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Abstract

Recognizing Textual Entailment (RTE) began as a unified framework to evaluate

the reasoning capabilities of Natural Language Processing (NLP) models. In recent

years, RTE has evolved in the NLP community into a task that researchers focus

on developing models for. This thesis revisits the tradition of RTE as an evaluation

framework for NLP models, especially in the era of deep learning.

Chapter 2 provides an overview of different approaches to evaluating NLP sys-

tems, discusses prior RTE datasets, and argues why many of them do not serve as

satisfactory tests to evaluate the reasoning capabilities of NLP systems. Chapter 3

presents a new large-scale diverse collection of RTE datasets (DNC) that tests how

well NLP systems capture a range of semantic phenomena that are integral to un-

derstanding human language. Chapter 4 demonstrates how the DNC can be used to

evaluate reasoning capabilities of NLP models. Chapter 5 discusses the limits of RTE

as an evaluation framework by illuminating how existing datasets contain biases that

may enable crude modeling approaches to perform surprisingly well.

The remaining aspects of the thesis focus on issues raised in Chapter 5. Chap-
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ABSTRACT

ter 6 addresses issues in prior RTE datasets focused on paraphrasing and presents

a high-quality test set that can be used to analyze how robust RTE systems are to

paraphrases. Chapter 7 demonstrates how modeling approaches on overcoming bi-

ases, e.g. adversarial learning, can enable RTE models overcome biases discussed in

Chapter 5. Chapter 8 applies these methods to the task of discovering emergency

needs during disaster events.

Keywords: Recognizing Textual Entailment, Natural Language Inference, Natu-

ral Language Understanding, Computational Semantics, Natural Language Process-

ing
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Chapter 1

Introduction

For decades, Artificial Intelligence (AI) researchers aimed to develop machines

that humans can seamlessly interact with via language. The proliferation of real-world

consumer products like Google Translate and Apple’s Siri can be attributed to success

in AI and Natural Language Processing (NLP) research. Nevertheless contemporary

NLP systems are very brittle. Machine translation systems fail to translate noisy data

and dialog systems like Amazon Alexa often fail to understand non-white American

accents.1 Mistakes made by NLP systems can cause global scandals. For example,

during Chinese President Xi Jinpeng’s recent visit to Burma, Facebook incorrectly

translated his name from Burmese to English as “Mr. Shithole, President of China.”

As NLP systems become more ubiquitous in our daily lives, it is important to

understand where these models may fail, and the limits to their current reasoning
1https://www.washingtonpost.com/graphics/2018/business/alexa-does-not-understand-your-accent/

?noredirect=on

1
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CHAPTER 1. INTRODUCTION

capabilities. Developing methods that provide insight into understanding the rea-

soning capabilities of advanced, contemporary NLP models might help prevent such

mistakes.

Inspired by a tradition in linguistics, NLP researchers often rely on the task of

Recognizing Textual Entailment (RTE), also known as Natural Language Inference

(NLI), to evaluate the reasoning capabilities of NLP systems. Traditionally, RTE is a

categorical sentence-pair classification task where a system must determine whether

one sentence (hypothesis) could likely be inferred from another (premise). For ex-

ample, the hypothesis Adam received a drink would likely be inferred by the premise

that Ruth gave Adam a can of La Croix seltzer.

In recent years, with the introduction of large scale RTE datasets, researchers have

become focused on developing models specifically for RTE. Researchers compete to

develop more advanced models that predict whether one sentence can likely be in-

ferred from another. In this thesis, I revisit the tradition of using RTE to provide

insight into reasoning capabilities of NLP models. RTE is an ideal evaluation frame-

work as coping with textual inferences is necessary for all NLP systems that deal

with understanding language (Zaenen, Karttunen, and Crouch, 2005). Furthermore,

since “evaluating a system requires the definition of an application task in terms of

input/output pairs that are equally applicable to question-answering, text process-

ing, or generation” (Palmer and Finin, 1990) and RTE is equally applicable to these

and other downstream tasks, RTE is an ideal framework for evaluating the reasoning

2
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capabilities of NLP systems.

In this thesis, I demonstrate why existing resources and prior efforts in RTE fail

to adequately accomplish the grand vision of being a unified framework to evaluate

the reasoning capabilities of NLP systems. Most RTE datasets provide just a single

metric in terms of how well a system accurately predicts whether one sentence likely

follows another. Unfortunately, this metric does not provide any insight into the

range of reasoning capabilities of our systems. Therefore, I argue for using RTE as a

unified framework to test for a wide range of reasoning capabilities.

This thesis introduces methods for creating RTE datasets that provide insight

into the range of reasoning capabilities of our NLP systems. The methods I introduce

primarily rely on recasting annotations for different semantic phenomena into RTE.

These semantic phenomena include humor, figurative speech, named entity recogni-

tion, and event factuality. As part of this thesis, I release a large scale dataset that

tests for over fifteen types of reasoning phenomena. I introduce a method for using

this data to evaluate the reasoning capabilities of NLP systems, and I evaluate NLP

systems trained to translate, connect images with text, and parse sentences into syn-

tactic chunks. Additionally, I discover biases and issues in popular RTE datasets that

hinder their ability to test NLP models’ reasoning capabilities. I use these discovered

biases to refine the utility of and proper use cases for RTE. Sparck Jones (1994) ar-

gued against the idea of a “single correct way to evaluate an NLP system,” and these

discovered biases demonstrate the limits of RTE.

3
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While RTE is primarily a tool to evaluate NLP systems, researchers are still inter-

ested in developing methods and systems that can determine whether one sentence

likely entails another. Therefore, I introduce methods that allow models to overcome

dataset specific biases and I apply these methods to successful identify and discover

emergency needs during disastrous events.

1.1 Roadmap & Contributions

In Chapter 2, I begin this thesis by reviewing prior work in evaluating NLP

systems. I will discuss how Recognizing Textual Entailment was introduced as a

framework to evaluate NLP systems and I will highlight why most prior work in RTE

cannot be used to adequately evaluate NLP systems.

In Chapter 3, I introduce the Diverse Natural Language Inference Collection

(DNC), a collection of diverse semantic phenomena recast into RTE. The DNC in-

cludes phenomena that are necessary components of more general sentence-level se-

mantic inference. The primary contribution of this chapter is the development and

incremental release of a large scale collection of datasets that can provide better

insights into models’ reasoning capabilities.

Using the DNC, in Chapter 4, I investigate the ability of NLP models trained on

different tasks to capture specific and focused types of sentence-level semantic infer-

ence. Some of the contributions of this chapter include a general purpose framework

4
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for using RTE to analysis models’ reasoning capabilities, and the discovery that the

choice of target language in a neural machine translation system can change how well

the system captures a diverse range of semantic phenomena. I apply this framework

to different models trained on a large array of NLP tasks.

In Chapter 5, with a critical eye, I introduce a simple approach that discovers

evidence of biases in prior RTE datasets that may limit their usefulness in terms

of understanding reasoning capabilities in NLP models. The biases discovered also

call into question which types of phenomena are appropriate to convert to RTE.

Additionally, this work sparked a renewed interested in the community to develop

RTE models that overcome dataset specific biases and perform well across multiple

NLI dataset.

Next, in Chapter 6, I present a new RTE dataset focused on paraphrases. Biases

discovered in the previous chapter demonstrate blunders in prior efforts to recast an

RTE dataset focused on paraphrases. This chapter presents a new approach and test

set focused specifically on paraphrases.

In Chapter 7, I then discuss potential solutions to mitigate these biases when

developing models to perform RTE and demonstrate how these solutions might enable

models to ignore these biases.

Turning towards an applied setting, in Chapter 8, I demonstrate how these bias

mitigation techniques can be applied to identifying and discovering emergency needs

during disastrous events. This method resulted in top performance in the DARPA

5



CHAPTER 1. INTRODUCTION

Low Resource Languages for Emergent Incidents (LORELEI) challenge in 2019.

Finally, in Chapter 9, I summarize the contributions of this thesis and discuss

open research problems and future research directions.

Software Contributions

Most of the work for this thesis has been released across multiple open-sourced

software repositories. These include:

• https://github.com/azpoliak/hypothesis-only-NLI

• https://github.com/azpoliak/robust-nli

• https://github.com/azpoliak/nmt-repr-analysis

• https://github.com/decompositional-semantics-initiative/DNC

1.1.1 What this thesis is not

This thesis does not introduce state-of-the-art models for NLP tasks, including

RTE. Instead, this thesis focuses on revisiting RTE as a method for evaluating how

well NLP systems capture different semantic phenomena related to understanding

human language. This thesis is not a treatise on what counts as understanding lan-

guage, or more broadly defining the full scope of an intelligent agent or artificial

general intelligence (AGI). I leave such discussions to philosophers and sci-fi writ-

ers. While the semantic phenomena covered in this thesis are important for general

natural language understanding, I do not believe they are the be-all-and-end-all of
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CHAPTER 1. INTRODUCTION

understanding human language. Many phenomena important for natural language

understanding, e.g. pragmatic inference, are not included in this thesis.

This thesis is not a comprehensive nor complete evaluation of the phenomena or

types of reasoning captured in the models tested. Instead, the thesis argues for using

RTE as a method that may shed light into reasoning capabilities of NLP models.

This thesis introduces methods to efficiently develop RTE datasets that each probe

for distinct types of reasoning. These datasets and methods serve as tools to discover

shortcomings of NLP systems that can hopefully prevent diplomatic blunders as the

one discussed earlier in the introduction.

1.1.2 How to read this thesis:

Inspired by Xuchen Yao’s thesis (Yao, 2014), I provided a guide for how to read

this thesis under different constraints/settings:

If you only have 20 minutes: Read Chapter 1 which provides an overview of the

important ideas in this thesis.

If you have 40 minutes: Read Chapter 1, the first and discussion sections of each

chapter, starting with Chapter 3.

If you are new to Recognizing Textual Entailment: Section 2.2 provides a

good reference for fundamental datasets and work in RTE.

If you are interested in probing for semantic phenomena: Start with Sec-

tion 2.1.3 for a brief background, then read Chapter 3 and Chapter 4.
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If you have read all my papers and are looking for something new: This list

contains previously unpublished material in this thesis:

• Experiments in the DNC about learning curves in Table 3.3.

• Section 4.3 describes experiments using the DNC to evaluate encoders pre-

trained on different tasks. This work was discussed at the 2018 JSALT closing

presentations.

• Chapter 6 introduces a new RTE dataset where examples have been para-

phrased. The chapter includes experiments demonstrate whether different types

of models are robust to paraphrases.

1.2 Publications

This thesis is based on many peer-reviewed publications that I have co-authored.2

These publications include:

• On the Evaluation of Semantic Phenomena in Neural Machine Trans-

lation Using Natural Language Inference. Adam Poliak, Yonatan Be-

linkov, James Glass, Benjamin Van Durme. Proceedings of the 16th Annual

Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies (NAACL). Association for
2Research is a team sport and I have been fortunate to learn from and publish work with great

collaborators. In subsequent chapters, this thesis will use the first person plural instead of the
singular. This is inspired by tradition (Napoles, 2018; Knowles, 2019; Rudinger, 2019) and a desire
to recognize the contributions of my collaborators in this work.
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Computational Linguistics. New Orleans, Louisiana, USA. June 2018, pages

513-523. http://aclweb.org/anthology/N18-2082

• Collecting Diverse Natural Language Inference Problems for Sen-

tence Representation Evaluation Adam Poliak, Aparajita Haldar, Rachel

Rudinger, J. Edward Hu, Ellie Pavlick, Aaron Steven White, Benjamin Van

Durme. Conference on Empirical Methods in Natural Language Processing

(EMNLP). Association for Computational Linguistics. Brussels, Belgium. Novem-

ber 2018. http://aclweb.org/anthology/D18-1007

• Hypothesis Only Baselines in Natural Language Inference Adam Poliak,

Jason Naradowsky, Aparajita Haldar, Rachel Rudinger and Benjamin Van Durme.

The Seventh Joint Conference on Lexical and Computational Semantics (*SEM).

Association for Computational Linguistics. New Orleans, Louisiana, USA. June

2018, pages 180-191. Best Paper Award http://www.aclweb.org/anthology/

S18-2023

• Don’t Take the Premise for Granted: Mitigating Artifacts in Natural

Language Inference Yonatan Belinkov*, Adam Poliak*, Stuart M. Shieber,

Benjamin Van Durme, Alexandar Rush. 57th Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL). Association for Computational

Linguistics. Florence, Italy. July 2019

• On Adversarial Removal of Hypothesis-only Bias in Natural Lan-

guage Inference Yonatan Belinkov*, Adam Poliak*, Stuart M. Shieber, Ben-
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jamin Van Durme, Alexandar Rush. The Eighth Joint Conference on Lexi-

cal and Computational Semantics (*SEM). Association for Computational Lin-

guistics. Minneapolis, Minnesota, USA. June 2019, pages 256–262. https:

//www.aclweb.org/anthology/S19-1028

As a graduate student, I was fortunate to co-author additional publications that

are not included in this thesis. These publications can be grouped into the following

topics:

• Word Embeddings

– Frame-Based Continuous Lexical Semantics through Exponential

Family Tensor Factorization and Semantic Proto-Roles. Frank Fer-

raro, Adam Poliak, Ryan Cotterell, Benjamin Van Durme. In Proceedings

of the Sixth Joint Conference on Lexical and Computational Semantics

(⋆SEM). Association for Computational Linguistics, Vancouver, Canada,

Augsut 2017, pages 97–103. http://www.aclweb.org/anthology/S17-1011

– Efficient, Compositional, Order-Sensitive n-gram Embeddings.

Adam Poliak*, Pushpendre Rastogi*, M. Patrick Martin, Benjamin Van

Durme. In Proceedings of the 15th Conference of the European Chapter

of the Association for Computational Linguistics (EACL). Association for

Computational Linguistics, Valencia, Spain, April 2017, pages 503–508.

https://aclweb.org/anthology/E/E17/E17-2081.pdf.

– Explaining and Generalizing Skip-Gram through Exponential Fam-
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ily Principal Component Analysis. Ryan Cotterell, Adam Poliak,

Benjamin Van Durme, Jason Eisner. In Proceedings of the 15th Conference

of the European Chapter of the Association for Computational Linguistics

(EACL). Association for Computational Linguistics, Valencia, Spain, April

2017, pages 175–181. http://www.aclweb.org/anthology/E17-2028.

• Analysis/Probing

– Probing what different NLP tasks teach machines about function

word comprehension Najoung Kim, Roma Patel, Adam Poliak, Patrick

Xia, Alex Wang, R. Thomas Mccoy, Ian Tenney, Alexis Ross, Tal Linzen,

Benjamin Van Durme, Samuel Bowman and Ellie Pavlick. The Eighth

Joint Conference on Lexical and Computational Semantics (*SEM). As-

sociation for Computational Linguistics. Minneapolis, Minnesota, USA.

June 2019, pages 235–249. Best Paper Award

https://www.aclweb.org/anthology/S19-1026

– What do you learn from context? Probing for sentence struc-

ture in contextualized word representations Ian Tenney, Patrick Xia,

Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim,

Benjamin Van Durme, Sam Bowman, Dipanjan Das, Ellie Pavlick. Sev-

enth International Conference on Learning Representations (ICLR). 2019.

https://openreview.net/forum?id=SJzSgnRcKX

• Semantics
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– Semantic Proto-Role Labeling. Adam Teichert, Adam Poliak, Ben-

jamin Van Durme, Matt Gormley. In Proceedings of the 31st AAAI Con-

ference on Artificial Intelligence. Association for the Advancement of

Artificial Intelligence (AAAI), San Francisco, California, February 2017

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14997

– Generating Automatic Pseudo-entailments from AMR Parses.

Adam Poliak and Benjamin Van Durme. 6th Mid-Atlantic Student Col-

loquium on Speech, Language and Learning (MASC-SLL) Washington D.C,

USA, May 2017. Extended Abstract http://www.cs.jhu.edu/~apoliak1/

papers/Poliak-et-al-MASC-SLL_2017.pdf

• Other

– Neural Variational Entity Set Expansion for Automatically Pop-

ulated Knowledge Graphs Pushpendre Rastogi, Adam Poliak, Vince

Lyzinski, and Benjamin Van Durme. Information Retrieval Journal Septem-

ber 2018. https://rdcu.be/98BY

– CADET: Computer Assisted Discovery Extraction and Transla-

tion. Benjamin Van Durme, Tom Lippincott, Kevin Duh, Deana Burch-

field, Adam Poliak, Cash Costello, Tim Finin, Scott Miller, James May-

field, Philipp Koehn, Craig Harman, Dawn Lawrie, Chandler May, Annabelle

Carrell, Julianne Chaloux, Tongfei Chen, Alex Comerford, Mark Dredze,

Benjamin Glass, Shudong Hao, Patrick Martin, Pushpendre Rastogi Rashmi
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Sankepally, Travis Wolfe, Ying-Ying Tran, Ted Zhang. Proceedings of

the 8th International Joint Conference on Natural Language Processing

(IJCNLP), System Demonstrations. The Association for Computational

Linguistics and Chinese Language Processing (ACLCLP), Taipei, Taiwan,

November 2017, pages 5–8

http://www.aclweb.org/anthology/I17-3002

– Training Relation Embeddings under Logical Constraints. Push-

pedre Rastogi, Adam Poliak, Benjamin Van Durme. In The First Work-

shop on Knowledge Graphs and Semantics for Text Retrieval and Analysis

(KG4IR). The 40th International ACM SIGIR Conference
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Chapter 2

Background

Research is not so much going round in circles as ascending a spiral, if
only a rather flat one... NLP has returned to some of its early themes,
and by a path on an ascending spiral rather than in a closed circle, even
if the ascent is slow and uneven.

(Sparck Jones, 1994)

How do we evaluate machines developed for humans to seamlessly interact with

via language? How do we determine that one NLP system understands language

or generates text better than another? As NLP-based technologies are more widely

adopted, these questions are more relevant now than ever.

We begin this chapter by discussing different approaches to NLP evaluations over

the past thirty years. We will explore different ways the community has evaluated and

compared systems developed for understanding and generating language. Next, we

will discuss how Recognizing Textual Entailment (RTE) was introduced as a specific

answer to this broad question of how to best evaluate NLP systems. This will include
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a broad discussion of efforts in the past three decades to build RTE datasets and

use RTE to evaluate NLP models. We will conclude with a discussion on why many

existing RTE datasets fall short of providing a method for evaluating how well systems

understand language.

2.1 Evaluating NLP Systems

The question of how best to evaluate NLP systems is an open problem that has

intrigued the community for decades. Martha Palmer and Tim Finin’s 1988 work-

shop on the evaluation of NLP systems explored key questions for evaluation. These

included questions related to valid measures of “black-box” performance, linguistic

theories that are relevant to developing test suites, reasonable expectations for ro-

bustness, and measuring progress in the field (Palmer and Finin, 1990). The large

number of ACL workshops focused on evaluations in NLP demonstrate the lack of

consensus on how to properly evaluate NLP systems, despite the constant interest in

evaluation methods. These workshops include those focused on:

1. Evaluations in general (Pastra, 2003), including this year’s Evaluation and Com-

parison of NLP Systems (Eval4NLP)1;

2. Different NLP tasks, e.g. machine translation (Workshop on MT Evaluation:

Hands-On Evaluation 2001; Goldstein et al., 2005) and summarization (Conroy
1https://nlpevaluation2020.github.io/index.html
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et al., 2012; Giannakopoulos et al., 2017);

3. Contemporary NLP approaches that rely on vector space representations (Levy

et al., 2016; Bowman et al., 2017; Rogers et al., 2019).

Evaluation Dichotomies

In the quest to develop an ideal evaluation framework for NLP systems, re-

searchers proposed multiple evaluation methods. These approaches included EA-

GLES (King et al., 1995), TSNLP (Oepen and Netter, 1995; Lehmann et al., 1996),

FraCas (Cooper et al., 1996), CLEF (Agosti et al., 2007), SENSEVAL (Kilgarriff,

1998), SEMEVAL (Agirre, Màrquez, and Wicentowski, 2007), and others. These

approaches are often categorized into multiple dichotomies. Here, we will survey ap-

proaches along two dichotomies. The first is the distinction between general purpose

compared to task specific evaluations and the second we will discuss is intrinsic versus

extrinsic evaluations. Resnik and Lin (2010) summarize other evaluation dichotomies

and Paroubek, Chaudiron, and Hirschman (2007) present a history and evolution of

NLP evaluation methods.

2.1.1 General Purpose vs Task Specific Evaluations

General purpose evaluations determine how well NLP systems capture different

linguistic phenomena. These evaluations often rely on the development of test cases
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that systematically cover a wide range of phenomena. Additionally, these evaluations

generally do not consider how well a system under investigation performs on held out

data for the task that the NLP system was trained on. In general purpose evalua-

tions, specific linguistic phenomena should be isolated such that each test or example

evaluates one specific linguistic phenomenon, as tests ideally “are controlled and ex-

haustive databases of linguistic utterances classified by linguistic features” (Lloberes,

Castellón, and Padró, 2015).

In task specific evaluations, the goal is to determine how well a model performs

on a held out test corpus. How well systems generalize on text classification problems

is determined with a combination of metrics like accuracy, precision, and recall. For

generation tasks like machine translation and summarization, NLP systems are often

compared based on metrics like BiLingual Evaluation Understudy (BLEU) (Papineni

et al., 2002) and Recall Oriented Understudy for Gisting Evaluation (Rouge) (Lin,

2004). Task specific evaluations, where “the majority of benchmark datasets . . . are

drawn from text corpora, reflecting a natural frequency distribution of language phe-

nomena” (Belinkov and Glass, 2019), is the common paradigm in NLP research today.

Researchers often begin their research with provided training and held-out test cor-

pora, as their research agenda is to develop systems that outperform other researchers’

systems on a held-out test set based on a wide range of metrics. The majority of the

work presented in this thesis deviates from this popular trend in NLP research. We

are not focused on developing NLP systems that generalize better than other re-
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searchers’ systems. Rather, we present a test suite covering a wide range of linguistic

phenomena, and we introduce a general purpose method to evaluate the reasoning

capabilities of NLP systems using the introduced test suite.

The dichotomy between general purpose and task specific evaluations is sometimes

blurred. For example, while general purpose evaluations are ideally task agnostic, re-

searchers develop evaluations that test for a wide range of linguistic phenomena cap-

tured by NLP systems trained to perform specific tasks. These include linguistic tests

targeted for systems that focus on parsing (Lloberes, Castellón, and Padró, 2015),

machine translation (King and Falkedal, 1990; Koh et al., 2001; Isabelle, Cherry, and

Foster, 2017; Choshen and Abend, 2019; Popović and Castilho, 2019; Avramidis et

al., 2019), summarization (Pitler, Louis, and Nenkova, 2010), and others (Chinchor,

1991; Chinchor, Hirschman, and Lewis, 1993).

Test Suites vs. Test Corpora

In turn, we can better classify the dichotomy between general purpose and task

specific evaluations in terms of the data used to evaluate systems. Oepen and Netter

(1995) refer to this distinction as test suites versus test corpora. They define a test

suite as a “systematic collection of linguistic expressions (test items, e.g. sentences

or phrases) and often includes associated annotations or descriptions.” They lament

the state of test suites in their time since

most of the existing test suites have been written for specific systems or
simply enumerate a set of ‘interesting’ examples; this clearly does not
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meet the demand for large, systematic, well-documented and annotated
collections of linguistic material required by a growing number of NLP
applications.

(Oepen and Netter, 1995)

Oepen and Netter further delineate the difference between test corpora and test suites.

Unlike “test corpora drawn from naturally occurring texts,” test suites allow for 1)

more control over the data, 2) systematic coverage, 3) non-redundant representation,

4) inclusion of negative data, and 5) coherent annotation. Thus, test suites “allow for

a fine-grained diagnosis of system performance” (Oepen and Netter, 1995). Oepen

and Netter argue that both should be used in tandem - “test suites and corpora should

stand in a complementary relation, with the former building on the latter wherever

possible and necessary.” Hence, both test suites and test corpora are important

for evaluating how well NLP systems capture linguistic phenomena and perform in

practice on real world data.

Categorizing Approaches as General Purpose or Task Specific

Evaluations

Any actual test suite to be used for some given test or evaluation will
have to be more or less specific in order to yield optimally informative
and interpretable results. Therefore, the notion of a monolithic and fixed
general-purpose test suite seems neither feasible nor desirable. On the
other hand, there will obviously be a rather large amount of linguistic
phenomena which any test suite might want to include.

(Balkan et al., 1994)

When introducing Test Suite for NLP (TSNLP) (Oepen and Netter, 1995; Lehmann

et al., 1996), a multi-year project funded by Linguistic Research Engineering program
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of the European Commission, Balkan et al. (1994) distinguish general-purpose diag-

nostics from task- and domain-specific evaluations. Balkan et al. idealize applying a

generic test suite to different NLP systems in order to explore how well the systems

capture linguistic phenomena, but acknowledge that this might not be feasible.

We divide different lines of research in evaluation methods based upon the di-

chotomy of General Purpose (Test Corpora) or Task Specific (Test Suite) Evalua-

tions. At the conclusion of the 1988 Workshop of Evaluating NLP systems, Palmer

and Finin (1990) argued for using an evaluation framework that is task and domain

agnostic. Sparck Jones and Galliers (1996)’s textbook devoted to analyzing differ-

ent techniques to evaluate NLP systems disagreed with this idea. Sparck Jones and

Galliers argued for domain and task specific evaluations, as they claimed that it is

infeasible, impractical, and not meaningful to evaluate an NLP system outside of

an applied task. In her review of the textbook, Sharon Walter disagreed with the

idea that a evaluation criteria for generic NLP systems cannot be adequately defined.

Walter writes that

The evaluation methodology does not, however, appear to strike at the
heart of the evaluation problem of defining specific criteria by which to
describe and compare system capabilities, evading the issue in fact by
proposing that general criteria cannot be defined due to the necessity of
case-by-case specification of evaluation criteria.

(Walter, 1998)

Walter’s idea of a generic evaluation methodology was evident by the Neal-Montgomery

NLP System Evaluation Methodology, a methodology that “produces descriptive,
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objective profiles of system linguistic capabilities without a requirement for system

adaptation to a new domain” (Walter, 1992).

The majority of contemporary NLP research relies on task-specific (test corpora)

based evaluations. As pointed out in a recent survey of analysis methods in NLP,

currently “the majority of benchmark datasets in NLP are drawn from text corpora,

reflecting a natural frequency distribution of language phenomena” (Belinkov and

Glass, 2019).

Gold Labeled Data

For both test corpora and test suite evaluations, assumptions are made that test

data (and at least some of the training data) conform to a “gold standard,” i.e. a

“data set of natural language texts annotated by humans for correct solutions of that

particular task” (Kováź, Jakubíźek, and Horák, 2016). Read et al. (1988) earlier

referred to such annotated data points as “exemplars of representative problems in

natural language understanding.” An exemplar “includes a piece of text (sentence

dialog fragment, etc.), a description of the conceptual issue represented, a detailed

discussion of the problem in understanding the text and a reference to a more exten-

sive discussion in the literature.” Read et al. (1988) refer to a collection of exemplars

plus “a conceptual taxonomy of the types of issues represented in the” exemplars as

a Sourcebook.

Relying on standard collections of gold data is common in most shared tasks
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or (D)ARPA sponsored programs. It has been noted that by “bringing research

communities together” (Kilgarriff and Palmer, 2000) and developing common re-

sources (Gaizauskas, 1998), ARPA funded programs are responsible for the culture

of rigorous evaluation in NLP and AI research (King, 1996). Sparck Jones (1994)

similarly noted that

the (D)ARPA speech recognition and message understanding conferences
were important not only for the tasks they addressed but for their empha-
sis on rigorous evaluation, initiating a trend that became a major feature
of the 1990s.

2.1.2 Intrinsic vs Extrinsic Evaluations
Intrinsic evaluations test the system in of itself and extrinsic evaluation
test the system in relation to some other task.

(Farzindar and Lapalme, 2004)

The second dichotomy we explore is intrinsic versus extrinsic evaluations. When

reviewing Sparck Jones and Galliers’s textbook, Estival (1997) comment that “one of

the most important distinctions that must be drawn when performing an evaluation

of a system is that between intrinsic criteria, i.e. those concerned with the system’s

own objectives, and extrinsic criteria, i.e. those concerned with the function of the

system in relation to its set-up.” Resnik et al. (2006) similarly noted that “intrinsic

evaluations measure the performance of an NLP component on its defined subtask,

usually against a defined standard in a reproducible laboratory setting” while “ex-

trinsic evaluations focus on the component’s contribution to the performance of a

complete application, which often involves the participation of a human in the loop.”
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Sparck Jones (1994) refers to the distinction of intrinsic vs extrinsic evaluations as

the orientation of an evaluation.

Under these definitions, “an intrinsic evaluation of a parser would analyze the

accuracy of the results returned by the parser as a stand-alone system, whereas an

extrinsic evaluation would analyze the impact of the parser within the context of

a broader NLP application” like answer extraction (Mollá and Hutchinson, 2003).

When evaluating a document summarization system, an intrinsic evaluation might

ask questions related to the fluency or coverage of key ideas in the summary while

an extrinsic evaluation might explore whether a generated summary was useful in

a search engine (Resnik and Lin, 2010). This distinction has also been referred to

as application-free vs. application-driven evaluations (Kováź, Jakubíźek, and Horák,

2016).

