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Abstract

Ultra-miniaturized imaging tools are vital for numerous biomedical appli-

cations. Such minimally-invasive imagers allow for navigation into hard-to-

reach regions and, for example, observation of deep brain activity in freely

moving animals with minimal ancillary tissue damage. Conventional solu-

tions employ distal microlenses. However, as lenses become smaller and

thus less invasive they develop greater optical aberrations, requiring bulkier

compound designs with restricted field-of-view. In addition, tools capable of

3-dimensional volumetric imaging require components that physically scan

the focal plane, which ultimately increases the distal complexity, footprint,

and weight. Simply put, minimally-invasive imaging systems have limited

information capacity due to their given cross-sectional area.

This thesis explores minimally-invasive lens-free microendoscopy enabled

by a successful integration of signal processing, optical hardware, and image

reconstruction algorithms. Several computational microendoscopy architec-

tures that simultaneously achieve miniaturization and high information con-

tent are presented. Leveraging the computational imaging techniques enables

color-resolved imaging with wide field-of-view, and 3-dimensional volumetric

reconstruction of an unknown scene using a single camera frame without
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any actuated parts, further advancing the performance versus invasiveness of

microendoscopy.
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Chapter 1

Introduction

Optical endoscopes are widely used to image the interior of the human body,

enabling disease diagnosis and surgical image guidance. In addition, fiber-

optic micoendoscopes are becoming extremely valuable tools for structural

and functional brain imaging of live animals. Such behavioral studies de-

mand tools with high spatio-temporal resolution that can image over a large

space to capture large-scale neural activity deep in the brain [1]–[10]. Many

investigations are being made to develop minimally-invasive tools that en-

able functional mapping of the brain for degenerative disease studies or gain

insight towards neuromorphic computing. However, conventional imaging

architectures have limited information capacity due to the physical constraints

of the optics and electronics. Every imaging system exhibits inherent trade-

offs, such as that between spatial resolution and field-of-view. There is the

trade-off between resolution and imaging speed, as conventional camera sen-

sors read out each pixel information serially and thus achieve faster imaging

speed at the cost of pixels. In addition, acquisition of higher-dimensional data

such as a 3-dimensional volumetric scene or a hyperspectral image require
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additional scanning mechanisms which ultimately sacrifice the imaging speed.

Notably, microlenses that are ubiquitously used in minimally-invasive imag-

ing applications exhibit tremendous optical distortions, including spherical

and chromatic aberrations, and field-of-view limited to hundreds of µm.

This thesis explores several approaches to computational microendoscopy

which aim to surpass these physical constraints using novel image recon-

struction algorithms and paradigm shift in the optical hardware. The follow-

ing introduction describes the background in optics and signal processing

to understand this work. In addition, state-of-the-art imaging systems for

minimally-invasive applications are described, including their respective

shortcomings. Proceeding chapters present my work in ultra-thin microen-

doscopy enabled by computational imaging techniques. Specifically, these

novel imaging probes employ a coded-aperture or a scattering medium at the

distal end of an optical fiber to reconstruct an unknown scene using iterative

optimization algorithms. Last chapter describes other computational optical

imaging architectures that are in development for two-photon microscopy

and ultra-fast imaging, followed by a few concluding remarks.

1.1 Ray Optics

Ray optics, also known as geometrical optics, is an approximation theory to

describe the light propagation as straight lines or rays. Most of our daily

experiences with light can be explained with ray optics, and it is an excellent

approximation when the wavelength of light is small compared to the optical

media that it interacts with. This technique is used to describe the location
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and direction of light rays and thus useful to describe the image formation of

lenses including their optical aberrations. In addition, it is used to determine

the conditions under which light is guided in a given medium, such as in an

optical fiber. Several ray optics principles that are most relevant to this thesis

are explained.

1.1.1 Light Guides

Figure 1.1: Illustration of Snell’s Law.

An optical medium is characterized by a quantity n ≥ 1 called the refractive

index. The refractive index is n = co
c where co and c are the speeds of light in

free space and in the medium. Thus the optical path length in the medium is

nd for some distance d. An incident light ray at the boundary between two

media with refractive indices n1 and n2 are split in two: reflected ray and a

refracted ray. The refracted ray obeys the Snell’s law and is shown in Figure

1.1.

n1 sin θ1 = n2 sin θ2 (1.1)
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where θ1 and θ2 are the incident and refracted angles. Note that the proportion

of the reflected and refracted light are not described in this postulate.

The incident light ray experiences total internal reflection when θ2 = π
2 , known

as the critical angle given as follows:

θc = sin−1
(︂n2

n1

)︂
(1.2)

A suitable light guide mechanism is that of the total internal reflection at the

boundary between two media with different refractive indices. As an example,

Figure 1.2 shows an optical fiber in which light rays are guided by multiple

total internal reflections.

Figure 1.2: Optical fiber and its maximum acceptance angle.

The maximum acceptance angle of the optical fiber is given as follows:

NA = sin θa =
√︂

n2
1 − n2

2 (1.3)

where NA is known as the numerical aperture of the fiber and θa is the

acceptance angle.
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1.1.2 Image Formation

A spherical lens is a combination of two spherical boundaries, which are

air-to-glass and glass-to-air. For simplicity we make the assumption that the

lens is thin; the height at which the light ray enters is identical to the height at

which the ray leaves. The image formation of a thin lens is then described as

follows:

1
f
=

1
do

+
1
di

(1.4)

where f is the focal length of the lens, do is the distance between the object

and the lens, and di is the distance between the lens and the image formed.

The magnification factor of the image formed is M = − di
do

, and the numerical

aperture of the thin lens is approximated as NA ≈ D
2 f where D is the entrance

pupil of the lens. Figure 1.3 shows examples of image formation using a

single lens and two lenses, known as a 4f system. Note that beyond ray optics,

a 4f system is used in many optical-computing applications in addition to

imaging. A lens has 2D Fourier Transform property; if an object is placed one

focal length in front of a lens, then its Fourier transform will be formed at the

other focal length behind the lens. As an example, a 4f system can be used to

perform spatial filtering by placing an amplitude mask at the Fourier plane,

optically filtering out the undesired 2D spatial frequencies.

1.1.3 Pinhole Camera

Pinhole camera is an excellent example of ray optics at work. It is the simplest

lens-free camera that employs a tiny aperture (i.e. pinhole) close to an image
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Figure 1.3: (A)(B) Image formation using a single lens and two lenses (4f system).
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Figure 1.4: Illustration of a pinhole camera.

sensor. As shown in Figure 1.4, the working principle of a pinhole camera

is that the tiny aperture rejects all light rays that do not contribute to the

image formation. A pinhole camera only detects the light rays emitted from

the object and thus in principle have an infinite depth of field. Notably, the

resolution limit as a function of the pinhole diameter is expressed as follows:

f =
s2

λ
(1.5)

where f is the focal length, s is the pinhole radius, and λ is the wavelength

of light. Here the focal length is 1
f = 1

do
+ 1

di
where do is the distance between

a scene and the pinhole, while di is the distance between the pinhole and

the image plane. As shown in [11], the best resolution is achieved when
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f = s2

λ = 1. Here, the pinhole camera operates in the near-field regime in

which the pinhole acts as a Fresnel zone plate and focuses the light slightly,

generating the smallest possible spot on the observation plane.

Main reason why pinhole cameras, despite their compelling features in-

cluding infinite depths of field and no spherical aberrations, are barely used is

its extremely low light collection. A tiny pinhole readily forms a sharp image

but simultaneously rejects majority of the light from the scene. However,

what if we have an imaging system with an array of pinholes to increase the

light throughput? Is it possible to deconvolve the image information from

whatever mess we detect on the sensor? These questions will be answered

in Chapter 2 which presents a computational microendoscope employing a

coded-aperture (i.e. an array of randomly located pinholes).

1.2 Wave Optics

As the name suggests, the fundamental principle behind wave optics is that

light propagates in waves, which is described by a second-order differential

equation known as the wave equation. Specifically, wave optics describes

optical phenomena that fall outside of ray optics, such as interference and

diffraction effects. Again, this chapter describes a few wave optics postulates

most relevant to this thesis.

1.2.1 Wave Equation

Let a(r), ϕ(r), w represent the amplitude, phase, and angular frequency as a

function of position r = (x, y, z). A real wave function u(r, t) can be described
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in terms of the following complex function:

U(r, t) = a(r) ejϕ(r) ejwt (1.6)

so that

u(r, t) = Re
{︂

U(r, t)
}︂
=

1
2

(︂
U(r, t) + U(r, t)

)︂
(1.7)

where U is the complex conjugate. The complex wave function U(r, t) must

satisfy the following second-order differential equation:

∇2U − 1
c2

∂2U
∂t2 = 0 (1.8)

where c is the speed of light in a medium of refractive index n and ∇2 =

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . In addition, a wave can be written as a linear combination of

other solutions to the wave equation, e.g., U(r, t) = U1(r, t) + U2(r, t).

1.2.2 Wave Interference

The optical intensity I(r) of a monochromatic light (single wavelength and

frequency) is defined as the optical power per unit area (Watts/cm2), and

written as follows:

I(r) = |U(r)|2 (1.9)

where U(r, t) = a(r) ejϕ(r) ejwt = U(r) ejwt and U(r) is the complex amplitude.

