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Abstract 
 

 Interventional magnetic resonance imaging (iMRI) utilizes multi-functional 

capabilities of MRI, for targeting therapy and monitoring response. Up to recently, most 

of the iMRI procedures have been conducted at magnetic field strengths (B0) of 1.5T or 

lower. MRI at ultra-high B0 (UHF, B0≥3T) provides higher signal-to-noise ratio (SNR) that 

can be traded for better image resolution and/or shorter scan durations. This 

dissertation investigates the performance of the interventional loopless antenna at UHF 

and introduces new methods to enable UHF iMRI using interventional loopless 

antennae. 

 First, a new MRI denoising method based on a spectral subtraction technique 

that can provide up to 45% of SNR improvement is introduced. While achievable SNR 

gains using post-processing methods are limited, the SNR of MRI is intrinsically 

improved by moving to higher B0. Here, the performance of a loopless antenna was 

tested at 7T. The results show that SNR increases quadratically with B0 (SNR~B0
2) up to 

7T. The increased SNR of the loopless antenna at UHF enables MRI at sub-50µm in-plane 

resolutions. 

 At UHF, excitation of tissue deep within the body becomes challenging due to 

the decreased penetration depth, and radiofrequency (RF) safety limitations when 

external coils are used. To overcome these problems, we used the loopless antenna for 

both transmitting the RF field, and receiving the MR signal from the tissue. Spatially 
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selective B1-insensitive pulses were employed to improve the excitation homogeneity, 

providing a ~10cm FOV, which would be suitable for both device-tracking and localizing 

potential targets inside the body. 

 Use of interventional devices in transmit and/or receive mode may elevate 

temperatures near the device above levels considered safe. To address this problem, we 

built a loopless antenna RF radiometer operating at 3T MRI frequency, 128MHz, to 

monitor the local temperature around the device. We investigated its performance 

inside bio-analogous phantoms and using electromagnetic and thermal numerical 

simulations. The radiometer was able to detect uniform temperature with an accuracy 

<0.3°C at 2 measurements/second, and estimate the peak 1g-averaged temperature rise 

within 0.4°C. The loopless antenna radiometer can be used to ensure safety of 

interventional procedures, without requiring any additional leads or sensors, or even 

MRI. 
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at 7T. B1
+ varies by ~80%. ................................................................................................. 59 

Figure 4.5. Absolute SNR (ml-1Hz1/2) computed by EM MoM (square points) at ρ=1cm 
from the junction of antennae made with λc/4 cable portions tuned at 0.5, 1, 1.5, 2, 3, 4 
,4.7, 5 and 7T in 0.35% saline. Experimental values measured previously (1) at 1.5, 3 and 
4.7 as well as our current 7T measurements are overlaid (solid circles). The data are fit 
to a quadratic curve (dotted line). Experimental data are corrected for system NF but 
include cable losses. .......................................................................................................... 61 

Figure 4.6. The computed 1g averaged SAR normalized to 4W/kg applied local SAR is 
shown on the coronal and sagittal antenna planes at 7T for insertion depths of (a) 
35mm, and (b,c) 100mm. Part (d) shows the SAR computation for 3T with a 100mm 
insertion depth. Part (c) is the distribution in geometry 2 and parts (a,b,d) are in 
geometry 1. Axes on (a-d) denote position in [cm]. ......................................................... 63 

Figure 4.7. Computed (dark gray) and measured (light gray) local 1g averaged SAR at 7T 
for geometry 1 at 35 (a), 100 (b) mm insertion depths, and for geometry 2 at 100mm 
insertion depth (c). Data are normalized to 4W/kg local reference SAR, with error bars 
denoting minimum and maximum within a ±0.5cm placement error cube. ................... 64 

Figure 4.8. (a) Full FOV, high-resolution SSFP image of a human carotid artery acquired 
at 7T with 80 μm in-plane resolution. (b) Same image with the central region expanded 
(dashed lines in Fig. 6.a) for comparison with (c), a 3T 80µm image from the same 
specimen using comparable acquisition parameters (position slightly shifted). ............. 64 

Figure 4.9. High resolution TSE images of human carotid artery specimens in saline at 3T 
(a) and 7T (b-d). Slice thickness is 1 mm, in-plane resolution is 80 μm (a, b), 40 μm (c) 
and 53 μm (d). Histology result for the samples used at 7T images is shown in (e). 3T (a) 
and 7T(b) images are acquired with the same pulse sequence parameters except for a 
6.5% increase in bandwidth at 7T due to system constraints. The mean SNR 
improvement inside the annotated squares in (b) is 5.85 compared to (a). ................... 67 

Figure 5.1. Amplitude, frequency and phase modulation waveforms of a modified BIR4 
pulse are plotted. If the pause duration is set to '0', then these waveforms represent a 
conventional BIR4 pulse. The BIR4 starts with a rAHP segment followed by an AFP pulse 
and ends with an AHP pulse. All pulses are modulated using same shapes and 
amplitudes. ....................................................................................................................... 74 

Figure 5.2. Amplitude, frequency and phase modulation waveforms of (a) the water- 
and (b) the fat-suppression BIR4 pulses are plotted. Ratio of the transverse 
magnetization to the longitudinal magnetization at the end of the water- and fat-
suppression pulses are shown in (c) and (d) respectively. ............................................... 76 

Figure 5.3. Head-coil GRE images acquired using (a) the water-suppression, and (b) fat-
suppression BIR4 pulses are shown. ................................................................................. 78 

Figure 5.4. (a) A vial containing vegetable is placed inside a water bath next to the 
interventional (IV) loop coil. FFE sequences using the IV coil in T/R mode are acquired 
with the 15.6ms-long (b) water-suppression, and (c) fat-suppression pulses. ................ 78 

Figure 5.5. (a) Coronal water, (b) fat, and (c) axial water, (d) fat images acquired at 7T. 
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Red arrows show the lipid-rich regions adjacent to vessel wall. White arrows point to the 
intravascular MR detector in both figures. ....................................................................... 79 

Figure 5.6. (a-d) Images from a 5-slice axial 3D scan at 3T. Fat images are intensity 
thresholded and overlaid on the grayscale water image with cyan, showing the lipid-rich 
regions next to the vessel wall. Scattered cyan points at the bottom of the images are 
due to errors in thresholding in low SNR regions. (e) Image of the specimen with red 
arrow indicating lipid-rich area. ........................................................................................ 80 

Figure 6.1. Neuropathology of Alzheimer's disease is shown. (Adapted from A.D.A.M. 
Medical Encyclopedia Ref. 1) ............................................................................................. 83 

Figure 6.2. Different expressions of small vessel disease (SVD) are shown, including 
postmortem fluid-attenuated inversion recovery (FLAIR) magnetic resonance images 
and histological sections. Cortical microinfarcts and normal-appearing white matter 
changes are only histopathologically depicted. (Adapted from Ref. 2) ............................ 84 

Figure 6.3. The experimental setup for studying brain specimens at 7T. The phantom is 
filled with saline to electrically load the loopless antenna. The brain specimen is placed 
vertically inside the phantom and the loopless antenna is placed therein. ..................... 86 

Figure 6.4. MRI of brain specimens (a) without and (b) with Alzheimer's disease  (AD) 
pathology at 100μm in-plane resolution. The white arrows point to signal 
hypointensities that are suspected to be senile plaques. ................................................ 88 

Figure 6.5. MRI of age-matched brain specimens (a) without and (b) with Alzheimer's 
disease (AD) pathology at 60μm in-plane resolution. (c) MRI of the brain with AD 
pathology is zoomed, and the arrows point to signal hypointensities that can potentially 
be senile plaques. The 2.2mm diameter loopless antenna appears as a dark circle inside 
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Figure 7.1. (a) Along the first row, B1 amplitude, B1 phase and gradient amplitude 
waveforms for the 5-Gaussian composite pulse, and (b) a conventional single-lobe 
Gaussian pulse are shown. The second row shows the transverse magnetization at the 
end of: (c) the 5-Gaussian composite, and (d) a single Gaussian pulse for 0≤B1≤30µT and 
T2=30ms. The B1 at 3mm and at 3cm from the antenna junction are annotated. The 
third row shows the transverse magnetization as a function of axial position (r) for the 
(e) 5-Gaussian (f) single-Gaussian pulses ±6cm from the antenna. The applied peak pulse 
power was 4W throughout. .............................................................................................. 98 

Figure 7.2. (a) Computed relative SAR (logarithmic scale) annotated to show 
temperature probe placement in the safety studies. (b) Temperature rise during a 15 
min RF exposure at a continuous input power of 300 mW, as measured at the insertion 
point (blue, 1), cable-whip junction (black, 2), and tip (red, 3). ..................................... 100 

Figure 7.3. (a) Axial images acquired with a transmit/receive loopless antenna using a 
conventional sinc-modulated pulse, and (b) using the 5-Gaussian composite pulse (T1-
weighted 2D FFE; TR/TE=200/15ms; FOV=5x5 cm2; voxel-size=100x100µm2; nominal 
slice thickness, 3.2 mm). (c) Coronal image annotated with orange grid to show the 
planning of the 3D experiment to demonstrate slice selectivity (T1-weighted 2D FFE; 
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TR/TE=200/15 ms; FOV=5x5cm2; voxel-size=100x100µm2; nominal slice thickness, 
3.2mm). (d) Axial 0.8mm thick images from the 3D experiment show signal in 4 slices 
consistent with the 3.2mm slice thickness (3D FFE; FOV=5x5x0.64cm3). ...................... 101 

Figure 7.4. (a) Signal intensity profiles acquired inside a homogeneous phantom with 
identical imaging parameters at 1, 4, and 16W (red, blue, and black respectively) of 
applied peak forward power (PF) are shown. The horizontal line indicates the 
thresholding level for determining the ‘20% useable’ imaging FOV, which is 48.4, 61.5, 
and 98.3mm for 1, 4, and 16W of applied peak PF respectively. (b) Large FOV axial 
(TE=7ms) 2D image acquired inside a pomelo fruit, and (c) T2* map calculated using the 
magnitude images acquired at different TEs (multi-echo T1-weighted FFE; TR=200ms; 
echo-times TE=7, 17, 27, 37 ms; FOV=12x12cm2; voxel-size, 0.5x0.5mm2; Peak applied 
PF, 58W; Average PF, 359mW; 2 averages; duration, 97s; color scale in ms at right). .. 103 

Figure 7.5. (a) Large-FOV intravascular coronal scout image of a diseased human iliac 
vessel in a saline tank annotated to show sections imaged in parts (b) and (c) (T1-
weighted FFE; TR/TE=200/15 ms; duration=49s; FOV=16x6cm2; voxel-size=250x94 µm2). 
(b, c) Annotated high-resolution trans-axial images through the vessel wall (b: 
TR/TE=100/10ms; duration=10s; FOV=2x2cm2; voxel size=100x100µm2; radial readout 
with 50% density. c: TR/TE=150/22ms; duration=151s; FOV=5x5cm2; voxel-size 
=50x50µm2). (d) Photograph of the distal end of the 0.86mm diameter 7T biocompatible 
nitinol loopless antenna. (e) Large-FOV in vivo axial image through the aorta of a healthy 
rabbit (TR/TE=231/5.9ms; duration=70s; FOV=9x9cm2; voxel-size=300x300µm2; slice 
thickness=4mm; Bandwidth=154KHz; Pi=64W). (f). In vivo 100µm image of the 
annotated region from part (e) (TR/TE=462/9.8ms; duration=140s; FOV=3x3cm2; voxel-
size=100x100µm2; slice thickness=4mm; BW=52KHz; Pi=16W). .................................... 105 

Figure 8.1. Side-view of the cylindrical experimental phantom and the placement of the 
loopless antenna inside the gel. ..................................................................................... 113 

Figure 8.2. Block diagram of the radiometry receiver components. The phantom with 
the loopless antenna, front-end switches and the first preamplifier stage are placed 
inside the RF shielded room. The rest of the RF receiver components and the RF power 
delivery components are located outside the shielded room. ....................................... 114 

Figure 8.3. Radiometry front-end switches enable transition between the three possible 
states during the experiments. ....................................................................................... 115 

Figure 8.4. (a) RF components in the main board include three stages of preamplifiers 
and an anti-aliasing band-pass filter consisting of a low-pass and two high-pass filtering 
stages. (b) Photo of the main board is shown with different RF stages annotated. ...... 116 

Figure 8.5. Histogram of the received samples over a 0.5s period shows a Gaussian 
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Figure 8.6. Linearly calibrated radiometric temperature readings follow the sensor 
values during the uniform heating experiment. The accuracy of the radiometric 
measurement is ±0.24°C. ................................................................................................ 126 

Figure 8.7. (a) Temperature profile intersecting the junction from the MRI thermometry 
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Chapter 1.   
 
Introduction 

1.1. Interventional MRI 

 Magnetic resonance imaging (MRI) is a medical imaging modality that can 

provide exceptional soft-tissue contrast in any arbitrary imaging plane without ionizing 

radiation. MRI is considered a relatively safe imaging modality whose safety hazards are 

primarily limited to those associated with the effect of the magnetic field on metallic 

implants or peripheral equipments, and induced radiofrequency (RF) heating during MRI 

transmission. In addition to morphological information; it can provide functional and 

metabolic assessment on various biological processes.  

 Within a decade of its inception, MRI was used with an internal catheter coil for 

measuring heart metabolism3. The absence of ionizing radiation is not only important 

for the patient, but also for the operator who is routinely exposed to the scanner 

environment. Clinical MRI-guided (MRIg) interventional procedures began in 1980s 

using passive catheters visualized by their intrinsic material properties4. Development of 

open bore MRI systems5, catheter tracking methods6, design of active interventional 

imaging detectors7, 8 and the advancement in fast imaging methods9 paved the way for 

more advanced interventional MRI (iMRI) procedures. Breast and prostate biopsies10-15, 

musculoskeletal procedures16-19, endovascular and cardiac interventions20-26, targeted 

stem cell delivery27, various intracranial neurosurgical operations28-31, radiofrequency 
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(RF) and microwave ablation32-34, cryotherapy35, 36 and MRIg-focused ultrasound (FUS) 

procedures37-39 and many more applications, have been done under MRI guidance using 

MR compatible interventional tools, devices and robotics. Most but not all iMRI 

procedures have been conducted at field strengths 1.5 Tesla (T) or lower. MRI at or 

above 3T field strength (B0) offer potential improvements in image quality and/or speed 

due to the higher signal-to-noise ratio (SNR) available. However, device safety is a 

concern at higher B0 due to magnetic displacement forces, RF heating and 

biocompatibility issues. These must be addressed and the performance gains for 

interventional devices and their pulse sequences at ultra-high field strengths (UHF; 

B0≥3T) must be analyzed in order to proceed. 

 Devices used under MRI-guidance can be visualized by either passive or active 

mechanisms. With passive visualization mechanisms, the device appears in the image by 

virtue of its intrinsic material properties. Some devices create a signal void in the image 

and appear darker compared to the background40. Devices including ferrous materials 

can be visualized by their susceptibility artifacts41. Devices filled42 or coated43 with MRI 

contrast agents appear hyper-intense. Passive visualization methods do not require 

additional hardware and/or modifications to the MRI system40. 

 Active interventional detectors generally employ small tracking coils that are 

sensitive to the MR signal 6, 44. The coil is connected to the MRI scanner via a thin coaxial 

cable and provides a robust signal, identifying the location of the instrument with high 

contrast. The available spatial coordinates of the device in 3-dimensions can be used to 
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update the imaging location in real-time, such that imaging is always performed at the 

catheter position 45-47.  

 Tracking coils provide only point-wise spatial information. When the number of 

tracking coil is limited, visualizing the curvature and the entire length of a catheter, say, 

is challenging. However, the curvature and the entire length of a catheter can be 

actively visualized using magnetically coupled coils48, 49 or electrically coupled antennas 

8, 50. The loopless antenna8 is an electrically coupled MRI antenna, that can provide 

homogeneous signal profile along a substantial length of the antenna lead. Signal 

sensitivity is such that the MR signal derives from tissue in close vicinity to the antenna. 

MRI signal acquired from the loopless antenna can be overlaid with a different color on 

a body coil image to visualize the device location. In addition to superior device 

visualization, the loopless antenna can be used to acquire MRI signal to produce high-

resolution images of tissues nearby7, 51, 52. It can also be used to provide MRI 

excitation53.  

 Active visualization methods require dedicated hardware, electronics and MR 

software modifications to take advantage of their capabilities. Detuning/decoupling of 

the active devices during external RF excitation is important to ensure their safety40, 54. 

Tuning/matching of them during MR signal reception is also required to achieve the 

optimal performance8. 
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1.2. RF Safety 

 MRI is not considered a significant risk for health and has a significant safety 

record, however it is not totally hazard-free. In MRI, the magnetic field component of 

the RF field (B1) at the Larmor frequency excites the spins to generate the MRI signal. 

The electric field (E1) associated with this RF excitation induces RF (high-frequency) eddy 

currents in the conducting tissue55 and may cause temperature elevations. The RF 

power exposure is quantified by the specific absorption rate (SAR). The SAR is the mass 

normalized rate at which RF power is coupled to the biologic tissue56, measured in 

W/kg.    

Table 1.1. International Electrotechnical Comission (IEC) in Europe and the U.S. Food 
and Drug Administration (FDA) guidelines on SAR and heating in human MRI studies are 
listed. 
 

IEC limits 
(6 min average) 

Whole body  
average 

Head  
average 

Head, torso  
local SAR 

Extremities 
Local SAR 

Normal  
(all patients) 2 W/kg (0.5°C) 3.2 W/kg 10 W/kg 20 W/kg 
First level 
(supervised) 4 W/kg (1°C) 3.2 W/kg 10 W/kg 20 W/kg 
Second level  
(IRB approval) 4 W/kg (>1°C) >3.2 W/kg >10 W/kg >20 W/kg 
Localized heating 
limit 39°C in 10g 38°C in 10g  40°C in 10g 

FDA limits 
4 W/kg  
for 15 min 

3 W/kg  
for 10 min 

8 W/kg in 1g  
for 10min 

12W/kg in 1g 

for 5 min 

 

 The safety of RF exposure during clinical MRI is regulated via government and 

industry guidelines 57, 58. RF exposure limits published by the International 



5 

 

Electrotechnical Commission (IEC) in Europe and the U.S. Food and Drug Administration 

(FDA) are summarized in Table 1.1. RF exposure settings under MRI in research studies 

may exceed the clinically approved exposure limits pending an approval from an 

instituitional review board (IRB).  

 The power absorption pattern inside a biological sample depends on both 

parameters intrinsic to the sample such as its size and electrical properties, and also the 

RF excitation coil, Larmor (MRI) frequency, the presence and positioning of any 

conductor and/or internal detector inside the sample and excitation coil. The SAR 

distribution inside the sample cannot easily be measured directly, however it can be 

modeled using accurate numerical analysis methods59-61, and estimated based on the 

whole body average input power or SAR. Clinical scanners monitor both the average and 

local SAR based on individual patient data entries, and/or factory-determined properties 

of transmit coils and estimates of the delivered power62, 63. Although rare, RF heating 

related injuries occur every year. Examples of reported RF burn injuries can be found in 

the FDA Manufacturer and User Facility Device Experience (MAUDE) database 64. 

 The presence of a highly conductive metallic device inside the body will typically 

alter the distribution of E1. Potential capacitive coupling between the device and the 

surrounding tissue can exacerbate RF safety risks65, 66. Because the conductivity of a 

metallic device is significantly higher than the surrounding tissue, the current in the 

device can be much higher than in the surrounding tissue. At the entrance (and exit) 

points of a metallic device inside the body, the local current density in the tissue may be 
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high enough for burns to occur40. The exact current densities and heat production are 

difficult to predict because they not only depend on the metallic device but also on the 

RF excitation coil, surrounding tissue electrical properties as well as the exact location of 

the device inside the body and in the coil. Device testing using a setup according to 

ASTM standard F218267 does not necessarily ensure a 'worst case situation', and testing 

in typical clinical settings also may not provide proof of safety under all circumstances. It 

is desirable to have an independent way of monitoring the local heating around an 

interventional device in order to monitor safe operation. 

1.3. Outline of the Thesis 

 The purpose of this thesis is to characterize the performance of active 

interventional loopless antenna detectors at ultra high field strengths (UHF, B0≥3T), and 

develop methods to enable their use at UHF. First, the SNR performance and RF safety 

of the loopless antenna at UHF is investigated. Then, to overcome the challenges with 

RF excitation at UHF, the loopless antenna is used for both transmitting the RF field with 

a spatially selective B1-insensitive RF pulse, and for receiving the MRI signal at 7T.  This 

transmit/receive approach with the interventional loopless antenna helps to eliminate 

some system complexities at 7T. In the last part of the thesis, the loopless antenna is 

used as an RF radiometer to measure the local temperature rise around the device. A 

loopless antenna RF radiometer may be used to monitor the safety of interventional 

procedures in the future. 
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 In the first chapter, background information on interventional MRI and RF safety 

are discussed. The second chapter explores the fundamentals of MR physics and MR 

image reconstruction, potentials and challenges of UHF imaging, and the advanced MRI 

methods used throughout the work. The latter include sensitivity encoding (SENSE)68, 

chemical selective imaging69 and temperature mapping with MR thermometry70. MRI RF 

coils are briefly discussed. The design and implementation of an interventional loopless 

antenna upon which this thesis is based is introduced. 

 In Chapter 3, we introduce an MRI de-noising method based on the subtraction 

of the noise power from the acquired signal in the spatial frequency domain. The 

proposed method is tested on various single coil images as well as on multi-channel coil 

images reconstructed using SENSE algorithm. 

 In Chapter 4, the SNR performance and RF safety of the loopless antenna is 

investigated at 7T and the results are compared with 3T. High-resolution images (in-

plane voxel size: < 100μm) of diseased human artery specimens are acquired. 

 In Chapter 5, methods for chemically-selective intravascular imaging of 

atherosclerotic plaques are discussed. Chemically-selective water/fat MRI methods 

using three-point Dixon method69 and spectrally selective modified B1-insensitive 

rotation (BIR4) pulses71 are demonstrated. 

 In Chapter 6, brain specimens with and without Alzheimer's disease pathology 

are scanned at high-resolution (60x60x200μm3) using the loopless antenna at 7T. 

Amyloid plaque-like signal hypointensities are detected from specimens with the 
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disease pathology. 

 In Chapter 7, MRI excitation is provided solely with the loopless antenna, using 

spatially-selective B1-insensitive RF pulses72 at 7T. A single-device approach without any 

RF coils/detectors other than the interventional loopless antenna is successfully 

introduced, removing the need of external coils and reducing the system complexity. 

 In Chapter 8, an RF radiometer tuned to 3T MRI Larmor frequency (128MHz) is 

built and connected to the loopless antenna to monitor local temperature around the 

device. The proposed method is tested experimentally inside bio-analogous uniform 

phantoms and numerically using full-wave electromagnetic (EM) and thermal 

simulations. 

