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ABSTRACT 

 

Molecular dynamics (MD) simulation serves as a computational microscope into the behavior of 

the biological and chemical macromolecules. At its core, MD models the interactions between 

atoms at various levels – force fields model the higher quantum level interactions using simpler 

physics-based models of interaction energies, while periodic boundary conditions model the bulk 

phase using lattice-based periodic copies of the simulation box. One limitation of the finite size of 

the simulation box seen during the simulation of membrane bilayers is the artifact of a chemical 

disequilibrium between the two layers as a drug molecule enters into the bilayer. We have tried to 

solve this problem by using a periodic boundary condition which has a half screw symmetry. Our 

results show that the method scales similar to the best-known method for the normal periodic 

boundary conditions.  

 

We have migrated CHARMM to an efficient implementation on the GPUs. These architectures 

provide thousands of cores on the same chip but require different programming model in order to 

use the underlying architecture. Our results show that the new CHARMM CUDA engine is 

efficient in time and accurate in precision.  

 

We have also participated in blind prediction challenges organized by SAMPL community to have 

a fair assessment of the computational chemistry tools. We developed a hybrid QM and MM 

technique to predict the pKa of drug-like molecules. It avoids the implicit solvent model used by 

quantum mechanical models and uses explicit solvent molecules. Since modeling explicit solvent 

molecules is difficult at QM level, they are modeled at the MM level instead. Thermodynamic 
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cycle couples the aqueous Gibbs free energy of deprotonation to simpler components which can 

be modeled with higher accuracy.  

 

We also built a deep learning model to predict the logP of a set of drug-like molecules in a blind 

fashion. The generated model is robust over a large number of molecules, not just the ones that it 

was tested for in the SAMPL competition. We expect the method to be interesting for the drug 

design industry since lipophilicity of a molecule is important to be known even before it has been 

synthesized.   
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Chapter 1 

Introduction 
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Molecular dynamics (MD) simulations play an important role in understanding the structure, 

function and interactions of systems at an atomic level of description. Since the first MD simulation 

carried out in 1977 by McCammon et. al., these simulations have evolved in complexity in terms 

of size of systems studied and time lengths of the simulations. The basic idea behind MD 

simulation is pretty simple: a particle-based model of the system is first generated in terms of the 

nature of interaction between the particles in the system. The system is then evolved in time based 

on certain propagation rules. Under the ergodic assumption that states sampled over a long period 

of time are similar to the entire set of accessible states, simulations can be used to study the 

thermodynamic properties of the system. 

 

If a quantum mechanical level of description of the particles is chosen, electrons are explicitly 

accounted for in the model. Interaction energies are then calculated by solving the Schrodinger’s 

equation under certain assumptions. However, it soon becomes intractable for a system beyond a 

hundred atoms. Instead, under the Born-Oppenheimer approximation that the motion of nuclei of 

an atom can be separated from the motion of the electrons, MD simulations typically use an atom 

level description of the system. A force-field is first designed which approximates the QM level 

interactions in terms of bonded and non-bonded interactions of a pair of atoms (higher level 

potentials using many-body interactions have also been studied, though their applications remain 

limited so far). With this level of description, thousands to hundreds of thousands of atoms can be 

studied. 

 

Speed of simulation is critical when studying such large systems. In order to remove the artifacts 

emanating from the finite size of the simulation box, interactions from infinite images of the box 
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are considered. Non-bonded interactions are inherently 𝑂(𝑛2) and this makes the energy and 

gradient calculations at each time step quite time-consuming. To address these challenges many 

hardware and algorithmic advancements have been made in the last few decades to increase the 

speed of the simulations.  

 

DE Shaw’s Anton supercomputers have been a major advancement in the field of molecular 

dynamics. The Application-specific Integrated Chip (ASIC) along with duplex network connected 

in a torus grid allow the very efficient scaling of the parallelization over all the nodes of the 

machine. This hardware architecture at its core uses the algorithmic principle of spatial 

decomposition of simulation box. These methods have been termed as Neutral Territory (NT) 

methods as the interaction between a pair of atoms is often calculated on nodes where neither of 

the atoms reside! This scheme, unintuitively, minimizes the import volume for each node and 

hence the overall simulation scales very well.  However, these methods were developed for the 

normal periodic boundary conditions called P1. My work on Extended Eighth Shell (in chapter 2) 

builds upon the same principles and gives an equivalent parallelization scheme for more 

complicated periodic boundary conditions that involve a half-screw rotational symmetry.     

 

While Anton provides a very specialized architecture for the parallelization of the computations in 

MD, manufacturing the ASIC is very expensive and is not available. The compute-intensive nature 

of the calculations has made Graphical Processing Units (GPUs) interesting processors to 

parallelize the simulation. They are affordable to individual labs and are in state of rapid 

improvements with each new version of the architecture. However, the programming model for 

these machines to extract the full performance is complicated. My work on implementation of 



 
4 

 

CHARMM on the GPUs (chapter 5) shows our redesign of the code to harness the best out of the 

GPUs. 
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Outline  

 

In Chapter 2, I discuss the Extended Eighth Shell (EES) method that I developed for the simulation 

of lipid bilayers under P21 periodic boundary condition. One limitation observed during the 

simulation of insertion of drug molecules in membrane bilayers is the creation of chemical 

disequilibrium for the lipids. As the molecule enters one of the layers, the area per lipid in the two 

layers changes and lipids in the two layers are no longer in equilibrium with each other. EES 

method provides a scalable technique for carrying out the simulation such that the lipids, when 

they leave one of the layers, enter into the simulation box in the opposite layer. We show that the 

method is stable, scales efficiently over a large number of nodes and is able to reproduce data from 

physical experiments.  

 

In Chapter 3, I report a novel hybrid QM and MM technique for the calculation of pKa of small 

drug-like molecules. This study was carried out in a blind prediction competition organized by the 

Drug, Design and Data Resources consortium under the SAMPL6 challenge.  

 

In Chapter 4, the second part of the SAMPL6 challenge is discussed. This challenge involved the 

blind prediction of logP of a subset of the molecules in the previous pKa challenge. logP is measure 

of the lipophilicity of a molecule and is routinely used in drug design pipeline to assess the 

absorption, distribution, metabolism and excretion of the drug. For this challenge, I developed a 

novel deep learning approach for logP prediction.  

 

In Chapter 5, I get back to the recent developments made in CHARMM to move it to the GPUs. 

The previous version of the code was designed for a heterogeneous CPU-GPU system where the 
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parallelization of the computation was aimed at multiple CPUs nodes with each connected to a 

GPU device. However, in the last few years, GPUs have had a remarkable improvement in 

performance while the transfer bandwidth between the CPU and GPU has not seen the same level 

of development. These trends are expected to continue even in the future. Hence, I have redesigned 

CHARMM CUDA to perform all the computations on the GPU device itself and the CPU is used 

only for the input/output. This redesign allows CHARMM to give throughputs in the similar range 

to other leading MD packages like OpenMM and Amber.  
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Chapter 2 

An Extended Eighth-Shell Method for Periodic Boundary Conditions with Rotational 

Symmetry 
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(A version of this chapter has been submitted and is currently under review.) 

 

Abstract 

 

The Eighth shell method has previously been shown to be the most optimal in terms of 

parallelization of molecular dynamics simulation over large number of nodes. However, this 

method supports only the P1 periodic boundary condition (PBC) and cannot handle reflection 

and/or rotational symmetry. In this work we developed the Extended Eighth shell (EES) method 

that simulates only the asymmetric unit and communicates coordinates and images with images 

that correspond to P21 PBC. The P21 periodic boundary condition has application in lipid bilayer 

simulations as it can be used to allow the movement of lipids from one layer to the other, thus 

balancing the chemical potential difference between the two layers. Our results show that the EES 

scales similar to ES with the P21 symmetry.  

 

1  Introduction 

 

Molecular dynamics (MD) simulation serves as an important tool in several fields including 

computational chemistry, biophysics and material science. They provide a powerful model-based 

method to probe the microscopic and macroscopic properties of chemical systems. While the time 

scale of an individual step is of the order of femto-second (10−15s), most physically relevant 

phenomenon occur at timescales of milliseconds (10−3s) or higher. In order to cover the spatial and 

temporal scales of simulations, millions of interactions have to be calculated for billions of steps1. 
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Hence, there is an acute need for fast algorithms to parallelize the MD code in order to utilize large 

number of processors in an efficient way. 

 

D.E. Shaw group evaluated several parallelization strategies and introduced a set of zonal or 

neutral territory methods2,34. In these methods, interaction between a pair of particles is calculated 

not necessarily on the node where either of the two particles resides. This communication pattern 

among the nodes minimizes the inter-process communication bandwidth, which is the bottleneck 

for distributed memory parallel algorithms. Two of these zonal methods, Eighth Shell (ES) and 

Midpoint method5, achieve the least amount of communication for regular setups of simulation, 

i.e. system size being not too small compared to cutoff of pairwise interaction. For general purpose 

architectures, communication in ES has lower latency than in Midpoint method. ES has 

subsequently been implemented in several MD software packages including GROMACS6 and 

CHARMM7. 

 

MD simulations are routinely used for the study of insertion and/or rearrangement of peptides in 

lipid bilayers89. During the course of the simulation, area per lipid (APL) for lipids in the two 

layers changes. For example, consider the insertion of a peptide into the top layer. APL in the top 

layer would decrease. However, in the bottom layer it would remain the same or increase under a 

constant pressure or constant surface tension simulation. This leads to a state of chemical 

disequilibrium between the layers. In contrast to cell membranes, where lipids can move further 

to release the stress, lipids in simulations return back to the same layer. Flipping of lipids happens 

at a time scale not accessible to MD simulations and cannot be relied on for balancing the stress. 
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Our group earlier reported a method to allow the exchange of lipids between the two leaflets of 

the bilayer during the course of the simulation10. Rather than using the usual periodic boundary 

condition, called P1, this method uses the P21 periodic boundary condition. A lipid leaving the 

primary cell under the P21 PBC, enters the opposite layer along the orthogonal face. This method 

allows the equilibration of lipid chemical potential between the two layers through the course of 

simulation. 

 

The symmetry operation in P21 PBC is a half screw symmetry that preserves the chirality. It 

involves reflections along two orthogonal axes and half a unit translation along the third axis. 

These two operations are equivalent to a rotation along the screw axis and half-unit translation 

along the same axis. However, this P21 PBC is incompatible with the basic version of ES method 

for scalable parallelization. 

 

Lack of parallel scalability for P21 has deterred its wide-spread adoption11–14. In this work, we 

have designed the Extended Eighth Shell (EES) method and implemented it in CHARMM. EES 

minimizes the import volume for P21 PBC and scales similar to ES for P1 PBC. We present the 

computational details of the algorithm in Section 2. In Section 3, we present benchmark results 

and show its importance for lipid bilayer simulations. 

 

2 Computational Details 

 

Periodic boundary conditions are used in MD simulations to avoid the edge effect due to the finite 

size of the simulation systems. The most commonly used PBC is the P1 PBC where the 
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neighboring cells of the primary simulation box are simply its translated copies. This means that 

as a molecule leaves the primary box, its image enters back into the box along the opposite 

face. 

 

The P21 symmetry operation is given by a 180° rotation around an axis and translation by half a 

unit length. In the present implementation, the axis chosen is chosen to be the X-axis. It facilitates 

the extension of the domain decomposition and the Particle Mesh Ewald (PME) calculations and 

minimized the import volume. 

 

We first give an overview of the eighth shell (ES) method as implemented in the domain 

decomposition (domdec) package of CHARMM. We then follow this up the with the Extended 

Eighth Shell (EES) in the context of P21 periodic boundary condition and its implementation in 

CHARMM. 

 

The Eighth Shell method is a class of spatial decomposition method called Neutral Territory (NT) 

method. It involves the splitting of the simulation cell of dimension (Lx,Ly,Lz) into smaller regions 

called boxes. A processor is associated with a single box and it is responsible for updating the 

positions of all the atoms in its box. Thus, if we have nx, ny, nz boxes along the X, Y and Z axes, 

we have nx*ny*nz total number of processors (for direct space component). Calculation of the 

energies and the forces however can happen in another box based on the relative positions of the 

atoms in the pair. 
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In order to avoid double counting of the pairwise interaction, each node calculates interactions in 

8 zones - I, FZ, FY, EX, FX, EZ, EY, C. Here FZ, FY and FX are the face regions along the Z, Y 

and X regions respectively. EZ, EY and EX are the edge regions along the Z, Y and X regions 

respectively. According to the minimum image convention, we use the pair of images for each 

interaction which are closest to each other. 

 

Here, I, is the homezone for the node and this node is responsible for updating the positions of the 

atoms in only the homezone. However, it calculates the interactions with other atoms in all the 

eighth zones as well. 

 

2.1 Direct space calculations 

 

Direct space calculations involve the calculation short-range component of non-bonded energy 

terms. Additional bonded terms like the bonds, angles, urey-bradley, improper dihedrals and 

dihedrals are calculated through their respective lists in the home-zone region. 

 

2.1.1 Communication of coordinates 

 

As the atoms involved in the pairwise interaction might not be local to the processor, coordinates 

of the atoms need to be communicated to the processor where the particular interaction will be 

calculated. A schematic figure of the communication is shown in Figure 2.2. The full 

communication is done in three steps: 
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1. Transfer of coordinates from Zone I (home zone) along the Z axis the receiving node stores 

these coordinates in the FZ region. 

2. Transfer of coordinates from Zone I and FZ along the Y axis: The receiving node stores 

these coordinates in the FY and EX regions. 

3. Transfer of coordinates from Zone I, FZ, FY, EX along the X axis: The receiving node 

stores these coordinates in the FX, EZ, EY and C regions. 

