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Abstract

This thesis develops methods for modeling longitudinal predictors by treating

them as functional covariates in regression models. First, I introduce Variable-Domain

Functional Regression, which extends the generalized functional linear model by al-

lowing for functional covariates that have subject-specific domain widths. I then

propose a blueprint for the inclusion of baseline functional predictors in Cox propor-

tional hazards models. Finally, I propose the Historical Cox Model, which introduces

a new way of modeling time-varying covariates in survival models by including them

as historical functional terms. Methods were motivated by and applied to a study

of association between daily measures of the Intensive Care Unit (ICU) Sequential

Organ Failure Assessment (SOFA) score and mortality, and are generally applicable

to a large number of new studies that record a continuous variables over time.
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Chapter 1

Introduction

Studies which collect longitudinal data have traditionally tracked subjects at a

relatively small number of time points, often at sparse intervals over a long follow-up

period. In recent years the face of medical research has changed. With the advent

of wearable computing devices and federal mandates promoting the implementation

of electronic health record systems, physicians and researchers are able to track a

much denser collection of information over time to give a more complete picture of a

patient’s health status. This movement reflects larger trends in our society towards

increased data collection and monitoring, and is aided by advances in our ability to

collect, store, and transfer data.

The increased frequency with which this data is obtained should allow us to better

understand disease processes and be able to personalize treatments towards individual

patients as their condition changes over time. However, methods for modeling longi-
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CHAPTER 1. INTRODUCTION

tudinal data have in many ways failed to fully take advantage of the rich information

contained in these datasets. A common assumption in models for longitudinal data,

including survival models, is that the effect of a particular covariate is concurrent,

i.e., the only value of the predictor that effects the outcome at any time is the last

recorded value. Though this assumption may be relaxed, it usually involves speci-

fying a rigid form for the way in which past values of the covariate can impact the

outcome, such as a fixed time lag for the covariate.

In this thesis, I present a number of techniques for flexibly including longitudinally-

measured predictors in regression models, with the aim of allowing one’s entire trajec-

tory of that covariate to impact the outcome. These methods incorporate approaches

from the field of functional data analysis (FDA), which like longitudinal data anal-

ysis, is concerned with data consisting of repeated measurements over some domain

(e.g., time). However, FDA approaches have largely ignored many of the challenges

imposed by longitudinal data, including various types of missingness and censoring

(Rice, 2004).

My research was inspired by questions arising from the ICAP study (Needham

et al., 2006), a longitudinal cohort study that tracks patients with acute respiratory

distress syndrome while they are in the intensive care unit (ICU), and for up to five

years thereafter. While hospitalized in the ICU, various measurements of health are

collected daily and summarized into the SOFA score, a composite biomarker that

measures one’s overall organ function. Our focus will be on relating these SOFA

2



CHAPTER 1. INTRODUCTION

scores to various outcomes, in particular mortality.

This thesis consists of three journal articles, organized into chapters. Each of these

chapters addresses a different challenge related to the inclusion of longitudinal pre-

dictors in regression models. The first article is concerned with including longitudinal

predictors in generalized linear models when each subject’s predictor is measured for a

different length of time. The remaining two articles are concerned with time-to-event

models. The former discusses the inclusion of a fixed width, baseline functional pre-

dictor in the Cox proportional hazards model (Cox, 1972), while the latter proposes

a new way for treating time-varying covariates as functional effects in a Cox model.

I now give a short overview of each of these three chapters.

Chapter 2 introduces the variable-domain functional regression model, which ex-

tends the generalized functional linear model by allowing for functional covariates

that have subject-specific domain widths. The fundamental idea is to consider a bi-

variate functional parameter that depends both on the functional argument and on

the width of the functional predictor domain. Both parametric and nonparametric

models are introduced to fit the functional coefficient. The nonparametric model is

theoretically and practically invariant to functional support transformation, or sup-

port registration. The paper has been published in a recent issue of the Journal of

the American Statistical Association (Gellar et al., 2014).

Chapter 3 extends the Cox proportional hazards model to cases when the ex-

posure is a densely sampled functional process, measured at baseline. This is done
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by combining penalized functional regression approaches with methods developed for

mixed effects proportional hazards models. The model is fit by maximizing the penal-

ized partial likelihood, with smoothing parameters estimated by a likelihood-based

criterion such as AIC or EPIC. It may be extended to allow for multiple functional

predictors, time varying coefficients, and missing or unequally-spaced data. This

article is in press at Statistical Modeling (Gellar et al., 2015).

