more easily seen if we recast Eq. 3.20 as:

−∆ω̃

ω
≈ χ̃Mµ0

4 < U >

∫
(H ·H0)dVs +

χ̃Eǫ0
4 < U >

∫
(E · E0)dVs (3.21)

where χ̃M and χ̃E are the complex magnetic and electric susceptibilities of the sample

and < U > is the average energy of the resonance mode in the cavity [88].

Numerical solutions to Eq. 3.20 or Eq. 3.21 are generally possible for all sample

shapes and positions within the cavity. However, analytic solutions are generally
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only feasible for simple sample geometries (spheres, ellipsoids, thin plates, etc.) in

which case the depolarization or demagnetization factors of the sample are known.

Additional simplifications occur when the sample is placed at specific positions within

the cavity where it is known that either the electric field or magnetic field is zero,

which greatly simplifies the right side of Eq. 3.21.

There has truly been an immense amount of calculations performed regarding

various sample geometries, in various cavity positions, of various modes, of various

cavity geometries [77, 78, 79, 89, 90, 91, 92, 93, 94]. Far more work has been done then

could ever reasonably be written about here. Instead I will focus on the case which is

specifically relevant to our own measurements. Our cavity resonator is designed such

that the sample is placed at the magnetic field antinode, and therefore an electric

field node, of the TE011 mode (Fig. 3.2) which occurs at the center of the cavity. For

the calculations involving a sample placed at an electric field antinode I recommend

reading Refs. [77, 78, 79].

3.3.2 Sample In The Magnetic Field Antinode Of

The TE011 Mode

An excellent treatment of the appropriate analyses for cavity perturbation ex-

periments performed with a sample placed in a the magnetic field maximum of the

TE011 mode can be found in Ref. [88]. We follow their derivations here and in the
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next several sections. A surprising result of placing the sample in the magnetic field

antinode is that the measured frequency shift contains components from both the

dielectric and magnetic responses of the sample, even though the electric field at this

position is zero. It is therefore best to characterize the sample’s response in terms

of a generalized electromagnetic susceptibility ζ̃ which contains both magnetic and

electric components. Eq. 3.21 can then be rewritten in the much simpler form:

∆ω̃ = −γζ̃ (3.22)

where γ is a geometric factor which depends on the sample geometry, cavity geometry,

and mode of resonance.

With the wave vectors both outside, k0 = ω/c, and inside, k = k0
√
ǫ̃+ iσ̃/ωǫ0,

the sample defined, the generalized susceptibility can be written in the limit that

k0a≪ 1 as:

ζ̃ = 3
µ̃− 1

µ̃+ 2
+

9

10
[
µ̃2 − 6µ̃+ 4

(µ̃+ 2)2
(k0a)

2 +
µ̃

(µ̃+ 2)2
(ka)2] (3.23)

where µ̃ = χM + 1 is the permeability of the sample and a is the sample dimension.

Extracting the susceptibilities in either the depolarization regime or skin-depth

regime can be done by taking the appropriate limits of Eq. 3.23 and inserting into

Eq. 3.22.
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3.3.3 The Depolarization Regime

In this limit, most applicable to insulating dielectrics, the microwaves are assumed

to completely penetrate the sample. Extraction of either χ̃M or χ̃E depends on the

relative strength of ǫ̃ compared to µ̃.

For magnetic insulators, in which ǫ ≈ 1 and σ ≈ 0, ka ≈ k0a and ζ̃ is dominated

by the first term in Eq. 3.23. The complex generalized susceptibility can then be

reduced to:

ζ̃ =
χ̃M

1 +NM χ̃M

(3.24)

where NM is the demagnetization factor of the sample. In this fashion, measurement

of the complex frequency shift of the cavity is a direct measure of the magnetic

susceptibility of the sample.

For sample’s with even moderate dielectric properties, ζ is dominated by the last

term in Eq. 3.23. In this limit that µ̃ ≈ 1, we can write the generalized susceptibility

as:

ζ̃ =
1

10
(k0a)

2χ̃E (3.25)

and we therefore see that measurement of the complex frequency shift of the cavity

is then a measure of the samples dielectric susceptibility.
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3.3.4 The Skin-Depth Regime

An additional regime of interest pertains to samples with large conductivities in

which case the microwaves are confined to a sheath close to the sample surface, i.e.

the skin-depth. In this case the wave vector of the fields inside the sample becomes

ka = (1 + i)a
√
µ0ωσ̃ and Eq. 3.22 can be written as:

∆ω̃

ω0

= ξZ̃s + lim
σ→∞

∆ω̃

ω0

, (3.26)

where Zs = Rs + iXs is the sample’s complex surface impedance. The constants ξ

and limit of ∆ω̃
ω0

as σ → ∞ are known as the “resonator constant” and “metallic shift”

respectively, both of which depend on the mode of resonance, the sample geometry,

and the sample position within the cavity. Explicit expressions for these constants

for simple sample geometries can be found in [77]. Physically, the metallic shift

corresponds to the expected shift in resonant frequency that would result if the sample

were a perfect conductor. Of course all samples will have finite dissipation as light

can penetrate the sample over small distances near the surface. The role of the term

proportional to Z̃s in Eq. 3.26 is to account for this dissipation. It serves as a

corrective factor which accounts for the finite skin depth (or penetration depth in the

superconducting case) of the sample.

Once Zs is known, the complex conductivity of the sample can then be calculated
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from:

Z̃s =

√
iωµ0

σ̃
(3.27)

3.4 Our MCPT Experiment

3.4.1 Overview

Fig. 3.5 shows a blown up schematic of our MCPT experiment at JHU. A rough

description of the system is as follows. Microwaves are generated by a vector network

analyzer (VNA) and fed via low loss coaxial cables into our cryogenic insert. The

microwaves travel down the insert via copper coaxial cables before being fed through

a vacuum connection and into a vacuum can which houses the cavity. An additional

coaxial cable, which is terminated by a small antenna loop, carries the signal into the

cavity resonator. When the microwave frequencies are scanned in the neighborhood

of resonance, the antenna broadcasts a time dependence magnetic field which couples

to the TE011 mode. On resonance, transmission through the cavity is maximized

allowing for reception by an identical antenna placed on the other side of the cavity.

The transmitted microwaves are then returned to the VNA by an identical set of

coaxial cables. A LabView program then retrieves the data from the VNA, fits the

resonance peak to a Lorentzian function, extracts the resonant frequency and band-

width, and then sets the parameters on the VNA for the next scan. Repetition of this

entire process as a function of temperature results in acquisition of the temperature
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Figure 3.5: Blown up schematic of our MCPT experiment at JHU. Relative sizes of
various parts have been exaggerated for clarity.
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dependent complex response of the sample.

Base temperature of the experiment is reached by first filling the cryostat with

liquid He4. By pumping on the He4 bath, thereby reducing the vapor pressure, the

experiment can be cooled to ≈ 1.8 K. He3 is then pumped from an external gas

cabinet into a small enclosed space within the insert known as the “He3 pot” which

lies just above the cavity. At such low temperatures the He3 condenses into a liquid

which can then also be pumped on to cool the system down to temperatures as low

as 350 mK. Temperature is controlled by a small 25 Ω resistor attached to the outside

of the He3 pot and monitored by separate temperature sensors placed on the He3 pot

and cavity.

In this section, I’ll detail all the equipment and design considerations that went

into building our MCPT experiment. Some of the equipment was recycled from use in

Prof. George Grüner’s group at UCLA. While other components were either bought

or designed in-house here at JHU. Before proceeding it is important to say that I

have kept meticulous notes regarding the design of the MCPT system. Anything not

included here is almost certainly included in my lab notebook. I encourage any new

user to read through it before attempting to run the experiment.
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Figure 3.6: A computer generated sketch of the design of our cavity resonator. a cut
away on the front is included so that the sapphire rod, used to mount a sample, is
visible. The top plate contains holes for inserting coaxial cables with small antenna to
couple to the cavity. These coupling ports are located at the magnetic field maximums
of the TE011 mode. An additional hole in the top plate is used to pump out the cavity.
See text for more details.
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3.4.2 Equipment

3.4.2.1 The Resonating Cavity

Fig. 3.6 displays a computer generated sketch of our cavity with an opening in

the front so that the inside can be viewed. Our cavity is a right circular cylinder

fabricated out of NbTi, Tc ≈ 10K, designed to resonate on the TE011 mode. The

cavity has a height of h = 22.3mm and radius R = 11.5 mm. Rectangular grooves

of 0.25mm × 0.25mm were cut into the cavity top and bottom (Fig. 3.4) to break

the degeneracy between the TM111 and TE011 modes. With these dimensions, Eq.

3.8 suggests an expected resonant frequency of ω0 ≈ 18.68 GHz for the TE011 mode

which is in remarkably good agreement with our observed resonant frequency of ω0

≈ 18.66 GHz at low temperatures. With an observed bandwidth of Γ0 ≈ 10 kHz, we

achieve Q-factors of Q ≈ 2× 106. The optimal coupling was achieved by inserting of

a 1 mm NbTi disc with an identical design as the top plate between the cavity body

and top plate, effectively pulling the antenna further out of the cavity. Spacers of

different sizes can be inserted here to further tune the coupling. Samples are inserted

into the cavity by mounting to a small sapphire rod with thermal grease which places

the sample at a magnetic field antinode of the TE011 mode. Fig. 3.7 displays the

temperature dependence resonant frequency and bandwidth of our NbTi cavity. Large

changes near 8K result from the superconducting transition of the cavity.
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Figure 3.7: Temperature dependence of the resonant frequency and bandwidth of our
NbTi cavity resonator. Large changes in both quantities near 8K result from the
superconducting transition of the cavity.

3.4.3 Microwave Components

Microwaves are generated and received by a Hewlitt-Packard 8720D Vector Net-

work Analyzer (VNA) which is capable of producing microwaves with frequencies

between 50 MHz - 20 GHz. The microwaves are transported out of the VNA and

into the cryogenic insert via low attenuation Cinch Connectivity Solutions Semiflex

coaxial cables purchased from Digi-Key (PN: 1255-1019-ND). Microwaves are then

carried down the cryogenic insert by standard 50Ω R086 semi-rigid copper coaxial

cables. The copper coax cables terminate at the vacuum connections at the top of

the vacuum can. From the top of the vacuum can to the just above the cavity special

low thermal conductivity coaxial cables are used to limit additional heating near the
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He3 pot. The cables are model ULT-10 Keycom Characteristic Technologies cables

of length 139 mm. All microwave connections on the experiment are SMA.

3.4.3.1 Cryogenics

Our cryostat is a Cryo Industries of America Inc. Model 4CR-CN Helium Research

Dewar. The structure of the cryostat, from outside to inside, consists of a vacuum

jacket filled with super-insulation, a liquid nitrogen reservoir, an additional vacuum

jacket, and then a liquid helium (LHe) reservoir. The LHe space is cylinder with a

height of 62 inches and diameter of 4 inches, capable of holding about 15 liters of

LHe. A Cryomagnetics Inc model 3DA liquid He level sensor is inputted into the LHe

space to measure the LHe level.

As stated above the LHe bath is pumped on to get to temperature below 4K. We

use an Edwards E2M28 rotary pump to pump on the LHe bath. Temperatures below

1K are only accessible through He3 refrigeration. The He3 is stored and controlled

via an Oxford Industries gas cabinet capable of holding about 10L of gaseous He3.

The He3 is inputted into the experiment and returned back to the gas cabinet by an

Edwards XDS10 oil-free scroll pump. Before being input into the system the He3 is

purified by an Oxford liquid nitrogen cold trap.
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3.4.3.2 Temperature Control

Temperature control is done through a Lake Shore 340 temperature controller.

There are two temperature sensors in the experiment. The first is a silicon diode

temperature sensor which sits on the outside of the He3 pot and reads accurately

down to about 1K. The second sensor is Cernox 1010 AA that is mounted to the

outside of the cavity and capable of accurately reading down to 100 mK. A simple

resistive heater with resistance of 25 Ω mounted to the outside of the He3 pot is used

for temperature control.
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Chapter 4

Singlet-Triplet Excitations and

Long Range Entanglement In The

Spin-Orbital Liquid Candidate

FeSc2S4

4.1 Introduction

The search for truly quantum ground states is a central focus of modern condensed

matter physics. A zero temperature spin liquid would be a prime realization of

such a state [2]. Quantum spin liquids possess local moments, but, due to quantum

fluctuations, do not order even at zero temperature. These fluctuations can often be
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further enhanced by geometric frustration. Among their many novel features, they

are proposed to possess long ranged quantum mechanically entangled wavefunctions

as well as exotic fractionalized excitations. Recent proposals which suggest that these

fractionalized excitations may be useful for quantum computation have only furthered

interest in recent years.

To date, much focus has been devoted to fluctuations of the spin degrees of free-

dom, i.e. spin liquids. However, orbital degrees of freedom, which can also be dis-

ordered by quantum fluctuations [95], have received comparatively little attention.

Systems with both spin and orbital fluctuations as well as spin-orbit coupling have

been proposed to form a “spin-orbital liquid” ground state, characterized by entangled

spin and orbital degrees of freedom but no long range order [5, 96, 97].

Among the best candidates for such a state is the A-site cubic spinel FeSc2S4,

which shows no signs of magnetic ordering down to 50 mK. Instead, FeSc2S4 displays

nearly perfect Curie-Weiss behavior with ΘCW = -45.1K resulting in a frustration

parameter, f = |ΘCW|/TN ≥ 1000, one of the largest ever recorded. Recent theoreti-

cal proposals and experimental studies of FeSc2S4 suggest that this large frustration

parameter results from a spin-orbital liquid ground state which may lie in close prox-

imity to a quantum critical point and a long range ordered magnetic phase. However,

FeSc2S4’s true ground state or proximity to this quantum critical point is unknown.

In this chapter, we use time domain THz spectroscopy to probe the magnetic exci-

tations of FeSc2S4. We observe a singlet-triplet excitation which displays a three-fold
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splitting in magnetic field. We find the energy of this excitation to be substantially

renormalized from the expected single ion value, in good agreement with the proposed

spin-orbital liquid state. Using experimentally obtained parameters we compare our

results to existing theoretical models to determine FeSc2S4’s proximity to the quan-

tum critical point as well as a length scale for spin-orbital singlet correlations.

4.1.1 Spin-Orbital Singlet Formation In Single Ion

Fe+2

Before discussing FeSc2S4, we first demonstrate how spin and orbital degrees of

freedom become entangled in the single ion Fe+2 from crystal field and spin orbit

coupling effects. Shown in 4.1 is an energy diagram for the single ion case of Fe+2

ions in a tetrahedral crystal field, as is the case in FeSc2S4, with the addition of

spin orbit coupling. In a tetrahedral S4 crystal field, the 3d shell of each Fe+2 ion

is split into an upper t2 orbital triplet and a lower e orbital doublet. With Hund’s

coupling included, the Fe2+ ions assume a high spin S = 2 configuration with a lower

5E orbital doublet ground state and an upper 5T2 orbital triplet excited state. The

ground state’s two-fold orbital degeneracy is associated with the freedom to place a

hole in either e orbital. Although such orbital degeneracy is often relieved by Jahn-

Teller distortions, heat capacity experiments show no sign of orbital ordering down to

50 mK [96]. The possible removal of the ground state orbital degeneracy by random
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strains was proposed previously [98], but the expected T2 contribution to the specific

heat [99] was not observed experimentally [96]. The orbital degeneracy’s contribution

to the specific heat and magnetic entropy has since been observed experimentally [96].
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Figure 4.1: (a) Energy diagram of a Fe2+ single ion in an S=2 configuration after
tetrahedral crystal field and first and second order spin orbit coupling effects are
considered. Numbers in parenthesis represent the degeneracy of each level. Second
order spin orbit coupling splits the lower 5E doublet into 5 equally spaced levels
separated by λ = 6 λ0

2

∆CF
.

Spin orbit coupling splits the upper orbital triplet into three levels with energies

∆CF − 3λ0, ∆CF − λ0, and ∆CF + 2λ0, where ∆CF is the 5E - 5T2 splitting and λ0

is the spin orbit coupling constant [100, 101]. The potentially huge tenfold ground

state degeneracy coming from the spin degeneracy of S = 2 and the orbital doublet
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is split at second order in the spin-orbit interaction into 5 levels equally separated

by λ = 6λ20/∆CF (Fig. 4.1). The ground state is then a spin and orbitally entangled

singlet [102] with a wavefunction of the form:

|ψg〉 =
1√
2
|3z2−r2〉 |Sz=0〉+ 1

2
√
2
|x2 − y2〉 [|Sz=+2〉+ |Sz=−2〉] . (4.1)

The first excited state is a three-fold degenerate spin-orbital triplet, predicted to split

Zeeman-like with g-factors of g = ±(1− 2 λ0

∆CF
) [100].

4.1.2 Including Magnetic Exchange: FeSc2S4

FeSc2S4 differs from the single ion case in that the lattice now incorporates an

additional energy scale, magnetic exchange, between Fe+2 ions. It was suggested by

Refs. [5, 97] that the spin and orbitally entangled singlet character of the wavefunc-

tion is preserved when the Fe2+ ion is incorporated into the FeSc2S4 lattice. Chen

et al. [5, 97] proposed that the spin orbital liquid state results from competition

between magnetic spin-orbital exchange, which favors a magnetically ordered classi-

cal ground state, and on-site spin-orbit coupling, which favors a spin orbital liquid

quantum disordered state. In the framework of a mean-field next-nearest neighbor

(NNN) Kugel-Khomskii-type “J2/λ”-model, in which J2 is the NNN exchange con-

stant and λ is the excitation energy of single ion Fe2+ discussed above, Chen et al.

predict a quantum phase transition (QPT) at xc = 1/16 (with x = J2/λ), which
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separates spin-orbital liquid and ordered phases (Fig. 4.2). The dominance of NNN

exchange is demonstrated by the fact that the lowest energy magnetic excitations are

found in neutron scattering at the wavevector for a simple Néel state q = 2π
a
(1, 0, 0)

[103] and density functional theory which predicts the ratio of NNN to nearest neigh-

bor exchange to be ≈ 37 [104]. The spin orbital liquid presumably differs from the

ionic limit in that spin and orbital degrees of freedom may be entangled over longer

length scales in that a spin on one site becomes entangled with the orbital of another

site. Presumably this length scale diverges as the system approaches the QPT. The

estimated value for x was such as to put FeSc2S4 slightly into the ordered regime.

However, the actual proximity to the QPT and the nature of the ground state has

yet to be verified.

Intuitively, one might expect the spectrum of FeSc2S4 in the spin-orbital liquid

phase to be similar to that of the single ion Fe2+ described above since the spin-

orbital liquid results from degeneracies on individual Fe2+ ions and FeSc2S4 breaks

no other symmetries aside from those inherent to the crystal. Chen et al. [5, 97]

predicted that while the first excited state would still be a spin-orbital triplet, its

energy would be substantially renormalized by exchange. In the simplest case with

only NNN exchange (e.g. the J2/λ model) through an expansion in the exchange

(valid at x ≪ xc) it was shown that the lowest singlet-triplet excitation energy of

FeSc2S4 is:

E(q) = λ+ 2J2
∑

A

cos(q · a), (4.2)
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Figure 4.2: Theoretically proposed phase diagram of FeSc2S4 adapted from Ref. [5].
The bottom axis is labeled by the parameter x = J2/λ. For x < xc the system is
believed to be a spin-orbital liquid state characterized by long ranged spin-orbital sin-
glets. For x > xc the ground state becomes an antiferromagnet with orbital ordering.
It is believe that FeSc2S4 lies on the spin-orbital singlet side of the phase diagram but
is in close proximity to the quantum critical point at xc ≈ 1/16.

where a represents the lattice vectors of the 12 NNN. Such excitations can be probed

with optical measurements such as time domain terahertz spectroscopy (TDTS)

through the magnetic dipole operator. Due to negligible momentum of light compared

to the lattice scale, we probe the q → 0 limit, reducing Eq. 4.2 to E = λ(1 + 24x).

For FeSc2S4, with x of order xc, one expects the excitation energy to be substantially

renormalized from the ionic value.
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Figure 4.3: Graphic showing the two measurement geometries used in this experiment
which are distinguishable by the relative orientation of the THz magnetic field (~hac)

and static magnetic field ( ~Hdc). We refer to these alignments as the “longitudinal” (~hac
‖ ~Hdc) and “transverse” (~hac ⊥ ~Hdc) measurement configurations which are measured
simultaneously via a rotating polarizer technique.

4.2 Experimental Methods

Dense polycrystalline FeSc2S4 samples were prepared by our collaborators at the

University of Augsburg by spark plasma sintering at 1000◦C from precursor syn-

thesized binary sulfides Sc2S3 and FeS. Structural, magnetic and optical properties

were found to be identical to previous samples prepared by conventional solid state

synthesis [96]. TDTS transmission experiments were performed, as detailed in Ch.

2, using a home built spectrometer with applied magnetic fields up to 7 T in the

Voigt geometry (~kTHz ⊥ ~Hdc). Through the use of a rotating polarizer technique

[76], we measure the sample’s response to two polarization directions with respect

to ~Hdc simultaneously. Fig. 4.3 displays the two measurement configurations which

are simultaneously measured with our rotating polarizer technique. These geometries

can be labeled by the relative orientation of the incoming THz magnetic field, ~hac
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and static magnetic field ~Hdc. We refer to these geometries as either “longitudinal,”

with ~hac ‖ to ~Hdc or “transverse,” with hac ⊥ Hdc. Reflectivity measurements were

performed by our collaborators in the mid-infrared frequency range from 1000 to 8000

cm−1 using a BRUKER IFS 113v Fourier-transform spectrometer equipped with a He

flow cryostat.

4.3 Experimental Results
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Figure 4.4: Field dependence of the magnitude of the transmission coefficient of
FeSc2S4 taken at T = 5K for the (a) longitudinal configuration and (b) transverse
configuration respectively. Offsets of 0.05 are included between the curves for clarity.

Figs. 4.4 displays the magnitude of the T = 5K transmission coefficient as a

function of applied field for the (a) longitudinal and (b) transverse configurations

respectively. In zero field, a sharp absorption develops at 1.08 THz (4.46 meV) below

10K [105]. As shown below, its energy is in reasonable agreement with the predicted
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singlet-triplet excitation energy of Eq. 4.2. Further evidence for this assignment is

found in the field dependence of the transmission. While no splitting is observed

in the longitudinal configuration, the transverse configuration shows a clear splitting

into two separate resonances with increasing field, suggesting the presence of distinct

selection rules in the system.
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Figure 4.5: Field dependence of the imaginary χ′′ and real χ′ parts of the complex
ac susceptibility in the (a-b) transverse and (c-d) longitudinal configurations. All
spectra was taken at T = 5K. The susceptibility is shown in SI units, given by the
ratio of the magnetization to applied field. Dashed lines are guides to the eye. Offsets
of 0.1 are included for clarity.

To better resolve the splitting, the complex ac susceptibility of the sample was
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calculated from the transmission coefficient. Fig. 4.5 shows the real and imaginary

parts of the complex susceptibility in the (a-b) transverse and (c-d) longitudinal

configurations respectively. The splitting of the resonance with increasing field is

apparent in the transverse configuration. To extract the peak positions for both

configurations the spectra was fit using Lorentzian oscillators and a linear background,

which related work proposed derives from a continuum of zone boundary pairs of

triplet excitations [105].

Fig. 4.6(a) shows the field dependent splitting of the excited state triplet. Quan-

titative values for the splittings could not be resolved below 3 T. Linear fits were

performed on each branch to determine the g-factors. Only data between 5T ≤

Hdc ≤ 7T were used in the upper branch fit since low transmission in the high fre-

quency range causes error below 5 T. We find g-factors of g = 0.93 and g = -0.92 for

the upper and lower branches respectively.

Mid-infrared reflectivity at higher energy was performed in order to determine the

crystal field splitting and spin orbit coupling constant of the sample. Fig. 4.6(b) shows

the T = 5K MIR reflectivity (black, left axis) spectrum, which displays a number of

prominent features. The excitation energies can be found from the maxima of the

dielectric loss (indicated by red arrows), which was obtained by using a Kramers-

Kronig consistent variable dielectric function fitting routine [106]. Although one

only expects two optically active excitations from 5E to 5T2 states, additional and

shifted absorptions are expected due to strong coupling of the 5T2 levels to vibrational
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Figure 4.6: Singlet-triplet excitation energies of both measurement configurations
extracted from fitting the susceptibility data shown in Fig. 4.5. Dashed lines are
linear fits of the data from which the g-factors are extracted. Error bars are based
on the quality of the fits. (b) Mid-infrared reflectivity data taken at T = 5K (black,
left axis) along with the dielectric loss (red, right axis). Three features are seen
with energies of 63.52 THz (0.262 eV), 70.32 THz (0.290 eV), 80.16 THz (0.331 eV),
corresponding to crystal field excitations to the 5T2 energy levels plus coupling to
Jahn-Teller modes of Fe2+ in a tetrahedral environment.

modes [107]. Following the approach of Wittekoek et al. [101], the crystal field

splitting, spin orbit coupling constant, Jahn-Teller coupling mode energies (EJT), and

coupling constants (~ωJT), can be extracted from the mode energies and intensities.

We determine values of ∆CF = 71.6 ± 5 THz (296.1 ± 20.7 meV), λ0 = 2.14 ±

0.30 THz (8.85 ± 1.24 meV), EJT/λ ≈ 1.6, and ~ωJT/λ ≈ 4. From these values

we can calculate λ = 6λ20/∆CF = 0.38 ± 0.06 THz (1.57 ± 0.25 meV). These values

correspond closely to values found in other Fe2+ tetrahedral compounds [108].

From our experimental value of λ and the value of J2 extracted from the Curie-

Weiss constant, we find from Eq. 4.2 an expected singlet-triplet excitation energy

of 1.31 THz (5.42 meV), which is in reasonable agreement with the observed energy
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of 1.08 THz (4.46 meV). Additionally, substituting our measured values into the

predicted g-factor expression g = ±(1 − 2 λ0

∆CF
) [100] gives expected values of g = ±

0.94, which are in excellent agreement with our observed g-factors of g = 0.93 and

g = −0.92.