In the case of evaluating different methods for training word vectors, intrinsic

evaluations might consider how well similarities between word vectors correlate with

human evaluated word similarities.2 This is the basis of evaluation benchmarks like

SimLex (Hill, Reichart, and Korhonen, 2015), Verb (Baker, Reichart, and Korhonen,

2014), RW (Luong, Socher, and Manning, 2013), MEN (Bruni et al., 2012), WordSim-

353 (Finkelstein et al., 2001), and others. Extrinsic evaluations might consider how

well different word vectors help models for tasks like sentiment analysis (Petrolito,

2018; Mishev et al., 2019), machine translation (Wang et al., 2019c), or named entity
2Word vectors, also known as word embeddings, are low dimensional vector representations (often

50−300 dimensions in length) for words that are supposed to capture the meaning of a word. For an
overview on word embeddings, see Sections 10.4 and 10.5 in Goldberg (2017)’s excellent textbook.
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recognition (Wu et al., 2015; Nayak, Angeli, and Manning, 2016).

Proper extrinsic evaluations are often infeasible in an academic lab setting. There-

fore, researchers often rely on intrinsic evaluations to approximate extrinsic evalua-

tions, even though intrinsic and extrinsic evaluations serve different goals and many

common intrinsic evaluations for word vectors (Tsvetkov et al., 2015; Chiu, Korhonen,

and Pyysalo, 2016; Faruqui et al., 2016), generating natural language text (Belz and

Gatt, 2008; Reiter, 2018), or text mining (Caporaso et al., 2008) might not corre-

late with extrinsic evaluations.3 Developing intrinsic evaluations that correlate with

extrinsic evaluations remains an open problem in NLP.

2.1.3 Contemporary Probes for Linguistic Phenom-

ena

Similar to test suites discussed earlier, recent lines of research focus on probing

how well NLP systems capture a wide range of linguistic phenomena. While some

of this work has recently been referred to as intrinsic (Eichler, Şahin, and Gurevych,

2019), this does not follow the common definition of an intrinsic evaluation discussed

above. Rather, we view probing for linguistic phenomena as an example of test suite

based evaluation.
3Although recent work suggest that some intrinsic evaluations for word vectors do indeed correlate

with extrinsic evaluations (Qiu et al., 2018; Thawani, Srivastava, and Singh, 2019).
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Meaning Representation Formalisms as an Evaluation Metric

Some have argued for using meaning representations as an evaluation metric to

probe how well NLP systems capture different semantic phenomena. In computa-

tional semantics, meaning representations are formalisms that map the meaning of

natural language text to structured representations. Some examples of such meaning

representations include Episodic Logic (Schubert and Hwang, 2000), Abstract Mean-

ing Representation (AMR) (Banarescu et al., 2013), Universal Conceptual Cognitive

Annotation (UCCA) (Abend and Rappoport, 2013), and Universal Decompositional

Semantics (White et al., 2016). One motivation for developing meaning representation

formalisms is to be able to evaluate NLP systems. Indeed, the MEANT (Lo and Wu,

2011a) metric, and its extensions XMEANT (Lo et al., 2014) and MEANT2.0 (Lo,

2017), use a semantic formalism to evaluate machine translation systems. The metric

is used by automatically parsing a system’s output and a reference translation into

graphs of PropBank semantic roles (Palmer, Gildea, and Kingsbury, 2005) and then

comparing the resulting graphs. In HMEANT (Lo and Wu, 2011b), human anno-

tators are used to parse the texts into semantic roles. The HUME metric (Birch et

al., 2016) works similarly as HMEANT but relies on parsing the texts into UCCA’s

meaning formalism instead.

Relying on semantic formalisms is an intuitive method to evaluate how well NLP

systems capture semantics, i.e. linguistic phenomena related to understanding lan-

guage. However, using semantic formalisms in this way is currently not a feasible or
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scalable approach to attain insightful evaluation metrics. As noted in the summary

of the 1988 workshop on evaluating NLP systems,

A fundamental underlying snag is the difficulty in arriving at a consensus
on the nature of semantic representation. If the community was in agree-
ment on what the representation of a sentence is supposed to be – whether
it was a sentence from a dialog with an expert system, a sentence fragment
from a tactical message, or a database query – then the task of assessing a
system’s performance would be much more straightforward. Given input
X, does the system produce Y as an internal data structure? Unfortu-
nately, there are now as many Y ’s for X as there are systems, so finding
a reliable method of assessing a system in isolation, or of comparing two
systems, becomes much more difficult.

(Palmer and Finin, 1990)

Even if there is an agreement on the “characterization of phenomena, mappings from

one style of semantic representation to another, [and] on content of representations for

a common domain” (Palmer and Finin, 1990), automatically parsing text into these

different formalism is still an unsolved problem, and relying on humans to manually

parse each sentence, like in HMEAT or HUME, is not scalable.

Auxiliary Diagnostic classifiers

Recent popular approaches for evaluating how well NLP systems capture seman-

tic, and other linguistic, phenomenon leverage auxiliary or diagnostic classifiers, which

are often agnostic to specific meaning representation formulations. With the rise of

deep learning in NLP, contemporary NLP systems often leverage pre-trained encoders

to represent the meaning of a sentence in a fixed-length vector representation. Adi

et al. (2017) introduced the notion of using auxiliary classifiers as a general pur-
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pose methodology to diagnose what language information is encoded and captured

by contemporary sentence representations. They argued for using “auxiliary predic-

tion tasks” where, like in Dai and Le (2015), pre-trained sentence encodings are “used

as input for other prediction tasks.” The “auxiliary prediction tasks” can serve as

diagnostics, and Adi et al. (2017)’s auxiliary, diagnostic tasks focused on how word

order, word content, and sentence length are captured in pre-trained sentence repre-

sentations.

As Adi et al.’s methodology is general “and can be applied to any sentence rep-

resentation model,” researchers develop other diagnostic tasks that explore different

linguistic phenomenon (Ettinger et al., 2018; Conneau et al., 2018; Hupkes, Veld-

hoen, and Zuidema, 2018). Belinkov (2018)’s thesis relied on and popularized this

methodology when exploring how well speech recognition and machine translation

systems capture phenomena related to phonetics (Belinkov and Glass, 2017), mor-

phology (Belinkov et al., 2017b), and syntax (Belinkov et al., 2017a).

The general purpose methodology of auxiliary diagnostic classifiers is also used

to explore how well different pre-trained sentence representation methods perform

on a broad range of NLP tasks. For example, SentEval (Conneau and Kiela, 2018)

and GLUE (Wang et al., 2018; Wang et al., 2019a) are used to evaluate how different

sentence representations perform on paraphrase detection, semantic textual similarity,

and a wide range of binary and multi-class classification problems. We categorize these

methods of probing for linguistic phenomena as extrinsic evaluations since they often
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treat learned sentence-representations as features to train a classifier for an external

task. However, most of these could be categorized as test corpora, rather than test

suites as defined in Section 2.1.1, since the data is not tightly controlled to evaluate

specific linguistic phenomena. Rather, they package existing test corpora for different

tasks and provide an easy platform for researchers to compete on developing systems

that perform well on the suite of pre-existing, and re-packaged test corpora.

This thesis leverages the general methodology introduced by Adi et al. (2017).

However, we advocate for using a single framework, Recognizing Textual Entailment,

to evaluate different linguistic phenomena. As we will discuss later, this allows us

to use one consistent format and framework for testing how well contemporary, deep

learning NLP systems capture a wide-range of linguistic phenomena.

2.2 Recognizing Textual Entailment

Recognizing Textual Entailment (RTE) emerged as a framework to evaluate how

well NLP systems can perform semantic inferences that are necessary for multiple

downstream NLP tasks. Rooted in linguistics, RTE is the task of determining whether

the meaning of one sentence can likely be inferred from another. Unlike the strict def-

inition of entailment in linguistics that “sentence A entails sentence B if in all models

in which the interpretation of A is true, also the interpretation of B is true” (Janssen,

2011), RTE relies on a fuzzier notion of entailment. The original annotation guidelines
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for RTE stated that

in principle, the hypothesis must be fully entailed by the text. Judgment
would be False if the hypothesis includes parts that cannot be inferred
from the text. However, cases in which inference is very probable (but
not completely certain) are still judged as True.

(Dagan, Glickman, and Magnini, 2006)

We will begin by discussing how RTE was introduced as an evaluation framework

focused on the semantic inference capabilities of NLP systems. This will include a

survey on prior RTE datasets. Next, we will discuss how researchers use RTE datasets

as an intermediate step to improve NLP systems for downstream tasks. We then will

discuss how researchers have move away from RTE’s diagnostic and evaluation goals

since researchers often compete to develop the best performing RTE models. We will

conclude by critiquing prior RTE datasets, discussing why they cannot be used as

sufficient test suites to explore the reasoning capabilities of NLP systems.

2.2.1 Entailment as an NLP Evaluation
NLP systems cannot be held responsible for knowledge of what goes on
in the world but no NLP system can claim to “understand” language if it
can’t cope with textual inferences.

(Zaenen, Karttunen, and Crouch, 2005)

Recognizing and coping with inferences is key to understanding human language.

While NLP systems might be trained to perform different tasks, such as translating,

answering questions, or extracting information from text, most NLP systems require

understanding and making inferences from text. Therefore, RTE was introduced as
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QUANTIFIERS (14)
P Neither leading tenor comes cheap. One of the leading tenors is Pavarotti.
Q Is Pavarotti a leading tenor who comes cheap?
H Pavarotti is a leading tenor who comes cheap.
A No

PLURALS (94)
P The inhabitants of Cambridge voted for a Labour MP.
Q Did every inhabitant of Cambridge vote for a Labour MP?
H Every inhabitant of Cambridge voted for a Labour MP.
A Unknown

COMPARATIVES (243)
P ITEL sold 3000 more computers than APCOM. APCOM sold exactly 2500 computers.
Q Did ITEL sell 5500 computers?
H ITEL sold 5500 computers.
A Yes

Table 2.1: Examples from Fracas: P represents the premise(s), Q represents the
question from FraCas , H represents the declarative statement MacCartney (2009)
created and, A represents the label. The number in the parenthesis indicates the
example ID from FraCas .

a framework to evaluate NLP systems. Starting with FraCas , we will discuss early

work that introduced and argued for RTE as an evaluation framework.

FraCas

Over a span of two years (December 1993 - January 1996), Cooper et al. (1996)

developed FraCas as “an inference test suite for evaluating the inferential competence

of different NLP systems and semantic theories”. Created manually by many linguists

and funded by FP3-LRE,4 FraCas is a “semantic test suite” that covers a range

of semantic phenomena categorized into 9 classes: generalized quantifiers, plurals,

anaphora, ellipsis, adjectives, comparatives, temporal reference, verbs, and attitudes.
4https://cordis.europa.eu/programme/id/FP3-LRE
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Examples in FraCas contain a premise paired with a hypothesis. Premises are

at least one sentence, though sometimes they contain multiple sentences, and most

hypotheses are written in the form of a question and the answers are either Yes,

No, or Don’t know. MacCartney (2009) (specifically Chapter 7.8.1) converted the

hypotheses from questions into declarative statements.5 Table 2.1 contains examples

from FraCas .

In total, FraCas only contains about 350 labeled examples, potentially limiting

the ability to generalize how well models capture these phenomena. Additionally,

this limited number of examples in FraCas prevents its use as a dataset to train data

hungry deep learning models.

Pascal Recognizing Textual Entailment Challenges

A fundamental phenomenon of natural language is the variability of se-
mantic expression, where the same meaning can be expressed by, or in-
ferred from, different texts. This phenomenon may be considered the dual
problem of language ambiguity, together forming the many-to-many map-
ping between language expressions and meanings. Many natural language
processing applications, such as Question Answering, Information Extrac-
tion, summarization, and machine translation evaluation, need a model
for this variability phenomenon in order to recognize that a particular
target meaning can be inferred from different text variants ...

It seems that major inferences, as needed by multiple applications, can
indeed be cast in terms of textual entailment. For example, a QA system
has to identify texts that entail a hypothesized answer. Given the question
“What does Peugeot manufacture?”, the text “Chrétien visited Peugeot’s
newly renovated car factor” entails the hypothesized answer form “Peugeot
manufactures cars”. Similarly, for certain Information Retrieval queries
the combination of semantic concepts and relations denoted by the query
should be entailed from relevant retrieved documents.

5urlhttps://nlp.stanford.edu/ wcmac/downloads/fracas.xml
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(Dagan, Glickman, and Magnini, 2006)

With a similar broad goal as FraCas , the Pascal Recognizing Textual Entailment

challenges (RTE) began as a “generic evaluation framework” to compare the inference

capabilities of models designed to perform different tasks. Unlike FraCas ’s goal of

determining whether a model performs distinct types of reasoning, the Pascal RTE

Challenges was primarily focused on using this framework to evaluate models for

distinct, real-world downstream tasks. Thus, the examples in the Pascal RTE datasets

were extracted from downstream tasks. The process was referred to as recasting in

the thesis by Glickman (2006).

NLU problems were reframed under the RTE framework and candidate sentence

pairs were extracted from existing NLP datasets and then labeled under variations

of the RTE definition described above (Dagan, Glickman, and Magnini, 2006). For

example, the RTE1 data came from 7 tasks: comparable documents, reading compre-

hension, question answering, information extraction, machine translation, information

retrieval, and paraphrase acquisition.6 Starting with Dagan, Glickman, and Magnini

(2006), there have been eight iterations of the PASCAL RTE challenge, with the most

recent being Dzikovska et al. (2013). Technically, Bentivogli et al. (2011) was the last

challenge under PASCAL’s aegis, but Dzikovska et al. (2013) was branded as the 8th

RTE challenge. Table 2.2 contains examples from RTE1-3.

Researchers analyzed the RTE challenge datasets. Marneffe, Rafferty, and Man-
6Chapter 3.2 of Glickman’s thesis discusses how examples from these datasets were converted

into RTE.
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Kessler ’s team conducted 60,643 interviews with adults in 14 countries
▶ Kessler ’s team interviewed more than 60,000 adults in 14 countries entailed

Capital punishment is a catalyst for more crime
▶ Capital punishment is a deterrent to crime not-entailed

Boris Becker is a former professional tennis player for Germany
▶ Boris Becker is a Wimbledon champion not-entailed

Table 2.2: Examples from the PASCAL RTE datasets (modified for space): The first
line in each example is the premise and the line starting with ▶ is the corresponding
hypothesis. The first, second, and third examples are from the RTE1, RTE2, and
RTE3 development sets respectively. The second column indicates the label for the
example.

ning (2008) argued that there exist different levels and types of contradictions. They

focus on different types of phenomena, e.g. antonyms, negation, and world knowl-

edge, that can explain why a premise contradicts a hypothesis. MacCartney (2009)

used a simple bag-of-words model to evaluate early iterations of Recognizing Textual

Entailment (RTE) challenge sets and noted7 that “the RTE1 test suite is the hardest,

while the RTE2 test suite is roughly 4% easier, and the RTE3 test suite is roughly 9%

easier.” Additionally, Vanderwende and Dolan (2006) and Blake (2007) demonstrate

how sentence structure alone can provide a high signal for some RTE datasets.8

SNLI and MNLI

The most popular recent RTE datasets, Stanford Natural Language Inference

(SNLI) (Bowman et al., 2015) and its successor Multi-NLI (Williams, Nangia, and

Bowman, 2017), follow the line of RTE work developed at Stanford (MacCartney,
7In Chapter 2.2 of his thesis
8Vanderwende and Dolan (2006) explored RTE-1 and Blake (2007) analyzed RTE-2 and RTE-3.
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P A woman is talking on the phone while standing next to a dog
H1 A woman is on the phone entailment
H2 A woman is walking her dog neutral
H3 A woman is sleeping contradiction

P Tax records show Waters earned around $65,000 in 2000
H1 Waters’ tax records show clearly that he earned a lovely $65k in 2000 entailment
H2 Tax records indicate Waters earned about $65K in 2000 entailment
H3 Waters’ tax records show he earned a blue ribbon last year contradiction

Table 2.3: Examples from the development sets of SNLI (top) and MultiNLI (bot-
tom). Each example contains one premise that is paired with three hypotheses in the
datasets.

2009; Bowman, 2016). These datasets each contain over half a million examples and

enabled researchers to apply data-hungry deep learning methods to RTE.

Unlike the RTE datasets, these two datasets were created by eliciting hypotheses

from humans. Crowd-source workers were tasked with writing one sentence each

that is entailed, neutral, and contradicted by a caption extracted from the Flickr30k

corpus (Young et al., 2014a). Next, the label for each premise-hypothesis pair in the

development and test sets were verified by multiple crowd-source workers and the

majority-vote label was assigned for each example. Table 2.3 provides such examples

for both datasets. Rudinger, May, and Van Durme (2017) illustrated how eliciting

textual data in this fashion creates stereotypical biases in SNLI. Some of the biases

are gender-, age-, and race-based. In Chapter 5, we will discusses other issues caused

by this elicitation method.
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2.2.2 Entailment as an Intermediate NLP Task
By separating out the general problem of textual entailment from these
task-specific problems, progress on semantic inference for many applica-
tion areas can be promoted. Hopefully, research on textual entailment
will finally lead to the development of entailment “engines”, which can
be used as a standard module in many applications (similar to the role of
part-of-speech taggers and syntactic parsers in current NLP applications).

(Giampiccolo et al., 2007)

NLP researchers have additionally argued for the usefulness of RTE in aiding

NLP systems developed for applied, downstream tasks. For example, Bill MacCart-

ney began his thesis, specifically Chapter 1.2 (MacCartney, 2009), by discussing some

applications that RTE can help, e.g. question answering, semantic search, automatic

summarization, and machine translation evaluation. Many of Ido Dagan’s students’

theses included components focused on leveraging RTE to help with downstream

tasks. For example, Shachar Mirkin’s thesis focused on using RTE “to investigat[e]

the impact of context and discourse phenomena on inference” (Mirkin, 2011). Mirkin

also demonstrated how RTE can be helpful for machine translation. In Aziz et al.

(2010), RTE is used to “generat[e] alternative texts to the source sentence for trans-

lation” by replacing out-of-vocabulary words in a source sentence when translating a

text from one language to another. Jonathan Berant’s thesis extended this work by

learning entailment rules between words and phrases, specifically predicates. Berant

demonstrates that these learned entailment rules can help text exploration systems

and applied this to a health-care domain where a health-care provider could “explor[e]

relevant information about a given medical issue” (Berant, 2012).
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There is also a large amount of work by others that leveraged RTE to improve

performance for a wide range of NLP tasks. Bentivogli, Dagan, and Magnini (2017)

summarize these works well in their recent survey paper:

RTE methods originally developed based on the RTE datasets were later
incorporated in various semantic applications, which have cast different
inference needs in terms of textual entailment, and then used entail-
ment technology to improve end-application performance. Examples of
such works are educational tasks, including multiple choice comprehen-
sion tests (Clark, Harrison, and Yao, 2012) and answering science ques-
tions (Clark, Harrison, and Balasubramanian, 2012); evaluating tests (Miyao
et al., 2012); answer validation in question answering (Harabagiu and
Hickl, 2006; Rodrigo, Peñas, and Verdejo, 2009); relation extraction (Ro-
mano et al., 2006; Roth, Sammons, and Vydiswaran, 2009); machine trans-
lation evaluation (Pado et al., 2009); machine translation (Mirkin et al.,
2009); multi-document summarization (Harabagiu, Hickl, and Lacatusu,
2007); text exploration (Adler, Berant, and Dagan, 2012); redundancy de-
tection in Twitter (Zanzotto, Pennaccchiotti, and Tsioutsiouliklis, 2011).

Modern deep learning research has also focused on using RTE to improve down-

stream tasks. Recent work by Mohit Bansal’s group at UNC exemplifies this ap-

proach. They used Multi-task Learning (Guo, Pasunuru, and Bansal, 2018a; Guo,

Pasunuru, and Bansal, 2018b) and Reinforcement Learning (Pasunuru and Bansal,

2018) to improve summarization and sentence-simplification models by leveraging

large RTE datasets. They argue that sharing parameters between models trained

to perform RTE and the tasks at hand “teaches the model to generate outputs that

are entailed by the full input” (Guo, Pasunuru, and Bansal, 2018a). Additionally,

sentence representation pre-trained on large RTE datasets have been shown to aid in

other NLP tasks (Conneau et al., 2017). Phang, Févry, and Bowman (2018) refer to

this practice as supplementary training on intermediate labeled-data tasks.
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With the current zeitgeist of NLP research, now is a prime time to revisit RTE

as a method to evaluate the inference capabilities of NLP models. In the current

era of deep-learning, NLP researchers have increasingly moved beyond the single-task

model paradigm where distinct models are developed to perform individual tasks.

Although multi-task learning was presented over two decades ago (Caruana, 1993;

Caruana, 1997), researchers have taken advantage of recently developed, easy-to-

use deep-learning toolkits to seamlessly build single models (or at least models with

shared parameters) to perform a multitude of tasks at once. In addition to relying

on a range of evaluation metrics for each task that a single model performs, RTE can

be used as a single metric that evaluates the inner workings of such complex models.

2.2.3 Entailment as a Downstream NLP Task

Coinciding with the recent “deep learning wave” that has taken over NLP and

Machine Learning (Manning, 2015), the introduction of large scale RTE datasets

led to a resurgence of interest in RTE amongst NLP researchers. Large scale RTE

datasets focusing on specific domains, like grade-school scientific knowledge (Khot,

Sabharwal, and Clark, 2018) or medical information (Romanov and Shivade, 2018),

emerged. However, as the research community is fully devoted (or some might say

blindly devoted) to the research agenda of developing NLP models that outperform

each other on test corpora, this resurgence did not primarily focus on using RTE as

a means to evaluate NLP systems. Rather, researchers primarily used these datasets
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to compete with one another to achieve the top score on leaderboards9 for new RTE

datasets.

2.3 Revisiting RTE as an NLP Evaluation
It is worth noting that while these architectures have demonstrated strong
performance, evaluation has been carried out almost exclusively on the
SICK and SNLI datasets, and there has been little evidence to suggest
they capture the type of compositional or world knowledge tested by other
datasets like the FraCas test suite or the PASCAL challenge sets.

(Pavlick, 2017)

As these large scale RTE datasets rapidly surged in popularity, some researchers

critiqued the datasets’ ability to test the inferential capabilities of NLP models. A

high accuracy on these datasets does not indicate which types of reasoning RTE

models perform or capture. These datasets cannot be used to determine how well an

RTE model captures many desired capabilities of language understanding systems,

e.g. paraphrastic inference, complex anaphora resolution (White et al., 2017), or

compositionality (Pavlick and Callison-Burch, 2016; Dasgupta et al., 2018). In turn,

researchers have recently created test suites to evaluate specific semantic phenom-

ena (Pavlick, 2017; Naik et al., 2018a).

While FraCas and the PASCAL challenge sets require models to capture compo-

sitional or world knowledge, neither of these are adequate test sets in the era of deep
9https://nlp.stanford.edu/projects/snli/, https://www.kaggle.com/c/

multinli-matched-open-evaluation/leaderboard, https://leaderboard.allenai.org/
scitail/submissions/public
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learning. While FraCas does indeed systematically cover a wide range of linguistic

phenomena, the small size of the dataset limits the ability to meaningfully extrapo-

late from the results. Although determining the necessary “amount of data required

. . . to produce relevant performance measures” remains an open problem (Paroubek,

Chaudiron, and Hirschman, 2007), 350 examples in FraCas is very small.

Unlike FraCas , the Pascal RTE challenge sets do not attempt to provide insight

into reasoning capabilities or linguistic phenomena captured by NLP models. The

single accuracy metric on these challenges indicates how well a model can recognize

whether one sentence likely follows from another, but it does not illuminate how well

NLP models capture different semantic phenomena that are important for general

NLU. This issue was pointed out in Amoia (2008)’s thesis that presented “a test suite

for adjectival inference developed as a resource for the evaluation of computational

systems handling natural language inference.”

Chen Zhang’s thesis similarly focused on linguistic phenomena related to RTE.

The thesis dealt with conversational entailment, “a task that determines whether

a given conversation discourse entails a hypothesis about the participants” (Zhang

and Chai, 2009). Later, the problem of conversational entailment was described as

the “automated inference of hypotheses from conversation scripts” (Zhang and Chai,

2010). Zhang’s thesis discusses semantic, pragmatic phenomena and world knowledge

related to the task (Zhang, 2010).

In this thesis, we advocate for revisiting RTE as a framework to evaluate how
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well NLP models capture a suite of linguistic phenomena that are integral to NLU.

We propose recasting as our solution; by leveraging existing annotations developed by

computational semantics researchers via converting prior annotation of a specific phe-

nomenon into RTE examples, recasting allows us to create a diverse RTE benchmark

that tests a model’s ability to perform distinct types of reasoning.

2.4 Natural Language Inference or Recog-

nizing Textual Entailment?

Those familiar with the field are aware that the terms Natural Language Inference

(NLI) and RTE are often used interchangeably. Many papers in the field on RTE begin

by explicitly mentioning that these terms are synonymous (Liu et al., 2016; Gong,

Luo, and Zhang, 2018; Camburu et al., 2018). In fact, variants of the phrase “natural

language inference (NLI), also known as recognizing textual entailment (RTE)” appear

in many papers (Chen et al., 2017b; Williams, Nangia, and Bowman, 2017; Naik et

al., 2018b; Chen et al., 2018a; Tay, Luu, and Hui, 2018), including my own.

This thesis refers to the NLP task of predicting whether the truth condition of

one sentence likely follows another primarily as RTE and not NLI. The broad phrase

natural language inference is more appropriate for a class of problems that require

making inferences from natural language. Tasks like sentiment analysis, event factu-

ality, or even question-answering can be viewed as forms of natural language inference
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without having to convert them into the sentence pair classification format in RTE.10

Earlier works used the term natural language inference in this way (Schwarcz, Burger,

and Simmons, 1970; Wilks, 1975; Punyakanok, Roth, and Yih, 2004).

The leading term recognizing in RTE is fitting as the task is to classify or predict

whether the truth of one sentence likely follows the other. The second term textual is

similarly appropriate since the domain is limited to textual data. Critics of the name

RTE often argue that the term entailment is inappropriate since the definition of the

NLP task strays too far from the technical definition from entailment in linguistics.11

In turn, both Zaenen, Karttunen, and Crouch (2005) and Manning (2006) prefer the

term textual inference to describe the task. Additionally, Zaenen, Karttunen, and

Crouch (2005) prefer the term textual inference because examples in the PASCAL

RTE datasets required a system to not only identify entailments but also conventional

implicatures, conversational implicatures, and world knowledge.

Based on these arguments, we would advocate for the new phrase Recognizing

Textual Inference. However, given the choice between RTE and NLI, we prefer RTE

since it is more representative of the task at hand.

10Dan Roth has made this argument in multiple settings.
11In personal correspondence, Ido Dagan commented that the term textual entailment was a way

to differentiate RTE from the traditional (and stricter) definition in linguistics.
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The Diverse Natural Language

Inference Collection

Proper evaluation is a complex and challenging business. It implies, in
particular, that we need to make a very rigorous “deconstructive” analysis
of all the factors that affect the system being tested

(Spärck Jones, 2005)

A deeper and detailed analysis of . . . performance can provide the keys to
exceed the current accuracy. Tests suites are a linguistic resource which
makes it possible this kind of analysis and which can contribute to high-
light the key issues to improve decisively the Natural Language Processing
(NLP) tools (Flickinger et al., 1987; Blasband et al., 1999; Lehmann et al.,
1996)

(Lloberes, Castellón, and Padró, 2015)

The primary goal of this chapter is to introduce a collection of RTE datasets

that each target a specific type of reasoning. These RTE datasets can be used to

deconstruct general semantic inference into a set of factors that are integral to NLU.

We begin this chapter with a detailed discussion on how we create these datasets. We
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recast existing annotations for a diverse set of semantic phenomena into RTE. We

present details for 7 of the datasets and briefly discuss other phenomena recast into

RTE by collaborators. The bulk of this chapter is based on Poliak et al. (2018a).

Second, the experiments in Section 3.4 explore how well models trained on these

datasets can capture these different phenomena. We include results that determine

whether models trained on other large RTE datasets or other DNC datasets capture

the different phenomenon. We also analyze whether fine-tuning models that have

been pre-trained on different datasets helps a model capture these phenomena.

Finally, we present results that demonstrate how quickly a model can perform well

on these datasets. These experiments result in learning curves that plot the accuracy

of a model on these datasets as we increase the number of training examples. These

results have not been previously published.

3.1 Overview

As previously discussed, a plethora of new RTE datasets has been created in re-

cent years (Bowman et al., 2015; Williams, Nangia, and Bowman, 2017; Lai, Bisk,

and Hockenmaier, 2017; Khot, Sabharwal, and Clark, 2018). However, as we just

argued, these datasets do not provide clear insight into what type of reasoning or

inference a model may be performing. For example, these datasets cannot be used to

evaluate whether competitive RTE models can determine if an event occurred, cor-
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rectly differentiate between figurative and literal language, or accurately identify and

categorize named entities. Consequently, these datasets cannot answer how well sen-

tence representation learning models capture distinct semantic phenomena necessary

for general natural language understanding (NLU).