Consequently, intensity of the interference between two monochromatic light

with complex amplitudes U1(r) and U2(r) is derived as follows:

U(r) = U1(r) + U2(r) (1.10)
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I = |U|2 = |U1|2 + |U2|2 + U1U2 + U1U2 (1.11)

where U1 =
√

I1 ejϕ1 and U2 =
√

I2 ejϕ2 . Thus,

I = I1 + I2 + 2
√︁

I1 I2 cos(ϕ2 − ϕ1) (1.12)

This is known as the interference equation, and it can be readily seen that

the intensity of the sum of two waves has an additional cosine term that is

phase-dependent. The dependence of I on ϕ allows the measurement of phase

differences by detecting the corresponding light intensity, and reversibly,

generation of a light intensity by engineering the appropriate phase. The

interference intensities from a coherent light and utilizing it for imaging with

high information content will be further explored in Chapter 3 and 4.

1.3 Space-Bandwidth Product

A common metric used to characterize the information capacity of an optical

system is the space-bandwidth product (SBP) [12]. Specifically, SBP is the

number of effective pixels required to capture the full information transmitted

by an optical imaging system, and is written as follows:

SBP =
field-of-view

(Nyquist resolution)2 (1.13)

In other words, this is the field-of-view area divided by the pixel size required

to achieve Nyquist sampling. As an example, an imaging system with a 1-

mm2 field-of-view and 10-µm spatial resolution has a SBP = 1 mm2

(5 µm)2 = 40, 000.

This metric will be used throughout this thesis to characterize the performance
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of microendoscopy systems.

1.4 Compressive Sensing and Imaging

Compressive sensing (CS) is a sampling paradigm developed in 2006 that

leverages the natural sparsity of real signals. The fundamental principle be-

hind CS is that a signal of interest can be sampled and reconstructed with far

fewer measurements than that dictated by the Nyquist sampling criterion if it

can be sparsely represented in some mathematical basis [13]–[16]. Contrary

to conventional imaging architectures that acquire each pixel information se-

quentially, i.e. raster-scanning, compressive imaging systems directly measure

the inner products between a scene of interest and known patterns. Conse-

quently, these compressed measurements and the projection patterns are used

to solve a sparse optimization problem to reconstruct the scene with high

fidelity.

This novel sampling approach can be especially useful in imaging or

sensing architectures where signal measurements are limited under various

conditions resulting in strict limits to the amount of acquired image informa-

tion. Specifically, an ultra-miniaturized imager such as a microendoscope that

has a limited number of measurements for a given cross-sectional area can

benefit tremendously with this sampling approach.

1.4.1 Data Compression

Decades of research in data compression technology have ushered today’s

digital world. Efficient storage and transmission of audio, image, and video
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Figure 1.5: Flowchart of a conventional image compression. Lena image is first
digitized at the Nyquist sampling rate. The raw data is then compressed using a
3-level 4th-order Daubechies basis where only the highest 10% of the coefficients are
kept and used for the image reconstruction.

signals has enabled popular streaming media as well as user-generated con-

tent. The key principle behind data compression is to sparsely represent the

data using some mathematical basis, so that majority of its transform coeffi-

cients can be discarded without perceptual loss [13], [14]. In a conventional

image compression architecture, the raw image of a scene is first sampled

and digitized using N number of pixel sensors on a CCD or CMOS imaging

chip. This raw data is then transformed to a sparse domain using known basis

functions, such as discrete cosine or multi-level wavelet. These basis functions

are capable of representing an image with a few significant coefficients (i.e.

weights applied to each basis function), so that the majority are close to zero

and thus can be thresholded and discarded. As an example, Figure 1.5 demon-

strates such image compression using a 3-level 4th-order Daubechies basis;

Lena image is sparsity-transformed where only the highest 10% coefficients

are kept while the rest are hard-thresholded. It can be seen that the image

reconstruction using only 10% of the significant coefficients still maintains the

perceptual quality. Decades of research in sparse representation and signal

processing have laid the foundation in compressive sensing, as it advocates a
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more efficient sampling by implementing the data compression directly at the

signal acquisition stage.

1.4.2 Mathematical Model

Figure 1.6: Visualization of the matrix multiplications in compressive sensing. The
objective is to recover the signal of interest x from an observation vector y, measure-
ment functions (sensing matrix) Φ, and a known sparsifying transform Ψ. As an
example, Ψ is shown as the discrete cosine transform which sparsity-transforms x to
α with 4 non-zero elements.

In essence, compressive sensing finds a solution to underdetermined linear

systems and is written as the following matrix multiplication. Let M and N

represent the number of observations (compressed measurements) and the

Nyquist dimension of an object image. The observation vector y ∈ ℜM×1 can

be expressed as the following:

y = Φx =

⎡⎢⎢⎢⎣
ϕ1x
ϕ2x

...
ϕMx

⎤⎥⎥⎥⎦ (1.14)

where ϕ1, ϕ2, ..., ϕM ∈ ℜ1×N are vectorized measurement functions, and

x ∈ ℜN×1 is the vectorized object image. The sensing matrix Φ consists of

M measurement functions vertically concatenated. The objective is to solve
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for the signal of interest x from observations y and measurement functions

Φ. In Nyquist sampling, M = N and the sensing matrix is an N by N

identity matrix for a raster scan, or a Nyquist set of basis functions, such as the

Hadamard basis. In compressive sensing, M < N and thus enforces a sparsity

regularization to find the correct solution of x from infinitely many possible

solutions. As mentioned in previous section, there are mathematical basis or

dictionary in which x is sparse with very few significant coefficients. This is

formulated as α = Ψx where Ψ ∈ ℜN×N is the sparsifying transform, and

α ∈ ℜN×1 is a K-sparse vector with K non-zero elements. Consequently, the

sensing problem is written as y = Aα where A = ΦΨ−1, as shown in Figure

1.6. In order to solve such ill-posed problem the sensing matrix must meet the

Restricted Isometry Property (RIP) [16]. The sensing matrix A satisfies the RIP

of K-sparse signal if there exists a bound 0 < δK < 1 such that

(1 − δK)||α||22 ≤ ||Aα||22 ≤ (1 + δK)||α||22 (1.15)

holds for all α ∈ ∑K. The sensing matrix A meets the RIP requirement if it has

a minimum coherence, which is defined as the largest absolute inner product

between any of its two normalized columns. Typically, a sensing matrix of i.i.d

random entries is employed as it satisfies the RIP and leads to the recovery of

x with high probability by solving the following ℓ1-minimization problem.

min
α

||α||1 s.t. ||y − ΦΨ−1α||2 ≤ σ. (1.16)

where σ is some noise boundary. Intuitively, such random sensing matrix
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works with a high probability of success because the random projections

are maximally uncorrelated with the common mathematical bases as well as

with the unknown signal of interest. In accordance with compressive sensing

theory, the minimum number of observations to accurately reconstruct x is

defined as K log
(︂

N
K

)︂
≤ M where K is the signal sparsity.

1.4.3 Hardware Implementation

Figure 1.7: Illustration of a compressive imaging architecture: single-pixel camera.
A spatial light modulator is employed to sequentially mask or illuminate the scene
with pseudorandom patterns. A lens is used to focus the reflected light to a single
photodetector, which measures the optically-computed inner products between the
pseudorandom projections and the scene.

A conventional imaging system digitizes the raw data of an object im-

age via point-scan, which acquires each pixel information sequentially. The

raw data undergoes an image compression routine where it is mapped to a

sparse mathematical domain. Although an encoder can represent the object
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image using very few significant coefficients, a lot of the hardware resources

used to sample the raw image are effectively wasted. Compressive sens-

ing hardware implements the compression directly at the signal acquisition

stage. Notably, in CS imaging architectures, pseudorandom patterns are ex-

tensively used to sample a signal of interest, as they are highly uncorrelated

with the mathematical bases in which natural images have sparse represen-

tation [13]–[16]. The inner product between these known patterns and the

object are the compressed measurements used to reconstruct the object by

solving a sparse optimization problem, such as minimizing the ℓ1-norm of

the object in its sparse form. Assuming the sampling patterns are sufficiently

random to satisfy the RIP, one can reconstruct the object image using a highly

sub-Nyquist number of measurements, where M ≪ N. For optical implemen-

tation of CS imaging, a spatial light modulator (SLM) is commonly employed

to either structure the incident light to generate pseudorandom illumination

patterns or collection masks [17]–[20]. Such architectures are known as a

single-pixel camera, since the inner products between the pseudorandom

patterns and an object of interest are collected by a single-pixel photodetector

instead of a pixel array in a CCD or CMOS imaging chip. The inner products

are optically-computed as the light reflected or scattered from the scene is

focused to a single photodetector using a focusing lens. Since the advent of

the first single-pixel camera, much research has been done to develop more

efficient and robust compressive sensing hardware. An interesting and re-

cent development is the lensless camera based on coded-aperture imaging

[21]–[24]. This architecture is quite relevant and will be discussed further in

chapter 2. In short, the working principle is to place a single spatial mask

16



near the front of a bare sensor, followed by characterization of light propa-

gation, i.e. point-spread-function, through the mask and onto the sensor. A

sparsity-minimization algorithm is employed to reconstruct the scene using

a single snapshot of the scene’s coded-aperture response. Essentially, the

lensless camera spatially-multiplexes the compressed measurements as each

pixel measures the pseudorandom linear combination of light emitted from

the scene. Contrary to single-pixel cameras that scan through the random pro-

jections via an SLM and acquire each measurement sequentially, the lensless

camera acquires the measurements in a single shot, making this architecture

suitable for high-speed, real-time imaging applications.