 In Chapter 9, major achievements are summarized chapter by chapter and future 

work is explained. 
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Chapter 2.   
 
Background 

2.1 NMR Physics 

2.1.1. Main Magnetic Field (B0) 

 Atoms with an odd number of nucleons posses magnetic moment, and  when 

placed in a static magnetic field (B0), the net spin magnetization (M) preferentially aligns 

in the direction of B0 73 (Figure 2.1.a, traditionally assigned to Z-direction). The nuclear 

spins resonate at the Larmor frequency (f), which is directly proportional to the B0:  

0
2
Bf




               [2.1] 

where γ is the gyromagnetic ratio which is a known unique constant for each atom, i.e. 

isotope. The phenomenon is called nuclear magnetic resonance (NMR). In biological 

specimens, hydrogen (1H) is the most abundant atom, that gives rise to the largest signal 

and therefore is the most studied by MRI. The gyromagnetic ratio of hydrogen (  2/ ) is 

42.58MHz/Tesla. For a clinical 3T system, the Larmor frequency is about 128MHz; and it 

increases to 298MHz for 7T systems used in pre-clinical research. 

2.1.2. Radiofrequency Field (B1) 

 To obtain an NMR signal, a radiofrequency (RF) magnetic pulse (B1) tuned to the 

Larmor frequency is applied in the transverse (xy) plane. This RF pulse excites spins away 
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from equilibrium and tilting them, for example, towards the xy-plane (Figure 2.1.b). The 

angle of rotation (FA: flip angle) is a function of the amplitude, frequency and duration 

of the applied RF pulse74. The transverse magnetization (MT=Mxy) precesses at the 

Larmor frequency and gives rise to the NMR signal (Figure 2.1.c), and the NMR signal is 

picked up using NMR receiver coils tuned to the Larmor frequency. 

  

2.1.3. Bloch Equation 

 The behavior of the spin magnetization in the presence of an externally applied 

magnetic field is governed by the Bloch equation 75: 

21

0 )(

T

yMxM

T

zMM
BM

dt

Md yxz










           [2.2] 

where 


M  is the spin magnetization; M0 is the equilibrium magnetization arising from 

 
Figure 2.1. (a) The net magnetization aligns with the B0 (z-direction). (b) An RF pulse 
applied along the transverse plane (xy-axis) at the Larmor frequency tilts the 
magnetization towards the transverse plane. (c) The transverse component of the 
magnetization (MT) precesses at the Larmor frequency and it is the source of the NMR 
signal. 
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B0; 


B  is the applied magnetic field; T1 and T2 are the relaxation time constants in the 

longitudinal (z-dimension) and transverse planes respectively.  

2.1.4. Relaxation 

 When the applied RF field is removed, spin magnetization returns to the 

equilibrium magnetization (M0). The T1 and T2 relaxation times define the characteristic 

time at which the longitudinal magnetization reaches M0, and the transverse 

magnetization decays to zero, respectively. For magnetization tipped into the transverse 

plane at time t=0, the relaxation processes can be written: 

)1( 1/

0

Tt

z eMM


                 [2.3] 

2/

0

Tt

T eMM


              [2.4] 

 The T1 and T2 relaxation times are properties of the tissue, and the differences in 

the relaxation constants are generally responsible for the contrast between different 

tissues seen in MRI. 

2.1.5. Signal Acquisition 

 The NMR signal is detected by an NMR coil which may be are sensitive to the 

entire imaging volume or to local regions of interest. The NMR signal is induced in the 

coil V(t) according to Faraday's law of induction: 










subject

coil drtrMrB
t

tV ),()()(            [2.5] 
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where )(rBcoil


 is the magnetic field produced at a location r  by unit current flowing 

inside the receiver coil based on the principle of reciprocity. The NMR signal induced in 

the coil is a weighted summation of all the spin magnetization over the region to which 

of the RF coil is sensitive.  

2.1.6. Linear Gradient Fields 

 If the net applied magnetic field is B0, then all the spins inside the imaging 

volume precess at the same frequency, and it would not be possible to resolve the 

spatial origin of the induced signal. Linear gradient magnetic fields (G) are used for 

spatial localization in MRI. The linear gradient fields are applied in the z-direction, 

therefore the net magnetic field points in the same direction. However, the strength of 

the linear gradient fields vary in position and spins at different locations precess at 

different frequencies: 

)(),,( 0 zGyGxGBzyx zyx              [2.6] 

where Gx, Gy and Gz are the amplitudes of the linear gradient fields in the x, y and z 

directions respectively. 

2.2. MR Image Encoding and Reconstruction 

2.2.1. Spin Warp MRI 

 In a simple 2D imaging sequence, the imaging slice is excited by applying an RF 

pulse together with the slice selection gradient (Gs). Only the spins precessing at 
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frequencies within the bandwidth of the applied RF pulse will be excited. The thickness 

and shape of the selected slice is a function of the amplitude of the applied gradient 

field; and the amplitude, center frequency and the bandwidth of the RF pulse. 

 After a slice is selected, the linear gradients in the other two directions (Gp: 

phase-encoding gradient, Gf: frequency-encoding gradient) are used to spatially encode 

the sample in the other two dimensions (2D). The RF and gradient waveforms for the 2D 

spin warp imaging sequence is shown in Figure 2.2 76. The MRI signal voltage induced in 

the coil for a slice selected in the z-direction, ignoring relaxation and field 

inhomogeneity effects, is given by: 

dydxeyxMtM yx kki

x y

xy

)(2

0 ),()(


 


         [2.7] 

where 








2
,

2

tG
k

tG
k

y

y
x

x   denote the spatial frequencies.  

 

 
Figure 2.2. 2D Spin warp imaging sequence is displayed. 
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 Repeating the spin warp sequence with different phase encoding gradient 

amplitudes fills up the spatial frequency domain (k-space) of the image (Figure 2.3.a). 

Eq. [2.7] indicates a Fourier transform (FT) relationship between the acquired MRI signal 

and the MRI. Therefore, taking the 2D FT of the acquired samples (Figure 2.3.b) yields 

the 2D MRI (Figure 2.3.c). 

 The image resolution and field-of-view (FOV) depend on the acquisition 

parameters: 

max,max, 2

1
,

2

1

f

f

p

p
kk

             [2.8] 

where 
fp  ,  are the spatial resolution in the phase and frequency encoding directions 

respectively. The imaging FOV is related to the step-size between each k-space sample: 

f

f

p

p
k

FOV
k

FOV






1

,
1

               [2.9] 

where 
fp FOVFOV ,  are imaging FOV; and 

fp kk  ,  are the distance between the 

adjacent k-space samples in the phase and frequency encoding direction, respectively. 

2.2.2. Gradient Echo (GRE) Pulse Sequence 

 Gradient echo (GRE) pulse sequences are primarily used for fast scanning77, and 

in applications requiring acquisition speed such as vascular or cardiac imaging78. GRE has 

three main parameters: 1. RF excitation flip angle (FA); 2. echo time (TE); 3. sequence 

repetition time (TR). The common features of GRE sequence are shown in Figure 2.4. 
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 GRE acquisitions can be fast because the excitation FA is typically less than 90°, 

therefore some of the longitudinal component of the magnetization can be used in the 

next TR and no lengthy period of time is required for T1 recovery. TR of GRE sequences 

are generally less than 200ms. The T1 contrast of the image can be adjusted by changing 

FA and TR. 

 
Figure 2.3. (a) The structure of k-space with respect to the phase and frequency 
encoding gradients are shown. (b) After the k-space is filled with MR signal samples, 
taking the 2D Fourier transform yields the (c) MR image. 
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 GRE sequences are weighted with T2* (apparent T2), which is related to the spin-

spin relaxation time (T2) by: 

'

111

22
*

2
TTT

            [2.10] 

where T2' is inversely proportional to the magnetic field inhomogeneity inside each 

voxel. T2' depends on external factors such as susceptibility variations within the patient 

and prescribed imaging voxel size, however T2 is an intrinsic tissue property. 

 Steady state signal equation for a spoiled GRE sequence in which the residual 

transverse magnetization is crushed at the end of each TR is given by: 

1

1

2

/

/
*/

)cos(1

1
)sin(

TTR

TTR
TTE

GRE
eFA

e
eFAS









        [2.11] 

showing that GRE signal depends on the choice of TR, TE and FA; as well as the tissue T1 

 

Figure 2.4. Timing and placement of the RF and gradient fields for a simple GRE 
sequence are depicted. Repeating this sequence N times with different phase encoding 
gradient value will fill up the k-space.  
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and T2 values. 

 Another important feature of GRE is that, the resultant images contain phase 

information, which can be utilized in MRI methods such as susceptibility weighted 

imaging79, 80, temperature mapping70, 81, and chemically-selective imaging82, 83. 

2.2.3. Parallel Image Reconstruction 

 In spin wrap imaging, the pulse sequence must be repeated N times to fill up 

image k-space, however this can be time consuming. In order to reduce the scan time, 

phased-array coils84 can be used with parallel imaging algorithms such as simultaneous 

acquisition of spatial harmonics (SMASH)85, sensitivity encoding (SENSE)68 and 

generalized auto calibrating partially parallel acquisition (GRAPPA)86. 

 "Parallel" refers to the fact that each coil in the RF coil array receives the MR 

signal at the same time. In a parallel imaging experiment, a certain number of phase 

encoding steps are intentionally skipped. Taking the FT of the incomplete dataset results 

in image wrapping (Figure 2.5). Parallel imaging methods works by knowing the local 

sensitivity of each coil element in the receiver array and incorporating the coil sensitivity 

information with the incomplete dataset acquired from all of the elements. 

 The GRAPPA method works by filling the missing k-space lines using an 

automatic calibration kernel. For an acceleration factor of 2, every other k-space line is 

skipped, however a few additional lines are acquired at the center of the k-space to 

generate the calibration kernel. Then using this kernel, the remaining missing k-space 

lines are filled and final image is reconstructed by taking the FT. 
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 The SENSE method operates on the image domain and needs an additional pre-

scan to measure the sensitivity of the coils. If an acceleration factor of 2 is used, then 

every pixel in the aliased image come from two locations at a distance of exactly 1/2 

FOV apart. It is also known that the pixels are weighted by the sensitivity of the coil. By 

knowing the aliasing pattern and the spatial sensitivities of different coil elements, a 

linear equation  can be solved to retrieve values of these two pixels. The SENSE 

reconstruction method is illustrated with a reduction factor of 2 along with the linear 

SENSE reconstruction equations in Figure 2.5. 

2.3. Ultra-high Field MRI (B0>3T) 

 In the absence of an external magnetic field, spin magnetic moments in water in 

biological tissue are generally randomly distributed from a macroscopic perspective. 

Therefore, the net magnetization is 0. In the presence of a static magnetic field (B0), the 

 

Figure 2.5. The SENSE reconstruction algorithm is explained. 
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net magnetic moment tends to align in the direction of B0, counteracted by the thermal 

energy which ensures that some spins are not aligned with B0. In the quantum 

mechanical descriptions in a spin-1/2 nucleus can be aligned with and against B0, with a 

distribution at thermal equilibrium governed by Boltzmann statistics87: 

)/()( 0 TkB BeNN



             [2.12] 

where 

N , 


N are the number of parallel and anti-parallel spins in a given volume,  is 

the gyromagnetic ratio of the nucleon,   is Planck's constant, T  is the absolute 

temperature. Since the argument of the exponential term in Eq. [2.12] is much smaller 

than 1 (generally on the order of 10-6), it can be approximated using a linear term in the 

Taylor series expansion. The net magnetization is proportional to the difference 

between the number of parallel and anti-parallel spins in a given volume, and it is also 

proportional to B0: 

 
Tk

B
NNM

B

0


           [2.13] 

 In other words, moving to higher B0 linearly increases the available longitudinal 

magnetization and potentially increase the SNR of MRI. Higher available NMR signal is 

the main reason of the effort in moving to higher B0. In present, 3T is the highest 

approved field strength for clinical imaging. However, there are more than fifty 7T MRI 

scanners either installed or planned worldwide88. A 10.5T human MRI scanner is 

planned to become operational in 2014, that would make it the whole-body human 

scanner with the highest B0
89. 



20 

 

 Moving to higher B0 is challenging due to RF penetration problems90, increased 

RF power requirements91-94, increased susceptibility effects95, 96 and dielectric 

resonances97, 98. The required RF power increases approximately quadratically with B0 

for fixed FA and pulse length from 1.5 to 4T91, 94, 99, 100 and is expected to increase 

linearly from 4T to 7T101, 102. At higher field strengths (B0>3T), conventional RF 

management strategies usually become inadequate and novel methods are being 

developed to overcome these challenges. 

 RF field inhomogeneities due to dielectric resonances103 and penetration effects 

may be tackled using phased-array coils104, 105. Static and dynamic B1 shimming 

methods106-113 have also been developed for imaging different parts of the body. 

Uniform field excitation and SAR reduction are the main goals of RF management 

strategies which are application-dependent and remain an active area of research 114-118. 

2.4. MRI RF Hardware 

2.4.1. MR Coil SNR vs Field Strength (B0) 

 The NMR signal voltage (Vs) generated in an RF coil is calculated using8: 

01MBVs              [2.14] 

where M0 is the amplitude of the equilibrium magnetization. The MRI Larmor frequency 

is proportional to the B0, and M0 increases linearly with B0, therefore the signal voltage 

induced in the RF coil increases quadratically with B0, assuming equivalent coils at every 

field strength: 
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1

2BVs               [2.15] 

 The RMS noise voltage, VN in the coil is calculated as:8 

BWRTkV BN  4           [2.16] 

where kB is Boltzmann constant, T is the absolute sample temperature, R is the net 

measured resistance of the coil with the sample in it, and BW is the bandwidth of the 

signal receiver. Using equations [2.15] and [2.16], the SNR of the coil can be expressed 

as: 

RV

V
SNR

N

s
2

            [2.17] 

 The noise voltage can be divided into two components; the coil noise, and the 

sample noise. The coil noise is proportional to 2

1

 , where α is a coil dependent 

parameter90. The sample noise stems from dielectric (electric) and inductive (magnetic) 

losses. In large coils, dielectric losses can be alleviated by distributing the capacitors. The 

inductive loss for a spherical sample volume is proportional to 
2 , where β is a coil 

and sample dependent parameter. Therefore, the field dependence of the coil SNR can 

be written as: 
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         [2.18] 

 The porportionality [2.18] shows that if the coil losses are minimized and the 

sample noise dominates, then SNR increases linearly with B0. On the other hand, if the 
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coil conductive losses dominate, then 4

7

0BSNR  119. For larger coils, generally sample 

noises dominates and therefore SNR varies linearly with B0. For small loop coils, coil 

conductive losses can dominate and the SNR increases more-than-linearly with B0
119.   

2.4.2. Interventional Loopless Antenna 

 The "loopless antenna"8 is an interventional MRI detector that can be 

manufactured in sub millimeter dimensions120. It is built by extending the inner 

conductor of a coaxial cable to form a resonating structure (whip) inside the medium at 

the MRI frequency. The antenna's sensitivity may be improved by dielectric insulation121 

and tapering the insulation on the whip122. 

 The signal level of the loopless antenna is the lowest at the tip of the whip where 

the current is minimized, and it is maximum at the cable-whip junction where the inner 

conductor extends out of the coaxial cable structure. 

 

Figure 2.6. Circuit diagram of a receive-only loopless antenna and matching & 
decoupling circuitry is shown. 
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 A circuit diagram of a receive-only loopless antenna is shown in Figure 2.6. A 

coaxial cable having a length of an odd multiple of the quarter wavelengths is connected 

to the interface box. The interface box generally contains a solenoidal balun to suppress 

the common mode currents in order to reduce unwanted coupling to the external 

conductive structures such as the external MRI coil. The decoupling circuitry includes a 

diode that can be activated during RF transmission so that the whip encounters a large 

impedance and the currents induced on the antenna due to external RF fields are 

minimized. The matching circuitry is used to maximize the signal transmission efficiency 

to the MRI receiver electronics. The whip and cable of a nitinol biocompatible loopless 

antenna is shown in Figure 2.7. 

 

2.4.3. Baluns 

 Baluns are used to suppress common mode currents (CMC) on the outer shield 

of coaxial cables that connect coils and different hardware components of the MRI RF 

transmit/receive chain. CMC can cause: a reduction in SNR78, unwanted coupling 

between receive coil elements in receive arrays77, 78, and increased interactions between 

the cable and the RF transmit field, that may exacerbate RF safety risks. Proper design 

 

Figure 2.7. Whip and cable of a biocompatible loopless antenna made out of nitinol 
hypertube and an insulated gold-plated nitinol center conductor. Antenna diameter is 
0.86mm. 
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and placement of baluns along RF coaxial cables is crucial for optimum RF hardware 

performance. 

 In this thesis, numerous bazooka baluns tuned to 3 and 7 Tesla MRI frequencies 

are used. A cross-sectional view of a bazooka balun along with its representative circuit 

diagram is shown in Figure 2.8 123. 

 Bazooka baluns (Figure 2.9) generally have a narrow band and are highly 

effective common-mode suppressors. The common mode suppression efficiency of a 

bazooka balun can be improved by increasing the inductance of the balun. For a given 

 

Figure 2.9. A bazooka balun implemented on a semi-rigid coaxial cable is shown. Left 
end of the balun structure is soldered to the outer conductor of the coaxial cable. Balun 
is tuned to the operating frequency using the capacitors placed between the right end 
of the balun structure and the outer conductor of the coaxial cable. 

 
 

 

 

 

Figure 2.8. (a) Schematic and (b) circuit diagram of a bazooka balun. 
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coaxial cable, a longer and or thicker inductive balun section will generally provide a 

higher common mode impedance when it is tuned to the operating frequency Figure 

2.10123.  

 

2.5. Advanced MRI Methods 

 In this section, some of the advanced MRI methods that are used throughout the 

thesis are introduced. First, chemically-selective imaging using the three-point "Dixon 

method" 69 to distinguish water and fat content is explained. In the second part, 

temperature mapping using proton-resonance frequency (PRF) shift method70 is 

discussed. 

 
Figure 2.10. Common-mode impedances of two bazooka baluns with lengths of 4.9cm 
(red) and 6.7cm (blue) are plotted with dotted lines at different tuning frequencies. The 
solid lines show the analytically calculated impedance values at respective tuning 
frequencies. 
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2.5.1. Chemically Selective Imaging 

 Water and lipid protons resonate at NMR frequencies 3.4ppm (parts per million; 

435Hz at 3T amd 1015Hz at 7T) apart from each other, for a given applied magnetic 

field. This difference between their precession frequencies can be utilized to distinguish 

the water and fat content of the subject.  

 One approach, proposed by Dixon, is to acquire a series of images at different 

echo times and to reconstruct water- and fat-only images using the phase information82. 

In the three-point Dixon method, three images are acquired at different TEs but 

otherwise identical sequence parameters 69: 
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                   [2.19] 

where iS denotes the image acquired at i th TE; water   and fat  denote the water and 

fat content in the image, respectively; φ represents the combined phase accumulation 

due to the pulse sequence, coil and sample configuration; and 0  denotes the phase 

accumulation due to inhomogeneities in the main magnetic field (ΔB0). After calibrating 

each acquisition against the systematic phase accumulation: 




 eSS ii                                     [2.20] 

water- and fat-only images are calculated using: 
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where 


iS  are the phase normalized images according to Eq. [2.5]. 

2.5.2. MR Thermometry 

 The resonance frequency of 1H in water molecules decreases slightly as the 

temperature increases, due to the molecular screening of water molecules giving rise to 

a temperature dependent decrease in local magnetic field. The temperature 

dependence of the molecular screening constant for pure water is α=-0.01 ppm/°C 81. 

 Although the shift is tiny, magnetic field inhomogeneities and/or drifts are 

measurable using the phase of gradient-echo MRI. By repeating the same pulse 

sequence, the temperature difference between two acquisitions can be derived from 

the phase differences. This is using the proton resonance frequency (PRF) shift method 

of MRI thermometry 124. The temperature change is given by: 

TEB
T i
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

 
            [2.22] 

where iT  is the calculated temperature difference map and i  is the phase image at 

the ith  time frame, 0  is the reference phase image,   is the gyro-magnetic ratio of 1H, 

 is the temperature coefficient of the PRF change, and 0B is the main magnetic field 

strength. 



28 

 

 The sensitivity of the MR thermometry method is improved at higher B0, because 

the effect is proportional to field or frequency in ppm, and the measurements are in Hz. 

The effect is also optimized by setting (TE=T2*) 125. If the phase difference between two 

images is greater than π, temperature measurements may become corrupted due to 

phase wraps or aliasing. This can be solved using post-processing methods, by assuming 

that the temperature distribution is slowly varying. 
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Chapter 3.     
 
De-Noising MRI Using Spectral Subtraction 

3.1. Introduction 

 Improving signal-to-noise ratio (SNR) in MRI without sacrificing spatial 

resolution, contrast or scan-time could improve diagnostic value. While time averaging 

increases SNR, with SNR  (scan-time), extending the scan-time is expensive, prone to 

motion artifacts, and unacceptable in many clinical MRI applications. Indeed, parallel 

imaging techniques such as sensitivity encoding (SENSE) 68 and generalized auto-

calibrating partially parallel acquisitions (GRAPPA) 86, are commonly used to shorten 

scan-times. Images reconstructed with these techniques exhibit spatially-varying noise 

statistics, which limit the applicability of conventional de-noising techniques. 

 Several de-noising methods have been proposed to enhance the SNR of images 

acquired using parallel MRI techniques. One method, anisotropic diffusion filtering 

(ADF) 126,  effectively improves SNR while preserving edges by averaging the pixels in the 

direction orthogonal to the local image signal gradient. ADF can potentially remove 

small features and alter the image statistics, although adaptively accounting for MRI’s 

spatially-varying noise characteristics can offer improvements, this is challenged in 

practice by the lack of availability of the image noise matrix 127. Wavelet-based filters 

have also been applied to MRI 128-131. These are prone to produce edge and blurring 

artifacts 132.  
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 Recently, de-noising methods employing non-local means (NLM) 133 were applied 

to increase the MRI SNR by reducing variations among pixels in the image with close 

similarity indices 134. The robustness of the determination of pixel similarity is enhanced 

by comparing small image regions centered at each pixel, rather than by pixel-by-pixel 

comparisons. While adaptive NLM de-noising (involving the estimation and 

incorporation of spatial variations in the noise power) offers improved performance 135, 

NLM can still affect image statistics 136 and its computational burden is significantly high 

compared to other approaches. 

 In this chapter we introduce a new, time efficient, image de-noising method by 

applying spectral subtraction directly to MRI acquisitions in k-space. Spectral subtraction 

is well-established for the suppression of additive Gaussian noise (AGN) 137 and is 

commonly used in speech processing 138. It has been applied to the time-course of 

functional MRI (fMRI) data to facilitate event detection 139, but not the SNR 

enhancement of routine MRIs per se. We test spectral subtraction de-noising (SSD) on 

both numerical simulations, as well as experimental MRI data including parallel SENSE 

image reconstruction 68, and compare its performance with ADF.  