With the energy scales characterized, we can work backwards to determine

FeSc2S4’s proximity to the QPT in the context of the theory of Chen et al. [5, 97].

With an observed excitation energy of 1.08 THz (4.46 meV) and our experimental

value for λ we can solve Eq. 4.2 for x. Here the implicit assumption is that Eq. 4.2,

which was considered valid far from the critical point as an expansion in the exchange,

is still valid near the QPT for momenta far from the ordering wavevector. We find

a value of x = 0.08, which puts FeSc2S4 slightly above the predicted xc = 1/16 from

mean field theory. The fact that FeSc2S4 does not order down to the lowest measured

temperatures indicates that quantum fluctuations are presumably important in set-

ting xc. We may use this value of x to make an estimate for J2 of 0.029 THz (0.120

meV), which is about 25% less than the value inferred from the Curie Weiss constant

[5, 97].

4.4 Discussion

Pure spin singlet-triplet excitations are typically forbidden in electron spin reso-

nance measurements due to the parity change between spin singlet and triplet states
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[109] [110] and are usually only seen in the presence of a Dzyaloshinskii - Moriya

(DM) [46, 111] interaction or staggered magnetization arrangements along crystal-

lographic axes. Chen et al. estimate the static DM interactions to be ≈ 100 times

weaker than both exchange and spin orbit couplings [5]. In principle, dynamic DM

interactions can also weakly allow pure spin singlet-triplet excitations, [110] but such

interactions involve a phonon and are assumed to be even weaker than static contri-

butions. However, neither of these effects are thought to be relevant in FeSc2S4 since

the spin-orbital singlet and triplet states belong to the same S = 2 5E-multiplet and

are different from the pure spin states. In the single ion case of Fe2+ in tetrahedral

crystal fields, it has been shown that a similar singlet-triplet excitation is magnetic

dipole active with selection rules that agree with the results presented in this work

[102] [107]. Therefore, we believe the observation of this singlet-triplet excitation is

further evidence for the entangled spin-orbital singlet character of the ground state

and establishes FeSc2S4 as a SOL.

As discussed in Ref. [5, 97], it is believed that the critical regime of this QPT can

be described by a Euclidean multicomponent Φ4 scalar field theory in 4 space-time

dimensions. In such field theories a correlation length can be extracted through the

relation ξ = hv
E

where E is a characteristic energy that vanishes at the QPT and v is a

velocity, whose square is a proportionality between space and time derivatives in the

effective Lagrangian. This length can be understood as the scale over which spin and

orbital degrees of freedom are entangled. In the present case, E ≈ 0.17 meV can be
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identified with the zone boundary soft gap in neutron scattering [103]. By inspection

of the terms in the action written down in Ref. [5], we can identify v = a
8h

√
λ3/J2

and find ξ = λa
8E

√
1/x. Using our experimentally determined spin-orbit and exchange

parameters we estimate a correlation length of ξ/(a/2) ≈ 8.2. This demonstrates the

long-range entangled character of the SOL non-classical ground state in FeSc2S4.

4.5 Conclusion

In summary, we believe we have demonstrated the spin-orbital singlet character of

the ground state of FeSc2S4 through the observation of a singlet-triplet excitation. Its

energy is significantly renormalized from the expected single ion value by magnetic

exchange, in agreement with the model of Ref. [5, 97]. This system, in close proximity

to the QPT, differs from a simple ensemble of spin-orbit singlet ions through the

presence of longer range correlations which we demonstrated exist over a length scale

of over 8 nearest neighbors. We believe our results establish FeSc2S4 as a spin orbital

liquid in very close proximity to a quantum critical point and therefore on the edge

of magnetically ordering.

Since the the completion of this work, two additional neutron scattering studies

have been reported and produced conflicting results. Plumb et al. [112] claim to

observe the devlopment of magnetic Bragg peaks below 11.8 (K), indicating the onset

of antiferromagnetic order, subsequent to a cubic to tetragonal structural transition

130



CHAPTER 4. SINGLET-TRIPLET EXCITATIONS AND LONG RANGE
ENTANGLEMENT IN THE SPIN-ORBITAL LIQUID CANDIDATE FeSc2S4

which breaks the orbital degeneracy. Although such Bragg peaks were not observed in

the previous neutron study of Krimmel et al [103], the claim is that the new results

are not inconsistent but instead the previous study did not possess the necessary

sensitivity to observe the magnetic order. In this scenario, FeSc2S4 is still in proximity

to the quantum critical point but on the magnetically ordered side of the phase

diagram, with x > xc. However, an additional neutron scattering study by Biffin et

al. [113] did not observe such Bragg peaks and instead claim that the magnetic field

dependence of the spin-orbtial triplet excitations are consistent with the spin-orbital

liquid picture, placing FeSc2S4 on the spin-orbital liquid side of the phase diagram

with x < xc. The contradictory results of these two studies is currently an area of open

investigation. However, one possibility is that FeSc2S4 is highly sensitive to disorder,

impurities, and sample preparations - a hallmark of proximity to a quantum critical

point. This provides a natural explanation as these two studies were preformed on

samples provided by different groups. To date, a full understanding of the role of

disorder of the ground state of FeSc2S4 is lacking and requires further invesitgation.
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Chapter 5

Low Energy Magnon Dynamics

and Magneto-Optics Of The

Skyrmion Insulator Cu2OSeO3

5.1 Introduction

Non-trivial spin textures have become a hotbed of research in recent years due to

their unique physical properties and potential applications in spintronics and infor-

mation storage. Skyrmions [114], topological vortices of magnetic spins, are a prime

example of such a non-trivial spin texture [115]. The existence of skyrmion phases,

where a hexagonal lattice of skyrmions is formed, was recently predicted to exist in

chiral magnets [116, 117], and has since been realized in the metallic B20 helimagnets:
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MnSi [118], FeGe [119], and Fe1−xCoxSi [120, 121]. The skyrmion phases of these ma-

terials possess unique electrodynamics [122] such that they can be manipulated via

application of an electrical current or thermal gradient [123] and have accordingly

attracted intense experimental interest.

Optical spectroscopy is exceptionally well-suited for studying these chiral magnets

as their nearly ferromagnetic nature ensures an ordering wavevector of ~k ≈ 0 which is

directly probed by optical experiments. However, high precision optical transmission

experiments of single crystal skyrmion materials has thus far been impossible due to

their metallic nature. This has been particularly detrimental to the optical study

of their low energy magnetic response which generally requires bulk samples in the

linear response regime.

Recently, a skyrmion phase with unique physical properties was recently shown

to exist in the insulating chiral magnet Cu2OSeO3 [124, 125, 126]. The low sym-

metry crystal structure of Cu2OSeO3 permits multiferroism [127, 128, 129] as well

as magnetoelectric coupling [130, 131, 132], which recent measurements have shown

results in a finite polarization that onsets in conjunction with magnetic order at

Tc ≈ 58K [133, 134]. This finite polarization allows for coupling between magnetic

skyrmions and applied electric fields [125, 126] - a promising mechanism for tech-

nological applications and novel devices [135, 136]. Accordingly, the magnetic and

magnetoelectric properties of Cu2OSeO3 have been the focus of intense investigation

[133, 134, 137, 138, 139, 140].
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From an optics perspective, the large Mott insulating gap of Cu2OSeO3 naturally

separates electric and magnetic degrees of freedom [141, 142, 143], allowing for direct

access to the magnetic response via transmission optics. Spectroscopic investigations

have since been performed from the microwave [144, 145, 146, 147] to the visible [143]

frequency ranges. However, experiments performed at infrared or terahertz (THz)

frequencies have so far only occurred at two extremes of the phase diagram, either

in zero applied magnetic field [142, 148] or in large pulsed magnetic fields of order H

≈ 10T [149]. To date, no THz experiments have been performed in weak magnetic

fields (H ≤ 200 mT), within the various magnetic phases of Cu2OSeO3, including

the skyrmion phase. Additionally, a detailed investigation into the dynamics of the

known THz excitations as a function of temperature and magnetic field has not yet

been presented.

In this chapter, we present a comprehensive high resolution optical study of the

skyrmion insulator Cu2OSeO3 in the THz regime via time-domain THz spectroscopy

(TDTS). As our experimental energy range, ~ω = 1 - 10 meV, is far less than the

bulk band gap, ∆g ≈ 1 eV, we directly access the low energy magnetic response of

Cu2OSeO3. Experiments are performed within three distinct regimes of magnetic

field: H = 0, H ≤ 200 mT, and H ≥ 5 T. In zero field, we observe a weak excitation

which is revealed to be a zone folded magnon from the zone boundary to the zone

center which has not been predicted by spin-wave theory. Highly sensitive polarimetry

experiments performed in weak magnetic fields observe Faraday and Kerr rotations
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which are proportional to the sample magnetization, allowing for optical detection of

the skyrmion phase and construction of a magnetic phase diagram. In large magnetic

fields, we study the field and temperature dependent dynamics of the uniform mode

of the field polarized phase. The uniform mode is found to decay through a non-

Gilbert damping mechanism and to possess a finite spontaneous decay rate in the zero

temperature limit. The potential damping mechanisms of this mode are discussed.

5.1.1 H-T Phase Diagram

Figure 5.1(a) shows the crystal structure of Cu2OSeO3 [152] which crystallizes in

the cubic, but non-centrosymmetric, space group P213 [153]. The unit cell forms a

distorted pyrochlore lattice with 16 Cu2+ (S = 1/2) ions residing on the vertices of

4 corner sharing tetrahedra. Each tetrahedron is composed of one Cu(I) site (or-

ange spheres) and three Cu(II) sites (blue spheres), which possess distinct crystal

field environments [133, 154]. This low symmetry structure results in five unique

Heisenberg exchanges and five Dzyaloshinskii-Moriya (DM) [45, 46] exchanges within

the unit cell. These exchanges are classified as either “strong” or “weak” depend-

ing on whether they couple two intra-tetrahedral or two inter-tetrahedral Cu2+ spins

respectively. Experiments [150, 155] and calculations [141, 151, 156] reveal that the

“strong” couplings result in a semi-classical ferrimagnetic arrangement for each tetra-

hedron, in which the Cu(I) spin orders antiferromagnetically to the three Cu(II) spins

(Figure 5.1(b)). This ground state is well separated from the first excited state by a
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large energy gap of ∆ ≈ 275K, [141, 150, 151, 155] such that each tetrahedron can be

treated as an effective S = 1 spin which form the basic magnetic building blocks of

Cu2OSeO3. The resulting effective unit cell then consists of four S = 1 spins arranged

in the Trillium lattice, a structure identical to that of the B20 helimagnets, revealing

why such similar phase diagrams result from seemingly dissimilar compounds [147].

The magnetic phase diagram can then be understood as competition between the

“weak” Heisenberg and “weak” DM exchanges of these effective S = 1 spins [141, 151,

156]. With |Dij| < |Jij|, the resultant magnetic order in zero field onsets at Tc ≈ 58K

in the form of a long wavelength helix (λ ≈ 50 nm) [124, 157] as shown in Figure 5.1

(c). The magnetic order reduces the symmetry to the rhombohedral group R3 [133].

Weak cubic anisotropy pins these helices to degenerate high symmetry directions

of the cubic structure, resulting in a“multi-domain helical phase.” Application of

a magnetic field cants the spins in the direction of the applied field. At Hc1 the

applied field overcomes the weak cubic anisotropy resulting in a “single-domain conical

phase,” shown in Figure 5.1(d), in which the helices co-align into a single domain with

a conical arrangement of spins [124, 157]. Further increasing the applied magnetic field

smoothly tunes the cone angle to zero at Hc2, thereby untwisting the magnetization,

resulting in a field polarized ferrimagnetic phase as shown in Figure 5.1(e). While

the exact values of the critical fields depends on the demagnetization factors of the

sample, Hc1 and Hc2 are generally on the order of 10 mT and 100 mT respectively

[124, 157].
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Figure 5.1: (a) Unit cell of Cu2OSeO3 with the Cu(I) and Cu(II) positions shown
as orange and blue spheres respectively. (b) The ground state of each tetrahedron
consists of a ferrimagnetic arrangement in which the Cu(I) spin (green arrow) orders
antiferromagnetically to the Cu(II) spins (red arrows), creating effective S=1 spins.
Shown in (c)-(e) are representations of the (b) helical, (c) conical, and (d) field po-
larized magnetic phases where each arrow represents the effective spin of a single
tetrahedron. See text for more details.
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Much like the B20 helimagnets, a skyrmion phase spanned by ≈ 2K and ≈ 30

mT just below Tc is stabilized by Gaussian thermal fluctuations [118] and has since

been detected by a variety of techniques [124, 125, 126, 139, 157, 158]. In this phase,

skyrmions form a hexagonal lattice much like Abrikosov vortices in type-II supercon-

ductors. Such a phase can be thought of as a double twisting of the magnetization

which results from the superposition of 3 helices with ~k vectors at 120 degrees to one

another [157]. The skyrmion diameter is identical to the helical phase wavelength,

d ≈ 50 nm, which is three orders of magnitude larger than the inter-atomic spac-

ing [124] revealing skyrmions to be vast macroscopic spin structures. Among other

things, in the present work we show that the skyrmion phase can be detected by low

frequency optics in the form of TDTS.

5.2 Experimental Methods

Phase pure single crystals of Cu2OSeO3 were grown by chemical vapor transport.

Cu2OSeO3 powder was placed in an evacuated fused-silica tube with a temperature

gradient of 640 ◦C - 530 ◦C, with NH4Cl as the transport additive, using seed crystals

to increase yield. Purity of single crystals were verified by magnetization and X-ray

diffraction experiments, showing reproducibility of physical property behavior and

good crystallinity. For more details see Ref. [159].

Time domain terahertz (TDTS) measurements were performed on a hand polished
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single crystal sample with plane parallel sides of cross sectional area of ≈ 3 mm ×

3 mm and thickness d = 0.92 mm. The orientation of the sample was such that the

(1,1̄,0) direction was normal to the sample surface. Experiments were performed using

a home built spectrometer with applied magnetic fields up to 7 T in Faraday geometry

(~kTHz ‖ ~Hdc) [160]. The polarization was such that the THz oscillatory fields eac ‖ c and

hac ‖ (110) directions respectively. TDTS is a high resolution method for accurately

measuring the electromagnetic response of a sample in the experimentally challenging

THz range. In a typical TDTS experiment, the electric field of a transmitted THz

pulse through a sample is measured as a function of real time. Fourier transforming

the measured electric field and referencing to an aperture of identical size allows access

to the frequency dependent complex transmission spectrum of the sample which is

given by,

T̃ =
4ñ

(ñ+ 1)2
exp (

iωd

c
(ñ− 1)) (5.1)

where d is the sample thickness, ω is the frequency, c is the speed of light, ñ is the

sample’s complex index of refraction, and normal incidence has been assumed. A

Newton-Raphson [73] based numerical inversion of the complex transmission is then

used to obtain both the frequency dependent real and imaginary parts of the index

of refraction.

The index of refraction, ñ =
√
ǫµ = n+ik, contains both the electric and magnetic

responses of the sample as THz fields can couple to both electric and magnetic dipole

transitions. In principle, the linear magnetoelectric properties of Cu2OSeO3 introduce
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an additional contribution to the index of refraction such that ñ =
√
ǫµ± χME, where

χME is the magnetoelectric susceptibility. However, at the level of sensitivity of the

present experiments we observe no magnetoelectric effects in the THz range suggesting

that the magnetoelectric susceptibility is small compared to the linear electric and

magnetic susceptibilities, χME ≪ χM, χE. We therefore neglect the magnetoelectric

contribution to the index of refraction in our analysis and ascribe absorptions as

stemming from purely electric or magnetic effects.

The linear THz response of a sample can be represented in the Jones calculus [74]

as a 2×2 complex transmission matrix of the form,

T̂ =



Txx Txy

Tyx Tyy




However, the overall symmetry of Cu2OSeO3 restricts the response such that the

transmission matrix is fully antisymmetric, i.e. Txx = Tyy and Txy = −Tyx [75]. One

can then identify off diagonal elements of the transmission matrix with rotation of

the plane of polarization of light by the sample. Polarization rotation experiments

were done through the use of a rotating polarizer [76] technique, which allows for

simultaneous measurement of two elements of the transmission matrix. The complex

rotation angle is then given by the relation θ = tan−1(Tyx

Txx
). Fully antisymmetric

transmission matricies can be diagonalized by a circular basis transformation, Tr =

Txx - iTxy and Tl = Txx + iTxy, suggesting experiments performed in Faraday geometry
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are best understood in the circular basis. Data taken in applied magnetic field will

therefore be presented as either a polarization rotation or in the circular basis.

Time-of-flight neutron scattering experiments were performed on the SEQUOIA

instrument at the Spallation Neutron Source of Oak Ridge National Laboratories. To

enhance the signal to noise ratio, we co-aligned more than 50 single crystals to yield

a mass of ≈ 5g. A mosaic of less than 0.5 degrees was ensured by design of a custom

mount to orient the samples according to their as-grown facets. The co-aligned mosaic

was cooled to 4 K in a bottom-loading CCR and rotated by 180 degrees in 0.5 degree

steps about the (hh̄0) axis. An incident energy of 20 meV was chosen with the fine

chopper rotating at a rate of 180 Hz. These same spectrometer settings were used to

measure Vanadium incoherent scattering for absolute normalization of the differential

scattering cross-section. Reduction of the data was performed using Mantid [161] and

subsequent analysis was done with Horace [162].

5.3 Experimental Results

5.3.1 Temperature Dependence

Figure 5.2(a) displays the magnitude of the complex zero field transmission of

Cu2OSeO3 as a function of frequency and temperature plotted on log scale. Fig-

ure 5.2(b) displays the corresponding imaginary, or dissipative, part of the index

of refraction extracted from the transmission and Eq. 5.1. One can see that the
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Figure 5.2: (a) Magnitude of the zero field complex transmission spectra of Cu2OSeO3

as a function of frequency and temperature plotted on log scale. (b) Corresponding
imaginary, or dissipative, part of the index of refraction extracted from the transmis-
sion and Eq. 5.1. A clear absorption is observed at 2.03 THz which narrows and
gains intensity with reducing temperature.

spectra consists of two prominent features, The first is a nearly linear background

which shows decreasing dissipation as the temperature is reduced. The origin of this

background is an intense infrared active phonon at 2.5 THz, which is outside our

experimental frequency range [142]. The reduction of this background with reducing

temperature presumably results from a narrowing of this phonon at lower tempera-

tures. The second, and more interesting, feature in the spectra is the clear absorption

with a resonant frequency of f0 = 2.03 THz (8.40 meV). As shown in Figure 5.2, this

excitation begins developing at T ≈ 120 K and displays an increasing intensity and

simultaneous narrowing as the temperature is reduced.

This absorption was previously reported in far infrared experiments performed by

Miller et al. [142] in which it was hypothesized to be a low frequency phonon. It
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was reported that this absorption displayed no response to weak magnetic fields up

to 14 mT applied parallel to the sample surface and no anomalous behavior at the

magnetic ordering temperature Tc ≈ 58K. Although the potential magnetic dipole

or magnetoelectric character of the excitation could not be excluded as the response

to larger magnetic fields or anisotropy upon change in field direction or incident

polarization was not investigated.

However, the intensity of this excitation is generally problematic for the phonon

interpretation. This becomes obvious when one compares the spectral weight (plasma

frequency) of this excitation to that of the other known infrared optical phonons of

Cu2OSeO3, which were also reported by Miller et al. [142]. In general, a phonon’s

plasma frequency can be related to its total spectral weight through the sum rule

∫∞
0
σ1(ω) ∝ ω2

p. A comparison reveals that the spectral weight of the low frequency

excitation observed in this work is a staggering 104 to 108 times weaker than any

of the infrared optical phonons observed in Cu2OSeO3, suggesting a different origin

for this excitation. Instead, the intensity of this excitation is much more consistent

with magnetic excitations in single crystal samples. The weak intensity of magnetic

excitations derives from the fact that the THz magnetic field interacts far more weakly

with matter than the THz electric field.

Further support for the magnon interpretation of this excitation is provided by by

the momentum resolved capabilities of inelastic neutron scattering. Shown in Figure

5.3(a) is a false color map of the differential scattering cross-section at 4 K (to be
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Figure 5.3: (a) Q-E dependence of the differential scattering cross-section along the
(111) direction in reciprocal space. Perpendicular directions have been integrated
within 0.1 Å. The magnon band at R111 is seen to be folded to the Γ111 zone-center.
The peak (black circle) and FWHM (black dotted lines) in the THz spectrum is
overlaid for comparison. (b) An energy cut (blue, right axis) along the blue line
shown in (a) overlaid on the imaginary part of the index of refraction (black, left
axis) measured by THz transmission. All data is obtained at T= 4.0(5) K.

detailed in a related upcoming publication [163]). The peak energy of the excitation in

question has been overlaid at the (111) zone-center (Γ111), where a dispersive magnon

branch reaches its highest point. Judging from its energy, relatively weak intensity,

and local curvature at the apogee, it appears to be a zone-folded replica of the magnon

band whose intensity is strongly peaked at the zone boundary R111 = (3/2 3/2 3/2) point.

This observation suggests a more direct comparison between these two spectroscopic

techniques.

Figure 5.3(b) shows an energy cut at R111, along the blue line in Figure 5.3(a),

overlaid with the dissipative part of the index of refraction k from THz spectroscopy.

This presentation makes evident the agreement in energy between these modes, which
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is determined by neutron scattering as f=2.05(3) THz. Differences in the excitation

width result from the inherent resolution limits of the neutron spectrometer and

the increased angular spread of the co-aligned mosaic as compared to that of a single

crystal. Together, these observations motivate the conclusion that the mode observed

by THz spectroscopy is, infact, a zone-folded magnon—a new magnetic excitation

which has not been previously predicted by spin-wave theory [141, 151].

With the magnetic character of this excitation determined, the dynamical prop-

erties of this magnon can be found from fitting the spectra to a Drude-Lorentz model

with the following form,

µ(ω) =
Sω2

0

ω2
0 − ω2 − iωΓ

+ µ∞ (5.2)

where, ω0, Γ, S, and µ∞ represent the magnon frequency, full width at half max,

oscillator strength, and high frequency permeability of the lattice respectively.

Figure 5.4 displays the temperature dependent oscillator parameters, (a) f0 =

ω0/2π, (b) Γ, and (c) S, of the low frequency magnon as determined from fitting

the spectra with Eq. 5.2. An additional linear background was included in the fits

to account for the high frequency phonon at 2.5 THz. Error bars in the figure are

based on the quality of the fits. Unlike the results reported from Miller et al. [142],

we uncover a coupling of this excitation to the magnetic structure of Cu2OSeO3.

One can see in Figure 5.4(a) that the magnon frequency displays a weak softening as
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(a) (b) (c) 

Figure 5.4: Temperature dependent oscillator parameters, (a) frequency f0 = ω0/2π,
(b) full width at half max Γ, and (c) oscillator strength S, of the magnon shown
in Figure 5.2. Error bars are based on the quality of the fits. A clear anomaly in
the magnon’s frequency and width can be seen at Tc ≈ 58K (vertical dashed lines),
indicating a sensitivity to the magnetic transition.

the temperature is lowered, reducing by ≈ 1% from 100K to 4K. A clear anomaly is

observed in the magnon’s frequency at Tc ≈ 58K (vertical dashed lines in Figure 5.4),

further supporting the magnetic character of this excitation. A similar anomaly at Tc

is observed in the width of the excitation, shown in Figure 5.4(b), which also shows

the general trend of reducing with lowering temperatures. The far infrared FTIR

transmission spectroscopy experiments of Miller et al. [142] likely did not posses the

level of sensitivity needed to observe these features which explains why this softening

and sensitivity to the magnetic structure was not previously observed. However, our

experiments are able to determine the magnon frequency to a precision of ≈ 0.5 GHz

(2 µeV), allowing for detection of such subtle effects.

It may seem unusual that this magnetic excitation persists to such high tem-
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Figure 5.5: (a) Frequency dependence of the real part of the Faraday rotation nor-
malized by sample thickness at T = 10K. (b-c) Real part of the (b) Faraday and
(c) Kerr rotation as a function of magnetic field found from averaging the data over
frequency range shown in (a). (d) Temperature dependence of the Faraday rotation.
(e) The field derivative of the Faraday rotation as a function of magnetic field, a
quantity proportional to the magnetic susceptibility of the sample. (f) Image plot of
the data shown in (e) where the phase boundaries between the helical and conical
phases (bright green) and conical and field polarized phases (red to blue) are clearly
seen.

peratures, well above the magnetic transition at Tc. However, this mode physically

corresponds to the rigid rotation of all the spins of a single tetrahedra [151]. As men-

tioned above, these tetrahedra remain well defined entities far above Tc due to the

strong exchanges between spins within the tetrahedra. Therefore, the observation of

this mode up to 120 K is consistent with the strongly entangled tetrahedra picture

of Cu2OSeO3 [141]. Interestingly, we find this excitation does not display any dis-

cernible dependence with magnetic field for fields up to H = 7T in Faraday geometry.