Figure 1.8: Schematic of a coded-aperture-based compressive imaging architecture.
Contrary to the single-pixel camera, this lensless camera only requires a single pseu-
dorandom mask which is integrated near a bare sensor, where each pixel measures
the linear combination of light emitted from the scene. From the 1-dimensional il-
lustration it can be readily seen that each sensor measures the light modulated by
different regions of the coded-aperture, which spatially-multiplexes the compressed
measurements.

17



1.5 Conventional Microendoscopy

Many investigations have been made in the field of microendoscopy to reduce

the invasiveness of in-vivo imaging, while improving the imaging resolu-

tion, field-of-view (FOV), and 3-dimensional data acquisition. One current

approach is to acquire each image pixel of a scene by distal scanning of a

single-core fiber or proximal scanning using a multicore fiber. Here, distal end

refers to the end of the optical fiber farthest from the source of illumination

while proximal end is the other end of the optical fiber. Such microendoscope

designs, shown in Figure 1.8, employ a mechanical scanner and microlenses,

and recovers images with high spatial resolution but with a field-of-view

limited by the deflection angle of the scanner.

Another approach is widefield illumination and detection using a multi-

core fiber or a fiber bundle, where fiber cores transmit the image pixels of a

scene, as shown in Figure 1.9. In this case, widefield imaging is accompanied

by a degradation in image quality due to the cross talk between fiber cores and

pixelation artifacts. Furthermore, reducing the number of fiber cores improves

miniaturization but reduces the field-of-view with the aforementioned effects

becoming more pronounced. Alternatively, hand-held microscopes based on

widefield illumination and collection using microlenses have been recently

demonstrated for brain imaging of freely moving mice [5]–[8]. Regardless of

the different approaches, the distal lenses that most approaches employ im-

pose an inherent trade-off between miniaturization of the imaging probes and

their imaging performance [5]–[8], [25]–[28]. The physical limit to miniaturiza-

tion is a particular problem for brain imaging as probe implantation inevitably
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Figure 1.9: Conceptual illustration of conventional microendoscopy designs.
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damages the intricate neural circuitry that such studies aim to understand [9],

[10]. Figure 1.10 shows the relative dimensions between a mouse brain with

10s of mm in width, and a typical microlens that has a diameter of several

mm. Most importantly, an animal brain is a 3-dimensional structure. For these

microendoscopes to acquire 3-dimensional space they require components

that physically vary the focal or imaging plane, such as a linear actuator or

an electrically tunable lens. The increased distal footprint and weight of the

probes makes brain mounting of freely moving animals more challenging

[29]–[32].

Figure 1.10: Illustration demonstrating the relative dimensions of a mouse brain and
a typical microlens.

1.6 Lens-free Microendoscopy

Recently, many investigations have been made to develop a lens-free microen-

doscope. The main principle behind these lensless approaches is to precisely
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Figure 1.11: Concept of lensless microendoscope using a multimode or multicore
fiber. (A) shows point scanning approach where a spatial light modulator generates
the correct phase profile at the proximal end to generate a focused point at the distal
end. (B) shows another imaging approach where a point source at the proximal end
generates a complex speckle pattern at the distal end for structured illumination
imaging. These lensless approaches are sensitive to bending of the fiber as they rely
on the phase of guided light in each fiber core or spatial modes.
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control the wavefront of a coherent light that couples into an ultra-thin waveg-

uide, such as a multimode or multicore fiber. While these waveguides are

extremely tiny (Ø < 500µm), they have complex light transmission character-

istics due to the phase delays between different spatial modes or fiber cores.

Thus, lensless imaging is enabled by fully characterizing the multi-modal light

propagation through the fiber, and appropriately modulating the input phase.

In essence, this is a holographic imaging method where the precise control of

the phase at the proximal end can either generate a focus point at the distal

end for a raster scan, or a series of structured illumination patterns that are

post-processed to reconstruct a scene [33]–[38]. Unfortunately, the critical

shortcoming of this approach is the extreme sensitivity to bending of the

fiber and thus the inability to study freely-behaving animals. Fiber bending

physically changes the optical path length (phase delays) between different

modes or cores, which nullifies the transmission characterization. Several

approaches have been suggested to address this issue but show drawbacks

such as restricted field-of-view, inability to resolve color, reduced imaging

contrast, or requiring an active calibration and feedback mechanism [38]–[41].

Importantly, the information content (i.e. space-bandwidth product) of these

imagers are still limited by the total number of fiber cores or spatial modes.

Following chapters describe my work that demonstrates several approaches

to ultra-thin lens-free microendoscopy enabled by computational imaging

techniques and novel optical hardware. These imaging architectures are not

only insensitive to bending of the imaging probe, but also capable of increas-

ing the information content such as 3-dimensional volumetric reconstruction
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using a single snapshot or image recovery with high-resolution and wide

field-of-view.
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Chapter 2

Computational Microendoscopy
Using a Coded-Aperture

In this chapter, we combine coded-aperture imaging with a multicore fiber to

create a distal lens-free microendoscope system that simultaneously achieves

miniaturization and wide field-of-view. Figure 2.1 (A) shows simplified illus-

tration of conventional lens-based imaging with a multicore fiber via widefield

illumination and detection. Figure 2.1 (B) shows simplified illustration of the

distal lensless imaging approach using a multicore fiber and a coded-aperture.

In essence, distal lenses are replaced with a simple pseudorandom binary

spatial mask (i.e. coded-aperture), which modulates the intensity of light

propagating from the scene to the fiber face. Unlike the widefield illumina-

tion and collection approach, each fiber core serves as a single measurement

instead of an image pixel as the cores measure a pseudorandom linear combi-

nation of light emitted from various points within the scene, enabling image

reconstruction without pixelation artifacts.

Prior to imaging, we first characterize the light propagation through the

coded-aperture and multicore fiber. For calibration, an incoherent light and a
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Figure 2.1: Minimally-invasive imaging using a multicore fiber and coded-aperture.
(A) Simplified illustration of widefield illumination imaging using a multicore fiber
and a lens. (B) Our distal lensless imaging approach using a coded-aperture.
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digital micromirror device are used to project and scan a point source across

the microscopic sample plane. The design of the calibration projector is

described in below section. The light transmitted through the coded-aperture

and multicore fiber is imaged at the proximal end of the multicore fiber onto a

CCD camera, which captures the corresponding system response of each point

source. For imaging, an object is placed in the sample plane, an incoherent

light illuminates the sample plane, and a single snapshot of the object’s system

response is captured using the camera at the proximal end of the fiber. An

image of the scene is then reconstructed using the calibrated system response

of individual point sources, the single frame of the object’s system response,

and an ℓ1-minimization image reconstruction algorithm. In comparison to

previously demonstrated lensless approaches [33]–[38], the proposed lensless

imager is insensitive to bending of the fiber as the operation relies on the

faithful transmission of intensity patterns, not phase, of the system response

of the point sources.

2.1 Mathematical Model

The above processes can be written mathematically as the following. Let M

and N represent the number of fiber cores in the multicore fiber and number of

pixels in the computational reconstruction, respectively. The imaging problem

is then

y = Ax =
[︁
A1x A2x . . . ANx

]︁
(2.1)
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where A1, A2, ..., AN ∈ ℜM×1 are the vectorized system responses from a

spatially-varying point source, y ∈ ℜM×1 is an object’s system response, and

x ∈ ℜN×1 is the image of the object to be recovered. To reconstruct the image

of the object from the object’s system response, we utilize ℓ1-minimization

coupled with discrete cosine transform basis at the level of blocks of pixels

called patches: any selected local patch should be sparse. Out of all candidate

images that are consistent with the system response, the iterative optimization

algorithm seeks out the most sparse set of overlapped patches. In accordance

with compressive sensing theory, the minimum number of measurements, i.e.

fiber cores, to accurately reconstruction x is defined as K log
(︂

N
K

)︂
≤ M where

K is the number of non-zero elements in x and the calibration matrix satisfies

the Restricted Isometry Property [16].

2.2 Reconstruction Algorithm

Figure 2.2: Illustration describing a patch-based iterative optimization algorithm,
which iterates from global reconstruction of the image and sparsity regularization at
the level of local patches. Xt and αP

t represent the image estimate and DCT coefficients
of overlapping patches at iteration t.
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To reconstruct the image of the object from the object’s system response,

we utilize a reconstruction framework focusing on the local image structures.

A popular model to quantify local image information is sparsity in an ap-

propriate domain. Given a patch or block of pixels z extracted at a random

location from the image of the object, its coefficients α under some sparsifying

transform ˜︁Ψ(·) defined by

α = ˜︁Ψ(z) (2.2)

should be sparse or compressible.