3.2. Theory 

 For Cartesian MRI, the acquired complex signal fills k-space matrix. Each k-space 

row can be modeled as an underlying true signal plus Gaussian noise: 
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 )()()()()()( tntsitntstixtx iirrir                                                                     [3.1] 

where x(t) is the observed k-space signal, s(t) is the true underlying noiseless k-space 

signal, n(t) is the AGN, and subscripts r and i denote real and imaginary components, 

respectively. For convenience, equations for de-noising the real part of any k-space line 

should be interpreted hereinafter as applying also to the imaginary part. Assuming that 

signal and noise are uncorrelated (which is the case in MRI), the power spectral density 

(PSD) obtained from a one-dimensional Fourier Transform (FT) of a k-space line is given 

by: 

222
)()()( fNfSfX rrr                                                                                                 [3.2] 

where 
2

)( fSr  is the PSD of the noiseless signal and 
2

)( fN r  is the PSD of the noise 

and f is the conjugate variable of t. Because the PSD of the AGN is constant, we can 

subtract the root-mean-square (RMS) noise power, 
2

)( fN , from the PSD of the 

acquired signal to get an estimate of 
2

)( fSr . This reduces the noise bias on the 

acquired signal, which becomes: 

222
)()()()( fNfWfXfY rr                                                                                       [3.3]  

where )( fW  is a pre-defined weighting function of f with real values in the interval [0, 

1], and )( fYr  is the f-spectrum of the de-noised signal and estimator of )( fSr . 

Because the PSD cannot be negative, subtractions that result in negative values are 

replaced by the original PSD at the corresponding f-frequency, according to: 
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where a  is a real, single-valued regulation parameter in the interval [0, 1] 137. The de-

noised signal, )( fYr , is computed from the square root of its PSD, with the phase 

information retrieved from the f-spectrum, )( fX r , of the acquired signal: 

))((
)()(

fXiPhase

rr
refYfY                                                                                                      

[3.5] 

 Phase information is kept the same as in the original f-spectrum. Taking the 

inverse FT of )( fYr  yields the real part of the de-noised k-space line. To reduce 

directional filtering effects the same algorithm is applied on the columns of the k-space 

and the average of both de-noised images are taken.  

 After applying the same algorithm to the real and imaginary parts of all the k-

space lines, a de-noised k-space set, )()( tyity ir  , is produced, from which a 

conventional 2D FT image reconstruction yields the de-noised MRI.  

 

 
Figure 3.1. Flowchart of the spectral subtraction algorithm along the row direction of k-
space. 
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3.3. Methods 

3.3.1. SSD and ADF Application 

 The algorithm for performing SSD of MRI uses Matlab (Mathworks, Inc., Natick, 

MA) software on a laptop computer with 2GHz processor and 8GB of memory. The 

algorithm is separately applied to each k-space row and column, as depicted in Figure 

3.1, and the two de-noised k-space results averaged. The regulation parameter, a , was 

set to 0.2 and the windowing function )( fW  set to 1 for all frequencies to avoid 

introducing any extra spatial filtering effects. 

 ADF is chosen for comparison as it was previously used for de-noising MRI, and 

shown to overcome the problem of blurring of object boundaries while providing a 

time-efficient implementation 126, 140. The Matlab script, ‘anisodiff2D’ (available from 

Matlab Central File Exchange 141) is applied on magnitude images scaled to a range of 

[0,1] (input parameters: 15 iterations; integration constant: 1/7; gradient modulus= 

0.02).  

3.3.2. Computer Simulations 

 Numerical simulations are performed using a 1024x1024 pixel Shepp-Logan 

phantom and a reference 256x256 pixel high-SNR brain MRI which was considered 

noise-free 142. Gaussian noise of the same amplitude is added to the real and imaginary 

parts of the 2D FT (k-space) of the images. SSD is applied to the complex k-space data, 

while the ADF is applied to the magnitude image. 
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 Numerical simulations for SENSE 68 images are based on the 256x256 high-SNR 

brain image. Eight complex coil sensitivity maps corresponding to the sensitivity profiles 

of an 8-channel head coil are simulated 143, and the individual coil data generated by 

multiplying the simulated sensitivity profiles with the original image. Gaussian noise is 

then added to the real and imaginary parts of the 2D FT of each of the 8 images. 

Simulated noisy k-space data generated by 2D FFT of the individual coil images are sub-

sampled with a reduction factor, R. The SSD method is separately applied to the 

complex k-space data from the 8 coils. Sub-sampled and unprocessed k-space data and 

spectral subtraction method applied k-space data are then fed into a SENSE 

reconstruction employing the simulated coil profiles. For comparison, the ADF is applied 

to the SENSE magnitude image generated from unprocessed k-space data. The brain 

image, simulated sensitivity profiles, and SENSE reconstruction code is publicly available 

and was downloaded from Ref. 142. 

 The average noise power 
2

)( fN used for de-noising the simulated images is 

determined by scaling the variance of the added noise, with the dimension, X , of the 

1D FT  (to account for the FT scaling):   

XfN
N
 2

2

)( 
                                                               [3.6] 

where, 
2

N
  is the average noise power added to k-space to corrupt the image. 

 Computer simulations are iterated 100 times for each input SNR level and 

reduction factor. Pixel-wise SNR values are extracted from the signal mean and standard 
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deviation (SD) using: 

 
  
  

ii

ii

yxISD

yxImean
yxSNR

,

,
,                                       [3.7]  

where ),( yxI i  is the magnitude of the pixel at location ),( yx  in the image at the i
th 

iteration. The root-mean-squared error (RMSE), and structural similarity indices (SSIM) 

144 of noisy and de-noised images are quantified by comparing them to the original 

noiseless image. The SSIM is computed using:  

 
))((

4
,

2222

yxyx

xyyx
yxSSIM






                                                                      [3.8]                           

where x  and y  are the images that are compared,   is the mean of the pixel 

intensities. xy  is the cross-correlation between the two images and x  is the standard 

deviation of pixel intensities in image x . 

 The reported SNR and RMSE for images reconstructed in computer simulations, 

are pixel-wise averages over each entire image, excluding the background. 

3.3.3. MRI Experiments 

 Imaging experiments are performed on a mineral oil phantom, and on healthy 

volunteers in studies approved by our Institutional Review Board (IRB). Experiments are 

conducted on a 3T Philips Achieva scanner (Philips Medical Systems, Cleveland, OH), and 

the raw data is exported for processing. T1-weighted multi-slice (24 slices) fast field echo 

(FFE) sequences with flip angle =80° are used for both phantom and brain studies. Single 

coil phantom images are acquired with the Philips body coil. The FFE sequence is used in 
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phantom experiments with a repetition period TR=30ms, and echo time TE=4.6 ms.  

 Parallel MRI data from the brain is acquired using a Philips 8-channel 3T head coil 

with TR/TE = 385/9.2 ms and a 576x575 matrix size (with no reduction factor). A 6-

channel Philips cardiac coil is used for cardiac cine MRI, which is performed with two 

SNRs realized by varying the bandwidth per pixel from 1.63 to 0.86 kHz. The change in 

 
Figure 3.2. Simulated Shepp-Logan phantom (rows a-b) and MRI phantom magnitude 
images (rows c-d) are shown. Original noisy images (column I), processed images 
(column II) and the residuals (column III) are displayed. Profile of the image along the 
dotted lines in Fig. a-b.I-II are plotted in Fig. a-b.IV respectively. SNR improvement of 
~40% is observed. Noise level is calculated from the background and signal intensity is 
calculated by averaging the pixels in a uniform region as indicated by the square box.  
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bandwidth affects the sequence timing slightly: we use single breath-hold, ECG-

triggered 2D turbo field echo sequences (turbo factor, 8; TR/TE = 2.7/1.35, 3.2/1.53ms; 

cardiac phases: 30, 25; matrix size: 256x256) for cardiac studies. 

 The average noise power in the MRI experiments is accurately determined from 

data acquired during the preparation phase of the scanner with both RF power and 

gradients turned off. The receiver bandwidth and gain is identical for each set of 

experiments. Samples for each coil element are stored (as “.raw” files) and exported 

from the scanner. This does not affect exam time because the information is already 

acquired by the scanner, but the noise could also be estimated from the image data by 

other statistical and/or spectral analyses 145, 146. We observed that the noise power of 

the highest noise-contributing coil element was 90% higher than the coil element with 

the lowest noise contribution. The MRI signal from each coil element is de-noised 

separately using their corresponding additive noise level estimates determined from the 

“.raw” data. 
2

)( fN  is calculated using Eq. [3.6], where 
2

N
  is the variance of the 

acquired noise samples.  

 The sensitivity profile for the SENSE reconstruction is separately estimated for 

each coil by polynomial fitting of the complete acquired dataset 147. The effect of de-

noising on parallel imaging was tested with  SENSE reconstruction reduction factors of 

R=1.5-3. The SNR reported for brain images was taken as the average of pixel-wise SNR 

values computed using given by Eq. [3.7], including all the image pixels and CSF, except 

the background.  
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3.4. Results 

3.4.1. Single-channel De-noising 

 Simulation results of the Shepp-Logan phantom with different SNR values are 

shown in Figure 3.2 (a, b). The magnitude images reconstructed from the original, and 

the de-noised k-space data are shown in columns I and II respectively. Column III shows 

the absolute difference between the images of columns I and II (residual), while column 

IV plots the noiseless, noisy, and SSD signal across a horizontal line through the 

phantom. SSD provides an SNR improvement vs. the noisy image of 50% without any 

artifacts apparent. 

 

Figure 3.3. (a.I) Original noiseless image, (b.I) noise added image with SNR = 11.8, (c.I) 
ADF  and (d.I) SSD method applied images are shown on top row. Residual images with 
respect to (a.I) are displayed on row II.  
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 Experimental MRI results from a phantom imaged with the body coil and using 

the background to calculate noise power, are shown in Figure 3.2.c, d. Column I shows 

the original images, column II are the processed images, and column III are the 

residuals. Here, SSD results in a mean pixel SNR improvement of 45%. 

 A high-SNR brain image polluted with AGN, and then filtered with ADF or SSD, 

are displayed in Figure 3.3, row I. The differences between the processed and the 

 
Figure 3.4. (a) SNR improvement, (b) RMSE and (c) structural similarity index are plotted 
against input image SNR for computer simulation results where; dotted curves are 
anisotropic diffusion filter results while dashed ones represent the spectral subtraction 
method. 



40 

 

original image (Figure 3.3.aI) are shown in row II. Both de-noising methods effectively 

increase SNR by about 40% without removing high spatial-frequency information, as 

evidenced by the artifact-free residual images. 

 The results from filtering and de-noising as a function of noise level, are plotted 

in Figure 3.4. As suggested by the slightly higher SNR for ADF in Figure 3.4c, ADF can 

provide a greater SNR gain at high SNR. However, the ADF and SSD gains are 

comparable at low SNR (Figure 3.4a), and SSD has a much more homogeneous SNR 

improvement in the presence of varying signal SNR, than ADF (Figure 3.4a). This means 

that it is much better at preserving the original contrast between signals that vary in 

intensity, spatially, especially at higher SNR values. The SNR gain for SSD approaches 

unity as the SNR of the acquisition improves and the noise has a diminishing affect on 

the signal. This is not the case for ADF. The accuracy or RMSE of the two approaches, as 

compared to the original image, is plotted in Figure 3.4b. Both methods show a 

comparable improvement in accuracy at low SNR compared to the noise image. 

However at higher SNR (>25), the accuracy of ADF is inferior to not using any filter, while 

the performance of the SSD method tracks the accuracy of the input image. Figure 3.4.c 

shows the structural similarity index (SSIM) 144. This illustrates that the SSD method is 

superior to ADF in preserving the structural information of the image.  

3.4.2. SENSE Reconstruction De-noising 

 Figure 3.5 depicts a reconstructed 8-channel SENSE image with a reduction 

factor (R) of 1.5 and an unfiltered mean image SNR of 16.3, zoomed-in to reveal fine 
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detail without filtering (Figure 3.5a), with ADF, (Figure 3.5b) and with SSD (Figure 3.5c) 

applied. Figure 3.5d is the pixel-wise SNR improvement map provided by the ADF 

method. For ADF, the spatial performance is inhomogeneous, with a salt-and-pepper 

type noise pattern that is also evident in Figure 3.5b. Conversely, because the SSD 

method operates in the frequency domain of the acquired data, its pixel-wise SNR 

improvement map in Figure 3.5e, is uniform throughout the signal-bearing regions of 

the image, demonstrating that the acquisition statistics are preserved. This is further 

evidenced by histograms of the pixel intensities of the two SNR improvement maps 

(from Figs 5d and e) in Figure 3.5f, which are sharply clustered for SSD, but not ADF. 

RMSE, SSIM and SNR improvement, are plotted as a function of reduction factor and 

input SNR in Figure 3.6 for both filtering methods. The SSD method’s performance is 

comparable to ADF up to a reduction factor of ~2, and better than ADF at higher 

reduction factors. The SNR improvement for SSD is inversely related to the input SNR.  

 SENSE reconstructed, ADF, and SSD-processed images from acquired parallel 

imaging data with reduction factor of 2 are shown in row I of Figure 3.7, with their 

corresponding zoomed-in views in row II. The ADF performance is spatially 

heterogeneous, with best results in high SNR regions and pixilation effects in the middle 

of the image with low SNR. On the other hand, the SSD method is unaffected by local 

noise variations and acts homogeneously on the image. Figure 3.7cII shows better 

delineation of the superior sagittal sinus compared to the original and ADF applied 

images. 
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 SENSE cardiac images reconstructed with R=1.5 and two different acquisition 

bandwidths are shown in Figure 3.8a,c. Five cardiac phases are depicted, four of which 

are zoomed in. To assess the SNR improvement realized by SSD in the septum, the mean 

signal intensity is divided by the noise level in the square volumes marked in Figure 3.8. 

The apparent SNR in the septum is 3.06±0.4 and 8.25±1.0 for the unfiltered images 

 

Figure 3.5. (a) SENSE reconstruction from noise added data with reduction factor of 1.5 
and SNR of each coil image equal to 12, (b) anisotropic diffusion filtered image, and (c) 
spectral subtraction method applied image are zoomed in. (d) Pixel-wise SNR 
improvement rate of anisotropic diffusion filter, and (e) spectral subtraction method 
are displayed along with their histograms (f, gray: anisotropic diffusion filter, black: 
spectral subtraction method). Background of the image is not used in SNR calculations. 
Despite the higher SNR improvement of ADF, pixilation effects are visible in the image. 
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acquired with 1.63 and 0.86 kHz bandwidth per pixel respectively (Figure 3.8a,c). SSD 

provides average SNR improvements of 40±3 and 42±3% calculated and averaged over 

the 30 and 25 cardiac phases of each scan respectively (Figure 3.8b,d), consistent with 

the numerical results. No significant blurring effects are noticed in comparing the 

filtered and unfiltered cardiac cine images acquired at the two different SNR levels 

(Figure 3.8).  

 SSD using Matlab took 0.4s for a 512x512 image, compared to 1.3 seconds for 

ADF on the 2GHz computer.  

 

3.5. Discussion 

 Spectral subtraction methods are commonly used in automated speech 

recognition 138 to improve the estimation efficiency, and in many other applications 

 

Figure 3.6. (a) RMSE, (b) SSIM and (c) SNR improvement rates on SENSE images with 
different reduction factors and input SNRs (light gray: SSD, dark gray: ADF, black: 
original reconstruction). It is noted that the SSD outperforms both the original SENSE 
reconstruction and ADF in terms of the SSIM. 
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including the temporal de-noising of functional MRI data streams for event detection 

139. However, at least to our knowledge, they have not been used in standard MRI for 

the spatial de-noising of individual images. SSD methods work on data corrupted by 

additive Gaussian noise that is uncorrelated with the underlying data and has a constant 

power spectrum. Noise in the complex data acquired from each coil element in an NMR 

experiment generally satisfies these assumptions, but is not immune from non-Gaussian 

events such as physiologic motion or noise spikes, for example. The computational load 

for de-noising an NxN image using SSD is of the order  )log(2 NNO   137, much less 

than that of de-noising by non-local means,  4NO  148.  

 The SSD method can be likened to a Wiener filter. An optimum Wiener filter 

modifies each component in the power spectrum of the input according to the noise 

power at the corresponding frequency, which may not be constant throughout the 

spectrum. However, the SSD method de-noises the data using the mean of the power 

spectrum to provide an unbiased estimate of the signal and a variance depending on the 

signal and noise characteristics 137, 139. SSD does not account for the variations in the 

phase caused by the additive noise. The phase of the complex Gaussian noise is 

uniformly distributed in the interval [-π, π] which cannot be estimated statistically in 

either the image or its transformed domains. However, the power spectrum of finite 

samples of complex Gaussian noise is scattered at a constant level, enabling its 

estimation and subtraction from the power spectrum of the complex received signal. 
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 The response of the SSD filter depends on the input signal. It is an SNR-

dependent filter wherein lower-SNR components are attenuated more than higher-SNR 

components, which may introduce subtle image blurring for low-level signals. Any de-

noising method applied to parallel MRI data, is challenged by the spatially varying noise 

statistics that result from the coils’ sensitivity profiles and reconstruction algorithm. The 

SSD method is immune to such effects when the data acquired from each coil element is 

 

Figure 3.7. (a.I) Brain MR image of a healthy volunteer reconstructed from an 8-
channel coil using SENSE reconstruction with a reduction factor of 2, (b.I) de-noised 
image using ADF, and (c.I) SSD. (row II) The superior sagittal sinus surrounded by white 
boxes in images in row I are zoomed in to show the image quality improvement. 
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separately de-noised using its measured average noise power spectrum, which can vary 

significantly between elements. The present results also suggest that SSD can be applied 

in situations where there is inherent physiological noise and motion such as in the heart 

(Figure 3.8). 

 In conclusion we have shown SNR improvements of up to 45% for MRI using SSD 

in both single and array coils reconstruction while preserving image details, in 

simulations and in practice in phantoms and multi-channel brain and cardiac MRI. The 

SSD method performs comparably to ADF in terms of SNR improvement, and superior to 

ADF with respect to accuracy and the retention of structural detail, at a reduced 

computational load. 

  

 

Figure 3.8. Displayed in panels (a, c) are SENSE (R=1.5) reconstructed short-axis cardiac 
images acquired at different cardiac phases, and the corresponding SSD images are 
shown in panels (b, d). SNR calculations from septum and background (white boxes) 
show an average improvement of 40±3% and 42±3% (b and d respectively). 
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Chapter 4.   
 
The Interventional Loopless Antenna at 7 Tesla 

4.1. Introduction 

 Interventional MRI combines the multi-functionality and inherently high soft-

tissue contrast of MRI, for targeting therapy and monitoring response without using 

ionizing radiation. The increasing availability of ultra high-field (UHF) whole-body MRI 

systems (B0>3T) that promise higher SNR 149, 150, raises the question of whether 

interventional UHF MRI is advantageous, feasible, or even safe in these systems. Indeed, 

because the wavelength of the transverse radio frequency (RF) field is comparable to 

the body size, the problems of sample resonances, inhomogeneous excitation fields 103, 

highly localized specific absorption rates (SAR) and heating 59, 151, 152, are exacerbated 

when interventional devices are introduced. At 7T, the feasibility and safety of prostate 

imaging with receive-only 116 and transmit/receive endo-rectal loop coils modified from 

commercial 3T endo-rectal coils was only recently demonstrated in vivo in humans 116, 

153, 154, and the relative SNR advantages compared to lower-field devices remain to be 

seen. Even so, with a 3.5 cm diameter these internal coils are not suitable for 

intravascular or interstitial use. 

 The “loopless antenna” MRI detector can be fabricated with sub-millimeter 

diameters, and therefore is suitable for intravascular use as a guidewire, catheter 120, or 

for incorporation into a biopsy or therapy-delivery needle 155. It consists of a thin coaxial 
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cable with an inner conductor extended to form a resonant whip at the MRI frequency. 

It has a high sensitivity in the near-field, which may be improved by modifying the 

insulation 121, 122, and which decreases with the inverse of radial distance (ρ) from the 

device 8. In the past, loopless antenna detectors working at B0≤1.5T have been used in 

angioplasty procedures 156-158, for atherosclerotic plaque characterization 159 and for 

tumor detection 160. Because the signal strength increases with B0
2 while the noise for 

miniaturized coils is dominated by the direct electric (E-)field which for the loopless 

antenna does not vary significantly with B0, the SNR of the loopless antenna increases 

approximately as B0
2 161. This has been experimentally verified up to B0=4.7T 161. If this 

SNR response were sustained up to B0=7T, an SNR advantage of approximately 5.4-fold 

would accrue relative to 3T. Moreover, compared to the prior 1.5T work, a 7T SNR 

advantage of over 20-fold would be anticipated. 

 Here, the feasibility of performing MRI with the interventional loopless antenna 

detector at UHF is investigated at 7T and compared with the performance at 3T. Its 

theoretical SNR is determined by numerical electromagnetic (EM) method-of-moments 

(MoM) analysis at 7T and at 3T, and by direct experimental measurements on devices 

fabricated with the same geometry in an electrically bio-analogous phantom. Safety at 

7T is investigated with numerical three-dimensional (3D) full-wave EM computations of 

the local specific absorption rate (SAR), and by direct temperature measurements in an 

RF shielded room with the transmit volume MRI coil driven from a directly monitored 

source. Finally, we present high-resolution (40-80μm) 7T and 3T images of human 
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carotid artery specimens loaded in a saline phantom, for SNR comparison. At these 

voxel sizes, the spatial resolution is about 10-fold higher than previous 3T intravascular 

MRI 161-163. 

4.2. Methods 

4.2.1. Theoretical SNR computation 

 Numerical EM analysis of SNR and SAR were performed using a 3D full-wave EM 

MoM simulator (FEKO EM analysis software, Stellenbosch, South Africa) similar to 

previous studies55, 164. The loopless antenna was modeled as a quarter wave-length 

(λc/4; 17cm at 7T, 40cm at 3T) coaxial cable terminating with its inner conductor 

extended to form a 33mm (7T) or 39mm (3T) resonant whip. The antenna was excited 

by a unit amplitude current source applied to the whip-cable junction at a frequency of 

298MHz (7T) or 128MHz (3T). Conducting surfaces were modeled as perfect electric 

conductor (PEC). Saline was modeled as an infinite medium with conductivity σ=0.6S/m 

and dielectric constant ε=80, which are comparable to human muscle at 298 and 128 

MHz. The RF magnetic field distribution was computed at 0.2mm intervals up to 10cm 

from the whip-cable junction in the axial plane, and 20cm along the long axis extending 

8cm distally from the junction. The absolute SNR in ml-1Hz1/2, s, under fully relaxed 

conditions was determined from: 
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where M0=3.2692x10-9 B0JT-1ml-1 is the equilibrium nuclear magnetization per unit 

volume for water at 22°C, |B+| is the magnitude of circularly polarized transverse 

magnetic field generated by the unit current applied to the antenna, K is Boltzmann’s 

constant, T is the temperature at the whip in Kelvin. With the antenna aligned parallel 

to B0, 2/BB   where B is the cylindrical polar RF field component. Rload, is the 

computed load resistance at the junction. At 7T, a cable loss of 0.32dB/m for the 

experimental UT-85C cable was added. 