We discuss this lack of field dependence as well as the folding of this zone boundary

mode to the zone center in the discussion below.
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5.3.2 Magnetic Field Dependence

5.3.2.1 Magnetization Dependent Faraday and Kerr Rota-

tions

Rotation of the plane of polarization of incident radiation upon transmission (Fara-

day rotation) or reflection (Kerr rotation) can often be related to the underlying sym-

metry of the material under investigation. For instance, the non-centrosymmetric

chiral structure of Cu2OSeO3 permits “natural optical activity,” rotation of the plane

of polarization of linearly polarized light upon transmission in zero applied magnetic

field, an effect which was recently observed in the visible range [143]. Additional

gyrotropic effects can occur when time reversal symmetry is broken, for instance by

the spontaneous magnetization of the sample. In this case the index of refraction

matrix is fully antisymmetric with off-diagonal terms, assuming linear response, pro-

portional to the sample magnetization [164]. A circular basis transformation reveals

that linearly polarized light undergoes Faraday and Kerr rotations proportional to

the sample’s magnetization upon transmission [164, 165, 166, 167]. Examination of

the proportionality constants reveals that the Kerr rotation is expected to be weaker

than the Faraday rotation by a factor of ≈ d/λ, [164] which in the case of this experi-

ment is ≈ 3. Such magneto-optical effects allows one to treat polarization rotations as

measures of the order parameter of the magnetically ordered phases and can therefore

be used to construct a magnetic phase diagram.
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For a single pass transmission experiment we can write the total polarization

rotation of Cu2OSeO3 as,

θTot = θNOA + θF (M(H, T )) (5.3)

where θNOA is the natural optical activity intrinsic to the chiral lattice of Cu2OSeO3,

θF (M(H,T )) is magnetization dependent Faraday rotation, and higher order terms

have been neglected. The natural optical activity is too weak to observe in our

long wavelength THz measurements as it scales inversely with the wavelength of

light. Instead, improved signal to noise is obtained by subtracting the zero field

rotation from the field dependent data. This is justified as although Cu2OSeO3 orders

in zero magnetic field, the helical phase is marked by domain formation such that

the net magnetization in this phase is zero. If we define θ
′

Tot(H,T ) = θTot(H, T ) −

θTot(H = 0, T ), then the field dependent polarization rotation, normalized by the

sample thickness d, is given by,

1

d
θ
′

Tot(H, T ) =
1

d
θF (M(H,T )) (5.4)

Additional information and enhanced signal to noise can be achieved by examining

multiple reflections (“echos”) of the THz pulse through the sample. The symmetry

and finite magnetization of Cu2OSeO3 results in a Faraday rotation that further

rotates upon reflection inside the sample. Therefore, the first echo of light, which
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travels through the sample a total of three times, gains a contribution to its rotation

that is three times the Faraday rotation of the first transmitted pulse. Additionally,

the first echo also reflects internally off the sample surface twice, each time gaining a

Kerr rotation that will also be magnetization dependent, but is expected to rotate in

the opposite direction of the Faraday rotation [164]. Therefore the total polarization

rotation of the first reflected pulse is given by,

1

d
θ
′

Tot(H,T ) =
1

d
[3θF (M(H,T ))− 2θK(M(H,T ))]. (5.5)

where, the first and second terms represent the Faraday and Kerr rotations respec-

tively. Thus, the complex Faraday and Kerr rotation angles can be measured in-

dependently if both the first transmitted and first reflected pulses of terahertz light

through the sample are measured.

Figure 5.5 displays the results of our polarimetry experiments of Cu2OSeO3. Fig-

ure 5.5(a) shows the real part of the extracted Faraday rotation per mm of sample

thickness, as defined in Eq. 5.4, as a function of frequency and applied magnetic field

at T=10K. One can observe that the Faraday rotation in our spectral range shows

little frequency dependence. However, structure can be found in the field dependence

of the data. Figure 5.5(b) shows the real part of the Faraday rotation as a function of

magnetic field obtained from averaging the data in Figure 5.5(a) over the frequency

range shown at each temperature.
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The proportionality between the Faraday rotation and magnetization is easily ob-

served in Figure 5.5(b). The Faraday rotation is small at temperatures above Tc ≈

58K. Below Tc, the system enters the multi-domain helical phase where magnetic

order develops but with multiple domains resulting in no net magnetization. There-

fore, no additional Faraday rotation that results from magnetic ordering is expected

at temperatures below Tc in zero applied field. Once a magnetic field is applied the

spins cant in the direction of magnetic field resulting in a linear increase in mag-

netization and therefore an identical trend in Faraday rotation. At Hc1 the helices

co-align and the system enters the single-domain conical phase, which is accompanied

by a jump in magnetization. The corresponding increase in Faraday rotation can be

observed for fields Hc1 ≈ ±50 mT at T=5K. At larger magnetic fields, H ≥ Hc2, the

system enters the field polarized phase, in which all spins are aligned, resulting in a

saturation of the magnetization and Faraday rotation. Figure 5.5(c) displays the real

part of the Kerr rotation as a function of magnetic field, obtained in a similar manner

as the Faraday rotation described above and Eq. 5.5. One can see that the Kerr rota-

tion displays an identical dependence on sample magnetization but is approximately

a third that of the Faraday rotation, as expected from the ratio of d/λ.

As the Faraday and Kerr rotations are proportional to the sample magnetization,

an H-T phase diagram of Cu2OSeO3 can be constructed from the data shown in

Figure 5.5 (a)-(c). Here we focus primarily on the Faraday rotation, as the signal to

noise is much better than that of the Kerr rotation due to technical aspects of our
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measurement. In order to appropriately identify phase boundaries, subtle features

in the data must be identified which are more easily observed in the temperature

dependence and field derivatives of the Faraday rotation. Figure 5.5(d) displays the

temperature dependence of the Faraday rotation at constant fields, where the phase

boundary between the conical and field polarized phases is evident. Figure 5.5(e)

shows the first derivative of the Faraday rotation with respect to magnetic field at

constant temperatures, a quantity proportional to the magnetic susceptibility of the

sample. The transition from the helical to the conical state is now easily identified

as a sharp maximum in the derivative. The phase boundary between the conical and

field polarized phases can be identified as the field beyond which the first derivative is

zero or identically as a sharp maximum in the second derivative. Figure 5.5(f) shows

an image plot of the data in Figure 5.5(e) in which clear phase boundaries at Hc1

(bright green) and Hc2 (red to blue) are easily observed.

Figures 5.6(a) displays our extracted H-T phase diagram of Cu2OSeO3 as deter-

mined from our polarization rotation experiments. Symbols are the extracted phase

boundaries from the data shown in Figure 5.5 while dotted lines result from power

law fits of the data given by the expression, Hc(T ) = Hc(0)(1− (T/Tc)
α)β, which

was previously found to describe the data in both µSR [138] and ac susceptibility

[168, 169] investigations. We restrict the critical exponent α=2 as has been done

previously [138, 168, 169] and is expected for a three dimensional system [170]. From

these fits we extract a critical temperature of Tc = 58.4±0.4 K and a critical exponent
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Figure 5.6: (a) The H-T magnetic phase diagram of Cu2OSeO3 constructed from our
Faraday rotation experiments shown in Figure 5.5. (b) The first derivative of the
Faraday rotation with respect to field at T=57K, a temperature at which all of the
magnetic phases of Cu2OSeO3 can be observed. Dashed vertical lines and distinct
colors signify transitions from the (h)elical, (s)kyrmion, (c)onical, and (f)errimagnetic
phases. (c) Zoomed in region of the phase diagram where the skyrmion phase is
observed. See text for more details.

of β = 0.35±0.04 at Hc2. Our extracted critical temperature is in excellent agreement

with previous investigations. While our extracted value of β at Hc2 is in reasonable

agreement with the β = 0.367 of the 3D Heisenberg model and the β ≈ 0.37 - 0.39

found in previous experiments of Cu2OSeO3 [138, 168, 169].

Figure 5.6(b) displays the derivative of the Faraday rotation with respect to field

at T=57K, a temperature at which all of the magnetic phases of Cu2OSeO3 can

be observed. Dotted lines and distinct colors mark different magnetic phases. The

skyrmion phase manifests in the magnetic susceptibility, and therefore in the deriva-

tive of the Faraday rotation, as an additional minimum shown in pink in Figure 5.6(b).

Figure 5.6(c) displays the phase diagram in the vicinity of Tc in which the skyrmion
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phase can observed. Although our data possesses limited temperature resolution and

demagnetization effects of the sample have not been taken into account, the extracted

phase diagram, including the skyrmion phase, is in excellent agreement with those

reported in previous studies [124, 157].

5.3.2.2 THz Dynamics of the Uniform Mode

While one can obtain an approximate understanding of the magnetic phases of

Cu2OSeO3 by reducing the unit cell to four weakly coupled effective S=1 spins, an un-

derstanding of the excitation spectrum requires consideration of all unique exchanges

in conjunction with quantum fluctuations. Such a full quantum treatment has been

performed by Janson et al. [141] and Romhányi et al. [151], while corresponding neu-

tron scattering [150, 155], high field THz ESR [149], and Raman spectroscopy [148]

experiments reveal a striking agreement between the theoretical and experimentally

observed excitation spectrums.

Of particular importance to this work is the lowest energy excitation of Cu2OSeO3.

At the single tetrahedron level, the ground state is a three-fold degenerate triplet com-

prised of states with quantum numbers |S, Sz〉 = |1,−1〉, |1, 0〉, |1, 1〉. Each of these

states are themselves a coherent quantum superposition of four classical ground states

[141, 151]. Turning on interactions between tetrahedra at the mean field level mixes

single tetrahedron states with identical symmetry. The new resultant ground state is

then a non-degenerate superposition of the original |1, 1〉 triplet state and a higher
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energy |2, 1〉 quintet state with wavefunction |ψ〉t = cos (α/2) |1, 1〉 + sin (α/2) |2, 1〉,

where the variational parameter α controls the degree of mixing [141, 151]. One can

see that the ground state wavefunction of each tetrahedron is no longer a state of

definite angular momentum and states can only be labeled by their Sz components.

Including quantum fluctuations into the theory renormalizes the excitation spectrum.

In zero field the lowest energy excitation is a parabolicly dispersing Goldstone mode

associated with the reduction of symmetry from SU(2) to U(1) in the ferrimagnetic

state [141, 150, 151, 155]. Application of magnetic field gaps the Goldstone mode,

which is hereafter referred to as the uniform mode, by an amount proportional to the

field through Zeeman coupling [149, 171].

Figure 5.7 displays the results of our high field transmission experiments in which

the uniform mode is observed. Improved signal to noise and systematics were ob-

tained by applying a cosine window function to the data in the time-domain before

Fourier transforming. Here data is presented in the right hand channel of the circular

basis which, as discussed in the methods section above, is an eigenpolarization of

the system. We find that the uniform mode is only active to right hand circularly

polarized light, as expected for a magnetic excitation with a well defined magnetic

dipole moment of ∆Sz=-1 [151]. Figure 5.7(a) displays the magnitude of the complex

transmission of Cu2OSeO3 at T=5K as a function of magnetic field and frequency.

The uniform mode enters our accessible frequency range around H ≈ 5T and can be

seen to display an increase in resonant frequency and a narrowing width with increas-
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Figure 5.7: Results of our high field transmission experiments of Cu2OSeO3 presented
in the circular basis with only the right hand channe shownl. (a) Magnitude of the
complex transmission as a function of magnetic field and frequency at T=5K. A sharp
magnetic absorption is observed at low frequencies which we identify as the uniform
mode of the field polarized phase. (b)-(c) Corresponding (b) real χ

′

and (c) imaginary
χ

′′

parts of the complex magnetic susceptibility. Offsets of 0.1 per field have been
added for clarity.
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ing applied field. Figure 5.7(b)-(c) displays the (b) real and (c) imaginary parts of

the magnetic susceptibility extracted from the data shown in Figure 5.7(a) and Eq.

5.1. In order to extract the magnetic susceptibility, data were referenced to identical

field scans at T=100K, a temperature at which the absorption is no longer observed.

The implicit assumption here is that the dielectric properties of Cu2OSeO3 do not

appreciably change below 100K, typically a good assumption for such a large gap

insulator [172].

The data presented in Figure 5.7 were fit to the general Drude-Lorentz expression

given in Eq. 5.2 in order to extract the dynamical properties of the uniform mode.

Figure 5.8(a) displays the extracted resonant frequencies, f0 = ω0/2π, as a function

of magnetic field at T=5K, the temperature at which the highest resolution of our

measurement is obtained. Error bars are based on the quality of the fits. The dotted

line is a linear fit of the data as expected for Zeeman coupling. From this fit we obtain

an effective g-factor of geff = 2.08 ± 0.03, which is in excellent agreement with the

expected value for Cu2+ spins and the THz ESR measurements of Ozerov et al. [149]

which previously reported geff = 2.1 ± 0.1.

Additional information regarding the dynamics of this mode can be obtained by

examining the width of the excitation as a function of temperature and magnetic

field. In the limit of no disorder, the excitation width represents the decay rate

(Γ), or the inverse lifetime, of the uniform mode. Figure 5.8(b) displays the field

dependence of the width of the uniform mode at several temperatures. The width
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displays an unusual approximately linear decrease in the accessible field region of

our measurement for all temperatures, suggesting a dominant non-Gilbert damping

mechanism. The temperature dependence of the width of the uniform mode at fields

between 6T and 7T is shown in Figure 5.8(c). One can see that the width of the

uniform mode broadens with increasing temperature. Such thermal broadening can

be ascribed to enhanced decay through interactions with thermally excited magnons,

processes which become frozen out at low temperatures.

The functional dependence of the decay rate with temperature may reveal ad-

ditional information regarding the decay processes of the uniform mode. Magnon

decay through magnon-magnon interactions is a well studied topic dating back to the

earliest days of spin wave theory [173, 174, 175]. In the simplest case, the spin wave

Hamiltonian is completely harmonic, i.e. spin waves are non-interacting plane waves.

Interactions can be included by introducing anharmonic terms into the Hamiltonian

which couple magnon states. In general, such interaction terms do not conserve quasi-

particle number and one must rely on symmetry and conservation laws to determine

which decay channels are permitted [176]. In the simplest cases, the temperature

dependence of such decay processes can expressed as a polynomial expansion of tem-

perature with terms proportional to T and T2 for the lowest order three and four

magnon interactions respectively [174]. Terms proportional to T3 or greater result

from higher order magnon-magnon interactions that are neglected in our analysis. Far

less conventional are magnon decays at zero temperature, i.e. spontaneous decays,
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which arise from quantum, not thermal, fluctuations [176]. The spontaneous decay

rate will in general be a function of magnetic field stemming from field dependence

of the kinematic requirements [176, 177] which must be satisfied for decays to occur.

Therefore we can write the total decay rate of the uniform mode as a function of

both field and temperature as

Γ(T,H) = Γ0(0, H) + A(H)T +B(H)T 2 (5.6)

where the Γ0(0, H) is the spontaneous decay rate and the terms proportional to T and

T2 result from three and four magnon interactions respectively as described above.

Dashed lines in Figure 5.8(c) are fits of the data to Eq. 5.6. One can see that the

decay rate is well described by Eq. 5.6 and that an extrapolation of the fits to the

zero temperature limit reveals a finite spontaneous decay rate. Figure 5.8(d) displays

the field dependence of the extracted spontaneous decay rate obtained from the fits

shown in Figure 5.8(c). One can observe that the spontaneous decay rate displays an

approximately negative linear dependence with magnetic field in the accessible region

of our measurement. The decay processes of the uniform mode and the possible

origins of the spontaneous decay rate are further addressed in the discussion below.
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Figure 5.8: Dynamical properties of the uniform mode obtained from fitting the sus-
ceptibility shown in Figure 5.7 to Eq. 5.2. (a) Field dependence of the resonant
frequency at T=5K as well as a linear fit from which a geff = 2.08 ± 0.03 is obtained.
(b) Field dependence of the full width at half max (Γ) of the uniform mode at several
representative temperatures. (c) Temperature dependence of the Γ at several values
of magnetic field. Dashed lines are fits of the data by Eq. 5.6 which reveals a zero
temperature spontaneous decay rate. (d) Magnetic field dependence of the sponta-
neous decay rate obtained from fitting the data shown in (c). The dashed line is a
linear fit of the data is meant as a guide to the eye.
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5.4 Discussion

Dzyaloshinkii-Moriya (DM) interactions are obviously vital in the low energy de-

scription of chiral magnets. Yet, spin-wave calculations of Cu2OSeO3 [150, 151] have

thus far not included DM interactions, effectively treating the system as a ferromag-

net. However, DM interactions in Cu2OSeO3 have been suggested to be exceptionally

strong. Recent calculations predict the largest DM interaction, referred to as D4, to

range from |D4/J4| ≈ 0.5 [141] to |D4/J4| ≈ 1.95 [127], nearly twice the symmetric

exchange. Thus, it is reasonable to assume that DM interactions may have a more

profound impact in Cu2OSeO3 than other chiral magnets. As it is expected that DM

interactions modify the spin-wave spectrum at low energies near the Γ point [150, 151],

the exact region probed by low energy optical spectroscopy, we believe that many of

the observations made is this work can be attributed to such DM interactions.

In zero field, we observed a magnon with frequency f0 ≈ 2.03 THz (8.40 meV)

which we demonstrated was folded from the zone boundary to the zone center. It

should be noted that Cu2OSeO3 displays no change in either structural or magnetic

symmetry from Tc down to at least 10K [133], suggesting a different mechanism for

this folding. Assuming spin-wave calculations, which treat the unit cell as an FCC

lattice, have captured the symmetry of Cu2OSeO3 correctly, then we attribute this

new magnon excitation to DM interactions which thus far have not been included

in calculations. We speculate that this mode is permitted by symmetry to exist

at the Γ point but is perhaps silent in the spin-wave calculations due to vanishing
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intensity. However, DM interactions, which will presumably mix magnon states, may

give intensity to this otherwise silent mode. We hope this study will motivate future

spin-wave calculations which include the DM interactions to further investigate.

It is currently unclear why this mode does not display discernible field dependence,

but this may not be inconsistent with the mechanism described above. Spin-wave cal-

culations predict a degeneracy between two magnon bands at the R point, the higher

energy magnon being a singlet associated with rotating the spins of a single tetra-

hedra against the mean field exerted by neighboring tetrahedra [151]. Presumably

DM interactions will mix magnon states at this point, breaking this degeneracy. We

speculate that the band character at the extrema is then predominantly singlet, ex-

plaining the lack of field dependence. Again, spin-wave calculations which include

DM interactions or neutron scattering measurements in magnetic field, which have

not yet been performed, would be needed to investigate this further.

The helical, conical, and skyrmion phases of Cu2OSeO3 are stabilized by the

competition between DM and Heisenberg exchanges. In this work we showed that

such phases can be detected by high resolution polarimetry experiments. Here we

only remark that it is surprising that the observed Faraday rotation in the THz range

possesses no frequency dependence. One would generally expect that the THz spectra

would display signatures of the low frequency excitations of Cu2OSeO3, for instance

the helimagnon skyrmion [147] excitations or the uniform mode. Although these

excitations lie at lower frequencies than those probed by our measurements in zero or
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small magnetic fields, spectral signatures of these excitations are generally expected

to extend to higher frequencies. Instead we observe Faraday and Kerr rotations with

no discernible frequency dependence within our spectral range.

In large magnetic fields, we studied the field and temperature dependent dynamics

of the uniform mode of Cu2OSeO3. We found this excitation to surprisingly narrow

with increasing applied magnetic field, suggesting a dominant non-Gilbert damp-

ing mechanism. Such a narrowing with magnetic field is typically only observed in

these chiral magnets in weak magnetic fields before entering the field polarized phase

[147]. The origin of this narrowing is currently unclear. However, there have been

predictions of an additional weak antiferromagnet order that exists on top of the fer-

rimagnetic order in Cu2OSeO3 [141], and in MnSi type crystals in general [156], which

results from an additional spin canting that persists into the field polarized phase.

We speculate that the narrowing of this excitation in field may stem from overcoming

this canting in large fields, which would presumably reduce magnon coupling. We

hope our measurements will inspire future investigations into this effect.

We also discovered that the uniform mode of Cu2OSeO3 possessed a spontaneous

decay rate in the zero temperature limit. One may be quick to ascribe such a zero

temperature decay to inhomogeneous broadening from disorder. While we cannot

definitely rule out this possibility, the strong field dependence of the spontaneous

decay rate may be indicative of a different origin. In fact, there are several reasons

to suspect that such spontaneous decays are permitted in Cu2OSeO3. Spontaneous
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decays, which require anharmonic magnon interactions are, generally speaking, only

permitted if two criteria are met [176]. First, the spin order must be non-collinear due

to symmetry and angular momentum conservation [176, 178]. Second, the magnon

spectrum must be able to support magnon decays in a fashion that conserves both

energy and momentum. We address these points below.

DM interactions are a natural mechanism to obtain a non-collinear spin structure

and a coupling of transverse and longitudinal spin components, which may therefore

permit anharmonic magnon interactions. Additionally, as we mentioned above, the

uniform mode of Cu2OSeO3 is not a state with well defined angular momentum but

is instead a superposition of several angular momentum states. One would generally

expect that the quantum entangled nature of this state would result in zero point mo-

tion and therefore may lead to spontaneous decays. Finally, the proposed additional

antiferromagnetic order described above would likely also couple magnon states in

such a fashion to result in a spontaneous decay. Further theoretical and experimental

research is needed to investigate if these effects, or perhaps others, can account for

the observed spontaneous decay rate.

With such anharmonic terms possibly allowed the question remains how the uni-

form mode, the expected global minimum of the spin wave spectrum, can decay while

conserving energy. While the minimum of the magnon band is expected to be the

uniform mode at ~k=0 from spin wave theory, weak dipolar interactions, which are

always present in ferromagnets, raise the energy of the uniform mode in magnetic
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field by an amount proportional to the sample magnetization [177, 179, 180, 181].

The resulting band structure then contains minima at small momenta ~kmin > 0, the

exact value of which depends on sample geometry. Therefore, the uniform mode can

then in principle decay by splitting into magnons at the band minima assuming the

kinematic requirements are met. Such magnon splitting through dipolar effects have

been extensively studied in the similar compound YIG [177, 179, 180, 181]. Theoret-

ical treatments which include dipolar effects are needed to determine if such effects

can account for the observed decay of the uniform mode in Cu2OSeO3.

We also note that it is also generally possible to observe a broadening of a res-

onance peak by non-equilibrium effects, in the form of a four magnon anharmonic

interaction [182]. Such effects have been observed in microwave resonance experi-

ments. However, the fields used in our THz measurements are substantially weaker

than those of typical microwave resonance experiments and it is generally assumed

that our experiments are strictly in the linear response regime. Therefore, we remark

that while the spontaneous decay of the uniform mode may be caused by quantum in-

teractions, further measurements and investigations are required to fully understand

the origin of the spontaneous decay.
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5.5 Conclusion

In summary, high resolution terahertz transmission and polarimetry experiments

were utilized to probe the magneto-optics of the skyrmion insulator Cu2OSeO3. Ex-

periments performed throughout the magnetic phase diagram uncovered a new mag-

netic excitation which was shown to be folded from the zone boundary to the zone

center, detected the magnetic phases including the skyrmion phase, and unveiled

the unusual dynamics of the uniform precession of the field polarized phase. These

observations were generally attributed to the effects of DM interactions, which are

particularly strong in Cu2OSeO3, on the low energy magnetic response of this chiral

magnet. Our results underline the need for further investigation into the effects of

DM interactions in these systems.
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Chapter 6

Anomalous Exchange Between

Ho+3-Mn+3 Moments In

h-HoMnO3

6.1 Introduction

Low symmetry environments may drive spins to interact through unconventional

mechanisms. Such is the case in the hexagonal rare-earth manganites h-REMnO3, a

remarkable class of robust multiferroic and magnetoelectric materials which display

improper ferroelectricity with Tc > 600K and antiferromagnetism with TN ≈ 100K

[183]. Magnetism in these systems is hallmarked by both rare-earth and manganese

magnetic moments, the latter of which form a fully frustrated triangular lattice.
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As the rare-earth spins lie orthogonal to the Mn spins, the conventional Heisenberg

interaction between RE and Mn moments is expected to be negligible, suggesting the

presence of less conventional exchange mechanisms. Furthermore, the low symmetry

crystal structure of these materials, which contains as many as 5 magnetic sublattices,

permits an array of competing couplings as evidenced by the increasing complexity

of the magnetic phase diagram with increasing rare-earth spin [183]. Accordingly,

the role of the RE moments in the magnetic response of these materials has been the

topic of intense investigation [184, 185, 186, 187].

Of this class, HoMnO3 (HMO) is of particular interest as it possesses the largest

effective rare-earth magnetic moment (10.8µB) [188], making it a prototypical material

for studying magnetic exchange in hexagonal manganites [189, 190, 191, 192, 193].

To date, the role of the Ho moments in the magnetic response remains controversial

as many experiments have produced conflicting results [187, 194, 195, 196, 197, 198,

199, 200, 201, 202]. Additionally, few experiments have been performed at sufficiently

low temperatures when full magnetic order of both Ho and Mn sublattices is believed

to exist and Ho-Mn exchange is expected to be large enough to influence the ground

state.

In this chapter we present a systematic study of the low energy optical response

of HMO via time domain terahertz spectroscopy under applied magnetic fields. The

spectra is marked by an array of Ho (5I8) crystal field excitations as well as a antifer-

romagnetic resonance (AFR) of the Mn sublattice. We find the AFR splits asymmet-
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rically in applied magnetic fields with g-factors much larger than the expected Mn

only values. Additionally, we find a large renormalization of the g-factors at THo =

5K, the temperature at which the Ho spins are thought to order. We attribute these

effects to exceptionally strong and unconventional Ho-Mn interactions. We speculate

as to the form of this interaction and suggest that a previously proposed trigonal

anisotropy exchange mechanism may potentially cause such effects.

6.1.1 Crystal Structure and Magnetic Order of

HMO

Fig. 6.1 displays the hexagonal crystal structure of HMO which consists of alter-

nating layers of corner sharing MnO5 bipyramids and Ho ions which are stacked along

the c axis. At the ferroelectric transition, Tc = 875K, the MnO5 bipyramids buckle

due to structural trimerization [203, 204, 205] resulting in opposite displacements

along the c axis of 1/3 and 2/3 of the Ho ions (and neighboring O ions) respectively.

The symmetry of the lattice is then reduced to the non-centrosymmetric polar space

group P63cm with a net polarization of Pz = 5.6 µCcm−2 along the c axis [206]. In

this phase, the Ho ions occupy two symmetry distinct sites, the 2a and 4b positions

of the crystal lattice, with symmetries of C3v and C3 respectively.