To answer these questions, we introduce the Diverse NLI Collection (DNC), a

large-scale RTE test suite that evaluates a model’s ability to perform diverse types

of reasoning. The DNC is a collection of RTE problems, each requiring a model to

perform a unique type of reasoning. Each RTE dataset contains labeled context-

hypothesis pairs that are recast from semantic annotations for specific structured

prediction tasks. We define recasting as leveraging existing datasets to create RTE

examples (Glickman, 2006; White et al., 2017). In the first release of the DNC

(DNC1.0), annotations are recast from a total of 13 datasets across 7 NLP tasks into

labeled RTE examples. The tasks include event factuality, named entity recognition,

datasets, gendered anaphora resolution, sentiment analysis, relationship extraction,

pun detection, and lexicosyntactic inference. When first released, the DNC contained

over half a million labeled examples. Currently, there are over a million examples

in extensions to the DNC. Table 3.1 includes RTE pairs that test specific types of

reasoning. Additionally, the DNC answers a recent plea to the community to test

“more kinds of inference” than in previous challenge sets (Chatzikyriakidis et al.,

2017).
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Semantic Phenomena ✓ ✗

I would like to learn how I’ll not say anything
Event Factuality

The learning did not happen The saying happened

Ms. Rice said the United States
must work intensively

Afghan officials are welcoming the
Netherlands’ decisionNamed Entity Recognition

Ms. is a person ’s title The Netherlands is an event

The student met with the archi-
tect to view her blueprints for in-
spiration

The appraiser told the buyer that
he had paid too much for the
paintingGendered Anaphora

The architect has blueprints The appraiser had purchased a
painting

Someone assumed that a particu-
lar thing happened

A particular person craved to do
a particular thingMegaVeridicality

That thing might or might not
have happened

That person did that thing

The Romans destroyed the city Andre presented the plaque
VerbNet

The Romans caused the destroy-
ing

Andre was transferred

Molly wheeled Lisa to Rachel Kyle bewildered Mark
VerbCorner

Someone moved from their loca-
tion

Someone or something changed
physically

At least 100,000 Chinese live
in Lhasa, outnumbering Tibetans
two to one

Tropical storm Humberto is ex-
pected to reach the Texas coast
tonightRelation Extraction

Tibetans live in Lhasa Humberto hit Texas

Jorden heard that my skiing skills
are really going downhill

Caiden heard that fretting cares
make grey hairsPuns

Jorden heared a pun Caiden heared a pun

When asked about the product,
Liam said, “Don’t waste your
money”

When asked about the movie, An-
gel said, “A bit predictable”

Sentiment Analysis

Liam did not like the product Angel liked the movie

Table 3.1: Example sentence pairs for different semantic phenomena. The ✓ and ✗

columns respectively indicate that the context entails, or does not entail the hypoth-
esis. Each cell’s first and second line respectively represent a context and hypothesis.
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3.2 Motivation

The broad goals of recasting existing annotation from a diverse set of semantic

phenomena into RTE is to 1) help determine whether an NLU model performs distinct

types of reasoning, and 2) generate examples cheaply and at large scales.

NLU Insights

Popular RTE datasets, e.g. Stanford Natural Language Inference (SNLI) (Bow-

man et al., 2015) and its successor Multi-NLI (Williams, Nangia, and Bowman, 2017),

were created by eliciting hypotheses from humans. Crowd-source workers were tasked

with writing one sentence each that is entailed, neutral, and contradicted by a caption

extracted from the Flickr30k corpus (Young et al., 2014a). Although these datasets

are widely used to train and evaluate sentence representations, a high accuracy is not

indicative of what types of reasoning RTE models perform. Workers were free to cre-

ate any type of hypothesis for each context and label. Such datasets cannot be used

to determine how well a model captures many desired capabilities of language under-

standing systems, e.g. paraphrastic inference, complex anaphora resolution (White

et al., 2017), or compositionality (Pavlick and Callison-Burch, 2016; Dasgupta et al.,

2018). By converting prior annotation of a specific phenomenon into RTE examples,

recasting allows us to create a diverse RTE benchmark that tests a model’s ability to

perform distinct types of reasoning.
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RTE Examples at Large-scale

Generating RTE datasets from scratch is costly. Humans must be paid to generate

or label natural language text. Costs linearly scale as the amount of generated RTE-

pairs increases. Existing annotations for a wide array of semantic NLP tasks are freely

available. Each year, organizers for shared tasks at the International Workshop on

Semantic Evaluation (SemEval)1 release thousands of annotated examples for a wide

range of NLP tasks. By leveraging existing semantic annotations already invested in

and created by the community, we can generate and label RTE pairs at little cost,

and create large RTE datasets that are necessary to train data hungry models.

Why These Semantic Phenomena?

A long term goal of NLP and AI research is to develop NLU systems that can

achieve human levels of understanding and reasoning. Investigating how different

architectures and training corpora can help a system perform human-level general

NLU is an important step in this direction. The DNC contains recast RTE pairs

that are easily understandable by humans and can be used to evaluate different sen-

tence encoders and NLU systems. These semantic phenomena cover distinct types of

reasoning that an NLU system may often encounter in the wild. While higher per-

formance on these benchmarks might not be conclusive proof of a system achieving

human-level reasoning, a system that does poorly should not be viewed as performing
1https://en.wikipedia.org/wiki/SemEval
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human-level NLU. The semantic phenomena included in the DNC play integral roles

in NLU. There exist more semantic phenomena integral to NLU (Allen, 1995) and

they may be included in future versions of the DNC.

Previous Recast RTE

Example sentences in RTE1 (Dagan, Glickman, and Magnini, 2006) were extracted

from MT, IE, and QA datasets, with the process referred to as ‘recasting’ in the

thesis by Glickman (2006). NLU problems were reframed under the RTE framework

and candidate sentence pairs were extracted from existing NLP datasets and then

labeled under RTE (Dagan, Glickman, and Magnini, 2006). Years later, this term

was independently used by White et al. (2017), who proposed to “leverage existing

large-scale semantic annotation collections as a source of targeted textual inference

examples.” The term ‘recasting’ was limited to automatically converting existing

semantic annotations into labeled RTE examples without manual intervention. We

adopt the broader definition of ‘recasting’ since the RTE examples in the DNC were

automatically or manually generated from prior NLU datasets.

Applied Framework versus Inference Probing

Traditionally, RTE has not been viewed as a downstream, applied NLP task (as

discussed in Section 2.3).2 Instead, the community has often used it as “a generic
2This changed as large RTE datasets have recently been used to train, or pre-train, models to

perform RTE, or other tasks (Conneau et al., 2017; Pasunuru and Bansal, 2017).
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evaluation framework” to compare models for distinct downstream tasks (Dagan,

Glickman, and Magnini, 2006) or to determine whether a model performs distinct

types of reasoning (Cooper et al., 1996). These two different evaluation goals may

affect which datasets are recast. The DNC targets both goals as examples and an-

notations from applied tasks and linguistically focused phenomena are recast into

RTE.

3.3 Recasting existing data into RTE

The DNC is a collaborative effort with researchers spanning across multiple in-

stitutions. The DNC includes RTE datasets that focus on many more phenomena,

e.g. relation extraction, temporal reasoning, gendered anaphora resolution, and other

types of lexico-syntactic inference, among others. The work for these datasets were

primarily done by Ellie Pavlick, Siddharth Vashishtha, Rachel Rudinger, and Aaron

Steven White. In this section, we discuss some of the semantic phenomena that we

recast into RTE. For each of these phenomena, we discuss why they are important

for NLU and how we recast their corresponding annotations into RTE.

3.3.1 Named Entity Recognition

Named Entity Recognition is the NLP task of identifying and classifying entities in

text. Distinct types of entities have different properties and relational objects (Prince,
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1978) that can help infer facts from a given context. For example, if a system can

detect that an entity is a name of a nation, then that entity likely has a leader, a

language, and a culture (Prince, 1978; Van Durme, 2010). When classifying RTE

pairs, a model can determine if an object mentioned in the hypothesis can be a

relational object typically associated with the type of entity described in the context.

NER tags can also be directly used to determine if a hypothesis is likely to not be

entailed by a context, such as when entities in contexts and hypotheses do not share

NER tags (Castillo and Alemany, 2008; Sammons et al., 2009; Pakray et al., 2010).

Given a sentence annotated with NER tags, we recast the annotations by preserv-

ing the original sentences as contexts. We create hypotheses using the template “NP

is a Label.”3 For entailed hypotheses, Label is replaced with the correct NER label

of the annotated noun phrase, for not-entailed hypotheses, an incorrect label is

chosen from the prior distribution of NER tags for the given phrase. We applied this

procedure on the two NER dataset: the Gronigen Meaning Bank (Bos et al., 2017)

and the ConLL-2003 Shared Task (Tjong Kim Sang and De Meulder, 2003).

3.3.2 Lexicosyntactic Inference

While many inferences in natural language are triggered by lexical items alone,

there exist pervasive inferences that arise from interactions between lexical items and

their syntactic contexts. This is particularly apparent among propositional attitude
3We ensure grammatical hypotheses by appropriately conjugating “is a” when needed.
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verbs – e.g. think, want, know – which display complex distributional profiles (White

and Rawlins, 2016). For instance, the verb remember can take both finite clausal

complements and infinitival clausal complements.

(1) .
¯

Jo didn’t remember that she ate

(2) .
¯

Jo didn’t remember to eat

This small change in the syntactic structure gives rise to large changes in the inferences

that are licensed: (1) presupposes that Jo ate while (2) entails that Jo didn’t eat. The

DNC recast data from three datasets that are relevant to these sorts of lexicosyntactic

interactions. Here, we discuss how we recast two datasets to test lexicosyntactic

inference.

3.3.2.1 VerbNet

VerbNet (Schuler, 2005) is a dataset containing classes of verbs that each can

have multiple frames. Each frame contains a mapping from syntactic arguments to

thematic roles, which are used as arguments in Neo-Davidsonian first-order logical

predicates (4) that describe the frame’s semantics. Each frame additionally contains

an example sentence (3) that we use as RTE contexts. To generate hypotheses (6), we

create templates (5) from the most frequent semantic predicates, determined using

count-induced tree substitution grammars (Ferraro, Post, and Van Durme, 2012;
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Ferraro, Van Durme, and Post, 2012).

(3) .
¯

Michael swatted the fly

(4) .
¯

cause(E, Agent)

(5) .
¯

Agent caused the E

(6) .
¯

Michael caused the swatting

We use the Berkeley Parser (Petrov et al., 2006) to match tokens in an example

sentence with the thematic roles and then fill in the templates with the matched

tokens (6). Multi-argument predicates are decomposed into unary predicates to in-

crease the number of hypotheses generated. On average, each context is paired with

4.5 hypotheses. not-entailed hypotheses are generated by filling in templates with

incorrect thematic roles. This is similar to Aharon, Szpektor, and Dagan (2010)’s

template matching to generate entailment rules from FrameNet (Baker, Fillmore,

and Lowe, 1998). We partition the recast RTE examples into train/development/test

splits such that all example sentences from a VerbNet class (which we use a RTE

context) appear in only one partition of our dataset. In turn, the recast VerbNet

dataset’s partition is not exactly 80:10:10.
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3.3.2.2 VerbCorner

VerbCorner (VC) (Hartshorne, Bonial, and Palmer, 2013) decomposes VerbNet

predicates into simple semantic properties and “elicit[s] reliable semantic judgments

corresponding to VerbNet predicates” via crowd-sourcing. The semantic judgments

focus on movement, physical contact, application of force, change of physical or mental

state, and valence, all of which “may be central organizing principles for a human’s

. . . conceptualization of the world.” (Hartshorne, Bonial, and Palmer, 2013).

Each sentence in VC is judged based on the decomposed semantic properties.

Each semantic property is converted into declarative statements to create hypotheses

and they are paired with the original sentences, which are preserved as contexts. The

RTE pair is entailed or not-entailed depending on the given sentence’s semantic

judgment.

The following templates are used for hypotheses, assigning them as entailed

and not-entailed based on the positive or negative answers to the annotation task

questions about the context sentence.

(7) .
¯

Someone {moved/did not move} from their location

(8) .
¯

Something touched another thing / Nothing touched anything else

(9) .
¯

Someone or something {applied/did not apply} force onto something

(10) .
¯

Someone or something {changed/did not change} physically
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(11) .
¯

Someone {changed/did not change} their thoughts, feelings, or beliefs

(12) .
¯

Something {good/neutral/bad} happened

3.3.3 Event Factuality

Event factuality prediction is the task of determining whether an event described

in text occurred. Determining whether an event occurred enables accurate inferences,

e.g. monotonic inferences, based on the event (Rudinger, White, and Van Durme,

2018). Consider the following sentences:

(13) .
¯

She walked a beagle

(14) .
¯

She walked a dog

(15) .
¯

She walked a brown beagle

If the walking occurred, (13) entails (14) but not (15). If we negate the action in

sentences (13), (14), and (15) to respectively become:

(16) .
¯

She did not walk a beagle

(17) .
¯

She did not walk a dog

(18) .
¯

She did not walk a brown beagle
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the new hypothesis (18) is now entailed by the context (16) while (17) is not. Incor-

porating factuality to models has been shown to improve RTE predictions (Sauri and

Pustejovsky, 2007).

Event factuality annotations from UW (Lee et al., 2015), MEANTIME (Minard

et al., 2016), and Decomp (Rudinger, White, and Van Durme, 2018) are recast into

RTE. Sentences from the original datasets are used as contexts and templates (19)

and (20) are used as hypotheses.4

(19) .
¯

The Event happened

(20) .
¯

The Event did not happen

If the predicate denoting the Event was annotated as having happened in the fac-

tuality dataset, the context paired with (19) is labeled as entailed and the same

context paired with (20) is labeled as not-entailed. Otherwise, the RTE labels are

swapped.

3.3.4 Subjectivity (Sentiment)

Some of the previously discussed semantic phenomena deal with objective infor-

mation – did an event occur or what type of entities does a specific name represent.

Subjective information is often expressed differently (Wiebe, Wilson, and Cardie,
4Event is replaced with the event described in the context.
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2005), making it important to use other tests to probe whether an NLU system un-

derstands language that expresses subjective information. We are interested in deter-

mining whether general NLU models capture ‘subjective clues’ that can help identify

and understand emotions, opinions, and sentiment within a subjective text (Wilson,

Wiebe, and Hwa, 2006), as opposed to differentiating between subjective and objec-

tive information (Yu and Hatzivassiloglou, 2003; Riloff, Wiebe, and Wilson, 2003).

We recast a sentiment analysis dataset since the task is the “expression of subjec-

tivity as either a positive or negative opinion” (Taboada, 2016). We extract sentences

from product, movie, and restaurant reviews labeled as containing positive or negative

sentiment (Kotzias et al., 2015). The examples in this sentiment analysis dataset were

compiled from previous sources. The movie dataset came from Maas et al. (2011),

the Amazon product reviews were released by McAuley and Leskovec (2013) add the

restaurant reviews were sourced from the Yelp dataset challenge.5

When recasting this data into RTE, we generate contexts (21) and hypotheses

(22), (23) using the following templates:

(21) .
¯

When asked about Item, Name said Review

(22) .
¯

Name liked the Item

(23) .
¯

Name did not like the Item
5http://www.yelp.com/dataset_challenge
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Item is replaced with either “product”, “movie”, or “restaurant”, and the Name is

sampled as previously discussed. If the original sentence contained positive (negative)

sentiment, the (21)-(22) pair is labeled as entailed (not-entailed) and (21)-(23)

is labeled as not-entailed (entailed).

3.3.5 Figurative Language (Puns)

Figurative language demonstrates natural language’s expressiveness and wide vari-

ations. Understanding and recognizing figurative language “entail[s] cognitive capabil-

ities to abstract and meta-represent meanings beyond physical words” (Reyes, Rosso,

and Buscaldi, 2012). Puns are prime examples of figurative language that may perplex

general NLU systems as they are one of the more regular uses of linguistic ambigu-

ity (Binsted, 1996) and rely on a wide-range of phonetic, morphological, syntactic,

and semantic ambiguity (Pepicello and Green, 1984; Binsted, 1996; Bekinschtein et

al., 2011).

We recast puns from Yang et al. (2015) and Miller, Hempelmann, and Gurevych

(2017) using templates to generate contexts (24) and hypotheses (25), (26). We

replace Name with names sampled from a distribution based on US census data,6

and Pun with the original sentence. If the original sentence was labeled as containing

a pun, the (24)-(25) pair is labeled as entailed and (24)-(26) is labeled as not-

entailed, otherwise we swap the labels. In total, we generate roughly 15K labeled
6http://www.ssa.gov/oact/babynames/names.zip
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pairs.

(24) .
¯

Name heard that Pun

(25) .
¯

Name heard a pun

(26) .
¯

Name did not hear a pun

Puns in Yang et al. (2015) were originally extracted from punsoftheday.com, and

sentences without puns came from newswire and proverbs. The sentences are labeled

as containing a pun or not. Puns in Miller, Hempelmann, and Gurevych (2017) were

sampled from prior pun detection datasets (Miller and Gurevych, 2015; Miller and

Turković, 2016) and includes new examples generated from scratch for the shared task;

the original labels denote whether the sentences contain homographic, heterographic,

or no pun at all. Here, we are only interested in whether a sentence contains a pun

or not instead of discriminating between homographic and heterographic puns.

3.4 Experiments & Results

Here, we will first discuss results of RTE models trained on these datasets. We will

then demonstrate how to use these recast RTE datasets to evaluate an RTE model

trained on a prior popular dataset, MNLI. In the next chapter we will discuss how

these datasets can be used to evaluate the reasoning the capabilities of NLP models
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Sem. Phenomena Dataset # pairs Automated

Decomp (Rudinger, White, and Van Durme, 2018) 42K (41,888) ✓

UW (Lee et al., 2015) 5K (5,094) ✓Event Factuality
MeanTime (Minard et al., 2016) .7K (738) ✓

Groningen (Bos et al., 2017) 260K (261,406) ✓Named Entity Recognition CoNLL (Tjong Kim Sang and De Meulder, 2003) 60K (59,970) ✓

Gendered Anaphora Winogender (Rudinger et al., 2018) .4K (464) ✗

VerbCorner (Hartshorne, Bonial, and Palmer, 2013) 135K (138, 648) ✓

MegaVeridicality (White and Rawlins, 2018) 11K (11,814) ✓Lexicosyntactic Inference
VerbNet (Schuler, 2005) 2K (1, 759) ✓✗

(Yang et al., 2015) 9K (9,492) ✓Puns SemEval 2017 Task 7 (Miller, Hempelmann, and Gurevych, 2017) 8K (8, 054) ✓

Relationship Extraction FACC1 (Gabrilovich, Ringgaard, and Subramanya, 2013) 25K (25,132) ✓✗

Sentiment Analysis (Kotzias et al., 2015) 6K (6,000) ✓

Combined Diverse NLI Collection (DNC) 570K (570,459)

— SNLI (Bowman et al., 2015) 570K
— Multi-NLI (Williams, Nangia, and Bowman, 2017) 433K

Table 3.2: Statistics summarizing the recast datasets in the first release of the DNC.
The first column refers to the original annotation that was recast, the ‘Combined‘ row
refers to the combination of our recast datasets. The second column indicates the
datasets that were recast, and the 3rd column reports how many labeled RTE pairs
were extracted from the corresponding dataset. The last column indicates whether
the recasting method was fully-automatic without human involvement (✓), manual
(✗), or used a semi-automatic method that included human intervention (✓✗). The
Multi-NLI and SNLI numbers contextualize the scale of our dataset.

trained for other tasks, like machine translation or syntactic parsing.

Models

For demonstrating how well an RTE model performs these fine-grained types

of reasoning, we use InferSent (Conneau et al., 2017). InferSent independently

encodes a context and hypothesis with a bi-directional LSTM and combines the sen-

tence representations by concatenating the individual sentence representations, their

element-wise subtraction and product. The combined representation is then fed into

a MLP with a single hidden layer.
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Model
Recast Data NER EF RE Puns Sentiment GAR VC MV VN

Majority (MAJ) 50.00 50.00 59.53 50.00 50.00 50.00 50.00 66.67 53.66
No Pre-training

InferSent 92.50 83.07 61.89 60.36 50.00 – 88.60 85.96 46.34
Pre-trained DNC

InferSent (update) 92.47 83.86 74.38 93.17 81.00 – 89.00 85.62 76.83
InferSent (fixed) 92.20 81.07 74.11 87.76 77.33 50.65 88.59 83.84 67.68

Pre-trained Multi-NLI
InferSent (update) 92.37 83.03 76.08 92.48 83.50 – 88.45 85.11 78.05
InferSent (fixed) 52.99 54.88 66.75 56.04 56.50 50.65 45.33 55.92 45.73

Table 3.3: RTE accuracies on test data. Columns correspond to each semantic
phenomena and rows correspond to the model used. Columns are ordered from larger
to smaller in size, but the last three (VC, MV, VN) are separated since they fall under
lexico-syntactic inference. (update) refers to a model that was initialized with pre-
trained parameters and then re-trained on the corresponding recast data. (fixed) refers
to a model that was trained and then evaluated on these data sets. Bold numbers in
each column indicate which settings were responsible for the highest accuracy on the
specific recast dataset.

Experimental Details

In these experiments, we use pre-computed GloVe embeddings (Pennington, Socher,

and Manning, 2014) and use the OOV vector for words that do not have a defined em-

bedding. We follow Conneau et al. (2017)’s procedure to train these models. During

training, models are optimized with stochastic gradient descent. The initial learning

rate is 0.1 with a decay rate of 0.99. The models train for at most 20 epochs and can

optionally terminate early when the learning rate is less than 10−5. If the accuracy

deceases on the development set in any epoch, the learning rate is divided by 5.
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Results

Table 3.3 reports the models’ accuracies across the recast RTE datasets.7 Even

though we categorize VerbNet, MegaVeridicality, and VerbCorner as lexicosyntatic

inference, we train and evaluate models separately on these three datasets because

different strategies were employed to individually recast them. When evaluating RTE

models, the baseline is the the majority class label (MAJ). We do not train on the

gendered anaphora resolution dataset because of its small size. It is used here just as

a testset.

The results suggest that InferSent, when not pre-trained on any other data,

might capture specific semantic phenomena better than other semantic phenomena.

InferSent seems to learn the most about determining if an event occurred. The

model seems to similarly learn to perform (or detect) the type of lexico-syntactic

inference present in VC and MV.

Pre-training models on DNC

Does initializing models with pre-trained parameters improves scores? Notice

that when models are pre-trained on DNC, for the larger datasets, a pre-trained

model does not seem to significantly outperform randomly initializing the parameters.

For the smaller datasets, specifically Puns, Sentiment and VN, a pre-trained model
7These results are on all the RTE datasets in the first release of the DNC (https://github.com/

decompositional-semantics-initiative/DNC/releases/tag/v0.1), some of which were not de-
scribed in this chapter. See Poliak et al. (2018a) for a description of the remaining datasets.
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significantly outperforms random initialization by 32.81, 31.00, and 30.83 respectively.

We are also interested to know whether fine-tuning these pre-trained models on

each category (update) improves a model’s ability to perform well on the category

compared to keeping the pre-trained models’ parameters static (fixed). Across all

of the recast datasets, updating the pre-trained model’s parameters during training

improves InferSent’s accuracies more than keeping the model’s parameters fixed.

When updating a model pre-trained on the entire DNC, we see the largest improve-

ments on VN (+9.15).

Models trained on Multi-NLI

Williams, Nangia, and Bowman (2017) argue that Multi-NLI “[makes] it possible

to evaluate systems on nearly the full complexity of the language.” However, how

well does Multi-NLI test a model’s capability to understand the diverse semantic

phenomena captured in DNC? We posit that if a model, trained on and performing

well on Multi-NLI, does not perform well on our recast datasets, then Multi-NLI

might not evaluate a model’s ability to understand the “full complexity” of language

as argued.8

When trained on Multi-NLI, the InferSent model achieves an accuracy of 70.22%

on (matched) Multi-NLI.9 When the models are tested on the recast datasets (with-
8We treat Multi-NLI’s neutral and contradiction labels as equivalent to the DNC’s not-

entailed label.
9Although this is about 10 points below SoTA, we believe that the pre-trained model performs

well enough to evaluate whether Multi-NLI tests a model’s capability to understand the diverse
semantic phenomena in the DNC.
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out updating the parameters), we see significant drops.10 On the datasets testing

a model’s lexico-syntactic inference capabilities, the model performs below the ma-

jority class baseline. On the NER, EF, and Puns datasets its performs below the

hypothesis-only baseline. We also notice that on three of the datasets (EF, Puns, and

VN), the fixed hypothesis-only model outperforms the fixed InferSent model.

These results might suggest that Multi-NLI does not evaluate whether sentence

representations capture these distinct semantic phenomena. This is a bit surprising

for some of the recast phenomena. We would expect Multi-NLI’s fiction section (es-

pecially its humor subset) in the training set to contain some figurative language that

might be similar to puns, and the travel guides (and possibly telephone conversations)

to contain text related to sentiment.

Pre-training on DNC or Multi-NLI?

Initializing a model with parameters pre-trained on DNC or Multi-NLI often out-

performs random initialization.11 Is it better to pre-train on DNC or Multi-NLI? On

five of the recast datasets, using a model pre-trained on DNC outperforms a model

pre-trained on Multi-NLI. The results are flipped on the two datasets focused on

downstream tasks (Sentiment and RE) and MV. However, the differences between

pre-training on the DNC or Multi-NLI are small. From this, it is unclear whether

pre-training on DNC is better than Multi-NLI.
10InferSent (pre-trained, fixed) in Table 3.3.
11Pre-training does not improve accuracies on NER or MV.
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Semantic Phenomena Template

Event Factuality The event happened

Named Entity Recognition Entity is a label

VerbNet The Agent caused verb

VerbCorner Someone moved from their location

Puns Name heard a pun

Sentiment Name liked the item

Table 3.4: Example templates used for some semantic phenomena in the DNC.
Words in italics represent slots that are filled in when converting existing annotations
for the corresponding semantic phenomena into RTE.

Learning curves/Incremental Training

Many of the recasting methods in the DNC rely on creating templates for hy-

potheses (Table 3.4). In the experiments just discussed, when the pre-trained model

was allowed to update its parameters on each semantic phenomena’s corresponding

training set in the DNC, the model often greatly improved. Therefore, given enough

training instances, a model either overcomes (or maybe learns) the templatic nature

of many examples in the DNC or learns to perform the type of reasoning tested by

that specific dataset. Here we focus on determining how many training examples is

enough for a model pre-trained on an existing dataset, e.g. Multi-NLI, to learn either

the templatic nature or the diverse types of reasoning tested in the DNC.

Experimental Setup

For each DNC dataset, we create subsets of each training dataset that differ in

size. The training set sizes are 100, 250, 500, 750, 1K, 5K, 10K, 25K, 50K and 75K.
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For smaller DNC datasets, we cap the training set sizes. Additionally, we do not

include the DNC’s Gendered Anaphora Resolution dataset since it does not contain

a training set for us to update the hyper-parameters.

(a) NER (b) Factuality

(c) RE (d) Puns

Figure 3.1: Results of updating a model pre-trained on Multi-NLI on 4 of the
DNC datasets with various training sizes. The horizontal lines represent the numbers
reported in Poliak et al. (2018a) when they did not update a pre-trained model
on each DNC dataset (red) or when they updated the pre-trained model on each
corresponding DNC dataset (green). The blue/orange lines represent the accuracy
(x-axes) on dev/test on each DNC dataset for the corresponding amount of training
data (y-axes).
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Results

Figure 3.1 and Figure 3.2 plot the results when we update the pre-trained models’

parameters on each of the 8 DNC datasets under consideration. The red horizontal

lines indicate our baseline, i.e. testing a model trained on MNLI, and the green

horizontal line indicates the ceiling, i.e. fine-tuning the model on the entire DNC

(a) Sentiment (b) VC

(c) MV (d) VN

Figure 3.2: Results of updating a model pre-trained on Multi-NLI on 4 of the
DNC datasets with various training sizes. The horizontal lines represent the numbers
reported in Poliak et al. (2018a) when they did not update a pre-trained model
on each DNC dataset (red) or when they updated the pre-trained model on each
corresponding DNC dataset (green). The blue/orange lines represent the accuracy
(x-axes) on dev/test on each DNC dataset for the corresponding amount of training
data (y-axes).
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dataset under consideration. Notice the gaps between red and the models when

trained on just 102 examples in the DNC datasets focused on Sentiment ( 3.2a),

Factuality ( 3.1b), and Puns ( 3.1d). By design, these datasets each have majority

baselines of 50% since each sentence in the original corresponding datasets were paired

with two new hypotheses, one entailed and one not-entailed. In the training set

for Factuality over 71% of the events actually occurred, and in the training set for

Puns 60% of the examples contained a pun. In turn, the same percentages of premises

paired with the hypothesis that “The event happened” and “Name heard a pun” are

be labeled as entailed. In two of the three RTE datasets focused on lexico-syntactic

inference, MegaVeridicality ( 3.2c) and VerbCorner ( 3.2b), we see even larger gaps

between the baseline and the model that is trained on 100 examples. In the recast

VerbCorner, almost 74% of the example where the hypothesis does not include “did

not”, “Nothing”, or “bad” the label is True.

This explains the improvements on many of these recast RTE datasets when we

allow a model to update its parameters on just 100 examples of each type of semantic

phenomena in RTE form. In essence, the majority baseline in some DNC datasets

might be a low estimate of a more indicative and true majority baseline. Including

large recast datasets can be helpful for fine-tuning or pre-training, but for evalua-

tion sets, these results suggest that we should re-consider the practice of duplicating

contexts to ensure an artificially low 50% majority baseline.

There are other interesting trends in the plots to note. First, in the Sentiment
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( 3.2a) and VerbNet ( 3.2d) plots, we see that when the model is fine-tuned on

the entire training dataset, it performs a bit below the results from earlier in the

chapter (Table 3.3). Schluter and Varab (2018) demonstrate that permuting the

order of a training set can change an RTE model’s results on a test set, and additional

experiments confirmed that this likely explains what is happening here.

In addition to differences with the ceiling for each model from Table 3.3, we

note that sometimes fine-tuning a model on a small portion of a recast training set

performs worse than not fine-tuning at all. This drastically occurs for the recast

Relation Extraction ( 3.1c) and briefly for the recast NER datasets ( 3.1a).