  

As shown in Figure 2.1, P21 PBC involves a half screw symmetry - it has a 180◦rotation around 

the axis of symmetry and a half a unit cell length translation along the same axis. Without the loss 

of generality, we can choose the axis of rotation as the X-axis and have it pass along the center of 

the box. The images along the -X and +X are created by performing reflection operations along 

the Y and Z axis - i.e. rotation along the X axis. We modify the communication pattern of the 

nodes such that the boxes along the -X face which have an interaction with the boxes along the +X 

face, communicate to the rotated boxes. In order to send the correct set of atoms, we also make 

extra communication along the Z and Y axes for these nodes to prepare the extended import region 

(hence the name Extended Eighth Shell). 

 

2.1.2 Communication of forces 

 

Communication of the forces is an inverse operation of the communication of the coordinates. 

Forces accumulated on the image atoms are transferred back to the primary atoms at this stage. 

Forces are first communicated along the X-axis, then along the Y-axis and finally along the Z-

axis. 
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Forces on images which are translated by the simulation box length along the X-axis are first 

rotated by 180 degrees before being transferred. These are the nodes which lie within cutoff region 

along the higher X axis. This is followed by communication along the Y-axis. For nodes which 

are within cutoff distance along the lower X axis, a second communication in the inverse direction 

is done as well. In the Z-communication, forces that were communicated along the X and Y axes 

are added to the local forces and communicated towards the higher Z axis. For nodes which are 

within the cutoff along the lower X axis, a second communication is performed towards the lower 

Z axis as well. 

 

A final rotation of forces by 180 along the X-axis is done for atoms that are not located in the 

primary box dimension in the X-axis. As these atoms do not lie in the primary box, their homezone 

membership is decided on the basis of the corresponding image that lies in the primary box. Since 

the image is rotated along the X-axis, the corresponding forces are rotated back to generate the 

force on the original atoms. As the symmetry involves a 180 degrees rotation, we invert the 

direction of the forces for the interactions that happen due to the P21 symmetry. 

 

2.2 Reciprocal space calculations 

 

Reciprocal space nodes handle the long-range component of the nonbonded energy. Smooth 

Particle Mesh Ewald (SPME) method for the Ewald calculations occur in five stages:  

 

1. spreading the charge on the k-space grid,  

2. a backward 3D FFT,  
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3. calculation of energy by a scalar sum over the grid,  

4. a forward 3D FFT, and  

5. calculation of the forces on the atoms by a gradient sum over the grid. 

 

In CHARMM, these calculations are performed using the column FFT method implemented in the 

colfft module. These calculations occur on separate set of reciprocal nodes. Each direct node 

communicates the coordinates of the atoms in its homebox to its peer reciprocal node. A reciprocal 

node might have more than one direct node. An all-to-all communication is performed among the 

reciprocal nodes such that each reciprocal node has all the “current” coordinates of all the atoms. 

Simulation box is then split into yz slabs and each node handles the calculation for the slab using 

the grids in the slab and the halo region from the neighboring slabs. 

 

In order to use the colfft module for PME calculations, we use the internal symmetry in the unit 

cell. The unit cell is produced by applying the symmetry operation to the asymmetric unit. The full 

unit cell can then use the regular colfft module. 

 

After the reciprocal nodes receive the coordinates from their peer direct nodes, they apply the 21-

symmetry operation along the x-axis on all the atoms they received. These coordinates are then 

communicated among the reciprocal nodes through the all-to-all MPI communication. The k-space 

grid spans the full unit cell and not just the asymmetric unit. 

 



 
16 

 

Calculation of the forces happens on all the atoms - the asymmetric unit as well as the image. 

However, after the calculations and transfer of forces among the reciprocal nodes, only the forces 

on the asymmetric unit are transferred back to the direct nodes. 

 

2.3 Bonded terms and Constraints 

 

Coordinates for atoms involved in bonded (bonds, angles, improper dihedral and torsion) and 

SHAKE interactions might not be present on the same node. Each of these terms should be 

calculated only once on only one node. Similar to the non-P21 domdec, minimum of the x,y and z 

coordinates of the involved atoms is calculated first. Homezone for this coordinate is responsible 

for calculating the energy and force term for the interaction. Unlike the non-P21 domdec, if the 

coordinate lies beyond the X-boundary of the simulation box at the lower end, coordinate is first 

rotated by 180 degrees before being assigned to the node. 

 

Constraints are also handled similar to the non-P21 conditions. Absolute harmonic restraints are 

calculated on the homezone for the atoms as they have the current coordinates of their atoms. 

Distance-matrix constraints on the other hand require coordinates of atoms located at arbitrarily 

different nodes. Communication for distance matrix constraints are hence similar to reciprocal 

nodes where an all-to-all broadcast is performed. Root node of the reciprocal nodes performs the 

constraints calculations and then communicates the forces back to the direct nodes. 
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2.4 Virial Calculation 

 

Virial is used for the calculation of pressure and scaling of the simulation box during constant 

pressure calculation. It is defined as: 

 

𝑉 =  ∑ 𝐹𝑖𝑗𝑟𝑖𝑗

𝑖𝑗

 

 

For periodic systems with minimum image convention, this can be reformulated as: 

 

𝑉 =  ∑ 𝐹𝑖𝑟𝑖 + 𝑆

𝑖

 

 

 

Here, S, are accumulated forces along each of the 26 neighboring boxes and the primary box.  

 

Both these set of calculations for virial is supported depending on whether the virial values are 

needed before or after the transfer of forces from the image to the primary cell atoms. Notably, 

since only orthorhombic simulation boxes are used, only the diagonal elements of the virial matrix 

are needed for scaling the box. Pressure calculation uses only the diagonal elements as 

well. 
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2.5 P21Tetragonal crystal type 

 

Constant surface tension ensemble, which are often used in bilayer simulations, use the Tetragonal 

crystal in CHARMM. This crystal group has 2 degrees of freedom for the crystal: first linking the 

X- and Y- axes and the second for the Z-axis. In order to carry out constant surface tension 

simulations under the P21 periodic boundary conditions, we have added a corresponding crystal 

group (P21Tetragonal). As the asymmetric box length along the X-axis is only half the size of the 

unit cell (unlike the case of P1 PBC where the asymmetric unit length is same as the unit cell), the 

first degree of freedom scales the simulation box only half as much. 

 

3 Results and Discussion 

 

Our results demonstrate that chemical equilibrium between the lipid bilayers can be balanced by 

the use of periodic boundary conditions. Extended eighth shell method allows the rotational 

symmetry in the periodic boundary condition and thus offers an efficient way of performing lipid 

bilayer molecular dynamics simulations. 

 

In order to check the correctness of the implementation, we first perform kappa-sweep tests of for 

energy and gradient. In these tests we varied the kappa and grid dimension. Results of these can 

be found in Table 2.1. For a system with 11,748 atoms, the sum of the reciprocal and direct space 

energies as well as the net root mean square of the gradient remains unchanged even with a range 

of kappa and coarseness of the grid used for the reciprocal space. Changing the kappa value 
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changes the component of non-bonded energy calculated in direct space vs reciprocal space. 

Changing the grid dimensions changes the value of charge on the grid points interpolated on the 

grids from the original charge distribution. While the individual components of direct and 

reciprocal space contributions change in the different tests, their sum remains the same.  

 

Next, we look at the shadow Hamiltonian of the simulation. While the integrator does not sample 

the actual Hamiltonian, it does sample the shadow hamiltonian15. As shown in Figure 2.3, the mean 

of high frequency corrected total energy remains conserved over long time scale. For a system 

with 11,748 atoms, the energy drift per degree of freedom is less than 10-6 kcal/mol over 500 ps.  

 

For constant pressure and/or constant surface tension simulations, lattice vectors are added as 

additional phase space coordinate16. Specifically, for constant surface tension simulations in 

CHARMM a tetragonal crystal is used. For this crystal type, there are two additional degrees of 

freedom: one for the X and Y and the other for Z. Since the X-dimension of the crystal is twice 

that of the asymmetric unit in P21 PBC, we added an additional P21 crystal type. As can be seen 

in Table 2.2, gradient of energy for these two degrees of freedom is very small.  

 

The interaction neighborhood of a homebox can be divided into the following subregions:  

 

1. Six face regions: cuboidal regions extending along each of the six faces of width rcutoff 

2. Twelve Edge regions: quarter cylinders of radius rcutoff along each of the twelve edges  

3. Eight corner regions: octants of radius rcutoff at each of the eight corners 
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The import volume in ES for all nodes is17:  

𝑉𝑖𝑛 = 𝑉𝑏[
1

6
παr

3 + 
𝜋

4
𝛼𝑟

2(𝛼𝑥 + 𝛼𝑦 + 𝛼𝑧) +  𝛼𝑟( 𝛼𝑥
−1 + 𝛼𝑦

−1 + 𝛼𝑧
−1) ] 

 

In the case of EES, all nodes except the ones with 𝑟_𝑐𝑢𝑡𝑜𝑓𝑓 from the -X-edge will have the 

import region as the ES. Only the ones within the cutoff region, will have an additional cost of: 

 

𝑉𝑖𝑛,𝑒𝑥𝑡𝑟𝑎 = 𝑉𝑏[ 
𝜋

4
𝛼𝑟

2(𝛼𝑦 + 𝛼𝑧) +  𝛼𝑟( 𝛼𝑦
−1 + 𝛼𝑧

−1) ] 

 

In these equations, 𝑉𝑏  is the volume of the sub-box, 𝛼𝑧is the reduced cutoff, 𝛼𝑥, 𝛼𝑦 , 𝛼𝑧  are   the 

reduced length along the x, y and z axes respectively.  The slight extra cost in communication is 

not in the critical region of the runtime (non-bonded force calculation) and hence it does not 

impact the speed of the simulation. Within the communication of coordinates, the extra load is 

only during the Z and Y communication of coordinates - which are also the smallest of the 

communications. As the extra load during the Z and Y axis communication are asynchronously 

coupled to the normal eighth communication, its cost remains hidden and does not impact the 

efficiency of the run. Communication cost is limited by the latency of inter process 

communication and not its bandwidth. 

 

Lipids migrate from one layer to another in the P21 PBC. This is important during the simulations 

where peptides/small molecules insert into the bilayer and the area per lipid (APL) and surface 
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tension (ST) is different between the two layers. As a lipid moves out of the box along the X-axis, 

it enters back into the box according to the P21 PBC. According to the symmetry, the lipid enters 

into the second layer. This is not possible with P1 PBC as it has only translational symmetry and 

the lipid leaving the simulation box enters into the same layer. 

 

The EES based P21 design is different from the earlier P21 in non-domdec CHARMM 10. The 

initial setup of the crystal for non-domdec CHARMM involves an initial rotation around the Z-

axis by 45 degrees and quarter of side-length translation along the diagonal. In the present 

implementation, the axis of symmetry passes through the center of the box as compared to the 

previous one where it passed through a point a quarter along the diagonal. In the older method, 

lipids enter back into the box into the other layer but along the orthogonal face of the box. In 

contrast, lipids enter the opposite back in the alternate layer in the new implementation. Hence, we 

should not expect the two simulations to give same trajectory. 

 

The domain decomposition implementation is targeted only for orthorhombic while the original 

one can work for any monoclinic space group P21 preserves the chirality unlike Pc. We implement 

the space group P2111, i.e. the symmetry operation along the X-axis is 21 while just translational 

along the Y and Z-axis. In contrast, the previous method can possibly use any of the three axes as 

the screw-axis. We do not believe this to be a limitation in any way as the simulation box can be 

rotated to align the X-axis with the screw axis. 

 

Even though we should not expect the trajectory obtained from the previous P21 and the EES 

based P21 to be similar, we would like to similar properties from the fact that both these 
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simulations allow the movement of lipids between the two layers. In Figure 2.6a, the number of 

lipids in the top layer of a DOPC bilayer simulation is compared in two simulations. The number 

of lipids fluctuate around 40 for both the simulations. Additionally, we checked the amount of time 

that the lipid spends in the two layers. Similar to the older P21, on an average lipid counts are 40 

in each layer. Finally, we interpolated this data to area per lipid for the DOPC lipids. During the 

course of the simulation with constant pressure (i.e. changing box sizes), area per lipid remains 

close to it experimental value of 69 A2. 

 

The two layers should be considered as a torus such that the top layer is the bottom layer is the top 

layer. The two layers continue into each other. Generally, only the lipids near the X-faces migrate 

between the two layers. But this depends on the system being simulated. We are further 

investigating its application in the simulation of asymmetric layers. 

  

In order to show the application of the EES method, we started a simulation with 40 and 32 lipids 

on the top and the bottom leaflets [Figure 2.5]. In a normal P1 simulation, no lipids will move from 

the top to the bottom layer or vice-versa. However, under the P21 PBC, 4 lipids move from the top 

to the bottom layer and system equilibrates. Based on the interactions during the course of the 

simulation, lipids continue being exchanged between the two layers. 

 

As mentioned earlier, images around the simulation unit for P21 are different than the P1 PBC. A 

system prepared under P1 cannot be directly used for P21 simulation as it would lead to clashes 

between the images and make the system unstable. For the systems presented in this paper, we 
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generated the initial system via CHARMM-GUI and minimized it under P21 PBC. This is followed 

by equilibration under P21 before the final production run. 

Using only the X axis as the axis of symmetry allows us to limit the import region for each node 

and hence the import volume. The system can always be rotated in order to adhere to the axis and 

does not pose as a limitation in its usage. Judicious use of asynchronous communication ensures 

that although the import volume is slightly higher, it does not show up in the cost as it can be 

performed while the node waits for the other communication (during Y and Z communications 

only). 