The magnetic ordering of the Mn sublattice has been determined in recent years

[195, 196, 197, 198, 201, 202]. Constrained to lie in the a-b plane by anisotropy, the
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Figure 6.1: Crystal structure of HMO below the ferroelectric transition temperature,
Tc = 875K with views along the (left) c axis and (right) a axis of the crystal. In this
phase the symmetry is that of the non-centrosymmetric polar space group P63cm, in
which the two Ho+3 sites of the lattice posses different point group symmetries.

S=2 Mn moments form a fully frustrated triangular lattice [207]. At TN ≈ 75K the

Mn spins order, forming a noncollinear 120 degree structure with symmetry P6
′

3c
′

m.

Two additional zero field Mn sublattice transitions occur at TSR ≈ 40K (P6
′

3cm
′

) and

at THo ≈ 5K (P63cm), in which the Mn spins rotate by 90 degrees within the basal

plane.

Consensus on the zero field ordering of the Ho moments has developed over recent

years. Neutron [199] and x-ray [187] scattering measurements indicate that magneti-

zation of the Ho sublattices onsets near 30K. Group theory analysis [187, 200] suggests

that the P6
′

3c
′

m magnetic symmetry for THo < T < TSR permits ordering of both the

2a and 4b Ho sublattices, which are believed to order along the c axis due to uniaxial
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anisotropy. In this temperature region the Ho 2a spins align ferromagnetically within

one plane and antiferromagnetically between adjacent planes. The Ho 4b sites order

identically to the Ho 2a sites but in the opposite direction. Interestingly, the P63cm

symmetry below THo does not permit ordering of the Ho 2a sites, indicating they pos-

sibly become paramagnetic at low temperatures. The Ho 4b spins would then form

an antiferromagnetic ordering both within planes and between planes below THo.

Under applied magnetic fields HMO displays a phase diagram of tremendous com-

plexity [193, 195, 196, 197, 198, 208]. The majority of experiments are performed with

applied field along the hexagonal c direction. In this case TSR drops continuously and

can be tuned to THo with fields of ≈ 1T. A reentrant phase with symmetry P6
′

3

separates the intermediate and high temperature phases at larger applied fields. Fur-

ther increasing the field returns the system to the high temperature P6
′

3c
′

m symmetry

phase. Below THo as many as 5 metamagnetic transitions are observed below Hc ≈ 2T,

which presumably stems from the competition between various exchange couplings

of the magnetic sublattices [209]. Above Hc it is believed that full spin alignment of

both Ho sublattices exists as the magnetization saturates and the suggested P63c
′

m
′

symmetry permits a full ferromagnetic alignment of Ho spins [187, 200].
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6.1.2 The Mn AFR As A Probe Of RE-Mn Inter-

actions

Interactions between RE and Mn moments in hexagonal manganites can be probed

by examining the excited states of the Mn sublattice. As stated above, the Mn

sublattice forms a fully frustrated triangular lattice with the spins confined to the

a-b plane by strong planar anisotropy. The spin Hamiltonian of the Mn spins can be

written as:

H = J
∑

<i,j>

Si · Sj +D
∑

i

(Sz
i )

2 −H
∑

i

Sz
i (6.1)

where < i, j > refers to nearest neighbor pairs, J is the exchange, D is the easy plane

anisotropy, and H is the applied magnetic field along the c axis [198]. The excitation

spectrum of the Hamiltonian in Eq. 6.1 is well understood. In the k → 0 limit,

applicable to our optical measurements, the low energy spectrum consists of three

modes [210]. The first is a Goldstone mode which results from the broken rotational

symmetry due to the magnetic ordering of the lattice. The remaining two excitations

are a gapped antiferromagnetic resonance whose energy in magnetic fields applied

along the c axis are given by:

ω2
±(H) =

ab

2
− b(a− b)

2(a+ b
H2 ± bH

2(a+ b)2

√
H2b(b− 2a) + 2ab(a+ b)2 (6.2)
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where a = 2SMnD and b = 3SMnJ are proportional to the anisotropy and exchange

respectively. Eq. 6.2 is more easily understood if we expand it in the weak field limit

(valid for fields H < SMnJ ≈ 40T in HMO) as:

ω±(H) = 6
√
JD ± 2J

J + 2D/9
µBH (6.3)

One can see from Eq. 6.2 that these two modes are degenerate in zero field with

an energy gap of ω(0) = 6
√
JD but then split symmetrically in applied fields with

expected g-factors of g = ±2J/(J + 2D/9)) [211].

From Eq. 6.3 we see that the g-factors are bounded to be less than 2 for any

positive values of J and D. Indeed, in hexagonal manganites which do not possess

rare earth magnetism, e.g. YMnO3 or LuMnO3, the Mn AFR splits in magnetic field

with g ≈ ±2. However, hexagonal manganites which possess rare earth magnetism

have been found to display g-factors much larger than 2 at low temperatures. This

has been interpreted as stemming from RE-Mn interactions which act as an effective

magnetic field on the Mn sublattice [186]. With the exchange and anisotropy found

to be J = 2.44 meV and D = 0.28 meV respectively in HMO [198], one expects

g-factors of ± 1.95 from Eq. 6.3. Instead, Talbayev et al. [186] observed the g-factors

in HMO were much larger than 2 at 20K, although no values for the g-factors or

detailed temperature dependence of the g-factors was presented.
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6.2 Experimental Methods

Single crystals of HMO were grown via optical floating zone method. Two sam-

ples with the orientations of [-1,1,0] (d = 670 µm) and [0,0,1] (d = 594 µm) normal

to the sample surface were measured in this study. Sample were hand polished such

that they possessed plane parallel sides and a near mirror finish for optical transmis-

sion measurements. Time domain terahertz (TDTS) transmission experiments were

performed using a home built spectrometer with applied magnetic fields up to 6 T

in Faraday geometry (~kTHz ‖ ~Hdc) as detailed in Ch. 2. Data was taken in several

different geometries by varying the relative orientations of the incident THz magnetic

field (~hac) and static magnetic field (~Hdc) as compared to the c axis of the crystal.

Measurements performed in magnetic field utilized a rotating polarizer technique,

which allows for measurement of the sample’s response to two polarization directions

simultaneously [76]. Data taken in magnetic fields will be presented in the circular

basis for the sample with the c axis normal to the surface, which diagonalizes the

transmission matrix and is therefore the eigenpolarizations for this orientation.

6.3 Experimental Results

Figure 6.2 displays image plots of the imaginary, or dissipative, part of the index of

refraction, ñ = n + ik, as a function of temperature and frequency for the orientations

(a) ~hac ‖ c and (b) ~hac ⊥ c respectively. One can show that the axial symmetry of
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M 

Figure 6.2: Image plots of the imaginary part of the index of refraction as a function of
temperature and frequency for the (a) ~hac ‖ c and (b) ~hac ⊥ c geometries respectively.
Horizontal dashed lines denote the three zero field transition temperatures while ver-
tical dashed lines label the five observed Ho crystal field transitions identified at
temperatures T ≥ TN. The excitation labeled “M” is a well known antiferromagnetic
resonance of the Mn sublattice observed in all hexagonal manganites.
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the lattice constrains the zero field linear response transmission matrix such that

only these two orientations are unique [75]. We identify a total of 5 excitations at

temperatures T ≥ TN, marked by vertical dashed lines in Fig. 6.2, as crystal field

transitions of the Ho (5I8) ions as several excitations are in excellent agreement with

previously studies [186, 198] while others are reported here for the first time. Crystal

field transitions within the J=8 manifold of 5I8 Ho ions have been previously discussed

in a number of compounds [212, 213, 214, 215, 216]. The general expectation is a

series of magnetically active singlets and doublets with selection rules that depend

on the orientation of the THz ~hac with respect to the c axis of the crystal. It is

believed that the ground state of the Ho ions is a crystal field doublet [186]. However,

the 5I8 state is non-Kramers such that degeneracies are not protected by symmetry.

Furthermore, broken inversion symmetry allows otherwise forbidden electric dipole

transitions between crystal field states while additional complications arise due to

the slightly different point group symmetries of the two Ho ion positions. Therefore,

while 5 crystal field levels are identified above TN, new excitations with shifting

spectral weight appear as the temperature is reduced, resulting in a spectrum of

nearly degenerate clusters of excitations at the lowest temperatures. We neglect to

discuss the fine details of the spectra here. However, abrupt changes in the spectra

can be used to identify the three zero field transitions, which are marked by dashed

horizontal lines in Fig. 6.2, at temperatures of TN ≈ 72K, TSR ≈ 37K, and THo ≈

5.25K, which are in excellent agreement with previously reported values.

176



CHAPTER 6. ANOMALOUS EXCHANGE BETWEEN Ho+3-Mn+3 MOMENTS
IN h-HoMnO3

The excitation with strong temperature dependence labeled “M” in Fig 6.2 at ω0

≈ 1.2 THz in the ~hac ⊥ c orientation is the AFR of the Mn sublattice. In order to

extract the resonant frequency (ω0), width (γ), and oscillator strength (S) of the Mn

AFR, the spectra were fit to a general model of a Drude-Lorentz oscillator:

µ(ω) =
Sω2

0

ω2
0 − ω2 − iωγ

+ µ∞ (6.4)

where µ∞ is the high frequency permeability of the lattice. An additional linear

background was included in the fit to account for neighboring Ho ion crystal field

levels.

Fig. 6.3(a) displays the resonant frequency of the AFR as a function of temper-

ature, extracted by fitting the spectra with Eq. 6.4. One can see that the AFR

frequency increases linearly (dashed line in Fig. 6.3) as the temperature is reduced.

This is in contrast to other hexagonal manganites in which the AFR frequency has

been empirically found to scale with T3 [211]. Deviations from this power law behavior

were only observed at low temperatures, presumably caused by magnetic fluctuations

of the rare-earth moments. The fact that the AFR frequency is not described by the

expected T3 power law over any temperature range in HMO may suggest that Ho

moment fluctuations onset at TSR in agreement with previous reports [187, 199].

Fig. 6.3(b) displays the temperature dependence of the width (blue, left axis) and

intensity (red, right axis) of the AFR. One can see that for the temperature range
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a) b) a)

Figure 6.3: Temperature dependence of the MN AFR (a) resonant frequency and (b)
width and intensity. The dashed line in (a) is a linear fit of the data while the dashed
lines in (b) are meant as guides for the eye.

THo < T < TSR the AFR gains intensity and considerably narrows. However, at

THo the AFR is dramatically damped and the intensity is significantly reduced. It is

unclear if such effects stem from the reorientation of the Mn sublattice which occurs

at THo or if spectral weight is reduced through hybridization with nearby Ho crystal

field levels which become nearly degenerate with the AFR below THo.

In order to more fully characterize the spectra, measurements were performed as a

function of magnetic field as described in Sec. 6.2. Fig. 6.4 displays image plots of the

dissipative part of the index of refraction as a function of magnetic field at 20K. The

right and left columns of Fig. 6.4 display the response to right and left hand circular

polarizations respectively. Figs. 6.4(a-b) displays the data for the entire frequency

range of our measurement. One can see the spectra is exceptionally complex with

strong dissipation from Ho crystal field levels below ≈ 1 THz and at ≈ 1.5 THz.

The excitation near 1.25 THz whose energy changes linearly with magnetic field is
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Figure 6.4: Field dependent spectra of HMO for (a) right and (b) left hand circular
polarizations respectively shown for the entire frequency range of our measurement.
(c-d) Identical plots in the frequency range of the Mn AFR. Black triangles represent
the resonant frequencies extracted from fitting the data as described in the text.

the AFR of the Mn sublattice. Figs. 6.4(c-d) displays the same data over a smaller

frequency range where the Mn AFR is observed.

One can immediately see that the two branches of the Mn AFR possess distinct

selection rules to right and left hand circular polarizations, confirming that the circu-

lar basis is the correct basis for spectroscopy in HMO. Additionally, strong circular

dichroism can be seen in the image plots of Figs. 6.4(c-d) as the dissipation is sig-

nificantly stronger in the left hand channel than in the right. In a similar manner
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Figure 6.5: Resonant frequency of the Mn AMR as a function of magnetic field. Red
squares and blue circles are the extracted resonant frequencies found by fitting the
field dependent spectra for right and left hand circularly polarized light respectively.
An unexpected asymmetric splitting in which the high energy branch possesses a
significantly lower g-factor than the low energy branch is observed. This asymmetry
extends to negative fields as well such that a kink in the AFR g-factor is seen.

as the zero field data, these spectra were fit to Eq. 6.4 to extract the magnetic field

dependence of the dynamical properties of the AFR. Black triangles in Figs. 6.4(c-d)

mark the resonant frequencies of the AFR found via fits of the spectra.

The g-factors of the AFR can be found by fitting the extracted resonant frequencies

as a function of magnetic field. To reiterate, the expectation from the Hamiltonian

given in Eq. 6.1 is a symmetric splitting of the two branches in magnetic field with g-

factors of g ≈ ±2. While g-factors greater than 2 are indicative of RE-Mn interactions

the splitting is still expected to be symmetric, with identical g-factors for the high and

low energy branches. Fig. 6.5 displays linear fits of our extracted resonant frequencies
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a) b) 

Figure 6.6: (a) Temperature dependence of the AFR g-factors excited by right and
left hand circular polarizations. (b) Temperature dependence of the difference in g-
factors found by subtracting the left hand g-factors from the right hand g-factors at
each temperature.

at 20K. One can see that g-factors in HMO are unexpectedly asymmetric, with the

high energy branch possessing a g-factor that is significantly lower than that of the

low energy branch. Interestingly, this asymmetry extends to negative fields as well,

such that there is a kink in the AFR g-factor when the field is turned from positive

and negative. To the best of our knowledge, such features have not been previously

observed in any other hexagonal manganite.

More information can be obtained by examining the temperature dependence of

the g-factors in HMO. Fig. 6.6(a) displays the temperature dependence of the g-

factors for right and left hand circular polarizations obtained in positive magnetic

fields. Care was taken to only fit data within the low field phase of HMO. At tem-

peratures near TSR, g-factors near the Mn only value of 2 are observed. As the

temperature is decreased the g-factors monotonically increase, a trend which is con-
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sistent with other hexagonal manganites which possess rare-earth magnetism [211].

However, unlike other manganites, a large renormalization of the g-factors is observed

at THo. The effect is more easily observed in the left hand channel as the AFR is

well separated from nearby Ho crystal field levels. In this case we observe a dramatic

increase of nearly 40% at THo, suggesting strong interactions between Ho and Mn

spins. A similar renormalization is also observed in the right hand channel as well.

This effect can be attributed to a large increase in the effective internal fields at THo.

At this transition the Ho sublattices becomes easily magnetized as evidenced by the

observed peak in the susceptibility at THo [183]. The Mn sublattice then experiences

an increased effective magnetic field which causes the large change in g-factor at the

transition. Fig. 6.6(b) displays the temperature dependence of the difference in g-

factors of the high and low energy branches of AFR, defined as ∆g = gR−gL. One can

see that the asymmetry of the g-factors appears to onset near TSR which is further

evidence of the onset of Ho spin fluctuations at this transition. As the temperature

is reduced the asymmetry increases before saturating at ∆g ≈ 1 at 15K.

6.4 Discussion

Our experimental results have demonstrated that exceptionally strong and uncon-

ventional Ho-Mn spin interactions exist in HMO. In general, the low symmetry struc-

ture of HMO can in principle support a wide array of magnetic exchange mechanisms
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between the Ho and Mn sublattices. One generally expects conventional Heisenberg

exchange to be negligible in the ground state as Ho and Mn moments are orthogonal

to one other. Instead, the broken inversion symmetry of the crystal lattice and the

orthogonality of Mn and Ho spins suggests that antisymmetric Dyzaloshinkii-Moriya

(DM) coupling [46, 111] may be the dominant exchange, which is believed to be the

case in both ErMnO3 [184] and YbMnO3 [185]. However, the symmetry of the AFR

g-factors from positive to negative fields suggest that the Ho-Mn interaction scales

with the absolute value of magnetic field and is therefore not consistent with DM

interactions.

However, more exotic exchanges have been proposed in HMO. For instance, it was

recently demonstrated that much of the phase diagram, including the Mn sublattice

reorientations, could be reproduced by the inclusion of a symmetry permitted fourth

order trigonal anisotropy exchange mechanism in the free energy of the form:

HK = K
∑

ij

Sz
HiS

y
Mj[3(S

x
Mj)

2 − (Sy
Mj)

2], (6.5)

where SH and SM refer to the Ho and Mn spins respectively [48]. Such an exchange

mechanism may explain the asymmetric splitting as well as the symmetry from pos-

itive to negative fields. One can see that the exchange mechanism in Eq. 6.5 is

proportional to Sz
Ho. If the Ho spins remain paramagnetic or easily polarizable with

magnetic field then we can replace Sz
Ho with its expectation value which will be pro-
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portional to the magnetic field. Such a term would then have a definite sign for both

high and low energy branches of the AFR, thereby shifting the otherwise symmetric

splitting to either higher or lower energy depending on the sign. As of the writing

of this thesis, we are currently collaborating with Prof. Tchernyshyov’s theory group

to determine if this unusual exchange mechanism, or perhaps others, can explain our

experimental results.

6.5 Conclusion

In summary, high precision time domain terahertz experiments were used to probe

the field dependent FIR spectra of the multiferroic HoMnO3. Through careful exam-

ination of the temperature and field dependence of an antiferromagnetic resonance of

the manganese sublattice, we uncovered evidence of exceptionally strong Ho-Mn spin

interactions. The g-factors of this excitation were found to be asymmetric between

high and low energy branches and significantly larger than the expected Mn only

value. Furthermore, we observed a dramatic renormalization of the g-factors of both

branches at the Ho spin ordering temperature. We speculated that these effects may

be consistent with an unusual fourth order trigonal anisotropy exchange mechanism

that was previously proposed in HMO. The analysis presented in this work provides

a paradigm for uncovering similar unusual spin interactions between rare-earth and

manganese spins in other hexagonal manganites.
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Chapter 7

A Measure Of Monopole Inertia In

The Quantum Spin Ice Yb2Ti2O7

7.1 Introduction

An important and continuing theme of modern solid state physics is the realization

of exotic excitations in materials (e.g. quasiparticles) that have no analogy (or have

not yet been observed) in the actual physical vacuum of free space. Although they are

not fundamental particles, such quasiparticles do constitute the most basic descrip-

tion of the excited states of the ”vacuum” in which they reside [2, 40, 217]. In this

regard the magnetic textures of the excited states of spin ices, magnetic pyrochlore

oxides with dominant Ising interactions, are proposed to be modeled as effective mag-

netic charge monopoles [218, 219]. Recent inelastic neutron scattering experiments
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have established the pyrochlore material Yb2Ti2O7 as a quantum spin ice, where in

addition to the Ising interactions there are substantial transverse terms that may

induce quantum dynamics and - in principle - coherent monopole motion [220, 221].

In this chapter a comprehensive study of the dynamic magnetic susceptiblity of

Yb2Ti2O7 is reported. This project began as a time-domain THz study performed by

a former postdoctoral researcher in our group LiDong Pan. His data suggested a sign

change in the real part of the magnetic susceptibility at low frequencies which can only

be accounted for in a model in which the magnetic monopols of Yb2Ti2O7 possess an

inertial mass. However, the frequency of this sign change could not be identified as it

is below the accessible frequency range of time-domain THz spectroscopy. Therefore,

I performed microwave cavity perturbation experiments on Yb2Ti2O7 in order to

determine the magnitude and sign of the magnetic susceptibility in the microwave

range, thereby constraining the fit of the full frequency profile of the susceptibility. All

THz data aquisition and analysis was performed by LiDong Pan, which is presented

here as it is was the impetus for performing microwave measurements and constitutes

the principle part of our main results. However, I performed the microwave cavity

perturbation experiments as well as developed a novel data analysis procedure in

which magnetic and electric effects are separated in a fashion that is independent of

the geometrical factors of the cavity and sample.

Together our results observe a magnetic susceptibility that is consistent with a

model of monopole motion and a magnetic monopole “conductivity” which can be
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defined and measured. Using the unique phase sensitive capabilities of our techniques,

a sign change in the reactive part of the magnetic response is observed. In generic

models of monopole motion this is only possible through introducing inertial effects,

e.g. a mass dependent term, to the equations of motion. Analogous to conventional

electric charge systems, measurement of the conductivity’s spectral weight allows for

the determination of the magnetic monopole mass, which is found to be approximately

1800 electron masses. These results establish the magnetic monopoles of quantum

spin ice as true coherently propagating quasiparticles of this system.

7.1.1 Yb2Ti2O7 As A Quantum Spin Ice

Quantum spin ices have received considerable recent attention in the search for

quantum spin liquids, as a possible realization for this novel state of matter in which

highly quantum entangled spin degrees of freedom evade conventional long range order

down to the lowest temperatures [217]. Magnetic pyrochlore oxides, in which magnetic

ions sit at the vertices of corner sharing tetrahedra, provide a three dimensional system

where spin ice states are found, when provided with appropriate spin interactions and

anisotropy [222]. In classical spin ice materials, such as Dy2Ti2O7 and Ho2Ti2O7,

large classical spins are forced by strong crystal field anisotropy in the local <111>

direction, with a primarily ferromagnetic Ising spin interaction. The resulting ground

state obeys the Bernal-Fowler ice rules, where each tetrahedron adopts the so-called

“two-in, two-out” configuration. This is equivalent to the proton configurations in
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Figure 7.1: Schematic illustration of a quantum spin ice with deconfined monopole
and antimonopoles (shown as red and blue spheres), together with incident and trans-
mitted terahertz pulses. In the pyrochlore lattice, magnetic rare earth ions sit at the
vertices of corner-sharing tetrahedra, which are shown as grey spheres in the figure.

water ice (two-close, two-far) and hence the classical spin ices are found to similarly

possess an extensive low temperature residual entropy. Flipping a single spin (e.g, a

dipole excitation) in the spin ice creates a pair of magnetic monopoles in neighboring

tetrahedra, which can then subsequently be separated by additional spin flips resulting

in deconfined monopoles [218, 219].

The slow dynamics of the monopoles in the classical spin ices are still a subject

of investigation, but they are believed to be driven by the strong fluctuating trans-

verse component of the dipolar field arising from thermally fluctuating neighboring

spins [223]. In contrast, in materials like Yb2Ti2O7, with the addition of finite trans-

verse terms in the spin Hamiltonian, monopole dynamics become inherently quantum

and change the situation dramatically [224, 225, 226]. The exchange interaction pa-

rameters for the magnetic pyrochlore oxide Yb2Ti2O7 have been obtained by recent
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inelastic neutron scattering (INS) at high magnetic fields [220], and later confirmed

by other experimental and numerical studies [6, 221, 227]. While the largest interac-

tion is Ising and ferromagnetic, significant non-Ising contributions exist. The crystal

field structure of the material allows the well isolated ground state Kramers doublet

to be treated as an effective spin 1/2 moment in the low energy sector [228, 229].

These results establish Yb2Ti2O7 as an exchange quantum spin ice. Although the

exact nature of its ground state is under debate [6, 220, 230, 231, 232, 233, 234, 235],

at temperatures above a first order transition (Tc ≈ 260 mK), Yb2Ti2O7 is believed

to be in a spin ice-like state, but one whose dynamics are determined by non-Ising

terms, which allow the quantum tunneling of magnetic monopoles between tetrahe-

dra. Despite the advances in understanding its behavior, there has been as of yet

no definitive evidence for spin ice like correlations in Yb2Ti2O7. With quantum spin

liquids lacking an experimentally verified smoking gun, the characterization of the

magnetic monopoles in the quantum spin ice state is a relevant and urgent task.

7.1.2 Ryzhkin model

In analogy with previous work done on proton disorder and dielectric relaxation

in water ice, Ryzhkin [218] derived an expression for the magnetic relaxation through

monopole motion in classical spin ices. Starting from the formalism for the local
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entropy production in an irreversible process, he derived the monopole flux to be

Ji = µni,m(qi,mH− ηiΦΩ) (7.1)

where i refers to positive and negative monopole charge species, µ is the monopole

mobility, ni,m is the monopole density, and ηi = ±1. qi,m is the monopole magnetic

charge which is set by the condition that the spin dipole moment µm equals qma/2

where a is spin-spin bond length. Ryzhkin’s expression differs from a simple transport

model of free charge by the inclusion of the second term which includes a dependence

on a configuration vectorΩ that is related to the system magnetization asΩ = M/qm.

Finite magnetization reduces the entropy and provides a thermodynamic force that

opposes the current. This reaction force originates in the configurational entropy of

the monopole vacuum and prohibits a true dc current even in the absence of sample

boundaries. Φ = 8√
3
akBT is a constant of proportionality derived in the context

of water ice models that retains its relevance here [236]. As magnetic relaxation

proceeds in a spin-ice through monopole motion, the configuration vector is related

to the history of the monopole current as:

Ω(t)−Ω(0) =

∫ t

0

dt′(J+ − J−). (7.2)

Substituting the Fourier transform of Eq. 7.2 into Eq. 7.1 yields a Debye-like
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relaxation form for the complex susceptibility:

χm(ω) =
q2m/Φ

1− iωτ
(7.3)

with a relaxation time τ = qm/(nmµΦ) in which nm is the total (thermally excited)

monopole density n+m+n−m. The leading dependence of the susceptibility in powers

of 1/(−iω) is a diagnostic for the dominant term in the equations of motion. Eq.

7.3 is characterized by a 1/(−iω) fall-off at high frequencies that reflects a dominant

dissipative response. At low frequencies χm is constant and real showing (e.g. the

zeroth power of 1/(−iω)) that the dominant effect in the dc limit comes from the

reaction force. Note that both real and imaginary parts of Eq. 7.3 will be positive

for all frequencies e.g. there is no sign change in χ′
m.

7.1.3 Extended Ryzhkin model

Although such Debye-like relaxation has been found to be a good description

of the relaxation processes present in classical spin ice (Ho2Ti2O7 and Dy2Ti2O7

) at the low (kHz) frequencies used in most experiments, it is not strictly speak-

ing a fully mathematically consistent response function as it does not fall off fast

enough at high ω to satisfy, for instance, the zero temperature first moment sum

rule
∫∞
0
dω ωχ′′

mαα(q, ω) = 1
2πN~2

〈[Sα
q , [H, Sα

−q]]〉 for local spins [237, 238]. Here

Sα
q =

∑
j e

−iq·RjSα
j is the Fourier transform of lattice spin operators and H is a
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spin Hamiltonian. The evaluation of the first moment sum rule depends on the de-

tails of the exchange interaction, but being equivalent to a double commutator of the

spin Hamiltonian with spin operators, will yield some finite value.