3.5 Discussion

In the chapter, we described how we recast a wide range of semantic phenomena

from many NLP datasets into labeled DNC sentence pairs. These examples serve as a

diverse RTE suite that may help diagnose whether NLP models capture and perform

distinct types of reasoning. The DNC is actively growing as we continue recasting

more datasets into labeled RTE examples. We encourage dataset creators to recast

their datasets in RTE and invite them to add their recast datasets into the DNC.

Since the introduction and the initial release of the DNC at EMNLP 2018, the

DNC has grown. At the 2018 JSALT Summer Workshop, Najoung Kim and Ellie

Pavlick led an effort to include more phenomena related to function words in the
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DNC. The community recognized our work with a Best Paper Award at StarSem

2019 (Kim et al., 2019). Recently, Siddharth Vashishtha led an effort creating RTE

datasets focused on temporal reasoning, specifically how long an event took place and

the order of events (Vashishtha et al., 2020).

Additionally, recent efforts similarly create new RTE datasets that evaluate more

phenomena. These include implicatures and presuppositions (Jeretic et al., 2020a),

verb veridicality (Ross and Pavlick, 2019), monotonicity (Yanaka et al., 2019), and

others. Staliūnaitė (2018)’s master’s thesis improved our recasting method to create

more natural hypotheses in the DNC dataset focused on factuality. There are also

efforts to versions of the DNC in other languages. Rajiv Ratn Shah’s group at IIITD

released a Hindi RTE dataset which they created by recasting annotations from Hindi

sentiment analysis and emotion detection datasets.12

Similar to the efforts described here to recast different NLU problems as RTE,

others have recast NLU problems into a question answer format (McCann et al.,

2018). Recasting problems into RTE, as opposed to question-answering, has deeper

roots in linguistic theory, and continues a rich history within the NLP community.
12https://github.com/midas-research/hindi-nli-data
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To leaderboard or not

The last few years have seen a rise in leaderboards in the academic community.13

Leaderboards have been used in NLP related courses to encourage healthy compe-

tition amongst students (Lopez et al., 2013) and many government backed research

programs used leaderboards to evaluate competitors. The long running SemEval com-

petitions also have relied on leaderboards. However, a recent phenomena in our field

has been to aggregate and host existing datasets on one platform to make it easy for

researchers to develop and test a single model and compete across a large suite of

benchmarks (Wang et al., 2018; Wang et al., 2019a). We intentionally did not create

a leaderboard for the DNC datasets. RTE is primarily an evaluation framework and

the goal of this work is not to create a dataset that researchers compete on. The DNC

is a test suite to evaluate how well an NLP system captures specific phenomenon that

are related to downstream NLP tasks.

13Allen Institute for AI’s NLP highlights podcasts has an interesting episode with
Siva Reddy about learderboards in the field - https://soundcloud.com/nlp-highlights/
80-leaderboards-and-science-with-siva-reddy.
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Chapter 4

Exploring Semantic Phenomena in

neural models via recast-RTE

Without a common classification of the problems in natural language un-
derstanding authors have no way to specify clearly what their systems do,
potential users have no way to compare different systems and researchers
have no way to judge the advantages or disadvantages of different ap-
proaches to developing systems.

(Read et al., 1988)

Now that we have introduced the DNC, we will turn towards evaluating how well

NLP models trained on different tasks capture the diverse semantic phenomena in the

large collection of RTE datasets. We will use the DNC as a common classification of

the problems in natural language understanding that can enable us to specify clearly

what systems might do. We begin this chapter by describing a general modeling

framework we will utilize to evaluate the reasoning capabilities of different NLP mod-

els. We will then demonstrate how to use this framework to evaluate the reasoning
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Figure 4.1: The general evaluation framework we propose when using RTE to eval-
uate the reasoning capabilities of contemporary neural NLP systems. The first step
is to train an encoder as part of broader NLP system. Next, we freeze the encoder
and use it to extract sentence representations. Finally, we use these representations
as features to train an RTE classifier.

capabilities of NLP models trained to translate text from one language to another,

match images with corresponding captions, or parse sentences into syntactic chunks.

The experiments evaluating how well a machine translation captures different

semantic phenomena is based on Poliak et al. (2018c). The experiments evaluating

the other NLP models are based on unpublished results from the 2018 Fred Jelinek

Summer Workshop led by Sam Bowman and Ellie Pavlick.1

1https://jsalt18-sentence-repl.github.io/. A recording based on the second set of exper-
iments is available online at https://www.youtube.com/watch?v=a-XhUdBWZDE&t=7625s
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4.1 General Method

Figure 4.1 demonstrates the general framework we introduce for using RTE to

evaluate how well different NLP models capture a diverse range of semantic phenom-

ena. This general method has three main components: 1) training an NLP system;

2) extracting sentence representations from the trained system; and 3) training a

classifier for different DNC datasets based on those sentence representations.

Training an NLP system

Contemporary NLP systems often rely on neural-network based encoders to con-

vert input words and sentences into meaningful vector representations. The left por-

tion of the figure, titled encoder, denotes a sequence to sequence model. This is an

end-to-end neural-based system that encodes the input text (green nodes in the bot-

tom figure) and generates output text from a decoder (yellow nodes in the top of the

figure). Sequence to sequence models are often used for tasks like machine translation

or summarization, where the decoder generates a translation or summary of the text

encoded by the encoder.

This general framework is not limited to sequence to sequence models. This

framework can be used to evaluate models that tag edges between tokens or predict

a label for an individual sentence. For such settings, the decoder would be replaced

with a classifier. The example in Figure 4.1 depicts a sequence to sequence model

since we will begin the study in the chapter (Section 4.2) by evaluating how well a
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neural machine translation model captures different semantic phenomena.

Extracting sentence representations

After training a neural NLP system to translate sentences from one language to

another, match pictures with corresponding captions, or parse sentences into syntactic

chunks, we will use the trained encoders as feature extractors to create sentence rep-

resentations of the input data for the different DNC datasets. During this process, we

freeze the trained encoders, i.e. we do not update the parameters for encoders. This

enables us to test how well these encoders capture the different specific phenomenon

under consideration.

DNC specific classifier

Finally, after using the trained encoders to generate vector representations for the

input data from the different DNC datasets, we train a classifier to predict whether

the premises entail the hypotheses in each specific DNC dataset. The representations

extracted from the encoders are fed as input to the classifier. If the sentence repre-

sentations learned by the neural NLP systems capture distinct semantic phenomena

that are integral to NLU, then the classifier should be able to perform well on the

RTE datasets that test a model’s ability to capture these different phenomenon.

This general framework is flexible and allows us to choose between the different

methods for sentence encoders. The experiments here test sentence representations

74



CHAPTER 4. EVALUATING NLP MODELS WITH RECAST RTE

bidirectional RNN’s, Bi-LSTM’s in particular.

4.2 Machine Translation

We begin by demonstrating how recast RTE datasets can be used to study what

do neural machine translation (NMT) models learn about semantics? We begin with

machine translation since many researchers suggest that state-of-the-art NMT models

learn representations that capture the meaning of sentences (Gu et al., 2016; John-

son et al., 2017; Zhou et al., 2017; Andreas and Klein, 2017; Neubig, 2017; Koehn,

2017). However, there is limited understanding of how specific semantic phenomena

are captured in NMT representations beyond this broad notion. For instance, how

well do these representations capture Dowty (1991)’s semantic proto-roles? Are these

representations sufficient for understanding paraphrastic inference? Do the sentence

representations encompass complex anaphora resolution? Existing semantic annota-

tions recast as RTE can be leveraged to investigate whether sentence representations

encoded by NMT models capture these semantic phenomena.

We use sentence representations from pre-trained NMT encoders as features to

train classifiers for different recast RTE datasets. If the sentence representations

learned by NMT models capture distinct semantic phenomena, we hypothesize that

those representations should be sufficient to perform well on RTE datasets that test

a model’s ability to capture these phenomena.
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We evaluate NMT sentence representations of 4 NMT models from 2 domains

on 4 different RTE datasets to investigate how well they capture different semantic

phenomena. In particular, we use White et al. (2017)’s Unified Semantic Evaluation

Framework (USEF) that recasts three semantic phenomenon into RTE. These phe-

nomena 1) semantic proto-roles, 2) paraphrastic inference, 3) and complex anaphora

resolution. These three datasets awee a precursor to the DNC. Additionally, I eval-

uate the NMT sentence representations on 4) Multi-NLIs (Williams, Nangia, and

Bowman, 2017). We contextualize the results with a standard neural encoder de-

scribed in Bowman et al. (2015) and used in White et al. (2017).

Based on the recast RTE datasets, this investigation suggests that NMT encoders

might learn more about semantic proto-roles than anaphora resolution or paraphrastic

inference. Additionally, the experiments suggest that the target-side language affects

how an NMT source-side encoder captures these semantic phenomena.

4.2.1 Motivation

Here we describe why it is appropriate to test how well NMT models capture

anaphora resolution, semantic proto-role, and paraphrastic inference. We argue why

we should expect high performing NMT models to capture these phenomena.
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(a)

(b)

Figure 4.2: Screenshot from August 12th 2020 of correct (a) and miscorrect (b)
translations in Google Translate based on correct/incorrect anaphora resolution.

Anaphora

Anaphora resolution connects tokens, typically pronouns, to their referents. Anaphora

resolution should occur when translating from morphologically poor languages into

some morphologically rich languages. For example, when translating “The parent fed

the child because she was hungry,” a Spanish translation should describe the child as

la niña (fem.) and not el niño (masc.) since she refers to the child. Because world

knowledge is often required to perform anaphora resolution (Rahman and Ng, 2012;

Javadpour, 2013), this may enable evaluating whether an NMT encoder learns world

knowledge. In this example, she refers to the child and not the parent since world

knowledge dictates that parents often feed children when children are hungry.

When this work was originally published in 2018, Google Translate incorrectly

translated this example. When checked in November 2019, Google Translate corrected

translated this example. However, when checked again on on August 12th 2020 Google
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Translate incorrectly translated this example, as demonstrated in Figure 4.2.

Proto-roles

Inspired by Dowty (1991)’s thematic role theory, Reisinger et al. (2015) introduced

the Semantic Proto-Role (SPR) labeling task, which can be viewed as decomposing

semantic roles into finer-grained properties, such as whether a predicate’s argument

was likely aware of the given predicated situation.

Dowty (1991)’s proto-roles may be expressed differently in different languages, and

so correctly identifying them can be important for translation. For example, English

does not usually explicitly mark volition, a proto-role, except by using adverbs like

intentionally or accidentally. Other languages mark volitionality by using special

affixes (e.g., Tibetan and Sesotho, a Bantu language), case marking (Hindi, Sinhalese),

or auxiliaries (Japanese).2 Correctly generating these markers may require the MT

system to encode volitionality on the source side.

Paraphrases

Callison-Burch (2007) discusses how paraphrases help machine translation when

alignments from source words to target-language words are unknown. If the alignment

model can map a paraphrase of the source word to a word in the target language, then

the machine translation model can translate the original word based on its paraphrase.

Using paraphrases can also help NMT models generate text in the target language in
2For references and examples, see: en.wikipedia.org/wiki/Volition_(linguistics).
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some settings (Sekizawa, Kajiwara, and Komachi, 2017). Paraphrases are also used

by professional translators to deal with non-equivalence of words in the source and

target languages (Baker, 2018).

4.2.2 Experiments

To test how well NMT models capture these semantic phenomena, we use NMT

models on four language pairs: English → {Arabic (ar), Spanish (es), Chinese (zh),

and German (de)}. The first three pairs use the United Nations parallel corpus (Ziem-

ski, Junczys-Dowmunt, and Pouliquen, 2016) and the English-German is trained on

the WMT dataset (Bojar et al., 2014). Although the entailment classifier only uses

representations extracted from the English-side encoders as features, using multiple

language pairs enables us to explore whether different target languages affect what

semantic phenomena are captured by an NMT encoder.

The neural machine translation models are based on bidirectional long short-

term memory (Bi-LSTM) encoder-decoders with attention (Sutskever, Vinyals, and

Le, 2014; Bahdanau, Cho, and Bengio, 2014). The encoders and decoders have

4-layers with 500-dimensional word embeddings and LSTM states (i.e., d = 500).

The vocabulary size is 75K words. The NMT models are trained until convergence

and the models that performed best on the machine translation datasets’ develop-

ment sets are used here. Following common NMT practice (Cho et al., 2014), long

sentences (> 50 words) are removed when training the NMT models. We train
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English→Arabic/Spanish/Chinese NMT models on the first 2 million sentences of

the United Nations parallel corpus training set (Ziemski, Junczys-Dowmunt, and

Pouliquen, 2016), and the English→German model on the WMT dataset (Bojar et

al., 2014). We use the official training/development/test splits.

After these NMT models are trained, we are ready to evaluate how well they

capture these semantic phenomena. Given an RTE context-hypothesis pair, each

sentence is encoded independently through a trained NMT encoder to extract their

respective vector representations. We represent each sentence by concatenating the

last hidden state from the forward and backward encoders, resulting in v and u (in

R2d) for the context and hypothesis.3 We follow the common practice of feeding the

concatenation (v,u) ∈ R4d to a classifier (Rocktäschel et al., 2015; Bowman et al.,

2015; Mou et al., 2016; Liu et al., 2016; Cheng, Dong, and Lapata, 2016; Munkhdalai

and Yu, 2017).

Sentence pair representations are fed into a classifier with a soft-max layer that

maps onto the number of labels. Experiments with both linear and non-linear classi-

fiers have not shown major differences, so we will report results with the linear clas-

sifier unless noted otherwise. In preliminary experiments, we also used a 3-layered

MLP. Although the results slightly improved, we noted similar trends to the linear

classifier.
3We experimented with other sentence representations and their combinations, and did not see

differences in overall conclusions.
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DPR SPR FN+

Train 2K 123K 124K
Dev .4K 15K 15K
Test 1K 15K 14K

Table 4.1: Number of sentences in RTE datasets under consideration.

Recast Recognizing Textual Entailment data

The RTE datasets are trained on previous recast RTE data that tests these se-

mantic phenomena. Sentence-pairs and labels were recast from existing semantic

annotations: FrameNet Plus (FN+) (Pavlick et al., 2015), Definite Pronoun Resolu-

tion (DPR) (Rahman and Ng, 2012), and Semantic Proto-Roles (SPR) (Reisinger et

al., 2015). The FN+ portion contains sentence pairs based on paraphrastic inference,

DPR’s sentence pairs focus on identifying the correct antecedent for a definite pro-

noun, and SPR’s sentence pairs test whether the semantic proto-roles from Reisinger

et al. (2015) apply based on a given sentence.4 Table 4.1 includes the datasets’ statis-

tics.

4.2.3 Results

Table 4.2 shows results of RTE classifiers trained on representations from different

NMT encoders. We also report the majority baseline and the results of Bowman et

al.’s 3-layer deep 200 dimensional neural network used by White et al. (“USEF”). We
4In Section 5.3, we provide a summary of how these datasets were recast, and in Section 5.5 we

examine issues in these recasting methods. See White et al. (2017) for a further detailed discussion
on how the existing datasets were recast into RTE.
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Train
Test DPR: 50.0 SPR: 65.4 FN+: 57.5

ar es zh de USEF ar es zh de USEF ar es zh de USEF

DPR 49.8 50.0 50.0 50.0 49.5 45.4 57.1 47.0 43.9 65.2 48.0 55.9 51.0 46.8 19.2
SPR 50.1 50.3 50.1 49.9 50.7 72.1 74.2 73.6 73.1 80.6 56.3 57.0 56.9 56.1 65.8
FN+ 50.0 50.0 50.4 50.0 49.5 57.3 63.6 54.5 60.7 60.0 56.2 56.1 54.3 55.5 80.5

Table 4.2: Accuracy on RTE with representations generated by encoders of
English→{ar,es,zh,de} NMT models. Rows correspond to the training and valida-
tion sets and major columns correspond to the test set. The column labeled “USEF”
refers to the test accuracies reported in White et al. (2017). The numbers on the top
row represents each dataset’s majority baseline. Bold numbers indicate the highest
performing model for the given dataset.

will begin by discussing results across each of the three datasets.

Paraphrastic entailment (FN+)

The classifiers predict FN+ entailment worse than the majority baseline, and

drastically worse than USEF when trained on FN+’s training set. Since FN+ tests

paraphrastic inference and NMT models have been shown to be useful to generate

sentential paraphrase pairs (Wieting and Gimpel, 2017; Wieting, Mallinson, and Gim-

pel, 2017), it is surprising that the classifiers using the representations from the NMT

encoder perform poorly.

Although the sentences in FN+ are much longer than in the other datasets, sen-

tence length does not seem to be responsible for the poor FN+ results. The classifiers

do not noticeably perform better on shorter sentences than longer ones. The average

sentence in the FN+ test dataset is 31 words and almost 10% of the test sentences

are longer than 50 words. In SPR and DPR, each premise sentence has on average

21 and 15 words respectively and only 1% of sentences in SPR have more than 50
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Sentence length ar es zh de total

0-10 46.8 63.7 66.0 65.4 526
10-20 49.0 53.3 57.4 56.5 2739
20-30 48.4 54.0 53.2 54.9 4889
30-40 48.4 54.1 51.2 53.9 4057
40-50 47.7 59.0 55.0 58.7 2064
50-60 49.1 56.1 54.5 57.5 877
60-70 46.4 53.6 43.9 44.1 444
70-80 59.9 51.6 43.3 43.3 252

Table 4.3: Accuracies on FN+’s dev set based on sentence length. The first column
represents the range of sentences length: first number is inclusive and second is ex-
clusive. The last column represents how many context sentences have lengths that
are in the given row’s range.

words. No sentences in DPR have more than 50 words.

Table 4.3 reports accuracies for ranges of sentence lengths in FN+’s development

set. When trained on sentence representations form an English→Chinese,German

NMT encoder, the RTE accuracies steadily decrease. When using English→Arabic,

the accuracies stay consistent until sentences have between 70–80 tokens while the

results from English→Spanish quickly drops from 0–10 to 10–20 but then stays rela-

tively consistent.

Upon manual inspection, we noticed that in many not-entailed examples, swapped

paraphrases had different part-of-speech (POS) tags. This begs the question of

whether different POS tags for swapped paraphrases affects the accuracies. Using

Stanford CoreNLP (Manning et al., 2014), we partition our validation set based on

whether the paraphrases share the same POS tag. Table 4.4 reports development set

accuracies using classifiers trained on FN+. Classifiers using features from NMT en-
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ar es zh de

Same Tag 52.9 52.6 52.6 50.2
Different Tag 55.8 59.1 53.4 46.0

Table 4.4: Accuracies on FN+’s dev set based on whether the swapped paraphrases
share the same POS tag.

coders trained on the three languages from the UN corpus noticeably perform better

on cases where paraphrases have different POS tags compared to paraphrases with

the same POS tags. These differences might suggest that the recast FN+ might not

be an ideal dataset to test how well NMT encoders capture paraphrastic inference.

The sentence representations may be impacted more by ungrammaticality caused by

different POS tags as opposed to poor paraphrases. We will discuss this issue, and

its ramifications, further in Section 5.5.

We also notice that even though the classifiers perform poorly when predict-

ing paraphrastic entailment, they surprisingly outperform USEF by a large margin

(around 25–30%) when using a model trained on DPR.5 This might suggest that

an NMT encoder can pick up on how pronouns may be used as a type of lexical

paraphrase (Bhagat and Hovy, 2013).

Anaphora entailment (DPR)

The low accuracies for predicting RTE targeting anaphora resolution are similar to

White et al. (2017)’s findings. They suggest that the model has difficulty in capturing

complex anaphora resolution. By using contrastive evaluation pairs, Bawden et al.
5This is seen in the last columns of the top row in Table 4.2.
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(2017) recently suggested as well that NMT models are poorly suited for co-reference

resolution. Our results are not surprising given that DPR tests whether a model

contains common sense knowledge (Rahman and Ng, 2012). In DPR, syntactic cues

for co-reference are purposefully balanced out as each pair of pro-nouns appears in

at least two context-hypothesis pairs (Table 4.5). This forces the model’s decision to

be informed by semantics and world knowledge – a model cannot use syntactic cues

to help perform anaphora resolution. When released, Rahman and Ng (2012)’s DPR

dataset confounded the best co-reference models because “its difficulty stems in part

from its reliance on sophisticated knowledge sources.” Table 4.5 includes examples

that demonstrate how world knowledge is needed to accurately predict these recast

RTE sentence-pairs.

Although the poor performance of NMT representations may be explained by a

variety of reasons, e.g. training data, architectures, etc., we would still like ideal

MT systems to capture the semantics of co-reference, as evidenced in the example in

section 4.2.1.

Proto-role entailment (SPR)

When predicting SPR entailments using a classifier trained on SPR data, the

models noticeably outperform the majority baseline but are below USEF. Both ours

and USEF’s accuracies are lower than Teichert et al. (2017)’s best reported numbers.

This is not surprising as Teichert et al. (2017)’s model predicts proto-role labels
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Chris was running after John, because he stole his watch
▶ Chris was running after John, because John stole his watch ✓

▶ Chris was running after John, because Chris stole his watch ✗

Chris was running after John, because he wanted to talk to him
▶ Chris was running after John, because Chris wanted to talk to him ✓

▶ Chris was running after John, because John wanted to talk to him ✗

The plane shot the rocket at the target, then it hit the target
▶ The plane shot the rocket at the target, then the rocket hit the target ✓

▶ The plane shot the rocket at the target, then the target hit the target ✗

Professors do a lot for students, but they are rarely thankful
▶ Professors do a lot for students, but students are rarely thankful ✓

▶ Professors do a lot for students, but Professors are rarely thankful ✗

MIT accepted the students, because they had good grades
▶ MIT accepted the students, because the students had good grades ✓

▶ MIT accepted the students, because MIT had good grades ✗

Obama beat John McCain, because he was the better candidate
▶ Obama beat John McCain, because Obama was the better candidate ✓

▶ Obama beat John McCain, because John McCain was the better candidate ✗

Obama beat John McCain, because he failed to win the majority of the
electoral votes
▶ Obama beat John McCain, because John McCain failed to win

the majority of the electoral votes ✓

▶ Obama beat John McCain, because Obama failed to win
the majority of the electoral vote ✗

Table 4.5: Examples from DPR’s dev set. The first line in each section is a context
and lines with ▶ are corresponding hypotheses. ✓ (✗) in the last column indicates
whether the hypothesis is entailed (or not) by the context.

conditioned on observed semantic role labels.

Table 4.6 reports accuracies for each proto-role. Whenever one of the classifiers

outperforms the baseline for a proto-role, all the other classifiers do as well. The

classifiers outperform the majority baseline for 6 of the reported 16 proto-roles. We

observe these 6 properties are more associated with proto-agents than proto-patients.
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The larger improvements over the majority baseline for SPR compared to FN+

and DPR is not surprising. Dowty (1991) posited that proto-agent and proto-patient

should correlate with English syntactic subject, and object, respectively, and empiri-

cally the necessity of [syntactic] parsing for predicate argument recognition has been

observed in practice (Gildea and Palmer, 2002; Punyakanok, Roth, and Yih, 2008).

Further, recent work is suggestive that LSTM-based frameworks implicitly may en-

code syntax based on certain learning objectives (Linzen, Dupoux, and Goldberg,

2016; Shi, Padhi, and Knight, 2016; Belinkov et al., 2017a). It is unclear whether

NMT encoders capture semantic proto-roles specifically or just underlying syntax

that affects the proto-roles.

4.2.4 Further Analysis

Before using recast RTE data to evaluate the reasoning capabilities of other NLP

models, we explore additional questions about the NMT models we test. We explore

whether the target language in translation affects how well the encoders capture

different phenomena, how well can these representations be used to predict RTE across

multiple genres, as well as how do the results change when using other techniques for

creating sentence representations.
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Proto-Role ar es zh de avg MAJ

physically existed 70.6 70.8 77.2 70.8 72.4† 65.9
sentient 78.5 82.2 80.5 81.7 80.7† 75.5
aware 75.9 77.0 76.6 76.7 76.6† 60.9
volitional 74.3 76.8 74.7 73.7 74.9† 64.5
existed before 68.4 70.5 66.5 68.4 68.5† 64.8
caused 69.4 74.1 72.2 72.7 72.1† 63.4

changed 64.2 62.4 63.8 62.0 63.1 65.1
location 91.1 90.1 90.4 90.2 90.4 91.7
moved 90.6 88.8 90.1 90.3 89.9 93.3
used in 34.9 38.1 31.8 34.2 34.7 55.2
existed after 62.7 69.0 65.6 65.2 65.7 69.7
chang. state 61.8 60.7 60.9 60.7 61.0 65.2
chang. possession 89.6 88.6 89.9 88.3 89.1 93.9
stationary during 86.3 84.4 90.5 86.0 86.8 96.3
physical contact 85.0 82.0 84.5 84.4 84.0 85.8
existed during 59.3 71.8 60.8 64.4 64.1 84.7

Table 4.6: Accuracies on the SPR test set broken down by each proto-role. “avg”
represents the score for the proto-role averaged across target languages. Bold and
† respectively indicate the best results for each proto-role and whether all of our
classifiers outperformed the proto-role’s majority baseline.
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NMT target language

Our experiments show differences based on which target language was used to train

the NMT encoder, in capturing semantic proto-roles and paraphrastic inference. In

Table 4.2, we notice a large improvement using sentence representations from an NMT

encoder that was trained on en-es parallel text. The improvements are most profound

when a classifier trained on DPR data predicts entailment focused on semantic proto-

roles or paraphrastic inference. We also note that using the NMT encoder trained on

en-es parallel text results in the highest results in 5 of the 6 proto-roles in the top

portion of Table 4.6. Very recent work exploring how well syntax is captured in NMT

models also explores the effect of the choice of target language (Chang and Rafferty,

2020). They found that the choice of target language did not noticeably alter how

NMT encoder representations encode source syntax.

RTE across multiple domains

Though our main focus is exploring what NMT encoders learn about distinct se-

mantic phenomena, we would like to know how useful NMT models are for general

RTE across multiple domains. Therefore, we also evaluate the sentence representa-

tions with Multi-NLI. As indicated by Table 4.7, the representations perform notice-

ably better than a majority baseline. However, our results are not competitive with

state-of-the-art systems trained specifically for Multi-NLI (Nangia et al., 2017).
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ar es zh de MAJ

MNLI-1 45.9 45.7 46.6 48.0 35.6
MNLI-2 46.6 46.7 48.2 48.9 36.5

Table 4.7: Accuracies for MNLI test sets. MNLI-1 refers to the matched case and
MNLI-2 is the mismatched.

Evaluating Different Sentence Representations Techniques

In the experiments discussed so far, we used a simple sentence representation ex-

tracted from the Bi-LSTM encoders, the first and last hidden states of the forward

and backward encoders. We concatenated them for both the context and the hypoth-

esis and fed to a linear classifier. Here we compare the results of InferSent (Conneau

et al., 2017), a more involved representation that was found to provide a good sen-

tence representation based on RTE data. Specifically, we concatenate the forward

and backward encodings for each sentence, and max-pool over the length of the sen-

tence, resulting in v and u (in R2d) for the context and hypothesis. The InferSent

representation is defined by

(u,v, |u− v|,u ∗ v) ∈ R8d

where the product and subtraction are carried element-wise and commas denote

vector-concatenation.

The pair representation is fed into a multi-layered perceptron (MLP) with one

hidden layer and a ReLU non-linearity. We set the hidden layer size to 500 dimensions,
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FN+ DPR SPRL MNLI-1 MNLI-2

NMT
Concat

en-ar 56.2 49.8 72.1 45.9 46.6
en-es 56.1 50.0 74.2 45.7 46.7
en-zh 54.3 50.0 73.1 46.6 48.2
en-de 55.5 50.0 73.1 48.0 48.9

NMT
InferSent

en-ar 57.9 50.0 73.6 40.1 41.8
en-es 58.0 50.0 72.7 44.9 40.8
en-zh 57.8 49.8 72.4 43.7 42.1
en-de 58.3 50.1 73.7 41.3 41.1

Majority 57.5 50.0 65.4 35.6 36.5
SOTA 80.5 49.5 80.6 81.10 83.21

Table 4.8: RTE results on fine-grained semantic phenomena. FN+ = paraphrases;
DPR = pronoun resolution; SPRL = proto-roles. NMT representations are combined
with either a simple concatenation (results copied from Table 4.1) or the InferSent
representation. State-of-the-art (SOTA) for the recast datasets is from White et al.
(2017). The right half report results on language inference on MultiNLI (Williams,
Nangia, and Bowman, 2017), matched/mismatched scenario (MNLI1/2).

similarly to Conneau et al. (2017). The soft-max layer maps onto the number of labels,

which is 2 for the recast datasets and 3 for MNLI.

Table 4.8 shows the results of the classifier trained on NMT representations with

the InferSent architecture. Here, the representations from NMT encoders trained on

the English-German parallel corpus slightly and consistently outperform the other

encoders. Since this data used a different corpus compared to the other language

pairs, we cannot determine whether the improved results are due to the different

target side language or corpus. The main difference with respects to the simpler

sentence representation (Concat) is improved results on FN+. It is interesting to note

that when using the sentence representations from NMT encoders, concatenating the

sentence vectors outperformed the InferSent method on Multi-NLI.
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4.2.5 Related Work

Prior work has focused on the relationship between semantics and machine trans-

lation. MEANT and its extension XMEANT evaluate MT systems based on seman-

tics (Lo and Wu, 2011a; Lo et al., 2014). Others have focused on incorporating

semantics directly in MT. Chan, Ng, and Chiang (2007) use word sense disambigua-

tion to help statistical MT, Gao and Vogel (2011) add semantic-roles to improve

phrase-based MT, and Carpuat, Vyas, and Niu (2017) demonstrate how filtering par-

allel sentences that are not parallel in meaning improves translation. Recent work

explores how representations learned by NMT systems can improve semantic tasks.