Chapter 4 introduces the historical Cox model, which further extends the Cox

proportional hazards model to account for densely sampled time-varying covariates

as historical functional terms. This approach allows the hazard function at any time

t to depend not only on the current value of the time-varying covariate, but also

on all previous values. The fundamental idea is to assume a bivariate coefficient

function β(s, t) that estimates a weight function that is applied to the full or partial

covariate history up to t, and is allowed to change with t. Estimation is performed

by maximizing the penalized partial likelihood, using a likelihood-based information

criterion to optimize the smoothing parameter. The final version of this paper is in

progress.
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Chapter 2

Variable-Domain Functional

Regression

2.1 Introduction

We study the relationship between a scalar response and a functional predictor,

when the functional predictor falls on a fine grid with a different length for each

subject. Such data are most commonly encountered when the domain variable is time,

and each subject is followed for a different length of time. We refer to this type of data

as variable-domain functional data. In particular, we were motivated by covariates

collected in an inpatient hospital setting, where measurements are recorded daily (or

at another fixed interval) for as long as the subject remains in the hospital. Examples

of such measurements include measures of patient status, nutritional intake, and
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medication dosing. We are interested in understanding how the functional covariate

affects an outcome collected at the end of hospitalization, or afterward.

The feature of subject-specific functional domains is not limited to the inpatient

hospital setting. In sleep studies, subjects are connected to an electroencephalography

(EEG) machine, which records electric activity for as long as the patient is asleep.

Each subject sleeps for a different length of time, and one goal may be to relate these

electrical signals of varying lengths to a subject-specific outcome or condition. In

studies on aging, each subject lives for a different length of time, so the amount of

available data varies by subject.

Traditional approaches to analyzing variable-domain functional data fall into two

categories. The first consists of collapsing the trajectory of values into a summary

statistic that can be used in a regression model. Common statistics include the mean,

median, or maximum value, or the sum of available data. Alternatively, the slope

from a linear regression, or other ad hoc statistics may be used (Dinglas et al., 2011;

Sakr et al., 2012). These approaches ignore the functional nature of the data, and

are inefficient as they throw away much of the available information. Additionally,

the choice of summary statistic is often arbitrary, and not driven by the data.

The second common approach to modeling variable-domain functional data is

to register each function to a common domain, and then apply existing functional

regression techniques (Goldsmith et al., 2011). In certain contexts this is a perfectly

reasonable approach. However, it might be less appropriate for data in which the
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between-subject variability in the width of the domain is extreme, or when the original

time domain is informative. For example, in the ICU data described above, the

subject-specific lengths of stay range from a single day to over 100 days. It does not

seem natural to align functions to a common domain when they differ in width by

orders of magnitude. Similar problems occur in sleep data, where registering shorter

and longer sleep intervals to the same domain would fundamentally affect the observed

sleep architecture.

In response to these problems we introduce a class of statistical models that in-

corporate the functional covariate and account explicitly for varying domains across

subjects. We assume that the primary analysis goal is to retrospectively explore the

association between a functional covariate with subject-specific domain and a scalar

outcome. The novel aspect of our modeling approach is to allow the functional co-

efficient to vary, smoothly, according to the domain width. We refer to this type of

regression as variable-domain functional regression (VDFR). Our approach is fast,

flexible, and easy to interpret.

The remainder of this paper is organized as follows. In the next section, we de-

scribe our data in more detail and provide the necessary scientific context. Section

2.3 introduces the VDFR model, and describes one approach to estimating the asso-

ciated parameters. In Section 2.4, we present a number of re-parametrizations of the

VDFR to create a useful expanded class of models. Section 2.5 presents the results of

a detailed simulation study, and we apply our model to the ICU data in Section 2.6.

7
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We conclude with a discussion of what we have learned about regression on functions

with variable domains.