The reconstruction process estimates the sparse coefficients set of some patch

set covering the entire image of interest which is consistent with the object’s

system response. In particular, let {zk} be a patch set extracted from the

original image x, the image of the object can be mathematically represented

by its patches as

x = P
(︁
{zk}

)︁
, (2.3)

where P(·) is an operator that combines the patch set to obtain the original

image. Denote {ak} as the coefficients of the patches {zk} and Ψ(·) as the

inverse sparsifying transform of ˜︁Ψ satisfying zk = Ψ(αk) for all k, the sensing

process can be written as

y = A
(︂

P
(︁
Ψ{αk}

)︁)︂
. (2.4)
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We propose to obtain the sparse coefficients from the following optimiza-

tion problem

min
{αk}

∑
k

||αk||1 s.t. y = A
(︂

P
(︁
Ψ{αk}

)︁)︂
. (2.5)

This optimization problem can be solved efficiently by an iterative al-

ternating minimization procedure. At iteration t of the algorithm, a noisy

estimate x(t) of the original image consistent with the object’s system response

is reconstructed based on the information from the previous iteration. The

estimates of the sparse coefficients {α
(t+1)
k } at this iteration can then be found

by thresholding the coefficients of the noisy patches {z(t)k } extracted from x(t).

The error between the true measurements and the sparsified reconstruction

with the known coded-aperture response is used to generate the next image

estimate as x(t+1). The algorithm stops when a maximum number of iterations

is reached or the inconsistency between the estimate and the measurements is

sufficiently small.

2.3 Experimental System - Mk I

The calibration projector includes an incoherent light source (M530L3, MCWHL5

Thorlabs), an aspheric lens (lens 1, ACL5040U-A Thorlabs), a digital micromir-

ror device (DMD, DLP3000, Texas Instruments), and an achromatic lens (lens

2, #49-664 Edmund Optics). Lens 1 is used to best collimate the incoherent

light onto the DMD while lens 2 is used to image the mirrors of the DMD

onto the sample plane with approximately 3.3 de-magnification. Lens 1,2 and
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the DMD are used to project and scan a point source across the field-of-view

of our sample plane. A DMD macro pixel is used to generate a square point

source of 16.3-µm or 9.78-µm width. A 20× objective lens and a CCD camera

(GS3-U3-15S5M-C, Pointgrey) are used to image the proximal end of the mul-

ticore fiber, which acquires the system responses of each point source and an

object.

Figure 2.3: Detailed schematic of the coded-aperture-based computational microen-
doscope consisting of calibration optics and the imager.

Custom scripts were written to automate the data acquisition, which up-

load a macro pixel on the DMD, acquire a single snapshot from the camera, and

repeat for every macro pixel generated across the sample plane. In addition to

data acquisition, custom scripts were written to process the coded-aperture

response images as we need to acquire the light intensities in each fiber core. A

local maxima pursuit algorithm (median filter followed by convolution with a

gaussian point spread function) is used to compute the spatial positions of the

fiber cores from an image of the multicore fiber, and this core map is piecewise

multiplied to every coded-aperture responses to extract the light intensities in
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each fiber core. This process is repeated for every point source being gener-

ated which completes the calibration matrix. The same extraction process is

done only once for the single-shot measurement of an object’s coded-aperture

response, and the image reconstruction algorithm is used to recover the object

image.

2.3.1 Multicore Fiber and Coded-Aperture

The multicore fiber (FIGH-06-300S, Fujikura, distributed by Myriad Fiber

Imaging in U.S) used to acquire all experimental data is a 30-cm-long multicore

fiber consisting 6000 fiber cores with 3-µm core diameter, 3.3-µm core pitch,

270-µm image circle diameter, 300-µm fiber diameter, and 400-µm coating

diameter. The coded-aperture used in the experiment has a minimum feature

size of 10-µm, limited by our printing capabilities. The coded-aperture is laser-

printed on a transparency and is a two-dimensional square-shaped, uniformly

distributed pseudorandom binary pattern. Due to the feature size of the

coded-aperture and the inherent cross talk in the multicore fiber, the distance

between the mask and the fiber is set to be 1-mm with the imager’s working

distance being approximately 4-mm in order to ensure sufficient shift in the

coded-aperture responses of each point source from the scene.

2.4 Experimental Results - Mk I

2.4.1 Lens-based versus Lens-free Microendoscope

Example experimental results of the imaging system are shown in Figure 2.4.

For reference, images of projected test objects (Fig. 2.4 A,B) and a prepared

31



slide of esophagus tissue (Fig. 2.4 C) are acquired using a high resolution bulk

microscope. The corresponding objects imaged through a conventional lens-

based multicore fiber microendoscope are also shown (Fig. 2.4 D,E,F) by using

a lens and the multicore fiber. Imaging results from our distal lensless system

are demonstrated using a coded-aperture and the same multicore fiber and are

shown (Fig. 2.4 G,H,I). Further more, their corresponding raw camera images

used to reconstruct these images are shown (Fig. 2.4 J,K,L). Experimental

results generated from Mk I system have a 980-µm-wide field-of-view.

2.4.2 Test for Spatial Resolution

Resolution targets are imaged (Fig. 2.5) in order to determine the spatial

resolution of Mk I imaging system. Microscope images of the resolution

targets (Fig. 2.5 A,B,C), images using the conventional lens-based multicore

fiber microendoscope (Fig. 2.5 D,E,F), and the distal lensless microendoscope

image reconstructions (Fig. 2.5 G,H,I) are shown. The linewidths in Figure 2.5

A,D,F are 44-µm, 40-µm, and 33-µm respectively, the linewidths in Figure 2.5

B,E,F are 32-µm, 29-µm, 26-µm, and 22-µm respectively, and the linewidths in

2.5 C,F,I are 21-µm, 19-µm, 17-µm, and 14-µm respectively. Unlike lens-based

approach, lensless imaging is capable of resolving 14-µm features as shown in

Figure 2.6.

2.4.3 Dynamic Scene Reconstruction

Interestingly, the imaging architecture presented here is comparable to the

single-pixel camera shown in 1.7, where each measurement carries global
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Figure 2.4: Experimental imaging results. (A)-(C) Object images acquired using
a bulk microscope. Experimental results shown throughout have a 980-µm-wide
field-of-view. (D)-(F), Objects imaged using a conventional lens-based multicore fiber
microendoscope. Scene is de-magnified to fit within the fiber’s image circle diameter
of 270-µm. (G)-(I), Raw images captured from the proximal end of the multicore fiber
in our distal lensless microendoscope employing a distal coded-aperture and used
to reconstruct (J)-(L). Objects imaged using our distal lensless microendoscope are
shown in (J)-(L).
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Figure 2.5: Test for lateral resolution. (A)-(C) Images of the resolution target objects
acquired using a bulk microscope. (D)-(F) Objects imaged using a conventional
lens-based multicore fiber microendoscope. (G)-(I) Objects imaged using our lensless
multicore fiber microendoscope employing a distal coded-aperture. (A)(D)(G) widths
of the lines are 44-µm, 40-µm, and 33-µm. (B)(E)(H) widths of the lines are 32-µm,
29-µm, 26-µm, and 22-µm. (C)(F)(I) widths of the lines are 21-µm, 19-µm, 17-µm, and
14-µm.
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Figure 2.6: Comparison of lateral resolution between lens-based and lensless multi-
core fiber microendoscopes. Above results shown resolution targets with linewidths
21-µm, 19-µm, 17-µm, and 14-µm. Lens-based image of the resolution targets is
lowpass filtered in order to remove the pixelation artifacts due to fiber cores. Regions
of interest (yellow dotted lines) show 14-µm linewidths and is used to generate the
average horizontal and vertical intensity variations. Line fitting (red curve) in ad-
dition to pixel values (blue dots) is used for lensless imaging result, and show that
14-µm linewidths are resolved by the Rayleigh criterion.
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information about the scene [17]–[20]. However, contrary to single-pixel

cameras that sequentially mask the scene with varying spatial patterns and

acquire each measurement sequentially, our imaging system only requires

a single pseudorandom spatial mask and acquires the spatially-multiplexed

measurements from a single camera frame, and is therefore highly suitable for

capturing dynamic scenes. To demonstrate this we experimentally reconstruct

a time-varying scene acquired at the native frame rate of our camera (50 frames

per second), and is shown in Figure 2.7. The pixel resolution of the camera

does not dictate the frame rate of the lensless microendoscope, provided

enough pixels are available to measure the light intensity in each fiber core.

For calibration and imaging, we acquire images of the fiber cores using only

10 camera pixels per core. Given the modest pixel requirements of the present

system, we anticipate th signal-to-noise of the system response to be the

primary limiter of the maximum frame rate, not the camera data throughput.

2.4.4 Volumetric Reconstruction

A dramatic benefit of the lensless microendoscope system presented is the

ability to computationally refocus on objects that are positioned at different

depth without any actuated components and using only a single camera

frame. Conventionally, optical endoscopes with depth scanning capabilities

require components capable of physically varying the focal plane, such as

an electrically tunable lens, which makes brain mounting of freely moving

animals difficult due to increased distal footprint and weight [29]–[32]. In

stark contrast to these bulky approaches, we can simply calibrate the system
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Figure 2.7: Demonstration of time-varying scene reconstruction. A moving object is
generated using the DMD from Figure 2.3 and imaged using a lens and a camera.
The lensless microendoscope system responses for different frames are acquired at 50
frames per second using the CCD camera and used to reconstruct the scene.
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responses at different depths and reconstruct the scene volumetricaly without

actuation from a single camera snapshot. As a demonstration of this, Figure 2.8

A,B shows the microscope images of two test objects separated in depth by 1.5-

mm. Using a single snapshot (Fig. 2.8 C), we can volumetrically reconstruct

an image volume of the objects and digitally focus on either objects (Fig. 2.8

E,F) simply by choosing the depth plane within the reconstructed volume.