4.2.2. SAR analysis 

 The SAR distribution in a 20-cm long by 20-cm diameter cylindrical head-sized 

phantom filled with homogenous saline (σ=0.63 S/m, ε=80), was determined from the 

induced electric fields with the sample at iso-center of a quadrature cylindrical 7T head 

transmit coil of the same geometry as a Nova Medical, Inc, (Wilmington, MA) head coil. 

The coil was modeled with twelve 25 cm-long equally spaced struts connected to two 

circular 29cm-diameter PEC end rings, and excited by unit current applied with 30° 

phase shifts to each adjacent strut to create the rotating field at the 7T MRI frequency. 

A reference SAR simulation was performed at 7T with the antenna removed to 

determine the locations of maximum SAR exposure (Figure 4.1.a-b) for subsequent 

antenna placement. Accordingly the antenna was positioned with long axis 3 cm above 



51 

 

and parallel to the phantom's cylindrical axis and the z-axis of the scanner (Geometry 1; 

Figure 4.1), at insertion depths of 35 and 100 mm. A second trans-axial configuration 

with the lead intersecting two high SAR regions was also investigated (Geometry 2; 

Figure 4.1). In Geometry 2, the lead was parallel to the x-axis, 3cm off-center, at an 

insertion depth 100mm. The phantom in this case was 2cm off iso-center to 

accommodate the proximal end of the device. For the SAR calculations, the loopless 

antenna was modeled the same as for the SNR computations, but with the current 

source removed from the junction and with the proximal end of the coaxial cable 

electrically shorted to simulate the effect of decoupling circuitry. 

 For the numerical analysis, the triangular mesh size was 0.5mm in a 6-cm 

rectangular prism centered on the antenna. This was gradually coarsened away from the 

antenna to a maximum of 12mm near the edge of the phantom to conserve 

computation time. All mesh lengths were shorter than the maximum of λ/12 suggested 

by FEKO. Reference SAR simulations were performed at 7T and 3T with the antenna 

absent, using identical grid locations and the same power applied to the coil. The 3D 

volume E-field data was imported to MatLab and the SAR distribution at each point 

(x,y,z) calculated as: 




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where ρ (in kg/m3) is the density of the saline, and EX, EY, and EZ (in V/m), are the electric 

field components at (x,y,z). The sampling resolution or point size corresponds to 



52 

 

1.25x10-4g of saline. The 1g average SAR distribution was obtained by averaging all 

pixels within a 1x1x1cm3 cube centered at (x,y,z). The result was divided pixel-by-pixel 

with the reference simulation to obtain an SAR amplification factor. This was multiplied 

by 4 to provide a local SAR map at an applied SAR exposure of 4 W/kg.  

 

4.2.3. Experimental Devices 

 Experimental 3T and 7T loopless antennae were fabricated from UT-85C semi-

rigid coaxial cable (Micro-coax, Inc., Pottstown, PA) with a resonant whip length and 

λc/4 cable optimized in saline with a spectrum analyzer161. At 7T, the cable length was 

17cm and the whip length was 32mm, in agreement with the simulations. The end of 

the λc/4 cable was connected to a solenoidal balun to block common-mode signals165, 

and an interface box for decoupling and matching. The decoupling circuit (Figure 2.6) 

 

Figure 4.1. (a) SAR distribution in a saline cylindrical phantom in sagittal (x=0cm), 
and (b) axial (z=3cm) plane with the horizontal solid line showing the placement of 
the device for safety testing in Geometries 1 and 2 respectively. The origin is the iso-
center of the phantom. 
 



53 

 

employs a diode shorted during RF transmission by a decoupling bias applied by the 

scanner to isolate the antenna from the receiver chain. During signal reception the bias 

is turned-off, and the MRI signal from the whip is conducted to the MRI scanner via an 

additional bazooka balun and λ/4 cable to further minimize currents on the outer 

conductor (Figure 4.2.b). Antennae were matched to 50Ω in saline. The combined 

measured isolation of the common mode achieved by the baluns was 37dB at 7T and 

43dB at 3T.  

4.2.4. Experimental SNR 

 A 20cm long by 20cm external diameter cylindrical saline phantom (wall 

thickness, 3.2mm) was prepared for SNR measurements using 3.35g/l salt and 0.5g/l 

CuS04 to achieve the requisite electrical properties comparable to biological tissue (σ 

=0.63 S/m; ε =80) 166. The CuS04 reduced the spin-lattice relaxation time to ~0.5s at both 

field strengths. 7T SNR measurements were done on a Philips Achieva 7T MRI scanner 

(Philips Medical Systems, Cleveland, OH), using the Nova Medical head coil for RF 

transmission and with the antenna connected to one of the 32 receiver channels and 

the other 31 channels terminated with 50Ω. The device was inserted in the saline 

phantom oriented parallel to the main magnetic field, and axial MRI performed at the 

antenna junction using a fully-relaxed gradient-echo sequence (echo-time, TE=11.5ms; 

repetition period, TR=2s; bandwidth, BW=125.4kHz; excitations per frame, NEX=1; field-

of-view, FOV=20cm; slice thickness=3mm; acquisition matrix NxxNy=1000x1000; scan 

duration=33.3min). A “Spredrex” RF sinc-pulse with a high time-bandwidth product 
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truncated after the main lobe was used to reduce errors in the calculated B1 map 167, 

and the scan repeated with different excitation flip angles () to permit correction for 

RF field inhomogeneity. The 3T antenna was tested in the same saline phantom and 

orientation as at 7T, in a Philips 3T XMR Achieva system. The same location at the 

antenna junction was scanned with an equivalent gradient-echo sequence using the 

Philips 3T body coil for transmission. 

 The fully-relaxed gradient-echo signal from a pixel at location (x,y) in the plane of 

the junction was given by: 

]sin[ ),(),(),( yxByxyx RSF 
 

      [4.3] 

where S(x,y) is the sensitivity of the antenna at (x,y), RB (x,y) is ratio of the RF field 

distribution at (x,y) to the nominal RF field applied by the scanner (B1) and α is the 

applied flip angle. The root-mean-square noise was measured from images acquired at 

7T and 3T with the RF transmitter and MRI gradients turned-off. S(x,y) and RB (x,y) were 

determined at every pixel from the images acquired with different flip-angles using a 

least-squares fit. The absolute measured SNR in ml-1Hz1/2 was computed using 161: 

20/),(

),( 10NF

yxpixel

yx

yxms
NNV

BWS


 

     [4.4] 

where Vpixel is the pixel volume in ml and NF is the noise figure of the RF receiver chain 

measured by the cold 50Ω resistor method 168 in both systems (0.97dB @7T, 0.94dB 

@3T).  
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4.2.5. RF safety testing 

 The RF power provided by the 7T scanner failed to produce a sufficient 

temperature increase under either control or antenna-loaded conditions to enable 

reliable documentation of device safety. Therefore heat testing was performed inside an 

RF shielded room with the 7T Nova Medical quadrature transmit head coil driven by a 

continuous wave (CW) RF power amplifier (Tomco Inc, BT00250, Stepney SA, Australia) 

connected to a 298MHz frequency synthesizer. The experimental setup is shown in 

Figure 4.3. The RF power was continuously monitored during experiments with a 

commercial RF power meter (LadyBug Technologies, Santa Rosa, CA). This bench setup 

allowed heat testing at higher RF power levels than provided by the scanner, and better 

experimental control and monitoring of input power, without occupying valuable 

scanner time for a non-imaging study. 

 Heat testing was performed on the 20cm cylindrical phantom filled with saline 

possessing similar electrical properties as in the SAR computations, but with gel added 

 
Figure 4.2. (a) Pictures of the 7T loopless antenna, and (b) the quarter-wave length 
cable with balun. 
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to limit convection (15g/l polyacrylic acid, 0.8g/l salt), forming a "slush". Device heating 

in the same configurations (Geometries 1, 2; Figure 4.1) as simulated, was measured 

with four fiber-optic temperature sensors (Neoptix, Inc, Quebec, Canada) placed next to 

the antenna inside the phantom. These were accessed via 8 holes on the face of the 

phantom (Figure 4.3.c-d). Decoupling bias was provided via a DC power supply. The 

temperature was sampled at 1Hz for 31min: (i) with the RF power turned-off for the first 

minute, as baseline; (ii) with the RF turned-on for 15min at 30W; and (iii) with the RF 

turned-off for 15min during cool-down. Temperatures recorded at the 8 sensor 

locations in the absence of the antenna were used as a reference to define the local SAR 

exposure, assuming: 

t

T
CSAR saline




  

      [4.5] 

which neglects the effects of perfusion and diffusion. Here, Csaline=4180 J/kg/°C is the 

heat capacity of the saline, and ΔT (°C) is the temperature rise during Δt (sec). 

 We report reference ΔT, ΔT with the antenna present at both insertion depths, 

the reference local SAR from Eq. [4.5], and the local temperature in the presence of the 

antenna normalized for a 4W/kg exposure scaled using the reference SAR 

measurement. Unlike the reference SAR distribution, local SAR in the vicinity of 

conducting leads can potentially be highly non-uniform 55, 164. Because the precise 

spatial sensitivity of the thermal probes is uncertain, for purposes of comparing 

experimental thermally derived local SAR with the computed 1g-averaged local SAR, 
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values are reported within a spatial ±0.5cm error cube. 

 

4.2.6. Imaging vascular specimens 

 To compare the imaging performance of 7T and 3T loopless antennae, high 

resolution axial MRI was performed on human carotid artery specimens harvested from 

decedents in a study approved by this institution’s Office of Human Subject Research 

Institutional Review Board. Specimens and detectors were positioned at the center of a 

6cm diameter 12cm long phantom, and immersed in 0.35g/l saline. Comparable 10-slice 

3D high-resolution (80x80μm2x1mm) balanced steady-state free-precession (b-SSFP) 

pulse sequences were applied at both B0 values (7T: TR/TE=34/17ms, FOV=70x70 mm, 

 

Figure 4.3. Schematic of the heat testing setup at 7T. (a) RF components and 
temperature recording devices are placed in the monitoring room. (b) The coil, the 
experimental phantom with the loopless antenna and fiber-optic temperature probes, 
and the transmit coil are located inside the RF shielded room. (c) Schematic of the 
heating phantom showing the locations of the thermal probes (dotted lines). Insertion 
depth of 100mm in Geometry 1 is shown. (d) Picture of the actual phantom. 
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scan duration=13.3min; 3T: TR/TE=38/19ms, FOV=30x30mm, scan duration=13.1min). 

T2-weighted MRI was performed with turbo spin-echo (TSE) sequences. For SNR 

comparisons, TSE images with 80x80μm2x1mm voxel sizes were acquired at 7T and 3T 

(1mm slices, TR/TE=1500/32ms, echo train length ETL=12, FOV=60x60 mm, BW=69.9 

and 65.6Hz respectively). Higher resolution (40 and 53μm in-plane) TSE images were 

also acquired at 7T (1mm slices, TR=1.5s, TE=32 and 40 ms, FOV=60x60mm2, ETL = 14 

and 12, BW = 66.7 and 88.3 kHz for 40 and 53µm resolution, respectively). For display, 

images are scaled by the radial distance ρ from the antenna, to compensate for the 

sensitivity of the device 8. 

4.3. Results 

4.3.1. Computed SNR and SAR 

 The computed SNR is represented by the solid black contours in Figure 4.4(a-d). 

In the axial plane at the junction, the diameter of the 50,000 ml-1Hz1/2 SNR contour at 7T 

is 3.2-times larger than the same contour at 3T, representing a 10-fold increase in 

effective FOV area of the device. Along the long axis, the area enclosed by the 50,000 

ml-1Hz1/2 contour is 4-times higher at 7T vs 3T, leading to a 13-fold increase in the total 

effective FOV volume. The new SNR calculations at 1cm from the junction are combined 

with prior data from lower fields 161 and plotted as a function of B0 in Figure 4.5. The 

new data demonstrate that the quadratic B0 dependence of SNR observed at lower 

fields for the loopless antenna 161, extend to 7T. 
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Figure 4.4. (a) Theoretical (solid, black) and experimental (colored) absolute SNR [ml-1 
Hz1/2] on the axial whip junction plane of the λ/4 length loopless antennae in 3.5% 
saline at 3T, and (b) 7T. The experimental data plotted have a 10% tolerance. (blue, 
50,000; green 100,000; red, 200,000; purple, 400,000; cyan, 800,000 ml-1 Hz1/2). 
Theroretical absolute SNR [ml-1 Hz1/2] along the long axis of the antenna is plotted in 
(c, 3T) and (d, 7T). (e) Axial B1

+ map at the whip junction, and (f) B1
+ profile along the 

dotted line in (e) at 7T. B1
+ varies by ~80%. 
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 Figure 4.6 shows the 1g averaged SAR at 7T for the two geometries (Figure 4.6a-

c), and at 3T in Geometry 1 (Figure 4.6d), normalized to a uniform 4W/kg applied RF 

exposure. The analysis predicts maximum local heating along the cable that, for 

Geometry 1, is at least no greater than 3T. The computed 1g averaged SAR at the same 

locations along the antenna where the temperature measurements were made, are 

plotted in Figure 4.7. The maximum 1g averaged SAR is less than 12W/kg at 7T in all 

configurations. 

4.3.2. Experimental SNR and safety testing 

 As shown in Figure 4.4.e-f, the observed applied B1 at 7T varies by ~80% resulting 

in a 70% variation in measured signal over a ~16cm diameter cylinder that approximates 

the effective FOV surrounding the antenna. This reduced the sensitivity of 

measurements at low B1 locations, even though images were acquired using 9 different 

flip-angles to compensate for the non-uniform B1 via Eq. [4.3]. At 3T, the B1 field 

variation was only ~10% (~1% variation in measured signal) over a 5cm diameter 

cylinder approximating this antenna’s smaller FOV and imaging with multiple flip-angles 

did not compromise the sensitivity of the B1 field measurements. 

 The B1 corrected experimental SNR data in the axial plane at the junction are 

plotted in Figure 4.4(a,b). They overlap the theoretical contours. The effective antenna 

FOV defined by the area of the contours circumscribing the same SNR or higher in the 

axial plane, increases by a factor of 11.5 from 3T to 7T for regions with SNR>105 ml-1 

Hz1/2 (green contours, Figure 4.4a, b). The SNR improvement at 7T compared to 3T is 
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5.7±1.5 over the range 5 ≤ ≤100 mm in the plane of the antenna junction, consistent 

with the quadratic (5.4-fold) SNR gain with B0 predicted by the EM calculations. Scatter 

and deviations evident in the SNR data (Figure 4.4b) are attributable to flip-angle 

variations that are not perfectly accounted for. The experimental SNR measurements at 

=1cm for 3T and 7T are included in Figure 4.5. These data are both consistent with, and 

extend empirically the prior SNR measurements at 1.5T, 3T and 4.7T that demonstrate a 

B0
2 dependence of SNR for the loopless antenna detector. 

 

 

 

Figure 4.5. Absolute SNR (ml-1Hz1/2) computed by EM MoM (square points) at ρ=1cm 
from the junction of antennae made with λc/4 cable portions tuned at 0.5, 1, 1.5, 2, 3, 4 
,4.7, 5 and 7T in 0.35% saline. Experimental values measured previously (1) at 1.5, 3 and 
4.7 as well as our current 7T measurements are overlaid (solid circles). The data are fit 
to a quadratic curve (dotted line). Experimental data are corrected for system NF but 
include cable losses. 
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 The raw experimental temperature measurements, and temperature change 

normalized for 4W/kg exposure are listed in Table 4.1. The observed temperature 

changes are all below 1°C, as recorded during the 15min RF exposure at an actual 

reference applied local SAR of 1.4-3.7W/kg. Normalization of the temperature change 

for a 4W/kg applied RF exposure, increases the projected temperature change to a 

maximum of 1.9°C at the insertion point. The experimental local 1g averaged SAR 

determined from the temperature measurements is included in Figure 4.7 for all 

configurations studied. The experimental and computed SAR are in reasonable 

agreement.  

 

Table 4.1. Measured temperature increases (top), and temperature change normalized 
to 4W/kg local SAR exposure (bottom). 

Temperature Sensor Number 1 2 3 4 5 6 7 8 

Temperature change (°C) during 15 min of RF exposure (raw measurements) 

Geometry 1, no probe  0.2 0.6 0.7 0.7 0.5 0.7 0.5 0.4 

Geom. 1, 35 mm insertion 0.5 0.6 0.7 0.7     

Geom. 1, 100 mm insertion 0.2 0.5 0.6 0.6 0.5 0.5 0.5 0.4 

Geometry 2, no probe  0.3 0.3 0.2 0.2 0.5 0.3 0.4 0.4 

Geom. 2, 100 mm insertion 0.3 0.5 0.5 0.3 0.3 0.1 0.1 0.4 

Temperature change (°C) in 15 min normalized to 4 W/kg reference (T=0.86°C) 

Geom. 1, 35 mm insertion 1.9 0.8 0.8 0.9     

Geom. 1, 100 mm insertion  0.8 0.8 0.7 0.7 0.9 0.6 0.8 0.9 

Geom. 2, 100 mm insertion 1.1 1.6 1.6 1.2 0.4 0.3 0.2 0.9 
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Figure 4.6. The computed 1g averaged SAR normalized to 4W/kg applied local SAR is 
shown on the coronal and sagittal antenna planes at 7T for insertion depths of (a) 
35mm, and (b,c) 100mm. Part (d) shows the SAR computation for 3T with a 100mm 
insertion depth. Part (c) is the distribution in geometry 2 and parts (a,b,d) are in 
geometry 1. Axes on (a-d) denote position in [cm]. 
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4.3.3. High-resolution MRI 

 SSFP images of human carotid arteries are displayed in Figure 4.8. Fine tissue 

structure is seen in both 3T and 7T images, but the superior SNR at 7T is evidenced by 

the lack of noise at the periphery. Banding artifacts due to B0 and B1 inhomogenity 

 

Figure 4.8. (a) Full FOV, high-resolution SSFP image of a human carotid artery acquired 
at 7T with 80 μm in-plane resolution. (b) Same image with the central region expanded 
(dashed lines in Fig. 6.a) for comparison with (c), a 3T 80µm image from the same 
specimen using comparable acquisition parameters (position slightly shifted). 
 

 

Figure 4.7. Computed (dark gray) and measured (light gray) local 1g averaged SAR at 7T 
for geometry 1 at 35 (a), 100 (b) mm insertion depths, and for geometry 2 at 100mm 
insertion depth (c). Data are normalized to 4W/kg local reference SAR, with error bars 
denoting minimum and maximum within a ±0.5cm placement error cube. 
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(Figure 4.8.a) limited the realization of better resolution at 7T using b-SSFP. This was not 

the case for TSE, where, as shown in Figure 4.9, resolution was increased further to 

40µm. Vessel wall, fibrous cap and calcifications confirmed by histology (Figure 4.9.e), 

are seen in all images. In Figure 4.9, the mean SNR advantage at 7T vs 3T for the 80μm 

images is 5.9 in the square annotated regions, and 5.0 at a radius of 1cm from the 

antenna junction, consistent with the theoretical and experimental analysis from the 

saline phantoms. The circular structures next to the antenna are bubbles in the media. 

Compared to the other 7T images, the contrast at 40μm resolution was limited by the 

longer TE of 40ms, the shortest allowed at this resolution by the scanner’s maximum 

achievable gradient strength.  

4.4. Discussion 

 We have for the first time, analyzed, built, safety-tested and demonstrated high-

resolution MRI, from an interventional loopless MRI detector operating with a standard 

commercial 7T human MRI scanner. We have provided both analytical and experimental 

evaluations of its performance relative to an equivalent device at 3T, and moreover 

shown, both experimentally and theoretically, that its SNR performance increases 

quadratically up to 7T. This extends prior work showing a B0
2 dependence of SNR under 

optimal conditions on a 3T human scanner and a 4.7T animal system 161. This behavior is 

attributable to direct E-field losses which, unlike conventional head and body MRI, do 

not vary significantly with operating frequency 161. Thus, the noise level stays almost the 
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same while the signal power increases as B0
2. The increase in SNR at 7T is accompanied 

by an approximately 10-fold gain in useful FOV area, defined here as the ratio of areas 

subtended by equal SNR contours at 7T and 3T. The SNR gain enabled–for the first time 

in a human-capable MRI system–the imaging of human vascular specimens at 40-50µm 

in-plane resolution. SSFP MRI sequences provided good contrast and high SNR at 3T, but 

at 7T, resolution below 80μm was compromised by banding artifacts. These may be 

ameliorated by increasing RF power–which in the present studies was well below 

regulatory guidelines–and bandwidth. Resolution with TSE is ultimately limited by the 

available gradient strength: about 40μm with TE=40ms in the present studies.  

 Comparisons of the experimental SNR performance of MRI detectors at different 

field strengths are often fraught with concerns of whether one is comparing best 

prototypes of a given design. This is addressed in conventional MRI with the concept of 

the “intrinsic SNR” (ISNR) which excludes E-field losses in the MRI coils 169. For the 

loopless antenna, the primary E-field losses are not in the conductor. This is evidenced 

by the agreement between the computed SNR which assumes that the antenna 

conductor has infinite conductivity, and the actual antenna which does not (Figs. 4,5). 

Instead, the E-field losses are primarily from conduction currents in the sample that 

extend between the whip and cable which effectively completes a “loop” circuit for the 

loopless antenna, and not those currents directly induced in the sample by the 

antenna’s B1. Except for the fact that the numerical computed SNR accounts fully for all 

of the E-field losses including these conduction losses in the sample, this theoretical SNR 
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could be considered the ISNR because it is the maximum SNR that can be achieved for 

this specific antenna geometry and sample. To avoid confusion, we apply the term 

“design SNR” for this maximum computed SNR. The agreement between our 

experimental SNR measurements and the computed design SNR at both field strengths 

(Figs. 4, 5), supports the view that the quadratic SNR dependence is the best that can be 

done for this design, and moreover, that such performance is realizable. 