2.2 Motivating Example

2.2.1 Data Description

The primary data for this analysis was taken from the Improving Care of Acute

Lung Injury Patients (ICAP) study (Needham et al., 2006). Acute lung injury (ALI),

also known as acute respiratory distress syndrome (ARDS), is a severe lung condition

characterized by inflammation of the lung tissue (primary causes: pneumonia or

sepsis). Patients with ALI/ARDS require mechanical ventilation in the intensive care

unit (ICU), and experience high rates of mortality (Ware and Matthay, 2000). ICAP

is a multi-site, prospective cohort study that enrolled 520 subjects with ALI/ARDS,

283 (54%) of which survived their hospitalization. Data for each patient are collected

at baseline (enrollment into the study), daily while in the ICU, at hospital discharge

or death, and among survivors, at seven follow-up points over five years.

Organ failure is measured by the Sequential Organ Failure Assessment (SOFA)

score. The SOFA score is divided into six physiological components (respiratory, co-

agulation, liver, cardiovascular, central nervous system, and renal). Each component

is assessed on a scale of 0-4 based on a set of physiological criteria, with larger values

8



CHAPTER 2. VARIABLE-DOMAIN FUNCTIONAL REGRESSION

indicating poorer function. In cases where a physiological measurement is recorded

repeatedly during the day, the worst 24-hour score is used. The component scores are

then summed for a total SOFA score ranging from 0-24. Although it can only take

integer values, we treat it as a continuous measure. The SOFA score is meant to be

an overall measure of organ function, and is commonly used to track the physiological

status of patients while in the ICU.

Thus, the observed data consist of {Yi, Zi, Xi(tij) : 0 ≤ tij ≤ Ti}, where i is the

index for subject and j is the index for observation time, j = 0, 1, . . . , Ji and {tij}

are (not necessarily consecutive) integers with tiJi = Ti for all i. In this notation,

Xi(tij) are the SOFA scores, recorded daily in the ICU, Ti is the length of stay in

the ICU, Zi are non-functional covariates, and Yi is an outcome, recorded at the end

of hospitalization, or afterwards. We assume that {Xi(tij)} are sampled from an

underlying stochastic process {Xi(t) : t ∈ Ti}, where Ti is an interval on the real line.

Our analysis will focus on two binary outcomes: in-hospital mortality, and phys-

ical impairment at hospital discharge among ICU survivors. For the mortality out-

come, one possible approach would be to model the time-to-event process for the two

competing events, death and hospital discharge, and treat SOFA as a time-varying

covariate in a proportional cause-specific hazards model (Cox, 1972; Holt, 1978). This

approach could be extended to treat the SOFA scores as a longitudinal outcome in

a joint model for the longitudinal and survival processes. Indeed, joint models for

longitudinal and survival data have been the focus of intense research over the past
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two decades (Brown and Ibrahim, 2003; Hanson et al., 2011; Ibrahim et al., 2001,

2010; Rizopoulos, 2012; Tsiatis and Davidian, 2004; Tsiatis et al., 1995; Wang and

Taylor, 2001; Yu et al., 2004). An advantage of this modeling strategy is that it would

allow for dynamic prediction of mortality, i.e., the ability to estimate whether or not

a person will survive their ICU stay while they are still in the hospital (Garre et al.,

2008; Proust-Lima and Taylor, 2009; Rizopoulos, 2011; Yu et al., 2008).

While this would certainly be a clinically important goal, it is not the focus of our

analysis. Instead, our scientific problem is different: given a group of patients who

died in the ICU and a group who survived, each with a different length of stay, how

can we compare their within-ICU health trajectories? To accomplish this objective,

we treat the outcome as a binary indicator of mortality, and we condition on each

subject’s entire SOFA curve (including its domain length, Ti). Since we need to

wait until the end of one’s hospitalization in order for Ti to be known, our methods

will not be useful for dynamic prediction of mortality. Instead, our analysis is a

retrospective analysis that aims to identify the precise features of one’s SOFA curve

that differ between survivors and non-survivors. This allows us to better understand

how patterns of dynamic organ failure differ between these two groups, and provides

a way to quantify these differences.