A similar violation of the sum rule is a well-known defect of the Debye model in

its application to electronic charge relaxation in dielectrics [239]. In general, the first

moment of the electric susceptibility must obey the sum rule
∫∞
0
dω ωχ′′

e = π
2
nee2

me

where ne is the total charge density and me the electron mass. Similar to the Ryzhkin

model, the Debye model does not fall off fast enough at high ω to satisfy the sum rule.

The addition of inertial terms to the Debye model in the classical equations of motion

does give χe a high frequency asymptote that goes like 1/(−iω)2 which insures its

first moment’s integrability [239]. Although at low frequencies in strongly dissipative

media, inertia can be neglected, at high enough frequencies it must become relevant

to satisfy the sum rule. Frequently in optical studies of charge systems a restricted

low energy sum rule is applicable, where the upper limit of integration is taken to be

finite, but then ne is replaced by the density of electrons in the low energy sector, and

me is replaced by a mass that is renormalized by band and/or interaction effects.

Therefore, for spin ices, irrespective of their exact form, effects beyond Ryzhkin’s

treatment must become relevant at high enough frequency to satisfy the first moment

sum rule. Inertial effects must be included to understand magnetic relaxation in

the quantum spin ices. In a similar fashion to charge in dielectrics, the Ryzhkin

expression Eq. 7.3 can be amended by including a phenomenological inertial term to
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Eq. 7.1 as:

Ji = µni,m(qi,mH− ηiΦΩ)− J̇i/γ (7.4)

where γ is a current relaxation rate.

From the standard definitions, qm/µ = γm. In what follows, m will be an effective

inertial mass which arises in the low energy sector through non-Ising exchanges that

lead to monopole tunneling. There is no more contradiction inherent in using a

classical model to describe a quantum spin ice than there is to use a classical model

to describe the conduction of thermally excited charge in a semiconductor where

classical inertia also arises through inherently quantum tunneling. Solving in the

same fashion as in the above Ryzhkin case gives a classical equation of motion, the

terms of which are instantly familiar and map to the form of a damped harmonic

oscillator:

M̈+ γṀ+
nmΦ

m
M =

nmq
2
m

m
H. (7.5)

Solving for the susceptibility we have:

χm(ω) =
q2m/Φ

1− iωγm/nmΦ− ω2m/nmΦ
. (7.6)

which in terms of τ and γ reads:

χm(ω) =
q2m/Φ

1− iωτ − ω2τ/γ
. (7.7)
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With appropriate substitutions (ω2
0 = nmΦ/m and ω2

p = nmq
2
m/m) Eq. 7.6 can be

seen to be equivalent to the Drude-Lorentz equations that describe the response of a

classical electric charge oscillator.

χm(ω) =
ω2
p

ω2
0 − ω2 − iωγ

. (7.8)

In the limit where γ → ∞ Eq. 7.7 recovers Ryzhkin’s expression for Debye-like

relaxation. In this limit the zero crossing in χ′ will move to infinity.

From Eq. 7.7 for the susceptibility and in analogy with charge conductivity we

can define a magnetic monopole conductivity κ(ω) = −iωχm(ω) = κ′ + iκ′′. Due

to mapping of our expressions Eqs. 7.6 and 7.7 to the Drude-Lorentz model, the

magnetic conductivity must obey a low energy sum rule where

∫ ω∗

0

dω κ′(ω) =
π

2

nmq
2
m

m
. (7.9)

Here ω∗ is a energy cut-off that must be smaller than a scale on the order of the Ising

exchange parameter Jzz, but much larger than γ. Note that this is extension to the

usual first moment sum rule for spin systems as κ = −iωχm. It is also important

to note that this monopole conductivity κ is not the same as the spin conductivity

which is defined as the response of a spin current to the magnetic field gradient in

the small momentum limit [240, 241].

Fig. 7.1.3 plots the results of function Eq. 7.7 for both susceptibility χm and the
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Figure 7.2: Plots of the susceptibility χm and the magnetic conductivity κ in the
extended Ryzhkin model with parameters 1/τ = 4 and γ = 16 on both linear, log,
and log-log scales.
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magnetic conductivity κ for the range of τ and γ which is believed to be relevant to

Yb2Ti2O7. Here the example parameters 1/τ = 4 and γ = 16 are used and plotted

on both linear, log, and log-log scales. These plots highlight the utility of analyzing

both of these quantities. We see that the dissipative part of the susceptibility χ′′

peaks near 1/τ , which is the usual Debye-like relaxation behavior. In χm the scale of

γ appears only as a subtle change in the high frequency power law, which manifests

itself as a change of slope on the log-log plot. An experimentalist doing typical low

frequency susceptibility or neutron scattering experiments (that measure only χ′′
m)

would be likely to be completely unaware of the high frequency scale where inertial

effects become relevant. The existence of inertial effects are manifest due to the sign

change in χ′
m (which are absent in the Debye-like Ryzhkin expression). The magnetic

conductivity κ exhibits both frequency scales prominently. The imaginary part of κ

exhibits a negative extremum at 1/τ . γ is seen as the frequency where κ′ > κ′′ and κ′′

exhibits a maximum. The upper right panel of κ on linear scale demonstrates that if

one is measuring at frequencies well above 1/τ the response will be indistinguishable

from a Drude-like transport and appear as a monopole metal. In that case the width

of the peak in the real part of the monopole conductivity would give γ.

The lower left panel also demonstrates that the bounding behavior of χm is a power

law in 1/(iω), where the power indicates what term in the classical equation of motion

is dominant at a particular frequency. This is because there are three “response”

terms in the equation of motion, which leads to three terms in the denominator of the
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susceptibility that can be written as increasing powers in iω. In different frequency

regimes, different terms on the bottom of Eq. 7.7 dominate. Distinct frequency

regions of 1/(iω)0, 1/(iω), and 1/(iω)2 are therefore apparent in the plots of Fig.

7.1.3.

7.2 Experimental Methods

Single crystal Yb2Ti2O7 samples were grown via the optical floating zone method.

Samples were cut into discs and then hand polished on both sides such that they

possessed plane parallel sides with a near mirror finish. TDTS experiments, as de-

scribed in Ch. 2, were performed by LiDong Pan down to 1.4 K, which is well below

the peak in the low temperature magnetic heat capacity and within the purported

quantum spin ice regime [221] (and well below the estimated scale of the mean-field

Tc ≈ 3.4 K [220]). Microwave cavity perturbation technique (MCPT) experiments

were carried out by myself in the fashion described in Ch. 3. Given the separation

of frequency and temperature scales of the magnetic and lattice degrees of freedom,

the complex magnetic response can be extracted from both techniques. We make the

reasonable assumption for an insulator at low temperatures and frequencies the index

of refraction n′ from dielectric effects is real, with little temperature and frequency

dependence below 20 K.
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7.3 Experimental Results

7.3.1 TDTS Results

Fig. 7.3.1 displays the results of the TDTS measurements on Yb2Ti2O7. Fig.

7.3.1(a) shows an image plot of the frequency and temperature dependence of the

magnitude of the complex transmission T̃ (ω) in zero field. The spectra are normalized

by a scan at 50 K, a temperature well above the onset of magnetic correlations. An

increase in the low energy dissipation is observed as temperature decreases which is

unusual for a large gap insulator. Such an effect is unlikely to come from lattice

effects, as the lowest infrared active optical phonon in Yb2Ti2O7 has an energy of

2.25 THz. Moreover, there are no reported dielectric anomalies at low temperatures

[229, 242]. The feature is most pronounced for frequencies below 0.4 THz, and for

temperatures below 10 K. This trend is reminiscent of the low frequency magnetic

susceptibility, as this temperature range coincides with the onset of spin correlations

in Yb2Ti2O7 and the eventual crossover to the quantum spin ice state. The energy

scale of this feature matches the scale of the spin interactions obtained from INS

[220].

To further demonstrate the magnetic nature of the low frequency absorption,

Fig. 7.3.1(b) shows the magneto-optical TDTS spectra of Yb2Ti2O7 in the Voigt

geometry. The data shows the THz transmission amplitude as a function of frequency

and applied magnetic field taken at 1.6 K, normalized by the spectrum at 7 T. The
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Figure 7.3: (a) The intensity plot of the transmission amplitude from TDTS mea-
surements in zero field, as a function of frequency and temperature, normalized with
the spectrum at 50 K. (b) Intensity plot of the transmission amplitude as a function
of frequency and field, normalized with the spectrum at 7 T. The data in this plot
are measured at 1.6 K in Voigt geometry where hac ‖ Hdc ⊥ kTHz.

field dependence of the absorption features proves the magnetic origin of the zero

field dissipation at low frequencies. The behavior of this system in magnetic field has

been studied in detail recently [220, 227, 230]. At high fields, Yb2Ti2O7 is in a spin

polarized state, where excitations are magnon and two-magnon excitations (two dark

lines diagonally crossing Fig. 7.3.1(b)). As the field decreases, those dipole excitations

crossover to weakly confined quantum string-like excitations that connect monopole

- antimonopole pairs, which is signified by their increasing effective g-factors below

3 T [227]. Eventually the magnetic resonance modes lose their sharp structure and

the spectra exhibit a broad, diffuse feature at zero field which is consistent with the

magnetic monopoles being deconfined in the zero field quantum spin ice state. Below

it is shown that, despite its apparently broad profile, this absorption exhibits features

199



CHAPTER 7. A MEASURE OF MONOPOLE INERTIA IN THE QUANTUM
SPIN ICE Yb2Ti2O7

that can be connected to coherent monopole transport.

7.3.2 MCPT Results

Microwave cavity perturbation measurements were performed on several Yb2Ti2O7

samples to measure the complex magnetic susceptibility at a frequency lower than

that available with TDTS. As will be shown below, these measurements will aid in

constraining the Kramers-Kroning consistent fits of the complex magnetic suscepti-

bility. As detailed in Ch. 3, the complex frequency shift of the TE011 mode of a cavity

resonator upon introduction of a small perturbative sample placed at the magnetic

field antinode is given by:

∆ω̃

ω0

= −γgζ (7.10)

where γg is the geometrical factor that depends on the resonance mode of operation

as well as the ratio of sample to cavity volume. As previously detailed, ζ is the

complex generalized electromagnetic susceptibility of the sample which will possesses

contributions from both the sample’s electric (χe) and magnetic (χm) susceptibilities.

We assume that our cavity resonator measurements of insulating Yb2Ti2O7 are

strictly in the depolarization regime, where the microwaves completely penetrate the

sample dimension a, in which case the sample’s electromagnetic susceptibility can be
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well approximated by:

ζ ≈ χm

1 +NMχm

+
1

10

χm + 1

(1 +NMχm)
2 (k0a)

2χe (7.11)

where NM is the demagnetization factor of the sample and k0 = ω/c is the microwave

wavevector outside the sample. For the Yb2Ti2O7 samples investigated here, we

estimate that k0a ≈ 0.2. Much like our TDTS measurements, we can separate the

electric and magnetic contributions in Eq. 7.11 by assuming magnetic correlations do

not onset until temperatures T < 18 K. However, our conclusions are not particularly

sensitive to the choice of temperature scale, given that majority of the magnetic

susceptibility signal onsets below 10 K.

For temperatures T > 18 K, for which we assume χm = 0, plugging Eq. 7.11 into

Eq. 7.10 gives:

∆ω̃

ω0

= −γg
10

(k0a)
2χe, T > 18 K (7.12)

thus the frequency shift in this temperature range results from the sample’s (primarily

real) electric susceptibility. Due to the insulating nature of Yb2Ti2O7, without any

dielectric anomalies at low temperatures, we can assume that below T = 18 K the real

part of χe is constant while the imaginary part is zero. In the present case, because

χm ≪ 1 and NM ≈ 1
2
the second term in Eq. 7.11 is approximately constant below
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Figure 7.4: Temperature dependence of the real (a) and imaginary part (b) of the
complex frequency shift for sample A (red) and sample B (blue), as well as the temper-
ature dependence of the extracted real (c) and imaginary (d) magnetic susceptibility.
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18 K. Therefore the electromagnetic susceptiblity below 18 K can be written:

∆ω̃

ω0

= −γg
χm

1 +NMχm

+ constant, T < 18 K. (7.13)

Thus, χm can be extracted using Eq. 7.13 if χe, γg, and NM are all known.

In our case we extracted the electric susceptibility by linearly extrapolating our

THz data into the low frequency microwave regime which we expect to be a valid

method for a good electrical insulator like Yb2Ti2O7. Our extrapolations result in

values of χe ≈ 52 and χe ≈ 66 at room temperature and 18 K respectively. We can

then use the shift in complex frequency from room temperature to 18K of the loaded

cavity to relate a change in ∆ω to a change in χe over this range to find γg:

∆(
∆ω̃

ω0

) = −γg
10

(k0a)
2∆χe. (7.14)

The absolute shift between the unloaded and loaded cavity was not used in order to

reduce the error caused by a resonant frequency offset that results from removal and

replacement of the cavity’s bottom plate when inserting a sample. The demagnetiza-

tion factors of our samples were estimated from the sample’s dimensions. As it was

assumed that the magnetic susceptibility of the sample was negligible above 18 K,

the magnetic susceptibility below 18 K could then be calculated from Eq. 7.13 when

using the relative shift between the 18 K resonant frequency and the low temperature

value.
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Sample Dimensions (mm) Geo. Factor γg Demag. Factor NM

A 0.95 × 1.015 × 0.582 5.6×10−4 0.49
B 0.95 × 1.015 × 0.479 4.9×10−4 0.52

Table 7.1: Dimensions, extracted geometrical factors, and calculated demagnetization
factors of the two Yb2Ti2O7 samples measured with our cavity resonator technique.

To ensure accuracy of the microwave measurements, two Yb2Ti2O7 samples with

different thickness were measured and the results compared to each other. Table 7.1

summarizes the dimensions, measured geometrical factors, and calculated demagne-

tization factors of the two samples. After measuring, sample A was polished to a

thickness of 0.479 mm and remeasured as sample B. Figs. 7.4(a) and (b) show the

temperature dependence of the change of the resonant frequency and bandwidth from

the two samples respectively. The superconducting transition of the cavity is seen

at T ≈ 8.5 K, above which there is significantly reduced resolution. The reduced

resolution above the cavity’s transition does not significantly effect our extracted low

temperature susceptibility as the signal was small above 8.5 K. Strong signatures

from the sample’s magnetic correlations are seen below T ≈ 8 K in both the reso-

nant frequency and bandwidth of the loaded cavity. The difference in magnitudes of

the shifts from the two samples are caused by different geometrical and demagnetiza-

tion factors. However, the general shape of the curves and even more importantly, the

direction of the shift is consistent between measurements. These data and the param-

eters summarized in table 7.1 were then used to extract the magnetic susceptibility

of each sample.

204



CHAPTER 7. A MEASURE OF MONOPOLE INERTIA IN THE QUANTUM
SPIN ICE Yb2Ti2O7

In Fig. 7.4(c) and (d) we plot the temperature dependence of the extracted real

and imaginary magnetic susceptibility from out microwave measurements. The data

shows a general trend of increase upon cooling, which is what one expects for this

material. We found less than a 10% difference in the absolute magnetic susceptibilities

between the two samples in the temperature range 1.5 K < T < 8 K, which should be

considered quite good. The difference could stem from uncertainties in the extracted

geometrical factors or in the demagnetization factors resulting from approximating

our rectangular prism samples as ellipsoids.

7.3.3 Magnetic Monopole Conductivity

In Fig. 7.5(a) and (b) we show the real and imaginary parts of the magnetic

monopole conductivity, κ = ωχ(ω)/i, as a function of frequency at several temper-

atures. Data from TDTS are shown as open symbols. Other than the increasing

dissipative response at low temperature, the most striking feature of the data is the

trend of the frequency dependence of the reactive response (κ′′), suggesting a sign

change of χ′ at a frequency just below the low frequency cut off for TDTS. This

sign change is further confirmed by the addition of microwave cavity measurements

at 18.5 GHz, which are shown in Fig. 7.5 as solid dots. The combined zero field

measurements point to the existence of a zero crossing of χ’ at a frequency slightly

lower than 0.1 THz. The inset to Fig. 7.5, shows the corresponding complex mag-

netic susceptibility at low temperatures. Also, an external dc magnetic field pushes
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Figure 7.5: Real (a) and imaginary (b) part of the magnetic conductivity κ = ωχ(ω)/i
as a function of frequency at several temperatures. Solid symbols are data obtained
with microwave cavity measurements, while open symbols show data from TDTS.
Solid lines are fitting curves as described in the main text. Inset shows the corre-
sponding data and fitting of the complex magnetic susceptibility at two temperatures.

the zero crossing to higher frequencies where reliable TDTS data can be achieved,

providing further support for this feature.

Fits shown in Fig. 7.5 as solid lines are obtained by simultaneously fitting the real

and imaginary parts of κ(ω) including both the microwave cavity and the TDTS data

to the expressions of the extended Ryzhkin model. Although the fits are not perfect,

it is important to emphasize how restrictive the fitting procedure is (even despite the

frequency gap between the TDTS and microwave data) due to the Kramers-Kronig

relations between the real and imaginary parts of κ(ω). κ′ at low frequency cannot be

changed without affecting κ′′ at higher frequency and vice versa. This simultaneous

fitting of the real and imaginary parts of the data ensures that the essential physics

is well captured and constrained. The ability of this model to capture the salient

features provides strong support for the phenomenological description of quantum
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spin ice developed here, although a more sophisticated model that incorporates a

distribution of relaxation times as done recently in the classical spin ices [243] might

potentially improve the fits. As the spectra themselves evolve continuously with

temperature, these data were fit up to a reasonably high temperature of 10 K, which

is presumably well out of the regime of any spin ice correlations. As discussed below, in

the paramagnetic regime at temperatures above the mean-field Tc, we believe that fits

to Eq. 7.8 should be considered only phenomenological without any correspondence

of the fit parameters to monopole characteristics.

The temperature dependence of the fitting parameters is shown in Fig. 7.3.3. The

excellent agreement between χ0 obtained from the current experiment and the values

reported in Ref [6] with magnetization measurement lends further support to our

phenomenological model of the monopole dynamics in quantum spin ice at low tem-

peratures. The satisfying match between the χ0 obtained from our measurements and

the dc value also suggest (due to the above mentioned Kramers-Kronig constraints)

there are no significant features at even lower frequency in the magnetic susceptibility

of Yb2Ti2O7. Both relaxation rates γ and 1/τ first show a slow decreasing trend upon

cooling down to ≈ 4 K (of order the mean-field Tc [220]), with a faster dependence

below this temperature, before apparent saturation below 2K and down to the lowest

measured temperatures. The data can be interpreted in terms of monopole motion

below the mean-field temperature scale. The magnetization relaxation rate we find at

low temperature (1/τ ≈ 230 GHz) is consistent with the limits put on it by neutron
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Figure 7.6: (a) χ0 obtained from the current experiment (dots), and from dc suscep-
tibility measurements reported in Ref. [6] (line). (b) Relaxation rates γ, τ−1. In this
plot, rates are divided by 2π to put in units to compare to spectral plots. To compare
these quantities to relaxation in time, quantities should have the 2π removed. (c)
Magnetic spectral weight (plasma frequency squared) obtained from fitting.

spin echo experiments (1/τecho & 250 GHz) [244]. At this time, the source of the

temperature dependence of the momentum relaxation γ is unclear. But in analogy

with charge systems, it is possible that the temperature independent offset (e.g. a

residual resistivity) is caused in part by impurities. The present system has defects

at the 1% level that are describable in terms of ”weak stuffing” [234], and possible

oxygen non-stoichiometry.

With the mapping of the form of the monopole conductivity described here to the

Drude-Lorentz model, it is expected that a similar sum rule to exist for the magnetic

spectral weight. To complete the analogy in the present case, the spectral weight

from the fits can be extracted and related to a monopole plasma frequency and more
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fundamental monopole parameters as ω2
p = nmq

2
m/mm. The temperature dependence

of the spectral weight is shown in Fig. 7.3.3(c), which illustrates the decreasing trend

of the magnetic spectral weight upon warming. Further analysis of the fits to the

susceptibility of the extended Ryzhkin model allows for the extraction of an effective

mass mm of the monopoles from the fitting parameters. Here the low temperature

value of mm = nmq
2
mτ/χ0γ is evaluated. The monopole density nm from the results

of Ref. [221], which used the Numerical Linked Cluster method to successfully model

the heat capacity of Yb2Ti2O7, we used here. Using this computed value for nm, a

value of ≈ 1.6× 10−27kg or ≈1800 me for the monopole mass at temperatures below

4 K is determined.

As discussed earlier, the mass of the monopoles originates from their ability to

tunnel between sites in the quantum spin ice systems as a consequence of the finite

non-Ising exchange terms. Unfortunately, reliable theoretical estimates for the inertial

mass of the monopoles in Yb2Ti2O7 in this temperature range do not exist. However,

it is believed that their tunneling rate is governed by the transverse exchange term

Jz± [221, 225]. A rough estimate for the monopole mass can be obtained with a

tight-binding model of charges on the diamond lattice (the dual lattice of spins).

In the q → 0 limit a calculation gives m ≈ 4~2/(αJz±d
2) where d is the diamond

lattice unit cell parameter and α is a temperature dependent dimensionless constant

of order unity. With α = 1, such a treatment gives an effective monopole mass

of ≈ 2.0 × 10−27 kg (≈ 2200 me), which corresponds closely to the experimental
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Figure 7.7: Temperature dependence of (a) the effective monopole mass in units of
electron mass, and (b) the monopole mobility.

value. As noted above, the spectra evolves continuously into the high temperature

paramagnetic regime. Although one can continue to fit the data to the form of Eq.

7.8, the fitting parameters become increasingly unphysical above the temperature

scale of the mean-field Tc (Fig. 7.7(a)). At 10K one would determine the fitted

mass is 10,000 me and strongly increasing, which we do not believe has any physical

significance. This agreement of the fitting parameters with a monopole model at low

temperatures and the disagreement at higher temperatures is further testament to

the validity of our interpretation.

Following the mass determination of the monopoles and mapping to monopole

conductivity, a mobility can also be obtained from an analog of the standard ex-

pression µ = qm/mγ, which yields a weakly temperature dependent mobility of ≈

100 ms−1T−1 for the lowest temperature of our measurement at 1.4 K (Fig. 7.7(b)).

This value is several orders of magnitude larger than the mobility found in classical
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spin ice materials [243]. This, along with the temperature independent regime of

the relaxation rates at low temperature, points to a clear distinction between the

monopole transport in the two classes of spin ice materials. This supports the idea

that although in principle the mass would get larger (and inertial effects naively

would increase) in the classical Ising limit, quantum tunneling from transverse ex-

change terms is eventually superseded by incoherent monopole hopping. We note

that our TDTS experiments of Dy2Ti2O7 show no temperature or field dependent

features in the spectral range reported here. The demonstration of the sign change

in the reactive part of the complex magnetic response function is strong evidence of

the monopoles’ inertial effects in quantum spin ice.

7.4 Conclusion

In summary, a comprehensive study of Yb2Ti2O7 was performed in which the

complex magnetic susceptiblity was probed over a broad frequency range stemming

from the microwave to terahertz ranges through the use of two optical spectroscopy

techniques. A sign change in the real part of the susceptibility was observed and

explained by adding an inertial term to the equations of motions which is equivalent

to massive monopoles propagating within the quantum spin ice regime. By fitting

the extracted magnetic susceptibility to this model, the mass and mobility of the

magnetic monopoles was extracted. The monopole mass was found to be roughly
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1800 times that of the free electron, in good agreement with the expected value from

a tight binding calculation. This study further establishes magnetic monopoles as the

true coherent quasiparticles of Yb2Ti2O7.
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Summary

In this thesis we investigated the low energy electrodynamics of materials which

display quantum magnetism through their optical responses. The techniques used in

this thesis were time-domain terahertz spectroscopy and microwave cavity perturba-

tion technique, the details of which were presented in Ch. 2 and Ch. 3 respectively.

With these methods, we were able to extract the complex magnetic susceptibility of

these materials from the microwave to terahertz spectral ranges, thereby attaining

a holistic perspective of their low energy magnetic excitations. By comparing our

experimental results to theoretical expectations we were then able to characterize the

ground states of these quantum magnets.

In Ch. 4, we demonstrated the spin-orbital singlet character of the ground state

of FeSc2S4 through the observation of a spin-orbital singlet-triplet excitation. Its

excitation energy was found to be significantly renormalized from the expected single

213



CHAPTER 8. SUMMARY

ion value by magnetic exchange, in agreement with existing theories. Additionally,

we showed that FeSc2S4’s close promity to a quantum critical point results in the

presence of long range correlations which we demonstrated exist over a length scale

of over 8 nearest neighbors. Our results establish FeSc2S4 as a spin orbital-liquid with

long range entanglement.

In Ch. 5, high resolution terahertz transmission and polarimetry experiments were

utilized to probe the magneto-optics of the skyrmion insulator Cu2OSeO3. Experi-

ments performed throughout the magnetic phase diagram uncovered a new magnetic

excitation which was shown to be folded from the zone boundary to the zone center,

detected the magnetic phases including the skyrmion phase, and unveiled the unusual

dynamics of the uniform precession of the field polarized phase. These observations

were generally attributed to the effects of DM interactions, which are particularly

strong in Cu2OSeO3, on the low energy magnetic response of this chiral magnet. Our

results underline the need for further investigation into the effects of DM interactions

in these systems.