Experimentally, this volumetric reconstruction of the scene is enabled by the

calibration of 11 depth layers separated by 300-µm in depth. In the present

configuration, the lensless microendoscope demonstrates an axial resolution

of approximately 300-µm as shown in Figure 2.9.
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Figure 2.8: Volumetric reconstruction and computational refocusing. (A)(B) Bulk
microscope images of the test subject which consists of two planar objects separated
in depth by 1.5-mm. The image volume is reconstructed from a single image of the
multicore fiber’s proximal end, shown in (C). (D) shows volumetric reconstruction
with 11 depth layers, separated in depth by 300-µm, using the system response shown
in (C). (E)(F) images from the volumetric reconstruction corresponding to the two
depths that the objects are in the best focus.
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Figure 2.9: Determining the axial resolution of the lensless microendoscope. An
experimental point source is reconstructed at different depths and the corresponding
intensity fall-off is recorded as a function of depth. A fitted Gaussian curve shows
that the axial resolution is approximately 300-µm according to the Rayleigh criterion.

2.4.5 Color Imaging

Beyond computational refocusing this lensless approach can also achieve

color imaging without any additional components. In contrast, microlens-

based systems suffer from significant chromatic aberrations that are difficult

to correct. Using the proposed lensless approach, one can simply employ a

color camera and calibrate the sensing matrix for each color channel resulting

in no chromatic aberration, in principle. To demonstrate this color imaging

capability a white light LED is used as the light source and we reconstructed

and overlay images of each color channel to generate the results shown in

Figure 2.10.
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Figure 2.10: Demonstration of color imaging. (A)(B) Images of multi-color objects
acquired using a bulk microscope. (C)(D) Color image reconstructions of the same
objects using our lensless microendoscope.
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2.4.6 Insensitivity to Fiber Bending

Figure 2.11 shows the system responses of a point source used in the calibra-

tion, both with bending and without bending of the fiber. The 30-cm-long

multicore fiber is bent approximately 30o from its normal axis. The light

intensities in each fiber core are extracted for both fiber deformations, shown

in the bottom Figure. The correlation between the two measurements is 0.99,

demonstrating high repeatability and lack of bend sensitivity.

2.5 Information Capacity

Have we really increased the information capacity of a microendoscope using

a coded-aperture and computational imaging techniques? Below analysis

shows that we have indeed increased the information content by three-fold for

a single depth plane. Notably, the ability to reconstruct a volume from a single

camera snapshot even further increases the space-bandwidth product (SBP) of

the lensless system. The specs of the lens-based and lensless microendoscopes

are summarized in below table.

The lateral resolution of the lens-based microendoscope is the best-case

theoretical resolution (ignoring crosstalk, optical aberration in microlens, etc)

which meets the Nyquist requirement of two fiber cores per resolution element

[42]. In other words, the lens-based multicore fiber with 3.6× de-magnification

can resolve a minimum feature size of 3.6 × 2 × (3.3-µm core pitch) = 24-µm.

Direct calculation of the SBP is the following: field-of-view
Nyquist resolution = 0.754 mm2

(12 µm)2 =
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Figure 2.11: Demonstration of insensitivity towards bending of the multicore fiber of
the lensless microendoscope.
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5236. This calculation is in good agreement with the theoretical SBP in the lens-

based microendoscope, which is the total number of fiber cores (6000 cores) in

the multicore fiber. In comparison, the SBP in the lensless microendoscope is

0.96 mm2

(7 µm)2 = 19592 for a single depth plane.

Lens-based Lensless
FOV 0.754 mm2 0.960 mm2

Lateral Resolution 24 µm 14 µm
2D Space-Bandwidth Product 6000 19592

Depth Resolution N/A 300 µm
Video Frame Rate 50 fps 50 fps

2.6 Experimental System - Mk II

Above sections have demonstrated a lensless computational microendoscope

with capabilities and performance that are not possible with conventional

lens-based microendoscopes. However, there are several design mechanisms

to be addressed before transitioning to real-time imaging of freely-behaving

animals. First is to ensure the fluorescence imaging capability where the

multicore fiber is used to simultaneously deliver light to a scene and collect

the excited fluorescence emission. Another requirement is the appropriate

design of the amplitude mask (i.e. coded-aperture) that casts the smallest

features on the distal end while preserving the decorrelation of each point

source, which would maximize the lateral and axial resolutions. In addition,

it is advantageous to set the working distance of the microendoscope in

hundreds of µm in order to avoid scattered light from the animal brain tissue.

The following presents the next generation of the coded-aperture-based

computational microendoscope that meets the above requirements. Notably, a
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coded-aperture with high modulation contrast is fabricated using photolitho-

graphic techniques, and is UV-glued to the distal end of the multicore fiber.

The coded-aperture used in the following experiment has a minimum feature

size of 7-µm, while the distance between the amplitude mask and the fiber

is set to be 500-µm with the imager’s working distance being approximately

400-µm. In Mk II the multicore fiber is used to both illuminate the scene

and collect the fluorescence emission (epi-fluorescence), and the correspond-

ing system response is used to reconstruct the scene and digitally refocus to

fluorescent objects located at varying depths.

Figure 2.12 (A) presents the epi-fluorescence computational microendo-

scope. The light from a continuous-wave laser (Verdi G7, λ = 532nm, Coher-

ent Inc.), aspheric condenser lens (ACL5040U, Thorlabs), and a 10× objective

lens are used to fully couple into the 6000 fiber cores in the multicore fiber

(FIGH-06-300S, Fujikura). The light at the distal end propagates from the cores

through the coded-aperture, and evenly illuminates the scene. A rotating

ground-glass diffuser is employed to eliminate the coherence of the laser light.

Note that the imaging system does not rely on spatial or temporal coherence:

the CW laser is only used to excite the fluorescent objects in the scene and thus

the imaging system is still insensitive to bending of the multicore fiber. The

fluorescent light from an unknown object propagates from the scene through

the coded-aperture, and is collected by the same multicore fiber. The 10×

objective lens and a camera (GS3-U3-15S5M-C, Pointgrey) are used to image

the proximal end of the multicore fiber and thus acquire the system reponse

of the unknown object. A long-pass dichroic mirror (DMLP550, Thorlabs) and
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Figure 2.12: Detailed schematic of the imaging system consisting of the calibration
module and the lensless microendoscope.
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a filter (FEL0550, Thorlabs) are employed to sufficiently reject the excitation

light from the fluorescence emission.

Figure 2.12 (B) shows the side view of the calibration module consisting of

an LED (M565L3, Thorlabs) with the central wavelength that matches the peak

fluorescence emission, a ground-glass diffuser (DG10-1500, Thorlabs), and a 5-

µm-wide spatial pinhole (P5D, Thorlabs). The calibration module is mounted

on a motorized xy-stage and a manual z-stage to calibrate for a volumetric

scene. Custom scripts are written to automate the data acquisition, which

positions the spatial pinhole in an xy-coordinate, acquire a single snapshot

from the camera, and repeat for every xyz-position across the scene with 5-µm

and 10-µm pitch. Identical scripts from Mk I system are used to build the

calibration matrix and process the single-shot measurement of a fluorescent

object’s coded-aperture response. Previously described patch-based iterative

optimization algorithm (2.2) is used to reconstruct images of 10-µm fluorescent

particles (Nile Red, Spherotech).

2.6.1 Coded-Aperture Fabrication

Figure 2.13 shows the steps taken to fabricate the coded-aperture via pho-

tolithography. A fused silica wafer is the substrate of choice since it has a good

transmission in the visible wavelength and low thermal expansion. The wafer

thickness is set as 500-µm which determines the distance between the coded-

aperture and the distal end of the multicore fiber. The wafer is deposited with

100-nm-thick chromium and covered with photoresist via spin-coating. A

photomask (i.e square-shaped, uniformly distributed pseudorandom binary
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Figure 2.13: Fabrication of the amplitude mask and spacer.

pattern) is aligned and exposed to UV light to pattern the photoresist. Conse-

quently, chromium is liquid-etched away, remaining photoresist are removed,

and the wafer is diced to appropriate dimensions to be UV-glued to the distal

end of the multicore fiber. Figure 2.14 shows the microscope image of the

fabricated coded-aperture with 7-µm minimum feature size.

2.7 Experimental Results - Mk II

2.7.1 Lensless Epi-Fluorescence Imaging

Experimental results demonstrating the fluorescence compatibility are shown

in Figure 2.15. For reference, ground truth images of the fluorescent parti-

cles (Fig. 2.15 A,B) are acquired using a high resolution bulk microscope,

where (B) is the magnified image of the yellow region-of-interest displayed

in (A). The respective widths of the two field-of-views shown throughout

the experimental results are 320-µm and 640-µm. Imaging results from the

lensless microendoscope are shown in Figure 2.15 (D)(E). Furthermore, the
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Figure 2.14: Microscope image of the coded-aperture fabricated using photolitho-
graphic techniques. The amplitude mask is a square-shaped, uniformly distributed
pseudorandom binary pattern with 7-µm minimum feature size.
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Figure 2.15: Experimental imaging results. (A)(B) Ground truth images of 10-µm
fluorescent particles acquired using a bulk microscope. (C) Raw image of the sys-
tem response captured from the proximal end of the multicore fiber that is used to
reconstruct (D)(E). Scale bar = 200-µm (A,D) and 100-µm (B,C,E).
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corresponding raw camera image used to reconstruct these images are shown

in Figure 2.15 (C).