McCann et al. (2017) show improvements in many tasks by using contextualized word

vectors extracted from a LSTM encoder trained for MT. Their goal is to use NMT

to improve other tasks while we focus on using RTE to determine what NMT models

learn about different semantic phenomena.

Researchers have explored what NMT models learn about other linguistic phe-

nomena, such as morphology (Dalvi et al., 2017; Belinkov et al., 2017b), syntax (Shi,

Padhi, and Knight, 2016), and lexical semantics (Belinkov et al., 2017a), including

word senses (Marvin and Koehn, 2018; Liu, Lu, and Neubig, 2018).
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4.3 Evaluating Encoders Trained For Other

Tasks

As part of the 2018 JSALT Workshop focused on general sentence representation

learning, we evaluated how well encoders trained for different NLP tasks capture some

semantic phenomenon included in the DNC. The rest of this chapter discusses those

results. These results have been presented at the end of workshop presentation in

Summer 2018.

4.3.1 Tasks

Here, we explore whether pre-training encoders for different NLP tasks can help

an RTE model trained on MNLI capture these different phenomena. The tasks in-

clude language modeling, syntactic parsing, discourse marking, and image-caption

matching. We will discuss each of these in more detail. All of these encoders were

trained by colleagues on the JSALT Workshop team.

Language Modeling

In NLP, a language model (LM) is a model that predicts the probability of a

sentence or the probability of a word conditioned on previous words in a sentence. A

unigram language model predicts the probability of a single token, a binary language

model predicts the probability of a single token conditioned on the previous token,
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and an n-gram language model predicts the probability of a word conditioned on the

previous n− 1 words. The probabilities are learned in an unsupervised fashion from

large amounts of text. LM probabilities are often used as strong baseline features

to train Machine Learning models for different NLP tasks. In these experiments,

we use a LM trained on the Billion Word Benchmark (BWB) (Chelba et al., 2013).

In particular, separate forward and backward two-layer 1024-dimension encoders are

trained and the hidden states are concatenated as token representations.

CCG Supertagging

The second task we explore is Combinatory Categorial Grammar (CCG) supertag-

ging. CCG parsing is a “syntactic grammar formalism that pairs words with lexical

categories, and a set of combinatory rules” (Clark, 2002). The encoder we explore

is trained to predict each word’s CCG supertag, a part-of-speech-like that includes

broad syntactic context (Bangalore and Joshi, 1999). Data from Hockenmaier and

Steedman (2007)’s CCGBank is used to train this model.

Discourse Marking

The third task we explore training an encoder on is Discourse Marking. This tais

to predict the discourse marker Given two sentences in our curated corpus (which

may have been full sentences in the original text or may have been subclauses), the

model must predict which discourse marker was used by an author to connect two
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given texts (Nie, Bennett, and Goodman, 2019). The model is trained “on a dataset

created from WikiText-103 following Nie, Bennett, and Goodman (2019)’s protocol,

which involves extracting pairs of clauses with a specific dependency relation” (Kim

et al., 2019).

Image-Caption Matching

The fourth task we explore training an encoder on is matching captions with

images. Here, the model is trained to minimize the distance between features of an

image and the sentence representations of its corresponding caption. The model is

trained on the MSCOCO dataset (Lin et al., 2014) and follows the training setup of

Kiela et al. (2018).

4.3.2 Experiments

Pre-training

We train one neural model for each of these tasks. Unlike the experiments dis-

cussed earlier in Section 4.2.2, we use ELMo word representations that have been

trained using a character-level convolutional neural network (Peters et al., 2018).

These word representations are passed to a 2-layered 1024 dimensional BiLSTM. A

classifier receives as input the top-layer hidden states of BiLSTM and the original

representation of each word (via a skip-connection).

The models are optimized with AMSGrad (Reddi et al., 2018) and a learning
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rate of 1e-4. The models are trained for at most 20 epochs. The learning rate is

multiplied by 0.5 whenever validation performance does not improve after 4 epochs.

If the learning rate falls below 1e-6, training is stopped.

RTE Classifier

Following the framework as depicted in Figure 4.1, we keep these pre-trained

endocers fixed and we use them as as feature extractors to train a classifier. The

sentences are extracted using max-pooling and are combined using Mou et al. (2016)’s

popular heuristic matching technique. We use a MLP classifier with one hidden layer

of 512 dimensions. When training the classifier, we use a dropout of 0.2, an initial

learning rate of 0.0001, a learning rate decay factor of 0.5, and a minimum learning

rate of 1e−06. We do not train the RTE classifiers on the training sets from the DNC.

Instead, following Kim et al. (2019), we train the classifiers on MNLI. In turn, here we

use the DNC datasets solely as an evaluation. These experiments were implemented

using the jiant toolkit (Wang et al., 2019b).6

4.3.3 Results

Figure 4.3 reports results across four of the DNC datasets: NER, Factuality, Verb-

Net, and Relation Extraction. In addition to the encoders discussed, we include three

baselines that help contextualize these results. The baselines are the majority base-
6https://jiant.info/
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Figure 4.3: Results of the encoders that were trained on the different NLP tasks.

line (MAJ), a randomly initialized representation, and not pre-training the encoder

of any of the discussed tasks (NLI). When testing the model on NER, Factuality, and

Relation Extraction, we do not see a major difference in the results when pre-trained

the model on any of the tasks. For NER, we see small improvements when the encoder

is pre-trained on the image-caption matching (IMG) or CCG parsing (Syntax) tasks.

These results are similar to InferSent model trained on just MNLI from Table 3.3.

For the Factuality test set, it seems that pre-training a model on any of these tasks is

worse than using random sentence representations. For the relation extraction test,

we see that pre-training or just training on MNLI, performs slightly better than the

majority baseline.
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Figure 4.4: Results of the encoders that were trained on the tasks described here
These results are tested on VerbNet.

The most interesting results are on the VerbNet test set (Figure 4.4). When the

encoder is pre-trained on language modeling (LM) or image-caption matching, the

model performs worse that the majority baseline. Pre-training the model on CCG

parsing is the only pre-training task where the model outperforms a random sentence

representation. This result might corroborate the commonly held belief that the

semantic representations in PropBank, which are used in Verbnet, convey shallow

semantics that are deeply connected to syntax (Teichert et al., 2017).
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4.4 Discussion

In this chapter, we presented a general purpose framework for using RTE to evalu-

ate the reasoning capabilities of NLP models. Researchers suggest that NMT models

learn sentence representations that capture meaning. We delved deeply in discovering

how well a neural machine translation encoder captures different semantic phenom-

ena that are important for translation. Our experiments suggest that NMT encoders

might learn the most about semantic proto-roles but do not focus on anaphora reso-

lution. We conclude by suggesting that target-side language affects how well an NMT

encoder captures these semantic phenomena.

The experiments focused on paraphrastic inference in MT might suggest that

NMT models may poorly capture paraphrastic inference. However, work in back-

translation, i.e. translating a translated text in a target language back into the

source language, indicate that NMT systems indeed capture paraphrases. Further-

more, resources of large-scale sentence level paraphrases, like ParaBank (Hu et al.,

2019) and ParaNMT-50M (Wieting and Gimpel, 2018), were developed using ma-

chine translation resources and methods. As mentioned in Section 4.2.3, and as we

will discuss further in more detail later in the thesis, issues in the RTE dataset fo-

cused on paraphrastic inference might limit its utility. Therefore, these experiments

do not contradict recent findings in the community that representations learned by

NMT systems indeed capture paraphrases.

Additionally, we used this framework to survey encoders trained for different NLP
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tasks as well. We noticed that pre-training on syntactic parsing had the most benefit

when evaluating the model on the recast RTE dataset focused on a shallow semantic

representation.
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Chapter 5

Hypothesis-only Biases in

Recognizing Textual Entailment

When RTE datasets are constructed to facilitate the training and evaluation of

natural language understanding (NLU) systems, it is tempting to claim that systems

achieving high accuracy on such datasets have successfully “understood” natural lan-

guage or at least a logical relationship between a premise and hypothesis. In this

chapter, we explore whether issues or biases in datasets enable simple methods to

achieve decent results without actually performing the reasoning supposedly required

for these tasks. Specifically, we demonstrate that RTE datasets contain statistical

irregularities that allow hypothesis-only models to outperform the datasets specific

prior.

We do not attempt to prescribe the sufficient conditions of claiming that systems
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understand natural language. Rather, we argue for an obvious necessary, or at least

desired condition: that interesting textual entailment should depend on both premise

and hypothesis. In other words, a baseline system with access only to hypotheses

( 5.1b) can be said to perform RTE only in the sense that it is understanding language

based on prior background knowledge. If this background knowledge is about the

world, this may be justifiable as an aspect of natural language understanding, if not

in keeping with the spirit of RTE. But if the “background knowledge" consists of

learned statistical irregularities in the data, this may not be ideal. In such a case, the

data constructed in a particular dataset may limit one’s ability to use the data as a

test to evaluate the reasoning capabilities of a NLP model.

We present the results of a hypothesis-only baseline across eighteen RTE datasets

and advocate for its inclusion in future dataset reports. We find that this baseline

can perform above the majority-class prior across most of the eighteen examined

datasets. We examine whether: (1) hypotheses contain statistical irregularities within

each entailment class that are “giveaways” to a well-trained hypothesis-only model,

(2) the way in which an RTE dataset is constructed is related to how prone it is to

this particular weakness, and (3) the majority baselines might not be as indicative of

“the difficulty of the task” (Bowman et al., 2015) as previously thought.

We will discuss what this means for RTE datasets and lessons that might be

important for when creating new RTE datasets. This chapter is based on Poliak et

al. (2018a) and Poliak et al. (2018b). The second paper received a best paper award
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(a) (b)

Figure 5.1: (5.1a) shows a typical RTE model that encodes the premise and hy-
pothesis sentences into a vector space to classify the sentence pair. (5.1b) shows
our hypothesis-only baseline method that ignores the premise and only encodes the
hypothesis sentence.

at StarSem 2018.

Related Studies

We are not the first to consider the inherent difficulty of RTE datasets. For exam-

ple, MacCartney (2009) used a simple bag-of-words model to evaluate early iterations

of Recognizing Textual Entailment (RTE) challenge sets.1 Concerns have been raised

previously about the hypotheses in the Stanford Natural Language Inference (SNLI)

dataset specifically, such as by Rudinger, May, and Van Durme (2017) and in un-
1MacCartney (2009), Ch. 2.2: “the RTE1 test suite is the hardest, while the RTE2 test suite is

roughly 4% easier, and the RTE3 test suite is roughly 9% easier.”
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published work.2 Here, we survey of large number of existing RTE datasets under

the lens of a hypothesis-only model.3 Concurrently, Tsuchiya (2018) and Gururangan

et al. (2018) similarly trained an NLI classifier with access limited to hypotheses and

discovered similar results on three of the eighteen datasets that we study.

5.1 Motivation

Our approach is inspired by recent studies that show how biases in an NLU dataset

allow models to perform well on the task without understanding the meaning of the

text. In the Story Cloze task (Mostafazadeh et al., 2016; Mostafazadeh et al., 2017).

a model is presented with a short four-sentence narrative and asked to complete it by

choosing one of two suggested concluding sentences. While the task is presented as

a new common-sense reasoning framework, Schwartz et al. (2017a) performed alarm-

ingly well by ignoring the narrative and training a linear classifier with features related

to the writing style of the two potential endings, rather than their content. It has

also been shown that features focusing on sentence length, sentiment, and negation

are sufficient for achieving high accuracy on this dataset (Schwartz et al., 2017b; Cai,

Tu, and Gimpel, 2017; Bugert et al., 2017).

As discussed throughout this thesis, RTE is often viewed as an integral part of

NLU. Condoravdi et al. (2003) argue that it is a necessary metric for evaluating
2A course project constituting independent discovery of our observations on SNLI: https://

leonidk.com/pdfs/cs224u.pdf
3Our code and data can be found at https://github.com/azpoliak/hypothesis-only-NLI.
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an NLU system as it forces a model to perform many distinct types of reasoning,

Goldberg (2017) suggests that “solving [RTEssss] perfectly entails human level un-

derstanding of language”, and Nangia et al. (2017) argue that “in order for a system to

perform well at natural language inference, it needs to handle nearly the full complex-

ity of natural language understanding.” Thus, if biases in RTE datasets, especially

those that do not reflect commonsense knowledge, allow models to achieve high levels

of performance without needing to reason about hypotheses based on corresponding

contexts, our current datasets may fall short of the broad goals of RTE.

5.2 Methodology

We modify Conneau et al. (2017)’s InferSent method to train a neural model

to classify just the hypotheses. We choose InferSent because it performed com-

petitively with the best-scoring systems on the Stanford Natural Language Inference

(SNLI) dataset, while being representative of the types of neural architectures com-

monly used for RTE tasks. InferSent uses a BiLSTM encoder, and constructs a

sentence representation by max-pooling over its hidden states. This sentence repre-

sentation of a hypothesis is used as input to a MLP classifier to predict the RTE

label.
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Creation Protocol Dataset Size Classes Example Hypothesis

Recast

DPR 3K 2 People raise dogs because dogs are afraid of thieves
SPR 150K 2 The judge was aware of the dismissing
FN+ 150K 2 the irish are actually principling to come home
NER 325K 2 Hong Kong is a location
EF 48K 2 The proposing did not happen
RE 25K 2 Obama served as President of the United States
Puns 17K 2 Natalee heard a pun
Sentiment 6K 2 Yaseen liked the restaurant
VC 125K 2 Something bad happened
MV 11K 2 that thing might or might not have happened
VN 2K 2 The package moved

Judged

ADD-1 5K 2 A small child staring at a young horse and a pony
SCITAIL 25K 2 Humans typically have 23 pairs of chromosomes
SICK 10K 3 Pasta is being put into a dish by a woman
MPE 10K 3 A man smoking a cigarette
JOCI 30K 3 The flooring is a horizontal surface

Elicited SNLI 550K 3 An animal is jumping to catch an object
MNLI 425K 3 Kyoto has a kabuki troupe and so does Osaka

Table 5.1: Basic statistics about the RTE datasets we consider. ‘Size’ refers to the
total number of labeled premise-hypothesis pairs in each dataset (for datasets with
> 100K examples, numbers are rounded down to the nearest 25K). The ‘Creation
Protocol’ column indicates how the dataset was created. The ‘Class’ column reports
the number of class labels/tags. The last column shows an example hypothesis from
each dataset.

5.3 Datasets

We use a hypothesis-only model to study eighteen RTE datasets. We categorize

them into three distinct groups based on the methods by which they were constructed.

Table 5.1 summarizes the different RTE datasets that our investigation considers.

Human Elicited

In cases where humans were given a context and asked to generate a corresponding

hypothesis and label, we consider these datasets to be elicited. Although we consider
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only two such datasets, they are the largest datasets included in our study and are

currently popular amongst researchers. The elicited RTE datasets we look at are:

• Stanford Natural Language Inference (SNLI) To create SNLI, Bowman

et al. (2015) showed crowdsource workers a premise sentence (sourced from

Flickr image captions (Young et al., 2014b)), and asked them to generate a

corresponding hypothesis sentence for each of the three labels (entailment,

neutral, contradiction). SNLI is known to contain stereotypical biases

based on gender, race, and ethnic stereotypes (Rudinger, May, and Van Durme,

2017). Furthermore, Zhang et al. (2017) commented that this “elicitation pro-

tocol can lead to biased responses unlikely to contain a wide range of possible

common-sense inferences.”

• Multi-NLI Multi-NLI is a recent expansion of SNLI aimed to add greater diver-

sity to the existing dataset (Williams, Nangia, and Bowman, 2017). Premises

in Multi-NLI can originate from fictional stories, personal letters, telephone

speech, and a 9/11 report.

Human Judged

Alternatively, if hypotheses and premises were automatically paired but labeled

by a human, we consider the dataset to be judged. Our human-judged data sets are:

• Sentences Involving Compositional Knowledge (SICK) To evaluate how

well compositional distributional semantic models handle “challenging phenom-

107



CHAPTER 5. HYPOTHESIS-ONLY BIASES IN RTE

ena”, Marelli et al. (2014) introduced SICK, which used rules to expand or

normalize existing premises to create more difficult examples. Workers were

asked to label the relatedness of these resulting pairs, and these labels were

then converted into the same three-way label space as SNLI and Multi-NLI.

• Add-one RTE This mixed-genre dataset tests whether RTE systems can un-

derstand adjective-noun compounds (Pavlick and Callison-Burch, 2016). Premise

sentences were extracted from Annotated Gigaword (Napoles, Gormley, and

Van Durme, 2012), image captions (Young et al., 2014a), the Internet Argu-

ment Corpus (Walker et al., 2012), and fictional stories from the GutenTag

dataset (Mac Kim and Cassidy, 2015). To create hypotheses, adjectives were

removed or inserted before nouns in a premise, and crowd-sourced workers were

asked to provide reliable labels (entailed, not-entailed).

• SciTail Recently released, SciTail is an RTE dataset created from 4th grade

science questions and multiple-choice answers (Khot, Sabharwal, and Clark,

2018). Hypotheses are assertions converted from question-answer pairs found

in SciQ (Welbl, Liu, and Gardner, 2017).4 Hypotheses are automatically paired

with premise sentences from domain specific texts (Clark et al., 2016), and

labeled (entailment, neutral) by crowdsource workers. Notably, the con-

struction method allows for the same sentence to appear as a hypothesis for

more than one premise.
4http://allenai.org/data/science-exam-questions.html
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• Multiple Premise Entailment (MPE) Unlike the other datasets we con-

sider, the premises in MPE (Lai, Bisk, and Hockenmaier, 2017) are not sin-

gle sentences, but four different captions that describe the same image in the

FLICKR30K dataset (Plummer et al., 2015). Hypotheses were generated by

simplifying either a fifth caption that describes the same image or a caption

corresponding to a different image, and given the standard 3-way tags. Each hy-

pothesis has at most a 50% overlap with the words in its corresponding premise.

Since the hypotheses are still just one sentence, our hypothesis-only baseline can

easily be applied to MPE.

• Johns Hopkins Ordinal Common-Sense Inference (JOCI) JOCI labels

context-hypothesis instances on an ordinal scale from impossible (1) to very

likely (5) (Zhang et al., 2017). In JOCI, context (premise) sentences were taken

from existing NLU datasets: SNLI, ROC Stories (Mostafazadeh et al., 2016),

and COPA (Roemmele, Bejan, and Gordon, 2011). Hypotheses were created

automatically by systems trained to generate entailed facts from a premise.5

Crowd-sourced workers labeled the likelihood of the hypothesis following from

the premise on an ordinal scale. We convert these into 3-way RTE tags where 1

maps to contradiction, 2-4 maps to neutral, and 5 maps to entailment.

Converting the annotations into a 3-way classification problem allows us to limit

the range of the number of RTE label classes in our investigation.
5We only consider the hypotheses generated by either a seq2seq model or from external world

knowledge.
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Recast

As a reminder from Chapter 3, recast RTE datasets are automatically, pragmat-

ically generated from existing datasets for other NLP tasks. RTE sentence pairs are

constructed and labeled with minimal human intervention. In addition to the datasets

in the DNC, we consider the three datasets in White et al. (2017)’s pre-cursor to the

DNC. The three other recast datasets we consider are:

• Semantic Proto-Roles (SPR) Inspired by Dowty (1991)’s thematic role the-

ory, Reisinger et al. (2015) introduced the Semantic Proto-Role (SPR) labeling

task, which can be viewed as decomposing semantic roles into finer-grained

properties, such as whether a predicate’s argument was likely aware of the

given predicated situation. 2-way labeled RTE sentence pairs were generated

from SPR annotations by creating general templates.

• Definite Pronoun Resolution (DPR) The DPR dataset targets an RTE

model’s ability to perform anaphora resolution (Rahman and Ng, 2012). In the

original dataset, sentences contain two entities and one pronoun, and the task

is to link the pronoun to its referent. In the recast version, the premises are the

original sentences and the hypotheses are the same sentences with the pronoun

replaced with its correct (entailed) and incorrect (not-entailed) referent.

For example, People raise dogs because they are obedient and People raise dogs

because dogs are obedient is such a context-hypothesis pair. We note that this
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mechanism would appear to maximally benefit a hypothesis-only approach, as

the hypothesis semantically subsumes the context.

• FrameNet Plus (FN+) Using paraphrases from PPDB (Ganitkevitch, Van

Durme, and Callison-Burch, 2013), Rastogi and Van Durme (2014) automati-

cally replaced words with their paraphrases. Subsequently, Pavlick et al. (2015)

asked crowd-source workers to judge how well a sentence with a paraphrase

preserved the original sentence’s meanings. In this RTE dataset that targets

a model’s ability to perform paraphrastic inference, premise sentences are the

original sentences, the hypotheses are the edited versions, and the crowd-source

judgments are converted to 2-way RTE-labels. For not-entailed examples, White

et al. (2017) replaced a single token in a context sentence with a word that

crowd-source workers labeled as not being a paraphrase of the token in the given

context. In turn, we might suppose that positive entailments (2) are keeping

in the spirit of RTE, but not-entailed examples might not because there are

adequacy (3) and fluency (4) issues.6

(1) .
¯

That is the way the system works

(2) .
¯

That is the way the framework works

(3) .̧ That is the road the system works
6In these examples, (1) is the corresponding context.
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(4) †. That is the way the system creations

Experimental details

We preprocess each recast dataset using the NLTK tokenizer (Bird and Loper,

2004). Following Conneau et al. (2017), we map the resulting tokens to 300-dimensional

GloVe vectors (Pennington, Socher, and Manning, 2014) trained on 840 billion tokens

from the Common Crawl, using the GloVe OOV vector for unknown words. For all

experiments except for JOCI, we use each RTE dataset’s standard train, dev, and

test splits.7 We optimize via SGD, with an initial learning rate of 0.1, and decay rate

of 0.99. We allow at most 20 epochs of training with optional early stopping accord-

ing to the following policy: when the accuracy on the development set decreases, we

divide the learning rate by 5 and stop training when the learning rate is less than

10−5.

5.4 Results

Our goal is to determine whether a hypothesis-only model outperforms the ma-

jority baseline and investigate what may cause significant gains. In such cases a

hypothesis-only model should be used as a stronger baseline instead of the majority

class baseline when evaluating an RTE model. Table 5.2 compares the hypothesis-only
7JOCI was not released with such splits so we randomly split the dataset into such a partition

with 80:10:10 ratios.
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DEV TEST
Dataset Hyp-Only MAJ |∆| ∆% Hyp-Only MAJ |∆| ∆% Baseline SOTA

Recast

DPR 50.21 50.21 0.00 0.00 49.95 49.95 0.00 0.00 49.5 49.5
SPR 86.21 65.27 +20.94 +32.08 86.57 65.44 +21.13 +32.29 80.6 80.6
FN+ 62.43 56.79 +5.64 +9.31 61.11 57.48 +3.63 +6.32 80.5 80.5
NER 93.50 50.00 +43.5 +87.0 91.48 50.00 +41.48 +82.96 92.50 92.50
EF 73.84 50.00 +23.84 +47.68 69.14 50.00 +19.14 +38.28 83.07 83.86
RE 66.06 62.85 +3.21 +5.11 64.78 59.53 +5.25 +8.82 61.89 76.08

Puns 60.39 50.00 +10.39 +20.78 60.36 50.00 +10.36 +20.72 60.36 93.17
Sentiment 50.00 50.00 0.0 -0.0 50.00 50.00 0.00 0.00 50.00 83.50

VC 77.82 50.00 +27.82 +55.64 76.82 50.00 +26.82 +53.64 88.60 89.00
MV 79.86 66.67 +13.19 +19.78 77.83 66.67 +11.16 +16.74 85.96 85.96
VN 59.74 59.74 0.0 -0.0 46.34 53.66 -7.32 -13.64 46.34 78.05

Human Judged
ADD-1 75.10 75.10 0.00 0.00 85.27 85.27 0.00 0.00 92.2 92.2
SciTail 66.56 50.38 +16.18 +32.12 66.56 60.04 +6.52 +10.86 70.6 77.3
SICK 56.76 56.76 0.00 0.00 56.87 56.87 0.00 0.00 56.87 84.6
MPE 40.20 40.20 0.00 0.00 42.40 42.40 0.00 0.00 41.7 56.3
JOCI 61.64 57.74 +3.90 +6.75 62.61 57.26 +5.35 +9.34 – –

Human Elicited
SNLI 69.17 33.82 +35.35 +104.52 69.00 34.28 +34.72 +101.28 78.2 89.3

MNLI-1 55.52 35.45 +20.07 +56.61 – 35.6 – – 72.3 80.60
MNLI-2 55.18 35.22 +19.96 +56.67 – 36.5 – – 72.1 83.21

Table 5.2: RTE accuracies on each dataset. Columns ‘Hyp-Only’ and ‘MAJ’ indi-
cates the accuracy of the hypothesis-only model and the majority baseline. |∆| and
∆% indicate the absolute difference in percentage points and the percentage increase
between the Hyp-Only and MAJ. Blue numbers indicate that the hypothesis-model
outperforms MAJ. In the right-most section, ‘Baseline’ indicates the original baseline
on the test when each dataset was released and ‘SOTA’ indicates current state-of-
the-art results. MNLI-1 is the matched version and MNLI-2 is the mismatched for
MNLI. The names of datasets are italicized if containing ≤ 10K labeled examples.
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model’s accuracy with the majority baseline on each dataset’s dev and test set.8

Across most of the eighteen datasets, our hypothesis-only model significantly

outperforms the majority-baseline, even outperforming the best reported results

on one dataset, recast SPR. This indicates that there exists a significant degree of

exploitable signal that may help RTE models perform well on their corresponding

test set without considering RTE contexts. The largest relative gains are on human-

elicited models where the hypothesis-only model more than doubles the majority

baseline.

However, there are no obvious unifying trends across these datasets: Among the

judged and recast datasets, where humans do not generate the RTE hypothesis, we

observe lower performance margins between majority and hypothesis-only models

compared to the human elicited data sets. In six of the eight DNC1.0 datasets that we

test here, the hypothesis-only model outperforms MAJ. Interestingly, the hypothesis-

only model outperforms InferSent on the recast relation extraction dataset.9 The

high hypothesis-only accuracy on the recast NER dataset is alarming and we will

discuss this more in Section 5.6 when dealing with the recommendations for creating

new NLI datasets based on these results.

In general the performances of these hypothesis-only models are noticeably much

larger that MAJ on SNLI and Multi-NLI compared to the models’ performances on
8We only report results on the Multi-NLI development set since the test labels are only accessible

on Kaggle.
9As reported in Table 3.3, InferSent achieves a 61.89 accuracy and its hypothesis-only version

achieves a 64.78 accuracy.
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the other datasets. The drop between the models’ performance on Mulit-NLI (56%

increase) compared to SNLI (over 100% increase) suggests that by including multiple

genres, an RTE dataset may contain less biases. However, adding additional genres

might not be enough to mitigate biases as the hypothesis-only model still drastically

outperforms the majority-baseline. Therefore, we believe that models tested on SNLI

and Multi-NLI should include a baseline version of the model that only accesses

hypotheses.

We notice that on the smaller RTE datasets under consideration, i.e. those with

at most 10K examples, the hypothesis-only model always predicts the majority class

label from the test set. On three of the five human judged datasets (ADD-1, SICK,

and MPE), the hypothesis-only model defaults to labeling each instance with the

majority class tag. We find the same behavior in the smaller recast datasets (DPR,

Sentiment, and VN). This might be caused by the small size of each of these datasets.

Data intensive neural networks seem to predict the majority class label for each test

instance when trained on a small amount of data.

Across both these categories of dataset construction (recast and human-judged),

we find smaller relative improvements than on SNLI and Multi-NLI. These results

suggest the existence of exploitable signal in the datasets that is unrelated to contexts

in RTE. Our focus now shifts to identifying precisely what these signals might be and

understanding why they may appear in RTE hypotheses.
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Figure 5.2: Plots showing the number of sentences per each label (Y-axis) that
contain at least one word w such that p(l|w) >= x for at least one label l. Colors
indicate different labels. Intuitively, for a sliding definition of what value of p(l|w)
might constitute a “give-away” the Y-axis shows the proportion of sentences that can
be trivially answered for each class.

5.5 Exploring Statistical Irregularities

We are interested in determining what characteristics in the datasets may be

responsible for the hypothesis-only model often outperforming the majority baseline.

Here, we investigate the importance of specific words, grammaticality, and lexical

semantics.

Can Labels be Inferred from Single Words?

Since words in hypotheses have a distribution over the class of labels, we can

determine the conditional probability of a label l given the word w by

p(l|w) = count(w, l)

count(w)
(5.1)
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If p(l|w) is highly skewed across labels, there exists the potential for a predictive

bias. Consequently, such words may be “give-aways” that allow the hypothesis model

to correctly predict an RTE label without considering the context. Consequently,

if hypotheses in an RTE dataset contain many such words, then the dataset may

contain exploitable biases that do not require a RTE model to perform general NLU.

If a single occurrence of a highly label-specific word would allow a sentence to

be deterministically classified, how many sentences in a dataset are prone to being

trivially labeled? The plots in Figure 5.2 answer this question for SNLI and DPR.

The Y -value where X = 1.0 captures the number of such sentences. Other values of

X < 1.0 can also have strong correlative effects, but a priori the relationship between

the value of X and the coverage of trivially answerable instances in the data is unclear.