Our second outcome is physical function at hospital discharge, measured using the

Activities of Daily Living (ADL) scale (Katz et al., 1963). This questionnaire consists

of six tasks, and for each one the subject indicates whether they can accomplish the
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activity independently, or that they require assistance. ADL information is available

at both baseline and at hospital discharge, and at both time points the number of

dependencies (i.e., total activities for which the subject requires assistance) are calcu-

lated. In order to isolate the effect of one’s hospital experience on physical function,

the baseline number of dependencies is subtracted from the number of dependencies

at discharge, and this number is dichotomized at ≥ 3. Thus, the outcome of interest

will be whether or not the subject required assistance with three or more tasks than

they did at baseline, a condition we refer to as “physical impairment.” The subjects

who had 4 or more dependencies at baseline were removed from this analysis, as they

were not eligible to experience the outcome. Of the 283 hospital survivors, 34 did not

consent to followup, 1 was missing baseline ADL data, and 17 were ineligible for the

outcome, resulting in a sample size of 231. Since this outcome is not available until

hospital discharge, which typically occurs a few days or weeks after ICU discharge,

the model may be treated as a predictive model.

2.2.2 Visualizing the Data

Exploratory plots of the data are presented in Figure 2.1. Plots (a) and (b) contain

two depictions of the first 35 days of SOFA data. Both plots are stratified by the two

outcomes: in-hospital mortality, and impaired physical function. Subjects are aligned

according to the day of their onset of ALI/ARDS, which also corresponds to the first

recorded SOFA measurement; this time point is indicated as day 0. We highlight four
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individual subjects in the spaghetti plot (Figure 2.1a) to provide some context. The

patient indicated by the purple line entered the ICU with a moderate SOFA score of

11, but his health steadily declined (as indicated by an increasing SOFA score) until

his death on the 11th day. The blue subject, on the other hand, started with a more

severe initial score of 14, but his health rapidly improved, and he was discharged

alive from the ICU on the fifth day without impaired physical function. The black

and red subjects are examples of subjects with gaps in their curves. This occurs

when a subject is discharged from the ICU to a hospital ward and later readmitted

to the ICU; SOFA is not collected in the ward. The black subject entered the ICU

with a score of 17, but improved enough to be discharged from the ICU to a hospital

ward on his 12th day. However, he was re-admitted to the ICU four days later, and

rapidly deteriorated until dying on the 24th day from baseline. The red subject was

discharged from the ICU on his 10th day, was re-admitted 5 days later, and eventually

was discharged a final time from the ICU on his 35th day.

At least one gap similar to those observed in the black and red highlighted curves

occurs in 33 of the 520 subjects (6%), causing 364 of the 8879 potential patient

days (4%) to be missing (Table 2.1). The missingness is potentially informative, as

patients are healthier when outside of the ICU than inside it, but models that account

for the missing data mechanism are outside of the scope of this paper. Instead,

since our method requires dense and equally spaced data, we impute these days

using last observation carried forward (LOCF) based on advice from clinical experts.
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Figure 2.1: Exploratory plots. In plots (a), (b), and (c), NS = non-survivors, S:IPF
= survivors with impaired physical function, S:UPF = survivors with unimpaired
physical function, and S:N/A = survivors not assessed for physical function. The
first two panels display the first 35 days of SOFA data as (a) a spaghetti plot and (b)
a lasagna plot. Both subjects are separated into four groups, based on their values for
the two outcomes (in-hospital mortality and physical impairment). In the spaghetti
plot, color indicates outcome category. Four subjects are highlighted, and lines are
used to connect adjacent measurements on the same subject, with gaps representing
days where SOFA information was not available. In the lasagna plot, rows correspond
to individual subjects, and darker colors are indicative of higher SOFA scores, i.e.,
poorer health. (c) Density estimates of the length of stay, stratified by the two
outcomes, multiplied by the number of subjects in each stratum. (d) Mean SOFA
functions that have been linearly compressed to a common domain, stratified by both
outcome and ICU length of stay, for both mortality and physical function. Each LOS
stratum contains approximately one quarter of the subjects for each outcome.
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Table 2.1: Summary statistics regarding the distribution of lengths of stay, within-
subject mean SOFA score, and ICU gaps in the ICAP data, stratified by outcome.
An ICU gap occurs when a subject is discharged from the ICU to a hospital ward,
but later readmitted to the ICU prior to hospital discharge. Mean SOFA Score refers
to the average SOFA score observed for each subject.