2.7.2 Digital Refocusing

Experimental results demonstrating the computational refocusing capability

of the lensless microendoscope is shown in Figure 2.16 and 2.17. A simple

calibration of the system responses at different depths enables the volumetric

reconstruction of the scene from a single camera snapshot. Figure 2.16 (A)(B)

show the microscope images of two fluorescent particle clusters that are

separated in depth by approximately 250-µm. Figure 2.17 (A)(B) are the

magnified images of the yellow region-of-interest displayed in 2.16 (A)(B).

Using a single snapshot (Fig. 2.16 C) we can digitally focus on either clusters

(Fig. 2.16 D,E and Fig. 2.17 C,D) simply by choosing the depth plane within

the reconstructed volume.

2.8 Discussion and Future Work

In summary, I have demonstrated a distal lensless, scan-free microendoscope

using a coded-aperture at the distal end of a multicore fiber. By replacing distal

lenses with a single spatial mask, widefield images of the scene are computa-

tionally recovered with superior image quality to a comparable conventional

lens-based approach. Also, the imaging system is capable of computational

refocusing of objects separated in depth without actuation using a single

snapshot of the scene’s coded-aperture response. Furthermore, the presented
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Figure 2.16: Computational refocusing. (A)(B) Bulk microscope images of two 10-µm
fluorescent particle clusters that are separated in depth by 250-µm. The volumetric
scene is reconstructed from a single image of the multicore fiber’s proximal end,
shown in (C). (D)(E) Reconstructed images from the lensless microendoscope corre-
sponding to the two depths that the two clusters are in best focus. Scale bar = 200-µm
(A,B,D,E) and 100-µm (C).
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Figure 2.17: Computational refocusing. (A)(B) Magnified bulk microscope images
of the yellow region-of-interest displayed in 2.16 (A)(B). Volumetric scene is recon-
structed from a single image of the multicore fiber’s proximal end, shown in 2.16 (C).
(C)(D) Reconstructed images from the lensless microendoscope that digitally focuses
on the two fluorescent particle clusters separated in depth by 250-µm. Scale bar =
100-µm.
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technique does not require additional elements to correct for chromatic aber-

rations, enabling color imaging by simply calibrating for each color channel.

Future improvements on this work will include optimizing the minimum

feature size of the pseudorandom amplitude mask and its distance from the

multicore fiber through wave diffraction simulation. Furthermore, polishing

the amplitude mask down to the diameter of the multicore fiber is highly

desired in order to further minimize the invasiveness of the microendoscope.

Lastly, an image reconstruction algorithm that leverages the temporal sparsity

would be very beneficial in recovering a time-varying scene, such as firings of

neurons. Overall, the presented imaging system demonstrates an alternative

design to ultra-thin microendoscopy with great potential for applications that

demand extremely small and agile probes such as real-time imaging of neural

activity in freely moving animals.
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Chapter 3

Fluorescence Imaging Using
Spatially-Dependent Scattering

This chapter presents a compressive imaging architecture employing a multi-

core fiber with a cheap and readily available scattering distal tip. Unknown

fluorescent objects are illuminated with randomly structured speckle pat-

terns generated by a coherent light separately coupled through each fiber

core to a ground glass diffuser at the distal end. Using the characterized

speckle patterns and the total light collected from the object, we can computa-

tionally recover pixelation-free object images with up to seven times higher

space-bandwidth product (SBP) than the number of fiber cores. Notably, the

proposed imaging system is insensitive to bending of the fiber and extremely

compact, making it suitable for minimally-invasive microendoscopy.

3.1 Harnessing Disorder for Imaging

Recent research has focused on using natural scattering media for improved

image acquisition, including super-lenses, imaging around corners, blind
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Figure 3.1: Illustration showing the different effects on the incident wavefront by a
typical lens and a scattering medium. A typical lens applies a quadratic phase shift on
the incident wavefront, and thus focuses it to the smallest possible spot. A scattering
medium applies a random phase profile on the incident wavefront which generates a
complex spatial interference at the far-field.

structured illumination microscopy, and single-fiber imaging [43]–[49]. Com-

plex spatial interference patterns known as "speckle" patterns are generated

when a coherent source illuminates a scattering objects. Common scattering

materials include paper, white paint, rough surfaces, or any media that has

a large number of scattering particles. Such random patterns show great

potential for imaging, as they have diffraction-limited speckle granules, allow

for large spatial frequency content, and are easily and inexpensively gener-

ated. As shown in previous chapters minimally-invasive imaging tools have

limited information capacity due to its given cross-sectional area. Specifically,

the space-bandwidth product of a multicore fiber-based microendoscope is

purely limited by the number of fiber cores. Thus, it is a natural progression to

employ a scattering medium, which is capable of transmitting unprecedented

amount of information, to increase the information capacity of a multicore

fiber. However, the main challenge is designing the system that can harness
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this disorder for imaging, as the complex and random nature of speckle pat-

terns do not directly result in any image pixel information. Rest assured, the

following experimental findings show that compressive imaging theory can

be implemented to achieve such task.

Here, we present a minimally-invasive imaging approach that senses an

unknown scene using spatially-encoded speckle patterns as shown [49] in

Figure 3.2. Similar to a conventional raster-scanning microendoscope, we

sequentially illuminate each fiber core in a multicore fiber. The light exiting

the distal end propagates through a ground glass diffuser and, using up

to 1000 cores, we generate up to 1000 unique speckle patterns to sense an

unknown object. A single photodetector is used to collect the total light off the

scene, which optically-computes the inner products between the patterns and

the object. Using the characterized speckle patterns and the series of single

photodetector measurements, we reconstruct images with an SBP of 2100 from

between 300 and 1000 measurements (i.e., fiber cores) using a total variation

(TV) minimization algorithm.

3.2 Mathematical Model

Let M and N represent the number of compressed measurements (i.e. fiber

cores) and the pixel dimensions of the object image (N = n1 × n2), respectively.
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Figure 3.2: Conceptual illustration of the computational microendoscope using a
multicore fiber with a distal scattering tip.

Figure 3.3: Illustration of discrete spatial gradient transform. Lena Image (A) is
sparsity-transformed to the discrete gradient domain (B) which highlights the regions
of rapid intensity change.
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The observation vector y ∈ ℜM×1 can be expressed as follows:

y = Ax =

⎡⎢⎢⎢⎣
A1x
A2x

...
AMx

⎤⎥⎥⎥⎦ (3.1)

where A1, A2, ..., AM ∈ ℜ1×N are the vectorized speckle patterns generated

from each fiber core and a ground glass diffuser and x ∈ ℜN×1 is the vector-

ized object image to be recovered. The sensing matrix A consists of M random

illumination patterns vertically concatenated where A ∈ ℜM×N . For image re-

construction we assume that the object is sparse in the spatial gradient domain

as illustrated in Figure 3.3. The spatial gradient of an image X of dimensions

n1 by n2 is

gi,j =
√︂
(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2 (3.2)

where xi,j is the {i, j}th pixel intensity of X. The total variation (TV) norm is

defined as the summed magnitude of the spatial gradient:

||x||TV =
n1

∑
i=1

n2

∑
j=1

gi,j. (3.3)

In turn, we can recover the image of our object by solving the following

optimization problem:

min
x

||x||TV s.t. ||y − Ax||2 ≤ σ, x ≥ 0. (3.4)

where σ is a noise boundary. TV Minimization by Augmented Lagrangian
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and Alternating Direction Algorithm [50] is used to reconstruct the image.

3.3 Experimental System

MCF
SP

Camera

DMD

WL

CL

Iris

A

Iris

Camera

PCL

Diffuser

PMT

20x10x

DM

LPF

B

Figure 3.4: Experimental setup. WL = white light source, CL = condenser lens, DMD
= digital micromirror device, PCL = plano-concave lens, MCF = multicore fiber, SP =
sample plane, DM = dichroic mirror, LPF = long pass filter, PMT = photomultiplier
tube.