 

4 Conclusion 

 

This work solves a long-standing problem in the field of lipid molecular dynamics simulations of 

running efficient simulations with P21 periodic boundary conditions. Extended Eighth Shell (EES) 

method is adapted from De Shaws Eight Shell method to handle rotations in the symmetry of the 

periodic boundary conditions. Judicious use of the asynchronous communication pattern allows 

the simulation to run at the same speed as the ES counterpart. 

 

There are several ways of further optimizing the implementation of EES. Load balancing should 

shrink the volume of the regions along X-axis boundaries so that each node performs similar 

amount of work. Calculating the distance of each group center from the face boundaries can be 

independently parallelized over a number of threads. It is especially suited for multi-GPU 

implementations in the future as the NVLink based inter-GPU communication bandwidth 

increases further. We are working on a GPU based implementation of the P21 PBC as well.  
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The EES implementation in domdec is available in CHARMM version c43a2 version and later. 

Examples and usage are described in the code. 
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Figure 2.1: Neighboring cells of the primary simulation box. Blue colored cells are rotated images 

of the primary cell. Red cells are only translated with respect to the asymmetric unit. 
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Figure 2.2: Communication of coordinates between nodes during in EES. During the 

communication along Z-axis, coordinates within the cutoff region from the region handled by the 

box are communicated in both the -Z and +Z directions. In the second set of communications 

along the Y-axis, the coordinates communicated from the previous step and from the present 

node, which are within the cutoff region are communicated along the -Y and +Y axes. In the 

final step, only communication along the X-axis in the -X direction is needed. The nodes which 

are within cutoff region from the -X border (i.e. the ones which interact with the image atoms, 

communicate with rotated version of the node configuration). Other nodes communicate to the 

nodes adjacent along the -X-axis. 
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Figure 2.3: Shadow Hamiltonian is conserved in a micro-canonical simulation. For a system with 

11,748 atoms, the energy drift per degree of freedom is less than 10-6 kcal/mol over 500 ps. 
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Figure 2.4: Comparison of P1, non-EES P21 and the new EES-P21. In a P1 PBC simulation, lipid 

leaving one layer enters back into the same layer. In the previous P21 PBC, lipids leaving one 

layer, enters into the other layer along the orthogonal face. In the new P21 PBC, based on the 

EES scheme, lipids leaving the simulation along the YZ face enters back in the YZ face but in 

the opposite layer. 
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Figure 2.5: Number of lipids in the top and bottom layers during with the EES scheme. 

Simulation was started with 40 lipids in the top layer and 32 lipids in the bottom layer. Lipids 

from the top layer move to the bottom later within 500ns and then remain in equilibrium. 
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Figure 2.6:  

a. Comparison of EES based P21 vs original P21 in CHARMM (referred here as P21async). 

Both simulations start with 40 lipids on the two layers. Lipids exchange between the two 

layers and that can be seen in the fluctuation in the number of lipids. 
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b. Comparison of EES based p21 vs original P21 is CHARMM (referred here as P21async). 

Counts vs number of lipids in the top layer. For most of the simulation, 40 lipids remain 

in the top layer although it can move back and forth between the layers. 
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c. Comparison of EES based P21 vs original P21 is CHARMM (referred here as P21async). 

Area per lipid for DOPC remains in the experimentally observed 69A2 on an average.  
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kappa grid_dim direct space reciprocal space Potential energy grms 

0.34 128 -54784.20381 398.56020 -48788.03453 2.31140 

0.40 128 -51576.03953 646.63444 -48788.03817 2.31140 

0.34 256 -54784.20381 398.56040 -48788.03433 2.31140 

0.28 256 -57038.79833 252.26083 -48788.04996 2.31140 

 

Table 2.1: Kappa sweep for validation check. For a system with 11,748 atoms, the sum of the 

reciprocal and direct space energies as well as the net root mean square of the gradient remains 

unchanged even with a range of kappa and coarseness of the grid used for the reciprocal space. 

Changing the kappa value changes the component of non-bonded energy calculated in direct space 

vs reciprocal space. Changing the grid dimensions changes the value of charge on the grid points 

interpolated on the grids from the original charge distribution. 
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Step size dof1 dof2 

0.1 0.20195728 0.01248617 

0.01 0.00232570 0.00014901 

0.001 0.00001016 0.00000048 

0.0001 0.00000065 0.00000103 

 

Table 2.2: Finite difference tests for crystal degree of freedom for P21Tetragonal crystal type in 

CHARMM. There are two additional degrees of freedom, the first linking X and Y and second 

for the Z-axis. For small step sizes along these vectors, the change in energy is very small.  
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Chapter 3 

An explicit-solvent hybrid QM and MM approach for predicting pKa of small molecules in 

SAMPL6 challenge 
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(A version of this chapter appeared in the Journal of Computer Aided Drug Design October 2018 

special issue.) 

 

Abstract  

 

In this work we have developed a hybrid QM and MM approach to predict pKa of small drug-like 

molecules in explicit solvent. The gas phase free energy of deprotonation is calculated using the 

M06-2X density functional theory level with Pople basis sets. The solvation free energy difference 

of the acid and its conjugate base is calculated at MD level using thermodynamic integration. We 

applied this method to the 24 drug-like molecules in the SAMPL6 blind pKa prediction challenge. 

We achieved an overall RMSE of 2.4 pKa units in our prediction. Our results show that further 

optimization of the protocol needs to be done before this method can be used as an alternative 

approach to the well-established approaches of a full quantum level or empirical pKa prediction 

methods. 

 

1  Introduction 

 

Computational prediction of pKa values is of considerable interest for a number of fields including 

pharmaceutical and material sciences1, 2, 3. Even though several methods have been developed to 

predict this value, the problem still remains a challenge4, 5, 6. Most prediction methods can be 

divided into two broad categories - empirical and ab initio ones. The first set of methods use a 

cheminformatics-based approach7, 8, 9. In this approach the compound is represented as a vector of 

molecular descriptors including constitutional, topological, electrostatic and quantum 
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descriptors10. Machine learning models for specific functional groups are trained based 11 on these 

descriptors10. Notably, these methods ignore the three-dimensional conformation of the compound 

explicitly11. Although training the models might be expensive in terms of curating experimental 

pKa data for generating appropriate models, subsequent pKa prediction using trained models can 

be very fast and inexpensive. 

 

Ab initio methods use a thermodynamic cycle combining with quantum mechanics (QM) 

calculations to compute the solvent-phase pKa12, 13, 14, 18 15, 16, 17, 18, 19, 20. It consists of the calculation 

of dissociation free energy in gas phase21 along with solvation free energy of the acid and the 

conjugate base using dielectric continuum solvation models (DCSMs)22, 12, 23, 24, 25. These methods 

have been very successful in calculating pKa. However, DC22 SMs cannot model the hydrogen 

bonding between solute and water, which can be important in the protonation or deprotonation 

process26. Their ac24 curacy in describing the short-range electrostatics of polar solutes and ions 

is also limited12. Moreover, typically only one conformation is used for the estimation of free 

energy although an ensemble of conformations is required for a complete statistical mechanics 

treatment of the free energy27. Even if multiple low-lying conformations are included in the 

calculation, the entropic variations associated with the deprotonation process still cannot be 

completely accounted for without explicitly considering the solvent dynamics and extensively 

exploring the potential energy landscape of the solute-solvent systems. 

 

Calculation of solvation free energy during pKa estimation remains one of the bottlenecks in 

getting accurate values. An alternative way of calculating solvation free energy is to use molecular 

dynamics simulations with empirical force field28, 29, 30. Shirts et. al. were able to do a very precise 
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measurement of solvation free energy with 0.85 kcal/mol RMSE31. Gilson et. al. used double 

decoupling method and achieved 1.3 kcal/mol RMSE. K¨onig et. al.29 used the annihilation 

approach and obtained accuracy on par with the quantum calculations. Mobley et. al. have created 

the FreeSolv30 database to catalog molecules with known experimental solvation free energy and 

assist in the development of new methods from these resources. 

 

Given the large number of diverse methods available for predicting pKa, the Statistical Assessment 

of the Modeling of Proteins and Ligands (SAMPL)32 blind prediction challenge was organized to 

assess the methods on a common set of small drug-like molecules. Previous iterations of the 

SAMPL competitions have focused on assessing methods for solvation free energy calculations33, 

distribution coefficient and other challenges34, 35, 36, 37. We note that in the SAMPL5 distribution 

coefficient competition, Pickard and coworkers have calculated pKa values with QM methods, 

and used computed pKa to further correct their prediction of distribution coefficients34.  

 

In this work we have presented a new method to computationally predict the pKa of small drug-

like molecules in explicit solvent. This is a hybrid QM and MM approach that allows ab initio 

prediction of absolute pKa values and supports any chemistry. Since calculation of pKa requires 

relative solvation free energy between the acid (protonated species) and the conjugate base (de 

protonated species), our method calculates this quantity directly rather than computing the absolute 

solvation free energies of both by employing two thermodynamic cycles. 

 

This paper is organized as follows. In Section 2, we describe the theory behind the prediction of 

the microscopic and macroscopic pKa values. Section 3 covers the details of the description of the 
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QM and MM methods that we used to carry out calculations. Next in Section 4, we present our 

results that submitted to the SAMPL6 competition and analyze the accuracy of the results. Finally, 

in Section 5, a brief conclusion is provided. 

 

2  Theory 

 

SAMPL6 pKa challenge involved blind computational prediction of pKa of 24 small drug-like 

molecules (Figure 3.1). These molecules were similar to kinase inhibitors and were chosen for 

experimental tractability. All the molecules were polyprotic in nature i.e. there were multiple sites 

on each molecule where the molecule could lose a proton. For further details, please refer to Isik 

et. al38 71 where the organizers have described the rationale for choosing the molecules as well as 

the methods used for experimental pKa prediction. 

 

In order to compare the computational and experimental pKa predictions, it is important to 

understand the difference between the microscopic and macroscopic pKa of a molecule. The 

chemical environment around a functional group (in this case, the protonation state of other titrable 

moieties) affect the propensity of the group to lose its proton. This is referred to as the microscopic 

pKa, i.e. pKa for deprotonation at a site at a fixed protonation state of all other titratable sites in 

the molecule. This differs from the macroscopic pKa which is related to the dissociation constant 

of losing a proton from the molecule as a whole and can be experimentally measured. Converting 

microscopic pKas to macroscopic pKas or vice versa is complicated due 83 to the large number of 

equilibrium processes involved8, 39. If, for a specific charge transition, the microscopic pKas are 

fairly well separated (ex. more than one pKa unit), the smallest pKa can be considered as the 
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macroscopic pKa. However, if they are close, the macroscopic pKa is shifted as multiple 

microscopic transitions contribute to the macroscopic value. Several studies40, 41 discuss this in 

greater detail. In our method, we calculate microscopic pKa value for each acid-base pair of 

microscopic states. We then assign one dominant microscopic pKa as the macroscopic pKa for 

each titration process, which can be directly compared with the experimental observables. 

To calculate the microscopic pKa of a particular acid-base pair, let us consider the dissociation of 

acid HA:  

 

𝐻𝐴𝑎𝑞  ↔ 𝐻𝑎𝑞
+ +  𝐴𝑎𝑞

−  

 

Here the subscripts “aq” indicate that the species are solvated in water. The dissociation constant 

and pKa value for this dissociation are given by the following relations, 

 

𝐾𝑎 =  
[𝐻]𝑎𝑞

+ [𝐴]𝑎𝑞
−

[𝐻𝐴]𝑎𝑞
 

where,  

∆𝐺𝑎𝑞
∗ =  𝐺∗ (𝐻𝑎𝑞

+ ) +  𝐺∗ (𝐴𝑎𝑞
− ) −  𝐺∗(𝐻𝐴𝑎𝑞) 

 

Here, G refers to the absolute Gibbs free energy of the solvated species. The superscript * implies 

that the standard state of one mole per liter and 298.15 K have been used. R and T are the gas 

constant and the absolute temperature respectively. Thus, to calculate pKa we need to calculate 

aqueous phase deprotonation free energy ∆Gaq. 
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Rather than calculating the absolute free energies in the aqueous phase directly, the aqueous phase 

calculations are coupled with gas phase calculation using the following thermodynamic cycle 

(Figure 3.2a). The two vertical lines in the figure refer to the solvation of the species into aqueous 

phase. Thus, the ∆Gaq can be calculated as: 

 

∆𝐺𝑎𝑞
∗ =  𝐺∗ (𝐻𝑎𝑞

+ ) +  𝐺∗ (𝐴𝑎𝑞
− ) −  𝐺∗(𝐻𝐴𝑎𝑞) 

 

The absolute free energy for proton H+ in the gas phase at standard temperature and pressure is 

calculated by Sackur-Tetrode equation and has been previously calculated as -6.28 kcal/mol42. 

Solvation free energy of proton (-264.5 kcal/mol) has been taken from Tissandier et. al.43. The gas 

phase calculations are done at standard gas conditions i.e. one atmosphere of pressure. Converting 

them to 1 mole/liter further involves a standard state correction 115 of -1.89 kcal/mol. 

 

The above equation involves the calculation of solvation free energies of the deprotonated 

∆G∗solv(A−) and of the protonated species ∆G∗solv(HA), respectively. Most ab initio pKa 

prediction methods compute them in implicit solvent using quantum chemistry and continuum 

solvent approaches. We note that, however, the only relevant quantity for pKa prediction is the 

difference of solvation free energies 

  

In the present work, we directly compute this solvation free energy difference in explicit solvent. 

The calculation is done at the force field level in order to be computationally tractable. 