 With the higher SNR, our results suggest that the useful FOV of the loopless 

antenna can extend to ~20 cm at 7T, which could potentially eliminate the need for 

additional coils for guiding or targeting the antenna, or indeed for performing MRI in 

 
Figure 4.9. High resolution TSE images of human carotid artery specimens in saline at 
3T (a) and 7T (b-d). Slice thickness is 1 mm, in-plane resolution is 80 μm (a, b), 40 μm 
(c) and 53 μm (d). Histology result for the samples used at 7T images is shown in (e). 
3T (a) and 7T(b) images are acquired with the same pulse sequence parameters 
except for a 6.5% increase in bandwidth at 7T due to system constraints. The mean 
SNR improvement inside the annotated squares in (b) is 5.85 compared to (a). 
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general. Although the whip of the antenna is shorter at 7T, sensitivity of the antenna 

extends up to ~1cm beyond the tip (Figure 4.4d) and there is no reduction in the FOV 

area along the longitudinal direction of the antenna due to the shortened whip length, 

as compared to 3T. While the sensitivity of the antenna is inversely proportional to the 

radial distance (ρ) from the device and is therefore very nonuniform, B1-inhomogeneity 

at 298MHz is a problem now shared by virtually all MRI detector designs 151 (Figure 

4.4e,f). For the loopless antenna, the profile does remain relatively immune to sample 

heterogeneity over a range of tissue electrical properties at 298 MHz. Use of the device 

for both transmit and receive would remove interactions between the transmitter and 

receiver, and any effect they might have on the SAR distribution. Recently, 

nonuniformity in the excitation field of internal transmit/receive prostate coils at 7T was 

successfully addressed using adiabatic pulses 154, and we have used adiabatic pulses 

with loopless antennae for MRI endoscopy at 3T using only a few Watts of power162, 163. 

 According to U.S. FDA safety guidelines, whole body average exposure of 

≤4W/kg for 15min, and/or local 1g averaged SAR ≤12W/kg are not considered a 

significant risk 170. We analyzed the RF safety of the 7T device both theoretically and 

experimentally and found that local 1g averaged SAR≤12W/kg at an applied RF exposure 

of 4W/kg (Figure 4.6-7, Table 4.1). Moreover, heating did not exceed 1.9°C after 15min 

exposure normalized to this SAR level in the configurations tested, suggesting that the 

device could potentially be safely operated at 7T. 

 The presence of local “hot spots” could pose additional risks, however, to the 
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safety of internal devices at 7T. Here we theoretically determined the location of the 

maximum local SAR, by EM analysis in the absence of the antenna, then performed 

safety testing of the device at this location. In the absence of the antenna, peak local 1g 

averaged SAR was about 3-times the average SAR at 7T. The numerical SAR analysis 

indicates that the effect on the 1g averaged SAR distribution of introducing the device 

remains relatively local. Compared to having no antenna present, neither the total 

power applied to the transmit coil to achieve unit current, nor the whole sample 

average SAR changed when the antenna was introduced in all of the configurations 

studied. By conservation of energy, this means that the antenna does not represent a 

significant increase in load or power loss to the head coil, and that any local increases in 

SAR with the antenna present, must be offset by reductions elsewhere, as is also 

evident in the experimental data (Table 4.1: readings with ∆T<0.8°C vs reference 

exposure of 0.86°C). In situations where the antenna is not at a local SAR hot spot, the 

antenna’s presence should not pose significant additional risks, assuming that it is 

properly decoupled. If, on the other hand, the antenna is located at an SAR hot-spot, the 

presence of the antenna could result in a local SAR that exceeds the FDA guideline, 

although this did not occur in the present studies. Note also that an inadequately 

decoupled device will have induced currents which, via Lenz’s law, will counter the field 

near the antenna, deleteriously affecting performance by generating “decoupling 

artifacts”. These are absent from the images in Figure 4.8 and Figure 4.9. 

 Insertion depth did not much affect the computed 1g averaged SAR or the 
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measured heating, although both were slightly higher at the shallower (35mm) depth 

where the entry point is essentially at the antenna junction. The heating of unprotected 

wire leads can be exacerbated when insertion lengths approach λ/4 in the medium 55, 

164, and in the present case the whip is in fact tuned to λ/4. Thus, the data in Table 4.1 

illustrate the efficacy of the decoupling circuitry as a potential solution to the problem 

of heating of ~λ/4 leads. The antenna length from both simulations and experiments at 

7T was only about 17cm. While the lengths and insertion depths investigated may not 

be suitable for whole-body interventional studies, they are appropriate for this 

commercial 7T brain MRI scanner, with potential applications that could include intra-

cranial MRI-guided remote targeting of diseased structures in the brain, or the remote 

placement of electrodes for deep brain stimulation31, 171, 172. 

 In conclusion, these new results from interventional loopless antennae 

demonstrate a quadratic SNR improvement with B0 that extends to 7T to provide an 

over 20-fold SNR improvement and 100-fold increase in FOV area compared to the 

equivalent device at 1.5T. These advances can translate to ~50μm in-plane resolution 

and new opportunities for potentially safe, high-resolution MRI in humans at 7T, but 

additional work is needed. 
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Chapter 5.   
 
Fat/Water Imaging 

5.1. Introduction 

 Atherosclerosis is a leading cause of heart attacks, strokes, and peripheral 

vascular disease worldwide. The American Heart Association (AHA) classifies 5 clinically 

relevant phases of disease progression, including an early phase involving small lesions 

of foam cells and lipid droplets progressing to muscle cells, fibrils and lipid deposits; and 

an advanced phase of lesions with lots of extracellular lipids and fibrous caps that are 

prone to rupture when lipid content is high and caps are thin173. Plaque lipids cannot be 

unambiguously detected by any existing clinical vascular imaging modality. Thus, 

intravascular (IV) MRI employing chemical-shift lipid selection has the potential for 

providing unique information about a plaque component that could prove central to 

disease characterization. In this chapter, we use the three-point Dixon method69 and 

design spectrally selective B1-insenstive RF pulses71 to distinguish fat and water content 

of the images. The spectrally selective B1-insenstive RF pulses are tested on phantoms 

using an intravascular loop coil162 at 3 Tesla (T).  Human iliac artery specimens are 

scanned in vitro with the Dixon method using intravascular loopless antennae54 at 3 and 

7T as a prelude to in vivo studies. 
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5.2. Theory 

5.2.1. Spectrally Selective BIR4 Pulses 

 The B1-insensitive rotation (BIR4) pulse 174 consists of three segments: 1. a 

reverse adiabatic half passage (rAHP) segment; 2. an adiabatic full passage (AFP) 

segment; and 3. an AHP segment174-176. An arbitrary flip angle (FA) can be achieved using 

the BIR4 pulse by introducing a phase step of +[180°+FA/2] followed by -[180°+FA/2] at 

the start and end of the middle (AFP) segment, respectively. Long and short 0° BIR4 

pulses have been used for measuring T2 177. A modified version of the BIR4 pulse 

wherein symmetrical and asymmetrical pause durations are added before and after the 

middle segment has been used for T2 preparation178 and solvent suppression, 

respectively179. In this work, we add a pause duration either before or after AFP 

segment to suppress fat or water components of the signal71. 

 A modified 0° BIR4 pulse with a pause after the AFP segment is shown in Figure 

5.1. During the first segment, an rAHP flips the magnetization into the transverse plane. 

In the second segment, an AHP pulse with the same amplitude and frequency 

modulation functions as the first rAHP pulse, is applied. During this pulse, the transverse 

magnetization remains in the transverse plane and accumulates more phase dispersion 

due to chemical shift differences in the constituent signals. The longitudinal 

magnetization is inverted during the AFP segment. During the delay after the AFP 

segment, the transverse magnetization acquires additional phase depending on the 
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resonance frequencies of the different moieties of, say water (H2O) and fat (-CH2
-) 

signals, and the duration of the delay. In a conventional BIR4 without any pauses 

between the segments, phase acquired during rAHP and the first half of the AFP pulses 

is exactly compensated by the second half of the AFP pulse and the AHP pulse. 

However, since the modified BIR4 pulse is not symmetric, a residual phase is 

accumulated during the pause after the AFP segment (   ), where Δω is the off-

resonance frequency of the magnetization and τ is the duration of the delay. If the 

residual phase accumulated by the magnetization is equal to 90° for a certain Δω, then 

that frequency component will be orthogonal to the applied RF field and will be 

returned to the transverse plane after the AHP pulse. However the component of the 

magnetization that does not experience any frequency offset will be tilted to the 

longitudinal plane71. By this means, spectral selection will be achieved. The time delay 

(τ) after the AFP segment determines the off-resonance frequency (Δω) to be flipped 

into the transverse plane. By changing the center frequency of the pulse, Δω that is 

excited can be moved to any arbitrary resonance frequency and chemical selection is 

achieved. 

5.3. Methods 

5.3.1. Designing Spectrally Selective BIR4 Pulses 

 Spectrally selective BIR4 pulses71 were designed using Matlab. The Bloch 

equation was solved numerically to simulate the performance of the designed pulses for 
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an off-resonance frequency range of (ΔB0: [-600, 600] Hz) with 10Hz steps and for B1 

amplitudes ranging from 0-40μT with steps of 1μT.  

 The resultant spectrally selective BIR4 pulses were used as RF excitation pulse in 

GRE based sequences. The pulses were calibrated and their performances first tested 

using a quadrature T/R head coil inside the Philips 3T Achieva MR scanner. A cylindrical 

water-filled phantom and a small tube containing vegetable oil were placed inside the 

head coil. Water- and fat-suppressed images are acquired using GRE sequences with 

TR/TE = 307/4ms. 

 
Figure 5.1. Amplitude, frequency and phase modulation waveforms of a modified 
BIR4 pulse are plotted. If the pause duration is set to '0', then these waveforms 
represent a conventional BIR4 pulse. The BIR4 starts with a rAHP segment followed 
by an AFP pulse and ends with an AHP pulse. All pulses are modulated using same 
shapes and amplitudes. 
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 Next, an intravascular solenoidal loop coil162 was immersed inside a water bath. 

The vial containing vegetable oil was also placed inside the water bath next to the 

intravascular coil. GRE sequences with the RF excitation pulses replaced by the 

spectrally selective BIR4 pulses were used (TR/TE = 200/6ms) in the Philips scanner.  

5.3.2. Three-point Dixon Method 

 MRI experiments were conducted on 3T and 7T Philips Achieva MR systems 

using 2.2mm outer-diameter receive-only loopless antennae51 tuned to 3 and 7T MRI 

frequencies. Autopsied human iliac artery specimens are placed inside a phantom filled 

with 3.5 gL-1 saline to mimic the body’s RF electrical properties. The loopless antenna 

was inserted inside the lumen and MRI was excited by the Philips body coil and Nova 

Medical head coil at 3T and 7T, respectively. 

 The three-point Dixon method was used to acquire fat and water images from 

three-acquisitions with varying echo times69. Fat/water axial and coronal images were 

reconstructed offline in Matlab. More details on the water- and fat-only image 

reconstruction can be found in Section 2.5.1 69. T1-weighted gradient echo (T1-w GRE) 

sequences with TE=7.9, 8.4 and 8.9ms were used at 7T. Coronal images were obtained 

from 3D data sets (repetition time, TR=0.15s; flip angle, FA=50°; voxel size= 

50x100x500µm3; field-of-view, FOV=60x60x2.5mm3; scan-time=237s). Axial images have 

200µm resolution (TR=0.5s; FA=75°; FOV=60x60mm2; scan-time=452s). At 3T, axial 3D 

T1-w FFE images were acquired with 200µm in-plane resolution (TR=0.2s; TE=4.6, 5.76, 

6.91ms; FA=50°; FOV: 60x60x8 mm3; scan-time=792s). To provide uniform contrast, 
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axial images were corrected for the ~1/r dependence of the receiver’s sensitivity. 

 

 

 
Figure 5.2. Amplitude, frequency and phase modulation waveforms of (a) the water- 
and (b) the fat-suppression BIR4 pulses are plotted. Ratio of the transverse 
magnetization to the longitudinal magnetization at the end of the water- and fat-
suppression pulses are shown in (c) and (d) respectively. 
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5.4. Results 

5.4.1. Spectrally Selective BIR4 Pulses 

 15.6ms long modified BIR4 pulses were designed for water-suppression with a 

600μs pause before the AFP segment (Figure 5.2.a). A 600μs pause was placed after the 

AFP segment in the fat-suppression pulse (Figure 5.2.b). The amplitude, frequency and 

phase modulation waveforms of the water- and fat-suppression pulses are shown in 

Figure 5.2.a and b, respectively. The center frequency (f0) of the fat-suppression pulse 

was moved to -440Hz in order to suppress the fat frequencies. 

 The BIR4 suppression pulses were able to suppress water or fat resonance 

frequencies provided that the applied B1 was higher than 10μT. Below this threshold, 

the adiabatic properties of pulses start to fail. 

5.4.2. MRI Using Modified BIR4 Pulses 

 Non-selective images acquired at 3T with the quadrature head coil using the 

water- and fat-suppression pulses are shown in Figure 5.3.a and b, respectively. The 

residual signal coming from the water phantom in part (a) is attributable to B1 

amplitudes lower than the 10μT adiabatic threshold. In the regions where the applied B1 

is lower than 10μT, the water signal may not be perfectly suppressed, resulting in 

residual MR signal appearing in the reconstructed image. In part (b), the signal from the 

oil phantom is suppressed using the fat-suppression pulse. 
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 Images from the experiment employing the intravascular loop coil are shown in 

Figure 5.4.a. The vial containing vegetable oil is on the left side of the IV coil, which is 

positioned in the water bath. MR images are acquired using the IV coil for both 

transmitting the RF pulses and receiving the MR signal. Water- and fat-suppressed 

images are shown in Figure 5.4.b and c respectively. Part (b) demonstrates water 

suppression. In part (c), the residual signal coming from the oil phantom is attributable 

to other chemical compounds present in the vegetable oil resonating at different 

frequencies from the primary (-CH2
-) resonance at -440Hz relative to water (H2O). 

 

 
Figure 5.4. (a) A vial containing vegetable is placed inside a water bath next to the 
interventional (IV) loop coil. FFE sequences using the IV coil in T/R mode are acquired 
with the 15.6ms-long (b) water-suppression, and (c) fat-suppression pulses. 
 

 

 
Figure 5.3. Head-coil GRE images acquired using (a) the water-suppression, and (b) fat-
suppression BIR4 pulses are shown. 
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5.4.3. Images Acquired Using the Dixon Method 

 7T images acquired using the interventional loopless antenna are displayed in 

Figure 5.5, with the top row (a, c) and bottom row (b, d) showing the water- and fat-only 

images, respectively. Hyper-intense regions in coronal lipid images (Figure 5.5.b) are 

used to determine subsequent axial scanning locations. Fat is evident in the periphery of 

the vessel wall (Figure 5.5.d). Calcified plaque regions are also evidenced by signal voids. 

 In Figure 5.6, 3T water images from a 5-slice 3D stack at the iliac bifurcation are 

shown with fat-rich regions overlaid in cyan, and a complex (type VI) lesion. Lipidiferous 

tissue is detected at the bifurcation and adjacent to the vessel wall. 

 

 

Figure 5.5. (a) Coronal water, (b) fat, and (c) axial water, (d) fat images acquired at 
7T. Red arrows show the lipid-rich regions adjacent to vessel wall. White arrows 
point to the intravascular MR detector in both figures. 
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5.5. Discussion and Conclusion 

 Modified BIR4 pulses can provide effective water- or fat-suppression. The B1 

threshold of the adiabatic pulses depends on their total durations. For instance, 

reducing the BIR4 pulse length to 6.6ms increased the B1 threshold of 20μT. In order to 

extend our imaging FOV, we chose longer BIR4 pulses (15.6ms) with the lower B1 

threshold (10μT). 

 IV MRI using loop coils and/or loopless detectors at higher field strengths of 3T 

and 7T compared with 1.5T can detect fat and lipid deposits adjacent to the vessel wall 

at high resolution. The ability of chemical-selective IVMRI to unambiguously detect lipid 

deposits, combined with its ability to measure fibrous cap thickness (FCT) shown 

earlier52 offers high potential as a new imaging modality that could uniquely detect all 

 

Figure 5.6. (a-d) Images from a 5-slice axial 3D scan at 3T. Fat images are intensity 
thresholded and overlaid on the grayscale water image with cyan, showing the lipid-
rich regions next to the vessel wall. Scattered cyan points at the bottom of the 
images are due to errors in thresholding in low SNR regions. (e) Image of the 
specimen with red arrow indicating lipid-rich area. 
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plaque components–calcification, lipids, and FCT–critical in the characterization of 

human atherosclerosis173, and its response to treatments such as lifestyle changes and 

cholesterol reduction medications. 

5.6. Future Work 

 In the future, we plan to image diseased artery specimens with the spectrally-

selective BIR4 pulses and intravascular coils. The performance of water- and fat-

suppression using modified BIR4 pulses will be compared with the multi-echo Dixon 

method in a larger number of specimens to enable assessment of the intravascular 

water/fat imaging. 
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Chapter 6.   
 
Towards Imaging Alzheimer's Dementia 

6.1. Introduction 

 Dementia is usually defined as an acquired condition involving multiple cognitive 

impairments that are severe enough to impair a person's ability to perform everyday 

activities. Alzheimer's disease (AD) is the most common form of dementia, accounting 

for 60 to 80 percent of cases. AD gradually worsens over time and has no known cure, 

but treatments for symptoms are available. Vascular dementia (VaD), which can be 

associated with stroke, is the second most common dementia type.  

 Many of the diseases causing dementia have a progressive course and diagnosis 

is made usually after 5-10 years of onset of the disease. In addition, dementias often 

have a prolonged end stage period where the patient's independence and ability for 

self-care is lost, placing a tremendous burden on the patient, family and caregivers. In 

2010, AD was cited as the 6th leading cause of death in the United States, and the 5th for 

those aged 65 or older180. Deaths attributed to AD have increased by 68% between 2000 

and 2010 while deaths from many other major diseases has decreased 180. 1 in 9 

Americans over 65 and 1 in 3 over 85 years of age has AD 180, therefore as the general 

population is ageing, the burden of AD on the society is increasing and is expected to 

increase rapidly over the coming decades. AD not only occurs at later ages, but up to 5% 

of people with the disease have early onset Alzheimer's disease which appears in those 

http://www.alz.org/alzheimers_disease_what_is_alzheimers.asp
http://www.alz.org/alzheimers_disease_vascular_dementia.asp
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aged in their 40s and 50s. 

 AD neuropathology includes amyloid plaques, neurofibrillary tangles and 

neuronal cell loss181. Amyloid plaques are formed by aggregated beta amyloid protein 

(Aβ) deposits. Aβ is believed to interfere with neuronal activity, resulting in oxidative 

stress and neuronal cell death 182. Amyloid plaques generally have a diameter of 20-

60μm. Neurofibrillary tangles are paired helical filaments composed of tau protein, 

which in normal cells is essential for axonal growth and development. However, when 

hyperphosphorylated, the tau protein forms tangles that are deposited within neurons 

leading to cell death 182. Areas of neuronal cell death and synapse loss are found 

throughout a distribution pattern similar to that of the neurofibrillary tangles, affecting 

memory and cognitive functions leading to dementia. Neuropathology of AD is depicted 

in Figure 6.1. AD pathological progresses start 10-20 years before the onset of clinical 

symptoms. 

 
Figure 6.1. Neuropathology of Alzheimer's disease is shown. (Adapted from A.D.A.M. 
Medical Encyclopedia Ref. 1) 
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 VaD is the second most common type of dementia after AD. VaD is caused by 

inadequate blood flow, which can damage and eventually kill neuronal cells. VaD may 

occur suddenly following strokes that block major blood vessels, or slowly and gradually 

as a result of cerebrovascular, multifocal and/or diffuse disease 2.  

Cortical microinfarcts, microbleeds, lacunar infarcts and white matter hyperintensities 

are expressions of VaD. AD and VaD pathologies may also occur simultaneously leading 

to mixed dementia. In cerebral amyloid angiopathy (CAA), which may cause mixed 

dementia, amyloid deposition in the vessel walls causes thickening of fibrous tissue and 

vessel wall thickening, causing hemorrhages and microbleeds. 

 

Figure 6.2. Different expressions of small vessel disease (SVD) are shown, including 
postmortem fluid-attenuated inversion recovery (FLAIR) magnetic resonance images 
and histological sections. Cortical microinfarcts and normal-appearing white matter 
changes are only histopathologically depicted. (Adapted from Ref. 2) 
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  Current clinical imaging modalities are generally used to rule out causes of 

dementia other than AD. The formation of amyloid plaques can be detected with a PET 

scan using Pittsburgh compound-B 183. While amyloid plaques are present in AD 

patients, cognitively normal healthy people may also have significant amyloid plaque 

deposition 181. As new treatment methods become available and target specific 

molecular abnormalities, differentiating the primary cause of dementias early on is 

essential 184. The development of new imaging techniques may revolutionize the 

diagnosis of dementia to permit an expanded molecular, structural and metabolic 

characterization. Such an imaging capability could be used to improve diagnosis, stage 

each patient, and follow disease progression and its response to treatment. 

 The MRI characteristics of amyloid plaques have been investigated in transgenic 

mice inside small bore animal systems using T2 and T2*-weighted sequences 185-187. 

However, detecting amyloid plaques in humans are much harder because the size of the 

amyloid plaques in mouse models (up to 100μm) are larger than human plaques (20-

60μm) 188-190, and the smaller brain size of the mice makes high-resolution imaging 

easier using UHF MRI systems compared to humans187. 

 In this chapter, we investigate whether ultra-high resolution MRI can detect 

pathology associated with Alzheimer's dementia. The improved SNR of interventional 

loopless antenna at 7T is utilized to acquire images at resolution of <100μm from human 

brain specimens with AD pathology in vitro inside a whole-body human scanner. 
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6.2. Methods 

6.2.1. Experimental Setup 

 A receive-only interventional loopless antenna tuned to 298MHz was built. 

Details on the experimental device can be found in Section 4.2.3. A cylindrical imaging 

phantom with 15cm diameter and 15cm length was filled with 3.5g/l saline.  

 Two tissue specimens from the frontal lobe of the brain with and without AD 

pathology were obtained from the Department of Pathology in accordance with our 

institution's internal regulations. The specimens were previously fixed and stored in 10% 

formalin solution (Sigma-Aldrich, St. Louis, MO).  

 

Figure 6.3. The experimental setup for studying brain specimens at 7T. The phantom is 
filled with saline to electrically load the loopless antenna. The brain specimen is placed 
vertically inside the phantom and the loopless antenna is placed therein. 
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 For imaging experiments, the brain specimens were placed vertically inside the 

imaging phantom filled with saline. The loopless antenna was inserted such that the 

cable-whip junction of the device was situated inside the specimen (Figure 6.3). 

 Imaging experiments are conducted on a whole-body Philips Achieva 7T MRI 

scanner (Philips Medical Systems, Cleveland, OH). RF excitation was provided by the 

Nova Medical head coil. The loopless antenna was connected to a 16-channel receive-

only interface box, and the remaining 15 channels were terminated with 50Ω.  

6.2.2. Pulse Sequences 

 3D single acquisition multi-echo GRE sequences were used. A first set of images 

were acquired with TR/TEs = 600/15,23,31,39ms; FOV = 60x60x1mm3; and voxel size = 

100x100x200μm3. The scan duration was 16min 26s. A second set of images were 

acquired with TR/TEs = 600/12,22.4,32.8,41.2ms; at the same image FOV as the first set 

but with voxel size = 60x60x200μm3. Each acquisition was averaged twice and the total 

scan duration was 54min. In both sets of scans, individual frames reconstructed from 4 

different TEs were averaged to generate the final image. The final images are corrected 

for the ~1/r dependence of the receiver’s sensitivity to provide uniform contrast. 