Mortality Physical Function
All Subjects Non-survivors Survivors Impaired Unimpaired

(N=520) (N=237) (N=283) (N=142) (N=89)
Length of Stay:

Mean (SD) 17.1 (19.0) 14.2 (19.3) 19.5 (18.4) 24.6 (22.3) 11.2 (6.4)
Median (IQR) 11.0 (6.0, 20.0) 8.0 (4.0, 17.0) 13.0 (8.5, 23.0) 16.5 (11.0, 32.0) 10.0 (6.0, 13.0)
Range (1, 173) (1, 173) (2, 157) (4, 157) (3, 31)

Mean SOFA Score:
Mean (SD) 8.5 (4.6) 11.9 (4.3) 5.6 (2.5) 6.0 (2.6) 4.9 (2.0)
Median (IQR) 7.2 (4.6, 11.6) 12.0 (8.3, 14.9) 5.0 (3.7, 7.2) 5.3 (4.0, 7.4) 4.6 (3.4, 6.1)
Range (1.2,22.0) (2.7,22.0) (1.2,14.8) (1.9,14.8) (1.6,11.2)

ICU Gaps:
Subjects Affected (%) 33 (6%) 12 (5%) 21 (7%) 13 (9%) 2 (2%)
Patient Days Affected 364/8879 (4%) 132/3362 (4%) 232/5517 (4%) 174/3494 (5%) 17/1001 (2%)

We conducted a number of sensitivity analyses, such as excluding the 33 subjects

whose data contained gaps, and results remained relatively unchanged (supplemental

material). This leads us to believe that any bias introduced by the LOCF imputation

has minimal effect on our results.

Density estimates for the ICU length of stay, Ti, are displayed in Figure 2.1c, with

summary statistics presented in Table 2.1. We see that subject-to-subject variability

in terms of length of stay is quite extreme. There are several subjects for whom only

a single SOFA measurement is available (all of whom died on that day), while others

remained in the ICU for over 100 days. The median length of stay is 11 days, with

survivors tending to remain in ICU longer than non-survivors. Accounting for this

heterogeneity in the length of stay will be a key challenge that our method must

address.

Some trends in the data are easy to see; for example, higher SOFA scores, shorter
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times in the ICU, and greater SOFA variability (both within and between subjects)

are more common among the non-survivors than survivors. Indeed, a simple logistic

regression of in-hospital mortality on each subject’s mean SOFA score performs well

in terms of discrimination, resulting in a cross-validated area under the receiver oper-

ating characteristic curve (AUC) of 0.89. However, the question remains whether we

could do better by considering the entire SOFA curve, without collapsing the values

into a single summary statistic such as the mean. It is much more difficult to visually

identify patterns that differentiate SOFA scores between impaired and unimpaired

physical function, except that those with impaired physical function tend to remain

in the ICU for longer than those who are unimpaired.

An alternative way of exploring SOFA trends across different lengths of stay is

displayed in Figure 2.1d. Here, individual SOFA functions have been linearly com-

pressed to a common domain from 0 to 1, a procedure that we refer to as domain-

standardization (this will be discussed in more detail in Section 2.4.2). We then plot

the mean SOFA function for each outcome category, stratified into four groups by

length of stay. For mortality, we see a clear separation in the mean functions of the

survivors (dashed lines) as compared to those who died (solid lines). Interestingly,

the mean function of the survivors is quite consistent regardless of Ti. We do see dif-

ferences in the mean function of the non-survivors according to Ti, with the functions

decreasing and becoming more “U-shaped” as Ti increases. We do not see nearly as

strong of a differentiation between those with (solid lines) and without (dashed lines)
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impaired physical function. In fact, the mean functions for those with and without

physical impairment are virtually indistinguishable from each other in the (8, 13] and

(23, 157] strata. In the other two strata there is a tendency for those who had im-

paired physical function on hospital discharge to have elevated SOFA scores. We do

not observe a strong pattern in these functions as Ti increases.

2.2.3 Approach

Our goal is to explore the data in order to understand how patterns of SOFA scores

differ among subjects with different levels of the two outcomes, in-hospital mortality

and physical impairment. We are investigating regression procedures that take each

subject’s entire set of covariates, {Xi(tij), Zi, Ti}, tij ∈ [0, 1, . . . , Ti], and produce a

single number that is most predictive of outcome; e.g., the log odds of mortality.

In particular, this procedure must be flexible enough to account for a functional

covariate of varying length. Note that by conditioning on the domain width Ti, our

model cannot be used to dynamically predict when the curve will terminate (e.g.,

when a subject will die). Instead, our focus is a retrospective analysis that explores

differences in SOFA patterns and how they relate to each outcome.