The experimental system is shown in Figure 3.4. A plano-concave lens is

used to expand a 7W continuous-wave laser beam (Verdi G7, λ = 532nm, Co-

herent Inc.), which illuminates a digital micromirror device (DMD, DLP3000,

Texas Instruments) placed at the conjugate plane of the proximal end of the

multicore fiber. The DMD has a maximum refresh rate of 4-kHz, and the laser

is incident at 24o as the blaze condition is twice the tilt angle of the DMD

mirrors. It should be noted that this CW laser drifts in wavelength within

its linewidth, which impacts the long-term stability of the speckle patterns

[48], [49]. Thus, for the best performance, we collect sets of 200 measurements

within the drift-free period, and a single-frequency laser is preferable for

future work. A white light LED and a condenser lens also illuminate the
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proximal end of the multicore fiber with 1600 cores (FIGH-016-160S, Fujikura)

with a 3-µm core diameter and 3.3-µm pitch. The CW laser and white light

LED are coupled into the multicore fiber using a 20× finite conjugate objective

lens, and camera A is used to image the fiber’s proximal end. The rough

surface of the ground glass diffuser (DG05-1500, Thorlabs) is placed 2-mm

from the distal end of the multicore fiber, and the sample plane is another

2mm from this surface. The illumination diameters on the diffuser and on the

sample plane are approximately 265-µm and 471-µm. This was experimen-

tally reduced to 220-µm by an iris to facilitate CS recovery with up to 1000

measurements. A 10× objective lens is used after the sample plane to calibrate

the random speckle patterns and collect single-photodetector measurements.

The numerical aperture of the 10× objective lens only affects the fluorescence

collection efficiency and does not affect the SBP of the imaging system. Cam-

era B is used to calibrate the speckle patterns, while a photomultiplier tube

(H7422-40, Hammamatsu) is used to collect the total light from the object. A

long-pass dichroic mirror (DMLP550, Thorlabs) and filter (FEL0550, Thorlabs)

are used to separate the excitation and fluorescence emission.

3.3.1 Image Registration

To register the fiber core positions, we image the input plane of the multi-

core fiber. Using a local maxima pursuit algorithm, we locate the spatial

positions of each core, as shown in Figure 3.5. Next, the white light illumi-

nation is turned off, and the CW laser and the DMD are used to generate

random control points within the field-of-view of the multicore fiber. The
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image of the control points and the DMD input images are used to generate

a two-dimensional geometrical transform that maps the spatial locations of

individual fiber cores at the fiber input to the DMD mirrors (Fig. 3.5). Subse-

quently, 1000 DMD input images are generated to illuminate each fiber core

sequentially using the CW laser, and the corresponding speckle patterns at

the sample plane are measured. After this calibration, an object is placed at

the sample plane, and the fiber cores are again sequentially illuminated while

the PMT collects the total light from the object. These measurements and the

calibrated speckle patterns are used to reconstruct the object using the TV

minimization algorithm.

5 μm50 μm

(a) (b)

Figure 3.5: (a) White light illumination of the proximal end of the multicore fiber
with individual cores spatially located using local maxima pursuit. (b) Magnified
image of the yellow region in (a).

3.3.2 Pattern Correlation

For the best imaging CS imaging performance, the sensing matrix must be

uncorrelated within itself and with the sparsifying transform. To ensure this,

the structured illumination patterns for two independent DMD scans without
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any object in the field-of-view are acquired. The correlation between two

random illumination patterns is calculated using the following:

corr(a, b) = ∑(a − ā)(b − b̄)√︂
∑(a − ā)2 ∑(b − b̄)2

(3.5)

where a and b are random illumination patterns from the first and second

DMD scan, while ā and b̄ are the means of the corresponding images. The 2D

correlation is calculated for all pairs of illumination patterns from the DMD

scans to generate the correlation plot in Figure 3.6. The correlation between

two independent random patterns should be close to 0, while like patterns

should be near 1, demonstrating that the speckle patterns are uncorrelated but

repeatable. As an example, Figure 3.6 (a) and (b) show two random speckle

patterns generated by two adjacent fiber cores. Note that we chose a subset

of 1000 fiber cores from the existing 1600 cores with the highest coupling

efficiency, and the correlation did not impact which cores we chose.

3.4 Experimental Results

3.4.1 Fluorescence Imaging

Figure 3.7 shows the successful image recovery under different number of

measurements. Figure 3.8 and 3.9 show image reconstructions of fluorescent

particles (Nile Red, Spherotech) and resolution targets using 1000 measure-

ments. While not optimized, reconstruction of a 100 × 100 pixels images using

1000 measurements took approximately 5-s. The left most column of Figure

3.8 shows widefield fluorescence images which are used as the ground truth.
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Figure 3.6: Correlation plot of the illumination patterns from 1000 individual fiber
cores. (a) and (b) are speckle patterns generated from two adjacent fiber cores.
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Figure 3.7: Plot of recovery success with respect to the number of measurements
(fiber cores). The plot inset is the widefield fluorescence image of 10-µm fluorescent
beads used as the ground truth. (a)(b)(c)(d) CS image reconstructions with 50, 100,
300, and 500 measurements. All images are 100 × 100 pixels and at 8-bit depth.

64



The field-of-view of the reconstructed images is 220-µm wide, which is larger

than the multicore fiber’s image circle diameter of 140-µm.
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Figure 3.8: CS reconstruction of 10-µm fluorescent particles. Middle column shows
reconstructions from 1000 measurements. Corresponding single-photodetector mea-
surements used for image reconstruction are plotted in the right most column. All
images are 100 × 100 pixels and at an 8-bit depth.
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Figure 3.10: Autocovariances of 1000 structured illumination patterns used to deter-
mine the experimental spatial resolution.

3.4.2 Theoretical and Experimental Resolution

The spatial resolution of the proposed imaging system is determined by the

speckle granule dimensions. Thus the normalized autocovariances of 1000

speckle patterns are calculated to determine the speckle size (Fig. 3.10) using

the below equation:

c(x, y) =
F−1

{︂
|F

(︁
I(x, y)

)︁
|2
}︂
− ⟨I(x, y)⟩2

⟨I(x, y)2⟩ − ⟨I(x, y)⟩2 (3.6)

where c(x, y) is the autocovariance, F and F−1 are the Fourier and inverse

Fourier transforms, I(x, y) is the speckle intensity pattern, and ⟨·⟩ is the mean

operation.

With the assumption that speckle granules are Gaussian-shaped, the mini-

mum feature size is calculated from the Gaussian full-width half-max of the

horizontal and vertical cross-sections [51], which is approximately 4.8-µm.
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Thus, the information capacity of the imaging system (SBP) is approximately
(220µm)2

(4.8µm)2 ≈ 2100 resolvable features, and, for example, the image reconstruc-

tion in Figure 3.7 is generated with seven times fewer measurements than the

SBP.

Notably, the theoretical far-field speckle feature size (Φ) can be approxi-

mated by Φ ≈ λd
D where λ = wavelength of light, d = distance from the diffuser

to the sample plane, and D = illumination diameter on the diffuser [52]. The

Gaussian beam radius from a fiber core is given by w(z) = wo

√︂
1 + ( z

zr
)2

where wo = core radius, z = distance from the core, and zr =
πw2

o
λ . Using the

above approximations the theoretical minimum feature size is 4-µm, which

matches well with our experimentally measured value.

3.4.3 Insensitivity to Fiber Bending
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Figure 3.11: Correlation plot of the illumination patterns from a single core with
different bending angles. Illustration of the bending is shown at the most left. (a)(b)
are patterns without any bend and with 23.5o bend from its normal axis.

Figure 3.11 shows the correlations between speckle patterns generated
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from the undisturbed fiber and under five different bending angles. It should

be noted that the slight decorrelation of 0.8 are attributed to the crosstalk

between cores and the excitation of higher-order modes within each core as

the cores propagate a few modes at our laser wavelength. Using a multicore

fiber with single-mode cores and a larger pitch ensures that the imaging

system is completely bend-insensitive.

3.5 Discussion and Future Work

In conclusion, we have designed a compressive fluorescence imager using

a multicore fiber with a scattering distal tip. By ensuring single-core illu-

mination similar to a raster-scanning confocal microendoscope, the imaging

system is insensitive to bending of the fiber. In addition, we reconstructed

pixelation-free object images with an SBP of 2100 using between 300 and 1000

fiber cores in the multicore fiber. The future work will improve the efficiency

and speed of the laser coupling into individual fiber cores utilizing two scan-

ning galvo-mirrors. In addition, simultaneous light delivery and fluorescence

collection using the multicore fiber is to be implemented.
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Chapter 4

Single-Pixel Imaging Using
Wavelength-Dependent Scattering

Previous chapter described a compressive imaging system that harnesses

disorder to increase the information capacity of a multicore fiber. Similarly, this

chapter presents an imaging system that pushes the limit of an imaging probe’s

invasiveness by using a single strand of optical fiber (Ø < 125-µm). A single-

mode fiber with a multiply scattering tip and compressive sensing acquisition

are employed to facilitate 2-dimensional imaging via structured illumination.

A typical microendoscope using a single optical fiber for 2D imaging require a

mechanical scanner or an actuator at the distal end to facilitate point-scanning

of the scene. This lensless approach replaces such distal scanners with a

multiply scattering tip. Unknown objects are illuminated with randomly

structured, but deterministic, speckle patterns produced by a wavelength-

swepth coherent light source propagating through a TiO2-coated fiber tip.

Experimentally, the coating thickness is optimized to produce speckle patterns

that are highly sensitive to laser wavelength, yet repeatable. Images of the

objects are reconstructed from the characterized wavelength dependence
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of the speckle patterns and the wavelength dependence of the total light

collected from the object using a single photodetector. The imaging device

is mechanically scan-free and insensitive to bending of the fiber, making it

suitable for ultra-thin microendoscopy.

Figure 4.1: Conceptual illustration of the computational microendoscope using a
single single-mode fiber with a distal scattering tip.