6.3. Results 

 MRI of brain specimens without and with AD pathology, at 100μm in-plane 

resolution with a slice thickness of 200μm are shown in Figure 6.4.a and b, respectively. 

Localized hypointense micro-lesions were detected in gray matter (Figure 6.4.b) from 
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the specimen with AD pathology. Images from the same specimens at a different 

location acquired at a voxel size of 60x60x200μm3 are shown in Figure 6.5. MRI of a 

specimen with AD pathology is zoomed in Figure 6.5.c; the white arrows point to 

suspected AD plaque pathology. In the specimen without AD pathology, no noticeable 

gray matter hypointensities were present Figure 6.5.a. 

 
Figure 6.4. MRI of brain specimens (a) without and (b) with Alzheimer's disease  (AD) 
pathology at 100μm in-plane resolution. The white arrows point to signal 
hypointensities that are suspected to be senile plaques.  
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Figure 6.5. MRI of age-matched brain specimens (a) without and (b) with Alzheimer's 
disease (AD) pathology at 60μm in-plane resolution. (c) MRI of the brain with AD 
pathology is zoomed, and the arrows point to signal hypointensities that can potentially 
be senile plaques. The 2.2mm diameter loopless antenna appears as a dark circle inside 
the images. 
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6.4. Discussion 

 In this work, we investigated the performance of high-resolution imaging using a 

loopless antenna on brain specimens with and without AD pathology. Tiny, hypointense 

lesions were visible in the brain with AD pathology that were consistent with senile 

plaques, and such variations were not present in the MRIs of the specimen without the 

disease pathology. However, the MRI results must be compared with histology to 

confirm these findings. 

 The high-resolution scans ranged from 15 minutes to 1 hour, which may not be 

clinically practical. However, by optimizing the MRI pulse sequences and employing FOV 

reduction techniques 53, 191-194, it is conceivable that scan durations could be shortened 

to a few minutes to improve clinical practicality.   
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Chapter 7.   
 
7 Tesla MRI with a Transmit/Receive Loopless 
Antenna and B1-Insensitive Selective Excitation 

7.1. Introduction 

 As previously shown in Chapter 4, the practical achievable SNR of an 

interventional loopless antenna8 increases quadratically with the main field, B0 51, 54. At 

7T this results in about a 6-fold SNR gain compared to 3T, while the usable FOV defined 

as the area enclosed by an equivalent SNR contour, increases about 10-fold. The higher 

SNR enabled imaging of human artery specimens with in-plane resolution as small as 

40µm at 7T using a receive-only device and external excitation, as shown in Chapter 4. 

Nevertheless, 7T imaging of tissues deep inside the body with tiny MRI detectors is 

challenging due to the availability of suitable external transmit coils and their 

accompanying problems of RF-field (B1) inhomogeneity 101, 195 and penetration, the 

potential for high local RF power deposition59, 103, 151, and transmit/receive coil 

interactions51. 

 Some of these issues are addressed by advances in parallel multi-channel 

transmission, and static or dynamic B1-shimming 107, 112, 116, 196, 197. However, 

optimization of the external B1 transmission field is time consuming, untested in the 

presence of internal conducting devices, and potentially impractical for dynamic 

interventional procedures that involve a transiting internal probe. Problems specific to 
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external excitation for internal MRI detectors could be eliminated by using the internal 

probe for both transmit and receive, as recently demonstrated for prostate coils at 7T 

198, and the loopless antenna at 3T 162. We posit that at 7T, the gain in SNR and FOV for a 

transmit/receive loopless antenna could be large enough to provide enough range to 

avoid the need for external MRI coils altogether for intravascular applications. If so, the 

loopless antenna would need to serve for both scout and high-resolution MRI, and 

safety and a reasonably uniform RF excitation field, would be key. 

 Here we demonstrate scout and high-resolution imaging with a 7T internal 

transmit/receive loopless antenna employing composite, spatially-selective, B1-

insensitive excitation pulses72. RF safety is tested experimentally using a gel phantom. 

Scout and high-resolution 7T images from fruit and diseased human arteries in vitro, and 

first in vivo intravascular results from a rabbit aorta are presented. 

7.2. Methods 

7.2.1. RF Pulse and EM Simulations 

 Spatially selective composite pulses were designed using a Matlab based 

optimization algorithm72. The transverse magnetization at the end of the RF pulse was 

numerically computed by solving the Bloch equations for a ±3mm range with 0.1mm 

increments, and B1 over 0-30µT with 0.1µT increments199. Signal loss due to spin-spin 

relaxation(T2) during the RF pulse177 was numerically calculated for T2=30ms, 

comparable to that in vessels200. Composite pulses consisting of 5 and 11 Gaussian-
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modulated sub-pulses with total durations of 5.4 and 11.8ms respectively, were 

evaluated with various B1 amplitudes and resonance offsets (ΔB0), and compared with a 

single Gaussian pulse. 

 The electro-magnetic(EM) field of a transmitting loopless antenna inside a 

homogeneous medium with conductivity σ=0.63Sm-1 and dielectric constant ε=80 

(equivalent to 3.5gL-1 saline) was numerically computed using FEKO analysis software 

(FEKO Inc., Stellenbosch, South Africa), as described previously51. The loopless antenna 

was modeled as a quarter wavelength (λ/4=17cm) 2.2mm diameter coaxial cable with 

the inner conductor extended by 33mm to form a resonant whip. The antenna was 

excited by a 298MHz, 1A current source placed at the cable-whip junction51, 54. 

Conducting surfaces were modeled as perfect electric conductors. The EM-field 

distribution was computed in coronal planes at 0.2mm intervals extending up to 20cm 

radially from the whip-cable junction, and 20cm parallel to the cable extending 8cm 

distal to the junction. The sampling resolution was 1.25x10-4mL. The specific absorption 

rate (SAR) was computed at each point using: 
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where ρ (kg.m-3) is the density of the medium. 

7.2.2. Experimental Devices 

 The experimental transmit/receive loopless antenna was fabricated from a 

λ/4=17cm UT-85C semi-rigid copper coaxial cable (Micro-coax, Inc., Pottstown, PA) with 
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a 33mm whip. Simulations showed that this geometry yielded results equivalent to a 

lossless cable54. The end of the cable was connected to an impedance matching circuit 

via a solenoidal balun to suppress common-mode currents on the cable shield, as in 

Figure 2.6 of Chapter 2, but with the diode and series capacitor removed. The 

tuned/matched antenna (loaded Q≈6) was interfaced to a Philips Achieva 7T MRI 

scanner (Philips Medical Systems, Cleveland, OH) using Philips’ linear single-channel 

transmit/receive box.  

 A 7T biocompatible nitinol loopless antenna was fabricated for in vivo use from 

an obsolete 0.76mm diameter Intercept 1.5T guidewire (MRI Interventions Inc., 

Memphis, TN) by cutting the distal coaxial cable to 3λ/4 (54cm), and the whip to 6.1cm. 

7.2.3. RF Safety Testing 

 RF safety was tested with the loopless antenna inside a 20-cm diameter, 20-cm 

long cylindrical saline phantom prepared with 15gL-1 polyacrylic acid to inhibit 

convection (higher viscosity but the same thermal conductivity as water). The electrical 

properties were matched to those simulated, by reducing the salt concentration to 

0.8gL-1 to provide an antenna load equivalent to the 3.5gL-1 saline. A constant amplitude 

forward RF power of 300mW, at 298MHz and 100% duty cycle was applied to the 

device, and the temperature monitored with fiber-optic temperature sensors (Neoptix, 

Inc., Quebec, Canada) contacting the antenna at locations determined from the 

simulations to have the highest SAR (the cable-whip junction, tip, and insertion point). 

The temperature was sampled at 1Hz for at least 1min with the RF power turned-off, 
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and 15min with the RF power on. 

7.2.4. MRI Performance 

 The performance of the 5-Gaussian composite pulse and a conventional selective 

excitation pulse at 7T were compared in the cylindrical phantom filled with 0.5gL-1 

CuSO4-doped saline with the same loading as in the RF safety tests, and in a kiwi fruit. 

The RF power loss between the power amplifier and the coil interface was measured at 

50%. Average power at the device was set to levels that ensured RF heating ≤2°C as 

determined from the RF safety experiments. Spin-lattice relaxation (T1) weighted two-

dimensional (2D) fast-field echo (FFE) sequences were used (repetition time, TR=200ms; 

echo time, TE=15ms; FOV=5x5cm2; voxel-size=100x100µm2; nominal slice thickness, 

3.2mm). To verify slice selection, an 8-step phase-coding gradient was added to the slice 

selection gradient waveform with 0.8mm resolution (3D FFE; FOV=5x5x0.64cm3). The 

applied forward power (PF) was determined from the incident power(Pi) at the proximal 

end of the antenna cable via: 

)1( 2 if PP                                                    [7.2] 

where   is the reflection coefficient measured using a network analyzer. A ‘20% 

useable’ imaging FOV diameter was defined as that corresponding to 20% of the 

maximum received signal intensity outside the antenna. This was determined for 

forward peak pulse powers of 1-16W with all other imaging parameters held constant. 

 Large FOV MRI was tested with the antenna in a large pomelo fruit (multi-echo 
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T1-weighted FFE; TR=200ms; TEs=7,17,27,37ms; FOV=12x12cm2; voxel-size, 0.5x0.5mm2; 

Peak PF=58W; Average PF=359mW; 2 averages; duration, 97s). An inhomogeneously-

broadened T2 (T2*) image was calculated from the exponentially-fitted magnitude 

images acquired at the different TEs. Low- and high-resolution MRI was also performed 

on human iliac artery specimens obtained from our institution's autopsy service. 

Specimens were immersed in a (3.5gL-1) saline bath, the loopless antenna inserted in the 

lumen, and T1-weighted FFE sequences applied. Low-resolution coronal scout MRI 

(TR/TE=200/15ms; scan-time=49s; FOV=16x6cm2, voxel-size=250x94µm2; Average PF, 

99mW) was followed by rapid axial MRI of a region-of-interest (ROI; TR/TE=100/10; 

scan-time=10s; FOV=2x2cm2; voxel-size=100x100µm2; radial readout with 50% density; 

Average PF=50mW), and/or high-resolution MRI (TR/TE=150/22ms; scan-time 151s; 

FOV=5x5cm2; voxel-size=50x50µm2; Average PF=33mW). Nominal slice-thickness was 

3.2mm. 

 In vivo studies approved by our Institutional Animal Care and Use Committee, 

were performed on healthy sedated New Zealand rabbits. The nitinol loopless antenna 

was inserted into the ascending aorta via the femoral artery and a 5-French introducer, 

under X-ray guidance. The animal was moved to the 7T scanner and coronal scout MRI 

performed using the transmit/receive antenna, followed by axial 2D FFE MRI with 8W 

applied forward peak power at the antenna input. Images were cardiac-gated with TR at 

the heart-rate (HR). Larger FOV axial MRI was performed (TR=0.2-0.3s; TE=6ms; FOV=6-

9cm; voxel size=300-500µm; 3-4mm slices; scan duration=1-2min, PF=8-32W), followed 
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by higher resolution 100-200µm MRI (TR=0.35-0.46s; TE=7-10ms; FOV=3cm; scan 

duration=140-152s; PF=8W). 

7.3. Results 

7.3.1. Simulations 

 The computed amplitude, phase, and gradient waveforms of the 5-Gaussian 

composite pulse are shown in Figure 7.1.a. With a peak power of 4W, the B1 amplitude 

falls from 8µT at 1cm to 2.0µT at 3cm. This pulse excites ≥50% of M0 for 1.5≤B1≤32 µT 

corresponding to a 6.2cm diameter excitation disk (Figure 7.1.e). By comparison, a single 

Gaussian-modulated pulse excites ≥50% of M0 over 5.6≤ B1≤ 27.0µT, yielding only a 

2.7cm diameter 50%-excitation disk (Figure 7.1.f). Increasing the applied power of the 

single Gaussian pulse does extend its FOV, but produces dark rings at multiples of 180° 

FA close to the antenna where receiver sensitivity is greatest. Thus, the lower B1 

excitation threshold of the composite pulse more than doubles the diameter (or 

quadruples the area) of the MRI excitation volume compared to applying a single pulse 

with the loopless antenna transmitter. 

 Signal loss with T2=30ms at the end of the 5-Gaussian composite pulse is 10% 

(Figure 7.1.c) vs. 2% for the single Gaussian pulse (Figure 7.1.d). While an 11-Gaussian 

composite (not shown) excites more uniformly than the 5-Gaussian pulse, its T2 losses 

increase to 19%. We therefore chose the 5.4ms-long 5-Gaussian pulse as an acceptable 

compromise between uniformity and T2 loss. Its full-width half-maximum slice-thickness 
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Figure 7.1. (a) Along the first row, B1 amplitude, B1 phase and gradient amplitude 
waveforms for the 5-Gaussian composite pulse, and (b) a conventional single-lobe 
Gaussian pulse are shown. The second row shows the transverse magnetization at the 
end of: (c) the 5-Gaussian composite, and (d) a single Gaussian pulse for 0≤B1≤30µT and 
T2=30ms. The B1 at 3mm and at 3cm from the antenna junction are annotated. The 
third row shows the transverse magnetization as a function of axial position (r) for the 
(e) 5-Gaussian (f) single-Gaussian pulses ±6cm from the antenna. The applied peak 
pulse power was 4W throughout. 
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is 3.2mm on-resonance at a radial distance r=7mm from the antenna, decreasing to 

2.9mm and 2.0mm at r=1 and 3cm respectively. Off-resonance (ΔB0 =-200/+350Hz), 

slice-thickness is 2.3mm at r=1cm and 2mm at r=3cm. As usual, slice-thickness can be 

adjusted by changing the gradient amplitude or pulse length. Here, hardware 

constrained the maximum gradient strength to 33mT/m, but thinner slices (<3mm) 

could be obtained by increasing the length of sub-pulses.  

7.3.2. RF Safety Testing 

 The numerically computed SAR distribution and temperature probe placements 

are shown in Figure 7.2.a. The temperature rise at an applied average PF=300mW did 

not exceed 1°C during 15min of continuous RF excitation (Figure 7.2.b). The highest 

temperature rise occurred at the cable-whip junction with the tip and insertion points 

heating less, consistent with the EM simulations (Figure 7.2.a). Thus, operation with 

≤1°C local temperature rise is achievable with average power levels of <300mW. This 

translates to minimum TRs of 8.2, 16.5 and 66ms with peak applied RF pulse PF levels of 

2, 4 and 16W, respectively.  

7.3.3. MRI Performance 

 Axial images from a kiwi fruit with the transmit/receive loopless antenna using a 

two-lobe conventional sinc-pulse, and the 5-Gaussian composite pulse, are shown in 

Figure 7.3. With the sinc-pulse, the image is degraded by dark ring artifacts at 180° FA 

multiples (Figure 7.3.a) that are not present in the image acquired with the 5-Gaussian 
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pulse (Figure 7.3.b). The coronal image in Figure 7.3.c is annotated to show the location 

of axial 0.8mm slices of the 3D FFE experiment to demonstrate the spatial selectivity of 

the composite pulse. As shown in Figure 7.3.d, only the middle 4 slices of the 3D set 

exhibit signal, consistent with the nominal 3.2mm slice thickness.  

 

 Without a global view provided by an external coil, to select an image plane one 

must first find the antenna in a large FOV scan. Figure 7.4.a shows ‘20% useable’ FOV 

diameters of 48, 62 and 98mm at peak PF's of 1, 4 and 16W, respectively. At 58W, an 

entire 10.5cm pomelo is excited (Figure 7.4.b). The dark lines in the computed T2* image 

(Figure 7.4.c) are membranes separating juice compartments whose uniform depiction 

demonstrates that the composite pulse is robust to T2 losses across the entire FOV. 

 
Figure 7.2. (a) Computed relative SAR (logarithmic scale) annotated to show temperature 
probe placement in the safety studies. (b) Temperature rise during a 15 min RF exposure at a 
continuous input power of 300 mW, as measured at the insertion point (blue, 1), cable-whip 

junction (black, 2), and tip (red, 3). 
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 For in vitro and in vivo intravascular studies, the global view is afforded by a fast, 

low-resolution, coronal scan which is brightest around the antenna with an FOV that 

again increases with PF (Figure 7.5.a). After locating an ROI on the coronal scan, rapid 

100µm axial MRI (Figure 7.5.b) or slower (Figure 7.5.c) higher resolution (50µm) MRI can 

be performed at reduced power levels and FOV. In vessel specimens in vitro, these show 

a lesion and plaque components including a fibrous cap (annotated). The signal loss in 

 

Figure 7.3. (a) Axial images acquired with a transmit/receive loopless antenna using 
a conventional sinc-modulated pulse, and (b) using the 5-Gaussian composite pulse 
(T1-weighted 2D FFE; TR/TE=200/15ms; FOV=5x5 cm2; voxel-size=100x100µm2; 
nominal slice thickness, 3.2 mm). (c) Coronal image annotated with orange grid to 
show the planning of the 3D experiment to demonstrate slice selectivity (T1-
weighted 2D FFE; TR/TE=200/15 ms; FOV=5x5cm2; voxel-size=100x100µm2; nominal 
slice thickness, 3.2mm). (d) Axial 0.8mm thick images from the 3D experiment show 
signal in 4 slices consistent with the 3.2mm slice thickness (3D FFE; 
FOV=5x5x0.64cm3). 
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the biocompatible 3λ/4 nitinol cable used for in vivo studies (Figure 7.5.d) was 21% 

(Insertion loss=2dB) compared to the 'lossless' copper cable used in vitro. In an in vivo 

rabbit study using the same MRI protocol but with cardiac-gating, the ~3mm diameter 

aorta and anatomy is depicted at 300µm resolution with large FOV (Figure 7.5.e), and at 

100µm resolution with reduced FOV MRI (Figure 7.5.f).  

7.4. Discussion  

 In this chapter, we investigated the feasibility of 7T MRI with an internal 

transmit/receive loopless antenna and no external coils. RF power requirements, B1-

field inhomogeneity, and local SAR are a challenge at 7T. For studies involving internal 

conductors and/or active MRI detectors, potential coupling with an external transmitted 

field and dealing with B1-variations if the conductor/detector is moved, represent 

additional complexities. These on top of an already complicated environment and 

workflow make interventional MRI at 7T a dubious if not daunting prospect. 

Nevertheless, the dramatically improved SNR, at least for the loopless antenna, offers 

an unprecedented high-resolution imaging opportunity that is presently not practical at 

lower fields51, or even at 7T with the external detectors developed to date.  

 Compared to the use of internal loop coils for prostate MRI at 7T114-116, 198, 201, the 

sub-millimeter dimensions possible with the loopless antenna enable targeted 

intravascular access under image guidance202-204, that is not possible with larger internal 

coils. Indeed the 50-100µm resolution achieved here in vitro and/or in vivo are smaller 
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than the best resolution achieved to date at 7T of 0.5x0.5mm2, using prostate coils with 

similar slice-thickness116. However, prostate coils have already been used in humans at 

7T, while the loopless antenna has so far only been used in patients at 1.5T202 and the 

best resolution achieved at 1.5T was only ~160µm8, 54. 

 
Figure 7.4. (a) Signal intensity profiles acquired inside a homogeneous phantom with 
identical imaging parameters at 1, 4, and 16W (red, blue, and black respectively) of 
applied peak forward power (PF) are shown. The horizontal line indicates the 
thresholding level for determining the ‘20% useable’ imaging FOV, which is 48.4, 61.5, 
and 98.3mm for 1, 4, and 16W of applied peak PF respectively. (b) Large FOV axial 
(TE=7ms) 2D image acquired inside a pomelo fruit, and (c) T2* map calculated using the 
magnitude images acquired at different TEs (multi-echo T1-weighted FFE; TR=200ms; 
echo-times TE=7, 17, 27, 37 ms; FOV=12x12cm2; voxel-size, 0.5x0.5mm2; Peak applied 
PF, 58W; Average PF, 359mW; 2 averages; duration, 97s; color scale in ms at right). 
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 The primary limitation that we encountered in using the composite pulse was its 

90° FA, which limited short-TR Ernst-angle acquisitions and SNR efficiency even while 

providing the best B1 performance in simulations (Figure 7.1). This resulted in scan-times 

of ~2 minutes for high-resolution (≤100µm) in vivo studies using conventional cardiac-

gated 2D FFE imaging. While cardiac-gating was effective in ameliorating motion 

artifacts, we had previously achieved 80-300µm resolution at up to 1-2 frames/s in vivo 

at 3T using steady-state free-precession (SSFP) sequences163. Thus, scan efficiency in 

future applications of the composite pulse at 7T could benefit from a reduced FA in 

combination with SSFP approaches. 

 Using the loopless antenna for both transmit and receive, eliminates both 

coupling issues and the need for B1-shimming, because the B1-field follows the probe 

during the procedure. While this is analogous to MRI endoscopy162, the present 

approach differs in that MRI endoscopy employs no slice selection and its profile is fixed. 

However, like MRI endoscopy, the transmit/receive antenna can be excited with a few 

Watts of peak RF power, and peak local heating can be kept within safe levels, even 

<1°C (Figure 7.2), by setting input power and TR. The maximum or peak local 

temperature rise must be calibrated against the power delivered to the coil to ensure 

safe operation.  

 Because B1 decays rapidly with radial distance from the antenna, the use of 

conventional slice-selective pulses results in artifacts at 180° multiples when the 
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Figure 7.5. (a) Large-FOV intravascular coronal scout image of a diseased human iliac 
vessel in a saline tank annotated to show sections imaged in parts (b) and (c) (T1-
weighted FFE; TR/TE=200/15 ms; duration=49s; FOV=16x6cm2; voxel-size=250x94 
µm2). (b, c) Annotated high-resolution trans-axial images through the vessel wall (b: 
TR/TE=100/10ms; duration=10s; FOV=2x2cm2; voxel size=100x100µm2; radial readout 
with 50% density. c: TR/TE=150/22ms; duration=151s; FOV=5x5cm2; voxel-size 
=50x50µm2). (d) Photograph of the distal end of the 0.86mm diameter 7T 
biocompatible nitinol loopless antenna. (e) Large-FOV in vivo axial image through the 
aorta of a healthy rabbit (TR/TE=231/5.9ms; duration=70s; FOV=9x9cm2; voxel-
size=300x300µm2; slice thickness=4mm; Bandwidth=154KHz; Pi=64W). (f). In vivo 
100µm image of the annotated region from part (e) (TR/TE=462/9.8ms; duration=140s; 
FOV=3x3cm2; voxel-size=100x100µm2; slice thickness=4mm; BW=52KHz; Pi=16W). 
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antenna is used for excitation. Conversely, the use of spatially-selective B1-insensitive 

composite RF pulses excited up to ~10 cm diameter volumes, without significant 

artifacts (Figure 7.4). While the excitation profile could be further optimized by 

increasing the number of sub-pulses or changing the modulation waveforms, there is a 

tradeoff between modifications that increase pulse length vs. signal loss due to T2 

decay.  