We illustrate this relationship for varying values of p(l|w). When X = 0, all words

are considered highly-correlated with a specific class label, and thus the entire data

set would be treated as trivially answerable.

In DPR, which has two class labels, the uncertainty of a label is highest when

p(l|w) = 0.5. The sharp drop as X deviates from this value indicates a weaker effect,

where there are proportionally fewer sentences which contain highly label-specific

words with respect to SNLI. As SNLI uses 3-way classification we see a gradual

decline from 0.33.
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Word Score Freq

instrument 0.90 20
touching 0.83 12

least 0.90 10
Humans 0.88 8

transportation 0.86 7
speaking 0.86 7
screen 0.86 7
arts 0.86 7

activity 0.86 7
opposing 1.00 5

(a) entailment

SNLI

Word Score Freq

tall 0.93 44
competition 0.88 24

because 0.83 23
birthday 0.85 20

mom 0.82 17
win 0.88 16
got 0.81 16
trip 0.93 15
tries 0.87 15

owner 0.87 15

(b) neutral

Word Score Freq

sleeping 0.88 108
driving 0.81 53
Nobody 1.00 52
alone 0.90 50
cat 0.84 49

asleep 0.91 43
no 0.84 31

empty 0.93 28
eats 0.83 24

sleeps 0.95 20

(c) contradiction

Word Score Freq

an 0.57 21
gathered 0.58 12

girl 0.50 12
trick 0.55 11
Dogs 0.55 11

watches 0.60 10
field 0.60 10

singing 0.50 10
outside 0.67 9

something 0.62 8

(d) entailment

MPE

Word Score Freq

smiling 0.56 16
An 0.60 10
for 0.56 9

front 0.75 8
camera 0.62 8
waiting 0.50 8
posing 0.50 8
Kids 0.57 7
smile 0.83 6
wall 0.50 6

(e) neutral

Word Score Freq

sitting 0.51 88
woman 0.55 80
men 0.56 34
Some 0.62 26
doing 0.59 22

Children 0.50 22
boy 0.67 21

having 0.65 20
sit 0.60 15

children 0.53 15

(f) contradiction

Figure 5.3: Lists of the most highly-correlated words in each dataset for given
labels, thresholded to the top 10 and ranked according to frequency. These numbers
are based on statistics of each datasets’ development set.

What are “Give-away” Words?

Now that we analyzed the extent to which highly label-correlated words may exist

across sentences in a given label, we would like to understand what these words are
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and why they exist.

Figure 5.3 reports some of the words with the highest p(l|w) for SNLI, a human

elicited dataset, and MPE, a human judged dataset, on which our hypothesis model

performed identically to the majority baseline. Because many of the most discrimi-

native words are low frequency, we report only words which occur at least five times.

We rank the words according to their overall frequency, since this statistic is perhaps

more indicative of a word w’s effect on overall performance compared to p(l|w) alone.

The score p(l|w) of the words shown for SNLI deviate strongly, regardless of the

label. In contrast, in MPE, scores are much closer to a uniform distribution of p(l|w)

across labels. Intuitively, the stronger the word’s deviation, the stronger the potential

for it to be a “give-away” word. A high word frequency indicates a greater potential

of the word to affect the overall accuracy on RTE.

Qualitative Examples

Turning our attention to the qualities of the words themselves, we can easily

identify trends among the words used in contradictory hypotheses in SNLI. In our

top-10 list, for example, three words refer to the act of sleeping. Upon inspecting

corresponding context sentences, we find that many contexts, which are sourced from

Flickr, naturally deal with activities. This leads us to believe that as a common

strategy, crowd-source workers often do not generate contradictory hypotheses that

require fine-grained semantic reasoning, as a majority of such activities can be easily
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negated by removing an agent’s agency, i.e. describing the agent as sleeping. Two

of the other terms, driving and eats, support this theory since these are actions that

someone in a picture of Flickr would not be doing, especially if they are busy with

another activity. We refer to these terms as “sage-advice”, actions that should not be

performed while multi-tasking.

Another trend we notice is that universal negation constitutes four of the remain-

ing seven terms in this list, and may also be used to similar effect.10 The human-

elicited protocol does not guide, nor incentivize crowd-source workers to come up

with less obvious examples. If not properly controlled, elicited datasets may be prone

to many label-specific terms. The existence of label-specific terms in human-elicited

NLI datasets does not invalidate the datasets nor is surprising. Studies in eliciting

norming data are prone to repeated responses across subjects (McRae et al., 2005)

(see discussion in §2 of (Zhang et al., 2017)).

On the Role of Grammaticality

Like MPE, FN+ contains few high frequency words with high p(l|w). However,

unlike on MPE, our hypothesis-only model outperforms the majority-only baseline.

If these gains do not arise from “give-away” words, then what is the statistical irreg-

ularity responsible for this discriminative power?

Upon further inspection, we notice an interesting imbalance in how our model

performs for each of the two classes. The hypothesis-only model performs similarly
10These are “Nobody”, “alone”, “no”, and “empty”.
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label Hyp-Only MAJ ∆%
entailed 44.18 43.20 +2.27

not-entailed 76.31 56.79 +34.37

Table 5.3: Accuracies on FN+ for each class label.

to the majority baseline for entailed examples, while improving by over 34% those

which are not entailed, as shown in Table 5.3.

As shown by White et al. (2017) and discussed in Section 4.2.4,FN+ contains

more grammatical errors than the other recast datasets. We explore whether gram-

maticality could be the statistical irregularity exploited in this case. We manually

sample a total of 200 FN+ sentences and categorize them based on their gold label

and our model’s prediction. Out of 50 sentences that the model correctly labeled as

entailed, 88% of them were grammatical. On the other-hand, of the 50 hypotheses

incorrectly labeled as entailed, only 38% of them were grammatical. Similarly, when

the model correctly labeled 50 not-entailed hypotheses, only 20% were grammat-

ical, and 68% when labeled incorrectly. This suggests that a hypothesis-only model

may be able to discover the correlation between grammaticality and RTE labels on

this dataset.

Lexical Semantics

A survey of gains (Table 5.4) in the SPR dataset suggest a number of its property-

driven hypotheses, such as X was sentient in [the event], can be accurately guessed

based on lexical semantics (background knowledge learned from training) of the ar-
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gument. For example, the hypothesis-only baseline correctly predicts the truth of

hypotheses in the dev set such as: Experts were sentient ... or Mr. Falls was sentient

..., and the falsity of The campaign was sentient, while failing on referring expressions

like Some or Each side. A model exploiting regularities of the real world would seem

to be a different category of dataset bias: while not strictly wrong from the perspec-

tive of NLU, one should be aware of what the hypothesis-only baseline is capable of,

to recognize those cases where access to the context is required and therefore more

interesting under RTE.

Open Questions

There may remain statistical irregularities, which we leave for future work to

explore. For example, are there correlation between sentence length and label class in

these data sets? Is there a particular construction method that minimizes the amount

of “give-away” words present in the dataset? And lastly, our study is another in a

line of research which looks for irregularities at the word level (MacCartney, Galley,

and Manning, 2008; MacCartney, 2009). Beyond bag-of-words, are there multi-word

expressions or syntactic phenomena that might encode label biases?

5.6 Discussion

We introduced a stronger baseline for eighteen RTE datasets. Our baseline reduces

the task from labeling the relationship between two sentences to classifying a single
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Proto-Role H-model MAJ ∆%

aware 88.70 59.94 +47.99
used in 77.30 52.72 +46.63

volitional 87.45 64.96 +34.62
physically existed 87.97 65.38 +34.56

caused 82.11 63.08 +30.18
sentient 94.35 76.26 +23.73

existed before 80.23 65.90 +21.75
changed 72.18 64.85 +11.29

chang. state 71.76 64.85 +10.65
existed after 79.29 72.91 +8.75

existed during 90.06 85.67 +5.13
location 93.83 91.21 +2.87

physical contact 89.33 86.92 +2.77
chang. possession 94.87 94.46 +0.44

moved 93.51 93.20 +0.34
stationary during 96.44 96.34 +0.11

Table 5.4: RTE accuracies on the SPR development data; each property appears in
956 hypotheses.

hypothesis sentence. Our experiments demonstrated that in most of the eighteen

datasets, always predicting the majority-class label is not a strong baseline, as it

is significantly outperformed by the hypothesis-only model. Our analysis suggests

that statistical irregularities, including word choice and grammaticality, may reduce

the difficulty of the task on popular RTE datasets by not fully testing how well a

model can determine whether the truth of a hypothesis follows from the truth of a

corresponding premise.

Lessons for future recasting

The high hypothesis-only accuracy on the recast NER dataset may demonstrate

that the hypothesis-only model is able to detect that the distribution of class labels
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for a given word may be peaky. For example, Hong Kong appears 130 times in

the training set and is always labeled as a location. Based on this, considerations

should be taken into account when recasting more datasets in the future. First, since

interesting natural language inference should depend on both premise and hypothesis,

datasets and tasks where context is often not necessary for predicting a label might

not be suitable for recasting into RTE. Second, large datasets might make it difficult

to evaluate NLP models as peaky distributions might be learned during training.

Therefore, we advocate for small, high quality test sets. If a large dataset is indeed

constructed, which has been show to be beneficial for pretraining, then one might

want to ensure that terms with peaky distributions do not appear in more than one

split of the data.

Impact in the field

When this work was originally published at StarSem2018, we hoped our findings

would encourage the development of new RTE datasets which exhibit less exploitable

irregularities, and that encourage the development of richer models of inference. We

advocated for the inclusion of hypothesis-only baselines in future dataset and model

reports. Since then, the community has answered our call as many have included

hypothesis-only baselines for new RTE (or related) datasets (Welleck et al., 2019;

Clark et al., 2019; Sileo et al., 2019; Yanaka et al., 2019; Víta and Klímek, 2019;

Sakaguchi et al., 2020; Bhagavatula et al., 2020; Yu et al., 2020; Bisk et al., 2020;
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Kim et al., 2020), models (Yin and Schütze, 2018), or similar studies (Schuster et al.,

2019; Feng, Wallace, and Boyd-Graber, 2019; Bras et al., 2020; Sun, Guzmán, and

Specia, 2020).

People in the community have taken liberty with this work by extrapolating con-

clusions that we are not fully comfortable with based on our results. For example,

Li, Mou, and Keller (2019) state that we “argue that [RTE] as currently formulated

is not a difficult task.” We used these results to claim that “the majority baselines

might not be as indicative of the difficulty of the task as previously thought” and

that these biases might reduce the diffuclty of the task on popular datasets. We did

not argue that RTE is a not difficult task. In follow-up work (Chen et al., 2020b) we

argue that RTE should move away from categorical classes to scalar predictions rep-

resenting the likelihood of a hypothesis given a premise. However, this was motivated

by human subjective probability assessments, not by the seemingly lack of difficulty

in the traditional categorical based RTE formation.

In his EMNLP 2018 keynote presentation titled “The Moment of Meaning and

the Future of Computational Semantics”,11 John Bos acknowledged that “the Poliak

people say we should use other baselines” since “ ‘they show you can make pretty

good predictions by looking at the hypothesis ... that’s just ridiculous, right?” How-

ever, I disagree with his conclusion that these datasets are not good for checking

textual entailment. The task and most datasets are still challenging and difficult
11https://vimeo.com/306143088
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as state-of-the-art models achieve much higher accuracies than their hypothesis-only

counterparts. These datasets are not tainted by the fact that hypothesis-only models

have drastically improved a majority baselines, rather, these hypothesis-only models

help us understand biases in the datasets that might be based on annotation artifacts

or domain specific biases. Our analysis helps understand what domain specific biases

might be present in a dataset and can illuminate what a specific RTE dataset might

actually be testing for.
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Revisiting Paraphrasing in RTE

A capacity for reliable, robust, open-domain natural language inference is
arguably a necessary condition for full natural language understanding

(MacCartney, 2009).

We now turn towards addressing issues related to hypothesis-only biases discov-

ered in the previous chapter. In RTE, systems “must be able to deal with all manners

of linguistic phenomena and broad variability of semantic expression” (MacCartney,

2009). We posit that if an RTE model has a sufficiently high capacity for reliable,

robust inference necessary for full NLU, then the model’s predictions should be con-

sistent when an input example is paraphrased. In multiple times in this thesis,1 we

mentioned how the recast dataset focused on paraphrastic inference contained biases.

Due to White et al. (2017)’s recasting method, non-entailed hypotheses were often

ungrammtical or disfluent.

In this chapter, we introduce a RTE test set that evaluates how reliable and robust
1Section 5.5 and Section 4.2.3
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models are to paraphrases. The test set that we present here consists of examples

from the Pascal RTE1-3 challenges (Dagan, Glickman, and Magnini, 2006; Bar-Haim

et al., 2006; Giampiccolo et al., 2007) that have be rewritten with a lexical rewriter

and manually verified to be high quality paraphrases of the original premises and

hypotheses. We use this dataset to determine whether different classes of models

(bag of words, LSTMs, or transformers) are robust to paraphrases. If an RTE model’s

predictions are not consistent when premises and hypotheses are paraphrased, then

the system has a far way to go towards understanding natural language.

While this may not be a sufficient test to determine whether RTE models fully

understand language, as there are many semantic phenomena that RTE models should

capture (Cooper et al., 1996; Naik et al., 2018a), it is necessary that any NLU system

be able to handle our paraphrasing test.

6.1 Motivation

RTE and Paraphrasing

Paraphrasing and Textual Entailment are tightly connected (Androutsopoulos and

Malakasiotis, 2010) phenomena that are key to NLU. Many researchers often define

paraphrasing as a special case of entailment where both premise and hypothesis entail

each other (Nevěřilová, 2014; Fonseca and Aluísio, 2015; Víta, 2015). Paraphrasing

has been used to improve RTE systems (Bosma and Callison-Burch, 2006) and RTE
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unemployment is at an all-time low
▶ unemployment is at an all-time poor

aeoi ’s activities and facility have been tied to several universities
▶ aeoi ’s activities and local have been tied to several universities

jerusalem fell to the ottomans in 1517 , remaining under their control for 400 years
▶ jerusalem fell to the ottomans in 1517 , remaining under their regulate for 400 years

usually such parking spots are on the side of the lot
▶ usually such parking spots are dated the side of the lot

Table 6.1: Not-entailed examples from FN+’s dev set where the hypotheses are
ungrammatical. The first line in each section is a premise and the lines with ▶ are
corresponding hypotheses. Underline words represent the swapped paraphrases.

has been used for paraphrase identification (Seethamol and Manju, 2017) and gener-

ation (Brad and Rebedea, 2017).

NLP systems are often sensitive to changes to input data. For example, neural

machine translation systems are brittle to synthetic and natural noise (Belinkov and

Bisk, 2018), machine reading models fail when distracting sentences are added (Jia

and Liang, 2017), and sentiment analysis fails when tokens are swapped with syn-

onyms (Iyyer et al., 2018). In general, the brittleness of NLP systems is undesirable,

but in particular, models trained towards the goal of natural language understanding

(NLU) must not be brittle to paraphrases.

White et al. (2017) recast FN+ dataset

As mentioned in Section 5.3, to create not-entailed hypotheses, White et al. (2017)

replaced a single token in a context sentence with a word that crowd-source workers

labeled as not being a paraphrase of the token in the given context. In FN+ (Pavlick
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et al., 2015), two words might be deemed to be incorrect paraphrases in context

based on a difference in the words’ part of speech tags. Table 6.1 demonstrates such

examples, and in the last example, the words “on” and “dated” in the premise and

hypothesis respectively have the NN and VBN POS tag. Therefore, the goal of this

chapter is to create a new RTE dataset of grammatical and fluent examples that can

be used to determine whether RTE systems are brittle to paraphrases.

6.2 Creating p̂RTE

In this section, we describe how we create p̂RTE, a vetted, paraphrased version

of an existing RTE dataset to test whether models are robust to paraphrased input.

Broadly, we used a sentence-level rewriter to create P’ and H’, paraphrases of premises

(P) and hypotheses (H) in a existing RTE dataset. We then rely on crowd-source

workers to determine whether P’ and H’ are fluent and grammatical and how well

each P’ and H’ are paraphrases of corresponding P and H. For each P-H pair, we

create three new RTE examples: P’-H, P-H’, P’-H’.

We use the examples from the PASCAL RTE1-3 challenges as our test set, as

opposed to other RTE datasets for multiple reasons. First, the examples and annota-

tions in RTE1-3 are known to be of high quality. Secondly, the examples originated

from multiple domains and different tasks, enabling us to incorporate aspects of open

domain inference that MacCartney (2009) describes. Thirdly, although recent “prob-
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ing” RTE test sets perturb MNLI examples (Kim et al., 2019; Ross and Pavlick, 2019),

we do not generate paraphrases of MNLI because we want to avoid social (Rudinger,

May, and Van Durme, 2017) and hypothesis-only (Tsuchiya, 2018; Gururangan et

al., 2018; Poliak et al., 2018b) biases that are present in human elicited datasets like

MNLI (McRae et al., 2005). A paraphrased version of MNLI has been used to train

an RTE model to be “more tolerant of minor lexical differences, better able to gener-

alize, and less inclined to memorize” (Hu et al., 2019). Here, our focus is using this

data set as a test metric and not to develop robust models.

Rewriting premises and hypotheses

We use ParaBank (Hu et al., 2019) to create three re-written sentences for each

premise and hypothesis in the 3,277 pairs2 in the PASCAL RTE1-3 datasets.3 Para-

Bank is a state-of-the-art sentence-level rewriter that uses lexically-constrained se-

quence decoding with a vectorized dynamic beam allocation. Since we want to test

paraphrastic understanding beyond simple lexical replacement, we discarded the re-

written sentences that had at most a 80% lexical overlap with the corresponding

original sentence.
2277 pairs and 3k pairs in dev/test sets respectively.
3At each time step during decoding, we allowed the rewriter to sample 10 words.

131



CHAPTER 6. REVISITING PARAPHRASING IN RTE

P The recent G8 summit, held June 8-10, brought together
leaders of the world’s major industrial democracies

P’ At a recent G8 summit, held in June 8-10, leaders of the
world’s largest industrial lords were brought together

H The recent G8 summit took place on June 8-10
H’ The recent G8 summit was in June 8-10

Table 6.2: The top half represents an original premise (P) and its paraphrase (P’).
The bottom half depicts an original hypothesis (H) and its paraphrase (H’). If a
model is robust to paraphrases, it’s prediction (entailed in this example) should be
consistent for the following pairs: P-H, P’-H’, P-H’, and P’-H’.

Evaluating paraphrase quality

To ensure that the re-written sentences are indeed sentence-level paraphrases for

the original sentences, we relied on crowdsource workers to remove low quality para-

phrases. Annotators were asked to assign a score between 0 and 100 representing

the similarity of a sentence and 3 presented paraphrases and also determine whether

the paraphrases were grammatical. Figure 6.1 include the instructions showen to

crowdsource workers for judging similarity between sentences. We retained rewritten

sentences that were deemed to be grammatical and had a paraphrase score between

90 (inclusive) and 100 (exclusive).4 This resulted in a set of 812 new sentence-level

paraphrases.5

Next, we map the re-written sentences to the original RTE examples to create

paraphrased RTE-pairs. Any original RTE pairs that have an approved P’ and H’

are included in our robust-to-paraphrase collection. Out of the original 3,277 RTE
4We exclused rewritten sentences with a score of 100 as a simple method to deal with bad

annotators.
595 and 717 sentences from the dev/test sets respectively.
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Figure 6.1: Instructions for semantic similarity and grammatically check.

examples, 379 RTE pairs remain,6 resulting in a total of 1,516 premise-hypothesis

pairs.7 We use these examples to evaluate whether an RTE model changes its pre-

dictions when RTE examples are paraphrased. Table 6.2 provides an example of a

premise-hypothesis pair with corresponding paraphrases.

6.3 Models under investigation

Our goal is to determine whether RTE models are robust to paraphrasing. In this

study, we explore models built upon three different classes of sentence encoders: bag
640 dev and 339 test examples
7160 dev and 1,356 test examples
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of words (BOW), Recurrent Neural Networks (RNN), and Transformer’s.

Bag of Words Representation

A linear classifier on top of a bag of words representation is a strong baseline for

NLU tasks in general (Joachims, 1998; Joulin et al., 2017).8 We use 300 dimensional

GloVe embeddings (Pennington, Socher, and Manning, 2014) to represent each word

and sentence representations of the premise and hypothesis are obtained by averaging

their respective word vectors. The sentence representations are then concatenated

together to form a single sentence-pair representation which is passed to a fully-

connected hidden layer with 100 dimensions. The output from the hidden layer is fed

to a logistic regression softmax classifier.

RNN representation

The second type of encoder we explore is a recurrent neural network (RNN).

Specifically, we use a Bi-LSTM encoder to follow the methods of the InferSent (Con-

neau et al., 2017) model due to its popularity and high performance on a wide range

of RTE datasets. In particular, the InferSent model uses a Bi-LSTM encoder to in-

dividually encode the premise and hypotheses. We use BiLSTM encoders with one

layer in each direction. Sentence representations of length 2048 are extracted from

the encoders by max-pooling and their concatenation is fed to a MLP with one hidden

layer of 512 dimensions.
8Thank you to Nils Holzenberger for pointing me to these citations.
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Transformer

We consider two recent transformer models: BERT (Devlin et al., 2019) and

RoBERTa (Liu et al., 2020). The latter is a modification of the former where the

next sentence prediction objective is removed during training and the masking pattern

is dynamically changed on training data. Additionally, RoBERTa is trained on longer

sentences, for a higher number of epochs and with bigger batches over an increased

amount of training data. For the transformer models, use pre-built models released

by huggingface.

6.4 Experiments & Results

We train each of these models on the MNLI dataset (Williams, Nangia, and Bow-

man, 2017). We use MNLI as a representative RTE dataset because it’s large size

(over 550k examples) enable us to train data-intensive neural models, its covers a

wide range of genres, and others have recently used models trained on MNLI when

investigating how well RTE models capture different linguistic phenomena (Richard-

son et al., 2020; Yanaka et al., 2020; Jeretic et al., 2020b). MNLI uses three labels

and RTE uses only two labels. When we test the models on p̂RTE, we map the

models’ ‘contradiction’ and ‘neutral’ predictions to the ‘not-entailed’ label in p̂RTE.

We are interested in exploring whether these models are robust to paraphrases

in RTE. Consequently, we compute how often the models’ predictions are consistent
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Metric
Model RoBERTa BiLSTM BOW

accuracy 73.30 55.09 55.60

robust-0 61.65 61.36 51.92
robust-1 10.03 12.39 20.65
robust-2 22.42 20.65 20.94
robust-3 5.90 5.60 6.49

Table 6.3: Results on p̂RTE. First line represents the models accuracy in general.
Each subsequent row represents different robust-to-paraphrase measures.

across each each P-H, P’-H, P-H’, P’-H’ grouping. We refer to this metric as robust-0

since it indicates in what percentages of groupings did the model’s predictions not

change. The results in Table 6.3 demonstrate that RoBERTa performs well on p̂RTE

as it achieves a 73.30% accuracy and is more robust to paraphrases than the other

models. Table 6.3 also reports the percentage of times the models’ predictions change

from its prediction on the unparaphrased example for 1, 2, or 3 instances in each

grouping.

Figure 6.2 further breaks down these results by reporting how well the models

perform on the test set examples from p̂RTE. Here, accuracies are reported based on

whether the premise/hypothesis was paraphrased. The RoBERTa based model drasti-

cally outperforms the other models, but we see the performance drop on paraphrased

examples. We see a similar drop in performance for the BOW model for paraphrased

examples. Interestingly, the BLSTM-based model performs the best when both the

premises and hypotheses are paraphrased.

We also use p̂RTE to evaluate BERT and RoBERTa sentence-level classification
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Figure 6.2: Accuracies across all 1,356 test examples where RTE labels from each P-
H are propagated to the corresponding P’-H, P-H’, and P’-H’ examples. The vertical
line seperates the models trained on MNLI (left) and the models that were not (right).

models that have not been fine tuned on MNLI (right of the vertical line in Figure 6.2).

Interestingly, the RoBERTa model that was not fine-tuned on MNLI outperforms

the BLSTM and BOW models that were trained on MNLI. Both of these models

outperform the BERT model that was not fine tuned on MNLI, regardless of whether

the premises or hypotheses were paraphrased.

Figure 6.3 break down the results from Figure 6.2 based on when the gold label

is entailed ( 6.3a) and not entailed ( 6.3b). For the examples where the hypothesis

is entailed by the premise, the models trained on MNLI consistently perform better

when the examples are not paraphrased. Interestingly, the opposite is true when the
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(a) (b)

Figure 6.3: Accuracies across the examples where the gold label is entailed (a) or
not-entailed (b).

hypothesis is not entailed by the premise. In these examples, the models trained on

MNLI perform better on the paraphrased.

When the BERT model is not fine-tuned on MNLI, it more often predicts that the

hypothesis is not entailed by the premise. For the RoBERTa model not fine-tuned

on MNLI, we see the model often predicts entailed for the non-paraphrased examples

and not-entailed when the sentences are paraphrased.

The examples in RTE1-3 originate from datasets for downstream tasks, e.g. question-

answering, information extraction, and summarization. Figure 6.4 reports accuracy

for each model broken down by the original task. In general, these models perform

the best on the examples originating from the Comparable Document application.

This is similar to the finding from the first PASCAL RTE challenge that

The Comparable Documents (CD) task stands out when observing the
performance of the various systems broken down by tasks. Generally the
results on the this task are significantly higher than the other tasks with
results as high as 87% accuracy and cws of 0.95. This behavior might
indicate that in comparable documents there is a high prior probability
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Figure 6.4: Accuracies across p̂RTE broken down by each task where the RTE data
originated from.

that seemingly matching sentences indeed convey the same meanings. We
also note that that for some systems it is the success on this task which
pulled the figures up from the insignificance baselines.

(Dagan, Glickman, and Magnini, 2006)

6.5 Semantic Variability

MacCartney (2009) argues that in addition to being reliable and robust, RTE

models must deal with the broad variability of semantic expression. In other words,

though two sentences may be semantically congruent, it is possible that small varia-

tions in a paraphrased sentence contain enough semantic variability to change what
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ID Premise Hypothesis

104-RTE2 Hands Across the Divide was formed in
March 2001, and one of its immediate
aims was to press for more freedom of con-
tact and communication right away be-
tween the two parts of Cyprus, and for
early progress towards a solution to ’the
Cyprus problem’.

Cyprus was divided
into two parts in
March 2001.

412-RTE2 Philadelphia is considered the birthplace
of the United States of America, where
the Declaration of Independence and Con-
stitution were written and signed in the
city’s Independence Hall.

The US Declara-
tion of Indepen-
dence is located in
Philadelphia.

729-RTE3 Mice given a substance found in red wine
lived longer despite a fatty diet, a study
shows.

Mice fed with red
wine lived longer
despite a fatty diet.

Table 6.4: Examples in the development set that RoBERTa incorrectly predicted
entailed for all paraphrased versions.

would likely, or not likely be inferred from the sentence. In other words, even though

all P’ and H’ in p̂RTE have been deemed to be semantically congruent with their cor-

responding original sentences, the semantic variability of paraphrases might change

whether H or H’ can be inferred from P’ or P. Consequently, projecting the RTE label

from an original P-H example to the corresponding P-H’, P-H’, and P’-H’ examples

might introduces incorrect annotations. We explore the paraphrased examples in

the development set where the model disagreed with the propogated RTE label to

understand whether the model correctly predicted whether the label should change.

The RoBERTa model trained on Multi-NLI disagrees with the original label in

just 31 instances out of the 160 dev examples. For three P-H, P’-H, P-H’, P’-H’ sets

(shown in Table 6.4), the RoBERTa model incorrectly predicted entailed while the
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original label was not entailed. While the RoBERTa model incorrectly predicts the

labels in these examples, these specific examples might demonstrate that RoBERTa

is robust to paraphrases since the model’s predictions remains the same as these

sentences are paraphrased.

6.6 Discussion

In this chapter, we introduced p̂RTE, a test suite of human vetted paraphrased

RTE examples. This test suite was created by rewriting RTE examples using a

state-of-the-art sentence level rewriter and then relying on crowdsource workers to

determine the grammaticality and fluency of the rewritten sentences. We retained

the sentences that passed this step to created paraphrased RTE examples.

Our experiments demonstrated that contemporary a state-of-the-art transformer

model is more robust to paraphrases than the models based on a bag of words or

BiLSTM representations. In the experiments here, we propagated the labels from the

original RTE examples to their corresponding paraphrased examples. We leave the

question of whether these new paraphrased examples should be annotated instead of

relying on the original RTE labels an an open question for future work.

This chapter concludes the focus on RTE as an evaluation framework to explore the

reasoning capabilities of NLP models. In the next chapter, we will explore modeling

approaches for overcoming biases in RTE datasets.
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Overcoming Hypothesis-Only Biases

This thesis primarily advocates for Recognizing Textual Entailment (RTE) as an

evaluation framework. Since many tasks require common inference capabilities, first

pre-training a model to perform RTE before applying and updating its parameters

for a specific task is productive. As discussed in Section 2.2.2, many researchers suc-

cessfully leverage RTE datasets to improve models for downstream tasks (Bentivogli,

Dagan, and Magnini, 2017; Guo, Pasunuru, and Bansal, 2018a; Guo, Pasunuru, and

Bansal, 2018b).