In Ch. 6, high precision time domain terahertz experiments were used to probe

the field dependent FIR spectra of the multiferroic HoMnO3. Through careful exam-

ination of the temperature and field dependence of an antiferromagnetic resonance

of the manganese sublattice, we uncovered evidence of exceptionally strong Ho-Mn

spin interactions. The g-factors of this excitation were found to be asymmetric be-

tween high and low energy branches and significantly larger than the expected Mn
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only value. Furthermore, we observed a dramatic renormalization of the g-factors of

both branches at the Ho spin ordering temperature. We speculated that these effects

may be consistent with an unusual fourth order trigonal anisotropy exchange mech-

anism that was previously proposed in HMO. The analysis presented in this work

provides a guide for uncovering similar unusual spin interactions between rare-earth

and manganese spins in other hexagonal manganites.

In. Ch. 7, microwave cavity perturbation experiments of the quantum spin ice

Yb2Ti2O7 aided in revealing a sign change in the real part of the susceptibility. This

was explained by adding an inertial term to the equations of motions, which is equiv-

alent to massive monopoles propagating within the quantum spin ice regime. By

fitting the extracted magnetic susceptibility to this model, the mass and mobility of

the magnetic monopoles was extracted. The monopole mass was found to be roughly

1800 times that of the free electron, in good agreement with the expected value from

a tight binding calculation. This study further establishes magnetic monopoles as the

true coherent quasiparticles of Yb2Ti2O7.

The work presented in this thesis focused on the low energy electrodynamics of

various quantum magnets. By investigating the magnetic excitations of these materi-

als over a broad frequency range from microwaves to the far infrared, we learned that

the magnetic ground states of these materials depends heavily on the local symme-

tries, geometries, and interactions of spins. This thesis serves as a paradigm for the

future optical study of such systems.
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Appendix A

Anomalous Three-Dimensional

Bulk AC Conduction Within The

Kondo Gap Of SmB6 Single

Crystals

A.1 Introduction

Topological states of matter have dominated the condensed matter research land-

scape in recent years and none more so than topological insulators. Topological insu-

lators possess bulk band inversion due to strong spin-orbit coupling resulting in chiral

spin-momentum locked surface states, which are protected by time reversal or crystal
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symmetry [245, 246, 247, 248, 249, 250]. Since their prediction, a plethora of experi-

mental evidence has corroborated their existence and investigated their corresponding

physics [251, 252, 253, 254, 255]. However, this class of topological insulators are in

their essence non-interacting systems. Additionally, clean samples with the Fermi

energy deep within the bulk insulating gap have proven challenging to synthesize,

limiting their potential applications. Merging strong electron correlations with non-

trivial topology is an exciting avenue to pursue exotic many-body quantum ground

states with a truly insulating bulk.

The Kondo insulator SmB6, sometimes referred to as a mixed-valent semiconduc-

tor [256], has recently been proposed as such a correlated, topologically non-trivial

state [257, 258, 259, 260, 261]. SmB6 undergoes a crossover from metal to insula-

tor behavior with reducing temperature which can be attributed to the opening of a

bulk band gap of ∆K ≈ 15-20 meV. The gap is believed to originate from hybridiza-

tion between localized 4f electrons near the Fermi level and itinerant 5d electrons

[256, 262, 263]. Correspondingly, the dc resistivity shows an exponential divergence

with reducing temperature, as expected for a gapped system, but then surprisingly

plateaus at temperatures T < 5K (Fig. A.1), suggesting a parallel conduction channel

[264, 265]. Although first interpreted as stemming from impurity states [266, 267],

the low temperature resistivity plateau has recently been proposed to arise from topo-

logical surface states residing within the Kondo gap, suggesting SmB6 to be the first

example of a topological Kondo insulator (TKI) [257, 258, 259, 260, 261]. Non-trivial
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Figure A.1: Temperature dependence of the resistivity of SmB6. The exponential
divergence of the resitivity stems from the opening of a bulk band gap of ∆K ≈ 15−20
meV which originates from hybridization between 4f and 5d electrons. However,
the resitivity unexpectedly plateaus below 5K (inset) which has been attributed to
topological surface states residing within the bulk gap. Figure adapted from Ref. [7].

topology is supported by recent calculations which propose SmB6 possesses three

Dirac cones located at high symmetry points of the Brillouin zone [258, 260, 261].

Since the TKI prediction of SmB6, experimental evidence of surface conduction at

low temperatures has been reported via transport [268, 269, 270, 271] and tunneling

spectroscopy [272, 273]. Meanwhile other techniques such as torque magnetometry

[274], photoemission [275, 276, 277, 278, 279], and neutron scattering [280] also report

findings consistent with the TKI prediction. This has led many to hail SmB6 as the

quintessential TKI, with high mobility surface states wrapping a perfectly insulating

bulk.

These claims, however, should be considered in conjunction with previous low

energy ac optical conductivity experiments of SmB6 single crystals which have claimed

218



APPENDIX A. ANOMALOUS THREE-DIMENSIONAL BULK AC
CONDUCTION WITHIN THE KONDO GAP OF SmB6 SINGLE CRYSTALS

evidence for localized states within the Kondo gap at the lowest temperatures and ac

conductivities orders of magnitude higher than the dc value [281, 282, 283, 284, 285,

286]. These observed localized states are in stark contrast to the expected Drude

response, indicative of free charge carries, observed from the surface states of Bi2Se3

[255, 287]. However, these optical experiments on SmB6 single crystals pre-date

the TKI prediction and may require reinterpretation. Additionally, results from a

number of heat capacity experiments reveal a very large low temperature fermionic

heat capacity with a γ coefficient that is 2-25 mJ/mol ·K2 (the same as some correlated

metals) which has been shown to be of bulk origin [288] and therefore seemingly at

odds with a bulk gapped state [267, 289, 290].

While the origin of these in-gap states remains an open question, recent exper-

iments suggest that impurities and disorder do play an important role in the low

temperature physical properties of SmB6, perhaps even in the topological aspects.

Phelan et al. [290] demonstrated that the low temperature resistivity plateau can be

tuned as a function of carbon or aluminum doping, typical impurities found in SmB6

depending on the synthesis method and quality of seed materials. The effects of dis-

order in the form of Sm+2,3 vacancies have also been examined and shown to produce

significant changes in the low temperature physical properties of SmB6 [291, 292].

Recent Raman spectroscopy measurements show that Sm+2,3 vacancies on the order

of only 1% can effectively close the bulk gap [292]. In this regard, recent theoretical

calculations predict the topological properties of SmB6 to be strongly dependent on
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Sm+2,3 valence [261], which will correlate with sample imperfections. These results

suggest that synthesis method, impurity concentration, and disorder are important

considerations and warrant further investigation in SmB6.

Low energy optical experiments are well suited for investigating the in-gap con-

duction in SmB6. Additionally, transmission experiments performed as a function of

sample thickness can separate surface and bulk conduction and have therefore been

successful in the field of topological insulators [255, 287]. However, optical transmis-

sion experiments on the rare-earth hexaborides can be exceptionally challenging due

to their unusually large index of refraction. Moreover, as we discuss below, SmB6

itself has substantial ac conduction that precludes simple transmission experiments.

Therefore, the optical properties of the hexaborides have been traditionally studied

via reflection techniques, [282, 284, 285] which rely on a Kramers-Kronig transform

to obtain the real and imaginary parts of the response and possess substantially less

signal to noise than what can be achieved in modern phase sensitive transmission

experiments. Transmission experiments of SmB6 in the far infra-red have been per-

formed with success [286, 293] but a detailed temperature and thicknesses dependence

of the optical conductivity has not been provided. Moreover, the continuous wave na-

ture of previously used techniques can give artifacts due to standing wave resonances

in the optical apparatus.

In this chapter we present a comprehensive high resolution study of the optical

properties of the potential topological Kondo insulator SmB6 in the terahertz fre-
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quency range. As the gap energy, ∆K ≈ 15-20 meV, is larger than our experimental

energy range, ~ω ≈ 1-8 meV, we directly probe states within the bulk insulating

gap via the optical conductivity. We compare samples grown via both optical float-

ing zone and aluminum flux methods to examine differences originating from sample

preparation, but only minor differences are found. Transmission experiments per-

formed as a function of sample thickness determine that the conduction of the in-gap

states is predominantly 3D in nature. Our results show that, although SmB6 may

be a dc insulator, the “perfectly insulating” bulk of SmB6 in fact has significant 3D

conduction at finite frequencies that is many orders of magnitude larger than any

known impurity band conduction. The potential origins of these states and their

coupling to the low energy spin excitons of SmB6 are discussed. Additionally, the

well defined conduction path geometry of our optical experiments allows us to place

limits on the sheet resistance of potential surface states, which must lie below our

detection threshold if present.

A.2 Experimental Methods

As stated in the introduction, the exceptionally high index of refraction of SmB6,

n ≈ 25, in the THz regime presents experimental challenges for transmission mea-

surements. One can show from the Fresnel relations that the reflection coefficient of

a sample with index of refraction n = 25 at normal incidence is r ≈ [ (n−1)
(n+1)

]2 ≈ 85%.
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Absorptions in the sample and reflection off the back surface drastically further re-

duce the transmission. Therefore, novel methods for measuring SmB6 single crystals

are needed in order to achieve sufficient signal to noise.

Correspondingly, we find SmB6 samples are not sufficiently transmissive in the

THz range until sample thicknesses of d ≤ 100 µm. In order to achieve such thick-

nesses, SmB6 samples were first double sided polished to a mirror finish to ensure

plane parallel sides. Samples were then mounted to a double side polished Al2O3

substrate of nominal thickness of 500 µm via mounting wax. Once mounted, SmB6

samples were not removed from the substrate for the remainder of the experiment.

Samples were then further polished to a thickness of 10’s of µm as measured by a

micrometer. Time domain terahertz (TDTS) transmission experiments were then

performed. The thickness dependent THz response of the samples was obtained by

further polishing the samples in between TDTS measurements.

TDTS transmission experiments, as described in Ch. 2, were performed using a

home built spectrometer within a temperature range of 1.6K to 300K [160]. Mounting

single crystals of SmB6 to the Al2O3 substrates introduces a new interface which

modifies the typical transmission expression presented in Eq. 2.16. In this case

it is best to use an identical substrate as a reference as the transmission is then

independent of the substrate’s thickness. For the case of a single crystal mounted to

a substrate, Eq. 2.16 is modified as
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Figure A.2: (a) Transmitted electric field of an optical floating zone grown SmB6 single
crystal mounted to an Al2O3 substrate as a function of time at 3K and 30K. The 30K
signal is identified as background “light leak” signal which is caused by diffraction of
light around the sample. (b) Transmitted electric field as a function of temperature
once the background signal shown in (a) is removed by subtraction. (c) Transmitted
electric field of the aluminum flux grown SmB6 mosaic at 3K and 30K. The light leak
in this case is much larger due to diffraction between neighboring samples within the
mosaic. The two largest signals shown stem from light only transmitted through the
Al2O3 substrate and must be subtracted from the reference substrate’s transmitted
electric field. The inset shows an expanded view of the time window in which the
signal from light transmitted through the SmB6 mosaic is observed. (d) Transmitted
electric field as a function of temperature once the background signal shown in (c)
has been removed by subtraction. See text for more details.
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T̃ =
2ñ(ñs + 1)

(ñ+ 1)(ñ+ ñs)
e

iωd
c

(ñ−1) (A.1)

where ñs is the substrate’s complex index of refraction. One can verify that in the case

of no substrate, ñs = 1, Eq. 2.16 is recovered. TDTS experiments were performed

on the Al2O3 substrate with an aperture reference where it was found that ñs is well

approximated by a real constant in the THz range, as expected for a good insulator,

with a value of ns = 3.

Long wavelength THz radiation restricts TDTS to samples with fairly large cross

sectional areas. Therefore, sample diameters greater than 3 mm are typically needed

in order to achieve sufficient signal to noise. Optical floating zone SmB6 samples

are therefore better suited for TDTS as single crystals can often be so large. TDTS

measurements on large floating zone crystals were performed on single crystal SmB6

samples with the ĉ [001] axis oriented out of the plane of the sample surface. SmB6

samples grown via the aluminum flux method are generally smaller than what is

required for TDTS. In order to achieve sufficient signal to noise on these samples,

a “mosaic” of 10 closely packed aluminum flux grown SmB6 samples were mounted

to an identical Al2O3 substrate. The mosaic covered a rectangular spatial area of ≈

3.5 mm × 6 mm in cross section. All aluminum flux samples were oriented with the

ĉ [001] axis out of the plane of the sample surface. One should note that the cubic

symmetry of the Pm3m space group of SmB6 ensures that the linear optical response

is identical for incident THz ~k oriented along any of the principal axes of the crystal
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[75].

Additional complications can arise in very low transmissivity samples as low ab-

solute levels of incident radiation can - even for the single crystal - be transmitted

through cracks in the sample surface, through gaps in between single crystals mounted

in the mosaic pattern, or around the cryostat itself. We refer to this spurious signal

as a “light leak” and it must be removed from our data for accurate results. Fig. A.2

displays our methods for removing such light leak signal in the case of both single

crystal optical floating zone samples and the aluminum flux grown mosaic, although

both are qualitatively similar with the exception that the light leak is larger in the

the case of the mosaic. We find that even the thinnest SmB6 samples become opaque

to THz radiation at temperatures T ≈ 30K. Presumably this stems from the bulk

Kondo gap closing with increasing temperature. Yet, a very small background light

leak signal is still transmitted at and above 30K. We identify this signal as the light

leak as it is temperature independent from 30K to room temperature. Additionally,

we find our data are not systematic until this spurious signal is removed. For the case

of optical floating zone samples this signal is simply removed by subtracting the light

leak signal as a function of time at T = 30K from the transmitted electric field of the

sample at lower temperatures. Fig. A.2 (a) shows the transmitted THz electric field

at 3K through an optical floating zone SmB6 sample (d = 12 µm) as well as the 30K

light leak signal. Fig. A.2 (b) shows the measured electric field of the same sample

at temperatures below 30K once the light leak signal has been subtracted.
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Removing the light leak signal from the aluminum flux grown mosaic contains an

additional complication as the light leak in this case is much larger due to diffraction

through spaces between neighboring samples of the mosaic. It requires some addi-

tional considerations in analysis, that we believe are applied here for the first time.

In a similar manner as described above, the light leak signal as measured at 30K is

subtracted from sample scans at lower temperatures. However, the additional step

of subtracting the light leak signal from the measured reference substrate’s electric

field is taken to ensure the transmission is accurate. This step is not necessary for

the optical floating zone samples as the light leak signal is substantially smaller than

the transmitted substrate’s electric field, < 1%. However, the light leak is as large as

40% for the SmB6 mosaic. Fig A.2 (c) shows the 3K and 30K measured electric field

of the SmB6 mosaic (d = 80 µm). The first large pulse at ≈ 7 ps stems from light

diffracting around and between neighboring samples of the mosaic and therefore only

traveling through the Al2O3 substrate. This signal is subtracted from the reference

substrate’s measured signal to correct the transmission. The next largest signal at

≈ 17 ps is the first echo of light which has been reflected within the substrate twice.

The inset of the graph shows the signal in between these two substrate pulses where

a small but finite signal of light transmitted through the SmB6 mosaic can be seen

at ≈ 13 ps. Fig. A.2 (d) shows the extracted transmitted electric field of the SmB6

mosaic as a function of temperature once the light leak has been subtracted.
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A.3 Experimental Results

A.3.1 Low Energy Optical Response Of SmB6
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Figure A.3: (a,b) Magnitudes of the complex transmissions, as defined in Eq. A.1,
as a function of frequency and temperature for representative samples grown by both
(a) optical floating zone and (b) aluminum flux methods. The two samples had thick-
nesses of 22 µm and 62 µm respectively. (c,d) Real part of the optical conductivity.
σ1(ω, T ), calculated from the transmissions shown in (a,b).

Figs. A.3 (a,b) display the magnitude of the complex transmission, as defined in

Eq. A.1, as a function of temperature and frequency for two representative samples

grown by optical floating zone (d = 22 µm) and aluminum flux methods (d = 62 µm)
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respectively. Both samples show qualitatively similar behavior of the transmission.

At the lowest temperatures the largest transmission, ≈ 5 - 20 % depending on sample

thickness and synthesis method, is observed at the lowest frequencies. The transmis-

sion then quickly decreases with increasing frequency. Although both samples show

the same general features, we believe that the data for the floating zone crystal is

more representative of the true spectral shape of SmB6 due to artifacts that can be

introduced in the mosaic geometry. For instance, we believe the dip in transmission

of the aluminum flux grown mosaic sample at ≈ 0.3 THz is an artifact as it is not

systematic between measurements and likely stems from imperfections in our method

of removing the light leak signal as described above. For both samples, the transmis-

sion gradually decreases with increasing temperature until becoming opaque in the

THz range for T ≥ 30K for sample thicknesses d > 10 µm. As we will discuss below

these features are generally consistent with residual conductivity within a gap which

is closing or filling in with increasing temperature.

As stated in the methods section above, the real and imaginary parts of the

complex optical conductivity can be extracted from the complex transmission via

numerical inversion of Eq. A.1. Figs. A.3 (c,d) display the real part of the optical

conductivity, σ1(ω, T ), extracted from the two transmissions shown in Fig. A.3 (a,b)

respectively. With some notable differences to be discussed below, the general fre-

quency and temperature dependence of these data are in rough agreement with those

of previously reported optical studies [282, 284, 285, 286], although the exceptionally
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high resolution of our measurements provide new details.

A crossover from metallic to insulating behavior can be seen as a function of

temperature in the conductivity of both samples, which show qualitatively similar

behavior. At the highest measured temperature, T = 20K, a Drude-like response

can be seen as the optical conductivity is largest at the lowest frequencies and is

a decreasing function of frequency thereafter. The Drude-like response indicates the

presence of free charge carriers in the conduction band. As the temperature is reduced

the magnitude of the Drude response correspondingly decreases, disappearing at T ≈

12K, at which point the conductivity is nearly frequency independent out to 2 THz.

At lower temperatures, T < 12K, the conductivity becomes an increasing function of

frequency, displaying approximately linear behavior below ≈ 1 THz. This change in

functional dependence of the conductivity with frequency signifies a shift to a new

conduction mechanism. Above 1 THz the conductivity saturates and displays little

dependence with temperature. The frequency dependence of the conductivity will be

further addressed in the discussion below.

A.3.2 Thickness Dependence

To further investigate these in-gap states, spectra were taken as a function of

sample thickness. A thickness dependent study was performed on three samples, two

optical floating zone crystals and the aluminum flux mosaic comprised of 10 individ-

ual single crystals. To obtain the thickness dependence, spectroscopy was performed,
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then samples were mechanically polished to a reduced thickness as measured by a

micrometer, then spectroscopy was performed again, etc. As the conductivity carries

the dimension of (resistance × thickness)−1, one would expect that the optical con-

ductivity would display thickness dependence if significant surface conduction exists.

For samples with bulk 3D conductivity one expects there to be no thickness depen-

dence of the conductivity as reducing the thickness also increases the resistance of

the sample rendering the conductivity unchanged. Thus, transmission experiments

performed in this fashion can separate surface and bulk conduction as has been done

in Bi2Se3 [255, 287].

Fig. A.4 (a) displays the results of our thickness dependent study of the optical

conductivity at T = 3K ± 0.1K, in the frequency range in which the highest signal

to noise is achieved. However, we mention that our conclusions are not particularly

dependent on this temperature or frequency range. Thickness dependence of three

samples are shown. The colored regions are representative of the experimental un-

certainty of our measurements which will be used for further analysis below. One

can immediately observe that there is no systematic dependence with sample thick-

ness of the extracted optical conductivity within the uncertainty of our experiment.

One might argue that surface state conduction may lie at frequencies below our ex-

perimental range. However, such a prominent feature at low frequencies in the real

conductivity would manifest as an obvious trend over a large frequency range in the

imaginary conductivity, as the real and imaginary parts of the conductivity are re-
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Figure A.4: (a) Thickness dependence of the optical conductivity at T = 3K ± 0.1K
in the frequency range of the highest signal to noise of our measurement. Data from
two different optical floating zone samples are presented as well as data from the alu-
minum flux grown mosaic. The colored regions represent the estimated experimental
uncertainty of our measurement for each sample. One can see that no systematic
dependence on thickness is observed, indicating 3D bulk conduction. (b) Change
in optical conductivity expected if surface states were present with the given sheet
resistance as derived from our RefFIT tri-layer model. The two lower curves are the
conductivities from the optical floating zone sample #2 presented in (a) with the
average of the two conductivities subtracted. The gray box represents our estimated
measurement uncertainty. From this we conclude that if surface states are present
then they must have a sheet resistance Rs ≥ 1000 Ω. See text for details.

lated through a Karmers-Kronig transformation. We observe no such trend in the

imaginary part of the conductivity for any SmB6 sample measured in this study. We

therefore conclude that the principal signal of the residual conductivity of the in-gap

states stems from 3D bulk conduction.

With the 3D nature of the optical conductivity within the gap established, we

now discuss how this relates to the TKI prediction of SmB6. Our measurements are

not able to exclude topological surface states residing within the bulk Kondo gap.
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However, if surface states exist in the gap then they must have a conductance below

the detection threshold of our measurement. Thus, an estimate of our uncertainty

can be used to place limits on the potential surface state conductance. To do so,

the optical transmission was modeled in RefFIT [106]. The T = 3K conductivity

of the optical floating zone sample #2, shown in Fig. A.4 (a), was chosen for the

model as the thickness dependence on this sample possesses the lowest experimental

uncertainty. A tri-layer model of surface state - bulk - surface state was developed

to model the transmssion. The bulk conductivity was given by that of the d =

32 µm sample shown in Fig. A.4 (a). The two surface states were modeled as two

identical 2D Drude responses, in agreement with the surface states observed in Bi2Se3

[255, 287]. We assume that the conductance of these states is constant as a function

of frequency in our spectral range. This is consistent with the ≈ 10 THz scattering

rate determined in quantum oscillations experiments [274]. Therefore, the surface

state conductance would manifest in the tri-layer model as a frequency independent

offset to the conductivity when the thickness of the sample is varied.

The results of the model are shown in Fig. A.4 (b). Shown at the bottom are

the optical conductivity at T = 3K of the optical floating zone SmB6 sample #2 for

thicknesses of d = 32 µm and 45 µm with the average of the two thicknesses sub-

tracted. The gray box indicates our approximate uncertainty in the experiment. The

horizontal lines demonstrate the expected offset in the effective optical conductivity

that would be extracted if surface states with the specified resistances existed in ad-
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dition to the bulk conductivity. From the model we conservatively conclude that we

would be able to identify surface states with a sheet resistance Rs ≤ 1000 Ω in our

experiment. Therefore, surface states with a sheet resistance below this detection

threshold can be excluded.

A.3.3 Coupling Of Bulk States To Spin Excitons

The results presented above show that although SmB6 may be a bulk dc insulator,

it shows significant bulk ac conduction. Low energy 3D bulk states exist within the

gap of SmB6. These states within the gap can also greatly affect other low energy

excitations of SmB6. For instance, previous experiments indicate a magnetically

active collective spin-exciton which results from the electron-hole continuum to exist

within the gap of SmB6 with an energy of ≈ 14 meV [294, 295, 296, 297]. In a recent

neutron scattering study [280, 298], the width of the exciton was observed to be

exceptionally narrow, ≈ 2 meV, although more recent measurements with improved

resolution suggest the width of the resonance to be even narrower than that, ≈ 100

µeV [299]. The narrow width suggests the spin exciton to be an extremely long lived

excitation and was speculated to be protected from decaying into electron-hole pairs

by the hybridization gap in which it resides.

However, the exciton can in principle couple to states within the gap, whether

they are topological Dirac states or bulk states. Coupling of the spin exciton to such

states can have tremendous impact on the physics of SmB6. The possibility of spin
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excitons coupling to surface states has been discussed theoretically [300] and then

reported experimentally via tunneling spectroscopy [301]. Meanwhile, evidence of

coupling between spin excitons and bulk states was recently presented via Raman

spectroscopy measurements [292]. In that work it was found that disorder in the

form of Sm+2,3 vacancies on the order of only 1% leads to states within the gap.

The spin exciton shows a corresponding spectral broadening with increasing disorder

suggesting decay through these bulk in-gap states.

While the spin exciton lies at higher energy than what our experiment can access,

we can still quantify how the finite density of states within the gap couples to these

collective excitations. A similar analysis has been performed previously in regards to

how crystal field line widths in metallic systems and the “resonance mode” in high

Tc cuprate superconductors [302] couple to a continuum of states. One may use the

expression

Γ = 4π[gVcD(ǫF )]
2Ω (A.2)

where Γ is the full width at half maximum of the resonance, Ω is the exciton energy,

D(ǫF ) is the density of states at the Fermi level, and g is the coupling constant.

With the energy, Ω ≈ 16 meV, and width, Γ ≈ 2 meV, of the spin exciton as

measured in floating zone crystals by Raman experiments [292], we can extract the

coupling constant if the density of states at the Fermi level is known. An estimate

of the density of states can be obtained from the metallic contribution of the heat
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capacity, Cele = γT. Interestingly, heat capacity measurements find a surprisingly

large metallic component at low temperatures, often on the order of 10 mJ K−2

mol−1, in agreement with the observed large low energy spectral weight [267, 289, 290].

Additionally, recent measurements indicate that the large metallic heat capacity is

independent of sample surface area and is therefore of bulk origin [288]. Phelan et al.

report a value of γ = 25 mJ K−2 mol−1 in optical floating zone samples [290]. In the

simplest picture of a non-interacting Fermi gas, the density of states is proportional

to γ, in the units of the given heat capacity, as, γ =
π2k2BNAVc

3
D(ǫF ), where kB is

Boltzmann’s constant, NA is Avagadro’s number, and Vc is the volume of one SmB6

formula unit. Substituting the observed value of γ into this expression and then the

corresponding density of states into Eq. A.2 results in a coupling constant of g =

9.40 meV.

The coupling constant is more easily understood in the conventional dimensionless

form, λ, which can be determined via the expression, λ = 2I0g2VcD(ǫF )
Ω

. Here, I0 is

the ratio of the integrated spectral weight of the excition to the total integrated spin

structure factor. An I0 ≈ 0.4 was determined from neutron scattering experiments

[280]. Substituting in the appropriate values gives λ = 0.047. This calculation shows

that the coupling of the excitons to the bulk in-gap states to be very weak.