 Decreasing the excitation FOV with conventional 7T external coils194, 205 is also 

challenging due to B1 inhomogeneity and SAR restrictions. Without FOV reductions, 

scan-time may be prohibitive for sub-100µm 7T MRI, regardless of SNR. A 

transmit/receive internal antenna whose FOV can be varied simply by adjusting the 

pulse power, offers considerable versatility for interactively adjusting scan-time and 

spatial resolution. Large-FOV, low-resolution scout MRI performed in a high-power 

mode can be enjoyed for locating both device and target, and guiding one to the other. 

After locating an ROI, the operator can switch to a low-power navigation mode, 

shrinking the imaging FOV. Not only does lower power permit shorter TRs, but scan-

time can be further reduced because fewer K-space lines or phase-encoding steps are 

required for the smaller FOV. Finally, at a target site of intervention or suspect lesion, 

high-resolution MRI at a ~50µm level is possible (Figure 7.5), where the FOV could be 

further reduced to increase speed. At this resolution it might be possible to measure 

fibrous cap thickness in vulnerable atherosclerotic lesions 206, or perhaps senile plaques 

in ageing brain 207.  
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Chapter 8.   
 
Monitoring Local Heating Around an Interventional 
Loopless Antenna Using RF Radiometry 

8.1. Introduction 

 Microwave radiometry is the science of measuring the emission of 

electromagnetic (EM) radiation from lossy materials at microwave and RF frequencies. 

The relationship between the EM emissions and the absolute temperature, first noted in 

the 1920’s 208, 209, led to the routine use of radiometry for environmental and 

astronomical applications based on noise-power measurements with focused antennae 

operating in the gigahertz range 210.  

  Radiometry is a passive detection method that uses no applied radiation in any 

form, and therefore presents no radiation hazard. It has been applied to measure 

temperature increases in biological tissue including those associated with fast-growing 

breast tumors using external antennae 211, 212 and in human carotid atherosclerotic 

plaques using microwave antennae213. Previously, a radiometer concept that operates 

at low radio frequency (RF) of a 1.5 Tesla (T) magnetic resonance imaging (MRI) scanner 

using an external loop coil was introduced 214.  

  Interventional MRI (iMRI) employing active small-diameter catheters, 

guidewires, needles etc, as MRI detectors, is an application of MRI technology that 

poses potential safety risks of due to RF heating in the vicinity of the conducting 
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elements 65, 215-217. This is compounded when the internal device is used for both MRI 

transmission and reception in intravascular applications 53, 162, and at ultra-high 

magnetic field strengths (B0>3T)53, 116 where MRI access to deep tissue may be limiting 

101, 103, 151. If the MRI device is further used for targeted thermal therapy delivery, for 

example, to enhance gene therapy218, for RF ablation as a treatment for cardiac 

arrhythmias 219, or for tumor ablation220, then having an independent means of  

temperature monitoring for assessing safety and thermal dose in real-time, is critical.  

  Fiber-optic temperature probes offer probably the best option for packaging 

with an MRI device and avoiding the confounding effects of an extra RF conductor54. 

However, their local sensitivity is limited to a few mg of tissue55 so that precise 

placement is critical. Also, although fiber diameters are small, their size may still limit 

interventional applications (such as catheter deployment over an MRI guidewire) in tight 

vessels if they have to be added to an existing device. Clearly, there would be more 

space if the MRI device could independently monitor temperature without adding any 

other thermal sensor.  

  Of all the MRI devices in use, the loopless antenna, formed simply from a coaxial 

line whose center conductor is extended approximately a ¼-wavelength (λ/4), is ideal as 

an imaging guidewire in narrow vessels and offers spatial resolution of 80µm or better 

at 3-7T51, 54, 162. The losses in a loopless antenna are primarily attributable to the electric 

field (E-field) distribution in the tissue between the whip and the distal end of the cable 

51, 54. We therefore posit that, in addition to high-resolution MRI, a loopless antenna 



109 

 

could also provide radiometric measures of the local temperature distribution within its 

sensitive volume. In particular, for devices used for both transmission and reception, 

based on the Principle of Reciprocity221, any heating caused during transmission will 

have the same spatial distribution as the antenna’s radiometric thermal sensitivity 

profile, at least until thermal conductivity in the tissue kicks in. 

  In this work we report the development and testing of a super-heterodyne RF 

radiometer (receiver) for an interventional loopless MRI antenna 8 operating at a 3T MRI 

frequency (128MHz), for monitoring internal temperature in the vicinity of the antenna. 

Radiometry experiments were performed with the probe in a bio-analogous saline gel 

phantom in which the gel’s temperature was increased uniformly, and also locally, 

wherein RF power was applied directly to the loopless antenna, to simulate its potential 

application to monitor thermal dose in ablation studies. The radiometer’s experimental 

performance was compared with numerical computations of spatial distribution of its 

power sensitivity with the effects of thermal diffusion included, and with results from 

MRI thermometry studies. We determined the conversion factors for computing the 

local peak 1g-averaged temperature rise (ΔT) near the loopless antenna based on 

radiometric temperature readings. 

8.2. Theory 

 A lossy medium at an absolute temperature T  (Kelvin) emits electromagnetic 

radiation according to Planck's radiation law: 
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Here nP  is the available noise power; 2

nV  is the variance of the thermal (open-circuit) 

noise voltage; R  is the real part of the equivalent resistance of the medium; k  is 

Boltzmann’s constant; and B  is the bandwidth of the receiver. Eq. [8.1] enables 

absolute temperature of a medium to be estimated from the average noise power 

measured by a radiometer comprised of a receiving antenna, high-gain receiver 

electronics and a voltage or power measuring device.  

  The signal reported by the RF radiometer ( r ad i oS ) is proportional to the 

sensitivity-weighted volume integral of the temperature inside the medium 222, 223: 
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Here r  denotes the spatial coordinates;   is the electrical conductivity of the medium 

which may vary both spatially and with temperature; and E  is the electric field (E-field) 

distribution of the antenna for unit current excitation. The antenna power receiving 

pattern ( dP ) inside the medium is given by: 

Pd (r)  (r) E(r)
2

             [8.3] 

  For a loopless antenna, the sensitivity is highest near the cable-whip junction 

and the conductor, decaying rapidly with radial distance from the device 53. Therefore, 

the radiometric temperature measured by the loopless antenna is expected to be most 
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sensitive to temperature changes at locations with high dP  that lie nearest the cable-

whip junction. We introduce a ‘H-factor’, )(rH , defined as the coefficient relating the 

local ΔT at an arbitrary location to the measured radiometric temperature rise, 

Tradiometer . If the H-factor at a certain location is known, then the actual temperature 

rise, )(rTa , at that location can be determined from the radiometer reading via: 

Ta(r) TradiometerH(r)            [8.4] 

  The H-factor can be computed from the spatial distribution ΔT ( mT ), and dP  as 

follows: 

H (r)  Tm (r)

Pd (r)
V

 dr

Tm (r)Pd (r)
V

 dr
          [8.5] 

where the integration is performed over the entire volume of the medium. We define 

the peak H-factor, peakH , as the H-factor coefficient where the highest ΔT occurs. p e a kH  

can be used as a metric for determining the maximum expected temperature rise inside 

the medium based on a radiometry measurement. It is worth noting that the temporal 

(time, t) thermal response generally must also be considered. We characterize ( , )H r t  

using numerically computed dP  and mT  distributions, and compare the results with 

experimental data. 
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8.3. Methods 

8.3.1. Loopless Antenna and the Experimental Phantom 

 An experimental loopless antenna was fabricated from a λ/4 (40cm) 2.2mm 

diameter UT-85C semi-rigid coaxial cable (Micro-coax, Inc., Pottstown, PA) with the 

inner conductor extended by 3.9cm to form a resonant whip at the 3T MRI frequency 

(128MHz) 51. The end of the antenna cable was connected to the front-end of the 

radiometry receiver via a cable with two bazooka baluns tuned to 128 MHz 123.  

  An experimental phantom was built from two concentric cylindrical chambers 

that were sealed from each other. A 20cm long inner chamber having a diameter of 

12cm was placed at the iso-center of a cylindrical outer chamber (Figure 8.1). The inner 

chamber was filled with uniform gel solution (15g/L polyacrylic acid, 0.8g/L salt) whose 

electrical properties matched those used in numerical simulations (dielectric constant 

ε=80, electrical conductivity σ=0.6S/m) and were comparable to those of biological 

tissue 53. The loopless antenna was inserted inside the inner chamber of the phantom to 

a depth of 10cm, and connected to the radiometry RF receive chain (Figure 8.1). 

  The outer chamber of the phantom was filled with water and connected to a 

temperature-controlled water pump (VWR International LLC, Radnor, PA). Hot water 

was circulated inside the outer chamber of the phantom to uniformly heat the gel in the 

phantom's inner chamber (Figure 8.1). The phantom and the loopless antenna were 

placed inside an RF shielded room (measured shielding factor >100dB at the frequencies 
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of interest) to minimize external RF interference. The water pump was located outside 

the room and water was conveyed to the phantom through hoses passed through the 

room’s waveguides. The temperature inside the gel was independently monitored at 

1Hz using  fiber-optic temperature sensors (Neoptix Inc., Quebec, Canada) placed at the 

cable-whip junction of the antenna and at other reference positions. These were used to 

verify temperature distributions and thermal equilibrium. The temperature sensors had 

a diameter of 1.6mm and their sensitive volumes were assumed to occupy a cube with 

dimensions of (1.6mm3, 4.1mg of gel weight).  

 

8.3.2. The Radiometry Receiver 

  A super-heterodyne receiver tuned to 128MHz with a bandwidth of 410KHz was 

designed and built for the radiometric measurements (Figure 8.2). The front-end of the 

receiver had two MRI transmit/receive (T/R) switches. The distal T/R switch was used to 

switch between radiometry for measuring temperature, and an RF power transmission 

 
Figure 8.1. Side-view of the cylindrical experimental phantom and the placement of the 
loopless antenna inside the gel. 
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mode for local heating or ablation of the gel by the antenna, during which time the 

sensitive receiver electronics must be protected. 

 

 The second switch is a Dicke switch, placed between the first T/R switch and the 

receiver electronics. The third port of the Dicke switch is terminated with a 50Ω load 

that is kept at a constant temperature for calibrating the radiometer’s receiver gain. The 

main purpose of the Dicke switch is to transition between the loopless antenna and the 

50Ω load to acquire either radiometry data or calibration data 224. During the RF power 

transmission mode, the Dicke switch provides additional protection for the receiver 

electronics (Figure 8.3). For bench testing outside of the MRI scanner, we substituted 

two 12V relays (OMRON, Kyoto, Japan) with >60dB isolation at 128MHz, for the T/R 

switches. The Dicke switch is connected to a low-noise preamplifier (LNA) (Wantcom 

Inc., Chanhassen, MN, Gain=28dB; noise figure, NF=0.4dB) and the signal from the LNA 

conveyed outside the room via a long coaxial cable incorporating several solenoidal and 

bazooka baluns that maintain signal integrity and minimize interference. 

 
Figure 8.2. Block diagram of the radiometry receiver components. The phantom with 
the loopless antenna, front-end switches and the first preamplifier stage are placed 
inside the RF shielded room. The rest of the RF receiver components and the RF power 
delivery components are located outside the shielded room. 
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  The remaining receiver electronics is kept in a monitoring room (outside the RF 

shield). This includes a ‘main board’ housing three further LNA stages, and an anti-

aliasing band-pass filter (BPF) tuned to 128MHz to restrict the noise bandwidth prior to 

demodulation (Figure 8.4). The BPF consists of two 14th-order ‘hourglass’ high-pass, and 

a 12th-order hourglass low-pass filter stages, designed using Filter Solutions software 

(Nuhertz Technologies LLC, Phoenix, AZ). The BPF provides >35dB attenuation for 

frequencies <123MHz to eliminate potential signal interference from sidebands that 

could wrap into the bandwidth of interest (127.7-128.3MHz) after demodulation. The 

filtered output signal from the main board (Figure 8.2) is down-converted to 3.2MHz 

with a quadrature demodulator (Polyphase Microwave Inc., Bloomington, IN) fed by a 

124.8MHz local oscillator signal provided by a frequency synthesizer (Programmed Test 

Sources Inc., Littleton, MA).  

 
Figure 8.3. Radiometry front-end switches enable transition between the three possible 
states during the experiments. 
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  The 3.2 MHz base-band signal is further boosted by two 20dB preamplifiers 

(Advanced Receiver Research, Burlington, CT; NF=2.5dB) and filtered with lumped 

element BPFs designed using the Filter Solutions software. The BPFs are tuned to 

3.2MHz with bandwidths varying from 410-900KHz. The signal output of the RF receiver 

chain (Figure 8.2) is connected to a DT9832A, Data Translation Inc. (Marlboro, MA) data 

 
Figure 8.4. (a) RF components in the main board include three stages of preamplifiers 
and an anti-aliasing band-pass filter consisting of a low-pass and two high-pass filtering 
stages. (b) Photo of the main board is shown with different RF stages annotated. 
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acquisition module (DAQ) for analog-to-digital conversion, sampled at a 2MHz sample 

rate. Although the radiometry signal is above the Nyquist sampling limit, it is not 

attenuated by the DAQ whose 3dB bandwidth is >10MHz. The DAQ is connected via USB 

to a 2.67GHz dual-core laptop computer (8GB working memory), and the signals 

processed using Matlab (Mathworks Inc., Natick, MA).  

  Radiometry data were acquired continuously for 5s, followed by a 5s pause 

during which the data were stored and the average noise power determined at 0.5s 

intervals (10 readings/acquisition period) from the mean-square value of the acquired 

samples, using the Matlab timer function. Receiver gain calibration data was acquired at 

≤1min intervals using the Dicke switch to switch between the 50Ω termination and the 

loopless antenna.  

8.3.3. Experimental Setup 

  Calibration factors for converting noise power to temperature were determined 

from the average mean-square noise from entire 5s acquisitions in the uniformly-heated 

phantom experiments. The noise power measurements were corrected for system and 

gain variations based on contemporaneous Dicke-switched 50Ω load measurements, 

and compared to the Neoptix thermal sensor measurements as the standard. In the 

calibration experiment, the temperature of the gel phantom was increased uniformly 

from 25°C to 73°C and radiometry data acquired throughout. The radiometric 

temperature (
radi oT ) was calculated from radiometer readings ( r ad i oS ) using: 
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Tradio Sradio              [8.6] 

where the linear calibration factors   and   were determined by plotting the 

temperature measured by a Neoptix sensor placed at the junction (Figure 8.1) against 

r ad i oS . 

  After the radiometer was calibrated based on measurements with the phantom 

at thermal equilibrium, local heating was induced by exciting the antenna with RF power 

at 110MHz. The T/R and Dicke switches connected a continuous wave RF power 

amplifier (Tomco, Inc., BT00250, Stepney, SA, Australia) to the loopless antenna (Figure 

8.1) with the 110MHz signal supplied by the frequency synthesizer. The amplitude of the 

output of the power amplifier was monitored with an RF power meter (LadyBug 

Technologies, Santa Rosa, CA). The power loss between the power amplifier and the 

loopless antenna was measured as 0.33dB (7.3%), using a network analyzer (4395A, 

Agilent Technologies, Santa Clara, CA). Intervals of radiometric measurement and RF 

exposure were interleaved, albeit with a 2s latency delay for radiometry after RF 

exposure ceased. 

  RF exposure was repeated with different power levels and durations according 

to  Table 8.1. The radiometric temperature was determined using the calibration factors 

from Eq. [8.6]. The temperature readings from both the radiometer and the fiber-optic 

sensors reflecting temporal heating and cooling were empirically-fitted to smooth 

(double-exponential) curves. The experimental H-factors ( eH ) at temperature sensor 
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locations experiencing temperature increases ΔT>2°C was determined from: 

He 
Tsensor

Tradiometer
             [8.7] 

 

8.3.4. MRI Thermometry 

 MRI thermometry experiments were conducted on a 20cm-long, 15cm diameter 

cylindrical gel phantom placed in the transmit/receive head coil of a Philips Achieva 3T 

scanner (Philips Healthcare, Cleveland, OH) using. The loopless antenna was inserted in 

the phantom to a depth of 10cm. The antenna’s cable end was connected to the 

common port of a manual coaxial switch (CX210N, Diamond Antenna, San Marco, CA) 

with a slave port connected to a short to decouple the antenna during MRI excitation. 

The switch’s other slave port was connected to the Tomco RF power amplifier set up 

outside the scanner room to provide RF power at 110MHz to induce local heating in the 

phantom. The applied power was monitored at the amplifier‘s output with the power 

meter, and the cable losses (=1.05dB, or 21.4%) measured with the network analyzer. 

MRI thermometry was interleaved with RF exposure with a ~5s latency delay for starting 

the MRI thermometry sequence after RF exposure ended. 

Table 8.1. RF exposure parameters that were used during the radiometry experiment. 

Exposure # 1 2 3 4 5 6 7 

Average RF Power (W) 4 4 8 8 13 16 15 

RF Duration (s) 123 119 60 35 31 19 57 

Pause duration before the excitation (s) n/a 342 377 217 180 223 138 
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  A two-dimensional (2D) gradient-echo (GRE) sequence with repetition time/echo 

time (TR/TE) of 50/25ms was used to acquire MRI thermometry data. The field-of-view 

(FOV) was set to 12x12cm2 with a 100x100 matrix size, and a coronal slice-thickness of 

1.2mm (1mm below the antenna). The scan duration was 5s, repeated 60 times to 

generate a time-series dataset. The scanner’s reconstructed phase images were used to 

calculate the temperature using the proton (1H) resonance frequency (PRF) shift method 

124: 

TEB
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  .            [8.8] 

Here iT  is the calculated temperature difference map, i  is the phase map at the ith  

time frame, 0  is the reference phase map,   is the 1H gyro-magnetic ratio,  is the 

PRF change coefficient at B0. 

8.3.5. Determining the Thermal Conductivity of the Gel 

In the phantom in the absence of perfusion, the bio-heat transfer equation (BHTE) 225 is: 

tCt
T (r,t)

t
 kt

2T (r,t) Pd (r,t)            [8.9] 

where t  (kg/m3) is the gel density, tC  (J/g/K) is its thermal heat capacity, and tk

(W/m/K) is the thermal conductivity. Eq. [8.9] assumes only thermal conduction and 

does not account for the presence of the loopless antenna. The local RF heating from 

the loopless antenna dissipates radially away from the source. Therefore, the thermal 

conductivity of the gel surrounding the loopless antenna can be calculated from the 
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spatial properties of the temperature distribution during thermal washout measured by 

MRI 226. 

  The thermal conductivity (kt) of the gel was measured from 2D transverse MRI 

thermometry data acquired at the antenna’s cable-whip junction 5, 10, 15, and 20s 

following RF exposure. The temperature images were fitted with 2D Gaussian 

distributions whose full-width half-maximum values (FWHMs) were squared and linearly 

fitted to obtain a slope, m, from which kt was derived via: 226 

tt
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4
             [8.10] 

The measured kt value was used for all numerical simulations of the temperature 

distribution around the loopless antenna.  

8.3.6. Numerical Computations 

 EM field simulations were performed using full-wave method-of-moments 

analysis in FEKO software (FEKO Inc., Stellenbosch, South Africa). The loopless antenna 

was modeled the same as the experimental 2.2mm diameter cable with 39mm resonant 

whip at 128MHz. The model antenna was inserted 10cm into a uniform cylinder with 

σ=0.6S/m and ε=80, consistent with the phantom studies. A unit current source was 

placed at the distal end of the cable which was excited at 110 and 128MHz 51, 54. The E-

field distribution was computed on the coronal antenna plane at a 100µm in-plane 

resolution. The power sensitivity ( dP ) distribution was computed at each point using: 
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where XE , YE , and ZE  are the Cartesian E-field components. The dP  distribution of 

the loopless antenna is circularly symmetric about the antenna’s long axis. The 3-

dimensional (3D) dP  map was therefore calculated by rotating the 2D dP  distribution 

about the antenna axis and re-gridding the result to a Cartesian coordinate system. The 

voxel-size along the z-axis was down-sampled to 400µm (voxel size: 0.1x0.1x0.4mm3). 

The FOV of the 3D matrix centered at the antenna was cropped to 5x5x20cm3 (matrix 

size: 501x501x501) to reduce the computation time. 

 The theoretical ΔT distribution inside the gel phantom at various RF exposures 

(accounting for RF power losses) was computed by solving Eq. [8.9] 225. The gel 

parameters t , tC , and kt were assumed to be spatially and temporally uniform inside 

the phantom, and constant over the temperature range studied. The gel’s density ( t

=1000kg/m3) and heat capacity ( tC =4.18J/g/K) were assumed to be the same as water, 

with the kt as measured above (Sec. 3.e). Ignoring the presence of the antenna, Eq. [8.9] 

was solved in the spatial frequency domain using: 227 
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where the asterisk denotes a Fourier Transform (FT) operation, v  denotes the 

coordinates in the spatial frequency domain, and the initial temperature distribution, 
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initT , was set to zero. Taking the inverse FT of Eq. [8.12] yielded the ΔT distribution 

inside the phantom. The temperature distribution following RF exposure was calculated 

at 5s intervals for a 5-min cool-down period.  

  Three sets of temperature distributions were numerically computed for: (a) RF 

exposure parameters used in the MRI thermometry experiment; (b) RF exposure 

parameters used in the radiometry experiments (Table 8.1); and (c) a fixed 100s RF 

exposure of 4-16W (average), wherein the thermal conductivity of the medium was 

varied from 0.15-0.5W/m/K to mimic the human physiological range228. Because the RF 

heating was applied at 110MHz and the radiometer is operated at 128MHz, the ΔT 

distribution ( 110T ) was calculated from the dP  distribution of the loopless antenna at 

110MHz, and the radiometric ΔT ( radioT ) was calculated from the dP  distribution at 

128MHz ( 1 2 8

dP ): 

Tradio 

T110 (r)Pd
128 (r)

V

 dr

Pd
128 (r)

V

 dr
         [8.13] 

Theoretical H-factors were calculated using: 

H (r) 
T110(r)

Tradio
           [8.14] 

to compare with the experimental values. The numerically calculated H-factor map has a 

voxel size of 0.1x0.1x0.4mm3 (4µg of gel). This was spatially averaged to increase the 

mass of each voxel to 4.1mg (1.6x1.6x1.6mm3) to match the putative sensitivity volume 
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of the fiber-optic temperature sensors. The peak 1g-averaged H-factor (a regulatory 

metric) was calculated by averaging the values in a 1x1x1cm3 cube centered at the whip 

2mm away from the junction. 