Furthermore, we consider a second thermodynamic cycle (Figure 3.2b) that alchemically change 

HA into A− in the gas and the aqueous phases. As we are interested in only the free energy 
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difference between the two species HA and A− and free energy is a state function so that its sum 

over a thermodynamic cycle equals zero, we can rewrite ∆∆𝐺𝑠𝑜𝑙𝑣
∗   as, 

 

∆∆𝐺𝑠𝑜𝑙𝑣
∗ =  ∆𝐺𝑠𝑜𝑙𝑣

∗ (𝐴−) −  ∆𝐺𝑠𝑜𝑙𝑣
∗ (𝐻𝐴) =  𝛥𝐺𝑑𝑒𝑝𝑟𝑜𝑡,𝑎𝑞

∗ (𝐻𝐴) −  𝛥𝐺𝑑𝑒𝑝𝑟𝑜𝑡,𝑎𝑞
∗ (𝐴−) 

 

where, 𝛥𝐺𝑑𝑒𝑝𝑟𝑜𝑡,𝑎𝑞
∗ (𝐻𝐴)  can be calculated using free energy perturbation (FEP) methods such as 

the thermodynamics integration (TI) method. By introducing a number intermediate λ states that 

alchemically connecting two states 0 and 1, the free energy difference between the two-end state 

is computed by TI as: 

∆𝐺 =  ∫ <
𝜕𝑈

𝜕𝜆
>𝜆

1

0

𝑑𝜆 

  

It’s worth noting that for each acid-base pair only one relative free energy in the aqueous phase is 

computed, rather than two absolute solvation free energies. It has previously been shown by 

Jorgensen et. al44 that this allows the cancellation of errors in MM calculations such as inaccuracy 

of force field parameters and inadequate conformational samplings. In their work they calculated 

the relative solvation free energy of methanol and ethane using alchemical transformation of 

methanol to ethane and vice versa and got results close to experimental relative solvation free 

energy value. The major advantage of using such a secondary thermodynamic cycle (Fig. 3.2b) is 

that the alchemical FEP only involves changing HA into A− in the gas and the aqueous phase, 

instead of annihilating whole molecules in the aqueous phase. This greatly improves the efficiency, 

accuracy and the throughput of our calculations. 
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In summary, we calculate the ∆𝐺𝑎𝑞
∗  by the following equation, 

 

∆𝐺𝑎𝑞
∗ =  ∆𝐺𝑔

∗ +  ∆𝐺∗ (𝐻+) + 𝛥𝐺𝑑𝑒𝑝𝑟𝑜𝑡,𝑎𝑞
∗ (𝐻𝐴) −  𝛥𝐺𝑑𝑒𝑝𝑟𝑜𝑡,𝑎𝑞

∗ (𝐴−) 

 

where, ∆𝐺𝑎𝑞
∗  is calculated in the gas phase at the QM level, ∆𝐺∗ (𝐻+) is obtained from 

experimental value reported in literature,) 𝛥𝐺𝑑𝑒𝑝𝑟𝑜𝑡,𝑎𝑞
∗ (𝐻𝐴)is calculated using FEP in condensed 

phase at the MM level and 𝛥𝐺𝑑𝑒𝑝𝑟𝑜𝑡,𝑎𝑞
∗ (𝐴−) in gas phase at the MM level. 

 

3  Methods 

 

The workflow for the complete method is shown in Figure 3.3. First the geometry of each 

microstate was optimized in gas phase. Then for each acid (protonated) - base (deprotonated) pair, 

∆G for deprotonation in gas phase was calculated at the QM level. To carry out the MM 

simulations, force field parameters were generated for each of the microstates. Next, the gas phase 

and aqueous phase alchemical free energy difference between each acid-base pair were computed 

using FEP and MD simulations. All the QM calculations were performed with Gaussian1645, while 

all the MD simulations were done with CHARMM46, 47. 

 

3.1 Geometry optimization and gas phase QM calculation 

 

SAMPL6 pKa challenge had 24 molecules, each with different number of microstates. SMILES48 

string of the microstates were converted to PDB files using OpenBabel49. Geometry optimization 

and gas phase deprotonation energy was calculated with the M06-2X density functional theory50 
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and 6-31G* basis set for neutral-cationic microstate pairs and 6-31+G* for 166 neutral-anionic 

microstate pairs. Ultrafine grid and Tight convergence criteria were used in all calculations. 

 

We would like to point out that as the computed pKa are directly related to the calculated electronic 

energies, higher-level methods such as MP2 and larger basis sets such as cc-pVTZ would improve 

calculation results. These, however, have not been pursued in this study. We also did not test other 

functionals, which might potentially lead to better pKa prediction results. 

 

3.2  Parameterization of microstates 

 

In order to carry out molecular dynamics simulations, we first generated force field parameters for 

the microstates based on the fixed-charge molecular mechanics potential energy functions used in 

CHARMM51. The potential energy is given by a sum of bonded and non-bonded components,  

 

𝑈 =  𝑈𝑏𝑜𝑛𝑑𝑒𝑑 +  𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑   

 

where, 

 

 𝑈𝑏𝑜𝑛𝑑𝑒𝑑 =  ∑ 𝐾𝑏(𝑟𝑖𝑗 −  𝑟0 )
2 + 𝑏𝑜𝑛𝑑𝑠 ∑ 𝐾𝜃(𝜃𝑖 −  𝜃0 )

2 +  ∑ 𝐾𝑋(1 +𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠𝑎𝑛𝑔𝑙𝑒𝑠

 cos(𝑛𝑥 −  𝛿)) + ∑ 𝐾𝑖𝑚𝑝  (𝜙 −  𝜙0)2 𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠    

 

and, 
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𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 =  ∑
𝑞𝑖𝑞𝑗

4𝜋 ∈0 𝑟𝑖𝑗 𝑖𝑗
+ ∈𝑖𝑗 [  (

𝑅𝑚𝑖𝑛

𝑟𝑖𝑗 
)12  −  (

𝑅𝑚𝑖𝑛

𝑟𝑖𝑗 
)6] 

Here, Kb and r0 are bond force constant and equilibrium bond-length for each atom type pair. Kθ 

and θ0 are angle force constant and equilibrium angle for each angle type triplet. Kimp and φ0 are 

improper angle force constant and equilibrium improper angle for each improper angle. Kχ, n, and 

δ are the force constant, periodicity, and phase for each torsional degree of freedom. The 

nonbonded potential energy terms involve Coulombic interactions between partial charge qi and 

qj, and the van der Waals (VdW) interactions modeled by the and Rmin parameters. 

 

We used Antechamber to generate GAFF parameters. Single point calculation was done on the 

optimized geometry mentioned above using Gaussian16 at MP2 level of theory with 6-31G* basis 

set. RESP charges were calculated using the protocol mentioned in Jakalian et.al.52. Electrostatic 

potential was written in a data file using the option IOp (6/33=2) in Gaussian, and the RESP 

charges were fitted. Other parameters - bonded (bond, angle and torsion) and non-bonded (van der 

Waals) were assigned as per the General Amber Force Field (GAFF)53 using the Antechamber52 

program in the AmberTools16 software. CHARMM formatted parameter and topology files were 

produced. These parameters were modified by in-house scripts to make the formats compatible 

with CHARMM molecular dynamics package. If the residues did not have an integer charge in the 

generated topology file (typically off by ±0.0 − 0.003), an ad-hoc fix was done by adjusting the 

charge on a random non-hydrogen atom to round up the total charge of residue. 

 

3.3  Free energy simulations 
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All molecular dynamics simulations were carried out with CHARMM47 and parameter sets 

mentioned in the previous subsection. Thermodynamic Integration calculations were carried out 

using the PERT module of CHARMM. 12 λ windows were used (0.0. 0.075, 0.15, 0.25, 0.35, 0.45, 

0.55, 0.65, 0.75, 0.85, 0.95, 1.00) for transforming the partial charges of the acid into those of the 

conjugate base, with the charge on the dissociating proton transforming to zero. Each λ window 

was equilibrated for 1 ps followed by 10 ps MD simulations for sampling. 

 

MD simulations in the gas phase were carried out with Langevin dynamics at a temperature of 298 

K and using a time step of 2 fs with a friction coefficient of 5 ps−1 on all the atoms. No cutoffs 

were used in calculation of nonbonded interactions for gas phase simulations. For aqueous phase 

simulations, we used 2022 water molecules to solvate the solute molecule, constituting a 38 ˚A 

cubic water box to start with. 50 ps NPT simulations were run at 298 K and 1 atm, after which 

NVT simulations at 298 K were carried out for TI calculations. A Nose-Hoover thermostat54 

was used to maintain the microcanonical ensemble. Particle mesh ewald55 was used to calculate 

the long-range electrostatic interactions with a direct space cutoff of 10 ˚A. Charge was spread on 

a grid of 48×48×48 for reciprocal space calculation using 6th order B-spline interpolation 

method56. A cutoff of 12 ˚A was applied for van der Waals interactions, and the integration time 

step is 1 fs. 

 

4  Results and Discussion 

 

The results discussed in this report are the ones that we submitted for the SAMPL6 competition 

[submission id: 0wfzo]. We submitted only the microscopic pKas for all acid-base pairs of all the 
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24 molecules. These results were compared to macroscopic pKas using two different approaches 

- closest and Hungarian. This analysis was done with the assumption that experimentally observed 

pKas with only one observed pKa or fairly-distant pKas (separated by more than 3 units) are equal 

to the microscopic pKa of the corresponding microscopic pKa. Only two molecules - SM14 and 

SM18 - did not satisfy this criterion and hence they were excluded from this analysis. Detailed 

analysis of the results can be found at https://github.com/MobleyLab/SAMPL6/ 

tree/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions. 

 

In the closest analysis approach, the experimentally observed pKa is matched with the microscopic 

pKa which minimizes the absolute error i.e. the one that is closest to the observed pKa. We 

achieved a root mean squared error (RMSE) of 2.42 pKa units with respect to the experimental 

values. The mean absolute error (MAE) was 1.61 pKa units. The corresponding R2 for regression 

fit was 0.53 and the slope of line was 1.08. 

 

In the hungarian approach57, an optimum global match between experimentally observed pKa and 

predicted set of pKas is found by minimizing the linear sum of squared errors of the paired match. 

We achieved a root mean squared error (RMSE) of 2.89 pKa units with respect to the experimental 

values. The mean absolute error (MAE) was 1.88 pKa units. The corresponding R2 for regression 

fit was 0.48 and the slope of line was 0.99. 

 

Out of the 22 molecules whose results were compared to experimental results, 3 of the molecules 

(SM06, SM15 and SM22) had 2 macroscopic pKas in the 2-12 pKa range while the other 

molecules had just 1 pKa in this range. Among these 25 comparisons, only 5 predictions were 

https://github.com/MobleyLab/SAMPL6/%20tree/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions
https://github.com/MobleyLab/SAMPL6/%20tree/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions
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more than 2 pKa units away from the experimental values. The most erroneous one concerns 

SM15, of which the first predicted pKa underestimated the experimental measurement by 8.86 

pKa units, and the second pKa overestimated by 3.52 pKa units. 

 

In general, our results compare less favorably to some of the more-established methods of pKa 

prediction, as used by other submissions in the SAMPL6 challenge. By carefully examining our 

calculations after the submission, a few mistakes were spotted, which are further analyzed and 

discussed here. 

 

One major error is that the standard state correction was missed in our submission. The QM level 

gas phase calculations are done at standard state of gas while the aqueous phase species are at 1M 

concentration. This standard state correction needs to be applied while calculation of the overall 

free energy difference. This contribution is equal to -1.89 kcal/mol, i.e. 1.4 pKa units. 

 

Another source of error comes from the inconsistency with GAFF protocol. Standard AMBER and 

GAFF force fields scale the electrostatic interaction between third-neighbors (1-4 interactions) by 

0.833, while CHARMM force fields on the other hand do not scale the electrostatic 1-4 

interactions. In the CHARMM program, an option e14fac (electrostatic 1-4 interaction scaling 

factor) should be set to 0.833 to use GAFF force fields, however its default value of 1.0 was used 

in our simulations by mistake. Furthermore, the CHARMM modified TIP3P parameter were used 

for water molecules which place a small value on the water hydrogen atom. These deviations to 

the standard GAFF practice render the force field parameters used in this work less optimal. 
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Other methods to generate more CHARMM-like force field parameters for the microstates have 

been attempted. The Paramchem server58, which generates CGENFF force field parameters, was 

found to report error messages when parametrizing several charged species. The ffTK (force field 

ToolKit)59, which is a plugin in VMD that generates CHARMM parameters, was found to be 

difficult in automatically generating parameters for all the microstates. Since we needed a method 

that could parameterize all the microstates in a high throughput fashion, we instead opted for using 

for Antechamber from AmberTools package. 

 

From the absolute error analysis in Table 3.2 we can assume that SM15 parameters are not optimal 

as the errors for both pKa are very high for this molecule. Force field parameterization for small 

molecules is indeed difficult due to the very large chemical space of these molecules as compared 

to the amino acids60. The latter have seen several decades of work for a very limited number of 

species. The general strategy of optimization of parameters of molecules involves the use 

experimental hydration free energy data61. 