However, biases in RTE datasets, like hypothesis-only biases discussed in Chap-

ter 5 or stereotypical biases discovered by Rudinger, May, and Van Durme (2017),

might limit or negatively impact RTE’s usefulness as an intermediate step in the pro-

cess of building NLP systems. Therefore, it is important to develop methods that

overcome biases in RTE datasets. In this chapter, we demonstrate how adversar-
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ial learning can help limit a model’s ability to capture hypothesis-only biases and

spurious correlations in RTE datasets. This section of the chapter is based on our

published work (Belinkov et al., 2019a; Belinkov et al., 2019b).

In the last section of this chapter, we will demonstrate how to similarly apply

adversarial learning to a real world NLP task. Since RTE encompasses semantic in-

ference that is necessary for many NLP tasks, adversarial learning can help overcome

domain-specific biases in an applied setting. The real world task we explore is discov-

ering emergency needs during disaster events. We successfully employed this method

in an assemble approach for the DARPA LORELEI challenges. Initial aspects of this

work has been presented at a refereed regional conference (Poliak and Van Durme,

2019).

7.1 Motivation

There are multiple approaches for dealing with the issues presented with biases in

RTE datasets. One common approach is to create new unbiased data or to remove

biased examples. In fact, recent studies have tried to create new RTE datasets that

do not contain such biases, but many such approaches remain unsatisfactory. Con-

structing new datasets (Sharma et al., 2018) is costly and may still result in other

artifacts. Filtering “easy” examples and defining a harder subset is useful for eval-

uation purposes (Gururangan et al., 2018), but difficult to do on a large scale that
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enables training. Compiling adversarial examples (Szegedy et al., 2014; Goodfellow,

Shlens, and Szegedy, 2015; Glockner, Shwartz, and Goldberg, 2018) is informative

but again limited by scale or diversity.

Rather than modifying the biased data itself, another common approach in NLP

advocates for removing discovered biases from already trained models. For exam-

ple, Bolukbasi et al. (2016) present a method, HARD-DEBIAS, for removing gender

biases in pre-trained word embeddings. Bolukbasi et al. (2016) first identify a gen-

dered specific subspace based on pre-computed word embeddings for gender specific

words. Next, they either neutralize or soften the gender aspects of the word em-

beddings. Neutralizing “ensures that gender neutral words are zero in the gender

subspace” while softening “reduces the differences between” sets of gendered terms

“while maintaining as much similarity to the original embedding as possible.” Liang

et al. (2020) introduce an extension called SENT-DEBIAS that removes gender and

religion based biases from contemporary pre-trained sentence representations. They

similarly compute a biased subspace, but then subtract that subspace from learned

sentence representations. Instead of substracting a biased subspace, Ravfogel et al.

(2020) project sentence representations to their null-space to mitigate biases. Each

of these approaches require a known set of biased terms or phrases that are used to

discover these biased subspaces.

The third common approach is to encourage models to ignore or overcome biases

during training. Such contemporary approaches often leverage domain-adversarial
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neural networks, which aim to increase robustness to domain change, by learning

to be oblivious to the domain using gradient reversals (Ganin et al., 2016). NLP

researchers primarily employ gradient reversal based adversarial learning to build

models that generalize across domains (Zhang, Barzilay, and Jaakkola, 2017; Chen et

al., 2018b; Lample et al., 2018). Recently, researchers similarly leverage this method

to encourage models to ignore specific biases. For example, Li, Baldwin, and Cohn

(2018) use adversarial networks to discourage models from learning sensitive informa-

tion like sex and age when performing part of speech tagging or sentiment analysis.

Similarly, Elazar and Goldberg (2018) use adversarial learning to ignore protected

attributes like race, age, and gender. However, they suggest that fully removing such

attributes from text representations may be difficult. In particular, sentence repre-

sentations might still contain aspects related to the protected attributes even though

the adversarially trained model might not rely on that information when making

predictions. A similar approach has also been used to mitigate biases in Visual Ques-

tion Answering (Ramakrishnan, Agrawal, and Lee, 2018; Grand and Belinkov, 2019).

Here, we will use adversarial learning to develop RTE models that are robust to

hypothesis-only biases.

We will begin by discussing two adversarial learning methods that we apply to a

common RTE modeling approach. We will then demonstrate how these approaches

help a model overcome hypothesis-only biases and we will discuss related work that

followed our results.
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7.2 Methods

We consider two types of adversarial methods when training models for RTE. In

the first method, we incorporate an external classifier to force the hypothesis-encoder

to ignore hypothesis-only biases. In the second method, we randomly swap premises

in the training set to create noisy examples.1 First, we review a general RTE model

and introduce notation we will use throughout this chapter.

7.2.1 General, baseline RTE model

Let (P,H) denote a premise-hypothesis pair, and let g denote an encoder that

maps a sentence S to a vector representation v, and c a classifier that maps v to

an output label y. A general RTE framework (Figure 7.1a) contains the following

components:

• A premise encoder gP that maps the premise P to a vector representation p.

• A hypothesis encoder gH that maps the hypothesis H to a vector represen-

tation h.

• A classifier cRTE that combines and maps p and h to an output y.

In this model, the premise and hypothesis are each encoded with separate encoders.

This is common to many RTE models (Rocktäschel et al., 2015; Mou et al., 2016;
1In Belinkov et al. (2019a), we present a probabilistic interpretation of these methods as well.
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(a) (b) (c)

Figure 7.1: Illustration of (a) the baseline RTE architecture, and our two proposed
methods to remove hypothesis only-biases from an RTE model: (b) uses a hypothesis-
only classifier, and (c) samples a random premise. Arrows correspond to the direction
of propagation. Green or red arrows respectively mean that the gradient sign is kept
as is or reversed. Gray arrow indicates that the gradient is not back-propagated -
this only occurs in (c) when we randomly sample a premise, otherwise the gradient
is back-propagated. f and g represent encoders and classifiers.

Cheng, Dong, and Lapata, 2016; Nie and Bansal, 2017; Chen et al., 2017a), although

some share information between the encoders via attention (Parikh et al., 2016; Duan

et al., 2018).

The RTE classifier is usually trained to minimize the following objective:

LRTE = L(cRTE([gP (P ); gH(H)], y)) (7.1)

where L(ỹ, y) is the cross-entropy loss. If gP is not used, a model should not be able

to successfully perform RTE. However, models without gP may achieve non-trivial

results, indicating the existence of biases in hypotheses (Chapter 5).
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7.2.2 Adversarial Learning

When developing models for RTE, we want to encourage models to overcome

or ignore biases in hypotheses. There are different potential Machine Learning ap-

proaches that might help this goal. Like the approaches discussed earlier in this

chapter (Bolukbasi et al., 2016; Liang et al., 2020; Ravfogel et al., 2020), we could

first train a RTE model, then identify a hypothesis-only biased subspace in the learned

sentence representations and remove the biased subspace from the model. However,

those approaches require a set of pre-identified biased terms or phrases and unlike

gender, racial, or religion based biases, hypothesis-only biases are unclear and it may

difficult to identify hypothesis-only biased examples apriori. We would like to enable

a model to discover hypothesis-only biases on its own and simultaneously ignore and

overcome such biases.

Domain-adversarial training, which we will refer to in this thesis as adversarial

learning,2 was introduced as a representation learning approach to help a model gen-

eralize to data sampled from different distributions (Ganin et al., 2016). In this form

of adversarial learning, an additional domain specific classifier is added to maximize

the loss of the domain classifier while the main classifier is optimized to minimize the

error on the training set. Ganin et al. (2016) argue that maximizing the loss of the

domain classifier “encourages domain-invariant features to emerge in the course of the

optimization.” Adversarial learning derives from the work of Ben-David et al. (2007)
2The term adversarial learning has also been used to describe “the task of learning sufficient

information about a classifier to construct adversarial attacks” (Lowd and Meek, 2005).
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and Ben-David et al. (2010) and Kifer, Ben-David, and Gehrke (2004) focused on the-

oretical bounds for domain divergences. In particular, that “the divergence relies on

the capacity of the hypothesis class H to distinguish between examples generated by”

different distributions (Ganin et al., 2016). Ganin et al. (2016) use an domain classi-

fier to discriminate between the different distributions, or domains. During training,

the domain classifier is trained to maximize its loss. This “adversarial” aspect is

implemented with a gradient reversal layer in the network “that leaves the input un-

changed during forward propagation and reverses the gradient by multiplying it by a

negative scalar during the backpropagation” (Ganin et al., 2016).

Training an adversarial classifier this way allows the model to figure out the

domain-invariant features on its own, without any human supervision or prior knowl-

edge. In our setting, we would like the model to determine the hypothesis-only biases

on its and consequently learn sentence representations that are invariant to such bi-

ases. Therefore, adversarial learning is an appropriate and promising technique for

modeling RTE.

7.2.2.1 AdvCls: Adversarial Classifier

Our first approach, referred to as AdvCls, follows the common adversarial training

method (Goodfellow, Shlens, and Szegedy, 2015; Ganin and Lempitsky, 2015; Xie et

al., 2017; Beutel et al., 2017; Zhang, Lemoine, and Mitchell, 2018). We add an

additional adversarial classifier cHypoth to our general RTE model. cHypoth maps the
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hypothesis representation h to an output y. When adversarial learning is applied to

NLP problems, the adversarial classifier is typically used to predict unwanted features,

e.g., protected attributes like race, age, or gender (Elazar and Goldberg, 2018). Here,

we do not have explicit protected attributes but rather latent hypothesis-only biases

discovered during training. Therefore, we use cHypoth to predict the RTE label given

only the hypothesis. To successfully perform this prediction, cHypoth needs to exploit

latent biases in h.

We modify the objective function in Equation 7.1 to become

L =LRTE + λLossLAdv

LAdv =L(cHypoth(λEncGRLλ(gH(H)), y))

To control the interplay between cRTE and cHypoth we set two hyper-parameters: λLoss,

the importance of the adversarial loss function, and λEnc, a scaling factor that multi-

plies the gradients after reversing them. This is implemented by the scaled gradient

reversal layer, GRLλ (Ganin and Lempitsky, 2015). The goal here is modify the rep-

resentation gH(H) so that it is maximally informative for RTE while simultaneously

minimizes the ability of cHypoth to accurately predict the RTE label. Figure 7.1b

depicts the AdvCls approach.
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7.2.2.2 AdvDat: Adversarial Training Data

For our second approach, which we call AdvDat, instead of adding an external

component to the general RTE model, we use the general model as is, but rather

train it with perturbed training data. For a fraction of example (P,H) pairs in the

training data, we replace P with P ′, a premise from another training example, chosen

uniformly at random. For these instances, during back-propagation, we similarly re-

verse the gradient but only back-propagate through gH . The adversarial loss function

LRandAdv is defined as:

LRandAdv = L(cRTE([GRL0(gP (P
′));λEncGRLλ(gH(H))], y))

where GRL0 implements gradient blocking on gP by using the identity function in

the forward step and a zero gradient during the backward step. At the same time,

GRLλ reverses the gradient going into gH and scales it by λEnc, as before.

We set a hyper-parameter λRand ∈ [0, 1] that controls what fraction P ’s are

swapped at random. In turn, the final loss function combines the two losses based on

λRand as

L = (1− λRand)LRTE + λRandLRandAdv

In essence, this method penalizes the model for correctly predicting y in perturbed

examples where the premise is uninformative. This implicitly assumes that the label

for (P,H) should be different than the label for (P ′, H), which in practice does not
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always hold true.3

Implementation Details

As in earlier experiments in this thesis, we use InferSent (Conneau et al., 2017)

as our baseline model because it has been shown to work well on popular RTE datasets

and is representative of many RTE models. We use separate BiLSTM encoders to

learn vector representations of P and H. The vector representations are combined

following Mou et al. (2016),4 and passed to an MLP classifier with one hidden layer.

Our proposed methods for mitigating biases use the same technique for representing

and combining sentences. The classifiers are single-layer MLPs of size 20 dimensions.

We train these models with SGD until convergence. The sentence representations

learned by the BiLSTM encoders and the MLP classifier’s hidden layer have a di-

mensionality of 2048 and 512 respectively. We follow InferSent’s training regime,

using SGD with an initial learning rate of 0.1 and optional early stopping. For both

methods, we sweep the hyper-parameters over values {0.05, 0.1, 0.2, 0.4, 0.8, 1.0}.

7.3 Intrinsic Evaluations

We propose these two adversarial learning based methods to develop RTE models

that overcome hypothesis only biases. While the main motivation is to use RTE as
3As pointed out by a reviewer, a pair labeled as neutral might end up remaining neutral after

randomly sampling the premise, so adversarially training in this case might weaken the model.
Instead, one could limit adversarial training to cases of entailment or contradiction.

4Specifically, representations are concatenated, subtracted, and multiplied element-wise.
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a pre-training setup for downstream NLP systems, exhaustive extrinsic evaluations

(applying the adverserially- and pre-trained models to real world downstream tasks)

is beyond the scope of this thesis. Instead, we rely on intrinsic evaluations to explore

whether these models are indeed robust to hypothesis-only biases. As a refresher

from Section 2.1.2, extrinsic evaluations test how well a specific model improves a

broader downstream system and intrinsic evaluations test a model on the specific

task it was trained to perform.

If a model is robust to hypothesis-only biases, then it should perform better than

an un-robust model when tested on other datasets that are different than the data

used to train them, especially if datasets contain different biases. Our experiments

on synthetic and more traditional RTE datasets demonstrate how well our proposed

methods improve a model’s robustness.

7.3.1 Synthetic Experiment

Consider an example where P and H are strings containing the letters {a, b, c},

and an environment where P entails H if and only if the first letters are the same, as

in synthetic dataset A. In such a setting, a model should be able to learn the correct

condition for P to entail H. In fact, this is equivalent to XOR and hence is learnable

by a multi-layer perceptron (MLP).

Synthetic dataset A

(a, a) → True (a, b) → False
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(b, b) → True (b, a) → False

Now, imagine synthetic dataset B that contains a hypothesis-only bias. Let us

imagine the biases is that c is appended to every entailed H. A model of y with access

only to the hypotheses can fit the data perfectly by detecting the presence or absence

of c in H, ignoring the desired definition for entailment in this setting. Therefore,

we hypothesize that a baseline model trained on such data would be misled by the

bias c, and in turn would fail to learn the desired relationship between the premise

and the hypothesis. Consequently, the model would not perform well on the unbiased

synthetic dataset A.

Synthetic dataset B (with artifact)

(a, ac) → True (a, b) → False

(b, bc) → True (b, a) → False

We create these synthetic datasets A and B, where P entails H if and only if

their first letters are the same. The training and test sets have 1K examples each,

uniformly distributed among the possible entailment relations. In the test set (dataset

A), each premise or hypothesis is a single symbol: P,H ∈ {a, b}, where P entails H iff

P = H. In the training set (dataset B), a letter c is appended to the hypothesis side

in the True examples, but not in the False examples. In order to transfer well to

the test set, a model that is trained on this training set needs to learn the underlying

relationship—that P entails H if and only if their first letter is identical—rather than

relying on the presence of c in the hypothesis side.
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λEnc

λLoss 0.1 0.25 0.5 1 2.5 5

0.1 50 50 50 50 50 50
0.5 50 50 50 50 50 50
1 50 50 50 50 50 50
1.5 50 50 50 50 50 100
2 50 50 50 50 100 100
2.5 50 50 100 75 100 100
3 50 100 100 100 100 100
3.5 100 100 100 100 100 100
4 100 100 100 100 100 100
5 100 100 100 100 100 100
10 100 100 100 100 100 100
20 100 100 100 100 100 100

(a) AdvCls

λRand

λEnc 0.1 0.25 0.5 0.75 1

0.1 50 50 50 50 50
0.5 50 50 50 50 50
1 50 50 50 50 50
1.5 50 50 50 50 50
2 50 50 50 50 50
2.5 50 50 50 50 50
3 50 50 100 50 50
3.5 50 50 100 50 50
4 50 100 100 50 50
5 50 50 100 100 50∗
10 75 100 100 100 50∗
20 100 100 100 50∗ 50∗

(b) AdvDat

Table 7.1: Accuracies on the synthetic dataset, when training on the biased training
set and evaluating on the unbiased test set. Darker boxes represent higher accuracies.
∗ indicates failure to learn the biased training set; all other configurations learned the
training set perfectly.

For our experiments on the synthetic dataset, the characters are embedded with

10-dimensional vectors. Input strings are represented as a sum of character embed-

dings, and the premise-hypothesis pair is represented by a concatenation of these

embeddings.

Synthetic Results

As expected, without a method to remove hypothesis-only biases, the baseline

method fails to generalize to the test set. Examining the model’s predictions, we

found that the baseline model learned to rely on the presence/absence of the bias
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term c, always predicting True/False respectively.

Table 7.1 shows the results of our two proposed methods. As we increase the

hyper-parameters, we find that our methods initially behave like the baseline, learning

the training set but failing on the test set. However, with strong enough hyper-

parameters (moving towards the bottom in the tables), they perform perfectly on

both the biased training set and the unbiased test set. For AdvCls, stronger hyper-

parameters work better. AdvDat, in particular, breaks down with too many random

samples (increasing λRand), as expected. We also found that AdvCls did not require as

strong λEnc as AdvDat. From the synthetic experiments, it seems that AdvCls learns

to ignore the bias c and learn the desired relationship between P and H across many

configurations, while AdvDat requires much stronger λEnc in this synthetic setup.

7.3.2 Transferring on Traditional RTE Datasets

For the second set of intrinsic experiments, we train a model on SNLI using our

proposed methods, test them on a large suite of other RTE datasets, and compare

the difference in accuracy with the baseline model s accuracies on the datasets. We

train the models on SNLI since it contains significant annotation artifacts and biases.

In these experiments, we use pre-computed 300-dimensional GloVe embeddings (Pen-

nington, Socher, and Manning, 2014) trained on CommonCrawl.5

5Specifically, glove.840B.300d.zip.
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Model Val Test

Baseline 84.25 84.22

AdvCls 84.58 83.56
AdvDat 78.45 78.30

Table 7.2: Accuracies for the approaches on SNLI. Baseline refers to the unmodified,
non-adversarial InferSent.

In-domain Results

Table 7.2 reports the results on SNLI, with the configurations that performed best

on the validation set for each of the adversarial methods. As expected, both training

methods perform worse than our unmodified, non-adversarial InferSent baseline on

SNLI’s test set. The difference for AdvCls is minimal, and it even slightly outperforms

InferSent on the validation set. While AdvDat’s results are noticeably lower than the

non-adversarial InferSent, the drops are still less than 6% points.

RTE test sets

As target datasets, we use the 10 datasets investigated in Chapter 5. These

are SCITAIL (Khot, Sabharwal, and Clark, 2018), ADD-ONE-RTE (Pavlick and

Callison-Burch, 2016), JOCI (Zhang et al., 2017), MPE (Lai, Bisk, and Hockenmaier,

2017), SICK (Marelli et al., 2014), and MNLI (Williams, Nangia, and Bowman,

2017);6 as well as the three datasets White et al. (2017) recast into RTE, namely

FN+ (Pavlick et al., 2015), DPR (Rahman and Ng, 2012), and SPR (Reisinger et
6MNLI comes with two dev/test sets: domains that match or mismatched with the training set.
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Test On Target Dataset Test On SNLI

Target Test Dataset Baseline ∆ AdvCls ∆ AdvDat ∆ AdvCls ∆ AdvDat

SCITAIL 58.14 -0.47 | -7.06 | -0.18 | -9.06 |
ADD-ONE-RTE 66.15 0.00 | 17.31 | -2.29 | -49.63 |
JOCI 41.50 0.24 | -1.87 | -0.44 | -5.92 |
MPE 57.65 0.45 | -5.30 | -0.57 | -0.54 |
DPR 49.86 1.10 | -0.45 | -0.73 | -7.81 |
MNLI matched 45.86 1.38 | -2.10 | -1.25 | -8.93 |
FN+ 50.87 1.61 | 6.16 | -1.94 | -0.44 |
MNLI mismatched 47.57 1.67 | -3.91 | -1.25 | -8.93 |
SICK 25.64 1.80 | 31.11 | -0.57 | -8.93 |
GLUE 38.50 1.99 | 4.71 | -1.25 | -8.93 |
SPR 52.48 6.51 | 12.94 | -1.76 | -14.01 |

SNLI-hard 68.02 -1.75 | -12.42 |

Table 7.3: Accuracy results of transferring representations to new datasets. In all
cases the models are trained on SNLI. Left: baseline results on target test sets and
differences between the proposed methods and the baseline. Right: test results on
SNLI with the models that performed best on each target dataset’s dev set. ∆ are
absolute differences between the method and the baseline on each target test set (left)
or between the method and the baseline performance (84.22) on SNLI test (right).
Black rectangles show relative changes in each column.

al., 2015).7 Many of these target datasets have different label spaces than SNLI.

Therefore, like in Section 3.4, we map the models’ neutral and contradiction

predictions to the not-entailed label in the datasets that annotate the task as a

binary classification problem. We also use two other datasets: GLUE’s diagnostic

test set, which was carefully constructed to not contain hypothesis-biases (Wang et

al., 2018), and SNLI-hard, a subset of the SNLI test set that is thought to contain

fewer biases (Gururangan et al., 2018). Finally, we also test on the Multi-genre RTE

dataset (MNLI; Williams, Nangia, and Bowman, 2017), a successor to SNLI.
7See Section 5.3 for details about those datasets.
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RTE Transfer Results

Table 7.3 (left block) reports the results of our proposed methods compared to

the baseline when tested on the other RTE datasets. For each target dataset, we

choose the best-performing model on its development set and report results on the

test set.8 The method using the hypothesis-only classifier to remove hypothesis-only

biases from the model (AdvCls) outperforms the baseline in 9 out of 12 target datasets

(∆ > 0), though most improvements are small. The training method using negative

sampling (AdvDat) only outperforms the baseline in 5 datasets, 4 of which are cases

where the other method also outperformed the baseline. These gains are much larger

than those of AdvCls.

We also report results of the proposed methods on the SNLI test set (right block).

These results are based on the same hyper-parameters used in the left block for each

row. As our results improve on the target datasets, we note that AdvCls’s performance

on SNLI does not drastically decrease (small ∆), even when the improvement on the

target dataset is large (for example, in SPR). For this method, the performance on

SNLI drops by just an average of 1.11 (0.65 STDV). For AdvDat, there is a large

decrease on SNLI as results drop by an average of 11.19 (12.71 STDV). For these

models, when we see large improvement on a target dataset, we often see a large

drop on SNLI. For example, on ADD-ONE-RTE, AdvDat outperforms the baseline
8For MNLI, since the test sets are not available, we tune on the matched dev set and evaluate

on the mismatched dev set, or vice versa. For GLUE, we tune on MNLI matched. The hyper-
parameters for the best performing model for each dataset can be found online at https://github.
com/azpoliak/robust-nli#hyper-parameters-for-transfer-experiments.
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by roughly 17% but performs almost 50% lower on SNLI. Based on this, as well as

the results on the synthetic dataset, AdvDat seems to be much more unstable and

highly dependent on the right hyper-parameters.

7.4 Analysis

Our results demonstrate that our approaches may be robust to many datasets

with different types of bias. We next analyze our results and explore modifications to

the experimental setup that may improve model transferability across RTE datasets.

7.4.1 Interplay with known biases

A priori, we expect our methods to provide the most benefit when a target dataset

has no hypothesis-only biases or such biases that differ from ones in the training data.

To determine how different a dataset’s hypothesis-only biases are from those in SNLI,

we compare the performance of a hypothesis-only classifier trained on SNLI and

evaluated on each target dataset, to a majority baseline of the most frequent class

in the target dataset’s training set (MAJ). We also compare to a hypothesis-only

classifier trained and tested on each target dataset.9

Figure 7.2 shows the results. When the hypothesis-only model trained on SNLI

is tested on the target datasets, the model performs below MAJ (except for MNLI),
9A reviewer noted that this method may miss similar bias “types” that are achieved through

different lexical items. Using pre-trained word embeddings might mitigate this concern.
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Figure 7.2: Accuracies of majority and hypothesis-only baselines on each dataset
(x-axis). The datasets are generally ordered by increasing difference between a
hypothesis-only model trained on the target dataset (green) compared to trained
on SNLI (yellow).

indicating that these target datasets contain different biases than those in SNLI. The

largest difference is on SPR: a hypothesis-only model trained on SNLI performs over

50% worse than one trained on SPR. Indeed, our methods lead to large improvements

on SPR (Table 7.3), indicating that they are especially helpful when the target dataset

contains different biases. On MNLI, this hypothesis-only model performs 10% above

MAJ, and roughly 20% worse compared to when trained on MNLI, suggesting that

MNLI and SNLI have similar biases. This should be unsurprising since they both

were created by eliciting hypotheses from crowdsource workers. This results may

explain why our methods only slightly outperform the baseline on MNLI (Table 7.3).
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Dataset Base AdvCls ∆

JOCI 41.50 39.29 -2.21 |
SNLI 84.22 82.40 -1.82 |
DPR 49.86 49.41 -0.45 |
MNLI matched 45.86 46.12 0.26 |
MNLI mismatched 47.57 48.19 0.62 |
MPE 57.65 58.60 0.95 |
SCITAIL 58.14 60.82 2.68 |
ADD-ONE-RTE 66.15 68.99 2.84 |
GLUE 38.50 41.58 3.08 |
FN+ 50.87 56.31 5.44 |
SPR 52.48 58.68 6.20 |
SICK 25.64 36.59 10.95 |

SNLI-hard 68.02 63.81 -4.21 |

Table 7.4: Results with stronger hyper-parameters for AdvCls vs. the baseline. ∆’s
are absolute differences.

7.4.2 Stronger hyper-parameters

In the synthetic experiment, we found that increasing the hyper-parameters im-

proves the models’ ability to generalize to the unbiased dataset. Does the same apply

to these RTE datasets? We expect that strengthening the auxiliary losses (L2 in our

methods) during training will hurt performance on the original data (where biases

are useful), but improve on the target data, which may have different or no biases

(Figure 7.2). To test this, we increase the hyper-parameter values during training; we

consider the range {1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}.10 While there are other ways to

strengthen our methods, e.g., increasing the number or size of hidden layers (Elazar

and Goldberg, 2018), we are interested in the effect of the hyper-parameters as they

control how much bias is subtracted from our baseline model.
10The synthetic setup required very strong hyper-parameters, possibly due to the clear-cut nature

of the task. In the natural RTE setting, moderately strong values sufficed.
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Table 7.4 shows the results of AdvCls with stronger hyper-parameters on the ex-

isting RTE datasets. Interestingly, performance on SNLI-hard in Table 7.4 noticeably

decreases. This drop may indicate that SNLI-hard may still have biases, a pointed Gu-

rurangan et al. (2018) concede.11 Many of the other datasets benefit from stronger

hyper-parameters (compared with Table 7.3). We see the largest improvement on

SICK, achieving over 10% increase compared to the 1.8% gain in Table 7.3. As for

AdvDat, we found large drops in quality even in our basic configurations (appendix),

so we do not increase the hyper-parameters further. This should not be too surprising,

adding too many random premises will lead to a model’s degradation.

7.4.3 Indicator Words

Certain words in SNLI are more correlated with specific entailment labels than

others, e.g., negation words (“not”, “nobody”, “no”) correlated with contradiction.

In Section 5.5, we referred to these as “give-away” words. Do the adversarial methods

encourage models to make predictions that are less affected by these biased indicator

words?

For each of the most biased words in SNLI associated with the contradiction

label, we computed the probability that a model predicts an example as a contra-

diction, given that the hypothesis contains the word. Table 7.5 shows the top 10

examples in the training set. For each word w, we give its frequency in SNLI, its em-
11As pointed out by a reviewer, an alternative explanation is a general loss of information in the

encoded hypothesis.
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pirical correlation with the label and with InferSent’s prediction, and the percentage

decrease in correlations with contradiction predictions by three configurations of

our methods. Generally, the baseline correlations are more uniform than the empiri-

cal ones (p̂(l|w)), suggesting that indicator words in SNLI might not greatly affect a

NLI model, a possibility that both we and Gururangan et al. (2018) do concede. For

example, Gururangan et al. (2018) explicitly mention that “it is important to note

that even the most discriminative words are not very frequent.”

However, we still observed small skews towards contradiction. Thus, we in-

vestigate whether our methods reduce the probability of predicting contradiction

when a hypothesis contains an indicator word. The model trained with AdvDat

(where λRand = 0.4, λEnc = 1) predicts contradiction much less frequently than In-

ferSent on examples with these words. This configuration was the strongest AdvDat

model that still performed reasonably well on SNLI. Here, AdvDat appears to re-

move some of the biases learned by the baseline, unmodified InferSent. We also

provide two other configurations that do not show such an effect, illustrating that

this behavior highly depends on the hyper-parameters.

7.5 Discussion

Biases in annotations are a major source of concern for the quality of RTE datasets

and systems, and these may limit the usefulness of pre-training models on RTE before
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Score Percentage decrease from baseline

Word Count p̂(l|w) Baseline AdvCls (1,1) AdvDat (0.4,1) AdvDat (1,1)

sleeping 108 0.88 0.24 15.63 53.13 -81.25
driving 53 0.81 0.32 -8.33 50 -66.67
Nobody 52 1 0.42 14.29 42.86 14.29
alone 50 0.9 0.32 0 83.33 0
cat 49 0.84 0.31 7.14 57.14 -85.71
asleep 43 0.91 0.39 -18.75 50 12.5
no 31 0.84 0.36 0 52.94 -52.94
empty 28 0.93 0.3 -16.67 83.33 -16.67
eats 24 0.83 0.3 37.5 87.5 -25
naked 20 0.95 0.46 0 83.33 -33.33

Table 7.5: Indicator words and how correlated they are with CONTRADICTION
predictions. The parentheses indicate hyper-parameter values: (λLoss, λEnc) for Adv-
Cls and (λRand, λEnc) for AdvDat. Baseline refers to the unmodified InferSent.

applying them to downstream tasks. We presented a solution for combating annota-

tion biases by proposing two adversarial learning based methods. When empirically

evaluating our approaches, we found that in a synthetic setting, as well as on a wide-

range of existing RTE datasets, our methods perform better than the traditional

training method to predict a label given a premise-hypothesis pair. Furthermore, we

performed several analyses into the interplay of our methods with known biases in

RTE datasets, the interplay with known biases, the effects of stronger bias removal,

and the empirical probability the models assign a label based on a single indicator

word.