The strong dependence of the exciton’s linewidth on sample disorder [292, 299] is

interesting considering the relatively weak dependence of the in-gap states we probe.

Moreover, the fact that the exciton is seen clearly in Raman, whereas it it is not
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observed in the infrared [286] points to a well-defined selection rule associated with

its excitation. In inversion symmetric systems like SmB6 excitations are either Raman

active or infrared active, but not both. We therefore speculate that the exciton is -

in the ideal case - prevented by symmetry from coupling to the infrared continuum

and it is only through disorder that this coupling becomes finite. In other words, the

exciton’s lifetime disorder dependence comes from a strong dependence of disorder

on g in Eq. A.2 and not D(EF ).

A.4 Discussion

Our results and the existing heat capacity data show that the low energy density

of states in SmB6 is quite large, in contrast to the assumption of a clean insulating

gap. Why then do transport experiments claim to see a perfectly insulating gap with

activated dc transport? First, it is important to point out that in the limit of zero

temperature dc transport can only probe extended states. However, ac experiments

are also sensitive to localized quasiparticle states, as well neutral excitations that

carry a dipole moment (e.g. phonons as the least exotic example). In ac experiments,

charge does not need to be transmitted across the sample as charge in localized states

can still oscillate at ac frequencies on length scales smaller than the localization length

and dissipate energy. Samples which display such behavior can appear as insulators

in dc transport experiments but conductors at finite frequency. In this regard, we
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remind the reader that the ac conductivity in the THz range in SmB6 is orders of

magnitude greater than the dc value at low temperatures [282, 284, 285, 293] in

agreement with this picture.

What is the origin of the in-gap ac conduction? The most obvious explanation

is that it originates from impurity states. A number of authors have pointed out

the special role of impurities in Kondo insulators, which in some cases can form a

Kondo hole impurity band [303, 304, 305, 306]. Yet, these scenarios predict magnetic

phenomena which are not observed. However, the general phenomenology of the low

temperature ac and dc conductivity of SmB6 is somewhat similar to what is observed

in some localization-driven insulators, such as the disordered electron glass Si:P [307].

In the latter systems the dc conductivity is described by a model of variable range

hopping with a stretched exponential activated dependence and a power law depen-

dence of the ac response. The expected dependencies are determined by the form of

the density of states at the Fermi level [307, 308, 309]. Assuming a nearly constant

density of states, one expects the dc conductivity, for 3D hopping conduction to follow

the expected Mott form for Fermi glasses going with temperature as ln(σdc) ∝ T− 1
4

[308]. Indeed Gorshunov et al. claim such a temperature dependence for temper-

atures 4K ≤ T ≤ 10K with a characteristic energy scale of T0 = 54K, although

fitting an exponential to such a small range cannot be considered very conclusive.

In such insulators where disordered induced localization is expected to be central to

the physics, the expectation is that at the lowest temperatures ac conduction occurs
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between resonant pairs of localized states. Without interactions the ac conductivity

is expected to follow Mott’s famous ω2 law [310], which is clearly inconsistent with the

data exhibited here. With interactions included, but at frequency scales below that

of the characteristic interaction energy between electron-hole pairs, the expectation is

that the conductivity is quasi-linear with σ1(ω) = e4D(ǫF )
2ξ4[ln(2I0/~ω)]

3ω/ǫ where

ξ is the localization length [309]. I0 is the characteristic scale of tunneling between

localized states that is expected to be bounded by the hybridization gap energy. Our

ac conductivity data (Fig. A.3) is roughly consistent with this linear dependence at

our lowest measured frequencies. It is also important to point out that in principle,

even the “metallic” heat capacity seen in SmB6 is consistent with localized states as it

has been emphasized that despite their insulating nature such systems can still show

a fermionic linear in T heat capacity (albeit of a magnitude far less than observed

in the present case as discussed below) [311, 312, 313, 314].

However, despite the (partial) qualitative agreement with a picture of localized

bulk states, there are important quantitative issues that need to be resolved. For

instance, the magnitude of the ac conductivity in the present case is quite unlike

other disordered insulators. It is approximately four orders of magnitude larger than

both the impurity band conduction in Si:P (at say doped 39% of the way towards the

3D metal-insulator transition) [307] and is essentially of the scale of the ac conduction

in completely amorphous NbxSi1−x [315] alloys. Although in principle this very large

scale of the ac conductivity can follow from the very large D(EF ) in SmB6, the large
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heat capacity itself is unexplained. Although localized states at EF can manifest a

linear in T heat capacity, the heat capacity of SmB6 is many orders of magnitude larger

than any known localization-driven insulator (∼ 10µJ K−2 mol−1 for the impurity

band in Si:P at ∼ 50 % of the xc for the metal-insulator transition [311, 312] and

∼ 0.5mJ K−2 mol−1 for amorphous glasses [313, 314]). Additionally, localized states

at EF will more generically result in stretched exponential variable range hopping

style-activation and not simple activation in the transport.

Gorshunov et al. claim that sample imperfections manifests as a slight maximum

in the real conductivity at 0.72 THz (24 cm−1) [286]. Although, this is an energy

scale that matches the activation energy scale of the dc resistivity above 10K, we have

observed no such band in any sample measured in this study. Moreover, Gorshunov

et al.’s band was only a weak maxima, and it is not clear (even if such a band

was present) why it would manifest in the dc data with an activated temperature

dependence. It has also been found that the activation energy is strongly dependent

on pressure [316], which has no obvious explanation where the activated transport

arises through hopping in an impurity band.

Therefore, one should consider the possibility that these in-gap states are intrinsic

to SmB6. The apparent agreement in the optical conductivity in our measurements

between samples grown by different methods and under varying conditions suggests

a different explanation than impurities. One can see from Figs. A.3 and Fig. A.4(a)

that the low temperature conductivities of the samples measured in this study vary
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by - at most - a factor of 2. Generally, insulating states induced by disorder have

conductivities that are exponentially sensitive to the degree of impurities, often dis-

playing large variation in physical properties upon even small changes to the sample

composition. The apparent lack of dependence upon sample preparation and, in some

cases, doping [290] suggests the intrinsic nature of these localized states. We remind

the reader that the aluminum flux grown mosaic was comprised of 10 individual single

crystals and is therefore likely representative of samples grown by this method.

A number of possibilities exist for ac conduction by an intrinsic mechanism at low

energy. One theory suggests that a Fermi surface comprised of electrically neutral

quasiparticles can exist within the Kondo gap [317, 318]. These quasiparticles, al-

though electrical neutral, may still possess an electrical dipole moment and therefore

conduct at ac frequencies [319]. A separate theory claims that these in-gap local-

ized states may originate from intrinsic electrons in SmB6 that become self trapped

through interactions with valence fluctuations [320]. Additionally, a recent torque

magnetometry experiment has claimed to observe unconventional quantum oscilla-

tions stemming from a bulk 3D Fermi surface in SmB6 [321]. These results suggest

that the potentially intrinsic nature of our observed in-gap localized states warrants

further consideration and investigation.

Lastly, we discuss the limits placed on the potential surface state sheet resistance

from our data. As discussed above, Fig. A.4 (b) demonstrates that the surface

states of the SmB6 samples studied must have a sheet resistance of R ≥ 1000 Ω
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or they would be detectable in our measurement. The reported sheet resistance of

surface states in SmB6 varies greatly between transport experiments, ranging from

0.1 - 100 Ω [268, 270, 271]. This wide discrepancy may originate from the unknown

conduction paths in 4 probe measurements as current can in principle travel along all

surfaces of the sample or perhaps from differences in surface preparation methods. A

benefit of our optical experiments is that the conduction paths are precisely known as

the measurement geometry is well-defined. Correspondingly, larger values of surface

state sheet resistance are often reported from optical techniques such as R = 250 Ω

[322] in SmB6 thin films and R ≈ 200 Ω in Bi2Se3 [255, 287]. It is unclear if the

mechanical polishing performed on the SmB6 samples in this study can account for

such a discrepancy in reported sheet resistance. However, we point out that while

the floating zone single crystals were mechanically polished on both front and back

surfaces, the aluminum flux grown samples present their as-grown surface on one side.

If high mobility surface states existed then they would be presumably maintained

on this surface of these samples and observed in our experiment. Moreover, we

point out that a recent study which investigated the effects of polishing on surface

state resistance found that fine polishing increased surface resistance as it removed

conductive subsurface cracks in the sample [323]. Correspondingly, the observed

surface resistance on highly polished samples was found to be 2-3 kΩ through surface

sensitive Corbino measurements, in agreement with the R/s ≥ 1 kΩ limit found in

this study [323, 324].
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A.5 Conclusion

In summary, we presented a detailed study of the optical properties of SmB6 in

the THz frequency range. SmB6 single crystals grown by both optical floating zone

and aluminum flux methods were studied and found to be consistent in their optical

properties. We show, through high resolution time domain terahertz measurements,

that there is substantial in-gap 3D bulk ac conductivity in SmB6. We discussed the

possible origins of these states and their coupling to the low energy spin excitons

of SmB6 in which a coupling constant of λ = 0.047 was found. A modeling of the

optical conductivity concluded that any potential surface states, which must lie below

our detection limit if present, must have a sheet resistance of Rs ≥ 1000 Ω, which is

substantially larger than what has been previously reported. Our results demonstrate

the hybridization gap of SmB6 is insulating in dc transport measurements but in fact

displays significant bulk conduction at finite frequencies.
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Appendix B

Potential Topological

Superconductivity in

Tl4(Tl1−xSnx)Te3

B.1 Introduction

Topological insulators [246] have undoubtedly revolutionized our understanding of

the role that topology plays in condensed matter physics. These materials are char-

acterized by strong spin-orbit coupling such that the bulk bands are inverted, giving

rise to symmetry protected topological surface states within the bulk gap. However,

topological insulators are, generally speaking, non-interacting systems. Today, there

is a growing interest in the possible exotic ground states that result from the interplay
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of topology and strong electron correlations. In this sense, a natural generalization

can be made from a non-interacting topological insulator to a, similarly gapped but

interacting, topological superconductor. It is thought that topological superconduc-

tors host exotic non-Abelian Majorana fermion excitations which have been proposed

as the basis for quantum computation methods [325]. Accordingly, the discovery and

characterization of potential topological superconductors has received a substantial

amount of theoretical and experimental interest in recent years.

Predicting materials which will possess low temperature superconducting ground

states is already a daunting task which only becomes even more difficult when topol-

ogy is also considered. To date, most investigations have employed one of three meth-

ods in the search for topological superconductivity. In the first method, topological

insulators, which are already known to possess strong spin-orbit coupling, are doped

such that they enter a superconducting phase. The second method, based on the

Kitaev model [326], proposes that Majorana fermions are localized at the ends of 1D

superconducting nanowires when in proximity to a ferromagnet and under applied

fields. Both of these techniques have had success with some compelling, although

not conclusive, evidence for topological superconductivity [327, 328]. In the third

method, which has received considerably less attention, low temperature topological

superconducting ground states are searched for in strongly spin-orbit coupled metals.

The idea here is that as superconductivity is often the low temperature ground state

of Fermi liquids, so too might topological superconductivity be that of spin-orbit
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coupled Fermi liquids [329]. This is the method of interest in this work.

In this chapter, microwave cavity perturbation experiments are performed on the

potential topological superconductor Tl5Te3. Our measurements are consistent with

an isotropically gapped Fermi surface with a zero temperature gap of ∆ = 372 meV.

However, in contrast to the expected behavior of an s-wave superconductor, we find

an unexpected large (40% the normal state value) residual conductivity at low tem-

peratures, deep with the superconducting phase of Tl5Te3. As our measurement is a

surface sensitive technique, we suggest that this large residual conductivity may arise

from topologically protected surface states which exist within the superconducting

bulk gap.

B.1.1 Potential Topological Superconductivity In

Tl4(Tl1−xSnx)Te3

Recent publications [8, 9] have suggested that the strongly spin-orbit coupled

correlated metal Tl5Te3 is topologically non-trivial, possessing bulk band inversion

at the Z point and correspondingly Z2 topologically protected surface states. Fig.

B.1 displays angle resolved photoemission spectra of Tl5Te3 in which a single Dirac

cone, in conjunction with some bulk states, is observed at the center of the surface

Brillouin zone [8]. Interestingly, Tl5Te3 enters a superconducting phase at Tc = 2.3K,

suggesting a possible topological superconducting ground state. Corresponding heat
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Figure B.1: Dirac-like surface states in the superconductor Tl5Te3. (a) APRES spec-
trum taken with the He Iα (hν = 21.2 eV) photons along the (0,0) - (π, π) direction
showing the coexistence of prominent bulks states and a linearly dispersing surface
state (yellow dashed lines) near EF . (b) Second derivative plot of the measured ex-
perimental data in (a), where the surface state is more clearly resolved. (c) MDC fits
for the data taken with the He Iα and He IIα (hν = 21.2 eV and 40.8 eV) photons,
showing no substantial dependence on photon energy. (d) Momentum resolved inten-
sity maps at a series of binding energies which show the single Dirac cone feature at
the zone center. Figure adapted from Ref. [8]

capacity measurements of Tl5Te3 are consistent with s-wave superconductivity with

an extracted bulk gap of ∆ = 0.333 meV and a near perfect 96% volume fraction

superconductivity [8].

Additional interesting phases may be achieved upon doping Tl5Te3 with Sn. Fig.

B.2 displays a phase diagram of Tl4(Tl1−xSnx)Te3 as a function of temperature and

Sn concentration [9]. As the amount of Sn doping is increased, a dome of supercon-

ductivity in which Tc increases and then decreases, is observed. Further increasing

increasing the Sn concentration above x > ∼ 0.5 pushes the system into an insulating

state which DFT calculations predict may be a topological crystalline insulator phase.

Therefore, Tl4(Tl1−xSnx)Te3 may present the opportunity to study both topological
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Figure B.2: Phase diagram of [Tl4]Tl1−xSnxTe3 showing the superconducting dome
proximal to a transition from a topological metal to a topological crystalline insulator.
Figure adapted from Ref. [9].

superconductivity and a topological phase transition as a function of doping.

B.2 Experimental Methods

Single crystals of Tl5Te3 were prepared using a modified Bridgman method in

an optical floating-zone furnace using 2.5% excess Te as a flux. Tl4(Tl1−xSnx)Te3

samples were prepared by heating elemental Tl, Te, and Sn in a vacuum sealed silica

ampoule to 540 C, holding for 24 h, followed by slow cooling (2 C/h). Single crystals

of Tl4(Tl1−xSnx)Te3 suitable for microwave cavity measurements were obtained from

the ingot after slow cooling.

Microwave cavity perturbation measurements were then performed on the
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Tl4(Tl1−xSnx)Te3 samples as described in Ch. 3. Recall that for highly conductive

samples microwave radiation is confined to a small region near the sample surface

and is therefore a direct probe of the sample’s surface impedance. In this regime,

known as the skin-depth regime, the complex frequency shift, ∆ω̃ = ∆ω0+
i
2
∆Γ, can

be related to the surface impedance by:

∆ω̃

ω0

= ξZ̃s + lim
σ→∞

∆ω̃

ω0

(B.1)

where ξ, known as the “resonator constant”, and lim ∆ω̃
ω0

as σ → ∞, known as the

“metallic shift,” are constants which depend on the mode of resonance, the sample

geometry, and the sample position within the cavity. The complex conductivity of

the sample can then be extracted from the relation:

Z̃s =

√
iωµ0

σ1 + iσ2
(B.2)

Microwave cavity perturbation technique is a particularly well suited technique for

characterizing superconducting samples. Not only can the complex conductivity be

extracted from Eq. B.2, but the penetration depth of the superconductor is directly

proportional to the sample’s reactance:

Xs = µ0ωλ(T ). (B.3)
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which itself is proportional to the frequency shift ∆ω0 via Eq. B.1. As the penetra-

tion depth is proportional to the density of states, the low temperature, T < Tc/3,

functional dependence is indicative of the pairing symmetry in the superconductor.

For instance, for a completely isotropic gap structure, i.e. s-wave superconductivity,

the shift in penetration depth takes the BCS form:

λ(T )− λ(0)

λ(0)
=

√
π∆0

2kBT
exp (− ∆0

kBT
) (B.4)

where ∆0 and λ(0) are the zero temperature gap and penetration depth respectively.

For higher order symmetries of the superconducting gap, for instance p-wave, d-wave,

etc., the penetration depth changes from the exponential dependence of Eq. B.4 to

a power law dependence with temperature. It is then the exponent of the power

law which is indicative of the momentum structure of the gap. In the clean limit,

power law exponents equal to two are a sign of point nodes, or places in k space

where the magnitude of the superconducting gap is zero, i.e. p-wave superconductiv-

ity. An exponent of one is indicative of line nodes, or directions in momentum space

in which the superconducting gap is zero, which is found in d-wave superconductiv-

ity. In this fashion the low temperature penetration depth provides insight into the

superconducting properties of the material.

The complex conductivity extracted from our microwave measurements and Eq.

B.2 can be compared to the expected optical conductivity of a BCS superconductor
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as determined by the Mattis-Bardeen relations:

σ1(ω, T )

σn
=

2

~ω

∫ ∞

∆

[f(ǫ)− f(ǫ+ ~ω)](ǫ2 +∆2 + ~ωǫ)

(ǫ2 −∆2)1/2[(ǫ+ ~ω)2 −∆2]1/2
dǫ+

1

~ω

∫ −∆

∆−~ω

[1− 2f(ǫ+ ~ω)](ǫ2 +∆2 + ~ωǫ)

(ǫ2 −∆2)1/2[(ǫ+ ~ω)2 −∆2]1/2
dǫ

(B.5)

σ2(ω, T )

σn
=

1

~ω

∫ ∆

∆−~ω,−∆

[1− 2f(ǫ+ ~ω)](ǫ2 +∆2 + ~ωǫ)

(∆2 − ǫ2)1/2[(ǫ+ ~ω)2 −∆2]1/2
dǫ (B.6)

where f(ǫ) is the Fermi-Dirac distribution function and the conductivities have been

normalized by the normal state conductivity σn [84].

B.3 Experimental Results

Fig. B.3(a) displays the resonant frequency and bandwidth of our cavity res-

onator as a function of temperature with a Tl5Te3 sample inserted in the magnetic

field antinode of the TE011 mode as described in Ch. 3. Fig. B.3(b) displays the

shift in both the resonant frequency and bandwidth in which the data of the empty

cavity resonator has been subtracted from the data shown in (a). A clear sharp

superconducting transition at Tc = 2.3K can be seen in the data.

Fig. B.4(a) displays the real and imaginary parts of the complex surface

impedance of Tl5Te3 extracted from the data shown in Fig. B.3 and Eq. B.1. The res-

onator constant and metallic shift were found by comparing multiple measurements

of the same sample. One can see that above Tc the measured surface impedance is
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Figure B.3: (a) Temperature dependence of the resonant frequency f0 and bandwidth
Γ of our cavity resonator with a Tl5Te3 sample placed at the magnetic field antinode
of the TE011 mode. A sharp transition to a superconducting state can be seen in
the data at Tc = 2.3K. (b) Corresponding shift in resonant frequency and bandwidth
found by subtracting the data of the empty cavity resonator from the data shown in
(a).

consistent with the Hagens-Ruebens limit in which Xs ≈ Rs as expected for a metal.

Fig. B.4(b) displays the extracted change in penetration depth found from the

surface reactance shown in Fig. B.4(a) and Eq. B.3. The change in penetration depth

was found by subtracting the value of penetration depth at the lowest measured tem-

perature from the rest of the data. As discussed above, the functional dependence of

the change in penetration with temperature in the low temperature limit is indicative

of the pairing symmetry of the superconductor. Shown in black is a fit of the data

to Eq. B.4, the expected expression for a BCS s-wave superconductor. One can see

that the fit is in excellent agreement with our data and therefore suggests s-wave

superconductivity in Tl5Te3. Similar power law fits of the data yield an un-physical

exponent of nearly 5, further confirming the validity of the BCS fit. From this fit we

extract a zero temperature gap of ∆ = 0.372 meV which is in excellent agreement with
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Figure B.4: (a) Temperature dependence of the real and imaginary parts of the
surface impedance of Tl5Te3 found via Eq. B.1 and the data shown in Fig. B.3(b).
(b) Temperature dependence of the extracted change in penetration depth in the
temperature region T < Tc/3. The black solid line is the fit of the data to the
expected BCS s-wave exponential form given in Eq. B.4. From this fit we extract a
zero temperature gap value of ∆ = 0.372 meV.

the expected BCS weak coupling value of ∆ = 0.350 meV given by 2∆/kBTc = 3.53.

These results concur with heat capacity measurements [8] which are also consistent

with s-wave superconductivity but find a slightly smaller gap of ∆ = 0.333 meV.

Fig. B.5(a)-(b) displays the extracted temperature dependence of the (a) real

and (b) imaginary parts of the optical conductivity of Tl5Te3 found from the surface

impedance shown in Fig. B.4(a) and Eq. B.2. Shown in red is the expected optical

conductivity from the Mattis-Bardeen equations, Eq.’s B.5 and B.6, calculated with

the resonant frequency of our measurement, ω = 18.5 GHz, and the zero temperature

gap, ∆ = 0.372 meV, extracted from our fit of the penetration depth. B.4. One can

see that our experimental data and the prediction of Mattis-Bardeen theory agree

relatively well at temperatures near Tc. Just below Tc, a well defined coherence
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Figure B.5: Temperature dependence of the both the (a) real and (b) imaginary
parts of the optical conductivity normalized by the normal state value. The red lines
are the expected optical conductivity from the Mattis-Bardeen expression given in
Eq.’s B.5 and B.6. One can see that a large discrepancy between the Mattis-Bardeen
expression and the real and imaginary conductivities exist at low temperatures. (c)-
(d) The same data as shown in (a) and (b) but with the low temperature residual
conductivity subtracted from the data in which case the agreement with the Mattis-
Bardeen prediction is dramatically improved.
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peak can be observed in the real part of the optical conductivity, suggesting type-

II coherence factors in Tl5Te3. However, a large discrepancy between our data and

the theoretical expectation is observed as the temperature is reduced. It appears as

though Tl5Te3 possesses a large low temperature residual conductivity which is nearly

40% the normal state value. The agreement with the Mattis-Bardeen prediction can

be dramatically improved if this residual conductivity is subtracted from the data.

Fig. B.5 (c)-(d) displays the identical data as B.5(a)-(b) but with the low temperature

residual conductivity removed in this fashion.

B.4 Discussion

We demonstrated in our analysis that the temperature dependence of the pene-

tration depth of Tl5Te3 is consistent with s-wave superconductivity and a gap of ∆ =

0.372 meV, both of which are in agreement with previous heat capacity measurements

[8]. As further confirmation of s-wave superconductivity, a coherence peak just below

Tc can be observed in the real part of the conductivity, which is generally consistent

with type-II coherence factors in the sample. However, the magnitude of the coher-

ence peak in Fig. B.5(c) is slightly larger than expected from the Mattis-Bardeen

expression which may be suggestive of more unusual coherence factors which deviate

from the BCS picture. This is an ongoing point of investigation in these samples and

one that we hope will generate further theoretical interest.
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Of particular interest is the discrepancy of our data with the Mattis-Bardeen ex-

pectation at low temperatures. We observed a remarkably large (≈ 40% the normal

state conductivity) residual conductivity in Tl5Te3 at low temperatures. In princi-

ple, residual conductivity could arise from either a less than 100% superconducting

volume fraction or the presence of nodes in the superconducting gap. However, as

mentioned above, it was found previously that Tl5Te3 possesses nearly perfect ≈

96% volume fraction superconductivity and that the Fermi surface appears uniformly

gapped. Such large residual conductivity is not explanable from only 4% normal

state electrons. It may be additionally possible that such large residual conductivity

arises from non-ideal surfaces which were not cleaved in vacuum prior to measure-

ment. However, one would generally expect that any surface oxide to be an insulating

dielectric and therefore does not explain the residual conductivity.

An additional, and more exciting, explanation for the low temperature residual

conductivity exists. This feature is naturally explained in a scenario where Tl5Te3

is a topological superconductor and the residual conductivity arises from symmetry

protected metallic surface states. Such a feature would likely not be seen in heat

capacity measurements as any surface signal would constitute an infinitesimal con-

tribution on top of the superconducting bulk signal. However, our microwave cavity

measurements are surface sensitive, explaining why such a feature would be observed

here but not previously. Fig. B.6 displays σ1 with the potential surface state and

bulk superconducting contributions distinguished. Additional evidence for this inter-

255



APPENDIX B. POTENTIAL TOPOLOGICAL SUPERCONDUCTIVITY IN
Tl4(Tl1−XSnX)Te3

1.2

1.0

0.8

0.6

0.4

0.2

0.0

σ
1
/σ

n

2.52.01.51.00.50.0

Temperature (K)

Metallic Surface State 

Superconductivity

Figure B.6: A possible interpretation of the real part of the optical conductivity where
the low temperature residual conductivity arises from a topological surface state.

pretation may arise out of similar measurements performed on samples doped with

Sn. As of the writing of this thesis, experiments on Tl4(Tl1−xSnx)Te3 are ongoing.

B.5 Conclusions

In summary, highly precise microwave cavity resonator measurements on the po-

tential topological superconductor Tl5Te3 were performed. By examining the tem-

perature dependence of the penetration depth, we identified Tl5Te3 as an s-wave

superconductor with a zero temperature gap of ∆ = 0.372 meV, in good agreement

with previous heat capacity measurements of Ref. [8]. A coherence peak that is
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generally consistent with type-II coherence factors was observed in the real part of

the optical conductivity. Interestingly, a large residual conductivity was observed at

low temperatures which may be consistent with a topological surface state. Further

measurements as a function of Sn doping are ongoing and may provide more insight

into the origin of the low temperature residual conductivity. If the presence of a topo-

logical surface state can be confirmed, then it would be the first conclusive evidence

of a topological superconductivity discovered to date.
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Appendix C

Performing An MCPT Experiment

In this section I’ll describe the finer details about how to perform a microwave

cavity experiment using our system at JHU. A picture displaying the entire experi-

mental set-up with some of the more important components labeled is shown in Fig.