 

Optimization with this parameter would also be helpful as we indeed need to predict the solvation 

free energy difference. However, many of microstates of these molecules are charged species and 

getting high accuracy experimental hydration free energy data would be difficult. Even Self-

Consistent Reaction Field (SCRF) based implicit solvent model (SMD) calculations have one 

order of magnitude higher error as compared to neutral species23, 62. One way to study the SM15 

errors would be to generate parameters with a different force field and compare their relative 

performance. While Antechamber generates GAFF-based parameters, ffTK can be used to 

generate CHARMM300 based parameters. 
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Our simulation runs also suffered from inadequate sampling of the phase space in the aqueous 

phase simulation. For the calculation of hydration free energy in SAMPL4 competition with 

similar system sizes, Gilson et. al.28 had simulated each λ point for 5 ns. Konig et. al.29 for the 

same set of molecules had used a 0.5-1 ns simulation for each λ state in aqueous phase. In principle, 

much less sampling time would be required in our FEP calculations as relative free energies instead 

of absolute solvation free energies were being computed. However, the MD simulation time used 

in this study was still too short (10 ps per λ state), not allowing full water reorganization upon 

solute deprotonation. The number of simulations that we were performing was much larger (∼650 

in SAMPL6 vs 24 in SAMPL4) and hence we performed only 0.12 ns simulations for each acid-

base pair. Achieving proper sampling is an area of active research in the molecular dynamics field. 

Indeed, one of the competitions in the SAMPL6 challenge focused on benchmarking this quantity 

especially in a blind setup. The results from that study would be able to set community-wide 

guidelines for benchmarking. A heuristic that we should have used to reduce the number of 

microstate pairs should have been to exclude all microstates that had charges more than 1 or less 

than -1 i.e. consider only neutral and singly-charged microstates. Some of the other submissions, 

have used this strategy to limit the number of microstate pairs that needs to be considered without 

loss in accuracy. 

 

The FEP scheme we used for alchemical transformation included only the transformation of 

charges on all atoms from the protonated acid to its deprotonated conjugate base. This was similar 

in principle to the strategy used by Juyong et. al. in their enveloping distribution sampling (EDS) 

based constant-pH simulations63, where each state differed from the reference state in only the 

charges on the residue of deprotonation. The changes in the parameters for VdW interactions as 
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well as the internal degrees of freedom during the solute deprotonation process will also contribute 

to the free energy difference, which is not captured in our FEP calculations. We note that it’s 

feasible to include these effects by interpolating all force field parameters, although the bonded 

interactions might need to be carefully handled64. 

 

Another possible source of error comes from the value of ∆G∗(H+). Solvation free energy of 

proton is a contentious value and a range of values from -259 to -264 kcal/mol are available in the 

literature. This can lead to large errors in the absolute prediction of pKa as just a difference of 1.36 

kcal/mol is equivalent to 1 pKa unit. One way to handle this error is to use isodesmic reactions 

with another acid with known experimental pKa and couple two thermodynamic cycles together 

such that the solvation free energy of proton cancels out. The second acid chosen should also be 

similar to the original acid that we are interested in. Essentially, the pKa shift is calculated with 

respect to a simpler model compound with known experimental pKa values, as being done in most 

constant pH simulation methods65, 66, 63. Our approach instead aims at predicting the absolute pKa, 

and a fixed value of -264.5 kcal/mol is used for ∆G∗(H+) as derived from cluster-ion solvation 

data by Tissandier et al43. An alternative way to handle this issue, as well as other systematic errors 

in absolute pKa calculations, is to perform a linear free energy regression against molecules with 

known experimental pKa, i.e., to consider ∆G∗(H+) as a variable whose value is fitted to best 

reproduce a set of known pKa values. The empirical correction has been shown to improve the 

results although the slope of the regression still remains a debatable issue12. We have also used the 

assumption that only one microscopic pKa contributes to the macroscopic pKa if the former is 

fairly well separated. However, this is an approximation as for a given charge transition, multiple 

protonated-deprotonated pairs of microstates contribute to the macroscopic pKa41. 
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In our approach the is computed using QM calculations at the M06-2X level using 6-31G* basis 

set (6-31+G* for microstate pairs involving anionic species). Higher level of ab initio methods, 

larger basis set, and including counterpoise correction should improve our results. Although our 

method allows the sampling of the phase space during the calculation of the solvation free energy 

difference, only one conformation (the energy minimized one) is considered for the calculation 

of   by QM in the gas phase. This is again an approximation as previous work by Bochevarov 

et.al.11 have shown that multiple low-lying conformations do contribute to the deprotonation free 

energy. There can be a couple of different strategies to handle this phenomenon. Multiple low-

lying conformations can be sampled and the deprotonation energy of each important conformation 

can be calculated separately and combined together in a Boltzmann weighted sum. Another 

solution for this problem is to use reweighting as used by Tao et.al.67. Free energy of constraining 

the geometry to the ones used the calculation of gas-phase QM step, can be calculated separately 

and will have to be added for the protonated microstate and subtracted for the deprotonated 

microstate. 

 

One of the key physics behind the free energy of deprotonation and hence pKa is the water 

reorganization when the solute is protonated or deprotonated, which involves water 

response to the sudden changes of charge distributions. In this case, polarizable force fields 

should in principle provide higher accuracy in our approach as fixed charge force-fields are limited 

in their ability to account for the change in charges during the course of the simulation. A 

theoretically promising method to handle this effect is to use polarizable force fields such as 

AMOEBA68, 69, Drude70 or a recently formulated multipole and induced dipole (MPID) model71. 
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Any of these polarizable models should improve the pKa prediction results of our method, given 

high quality polarizable force field parameters for general drug-like molecules are available. 

 

5  Conclusion 

 

This work reports our submission for the SAMPL6 pKa prediction challenge, where we have 

attempted to calculate pKa of small drug-like molecules in explicit solvent using a hybrid QM and 

MM approach. While including multiple solvation shells is difficult in pure ab initio (QM) 

methods, modeling the dissociation of a proton is difficult at the MM level using conventional 

force fields. The novel contribution of this work is devising a method to allow the calculation of 

∆G in explicit solvent while limiting the cost of the calculations. This is important for a high 

throughput prediction where a large number of microstates need to be considered. 

 

However, traditional limitations in molecular dynamics simulation approaches limits its 

competitiveness as compared to a machine learning approach or a full-quantum level implicit 

solvent approach. At the same time, we committed a few avoidable mistakes in carrying out the 

simulations. Due to these results from the present version of our method did not do very well in 

the SAMPL6 pKa challenge. More work needs to be done to optimize and automate the protocols. 

 

We are currently working on improving the method. We need to improve force field parameters 

for the small molecules, ensure proper sampling of the intermediate lambda points during free 

energy calculations and utilize a higher level of theory for the gas phase QM calculations. Our new 

version of the method is an open source tool where we can use test the method easily for each of 



 
57 

 

these factors. It will allow the method to be used for not just pKa calculation of small molecules 

but for larger proteins of interest as well. The open source tool, currently in development, is 

available at https://github.com/samarjeet/hpka. 
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Figure 3.1: Molecules in the SAMPL6 prediction challenge. 

 

 



 
74 

 

 

 

Figure 3.2: Thermodynamic cycles used in the pKa calculations a) chemical reaction of acid 

dissociation. This relates the free energy of dissociation in the aqueous phase as with the gas phase 

free energy of dissociation and solvation free energies of the acid, base and proton. b) Alchemical 

cycle for deprotonation. This cycle relates the solvation free energy difference of the HA and A− 

with difference in free energy for deprotonation in the aqueous and gas phases. 
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Figure 3.3: Workflow for the hybrid QM and MM pKa prediction approach 
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Figure 3.4: Plot of the closest analysis scheme and experimental pKa values. Plot courtesy of the 

organizers 

https://github.com/MobleyLab/SAMPL6/blob/master/physical_properties/pKa/analysis/analysis_

of_typeI_predictions/analysis_outputs_closest/pKaCorrelationPlots/0wfzo.pdf 
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Table 3.1 
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Table 3.2 Comparision of experimental and calculated values using the closest scheme 
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Chapter 4 

A deep learning approach for the blind logP prediction in SAMPL6 challenge 
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(A version of this chapter has been submitted to Journal of Computer Aided Drug Design and is 

expected to appear in the September 2019 special issue.) 

 

Abstract 

 

Water-octanol partition coefficient serves as a measure for the lipophilicity of a molecule and is 

important in the field of drug discovery. A novel method for computational prediction of logarithm 

of partition coefficient (logP) has been developed using molecular fingerprints and a deep neural 

network. The machine learning model was trained on a dataset of more than 12,000 molecules and 

tested on more than 200 molecules.  In this article, we present our results for the blind prediction 

of logP for the SAMPL6 challenge. While the best submission achieved a RMSE of 0.41 logP 

units, our submission had a RMSE of 0.61 logP units. Overall, we ranked in the top quarter out of 

the 92 submissions that were made. Our results show that the deep learning model can be used as 

a fast, accurate and robust method for high throughput prediction of logP of small molecules.  

  

1  Introduction 

 

Computational prediction of logP values of molecules is important in several fields including drug 

design, agriculture, environment, consumer-chemicals etc. as it serves as a measure of lipophilicity 

(or hydrophobicity) of the molecule1. In the field of drug design, lipophilicity of a drug molecule 

is directly related to the absorption and membrane penetration, solubility, partitioning into tissues 

and the final excretion. It is considered as one of the most important properties of a drug and is a 

part of the Lipinski’s rule of five2. A drug molecule has to be soluble enough in lipid to be absorbed 
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in the tissues and organs. However, it should not be too soluble to prohibit its excretion 3. In 

agriculture and environment science, it is related to the toxicity of the fertilizers and pesticides 

used. In the field of cosmetics and skin care products, it measures the propensity of the product 

being absorbed by the skin.  

 

LogP is related to the partition coefficient of a molecule between water and the lipid phase. 

Typically, the lipid phase is n-octanol and logP is given by:  

 

𝑙𝑜𝑔𝑃 = log (
[𝑠𝑜𝑙𝑢𝑡𝑒]𝑜𝑐𝑡

[𝑠𝑜𝑙𝑢𝑡𝑒]𝑤𝑎𝑡𝑒𝑟
) 

 

Given the importance of logP prediction, the Drug Design and Data Resources (D3R) consortium 

organized the sixth iteration of Statistical Assessment of the Modeling of Proteins and Ligands 

(SAMPL) competition to compare different methods in this field. Previously, SAMPL 

competitions involved solvation free energy4, logD5 and pKa6 prediction. Specifically, in the first 

iteration of the SAMPL6 competition, pKa prediction challenge involved charged microstates of 

a set of 24 drug-like molecules. A subset of these molecules, where the neutral species was the 

most abundant microstate, were used in part II of the SAMPL6 competition for logP prediction.  

 

Many different approaches were employed by a large number of groups. These can be seen in the 

other submissions to the SAMPL6 competition available in this special issue. These methods span 

both physical and empirical approaches.  The quantum level approaches calculate the solvation 

free energy of the molecule separately in two solvent phases - water and octanol and use it to 

estimate the partition coefficient. Specifically, Andreas Klamt’s group at COSMOlogic [to be 
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published in the same edition] generated relevant conformations of the molecule and for each 

conformation calculated the chemical potential difference between the two phases. Among the 

empirical approaches, Vzgyt used QSAR model based on molecular descriptor based on properties 

and trained a random forest model to predict pKa values [to be published in the same edition].  

 

In this work, we have developed a novel deep learning model for the computational prediction of 

logP values. We have used fingerprinting to generate features for the molecule. A large database 

of more than 14,000 molecules was used to train and test the model. Our goal for the project was 

to develop a model which can utilize this large database and generalize over a large test set. Deep 

neural networks are an excellent choice for this training. They have recently been used in a number 

of fields including QSAR studies for IC50 prediction7. We explored the usage of deep neural 

networks with two different models with five and three hidden layers respectively.  

 

The paper is organized as follows. In Section 2, we describe the computational details of the 

method, including the description of the data set used and the architecture of the neural networks 

that were designed. Section 3 covers our major results, comparison to other methods and a 

discussion on prospects for further improvement on the work. Finally, in Section 4, a brief 

conclusion of the study is provided.  

 

2  Computational Details 

 

We carried out this study to perform a blind prediction in the SAMPL6 logP challenge. A 

schematic representation of the approach is given in Figure 4.1.  SAMPL6 organizers provided a 
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set of 11 drug-like molecules in the SMILES string format. In order to use a machine learning 

approach for prediction, we first made a vector-space representation of the molecule. We trained 

a number of deep neural network models on a previous dataset of logP predictions. The models 

which provided the least error in our validation and test sets were used further to make the final 

prediction for the challenge molecules. In the next subsections, we provide a detailed description 

of the approach used including the vector space representation, training and testing of our models.  

 

2.1  SAMPL6 logP prediction challenge molecules 

 

The logP prediction challenge consisted of making blind prediction of the octanol-water partition 

coefficients of 11 small molecules that are similar to small molecule protein kinase inhibitors. 

Figure 4.2 shows the 2-dimensional structure of the molecules. An ASCII formatted notation for 

the molecules, named Simplified Molecular-Input Line-Entry System (SMILES), is used for the 

initial representation of the molecule. SMILES string provides a unique way for naming a 

molecule. Atoms are represented by their symbol with the option of including the charge if any. 

Bonds are represented by symbols: single (-), double (=), triple (#) and aromatic (:). Branches are 

depicted with brackets. Cycles are broken at one bond and labels are attached on the atoms in the 

broken bond. More details about the representation scheme for SMILES can be obtained from the 

Daylight manual for SMILES. 
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2.2 Extended-Connectivity Fingerprinting   

 

We used the approach formulated by Rogers and Hahn8 to make a vector space representation of 

the molecule.  This method, termed Extended-Connectivity Finger Printing (ECFP), has been used 

extensively in the QSAR field for structure-function modeling.  It models the atoms and its bonded 

neighborhood iteratively at longer bond distances.  

 

In the first iteration, seven features of each non-hydrogen atom in the molecule are calculated:  

 

1. number of heavy neighbors 

2. valence of the atom subtracted by the number of hydrogen atoms attached 

3. atomic number 

4. Atomic charge 

5. Atomic mass 

6. Number of attached hydrogens 

7. Whether the atom is contained in a ring 

 

These identifiers are hashed into a 32-bit integer. At the end of the first stage of iteration, we have 

an array of 32-bit integers, one for each heavy atom.  