We were not the first to apply adversarial learning to RTE. Minervini and Riedel

(2018) generate adversarial examples that do not conform to logical rules and reg-

ularize models based on those examples. Similarly, Kang et al. (2018) incorporate
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external linguistic resources and use a GAN-style framework to adversarially train

robust RTE models. We similarly use adversarial learning to train RTE models that

are robust to biases. However, in contrast, we do not use external resources and we

are interested in mitigating hypothesis-only biases when training RTE models.

Concurrently to our work appearing at StarmSem 2019 and ACL 2019, Grand

and Belinkov (2019) received a Best Paper Award at the Workshop on Shortcomings

in Vision and Language (SiVL) for their work on exploring adversarial learning for

overcoming biases in Visual Question Answering, the task of answering questions

based on a given image. Subsequently, others used similar methods to overcome

biases when training models for RTE or related tasks (He, Zha, and Wang, 2019;

Clark, Yatskar, and Zettlemoyer, 2019; Chen et al., 2020a; Chang et al., 2020; Thorne

and Vlachos, 2020). Inspired by our work, Stacey et al. (2020) use an ensemble

of adversaries to overcome biases and Karimi Mahabadi, Belinkov, and Henderson

(2020) propose training with a product of experts or debiased focal loss for developing

robust RTE models.
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Adversarial Learning for Emergency

Need Discovery

As RTE encompasses semantic inference that is necessary for many NLP tasks, we

now turn our attention to applying adversarial learning to overcome domain-specific

biases in an applied setting. The real world task we explore is discovering emergency

needs during disaster events. Developing technologies to discover emergency needs

in low resource settings is vital for effectively providing aid during disastrous events.

In emergency scenarios with limited time and resources, humans may not be able

to quickly scan incoming texts and SOSs. NLP models might help with identifying,

classifying, and prioritizing distress signals. In low resource and time-sensitive set-

tings, supervised data for training such models is sparse and human annotators might

be hard to find. Furthermore, distributions of needs might not be consistent across
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different emergency scenarios, and populations in varying emergency scenarios may

use distinct vocabulary or phrases to express the same need. In turn, applying models

across multiple emergency scenarios might be disadvantageous.

Based on our experience using adversarial learning to overcome domain- and

dataset-specific biases in RTE, we apply adversarial learning to the task of discover-

ing emergency needs in low resource settings. When training a classifier to predict

whether and which type of emergency need is expressed in a text, we force our model

to predict which disaster occurred. Adversarial learning, implemented through a

gradient reversal described in Section 7.2, penalizes our model when correctly pre-

dicting the disaster that occurred. We hypothesize that this may force our networks

to generalize well across different disaster scenarios.

8.1 DARPA LORELEI Challenge

This work is motivated by the DARPA Low Resource Languages for Emergent In-

cidents (LORELEI) program (Christianson, Duncan, and Onyshkevych, 2018). Span-

ning over four years, research groups competed to develop technologies that could be

deployed within short time frames after the emergence of an unknown disaster in a

surprise language. One day, one week, and one month after the surprise language and

disaster was announced, researchers’ systems were evaluated on the DARPA-internal

LORELEI tasks.
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Figure 8.1: Examples for each of the Situation Frame labels

Here, we focus on the task of detecting emergency needs in text. These needs are

referred to as situation frames, which “are structured representations of key elements

gleaned from English or foreign language text and speech” (Christianson, Duncan, and

Onyshkevych, 2018). The types of situation frames we consider are Civil Unrest or

Wide-spread Crime, Elections and Politics, Evacuation, Food Supply, Infrastructure,

Medical Assistance, Search and Rescue, Shelter, Terrorism or other Extreme Violence,

Utilities Energy or Sanitation, and Water Supply. Figure 8.1 includes examples that

express each of these emergency needs.

Within each short time frame of the evaluation, teams were able to interact with

a Native Informant (NI). These are lay people who speak the surprise language.

During limited hour-long sessions, we relied on a NI to annotate which situation

frame occurred in select examples. Throughout the years, we used multiple annotation

frameworks, including the Computer Assisted Discovery Extraction and Translation
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(a) (b)

Figure 8.2: Annotation interface in CADET for Native Informants to annotated
examples with correct situation frame labels. 8.2a shows the list of situation frames a
NI can apply to the sentence and 8.2b shows the likelihood the NI can apply to the
situation frame label.

(CADET) workbench (Van Durme et al., 2017).1 Figure 8.2 illustrates the user

interface for NIs to provide annotations using CADET.

Initially developed at the Human Language Technology Center of Excellence’s

2016 Summer Camp for Applied Language Exploration program (SCALE),2 CADET

is a workbench for rapid discovery, annotation, and extraction on text. CADET in-

cludes an active learning component where a model is used to determine which are the

most informative data points to label (Settles, 1995). Based upon new annotations,

the model can be updated in real-time to update and re-prioritize the list of unla-

beled data points to be annotated. This notion is very similar to the idea of Machine

Teaching (Simard et al., 2017) and can be deployed to help a domain expert work

more efficiently (Sunkle, Kholkar, and Kulkarni, 2016; Gooding and Briscoe, 2019).
1https://github.com/hltcoe/cadet
2https://hltcoe.jhu.edu/research/scale/scale-2016/
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During the LORELEI evaluations, between each NI session, we used this framework

to update the list of examples for NI’s to annotate.

8.2 Methods

Baseline

For each emergency need n ∈ N , a pre-defined set of possible needs (Figure 8.1),

we train a binary classifier to predict whether n is expressed in sentence s. Each

binary classifier consists of a Bi-LSTM encoder g(s) that maps each sentence s to a

vector representation vs, and a MLP fn(vs) that predicts whether n is expressed in s.

To deal with large class imbalances due to that fact that most texts do not express

an emergency need, we weight our loss function, specifically cross-entropy, based on

the class imbalance of the training set. Our loss function for each binary classifier

is Ln = L(fn(vs), y), where y is a boolean indicating whether emergency need n is

expressed in s.

Applying Adversarial Learning

Since each emergency situation may have different distributions of emergency

needs and the needs may be expressed differently in different situations, applying

these binary classifiers across events may not work well. During adversarial training,
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Event Date
2016 OromoProtest 2013-10-12 T15:09:30Z
2011 NabroEruption 2011-06-17 T15:49:19Z
2013 Iran Earthquake 2013-04-16 T12:26:11Z
2013 India Cyclone 2013-10-12 T15:09:30Z
2015 Paris Attacks 2015-11-14 T12:43:44Z
2014 Turkey Flash Floods 2014-09-02 T08:51:10Z
2011 EastAfricaDroughts 2011-07-21 T10:18:31Z
2013 EgyptCoupD’état 2013-04-16 T12:26:11

Table 8.1: Each disaster included in our dataset.

we additionally feed vs to a new MLP fsituation that predicts which disastrous event

e occurred. We modify the loss function of our network to become L = Ln + λLAdv,

where LAdv = L(fsituation(λencGRL(g(s))), e). λ and λenc respectively control the

weight of the adversarial loss function and the gradient reversal to g(s). We do not

perturb the training data like in AdvDat as our results for transferring across RTE

datasets using AdvDat varied more widely than when using AdvCls.

8.3 Experiments

Data

We use tweets associated with 8 disaster situations in the past ten years, that

were internally annotated with the 11 situation frame emergency needs (Figure 8.1).

using the EASL framework (Sakaguchi and Van Durme, 2018). Table 8.1 provides

details regarding the disaster situations included in our dataset and Table 8.2 include

sampled tweets. To test our hypothesis, we use a leave-one-out setup where we train
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Event Tweet

@USER but the actually earthquake happened in iran i
feel bad for them omg2013 Iran Earthquake Iran-Pakistan Border... 8 on Richter scale.. Praying
there is no loss of life! #EarthQuake

Sitting here reading reports whilst feeding my 6wk old
baby wondering what kind of world have I brought her
into :( #ParisAttacks2015 Paris Attacks Cousin of French international footballer Lassana Diarra
was killed in the Paris attacks

Tens of thousands feared dead in south #Somalia famine
http://t.co/NXczq4n via @globeandmail2011 EastAfricaDroughts Please help your fellow people in #Africa. #Donate
to an organisation who is active in the drought areas.
#Fight the #famine.

Table 8.2: Example tweets sampled from the crowdsourced dataset.

our baseline & adversarially-trained binary classifiers on all but one disaster event

and test on the held-out event. We repeat this process for all 8 events collected.

Results

Table 8.3 reports the difference in F1, accuracy, precision, and recall between

the best performing adversarial model and the baseline model for each emergency

need and disaster event.3 In 42 of the 88 settings, we see no difference (in F1 score)

between the best performing adversarial model vs the baseline. In one case, the

best performing adversarial model does slightly worse than the baseline, and in the

remaining 43 examples, the best adversarial model outperforms the baseline in F1.
3Here, we determine the best performing adversarial model based on F1.
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violence food utils infra water shelter regimechange evac terrorism
2016 OromoProtest 0.00 0.00 0.34 0.00 0.19 0.00 2.66 0.08 0.08
2011 NabroEruption 0.12 0.00 0.28 0.00 0.13 0.00 0.00 0.14 0.44
2013 Iran Earthquake 0.00 2.37 0.00 0.72 0.00 0.63 4.34 0.00 0.20
2013 India Cyclone 1.50 0.00 0.10 0.00 0.00 0.60 0.00 0.42 0.00

F1 2015 Paris Attacks 0.01 0.34 0.63 1.00 0.00 0.00 10.02 0.58 0.24
2014 Turkey Flash Floods 0.00 0.00 0.27 0.02 1.68 0.18 0.00 3.54 0.00
2011 EastAfricaDroughts 1.14 0.01 0.94 0.03 0.06 0.03 0.00 0.00 0.00
2013 EgyptCoupD’état 0.01 0.00 0.68 0.72 1.88 0.00 0.10 -0.06 0.00
2016 OromoProtest 0.00 0.00 5.61 0.00 0.45 0.65 2.54 0.04 0.00
2011 NabroEruption 1.06 0.00 3.87 0.00 0.97 0.00 0.00 0.39 1.79
2013 Iran Earthquake 0.00 0.08 0.04 0.04 0.00 0.96 9.25 1.08 1.95
2013 India Cyclone 3.16 0.00 0.77 0.00 0.00 3.41 0.00 3.20 0.00

accuracy 2015 Paris Attacks 0.04 0.61 0.08 1.63 0.00 0.00 6.33 0.08 8.64
2014 Turkey Flash Floods 0.22 0.00 0.89 0.06 0.39 8.42 0.00 0.00 0.00
2011 EastAfricaDroughts 2.53 0.09 1.29 0.04 0.04 1.11 0.00 0.04 0.00
2013 EgyptCoupD’état 0.12 0.00 0.00 0.12 0.08 0.00 0.08 -0.04 0.49
2016 OromoProtest 0.00 0.00 4.47 0.00 2.25 2.89 14.01 0.11 0.05
2011 NabroEruption 0.10 0.00 4.77 0.00 0.11 0.00 0.00 0.43 0.35
2013 Iran Earthquake 0.00 5.88 8.33 0.28 0.00 0.63 15.40 0.31 0.20
2013 India Cyclone 5.22 0.00 0.11 0.00 0.00 0.62 0.00 0.60 0.00

precision 2015 Paris Attacks 0.01 4.18 0.85 0.96 0.00 0.00 19.31 0.93 1.00
2014 Turkey Flash Floods 0.39 0.00 0.19 0.40 6.94 1.68 0.00 0.00 0.00
2011 EastAfricaDroughts 1.78 1.39 1.08 0.11 0.15 0.88 0.00 0.00 0.00
2013 EgyptCoupD’état 0.01 0.00 0.41 0.97 2.02 0.00 4.09 -0.20 2.75
2016 OromoProtest 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.36
2011 NabroEruption 0.00 0.00 0.00 0.00 4.84 0.00 0.00 0.00 0.37
2013 Iran Earthquake 0.00 1.36 0.00 1.25 0.00 0.64 0.00 0.00 0.00
2013 India Cyclone 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

recall 2015 Paris Attacks 13.73 0.35 0.50 1.55 0.00 0.00 0.00 0.43 -0.32
2014 Turkey Flash Floods 0.00 0.00 0.85 0.00 0.90 0.00 0.00 2.20 0.00
2011 EastAfricaDroughts 22.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2013 EgyptCoupD’état 0.00 0.00 0.84 0.57 1.04 0.00 0.00 0.00 0.00

Table 8.3: Each row indicates the held-out event and each column represents the
emergency need predicted. Numbers represent the difference in accuracy between
the best performing model for each setting and the corresponding baseline binary
classifier. The first column indicates the difference in which metric is reported. Note
that for a given disaster event and SF type, the numbers do not correspond to the
same model.

Inspecting our results, the binary classifiers that predict whether a tweet mentions

a “search” or “med” need achieve the same F1 score as the baseline in all but one

case.4 When we test on the 2013 Iranian Earthquake, the best performing model

for “med” outperforms the baseline by 0.04 in accuracy and 3.91 in recall. While

each emergency need is often expressed in less than 50% of the tweets, it should be
4Therefore we do not include these in Table 8.3.
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Event Tweet NEED Baseline Adv

2015
Paris
Attacks

#ParisAttacks a specific group
or a person cannot represent Is-
lam.We Muslims r peace loving.
There is no room for terrorism in
our religion

regime change ✓ ✗

2014
Turkey
Flash
Floods

Where is the water going to go if
they cover what is left of Somerset
Levels in solar panels

water ✗ ✓

Table 8.4: Examples where the adversarial model correctly predicted whether the SF
type applied to the tweet. ✓ and ✗ respectively indicate whether the model classified
the need as applying or not applying to the tweet. In these examples, the baseline’s
predictions were incorrect and the adversarial model’s predictions were correct.

noted that these two needs each appear in less than 10% of the training examples.

For the “regimechange” need during the 2015 Paris Attack, we notice a 10+ absolute

F1 improvement. Upon inspection, the model correctly predicted that a significantly

smaller number of tweets represented a “regimechange” need compared to the base-

line model’s predictions. Further manual expection of the results indicates that the

number of true negative predictions often increase for the best performing models.

Table 8.4 includes qualitative examples where the adversarial model correctly

predicts whether the need is expressed in the text while the baseline model’s prediction

is incorrect. The second tweet in the table demonstrates examples of noise in this

dataset. While the event likely describes issues related to flooding and water, this

tweet does not describe the flash floods in Turkey in 2014 since the Somerset Levels

are in Somerset England.
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8.4 Discussion

In this chapter we demonstrated how adversarial learning can be applied to sen-

tence classification models for real-world, applied tasks. In the 2019 LORELEI eval-

uation, our ensemble approach combined predictions from the adversarial trained

model with other models developed by teammates (Yuan et al., 2019; Zhang, Fu-

jinuma, and Boyd-Graber, 2020). Using adversarial learning resulted in a winning

submission during the 2019 LORELEI challenge.
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Conclusion

9.1 Contributions

This thesis has made contributions to Recognizing Textual Entailment (RTE),

primarily as an evaluation framework for exploring how well NLP systems capture a

wide range of semantic phenomena. Chapter 2 delved into different NLP evaluations

paradigms and provides motivation for why now is an ideal time to revisit RTE as a

method to evaluate NLP systems. In Chapter 3, we introduced the Diverse Natural

Language Inference Collection (DNC), a large scale test suite of RTE datasets that

cover a wide range of linguistic phenomena. Next, we presented a general framework

for using the DNC and related datasets to explore the reasoning capabilities of NLP

systems. Chapter 4 included a thorough study exploring how well sentence encoders

trained as part of a neural machine translation system capture phenomena such as
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paraphrastic inference, anaphora resolution, and semantic proto-roles. We also used

this general framework to explore models trained to perform other tasks, including

connecting images with captions, syntactic parsing, and discourse marking.

In Chapter 5, we discovered hypothesis-only biases in a large number of RTE

datasets. This work inspired similar discoveries in the field as researchers began to

question long held assumptions about gold-standard dataset. This work also enabled

us to explore the limits of RTE as an evaluation framework.

Since many tasks require systems to perform semantic inferences similar to RTE,

researchers often pre-train models on RTE datasets. In Chapter 7 we argued that

hypothesis-only biases from Chapter 5 might negatively impact this common ap-

proach. We demonstrated how adversarial learning can be incorporated when train-

ing RTE models to be robust to such biases. Finally, we applied the lessons learned to

incorporate adversarial learning to train models to detect emergency needs in disaster

events.

9.2 Future Work

As this thesis focused on revisiting RTE as an evaluation framework, we raise

opportunities for future research directions. As pointed out in Staliūnaitė (2018)’s

master’ thesis, the recasting methods introduced in Chapter 3 can be further refined

and improved. Additionally, as the DNC only begins to scratch the surface of semantic
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phenomena that are important for understanding human language, there are many

opportunities to add more semantic phenomena to the DNC.

In Chapter 4, we used the DNC to evaluate whether the sentence-representations

extracted from the final layer of encoders capture different semantic phenomena.

Future research can investigate whether these phenomena are captured at different

layers of an encoder or even in specific neurons of a neural network. Additionally,

exploring how attention-based mechanism capture these phenomena is an important

open research question as many NLP models rely on attention mechanism and there

is ongoing debate in the community regarding the interpretability of attention-based

mechanisms.

Our methodology in Chapter 7 for using adversarial learning to develop robust

RTE models can be extended to handle biases in other tasks where one is concerned

with finding relationships between two objects, such as visual question answering,

story cloze completion, and reading comprehension. We hope to encourage such

investigation in the broader community.

Finally, the relationship between how well a model captures different semantic

phenomena and how well a model performs on a downstream task remains an open

question. As Vázquez et al. (2020) note, “it is not fully clear how the properties of

the fixed-sized vector influence the tradeoff between the performance of the model in

MT and the information it encodes as a meaning representation vector.” This idea

is relevant not just to machine translation but to all NLP systems. Broadly, this
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question can be viewed as asking how well do test suite evaluations correlate with

either intrinsic or extrinsic evaluations? This is an important question that remains

open in the field and is vital for developing efficient and effective NLP evaluation

frameworks.
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Phil Blunsom (2015). “Reasoning about entailment with neural attention”. In:

arXiv preprint arXiv:1509.06664.

Rodrigo, Álvaro, Anselmo Peñas, and Felisa Verdejo (2009). “Overview of the Answer

Validation Exercise 2008”. In: Evaluating Systems for Multilingual and Multimodal

234



BIBLIOGRAPHY

Information Access. Ed. by Carol Peters, Thomas Deselaers, Nicola Ferro, Julio

Gonzalo, Gareth J. F. Jones, Mikko Kurimo, Thomas Mandl, Anselmo Peñas, and

Vivien Petras. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 296–313.

Roemmele, Melissa, Cosmin Adrian Bejan, and Andrew S Gordon (2011). “Choice

of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning.” In:

AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

Rogers, Anna, Aleksandr Drozd, Anna Rumshisky, and Yoav Goldberg, eds. (June

2019). Proceedings of the 3rd Workshop on Evaluating Vector Space Represen-

tations for NLP. Minneapolis, USA: Association for Computational Linguistics.

url: https://www.aclweb.org/anthology/W19-2000.

Romano, Lorenza, Milen Kouylekov, Idan Szpektor, Ido Dagan, and Alberto Lavelli

(2006). “Investigating a Generic Paraphrase-Based Approach for Relation Extrac-

tion”. In: 11th Conference of the European Chapter of the Association for Com-

putational Linguistics. url: https://www.aclweb.org/anthology/E06-1052.

Romanov, Alexey and Chaitanya Shivade (2018). “Lessons from Natural Language

Inference in the Clinical Domain”. In: Proceedings of the 2018 Conference on Em-

pirical Methods in Natural Language Processing. Brussels, Belgium: Association

for Computational Linguistics, pp. 1586–1596. url: https://www.aclweb.org/

anthology/D18-1187.

Ross, Alexis and Ellie Pavlick (Nov. 2019). “How well do NLI models capture verb

veridicality?” In: Proceedings of the 2019 Conference on Empirical Methods in

235

https://www.aclweb.org/anthology/W19-2000
https://www.aclweb.org/anthology/E06-1052
https://www.aclweb.org/anthology/D18-1187
https://www.aclweb.org/anthology/D18-1187


BIBLIOGRAPHY

Natural Language Processing and the 9th International Joint Conference on Nat-

ural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for

Computational Linguistics, pp. 2230–2240. url: https://www.aclweb.org/

anthology/D19-1228.

Roth, Dan, Mark Sammons, and V.G.Vinod Vydiswaran (Aug. 2009). “A Framework

for Entailed Relation Recognition”. In: Proceedings of the ACL-IJCNLP 2009 Con-

ference Short Papers. Suntec, Singapore: Association for Computational Linguis-

tics, pp. 57–60. url: https://www.aclweb.org/anthology/P09-2015.

Rudinger, Rachel (2019). “Decompositional Semantics for Events, Participants, and

Scripts in Text”. PhD thesis. Johns Hopkins University.

Rudinger, Rachel, Chandler May, and Benjamin Van Durme (2017). “Social Bias in

Elicited Natural Language Inferences”. In: Proceedings of the First ACL Work-

shop on Ethics in Natural Language Processing. Valencia, Spain: Association for

Computational Linguistics, pp. 74–79.

Rudinger, Rachel, Aaron Steven White, and Benjamin Van Durme (2018). “Neu-

ral Models of Factuality”. In: Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Associa-

tion for Computational Linguistics, pp. 731–744. url: http://www.aclweb.org/

anthology/N18-1067.

236

https://www.aclweb.org/anthology/D19-1228
https://www.aclweb.org/anthology/D19-1228
https://www.aclweb.org/anthology/P09-2015
http://www.aclweb.org/anthology/N18-1067
http://www.aclweb.org/anthology/N18-1067


BIBLIOGRAPHY

Rudinger, Rachel, Jason Naradowsky, Brian Leonard, and Benjamin Van Durme

(2018). “Gender Bias in Coreference Resolution”. In: Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 2 (Short Papers). New Or-

leans, Louisiana: Association for Computational Linguistics, pp. 8–14. url: http:

//www.aclweb.org/anthology/N18-2002.

Sakaguchi, Keisuke and Benjamin Van Durme (July 2018). “Efficient Online Scalar

Annotation with Bounded Support”. In: Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers). Mel-

bourne, Australia: Association for Computational Linguistics, pp. 208–218. url:

https://www.aclweb.org/anthology/P18-1020.

Sakaguchi, Keisuke, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi (2020).

“WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale”. In:

AAAI.

Sammons, Mark, VG Vinod Vydiswaran, Tim Vieira, Nikhil Johri, Ming-Wei Chang,

Dan Goldwasser, Vivek Srikumar, Gourab Kundu, Yuancheng Tu, Kevin Small,

et al. (2009). “Relation Alignment for Textual Entailment Recognition.” In: TAC

Workshop.

Sauri, Roser and James Pustejovsky (2007). “Determining modality and factuality

for text entailment”. In: Semantic Computing, 2007. ICSC 2007. International

Conference on. IEEE, pp. 509–516.

237

http://www.aclweb.org/anthology/N18-2002
http://www.aclweb.org/anthology/N18-2002
https://www.aclweb.org/anthology/P18-1020


BIBLIOGRAPHY

Schluter, Natalie and Daniel Varab (2018). “When data permutations are patholog-

ical: the case of neural natural language inference”. In: Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing. Brussels, Bel-

gium: Association for Computational Linguistics, pp. 4935–4939. url: https:

//www.aclweb.org/anthology/D18-1534.

Schubert, Lenhart K. and Chung Hee Hwang (2000). “Episodic Logic Meets Little Red

Riding Hood: A Comprehensive Natural Representation for Language Understand-

ing”. In: Natural Language Processing and Knowledge Representation: Language

for Knowledge and Knowledge for Language. Cambridge, MA, USA: MIT Press,

111–174.

Schuler, Karin Kipper (2005). “VerbNet: A broad-coverage, comprehensive verb lexi-

con”. In:

Schuster, Tal, Darsh Shah, Yun Jie Serene Yeo, Daniel Roberto Filizzola Ortiz, En-

rico Santus, and Regina Barzilay (2019). “Towards Debiasing Fact Verification

Models”. In: Proceedings of the 2019 Conference on Empirical Methods in Natu-

ral Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pp. 3410–3416.

Schwarcz, Robert M, John F Burger, and Robert F Simmons (1970). “A deduc-

tive question-answerer for natural language inference”. In: Communications of the

ACM 13.3, pp. 167–183.

238

https://www.aclweb.org/anthology/D18-1534
https://www.aclweb.org/anthology/D18-1534


BIBLIOGRAPHY

Schwartz, Roy, Maarten Sap, Ioannis Konstas, Leila Zilles, Yejin Choi, and Noah A.

Smith (2017a). “Story Cloze Task: UW NLP System”. In: Proceedings of the 2nd

Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics.

Valencia, Spain: Association for Computational Linguistics, pp. 52–55. url: http:

//aclweb.org/anthology/W17-0907.

Schwartz, Roy, Maarten Sap, Ioannis Konstas, Leila Zilles, Yejin Choi, and Noah A.

Smith (2017b). “The Effect of Different Writing Tasks on Linguistic Style: A Case

Study of the ROC Story Cloze Task”. In: Proceedings of the 21st Conference on

Computational Natural Language Learning (CoNLL 2017). Vancouver, Canada:

Association for Computational Linguistics, pp. 15–25. url: http://aclweb.org/

anthology/K17-1004.

Seethamol, S. and K. Manju (2017). “Paraphrase identification using textual entail-

ment recognition”. In: 2017 International Conference on Intelligent Computing,

Instrumentation and Control Technologies (ICICICT), pp. 1071–1074.

Sekizawa, Yuuki, Tomoyuki Kajiwara, and Mamoru Komachi (2017). “Improving

Japanese-to-English Neural Machine Translation by Paraphrasing the Target Lan-

guage”. In: Proceedings of the 4th Workshop on Asian Translation (WAT2017).

Taipei, Taiwan: Asian Federation of Natural Language Processing, pp. 64–69.

Settles, Burr (1995). “Active Learning Literature Survey”. In: Science 10.3, pp. 237–

304.

239

http://aclweb.org/anthology/W17-0907
http://aclweb.org/anthology/W17-0907
http://aclweb.org/anthology/K17-1004
http://aclweb.org/anthology/K17-1004


BIBLIOGRAPHY

Sharma, Rishi, James Allen, Omid Bakhshandeh, and Nasrin Mostafazadeh (2018).

“Tackling the Story Ending Biases in The Story Cloze Test”. In: Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics (Volume 2:

Short Papers). Melbourne, Australia: Association for Computational Linguistics,

pp. 752–757. url: http://www.aclweb.org/anthology/P18-2119.

Shi, Xing, Inkit Padhi, and Kevin Knight (2016). “Does String-Based Neural MT

Learn Source Syntax?” In: Proceedings of the 2016 Conference on Empirical Meth-

ods in Natural Language Processing. Austin, Texas: Association for Computational

Linguistics, pp. 1526–1534. url: https://aclweb.org/anthology/D16-1159.

Sileo, Damien, Tim Van De Cruys, Camille Pradel, and Philippe Muller (June 2019).

“Mining Discourse Markers for Unsupervised Sentence Representation Learning”.

In: Proceedings of the 2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers). Minneapolis, Minnesota: Association for Computational

Linguistics, pp. 3477–3486. url: https://www.aclweb.org/anthology/N19-

1351.

Simard, Patrice Y, Saleema Amershi, David M Chickering, Alicia Edelman Pelton,

Soroush Ghorashi, Christopher Meek, Gonzalo Ramos, Jina Suh, Johan Verwey,

Mo Wang, et al. (2017). “Machine teaching: A new paradigm for building machine

learning systems”. In: arXiv preprint arXiv:1707.06742.

240

http://www.aclweb.org/anthology/P18-2119
https://aclweb.org/anthology/D16-1159
https://www.aclweb.org/anthology/N19-1351
https://www.aclweb.org/anthology/N19-1351


BIBLIOGRAPHY

Sparck Jones, Karen (1994). “Natural language processing: a historical review”. In:

Current issues in computational linguistics: in honour of Don Walker. Springer,

pp. 3–16.

Sparck Jones, Karen (1994). “Towards Better NLP System Evaluation”. In: Human

Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey,

March 8-11, 1994. url: https://www.aclweb.org/anthology/H94-1018.

Spärck Jones, Karen (2005). “ACL Lifetime Achievement Award: Some Points in a

Time”. In: Computational Linguistics 31.1, pp. 1–14. url: https://www.aclweb.

org/anthology/J05-1001.

Sparck Jones, Karen and Julia R. Galliers (1996). Evaluating Natural Language Pro-

cessing Systems: An Analysis and Review. Berlin, Heidelberg: Springer-Verlag.

Stacey, Joe, Pasquale Minervini, Haim Dubossarsky, Sebastian Riedel, and Tim Rock-

täschel (2020). There is Strength in Numbers: Avoiding the Hypothesis-Only Bias

in Natural Language Inference via Ensemble Adversarial Training. arXiv: 2004.

07790 [cs.LG].
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