8.4. Results 

8.4.1. Hardware 

 The 100-160 MHz frequency range is cluttered, which necessitated isolation of 

the radiometry measurements and the first LNA stage inside a RF-shielded room, 

analogous to those used for MRI. The main board and the rest of the receiver 

electronics were located outside the screened room to avoid feed-back. The NF and gain 

for the system was measured at the output of the second LNA as 0.40dB and 56dB, 

respectively. Overall gain of the receiver is between 105-110dB. The histogram of a 0.5s-

long signal acquisition (106 samples), plotted in Figure 8.5, shows that the noise 

distribution is Gaussian, with a negligible mean value (-18mV).  

 

 
Figure 8.5. Histogram of the received samples over a 0.5s period shows a Gaussian 
distribution. 
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8.4.2. Calibration with a uniform temperature distribution 

 The raw radiometer readings were linearly proportional to the temperature 

measured at the sensor located at the cable-whip junction of the loopless antenna in 

the thermally equilibrated gel phantom, at least up to 73°C. The radiometer was 

calibrated at two different temperatures of 38°C and 73°C. The standard deviation (SD) 

of the radiometric temperature readings was ±0.24°C sampled at two 

measurements/second. The calibration factor factors   and   were dependent on 

the radiometer gain and/or load impedance. 

  Initially, we encountered a problem with temporal variations in the receiver gain, 

which introduced absolute errors of ±1°C during a 5 hour-long experiment. This 

necessitated introduction of the Dicke switch and re-scaling the calibration based on the 

noise power from the 50Ω termination connected by the Dicke switch (see Figs. 2, 3). 

However, with improvements to the RF chain including better cables and baluns, gain 

variations were reduced to ±0.3°C with, and ±0.4°C without re-scaling using the 50Ω 

calibration over a 90min run. Nevertheless, all reported radiometric temperature 

readings were cross-calibrated against the 50Ω load. Future improvements in power 

supply regulation could further improve accuracy. 

  The temperature of the gel inside the phantom was increased uniformly to 73°C 

by circulating hot water around the phantom, and the radiometer signal acquired 

continuously. After the 2-point calibration the radiometric temperature precisely 
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tracked the temperature sensor over the entire course of the experiment (Figure 8.6).  

 

8.4.3. Measuring the thermal conductivity of the gel 

 The Gaussian-fitted temperature profiles through the junction of the loopless 

antenna obtained from 2D MRI thermometry are shown during the cool-down period in 

Figure 8.7. A linear plot of the square of the FWHMs of the Gaussian curves (insert, top-

left, Figure 8.7.b) yields kt =0.16W/m/K for the gel, from Eq. [8.10].  

 
Figure 8.7. (a) Temperature profile intersecting the junction from the MRI thermometry 
data is fitted using a Gaussian curve. (b) Gaussian fits on the MRI thermometry data 
during the cool-down period between 5-20s. Radii of the Gaussian fits are squared and 
marked with symbol 'x' on the insert and fitted using a line plotted in red. Slope of the 
line-fit is proportional to the thermal conductivity (kt) of the gel medium. 

 

 
Figure 8.6. Linearly calibrated radiometric temperature readings follow the sensor 
values during the uniform heating experiment. The accuracy of the radiometric 
measurement is ±0.24°C. 
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8.4.4. MRI Thermometry and Numerically Computed 

Temperature Rise (ΔT) 

 The sensitivity of ΔT measured by 2D coronal MRI thermometry was ±0.25°C. 

The MRI temperature distributions at 5, 10, 15 and 20s following a 40s-long 16.5W RF 

exposure are shown in Figure 8.8, row I (columns a-d, respectively). The temperature 

distributions computed numerically assuming identical RF exposure conditions are 

shown in the second row (ii) of Figure 8.8. The temperature profiles along the white 

dashed lines in the images are plotted in the third row (Figure 8.8.iii). The difference 

between the measured and computed peak temperatures was <13%. The FWHM of the 

measured and computed temperature profiles also agree within 13% of each other. 

These results suggest that numerical computation can adequately predict the spatial 

 
Figure 8.8. Along the first row (a-d.i) temperature rise distributions acquired using MRI 
thermometry and along the second row (a-d.ii) numerically computed temperature rise 
distributions are shown after 5, 10, 15 and 20s (columns a, b, c, and d; respectively) 
from the end of the RF exposure. On the third row, profiles of the temperature 
distributions annotated with dashed white lines are displayed in black for MRI 
thermometry and in gray for the simulations. Computed and measured peak 
temperatures are within 13% of each other. 
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distribution of ΔT around a loopless antenna in a gel phantom. Heating primarily occurs 

along the whip, peaking at the cable-whip junction and decreasing along the cable. 

8.4.5. Measuring peak temperature at the loopless antenna 

 Radiometric and fiber-optic temperature readings recorded at the junction 

during the radiometry experiment with local heating are shown in Figure 8.9(a). The 

radiometric temperature follows the sensors closely. The experimental H-factor relating 

the bulk temperature measured by the radiometer to the local temperature at the 

junction, is shown in Figure 8.9 (b). The reduction in H-factor with time reflects the 

increasing uniformity in the temperature distribution due to thermal diffusion and 

equilibration, as well as possible slight movements of the temperature sensor and the 

local gel medium due to thermal expansion and contraction as a result of extensive local 

heating. 

  A comparison of the computed and radiometric ΔTs is presented in Figure 8.10. 

The numerical computations track the measurements closely. The computed 

radiometric temperature predicted the peak ΔT with an average absolute error of 6.6%. 

The 14% error in estimating the peak temperature rise following the 7th (final) RF 

exposure was due to an error in monitoring the average applied RF power during the 

exposure. Note also that the gel’s thermal properties may vary locally with repeated 

heating and cooling that could affect the correlation between the radiometric and 

computed temperature. Therefore, only the first two RF exposures were used for the 

purpose of comparing simulated and experimental H-factors.  
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 Computed and measured ΔT values for the 4.1mg-average thermal sensor volume 

1.5mm from the cable-whip junction, are plotted in Figure 8.11 for the cool-down 

periods following the first two RF exposures. The radiometric temperatures were best-

 
Figure 8.10. Experimentally measured (gray) and numerically computer (black) 
radiometric temperature rises are shown. The average absolute error in simulations is 
6.6%. 

 
 

 
Figure 8.9. (a) Radiometric (black) and measured (gray) temperature values during the 
non-uniform temperature radiometry experiment are used to compute the (b) H-factor 
distribution. The measured H-factor at the sensor location (junction) is less than 1.7. 
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fitted to a bi-exponential curve with a root-mean-square (RMS) error of ±0.47°C. These 

curves were used for the H-factor calculations. In Figure 8.11(b), the experimental H-

factors (solid lines) are plotted against the minimum and maximum of the computed H-

factors (dashed lines). The measured absolute ΔT lies between the dashed lines 

immediately after the end of the RF exposure, but as time progresses, the measured ΔT 

deviates, decaying slower than the simulated ΔT. Similarly, the calculated H-factors 

match the measured H-factor at the beginning of the cool-down period but deviate as 

time progresses.  

 

 
Figure 8.11. a. Minimum and maximum values of the simulated temperature rise 
[inside a 1x1.2mm2 rectangle centered 1.5mm away from the junction] and (b) the H-
factor inside the 1.2mm2 region centered 1.5mm away from the junction are plotted in 
dashed lines. The measured temperature rise and the H-factor are displayed in solid 
lines in part (a) and (b), respectively. Only two cool-down periods after the first two RF 
exposures are displayed. 
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8.4.6. Analyzing Different Medium Parameters 

 Figure 8.12 shows the theoretical 4.1mg-averaged ΔT distribution calculated in 

the coronal plane intersecting the antenna after a 100s-long 4W RF exposure, for media 

with thermal conductivities of 0.20, 0.35 and 0.50W/m/K. The profiles for ΔT along the 

dashed line through the junction show that ΔT is highest for the medium with lowest kt 

(Figure 8.12.d). The numerically computed (spatial and temporal) peak radiometric ΔT, 

and the peak 1g- and 4.1mg-averaged H-factors are listed in Table 8.2. The peak 1g-

averaged ΔT are calculated by averaging the pixels inside the cube centered at the 

antenna plane as shown in Figure 8.12(a). The results show that lowering the thermal 

conductivity tends to concentrate the temperature distribution around the whip-cable 

junction with a higher peak temperature. This is where the loopless antenna has its 

highest sensitivity. Consequently the peak radiometric temperature readings are highest 

when thermal conductivity is low, while the peak radiometric temperature is lower 

when the medium has higher thermal conductivity which more uniformly and rapidly 

distributes  temperature differences. 

  The mean computed peak 1g-averaged H-factor in the simulated thermal 

conductivity range is 1.36 and the variation of individual numbers is less than 1.2%. 

Since the peak 1g-averaged H-factor is robust to changes in the simulated physiological 

thermal conductivity range, the peak 1g-averaged ΔT near an interventional loopless 

antenna can be reasonably estimated from the radiometry measurements, even though 

the thermal properties of the surrounding medium may not be exactly known. However, 
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the peak 1g-averaged H-factor is reached at different times after RF exposure (Figure 

8.13). The peak value is reached faster if the medium has a higher thermal conductivity, 

while in a lower conductivity medium, the peak H-factor is reached later and stays at a 

higher value for a longer time.  

 

 
Figure 8.12. 4.1mg-averaged simulated temperature rise distributions 10s after 4W 
100s-long RF exposure  are shown for thermal conductivity values of 0.20, 0.35 and 
0.50W/m/K in parts (a), (b) and (c) respectively. (d) The temperature profiles along the 
white dashed lines show that as the thermal conductivity decreases, the peak 
temperature rise increases and the distribution is more tightly confined around the 
junction. The gray annotated square in (a) represents the volume used to calculate the 
peak 1g-averaged temperature rises and H-factors. 
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  If the surrounding medium is homogeneous, then the radiometric ΔT is inversely 

proportional to the logarithm of the thermal conductivity (Figure 8.14), and the thermal 

conductivity of the medium may be estimated solely by RF radiometry, provided that RF 

exposure parameters are known. Reducing the averaging volume from 1g to 4.1mg in 

the calculations in order to match the experimental sampling volume of the thermal 

sensors, increased the peak ΔT and H-factors due to the antenna’s high sensitivity to the 

temperature around the whip-cable junction. The numerically computed ΔT and H-

factors for a 100s RF exposure at various exposure levels in a medium with 

kt=0.30W/m/K are listed in Table 8.3. The computed H-factors are independent of the 

average RF power level, while the ΔT values scale linearly with applied power. 

Table 8.2. Numerically computed peak radiometric temperature rise, and peak 1g- and 
4.1mg-averaged H-factor values are listed following a 4W 100s-long RF exposure with 
varying medium thermal conductivities in the human physiological range. 

Thermal 
Conductivity 

(W/m/K) 
RF power 

(W) 
Peak Radiometric 

ΔT (°C) 
Peak 1g-ave 

H-factor 
Peak 4.1mg-
ave H-factor 

0.15 4 6.99 1.37 2.69 

0.20 4 5.86 1.37 2.59 

0.25 4 5.09 1.36 2.51 

0.30 4 4.53 1.36 2.45 

0.35 4 4.09 1.36 2.40 

0.40 4 3.74 1.35 2.36 

0.45 4 3.46 1.35 2.33 

0.50 4 3.21 1.34 2.30 
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8.5. Discussion 

 Here, we have developed a bench-top RF radiometer receiver that operates at 

the 3T MRI scanner frequency of 128MHz, with a bandwidth of 410kHz. When 

connected to an interventional MRI loopless antenna, the radiometer can directly 

measure and monitor the local temperature in the sensitive region of the antenna based 

on the amplitude of the RF noise detected between regular MRI scanning, thereby 

eliminating the need for any other thermometric devices. Moreover, due to the 

Table 8.3. Numerically computed peak radiometric temperature rise and peak 1g- and 
4.1mg-averaged H-factor values inside a medium with thermal conductivity of 
0.30W/m/K  are listed a 100s-long RF exposure with power levels varying from 4 to 16. 

Thermal 
Conductivity 

(W/m/K) 

RF power 
(W) 

Peak Radiometric 
ΔT (°C) 

Peak 1g-ave 
H-factor 

Peak 4.1mg-
ave H-factor 

0.30 4 4.53 1.36 2.45 

0.30 8 9.06 1.36 2.45 

0.30 16 18.11 1.36 2.45 

 

 

Figure 8.13. Computed peak 1g-averaged H-factor depends on the time duration after 
the end of the RF exposure and also is dependent on the thermal conductivity of the 
medium. 
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Reciprocity Principle, the loopless antenna radiometer is most sensitive to temperature 

in the region that heats the most: that near the cable-whip junction 53. It is indeed 

surprising that the peak 1g average local temperature in the sample at the antenna is 

only about 1.4 times the temperature measured by the radiometer from the entire 

antenna, as given by the peak ‘H-factor’ introduced herein. This attests to the sensitivity 

of the radiometer for detecting local peak temperature changes that are directly 

associated with the presence of the antenna, and provides the antenna with a potential 

“self-monitoring” function for routinely assessing device safety. Note that the peak local 

antenna-associated heating is sensitive to the thermal sampling volume, owing to the 

presence of high SAR gradients that typically occur close to conductor55. Reducing the 

sample size from 1g to 4.1mg to match the size of the fiber-optic sensors, for example, 

increased the peak H-factor to 1.7. 

  Importantly, the radiometer uses the existing internal MRI antenna. Therefore it 

requires no space either on the lead or the antenna for additional wires, cables or 

transducers that would be required for conventional thermal sensors, other than what 

already exists. The radiometer uses the intrinsic thermodynamic properties of matter–

black body radiation–that does not require MRI, and is independent of B0 the applied RF 

field, its inhomogeneities etc, in the scanner. Nevertheless, the system’s electronics 

includes components that are common to those of an MRI receiver and it would be 

relatively simple to integrate it into an MRI scanner with potentially higher bandwidths. 

  When calibrated in a thermally-equilibrated homogeneous gel phantom whose 
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electrical and thermal properties were analogous to tissue, the loopless antenna 

radiometer readings tracked linearly with temperature up to at least 73°C with an 

accuracy within ±0.3°C at two measurements/second (Figure 8.6). The use of the Dicke 

switch and 50 reference load sufficed to control for gain variations, and could 

conceivably be adjusted for other load impedances.  

 

  The numerical simulations closely matched the MRI thermometry and 

radiometry experiments following the first two RF exposures. Results after subsequent 

exposures tended to deviate from the experimental results due to sensor localization 

errors and possibly, changes in the thermal properties of the heated medium. In 

addition, the computations assumed a uniform medium that did not account for the 

 

Figure 8.14. Numerically computed radiometric temperature rise following a 4W 100s-
long RF exposure is inversely proportional to the logarithm of the thermal medium 
thermal conductivity. 
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thermal conductivity of the loopless antenna itself. The accuracy of the thermal 

computations during cool-down could be improved by modeling the antenna’s presence 

inside the medium and solving the bio-heat equation via finite-difference time-domain 

(FDTD) based methods 229, 230. 

  The electrical properties of the medium may also affect the spatial distribution of 

the noise power, altering the sensitivity profile of the radiometer. While we did not 

investigate the performance of the radiometer inside media with non-uniform electrical 

properties, because the antenna’s sensitivity is highly localized, only those variations in 

electrical properties near the cable-whip junction could be expected to have any effect. 

Moreover, the fact that the numerically computed peak 1g-averaged H-factor at 

128MHz varied less than 1.2% over a 3-fold range of kt parameters for human biological 

tissue228 (Table 8.2), suggests that tissue heterogeneity would not be problematic for 

using such a radiometer for estimating peak power in interventional applications. For 

example, if the Food and Drug Administration (FDA) local peak exposure guideline of 

8W/kg over 5 min in any 1g tissue during MRI 231 were assumed for the loopless 

antenna, in the absence of thermal perfusion or conduction. The 8W/kg exposure would 

result in a ΔT of 0.6°C/5 min. Thus the temperature measured by RF radiometry could be 

used to ensure regulatory compliance to limits on either peak local SAR or peak ΔT 

during an interventional procedure.  

  Since the 1-g peak H-factor is 1.36 and the temperature detection sensitivity in a 

uniform phantom is better than ±0.3°C, the peak 1g-averaged temperature can be 
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determined to within ±0.41°C at 2Hz with the apparatus described. The radiometer’s 

sensitivity could potentially be improved by increasing the receiver bandwidth and/or 

extending the signal averaging, albeit at the expense of slower temperature 

measurements. Also, because the radiometer readings effectively interrogate a larger 

volume of sensitivity, they can conceivably report peak temperatures that might 

otherwise be missed by the misplacement or movement of temperature sensors that 

have highly-localized temperature sensitivity. This may be advantageous for 

interventional applications.  

  The thermal washout rate is correlated with the thermal conductivity and 

perfusion rate in the surrounding medium 226, 232, 233. Perfusion and kt can also be 

important factors for distinguishing tumor and normal tissue, or the stage of a tumor233, 

234. Tumor perfusion and kt tend to increase in more advanced stages and decline with 

tumor necrosis234. Given that the radiometric temperature is inversely proportional to 

the logarithm of the thermal conductivity of a homogenous medium (Figure 8.14), it 

might be possible to use local RF radiometry measurements to estimate the kt in tumors 

that surrounded the detector’s sensitive volume. 

  In conclusion, deploying an internal antenna for the dual purpose of radiometry 

as well as MRI detection, can offer a potentially useful means to independently monitor 

peak local temperature. This could not only improve the safe use of these devices during 

MRI, but also aid the thermal monitoring of therapies such as ablation of tumors and 

other pathologies21, 235. Such monitoring of thermal therapeutic dose could be achieved 
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without the artifacts that can accompany MRI thermometry: conversely, although the 

radiometer could be used as an independent internal reference for MRI thermometry 

measurements. 

8.6. Appendix 

 In this section, circuit diagrams and simulation results of the filters used in the 

radiometer are shown. The simulations were done using AWR Design Environment 

(AWR Corporation, El Segunda, CA). 

 

 

Figure 8.15. Circuit diagrams of the band-pass filters tuned to 3.2MHz with 
bandwidths of (a) 410kHz, and (b) 900kHz. 
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Figure 8.17. Simulated insertion loss of the band-pass filters tuned to 3.2MHz with 
bandwidths of 900kHz (pink) and 410kHz (blue) are displayed in the 1-7MHZ frequency 
range. 

 

 

 

Figure 8.16. Circuit diagrams of the (a) 12th order low-pass, and (b) 14th order high-pass 
filters at 128MHz. 
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Figure 8.19. Simulated insertion loss of the high-frequency low-pass (pink) and high-
pass (gray) filtering stages that are used on the main board are plotted. The band-pass 
filter (blue) on the main board includes two stages of the 14th order high-pass and one 
stage of the 12th order low-pass filter. 

 

 

 

 

Figure 8.18. Simulated insertion loss of the high-frequency low-pass (pink) and high-
pass (gray) filtering stages that are used on the main board are plotted. The band-pass 
filter (blue) on the main board includes two stages of the 14th order high-pass and one 
stage of the 12th order low-pass filter. 
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Chapter 9.   
 
Conclusions and Future Work 
 

 In this work, we have investigated the performance of the interventional 

loopless antenna at ultra-high field (UHF, B0>3T), reducing it to practice and making it 

safe to use at 7T. We also created an RF radiometer for measuring local heating of the 

loopless antenna at 3T. 

 We started by developing an image de-noising algorithm that is compatible with 

parallel imaging methods. The de-noising method based on the spectral subtraction 

algorithm provided up to 45% SNR improvements for single coil and multi coil SENSE 

reconstructed images (Chapter 3).  

 In Chapter 4, we have the SNR and safety performance of the 7T receive-only 

loopless antenna. The results showed that SNR increases quadratically with B0 

(SNR~B0
2), producing 20-fold more SNR at 7T compared to 1.5T, and more than 10-fold 

increase in the usable field-of-view (FOV) compared to 3T. The increased SNR of the 

loopless antenna at 7T enabled MRI at sub-50µm in-plane resolution, which was utilized 

to distinguish atherosclerotic plaque components in human vessel specimens and hence 

could be used in future to characterize the severity of atherosclerosis. 

 In Chapter 5, we investigated two chemically selective imaging methods to 

distinguish the fat content of atherosclerotic plaques. First, we used a multi-acquisition 
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three-point Dixon method with the receive-only loopless antenna. Secondly, we 

employed an intravascular loop coil in transmit/receive mode excited with a spectrally 

selective modified BIR4 pulses to generate separate fat and water images. Further work 

is needed to compare the efficiency of these methods. In chapter 6, we acquired high-

resolution MRI of brain specimens with Alzheimer's disease (AD) pathology using the 

loopless antenna at 7T. Initial results showed tiny regions of signal hypo-intensity 

possibly attributable to senile plaques in the brain with AD pathology, that were not 

present in tissue MRI of brain without disease. We would need to compare the 

pathology to confirm these findings. 

 At 7T, the excitation of tissue deep within the body becomes challenging due to 

the decreased penetration depth, B1-field inhomogeneity, and increased RF power 

requirements, which limits the number of pulse sequences that can be safely used. In 

order to overcome these problems, we use the loopless antenna for both RF excitation, 

and MR signal reception. Spatially selective B1-insensitive pulses were employed to 

improve the excitation homogeneity, providing ~10cm FOV which could be used for 

both device-tracking and target localization inside the body. The imaging FOV can be 

reduced by decreasing the applied RF pulse amplitude, which in turn reduce the scan 

time by cutting the number of phase-encoding steps. Only a few Watts of peak RF 

power is sufficient for local excitation, greatly reducing the RF transmit power 

requirements on the MR system. (Chapter 7) 

 Use of MRI active interventional devices in transmit and/or receive mode may 
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elevate temperatures near the device above levels considered safe. In chapter 8, we 

built an RF radiometry receiver at 128MHz with a bandwidth of 410kHz and connected it 

to an interventional loopless antenna, to monitor the local temperature around the 

device. We investigated the performance of the loopless antenna radiometer 

experimentally inside bio-analogous phantoms, and numerically using full-wave 

electromagnetic and thermal simulations. The loopless antenna radiometer was able to 

detect uniform temperature with an accuracy <0.3°C at 2 measurements per second, 

and accurately measure peak 1g averaged temperature rise within 0.41°C at the same 

rate. Local temperature rise can thus now be monitored by RF radiometry to ensure safe 

operation and/or to calculate thermal dose where the device is used for therapeutic 

ablation as well. We have also shown that the logarithm of the thermal conductivity of 

the surrounding medium is inversely proportional to the peak measured radiometric 

temperature rise, potentially enabling the thermal conductivity of medium to be 

measured using a loopless antenna radiometer. In the future, the radiometer would 

need to be tested inside complex media and in vivo. 

 The work presented in this thesis resulted in three journal papers51, 53, 236, one 

journal article submission and several conference papers and abstracts123, 237 so far. 
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