 

In the next set of iterations, we try to model the bonded environment of each atom. The identifier 

array is appended by a tuple for each bond. The first entry for the tuple is bond order and the 

second entry are the identifier calculated at the first stage. The full array for each atom is again 
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hashed to create a new 32-bit integer. Thus, at the end of this iteration, we have an array of integers 

- one for each atom and one for each bond centered at the respective atom. Any duplicate entries, 

if present, are removed from the array. 

 

The same process is repeated for another iteration to get the identifiers for atoms separated by 2 

bonds. These iterations can be seen as adding features representing atom-centered substructures of 

larger radii. In this study we have used ECFPs up to the fourth order. The array of integers at the 

last stage is hashed to create a 1024-bit vector. This vector serves as the final vector space 

representation for a molecule.  We used rdkit python library to create the fingerprint for each 

molecule.  

 

2.3 Training and testing data set  

 

Training data was obtained from PHYSPROP database (www.srcinc.com). It contains a set of 

14,176 data points with SMILES string as the molecule and the corresponding logP values. Of 

these, a randomly selected 12,000 data points were used as the training set and the rest as the 

training set.   

 

2.4 Architecture of neural network 

 

We trained a number of different models which varied in the size and number of hidden layers in 

their architecture. Here, we report of two of those architectures that we submitted in the SAMPL6 

challenge. The first neural network has 5 hidden layers: 3 layers of 512 units and 2 layers of 256 
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units. The second neural network is much simpler and has 3 hidden layers with 512, 256 and 128 

units in the hidden layers. All the models have one output layer. A total of 150 epochs of training 

was done on the dataset with 5-fold cross validation within the training data.  

 

3  Results and Discussion 

 

Our results show very good agreement with the experimental data. Results are presented in Table 

4.2. With the 5 hidden layers model, we obtained a root mean squared error (RMSE) of 0.62 logP 

units while the Mean absolute error (MAE) was 0.51 logP units. Correlation with the experimental 

data was 0.66 and the slope of the regression line was 1.21. With the 3 hidden layers model, we 

obtained a RMSE of 0.85 logP units. This corresponded with MAE of 0.72 logP units. Correlation 

coefficient for this model was 0.52 and slope of the regression line was 1.18.  

 

As expected, our 5 hidden layers model performs better than the one with 3 hidden layers. As seen 

in table 4.3, the number of tunable parameters in this model is more than 1.2 million. This model 

is able to approximate an arbitrary function much better than a model with lesser number of 

parameters. Since we have a large dataset of more than 12k training set representing a wide variety 

of chemical moieties (substructures), the bias in the model is expected to be low.   

 

We also tested the model of a larger dataset of 2000 molecules and the results are shown in Figure 

4.6. MAE in this set was 0.68 logP units. This shows that the model is robust over a larger number 

of molecules with a variety of substructures and is expected to perform well in other studies as 

well with non-kinase targeting drug-like fragments.  
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Radius of ECPC affects the feature space representation of the molecule. A larger radius creates 

identifiers which correspond to bigger interaction regions in the molecule. This also leads to a 

dramatic increase in the size of the features space and would give a sparser distribution over the 

bits of the feature space. As noted by Liu et.al., ECPC_2 serve as a good compromise for feature 

representation and performs well for database searching and QSPR studies.  

 

One limitation of informatics-based approach for property prediction should be realized. The 

machine learning model learns the distribution of the data that it is used for its training. If the test 

data is drawn from a different distribution, the model is not expected to be robust enough to make 

the correct predictions. In other words, machine learning models are good at interpolating within 

the distribution but not reliable for extrapolation. In terms of logP prediction, if the test molecules 

contain substructures that are absent in the training data, the trained model will give high errors. 

However, the SAMPL6 competition involved prediction for kinase-fragment molecules which are 

very well represented in our training set. Hence the errors in our predictions are within 1.5 logP 

units for all the molecules. 

 

A clear advantage of the present approach is the speed of calculation. Although collection of 

training data and training the model can take appreciable time, inference is very fast. In our tests 

performed on a Volta Nvidia GPU, each molecule takes less than a second for prediction. This 

makes the approach amenable to deployment for high-throughput prediction in the industrial setup 

where a large number of molecules need to be tested. Physical approaches, based on QM and/or 

MM approaches take several hours in contrast for prediction for one molecule. 
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There are several avenues to build up on the work presented in this article. One criticism of the 

machine learning approaches is the requirement of large amount of data needed to train a model. 

Small sample size gives high bias and the model is not expected to perform well. However, large 

training size might not be available for different physical properties. Transfer learning can be used 

to handle this issue. For example, a related problem to transfer free energy prediction between 

water and octanol is that of prediction of transfer free energy prediction between water and 

cyclohexane. The architecture of the present model, trained on a large water-octanol logP, can be 

modified at the outer layer to make a prediction for water-cyclohexane logP and training it further 

on a smaller set of data for the second property. These approaches have been used in the field of 

computer vision.  

 

Our results show that deep neural networks can be used to predict logP values. The features space 

representation is easy to build and the model trains very fast on the modern GPUs even with a 

large number of tunable parameters. Results on over 2000 molecules show that the model is robust 

over a large variety of substructures.  

 

4  Conclusion  

 

We have developed a novel method for prediction of logP for the SAMPL6 physical properties 

challenge organized by Drug, Design, Data and Research Consortium. The method uses structure-

based fingerprints to represent a molecule in a vector space. Several deep neural architectures were 

trained on a dataset of ~14,000 known logP values. The submitted models gave excellent results 
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on a blind set of 11 kinase-inhibitors drug like molecules. The method is fast, accurate and robust 

over a variety of molecules.   
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Figure 4.1: Schematic representation of the deep learning approach. In the first stage, molecule is 

transformed to its feature (vector) space representation using Extended Connectivity 

Fingerprinting. This serves as the input to the neural network. Neural network is trained on a large 

set of such molecules and corresponding logP. At the inference stage, output of the neural network 

is the predicted logP. 
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Figure 4.2: Two-dimensional structure of the SAMPLE6 logP challenge molecules. All the 11 

molecules in this challenge were a subset of the previous pKa challenge. 
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Figure 4.3: Schematic representation of the process of ECPC for three iterations for the identifier 

associated with the atom C represented above. After the zeroth iteration, the identifier associated 

with C is only about the atom and its bonds in the molecule. After the first iteration, the identifier 

also contains information about the atoms which are one bond away from atom C. The identifiers 

calculated after zeroth iteration for the neighboring atoms are used for creating the identifier for C 

at this iteration. After the second iteration, atoms within two bond distances from the center atom 

are included in the identifier. This iteration continues until a user specified iteration threshold is 

reached. In the present study four iterations are used.  
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Figure 4.4 

a) Experimental vs. prediction for the 5 hidden layers model. The darker shaded region is a 

0.5 logP units while the lighter shaded region is the 1 logP units.  
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b) Experimental vs. prediction for the 3 hidden layer model. The darker shaded region is a 0.5 

logP units while the lighter shaded region is the 1 logP units.   
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a. 

b. 

 

Figure 4.5: Absolute error for a. the 5 hidden layer and b. the 3 hidden layer models. Plots 

available at SAMPL6 logP repository as well. 
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Figure 4.6: Plot of the predicted vs true logP values for 2000 molecules chosen randomly from 

the dataset.  
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SAMPL6 

Molecule ID isomeric SMILES Experimental 

ML 

predictions 

SM02 c1ccc2c(c1)c(ncn2)Nc3cccc(c3)C(F)(F)F 4.09 4.25 

SM04 c1ccc2c(c1)c(ncn2)NCc3ccc(cc3)Cl 3.98 3.29 

SM07 c1ccc(cc1)CNc2c3ccccc3ncn2 3.21 2.64 

SM08 Cc1ccc2c(c1)c(c(c(=O)[nH]2)CC(=O)O)c3ccccc3 3.10 3.36 

SM09 COc1cccc(c1)Nc2c3ccccc3ncn2 3.03 3.32 

SM11 c1ccc(cc1)n2c3c(cn2)c(ncn3)N 2.10 1.02 

SM12 c1ccc2c(c1)c(ncn2)Nc3cccc(c3)Cl 3.83 3.99 

SM13 Cc1cccc(c1)Nc2c3cc(c(cc3ncn2)OC)OC 2.92 3.91 

SM14 c1ccc(cc1)n2cnc3c2ccc(c3)N 1.95 1.45 

SM15 c1ccc2c(c1)ncn2c3ccc(cc3)O 3.07 2.14 

SM16 c1cc(c(c(c1)Cl)C(=O)Nc2ccncc2)Cl 2.62 2.65 

 

Table 4.1: List of the experimental and logP numbers 
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Method RMSE MAE R2 m 

5 hidden layers 0.62 0.51 0.66 1.21 

3 hidden layers 0.85 0.72 0.52 1.18 

 

Table 4.2: Metrics of the results 
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Layer Number of units Number of parameters 

Hidden Layer 1 512 524800 

Hidden Layer 2 512 262656 

Hidden Layer 3 512 262656 

Hidden Layer 4 256 131328 

Hidden Layer 5 256 65792 

 

Table 4.3: Number of tunable parameters in the 5 hidden layer model.  
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Chapter 5 

Implementation of CHARMM Molecular dynamics on GPU 
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Abstract  

 

Chemistry at Harvard Molecular Mechanics (CHARMM) has been one of the most widely used 

molecular dynamics simulation package over the last few decades. However, the lack of an 

efficient CUDA implementation of CHARMM has hindered its usage the graphical processing 

units. In this chapter we discuss the migration of the code to the GPUs and provide technical details 

of the choices made for several key aspects of the implementation. Our results show that the new 

CHARMM-CUDA package provides similar speed of simulation as the other MD packages. 

Additionally, we support several other features of CHARMM including P21 periodic boundary 

condition, Enveloping Distribution Sampling (EDS) and others. The codebase has been redesigned 

to assist further extension in future.  

 

1  Introduction 

 

Molecular dynamics simulations are used in a variety of fields including material science and 

biomolecular sciences. At the heart of molecular dynamics simulations lies the calculation of 

forces on each atom from all the atoms in the primary box as well as their infinite images. 

Additionally, while the time step of a simulation is typically of the order of a femtosecond, most 

functionally relevant motions occur at microsecond or higher time scales. Even converged 

sampling of an ensemble requires more than 10^8 timesteps or more. Hence there is a need for 

high performance in this field.   
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Graphical processing units (GPU) have had an exemplary impact on scientific computation in 

general including molecular dynamics, computational fluid dynamics, astronomy, quantum 

chemistry etc. Several MD packages including Amber1,2, OpenMM3–67, NAMD8, AceMD9 and 

Gromacs10,11 have been ported over to GPUs in the last few years. 

 

Some of the initial GPU generations from NVIDIA included the modest Fermi, Kepler and 

Maxwell microarchitectures. The newer ones including the Pascal and Volta are improved versions 

with higher numbers of streaming multiprocessors (SM), higher memory bandwidths and higher 

floating-point (FP) operations per second. Table 5.1 gives a comparison of the salient features of 

Pascal GP100 and Volta V100 architectures. Each SM has 32 FP64 cores and 64 FP32 cores. 

Additionally, Volta has 8 tensor cores apart which support FP16 operations.  

 

A preliminary version of GPU implementation for CHARMM was done in 2014 by Antti-Pekka 

Hynninen and colleagues. This implementation was based on a heterogeneous CPU-GPU design 

wherein only the direct space component of the non-bonded calculation was implemented on the 

GPU and the rest of the calculations were carried out on (possibly multiple) CPUs. This scheme 

was a natural extension of the eighth-shell method of the domain decomposition approach over 

multiple CPU nodes with the GPUs being used to offload the most time-consuming calculations. 

Subsequent attempts were also made to offload the bonded and reciprocal space electrostatic 

energy calculations to the GPU as well.   

 

In this work we have changed the approach to switch from a heterogeneous CPU-GPU to a GPU-

only implementation. This eliminates the need for transfer of data to and from the CPU’s DRAM 



 
105 

 

and GPU’s main memory at each time step. Our new version of GPU implementation does not use 

the eighth shell-based design. Rather it is optimized for a single-node efficiency. Data structures 

have been designed to support multiple PSFs in order to support Enveloping Distribution Sampling 

(EDS), MSCALE and PERT features of CHARMM in the next release. Special emphasis has been 

made for modular design of the codebase so that future extension of the code is convenient. We 

describe the computational designs in Section 2. This is followed by benchmark results in Section 

3. In Section 4, we give concluding remarks and our plans for future development of the code.  

 

2  Computational Details  

 

In this section we will first discuss the software architecture of the CHARMM CUDA and then 

look specifically at the use of mixed precision computations for optimization of the direct space 

calculations.  

 

Since we have periodic boundary conditions during simulation, non-bonded energy depends not 

just on atoms close to the site but also on their infinite images. However, this sum is only 

conditionally convergent and has a long tail. Ewald split the term into two terms - short and long 

range. Short range term decays quickly in the real space while the long-range component decays 

fast in the reciprocal space. In CHARMM, we calculate the long-range component using the SPME 

algorithm of Darden. 
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2.1 Direct space calculations 

 

Direct space calculations are the most expensive steps during the energy and force calculations. 

They take more than 60% of the total time. Hence, this term is generally the site of most 

algorithmic optimizations.  