4.1 Mathematical Model

Let M and N represent the number of compressed measurements and the

pixel dimensions of the object image (N = n1 × n2). The observation vector
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y ∈ ℜM×1 can be expressed as follows:

y = Ax =

⎡⎢⎢⎢⎣
A1x
A2x

...
AMx

⎤⎥⎥⎥⎦ (4.1)

where A1, A2, ..., AM ∈ ℜ1×N are the vectorized wavelength-encoded illumi-

nation patterns for λ1, λ2, ...λM and x ∈ ℜN×1 are the vectorized object image

to be recovered. The sensing matrix A consists of M random illumination

patterns vertically concatenated where A ∈ ℜM×N . After building the sensing

matrix A and the compressed measurements y from the optical hardware sys-

tem, we can use an appropriate sparsity minimization algorithm to reconstruct

the image of an unknown object x. For the following experimental results, we

employed the patch-based iterative image reconstruction algorithm that was

previously described in Chapter 2 (equation 2.5).

4.2 Experimental System

A block diagram of the experimental system is shown in Figure 4.2. The

tunable continuous wave laser sweeps in wavelength from 1480 to 1569.9-nm

in 0.1-nm increments to generate 1000 unique illumination patterns at the

output of the 1.5-mm TiO2-coated fiber tip. We experimentally determine that

the TiO2 coating as approximately 20% transmission of optical power. The

light passes through a 20× objective lens to magnify the random illumination

patterns at the object plane. The object plane is located one tube length

away from the finite conjugate objective. A second focusing lens relays the

72



illumination patterns onto the infra-red camera for calibration. An iris is

employed to define the field-of-view and ensure that the infra-red camera and

the single photodetector share the same field-of-view after the beam sampler.

Lastly, a 20× objective lens is used as a focusing lens to focus the light into

the single photodetector. A neutral density filter is used to attenuate the light

incident on the IR camera. The camera, photodetector, and tunable laser are

controlled by a computer to automate the data acquisition.

Computer

TiO2-tipped

SMF

FLOP BS PD

NDF

IR

Camera

Ir
OL OL

Tunable

Laser

Figure 4.2: Experimental setup of the compressive imaging device. TiO2-tipped SMF
= single-mode fiber coated with 1.5-mm of TiO2. OL = 20× objective lens, OP = object
plane, FL = focusing lens, Ir = iris, BS = beam sampler, PD = photodetector, NDF =
neutral density filter.

Two wavelength sweeps are performed to characterize the illumination

patterns and then compressively acquire an image. The first sweep is per-

formed for calibration of the imaging system, where random illumination

patterns generated by the TiO2-coated single-mode fiber are captured using

the IR camera. At this stage, no object is placed at the object plane. The second

sweep acquires the compressed measurements, where an object of interest

(resolution target) is placed at the object plane. The random illumination

patterns are projected onto the object, and their inner products are collected

by the single photodetector.
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Figure 4.3: Pattern correlation plot of the wavelength-encoded illumination patterns
generated by a single-mode fiber with TiO2-tip of 1.5-mm thickness.
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One major requirement of compressive imaging is that the sensing matrix

must be highly uncorrelated within itself and with the sparsifying matrix

to successfully reconstruct an object image. However, for this experimental

system, there is an inherent trade-off between the randomness and repeata-

bility of pattern generation, depending on the thickness of the scattering

medium. Increasing the thickness of TiO2 makes the illumination patterns

more wavelength sensitive, ensuring that patterns from different wavelengths

are maximally uncorrelated. However, if the illumination patterns are too

wavelength sensitive, reliable calibration becomes difficult due to the limits on

repeatability in the wavelength-steped CW laser. Conversely, shortening the

thickness of TiO2 allows for repeatable randomness of each illumination pat-

tern, which reduces the total number of informative measurements possible

given a limited bandwidth of the CW laser. To optimize the pattern random-

ness and repeatability, the TiO2 coating thickness is varied and the resulting

illumination patterns for two independent wavelength sweeps are measured

without any object placed in the object plane. The correlation between two

random illumination patterns is calculated using

corr(a, b) = ∑(a − ā)(b − b̄)√︂
∑(a − ā)2 ∑(b − b̄)2

(4.2)

where a and b are random illumination patterns from the first and second

sweep, while ā and b̄ are the means of the corresponding images. For a given

thickness, a correlation is is calculated for all pairs of illumination patterns in

the wavelength sweep to generate the correlation plot in, for example, Figure

4.3. The correlation among all of the wavelength-dependent patterns for these
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two sweeps is shown in Figure 4.3 for a TiO2 thickness of 1.5-mm. Note that

the correlation between two independent patterns should be as close to 0 (the

correlation of a pattern with itself will be 1), demonstrating that this thickness

strikes an appropriate balance between randomness and repeatability. As

an example, Figure 4.4 shows two random illumination patterns at different

wavelengths and their corresponding projections onto an object of interest.

Figure 4.4: (a)(b) Random illumination patterns and their corresponding projections
onto an object of interest at λ = 1500-nm and λ = 1501-nm.

4.3 Experimental Results

Figure 4.5 shows successful reconstruction of 64 × 64 pixel images from 1000

different wavelength measurements in a single sweep, which corresponds to
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24% compression or 4× sub-Nyquist rate. The left-most column and middle

column, respectively, consist of actual images of the object taken with the

IR camera and reconstructed images using the compressive measurements

acquired with the single photodetector. The right most column shows the raw

photodetector readings for the compressed measurements used in the sparsity

minimization algorithm.

Although we assume sparsity in the DCT basis to recover binary images

in this experimental system, the demonstrated imaging device is suitable

for imaging generalized objects in, for example, an endoscopy or camera

applications. The strength of pseudorandom sampling in CS imaging is that

one can recover an object image, as long as it can be sparsely represented in

some known basis. Real signals including images are known to be highly

compressible as demonstrated in previous chapters. In other words, countless

types of objects can be accurately imaged using the exact same set of physi-

cal measurements simply by employing a different sparsifying basis in the

reconstruction algorithm.

Additionally, objects of interest embedded in a scattering volume can

generate unwanted changes to the speckle pattern that can degrade the imag-

ing performance of this system. This perturbation can be modeled for the

reconstruction as additional noise n, varying by wavelength, added to the

measurement patterns: A′ = A + n. CS theory states that signal reconstruc-

tion will be successful provided the observations contaminated by noise, i.e.,

y = A′x = Ax + w, are bounded by a known amount ||w||2 ≤ σ [13]–[16].

In other words, one can successfully reconstruct object images provided the
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Figure 4.5: Reconstruction of digits from a a resolution target. Actual images of the
objects taken with an IR camera are shown in the left-most column. Reconstruction
results are shown in the middle column. Raw photodetector measurements used to
reconstruct the images are plotted in the right-most column. Scale bar = 0.5-mm.
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perturbations are small, while significant changes to the calibrated speckle

patterns can degrade the image reconstruction.

4.4 Discussion and Future Work

In summary, we have designed a single-pixel compressive imager using a

single-mode fiber coated with a wavelength-sensitive scattering medium.

The proposed imaging technique is mechanically scan-free and insensitive

to bending of the fiber, an advantage for microendoscopy applications, as

well as wavelength-encoded high-throughput imaging [53]–[55]. In addition,

an infra-red camera based on this approach can be very cost-efficient since

it no longer requires a costly InGaAs image sensor commonly used for the

near-IR spectrum. Toward endoscopy, one future approach is to use a dual-

core fiber, where a small single-mode core is used for illumination and the

light from the scene is collected back through the fiber using a much larger

multimode core. In a fluorescence imaging application, the scattering medium

thickness becomes more crucial since the number of wavelength-encoded

measurements are limited by the fluorescence emission bandwidth of the

fluorescent object. Thus, finding the thickness that simultaneously satisfies the

randomness and the repeatability of the illmination patterns within the given

fluorescence bandwidth is paramount. Additionally, beyond CS, multiply

scattering media hold great potential as a superlens to exceed the diffraction

limit of a conventional lens [43]–[47]. While the numerical aperture of a

conventional lens is limited by its most oblique angle and, thus, its physical

dimensions, scattering media allow for the collection of a wider range of
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spatial frequencies of incoming light due to the multiple scattering process

and thus higher space-bandwidth product. These additional benefits can also

be leveraged in future realizations of this approach.
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Chapter 5

Conclusion

This thesis has presented several lensless computational microendoscopes

that simultaneously achieve miniaturization and high information content.

Something as simple as a random amplitude mask at the distal end of a multi-

core fiber enables recovery of a 3-dimensional volumetric scene from a single

camera snapshot without any actuated parts. In addition, cheap and readily

available scatters such as white paint can be used for minimally-invasive

imaging with high-resolution and wide field-of-view. The presented ultra-thin

microendoscopes show great potential for applications that demand extremely

small and agile probes such as real-time imaging of neural activity in freely

moving animals. Beyond microendoscopy, computational imaging techniques

can be leveraged in imaging architectures that have strict limitations to the

amount of acquired information. For example, a high-speed camera limited

in the number of pixels for a given time, or a 3-dimensional fluorescence

microscope limited in its imaging speed due to mechanical scanning bring to

mind. Overall, the convergence of signal processing, optics with electronics,

and sophisticated computational algorithms paves the way to next generation
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imaging hardware.
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