C.1.

C.0.1 Performing A Reference Measurement

Before measuring any sample, a reference measurement of the empty cavity must

be completed. Once a reference measurement is performed, the cavity cannot be

removed from the insert until all sample measurements are completed. Every effort

should be made to keep as much consistent with the cavity as possible after the

reference measurement. To perform a reference measurement, follow the steps below

but disregard the steps pertaining to loading a sample.
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Temperature 
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Vector 
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Analyzer 

Cryostat 
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He3 Pump Line Cryogenic Insert 

Figure C.1: Our experimental MCPT set-up at JHU with some of the more important
components labeled.
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C.0.2 Mounting a sample

Assuming a reference measurement of the empty cavity has been performed, the

next step is to load a sample into the cavity for measurement. Before describing how

this is done, I would like to give some quick advice about sample sizes and geometries.

Finding the right size sample to use for a MCPT measurement is challenging. Samples

that are too large will result in large frequency shifts but also often greatly reduced

resolution from substantially widened resonance peaks. While samples which are too

small will have very narrow resonance peaks and high resolution but potentially very

small frequency shifts. The optimally sized sample is an intermediary between these

two limits. My advice would be to start with samples that are roughly of ≈ 1 mm in

dimensions first. It is always possible to remove some of the sample by polishing or

cleaving but obviously not possible to add more sample back on.

Loading a sample into the cavity is an simple procedure. Carefully remove the

cavity bottom plate by unscrewing the six Allen screws which hold it in place. Note

that because the cavity cannot be removed from the insert after finishing a refer-

ence measurement you will have to remove the bottom plate while the cavity is still

attached to the insert. This can be difficult and frustrating but be careful and pa-

tient, the cavity is fragile. Once removed, place the bottom plate of the cavity on a

KimWipe on top of a flat surface. A small amount of Apiezon grease on top of the

sapphire rod is all that is needed to hold a sample in place. I usually place the sam-

ple on the sapphire rod with very sharp tweezers while looking through a magnifying
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Figure C.2: A picture the bottom plate of our cavity with a small sample mounted
to the end of the sapphire rod.

glass. Fig. C.2 displays the bottom plate of the cavity with a sample loaded. After

the sample is mounted then the cavity should be reassembled.

C.0.3 Pumping Out The Sample Space

Once the cavity is closed again, the vacuum can should be attached to the insert

with a healthy amount of vacuum grease placed on the insert’s cone seal. This is

generally a two person job. Someone has to keep a hand underneath the vacuum can

before its pumped out so it doesn’t fall off the insert. Since the vacuum can seals by

tightly fitting against the cone seal of the insert, it is vital to not drop or dent the

vacuum can. The other person operates the valves so that the vacuum can will be

261



APPENDIX C. PERFORMING AN MCPT EXPERIMENT

pumped out by the He4 pump. Make sure that the valve on top of the He4 pump

is in the position such that it releases the pumped out air to the room and not to

the liquifier (Fig. C.4). Then start the pump, open valve 4a on the front of the gas

cabinet, and open the small valve at the top of the insert which opens the sample

space to the clear plastic pump out line. The pressure can then be monitored by the

pressure gauge on top of the cryostat. Once the vacuum can has been pumped out

for about 30s then it no longer needs to be held by hand, the pressure differential is

enough to make sure it does not fall off.

C.0.4 Pre-Cool Down Prep

Once the vacuum can is on and is being pumped out then the next step is placing

the insert into the cryostat. Place a ladder next to the cryostat to stand on. It should

be noted that there is just barely enough room above the cryostat for the insert to

fit. In fact, you will have to tilt it very slightly. Gently and slowly lower the insert

into the cryostat. Try to keep it straight while lowering it or it will get caught on the

baffles inside.

Once the insert is in place, then the He3 line can be connected. We also need to

pump out the He3 space within the insert before cooling down or all the air in there

will freeze and base temperature will not be reached. It is absolutely crucial that the

these exact steps are followed. Opening an incorrect valve could result in all the He3

being pumped to the room. You should still be pumping on the sample space at this
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point, you do not need to stop that before pumping on the He3 space. Generally, I

pump on both at the same time. The goal is to use the He4 pump to pump out the

He3 space as well. To do this, open valves, 4a (which should already be open), 1a, 7,

2, and 3. If done correctly then both the sample space and He3 space should be in

the process of being pumped out. I would leave the experiment like this overnight.

When both spaces are fully pumped out then the pressure gauge on the front of the

experiment will read ≈ 0.08 or so.

After pumping overnight there is only one more step before cooling down. We

also need to pump out the liquid nitrogen trap to remove the impurities from the last

cool down. Close the small green value at the top of the insert which connects the

sample space to the pump. Then go to the front of the gas cabinet and close all the

open valves. To pump out the cold trap open valves 4a, 1a, 7, 2, and 12a. Pump

out the liquid nitrogen trap for about 30 mins or so. Once that is finished then close

valve 12a and return to pumping out the sample space and He3 space by following

the steps above. I generally pump on these spaces while cooling the experiment down

to 4K.
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C.0.5 Cooling Down The Experiment

C.0.5.1 From Room Temperature To 4K

Cooling down the cavity experiment takes roughly 15 - 20 hours and occurs in

several steps. A graph showing the temperature of the cavity and He3 pot as a

function of time during the cool down process is shown in Fig. C.3. The first step

is to partially fill the He4 space of the cryostat with liquid nitrogen (LN2). The He4

space is pretty large and it takes quite a while to fill but filling it completely is not

necessary. Maybe 5 - 10 mins of filling is enough. As the cavity is in vacuum it will

cool very slowly. Over the course of 5 or so hours the cavity should cool to under

150K. It is beneficial to let the system cool down as much as possible with the LN2

as cooling with the He4 is significantly slower and quickly burns off the He4.

Once the system is less than 150K, the LN2 can be removed from the He4 space.

This is accomplished by slowly inserting a long hollow tube into the He4 space and

over-pressuring with dry He4 gas, forcing the LN2 up the tube and out of the He4

space. We have a special long tube with a 90 degree bend at the end for accomplishing

this task. Slowly insert this tube into the He4 space (careful! if LN2 is still in the He4

space then it may spray out when you insert the tube, so do it very slowly with the

top pointing away from you). Once all the way in then attach the rubber hose on the

end of the tube to the connection on the LN2 space of the cryostat. The next step is

to over-pressure the He4 space with dry He4 gas. Connect the He4 dry gas line to the
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Figure C.3: A graph showing the temperature readings of the cavity system as a
function of time during a typical cool down from room temperature to 4K. If proper
vacuum is kept in the cavity space then the cavity temperature should be slightly
higher than the He3 pot temperature for the duration of the cool down.

other port of the He4 space to force all the LN2 out. The pressure is enough to force

all the LN2 out in just a matter of seconds.

Once the He4 space no longer contains LN2 then you’re ready to transfer He4.

First, start transferring LN2 from an external LN2 dewar into the LN2 space of the

cryostat. Then insert the He4 transfer line into one of the ports of the He4 space of

the cryostat. Leave the other port open until a constant flow of He4 gas is coming

out of the cryostat. This pushes any remaining nitrogen or air out of the He4 space.

After a few seconds of flushing the He4 space in this fashion, cork the open port and

open the green valve next to the cryostat to allow the He4 exhaust to be recovered

by the liquifier (Fig. C.4). Turn on the He4 level meter to monitor the level as you
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transfer. The pressure in the He4 dewar should be fairly high, about 5 psi or so for

the transfer.

If everything is done correctly then the system should fill to 108 cm within 10-15

minutes at most. It should be noted that 108 cm is the highest level that the level

meter can read. In principle the cryostat can hold more than 108 cm but since you

cannot monitor the level I don’t recommend filling above this mark. Besides, this will

be enough He4 to last for about 3 days. Once at 108 cm, then release the pressure

in the He4 dewar by venting to the liquifier. Wait for the pressure to go down before

removing the transfer line. Once removed, make sure both He4 ports are corked. The

system will likely take another 12 or so hours to cool from 150K to 4K. Remember,

this entire time you are still pumping on the sample and He3 spaces.

C.0.5.2 From 4K To 1.8K

Temperatures below 4K are reached by simply pumping on the He4 bath. Instruc-

tions for operating the valve which connects the bath to the liquifier and directing

the exhaust from the pump to the liquifier are provided in Fig. C.4. Begin by closing

the valve at the top of the insert which closes off the sample space from the pump.

Failure to remember this step before pumping on the He4 will flood the sample space

with He4 and then the experiment will have to be warmed up and pumped out again.

Close all the valves that control the pumping of the He3 space as well. Close the

valve connecting the liquifier to the He4 bath and pull up the handle on the exhaust
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Instructions For Connecting The MCPT System 

To The He4 Liquifier 

Connects He4 Bath 

To Liquifier 
Directs Exhaust Of The He4 Pump 

Exhaust To Room Exhaust To Liquifier 

When Pumping On The Main Bath 
Close Valve Exhaust To Liquifier 

When Cryostat Is Empty Close Valve Exhaust To Room 

When Cryostat Is Full  
Open Valve Exhaust To Room 

Figure C.4: Instructions for appropriately connecting the MCPT experiment to the
He recovery system.
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of the He4 pump to ensure all the pumped out He4 is directed to the liquifier (Fig.

C.4). Double check that all valves are closed on the front of the gas cabinet. Now

very slowly open valve 5a, thereby pumping on the He4 bath. You will hear the pump

respond immediately.

Leave the system in this configuration for about an hour or so and the cavity will

reach as low as 1.8K. You can monitor the temperature of the bath by watching the

large round pressure valve on the front of the experiment.

C.0.5.3 From 1.8K To 1.2K

In order to get to temperatures below 1.8K we must introduce the He3 into the

system. Before doing so you must first fill the liquid nitrogen trap with liquid nitrogen.

Running the He3 through the trap removes any impurities from the He3 before it is

inserted into the experiment. Once filled then you are ready to introduce the He3.

Fig. C.5 displays the instructions for introducing the He3. Once the He3 is

introduced into the experiment, you will notice the temperatures of the cavity and

He3 pot immediately increase considerably. This is a result of the warm He3 gas

entering the system. However, after the initial spike in temperature the system will

cool down quickly. Wait until all the He3 has condensed into liquid by monitoring

the pressure of the right pressure gauge “G1” on the gas cabinet. The pressure will

drop to zero once all the He3 is condensed. If the above steps are performed correctly

then the cavity will reach temperatures as low as 1.2K.
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C.0.5.4 Below 1.2K

Now that all the He3 has condensed we can pump on the liquid He3 to get to the

base temperature of the experiment. Follow the instructions for pumping on the He3

as listed in Fig. C.5. It is also important to make sure the microwave power of the

VNA is turned down during this step. I would set it to -40 dBm, otherwise the power

of the microwaves themselves may heat the cavity. Once you begin pumping on the

He3 the system should begin cooling down rapidly. Waiting only about 30 minutes

or so should be enough to get to base temperature, typically between 350 mK - 400

mK.

C.0.5.5 Returning The System Back To 4K

Recovering all the He3 is accomplished by simply waiting long enough for all the

He3 to boil off and be pumped back into the gas cabinet. However, the hold time for

the He3 is very long, at least 12 Hrs. This process can be sped up by closing valve

5a, thereby no longer pumping on the He4 bath and then very slowly opening the

valve connecting the bath to the liquifier. This pulls warm He4 gas from the liquifier

into the cryostat, thereby heating up the bath and acting as a heat load on the He3

pot. You may additionally want to turn on the heater to about 30% at 25 mW to

even further speed up the process. Even with these heat sources, it will take about 30

minutes before all the He3 returns to the gas cabinet. Once all the He3 has returned,

then turn off the heater and close all the valves. Begin pumping on only the sample
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Steps For Recollecting He3 From The System 

1. Close Valve 13a 
 

2. Close Valve 10 
 

3. Open Valve 9 
 

4. Open Valve 6 
 

5. Wait until all He3 has returned 

to the gas cabinet by monitoring 

the pressure reading on the 

right gauge. 
 

6. Close Valves 12a, 3, 6, & 9 

1. Open Valve 9 
 

2. Open Valve 13a 
 

3. Open Valve 12a 
 

4. Open Valve 3 
 

5. Close Valve 9 
 

6. Open Valve 10 
 

7. Let He3 condense until pressure 

reading on the left gauge is zero 

Steps For Introducing He3 Into The System 

Figure C.5: Instructions for operating the He3 gas of the MCPT experiment. Blue
lines indicate the path the He3 gas takes duing the proceedure.
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space again. Do not pump on the He3 space again after introducing He3 into the

system.

C.0.6 Data Acquisition

C.0.6.1 The MCPT LabView Program

Data is retrieved from the network analyzer by a LabView program which I wrote

to run the experiment. Fig. C.6 displays a screen shot of the front panel of the

program. Running the program is quite simple. The “run” button at the top of the

LabView window starts a loop which updates only the temperature of the cavity and

He3 pot. No data is recorded yet. This allows the user to monitor the temperatures

while the experiment is cooling down without recording them. Hitting the large green

button labeled “Start” to the left begins the fitting routine. Only after hitting this

button is data recorded.

Table C.1 displays some of the inputted parameters of the program as well as

the settings I recommend using. The program takes in as parameters the starting

and ending frequency of only the first scan of the resonance peak. Typically I just

center the resonance on the VNA screen and then type in the scan parameters into

the LabView program before starting.

The program then averages the signal for some specified amount of time before

retrieving the data and fitting to a Lorentzian function. The result of the fit, i.e.
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Item Description Recommended Setting

Power Outputted power by VNA -20 dBm
Averaging Time Time VNA averages signal before LabView retrieves the data 30s - 60s

Bandwidths To Fit Frequency range about the center frequency for each scan 3
Starting Frequency Starting frequency for only the first scan. Varies
Ending Frequency Ending frequency of for only the first scan. Varies

Table C.1: User inputted parameters of the MCPT LabView program with some
suggested values. The starting and ending frequency are the frequency scan param-
eters for only the first fit taken by the program. After the first fit the program runs
autonomously.

resonant frequency, bandwidth, amplitude, Q-factor, etc., and the temperatures are

then written to a text file which you specify in the “MCPT Data File Path:” option.

An additional text file, which you specify in the “Waveform Data File Path:” option

receives the raw data from the VNA, i.e. the power as a function of frequency for

each scan. The program then sets the starting and ending frequency of the next scan

based off of the previous fit. In this fashion the resonance peak can be followed as it

changes its resonant frequency with temperature.

C.0.7 Temperature Control

The Lake Shore 340 is capable of reading both temperature sensors simultaneously

as well as controlling the heater. Since the heater sits on the He3 pot and not the

cavity, which is where we are actually interested in controlling the temperature, I’ve

found the best heating method is to ramp the manual output of the heater through

a simple program written in the Lake Shore. I do not recommend using the Setpoint

or PID settings to control the temperature.
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Figure C.6: A screen shot of the MCPT LabView program. The program retrieves
the data from the VNA, fits it to a Lorentzian peak, records the results of the fit,
and then sets the scan range for the next fit. The plot in the lower left shows the raw
data from the cavity (white) and the resultant fit (red). The plot in the lower right
records the cavity temperature versus time.
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Data on the MCPT system must be taken in three distinct temperature regions.

The easiest is the temperature range spanning 1.8 K - 8 K, which I refer to as the

“High T” data. Follow the steps for cooling down to 1.8 K listed in Sec. C.0.5.2. Do

not introduce the He3. Once at 1.8 K, start the LabView program and let it take

several fits. Then PAUSE, do not stop, the LabView program and start a temperature

control program in the Lake Shore by hitting “Program”, then “Run Program”, then

scrolling the program you would like to run and hitting enter. This will ramp the

manual output of the heater at some constant rate which you specify. I have found

this to be the most reproducible way of taking data on the MCPT system. Once the

Lake Shore program is running, then unpause the LabView program and continue

recording data.

The “Mid T” data, from 1.2 K - 1.8 K, is the hardest region to take data. I

have yet to find an ideal method for recording data in this range. However, the best

method I have found is to cool the experiment down to 1.8 K just as if you were

going to take “High T” data. Then perform all the steps necessary as if you were

going to introduce the He3. However, instead of opening valve 3 all the way, open

it very slightly for only a second just so only a tiny amount of He3 is introduced

into the insert. This small amount of He3 gas will act as transfer gas and cool down

the experiment to 1.2 K. The He3 gas is capable of absorbing an enormous amount

of heat, so warming up from 1.2K is difficult and not a reproducible process. So I

recommend taking data while the experiment cools down in this temperature range.
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“Low T” data refers to data taken from base temperature to 1.2 K. Follow the

steps for reaching base temperature listed in Sec. C.0.5.4. Then start the LabView

program and let it take several fits of the data. Then pause the program, and start

another program on the Lake Shore. Then close valve 6 on the gas cabinet which

stops the pumping on the He3. If this step is forgotten then the experiment will never

warm up, pumping on the He3 is just too much cooling power. Then unpause the

LabView program and let it take data for the duration of the program.

C.0.8 Data Analysis

Data analysis for the MCPT experiment is in principle very simple. The idea is to

simply subtract the unloaded cavity data from the loaded cavity data from which the

complex response of the sample can be extracted via the equations provided in Sec.

3.3. However, small complications arise due to the fact that data on the MCPT system

occurs in different temperature ranges, which different density of points, with often

small frequency shifts between measurements. In order to streamline the analysis

process I wrote an Igor macro capable of monitoring the data during acquisition as

well as some post acquisition analysis. Fig. C.7 displays a screen shot of the control

panel of the analysis program. Detailed instructions for using the code can be found

at the beginning of the code itself. A brief explanation of the code will be provided

here.
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Figure C.7: A screen shot of the control panel of the automated Igor MCPT data
analysis program. Detailed instructions for its use can be found at the beginning of
the code itself.
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C.0.8.1 Monitoring Data During The Experiment

At the top right of the control panel you will find a section labeled “During

Experiment Controls” with buttons labeled “Load Data” and “Update.” As the name

suggests these buttons allows the user to monitor the data taken with the LabView

program in real time. Pressing the “Load Data” button will pull up a window from

which the user should select the “MCPT” text file of interest. An additional widow

will be pulled up after the first file selection from which the user should choose the

corresponding “Waveform” text file. The “Update” button will then grab the data

from the “MCPT” file and create four plots to display the data. Simply repressing the

“Update” button reloads all the data from the text file and updates the corresponding

graphs.

C.0.8.2 Post Acquisition Data Analysis

The remainder of the controls on the panel are for analyzing the data post ac-

quisition. The data is parsed into either “Low T” or “High T” data and analyzed

separately. Load the “Mid T” data with the “High T” data. The remainder of the

buttons are self explanatory. The program smooths, interpolates, and averages all

the collected data. The final result is are single waves of resonant frequency and

bandwidth versus temperature which can then be used for further analysis.

One final option of the Igor code is the ability to fit asymmetric peaks. Although

in the ideal case the resonance peak will be a perfect Lorentzian, in real experiments
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the peak may be asymmetric from a background with strong frequency dependence.

This may result in poor fitting of the data in the LabView program. This is why the

raw voltage versus frequency data from the VNA is recorded in the “Waveform” text

file. The “Perform Fits” button on the analysis control panel loads the raw data from

this text file and then fits it with a model of a Lorentzian peak on a general cubic

polynomial background to account for asymmetry. I highly recommend using this

function if the peak is heavily asymmetric. With this method, often unreliable looking

resonant frequency and bandwidth data found by fitting to a perfect Lorentzian can

be transformed into high precision data with the asymmetric model.
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[144] D. Szaller, S. Bordács, and I. Kézsmárki, “Symmetry conditions for nonrecip-

rocal light propagation in magnetic crystals,” Phys. Rev. B, vol. 87, p. 014421,

Jan 2013.

[145] Y. Okamura, F. Kagawa, S. Seki, M. Kubota, M. Kawasaki, and Y. Tokura,

“Microwave magnetochiral dichroism in the chiral-lattice magnet Cu2OSeO3,”

Phys. Rev. Lett., vol. 114, p. 197202, May 2015.

[146] M. Mochizuki, “Microwave magnetochiral effect in Cu2OSeO3,” Phys. Rev.

Lett., vol. 114, p. 197203, May 2015.

[147] T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger,

C. Pfleiderer, and D. Grundler, “Universal helimagnon and skyrmion excitations

in metallic, semiconducting, and insulating chiral magnets,” Nature Mater.,

vol. 14, pp. 478–483, 2015.

[148] V. P. Gnezdilov, Y. Lamonova, G. Pashkevich, P. Lemmens, H. Berger,

F. Bussy, and S. L. Gnatchenko, “Magneto-electricity in the ferrimagnet

Cu2OSeO3: Symmetry analysis and Raman scattering study,” Low Temper-

ature Physics, vol. 36, no. 550, 2010.

[149] M. Ozerov, J. Romhányi, M. Belesi, H. Berger, J.-P. Ansermet, J. van den Brink,

J. Wosnitza, S. A. Zvyagin, and I. Rousochatzakis, “Establishing the fundamen-

tal magnetic interactions in the chiral skyrmionic mott insulator Cu2OSeO3 by

299



BIBLIOGRAPHY

terahertz electron spin resonance,” Phys. Rev. Lett., vol. 113, p. 157205, Oct

2014.

[150] P. Y. Portnichenko, J. Romhayni, Y. A. Onykiienko, A. Henschel, M. Schmidt,

A. S. Cameron, M. A. Surmach, J. A. Lim, J. T. Park, A. Schneidewind, D. L.

Abernathy, H. Rosner, J. van den Brink, and D. S. Inosov, “Magnon spectrum

of the helimagnetic insulator Cu2OSeO3,” Nature Commun., vol. 7, no. 10725,

p. 10725, 2016.
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[315] E. Helgren, G. Grüner, M. R. Ciofalo, D. V. Baxter, and J. P. Carini, “Mea-

325



BIBLIOGRAPHY

surements of the complex conductivity of NbxSi1−x alloys on the insulating side

of the metal-insulator transition,” Phys. Rev. Lett., vol. 87, p. 116602, 2001.

[316] J. Cooley, M. Aronson, Z. Fisk, and P. Canfield, “SmB6: Kondo insulator or

exotic metal?” Physical review letters, vol. 74, no. 9, p. 1629, 1995.

[317] P. Coleman, E. Miranda, and A. Tsvelik, “Are Kondo insulators gapless?”

Physica B: Condensed Matter, vol. 186, pp. 362 – 364, 1993.

[318] G. Baskaran, “Majorana fermi sea in insulating SmB6: A proposal and a theory

of quantum oscillations in Kondo insulators,” arXiv:1507.03477, 2015.

[319] T.-K. Ng and P. A. Lee, “Power-law conductivity inside the Mott gap: Appli-

cation to κ-(BEDT-TTF)2cu2(CN)3,” Phys. Rev. Lett., vol. 99, p. 156402, Oct

2007.

[320] S. Curnoe and K. A. Kikoin, “4electron self-trapping in intermediate-valent

SmB6,” Phys. Rev. B, vol. 61, pp. 15 714–15 725, Jun 2000.

[321] B. S. Tan, Y.-T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z. Zhu, M. Hart-

stein, M. Kiourlappou, A. Srivastava, M. D. Johannes, T. P. Murphy, J.-H.

Park, L. Balicas, G. G. Lonzarich, G. Balakrishnan, and S. E. Sebastian, “Un-

conventional fermi surface in an insulating state,” Science, vol. 349, no. 6245,

pp. 287–290, 2015.

[322] J. Zhang, J. Yong, I. Takeuchi, R. L. Greene, and R. D. Averitt, “Ultrafast

326



BIBLIOGRAPHY

terahertz spectroscopy study of Kondo insulating thin film SmB6: evidence for

an emergent surface state,” arXiv:1509.04688, 2015.

[323] S. Wolgast, Y. S. Eo, C. Kurdak, D. J. Kim, and Z. Fisk, “Conduction through

subsurface cracks in bulk topological insulators,” arXiv:1506.08233ArXiv, 2015.

[324] Private Communication with C. Kurdak.

[325] M. Leijnse and K. Flensberg, “Introduction to topological superconductivity

and majorana fermions,” Semiconductor Science and Technology, vol. 27, no. 12,

p. 124003, 2012.

[326] A. Y. Kitaev, “Unpaired majorana fermions in quantum wires,” Physics-

Uspekhi, vol. 44, no. 10S, p. 131, 2001.

[327] S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando,

“Topological superconductivity in CuxBi2Se3,” Phys. Rev. Lett., vol. 107, p.

217001, Nov 2011.

[328] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P.

Kouwenhoven, “Signatures of majorana fermions in hybrid superconductor-

semiconductor nanowire devices,” Science, vol. 336, no. 6084, pp. 1003–1007,

2012.

[329] L. Fu, “Parity-breaking phases of spin-orbit-coupled metals with gyrotropic,

327



BIBLIOGRAPHY

ferroelectric, and multipolar orders,” Phys. Rev. Lett., vol. 115, p. 026401, Jul

2015.

328



Vita

Nicholas J. Laurita was born in Oceanside, NY

and raised in Lakeland, FL. He attended the Uni-

versity of South Florida, receiving a B.Sc. degree

in Applied Physics in 2011, graduating summa cum

laude. In 2011, he enrolled in the physics Ph.D. pro-

gram at Johns Hopkins University where his research

focused on examining the low energy electrodynamics of quantum magnets. While

a graduate student at JHU, he was awarded an Owen fellowship, received the Row-

land prize for innovation and excellence in teaching, and received two Achievement

Rewards for College Scientists scholarships. He has published multiple papers in peer-

reviewed journals, including: Nature Physics, Physical Review Letters, and Physical

Review B. Beginning in summer of 2017, Nick will be joining the Institute of Quan-

tum Information and Matter at the California Institute of Technology as an Institute

of Quantum Information and Matter Postdoctoral Fellowship recipient.

329