 

2.2 Preparation of Neighborlist 

 

Direct space component of the non-bonded energy calculation is performed in a tile-based 

interaction. This approach is the classic cuda-based approach for n-body problem used in many 

different fields. Since the warp size is fixed to 32 threads, we first divide the atoms into groups of 

32. A naïve solution would be calculating the interaction of each tile in the simulation box with 

every other tile. However, direct space energy calculations have a distance-based cutoff for 

interaction. Hence, we would like to calculate the interactions of only those tiles which have any 

pair of atoms within the cutoff distance. 

 

How do we divide the atoms into tiles such that we have to look at the least pairs of tiles while 

covering all the pairs of atoms that are within the cutoff? Another naïve method would be to assign 

the first 32 atoms to first tile, next 32 to the second tile and so on. Since we expect that the atoms 

close in sequence are also close in space, this would ensure that, to a certain extent, out of the 

32*32 interactions of a tiles-pairs, many would fall within the cutoff. This assumption is valid for 

a long polypeptide; however, the assumption ceases to hold true for water molecules. During the 
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course of the simulation, water molecules can move away from each other, i.e. spatial and sequence 

proximity will provide very poor performance. 

 

2.3 Reordering of atoms 

 

A solution that performs well uses idea from cell-list and atoms reordering. First, we calculate the 

minimum and maximum extent of the coordinates along the X, Y and Z directions. Next, we 

calculate the dimension of the cell along the x and y axes. Using a uniform distribution 

approximation, this can be written as: 

𝐷𝑒𝑙𝑡𝑎 = (
𝑥𝑠𝑖𝑧𝑒 ∗ 𝑦𝑠𝑖𝑧𝑒 ∗ 𝑧𝑠𝑖𝑧𝑒

#𝑐𝑜𝑜𝑟𝑑𝑠
32

)

1
3

 

𝐶𝑒𝑙𝑙𝑥 =  
𝑥𝑠𝑖𝑧𝑒

∆
 

𝐶𝑒𝑙𝑙𝑦 =  
𝑦𝑠𝑖𝑧𝑒

∆
 

𝐶𝑒𝑙𝑙_𝑧_𝑚𝑎𝑥 = 2 (

#𝑐𝑜𝑜𝑟𝑑𝑠
32

𝐶𝑒𝑙𝑙𝑥 ∗ 𝐶𝑒𝑙𝑙𝑦

) 

 

We are currently taking only an upper bound on the number of cells along the z-direction. This 

will be refined as we assign the atoms to the cells. 

  

Having calculated these quantities, we can now proceed with the actual sorting of the atoms. First, 

we calculate the number of atoms in each z column and the z-column index for each atom in the 

simulation box. Next, we calculate the maximum number of atoms among all the Z-columns. 
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This is followed by calculation of the position of each of the atoms in the z-column.  This is based 

on the z-coordinate of the atom. This is performed by a parallel prefix sum. This is followed by 

reordering of the atoms in the z-columns. Since we may have a race condition in this case, we use 

an atomic addition method to carry out this step. Finally, we can now sort the atoms according to 

the z-coordinates. For distributed computing, bitonic sort has previously been shown to be the 

most efficient. We describe the method in brief here.  

 

2.4 Building of the neighborlist 

 

Direct space non-bonded energy calculates the interactions on the content of the neighbor list data 

structure. In this subsection we discuss the building this data structure in detail.  The entries in the 

neighborlist are based on the boundaries of the cells into which the simulation box was divided in 

the previous step rather than the coordinates directly. Coordinate information is present indirectly 

as the boundaries were created based on the coordinate.  Building of the neighbor list happens in 

3 stages:  

 

1. In the first stage we build the basic data structure with the neighing cells with which a cell 

is within a cutoff. 

2. Next, we add the topological exclusions for each pair 

3. Finally, we sort the list of interacting cells for each i-cell in order to optimize the 

calculations. 
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First, we make an estimate of the number of tiles. Each cell can interact with cells along the positive 

direction which have any atom up to the short-range cutoff. This serves as the upper bound on the 

number of pairs of tiles that might have even one interaction. We can estimate the number of 

neighboring cells in each direction to cover up to cutoff.  

 

Before we discuss the process of actual building of the neighborlist, it is interesting to look at the 

parallelization being invoked at this stage. One warp (consecutive set of 32 threads), takes care of 

one cell. If we have a block of 128 threads, each block has 4 warps. In other words, each block 

handles 4 cells. So, the number of blocks needed is the total number of cells divided by 4. Nvidia 

scheduler distributes the warps over the streaming multiprocessors available and efficiently 

switches between warps when one is interrupted to I/O or yields the execution or for any other 

reason,  

 

As mentioned earlier, our implementation is optimized for a single GPU system. So, only one 

handles the entire simulation box. Hence, to find the cells that the current cell interacts, we search 

for neighboring cells for each of the 26 images and the primary cell. This is done three nested 

loops looking along the X, Y and Z axes. 

 

We looked at the warp and block level distribution of work, i.e. each warp handles one cell and 

that warps are divided among the SM. We will now look at the thread level distribution of work 

within a warp. Each thread now works on a particular Z-column and iterates over the cells in the 

column to find the upper and lower bounds of the z-cells to search for interaction. Two shuffle 
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operations are performed among the threads in the warp to find the overall upper and lower bounds 

for the cellz along the Z-axis that the present cell can interact with.  

 

The above search gives the cells with triplet(x,y,z)-index to consider for storing. At this stage, 

work is distributed among the 32 threads of the warp. Each thread computes the minimum distance 

that can be achieved between the boundaries of the original cell (image or primary) and the 

candidate thread-cell being considered. If this distance is within the cutoff, the candidate is added 

to the data structure. We also store the shift along the X, Y and Z axes that is used. For the primary 

cell within the simulation box, there is no shift while for all other images, the shifts are cached in 

order to reproduce the coordinate correctly at the time gradient calculation.  

 

2.5 Adding exclusions  

 

There are four different scenarios when a pair needs to be excluded:  

1. There is no atom corresponding to the thread of Ith or jth cell for the tile. This is often the 

case when the number of atoms in the cell is less than 32   

2. When i and j cells of a tile are the same - self interaction should not be calculated in short-

range.  

3. Topological exclusions: In most force-fields, including CHARMM, 1-2 and 1-3 terms are 

not included. 

4. Avoiding the double counting: Each pair of interactions should be calculated only once. 

Hence only the top triangular region of a tile needs to be calculated. The lower triangular 

region is masked out.   
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2.6 Calculation of direct space forces, energy and virial 

Here we iterate over the neighborlist we prepared in the previous step. Each warp (a collection of 

32 contiguous threads) takes care of one tile (a collection of 32 atoms). So, in a block of 128 

threads, we have 4 such tiles. Each warp runs together while a block has access to the same shared 

memory. Accumulation of forces is done in fixed precision12. So, we configure the shared memory 

as such - 32 integers for x-component of force, next 32 integers for y-component of force followed 

by the last 32 integers for z-component of the force. These forces are initially set to 0. 

 

Each warp loads in the information for the i-tile: iatomstart, shift integer for the tile, tile for the 

start of j-list and the endtile for the j-list. Using the shift integer we first recover the shift we need 

to perform in the x,y and z directions in order to get the coordinates of the image/primary atoms.  

 

We now start the iteration over the j-tiles. Exclusion is set to the lane exclusion for the j-tile’s 

exclusions.  Van der waals parameters are stored on the texture memory as both the c6 and c12 

terms remain unchanged for an atom during the simulation.  

 

Calculation of the components of the force along the axes and accumulation on the atom specific 

buffers is performed at this stage. First the force is scaled by a constant value. Next, it is multiplied 

by the x-,y-,z- components of a unit r.. It is stored in this format in the shared memory using atomic 

operation to avoid the possibility of a race condition. 
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2.7 Reciprocal space calculations 

 

Reciprocal space calculations are related to solving the Poisson equation. It involves 5 steps: 

 

1. Spread charge: This is one of the most time-consuming steps of reciprocal space 

calculation. This is where we are using the half precision interpolation. But for now, let me 

first discuss the normal way of performing this computation. We will be calculating the b-

splines on the fly. 

2. Direct to reciprocal space transform: cuFFT module of CUDA is used for this step 

3. Scalar sum for energy calculation: Separate warp level buffers is maintained to avoid the 

possibility of race conditions. 

4. Reciprocal to direct space back transform 

5. Gathering the force happens using a finite difference approach. 

 

2.8 Bonded interaction  

 

Bonded terms account for the bonds, angles, urey-bradley, torsions, improper dihedrals and cmap 

terms. They are given by 

𝑈𝑏𝑜𝑛𝑑𝑒𝑑 =  ∑ 𝐾𝑏(𝑟𝑖𝑗 −  𝑟0 )
2 + 

𝑏𝑜𝑛𝑑𝑠
∑ 𝐾𝜃(𝜃𝑖 −  𝜃0 )

2

𝑎𝑛𝑔𝑙𝑒𝑠

+  ∑ 𝐾𝑋(1 +  cos(𝑛𝑥 −  𝛿)) +  ∑ 𝐾𝑖𝑚𝑝 (𝜙 −  𝜙0)2 
𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

   

 

In order to calculate each of these terms we need the: 
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1. coefficients (ex: equilibrium bond length and force constant for the bond-term),  

2. atoms involved in an interaction and  

3. coordinates of the atoms involved.  

 

The first two sets i.e. the coefficients and atom lists remain unchanged during the simulation. 

Multiple PSFs are supported by separate calculations. A list of interactions is stored in the global 

memory. Each of the types of bonded terms are launched asynchronously in its own kernel and 

iterates over its list of interactions.  

 

Furthermore, mixed precision calculations are supported for bonded interaction as well i.e. 

accumulation can be done in fixed integer format while the individual force term can be calculated 

in double or single precision. 

 

2.9 Holonomic Constraints  

 

We support two kinds of constraints - SHAKE and SHAPE. The former is generally used for 

constraining the bond lengths for water molecule. The latter is more versatile and can constrain a 

set of atoms based on user-defined constrain group. It ensures that the angular momentum of the 

group remains unchanged at each time step.  

 

 

 

2.8 Restraints  
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Restraint terms are similar to the bonded interactions. These terms are added as a separate energy 

term and one kernel takes care of all the restraints.  

 

2.10 Integrators  

 

A number of integrators have been implemented which allow the simulation a variety of 

ensembles. The basic microcanonical ensemble is implemented using Leapfrog, Verlet and 

velocity verlet integrators. 

 

2.11 Langevin piston  

 

Langevin piston method modifies the Andersen’s barostat13 to give an additional random force on 

the piston degree of freedom. Different versions of the barostat are implemented wherein one, two 

or three degrees of freedom along the crystal can be associated with barostat13.   

 

2.12 Precision model  

 

Nvidia GPUs provide 2X performance for single precision calculations as compared to the double 

precision calculations. However, the range of floating numbers that can be represented in single 

precision in limited and adding a small single precision number to a larger one can give incorrect 

result due to imprecise representation errors. Accumulation of forces in single precision is hence 

not advised. However, performing the accumulation in fixed integer can solve this issue.  



 
115 

 

 

In CHARMM, fixed precision number are used for accumulation of forces and while floating point 

representation is used for calculation. The fixed-point version uses 34 bits for mantissa and 30 bits 

for the exponent.  

 

2.13 Support for extensibility  

 

An important aspect of the CHARMM CPU implementation is the adherence to object-oriented 

programming and modern C++ API design principles. This has been done to make further 

extension of the code in the future as convenient as possible. For example, we have a virtual class 

“Integrator” and all the varieties of integrators can be written as derived classes for this base class.  

 

3  Results and Discussion 

 

The new design of CHARMM CUDA engine improves the performance results quite significantly. 

Table 5.1 gives the results for number of nanoseconds of simulation that is achieved on Nvidia’s 

GP100 processors. We are currently able to achieve upto 267ns/day for a DHFR system with 

~24,000 atoms. With a ApoAI system of ~90,000 atom, throughputs upto ~87 ns/day can be 

achieved. For a cellulose system with ~400,000 atoms, the achievable speeds are around ~17 

ns/day. These results are obtained on GP100 processor with the Boost turned off, i.e. clock speed 

of these processors is 1.3Ghz. Since these are single GPU performance numbers and very minimal 

work is done on the CPU side (just the I/O), a typical workstation with 4 GPUs can run 4 different 

simulations at the same time and achieve 4X performance.  



 
116 

 

 

One important design choice that we have taken in our implementation is the focus on single GPU 

performance. This design choice stems from the limitation posed by the bandwidth of the 

interconnect between the CPU and GPU as well as between the GPUs. Host CPU memory to GPU 

transfer is only around 12 Gb/s and is not expected to improve in the future at the saame rate as 

increase in number of Streaming Multiprocessors (SM) on the GPU. Using NVlink 

communication, peer to peer communication between device memory is ~380GB/s. However, this 

will still require keeping a coherent copy of the data (coordinates, forces etc.) and hence 

performance does not scale appreciably. 

 

One of the major limitations of the earlier versions of molecular dynamics packages on GPU has 

been the lack of energy conservation due to the limit imposed by single precision floating units 

used for efficient calculation. Using single precision floating points is preferred as we can store 

more data in a similar space in memory. Also, more importantly, the throughputs supported by 

floating point computing units on the GPUs are twice that of double precision units. However, 

IEEE754 representation of single precision provides only 8 bits in the exponent and 23 bits in the 

fraction (and the most significant bit for the sign). The other related problem with the floating-

point arithmetic is that mathematical operations are not commutative i.e. a + b is not the same as 

b+a. This leads to the force calculation not being deterministic. In a massively parallel architecture 

where the warps can be scheduled on the streaming multiprocessors non-deterministically, this 

poses a serious challenge to the reversibility in the simulation.  

These limitations are handled by the use of fixed-point integers for the accumulation of forces. 