For potential solutions, we incorporate ideas from the field of functional regression,

which we briefly describe here. Standard functional regression models focus on the

association between a scalar outcome and a functional covariate of fixed width (i.e.,

functional domain). Suppose that {Yi} are a set of scalar outcomes, {Xi(t)} are
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functional covariates all defined on the interval [0, T ], and {Zi} are non-functional

covariates, where i ∈ {1, 2, . . . , N}. Then the generalized functional linear model

(GFLM) to relate a functional covariate to a scalar outcome is

g(µi) = α +Ziγ +

∫ T

0

Xi(t)β(t) dt (2.1)

where Yi follows an exponential family distribution with mean µi, and g(·) is a link

function.The functional parameter β(t) represents the optimal way of weighting each

Xi(t) across the domain t ∈ [0, T ], to obtain the total contribution of Xi(t) towards

g(µi). β(t) is typically constrained to be smooth across the domain t.

Model (2.1) has been studied extensively (Cardot et al., 1999; Cardot and Sarda,

2005; James, 2002; James et al., 2009; Marx and Eilers, 1999; Müller and Stadtmüller,

2005; Ramsay and Silverman, 2005; Reiss and Ogden, 2007). Incorporating non-

Gaussian outcomes, producing confidence intervals, and incorporating multiple noisy

and heterogeneous functional predictors has proven to be difficult. Using a penalized

likelihood approach and the connection with mixed effects models, Goldsmith et al.

(2011) introduced penalized functional regression (pfr), a simple fitting approach that

solved these outstanding problems. The method is implemented in the namesake

function pfr() deployed in the R (R Development Core Team, 2014) package refund

(Crainiceanu et al., 2012).

All these fundamental contributions have only considered the case when subject-
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specific functions have the same fixed domain. We now propose a new model that

relates variable-domain functions to a scalar outcome.

2.3 Variable-Domain Functional Regres-

sion

2.3.1 Model Specification

We propose the following model to regress a scalar outcome on a function with

subject-specific domain, which we refer to as variable-domain functional regression

(VDFR):

g(µi) = α +Ziγ +
1

Ti

∫ Ti

0

Xi(t)β(t, Ti) dt (2.2)

The model contains two important modifications from (2.1). The first is that the

bounds of integration, previously fixed to be from 0 to T , are now subject-specific.

The second is to replace the univariate coefficient function β(t) with the bivariate

coefficient function β(t, Ti). We now describe this bivariate coefficient function in

more detail to provide intuition. For any fixed domain width T0, β(t, T0) is a univariate

function of length T0, defined over the t-domain. This function serves as the optimal

weight function for Xi(t) to express its contribution towards g(µi), just as β(t) did
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in (2.1). However, one typically would not want to assume that the weight function

for a subject who remained in the ICU for 5 days, for example, would be the same

as that for a subject who stayed in the ICU for 20 days. The bivariate coefficient

function allows these weights to change as the width of the domain changes. We

require that these weights change smoothly in both the t and Ti directions.

The VDFR model is similar in spirit to the varying-coefficient model (Hastie and

Tibshirani, 1993), also referred to as a continuous-by-continuous interaction model

(Ruppert et al., 2003). The interaction describes the way in which one variable

(i.e. the domain width, Ti) modifies the association between the outcome and our

covariate of interest Xi(t). Varying-coefficient models have previously been extended

to the functional regression setting by Wu et al. (2010), who allow for a coefficient

function that changes with any fixed covariate Zi. The unique feature of our model

is that the fixed covariate that we interact with Xi(t) is the domain width, Ti, and

the integration only occurs over that domain width. Note that the term 1
Ti

which

appears in front of the integral sign is unnecessary, as it could easily be absorbed by

the nonparametric coefficient function β(t, Ti). Its inclusion causes the estimate of

the coefficient function to have similar magnitude across different levels of Ti.