After performing the calculation in the single precision float, the force calculated on each atom of 
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a pair is converted to long integer (64-bit in size). A scale factor of 2^40 is also used to ensure that 

an underflow doesn’t occur.  After this, forces on each atom are accumulated in 64-bit integer 

format. To avoid race condition where multiple threads might be trying to add to the same memory 

location, the additions are performed as atomic operations. Finally, forces are converted back to a 

double or float based on the requirement.  

 

Energy accumulation does not pose the same problem as in this case only it is only a scalar number 

has to be calculated. Since the numerical value for energy scales up with the size of the system, a 

single precision representation will overflow very quickly. Hence double precision is used for 

storing the energy terms. Also, energy is calculated only for the purpose of reporting and doesn’t 

appear in the propagation of the dynamic’s equations. So small precision errors in its value does 

not affect the simulation. 

 

Another feature of the code is that the integration (update of the position and velocities) is 

performed on the GPU as well. This avoids the need to move data back and forth between the host 

and device memory at every time step. As shown in Table 5.2, Occupancy of the threads in each 

of the streaming multiprocessor is very high as a result 

 

Simulation of different ensembles are now supported as well. For a microcanonical ensemble that 

conserves the total energy, verlet and velocity verlet algorithms have been implemented. For 

constant temperature (canonical) ensembles, Andersen thermostat has been added. I am currently 

working on implementing Nose Hoover chains on the device side code. For an isobaric ensemble, 

Langevin piston method has been added. This method allows one, two or three degrees of freedom 
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along the crystal axes to be scaled in order to match the internal pressure with the user expected 

average pressure value.  

 

4  Conclusion 

 

In this work we have implemented an entire GPU-only version of molecular dynamics package 

CHARMM. This implementation is more than an order of magnitude faster than the previous 

version of CHARMM-cuda. The code has been redesigned to move from a heterogeneous CPU-

GPU architecture to one optimized on a single GPU. Since the phase space can be sampled in 

parallel by running independent simulations starting from different initial structures, just one node 

with 4 Nvidia V100 is capable of running more than 1 microsecond of simulation in a day for 

DHFR benchmark.  

 

Usage of these improvements is under the hood with respect to the end-user. Instead of using the 

normal ‘energy domdec gpu on’ command to invoke the gpu implementation, user needs to use 

the command ‘energy domdec gpu only’. All the energy calculations and integration are performed 

on the GPU and the host CPU will be used only at the time reporting values back to the user for 

input/output. This removes the frequent memory transfer between device and host memories and 

improves the throughput of the simulations.  

 

We use single precision for performing the force calculation while the forces are accumulated into 

64-bit integers. This not only increases the precision of the summation but also makes it 
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commutative. This allows the utilization of the single processing units, the work force of the GPUs, 

for all the force calculation. When used along with hydrogen bond constraints, this scheme allows 

excellent conservation of shadow Hamiltonian for a microcanonical ensemble i.e. the energy drift 

in the simulation is minimized. 
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Figure 5.1: Schema showing division of the box into 32-atom cells. The x-y plane is first divided 

into smaller squares based on the density of the atoms in the box. Vertical z-columns are created 

and 32 atoms from the bottom of the column and sequentially collected to form a cell. The top cell 

in any column might not have 32 atoms in it.  

 

 

 

 

 

  



 
123 

 

 

 

 

Figure 5 2: Split of the time between different kernels for a DHFR benchmark system of 23k 

atoms with 62.3 A box. Reciprocal space parameters are kappa: 0.34 and grid size of 108 along 

each of the axes. Nonbonded force calculation remains the most time-consuming section of the 

calculations.  
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 Pascal P100 Volta V100 

Stream multiprocessors 56 80 

FP32 cores/GPU 3584 5120 

FP64 cores/GPU 1792 2560 

Peak FP32 TFLOPS 10.6 15.7 

Peak FP64 TFLOPS 5.3 7.8 

Shared memory size/ SM 64 kB Configurable up to 96 kB 

 

Table 5.1: Comparison between Pascal and Volta architectures 

 

  



 
125 

 

 

Processor Old-CHARMM new-CHARMM CUDA 

P100  7% 96% 

V100 6% 92% 

K20 7% 95% 

 

Table 5.2: Occupancy of the streaming multiprocessors in a test run  
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Chapter 6 

Conclusion 
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This dissertation has explored the application of accelerated computing and machine learning in 

the field of molecular dynamics simulations. The Extended Eighth Shell (EES) method solves a 

long-standing problem in the field of bilayer simulations to allow the balance of chemical 

disequilibrium created during the insertion of a drug molecule or peptide into one of the layers. 

Since area per lipids between the two layers changes, a chemical potential is created between the 

two layers. EES allows the lipids in one to move into the other layer. In contrast the normal periodic 

boundary conditions bring the lipids back into the same layer when they leave the simulation box. 

One of the most important aspects of EES is that it scales as efficiently as the best-known method 

for P1 PBC molecular dynamics. 

 

Most physical phenomenon of interest in the dynamics of biomolecules occur in time scales higher 

than several nanoseconds, it is important for MD engine to be able to scale up to similar time 

scales. Since the MD engine has to calculate millions of interactions for billions of time steps, it is 

important for the energy and gradient calculations to be very fast. Keeping this in mind we have 

migrated the CHARMM molecular dynamics engine to the GPUs. The newer architectures provide 

more than thousands of cores. Such massive parallel machines have a more complicated 

programming model in order to use the underlying cores efficiently. We show that our new 

implementation, which performs all the operations on the device itself has the right precision 

model for the calculations of the gradients and that the hardware is utilized efficiently. We are 

currently adding more features to this engine.  

 

In addition, we participated in SAMPL challenges which involved blind prediction of physical 

properties for drug like molecules. In the first phase, we developed a hybrid QM and MM method 
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to predict pKa of the molecules in explicit solvent. The method is interesting because it tries to 

combine the best of both the quantum and molecular mechanics world. Molecular mechanics 

cannot model breaking of bonds during deprotonation. Hence this method uses quantum level 

theory for that portion of the calculation. Modeling the solvent molecules explicitly is difficult at 

the quantum level due to the size of the system. Hence, we use molecular mechanics description 

at this level. The modified thermodynamic cycle allows the use of one aqueous phase and one gas 

phase calculation for each acid base pair instead of two aqueous phase calculations. Hence the 

method is much faster than the conventional thermodynamic cycles. 

 

In the second phase, we built a deep learning model to predict the logP values of the molecules. 

The model is trained on a dataset of 12000 molecules with known logP values. We tried different 

architectures of the neural network with increasingly higher level of depth in the hidden layers. 

The model with fully connected 5 hidden layers performed the best among our models and gave 

close agreement with the blind dataset. The model can be extended further in the future for other 

physical properties as well. 

 

 

  



 
130 

 

 

 

 



 
131 

 

PUBLICATIONS 

(publication name: Samarjeet Prasad) 

(related to the work done in Dr. Brooks group) 

• Samarjeet Prasad, Simmonett AC, Brooks BR. Extended-eighth shell method for 

periodic boundary conditions with rotations. (in review) 

• Samarjeet Prasad, Kraemer A, Jones MR, Hudson PS, Brooks BR. A deep learning 

approach for blind prediction of logP values of drug-like molecules in SAMPL6 

challenge. (in review, to appear in September special issue of Journal of computer-aided 

molecular design) 

• Samarjeet Prasad, Brooks BR. Implementation of optimized version of CHARMM on 

GPU. (manuscript in prep) 

• Samarjeet, Huang J, Brooks BR. A hybrid QM and MM approach for blind 

prediction of pKa of drug-like molecules for SAMPL6 challenge. Journal of 

computer-aided molecular design 32 (10), 1191-1201. 

• Braun E, Gilmer J, Samarjeet Prasad et al.. Best Practices for Foundations in 

Molecular Simulations [Article v1. 0]. Living Journal of Computational Molecular 

Science 1 (1), 5957 

• Allen B, Chodera JD, Mey Antonia, Michael,J, Mobley DL, Naden L, Prasad Samarjeet, 

Rice J, Rizzi Andrea, Scheen J, Shirts M, Xu H. Best Practices for Alchemical Free 

Energy Calculations. (manuscript in preparation) 

• Hudson PS, Kraemer A, Jones MR, Samarjeet Prasad, Brooks BR. Blind logP prediction 

for SAMPL6 challenge using Alchemical free energy differences. (in review, to 

appear in September special issue of Journal of computer-aided molecular design) 



 
132 

 

• Jones MR, Samarjeet Prasad, Hudson PS, Kraemer A, Brooks BR. Blind logP prediction 

for SAMPL6 challenge using Qunatum mechanical approach. (in review, to appear in 

September special issue of Journal of computer-aided molecular design) 

• Konig. et.al. J Comput Aided Mol Des. 2016 Nov;30(11):989-1006. Calculating 

distribution coefficients based on multi-scale free energy simulations: an evaluation 

of MM and QM/MM explicit solvent simulations of water-cyclohexane transfer in 

the SAMPL5 challenge. 

  



 
133 

 

CURRICULUM VITAE 

SAMARJEET 

samarjeet@jhu.edu 443-627-1987 

EDUCATION 

• Johns Hopkins University – School of Medicine, (Oct 2012-July 2019) 

Ph.D. candidate, BCMB Program 

National Institute of Health (Aug 2016-July,2019) 

Graduate Partnership Program 

• Indian Institute of Technology – Kanpur (2007-2011) 

Bachelor of Technology – Biological Sciences and Bioengineering 

 

FELLOWSHIPS AND AWARDS 

• Silver Medalist for 1st rank in the graduating class of the department at IIT-Kanpur 

• Award of academic excellence (3 consecutive years, given to top 5% students) 

• Best B.Tech Project in the department in the graduating class 

• Mona and Paramjit Singh Scholarship, IIT-Kanpur 

• Selected for Khorana Fellowship - 15 students are selected from India for summer 

internship at UW-Madison 

• Awarded with CSIR Program for Leadership in Science (CPYLS) – for the top set of 

students in the state after Class 10th exams 

 

mailto:samarjeet@jhu.edu


 
134 

 

PUBLICATIONS 

• Samarjeet Prasad, Simmonett AC,  Brooks BR. Extended-eighth shell method for 

periodic boundary conditions with rotations. (in review) 

• Samarjeet Prasad, Brooks BR. et.al. A deep learning approach for blind prediction of 

logP values of drug-like molecules in SAMPL6 challenge. (in review) 

• Samarjeet Prasad, Brooks BR. Implementation of optimized version of CHARMM on 

GPU. (manuscript in prep) 

• Samarjeet, Huang J, Brooks BR. A hybrid QM and MM approach for blind 

prediction of pKa of drug-like molecules for SAMPL6 challenge. Journal of 

computer-aided molecular design 32 (10), 1191-1201. 

• Braun E, Gilmer J, Samarjeet Prasad et al.. Best Practices for Foundations in 

Molecular Simulations [Article v1. 0]. Living Journal of Computational Molecular 

Science 1 (1), 595 . 

• Allen B, Chodera JD, Mey Antonia, Michael, J, Mobley DL, Naden L, Prasad Samarjeet, 

Rice J, Rizzi Andrea, Scheen J, Shirts M, Xu H. Best Practices for Alchemical Free 

Energy Calculations. (manuscript in preparation) 

• Hudson PS, Kraemer A, Jones MR, Samarjeet Prasad, Brooks BR. Blind logP prediction 

for SAMPL6 challenge using Alchemical free energy differences. (in review, to 

appear in September special issue of Journal of computer-aided molecular design) 

• Jones MR, Samarjeet Prasad, Hudson PS, Kraemer A, Brooks BR. Blind logP prediction 

for SAMPL6 challenge using Qunatum mechanical approach. (in review, to appear in 

September special issue of Journal of computer-aided molecular design) 



 
135 

 

• Konig. et.al. J Comput Aided Mol Des. 2016 Nov;30(11):989-1006. Calculating 

distribution coefficients based on multi-scale free energy simulations: an evaluation 

of MM and QM/MM explicit solvent simulations of water-cyclohexane transfer in 

the SAMPL5 challenge. 

• MS Kim, ..,Samarjeet,...,  et.al. Nature. 2014. A draft map of human Proteome.   

• Parashar P., Samarjeet et. al. Dev. Bio.2014. Microarray meta-analysis identifies 

evolutionarily conserved BMP signaling targets in developing long bones. 

• Choi KD., ..,Samarjeet,  et. al. Cell Rep. 2012.  Identification of hemogenic endothelial 

progenitor and its direct precursor in human pluripotent stem cell differentiation 

cultures.  

 

PRESENTATIONS 

• ACS meeting April 2019. A parallel implementation of P21 PBC in CHARMM 

• ACS meeting. August 2017. A method to balance the chemical potential difference 

between the bilayers using p21 periodic boundary condition 

• SAMPL6 meeting. February 2018. A hybrid QM and MM approach for blind prediction 

of pKa of drug-like molecules for SAMPL6 challenge 

• University of Delaware. Chemistry Department. March 2018. A hybrid QM and MM 

approach for blind prediction of pKa of drug-like molecules for SAMPL6 challenge 

 

TEACHING EXPERIENCE 

• Introduction to Bioinformatics (Teaching Assistant) 



 
136 

 

• Course instructor for BIOL262 at FAES NIH 

• Mentored Dr. Julie Kim (contractor at NIAID) for machine learning under the NIH 

mentorship program 

 

WORK EXPERIENCE 

• Worked under Dr. Igor Slukvin at UW-Madison (Sep2011-June2012) 

 

PROFESSIONAL SERVICE 

• Vice President of the Graduate Student Association, JHMI (Aug2013-July2014) 

• Alumni Contact Program, IIT Kanpur 

 