2.3.2 Estimation

The domain of the coefficient function β(t, Ti) is {t, Ti : 0 ≤ t ≤ Ti ≤ maxi Ti},

which is a triangular or trapezoidal surface. Most common functional regression
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methods use a B-spline basis to approximate the coefficient function, but a tensor-

product B-spline basis is defined over a rectangular surface and is thus not appropriate

for variable-domain data. Instead, we use a thin plate regression spline basis (Wood,

2003), which adapts well to the non-rectangular regression surface covered by the

data. A potential disadvantage of such a basis choice is that each basis function is

symmetric in all directions (isotropic). In our scenario the two coordinates (t and Ti)

have fundamentally different interpretations, and we may want to control the shape

and degree of smoothness in each direction separately. Nonetheless, when a large

number of basis functions are used the estimated surface can adapt quite flexibly to

the data, and we have found them to work remarkably well in practice. An alternative

basis choice would be the finite element basis (Braess, 2007; Brenner and Scott, 2002)

that has been used to estimate the trapezoidal coefficient function of the historical

functional linear model (Harezlak et al., 2007; Malfait and Ramsay, 2003). This basis

was not chosen due to its increased computational complexity, though we do suggest

it as an area for future research.

Basis coefficients are penalized with a second-order derivative penalty in order

to ensure that estimates are visually smooth in both the t and Ti directions. We

take advantage of the well-known connection between penalized likelihood and mixed

models (Reiss and Ogden, 2009; Ruppert et al., 2003), which allows us to estimate the

parameters of (2.2) using standard mixed model software, such as the gam function

of the mgcv package in R (Wood, 2006). In addition to the software being readily
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available and well-tested, this allows us to take advantage of the inferential machinery

for mixed models to obtain covariance estimates for all parameters. These estimates

may then be used to obtain pointwise confidence intervals for β(t, Ti) using standard

sandwich estimators; see Goldsmith et al. (2011) for details. All model parameters are

estimated using restricted maximum likelihood (REML) to simultaneously estimate

both the coefficients and the smoothing parameters (Wood, 2011).

2.3.3 Computational Issues

In scalar-on-function regression, it is often common practice to subtract the over-

all mean function from each raw covariate function, and use the resulting de-meaned

functions as predictors in the regression model (Goldsmith et al., 2011; Ramsay and

Silverman, 2005). In the standard scalar-on-function regression model (2.1), doing

so does not effect the model other than in the interpretation of the intercept, but it

can lead to increased numerical stability in the computation. In the case of variable-

domain data, the overall mean function is not clearly defined. However, we can

estimate the conditional mean of Xi(t) given Ti, which we denote µX|Ti(t), by fitting

the generalized additive model Xi(t) = µX|Ti(t) + εi(t, Ti), εi(t, Ti) ∼ N(0, σ2I). The

bivariate mean function falls on a triangular or trapezoidal surface (the same sur-

face as the associated coefficient function β(t, Ti), and may be fit using a thin plate

regression spline basis.

Unlike in the standard scalar-on-function regression model (2.1), de-meaning the

21



CHAPTER 2. VARIABLE-DOMAIN FUNCTIONAL REGRESSION

predictor functions will lead to different estimates of the bivariate coefficient function

in the VDFR model (2.2). This is because de-meaning introduces an “offset” into the

model that is dependent on Ti:

1

Ti

∫ Ti

0

{Xi(t)− µ(t, Ti)} β(t, Ti) dt =
1

Ti

∫ Ti

0

Xi(t)β(t, Ti) dt−
1

Ti

∫ Ti

0

µ(t, Ti)β(t, Ti) dt

=
1

Ti

∫ Ti

0

Xi(t)β(t, Ti) dt− h(Ti)

If one includes the additive term f(Ti) in the model, this term would capture the

offset h(Ti), and de-meaning will not have an effect on the estimate of β(t, Ti). If one

does not include this term, the decision of whether to de-mean can be based on the

desired interpretation of the resulting coefficient function, i.e., whether one believes

that it is an individual’s deviation from the mean predictor function, rather than their

predictor function itself, that is most associated with the outcome. Alternatively, the

decision may be data-driven, for example by comparing cross-validated prediction

errors.

We also note that isotropic smoothers such as the one we employ here were de-

signed to model surfaces for which the arguments of the smoother are measured in

the same units, such as points in space. If all of the predictor functions are of similar

width, we may be faced with a situation where the coordinates in the t direction span

a much wider range than the coordinates in the Ti direction. For these situations, we

follow the suggestion of Wood (2003) and scale the coordinates to the unit triangle
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(i.e., the “upper-left corner” of the unit square).

Example code for all steps of the estimation for this model (as well as the exten-

sions proposed in the next section) is provided in the supplemental material.

2.4 Expanded Class of Variable-Domain

Models

In this section we show how we can use simple change of variables and re-parameterization

of some of the terms in (2.2) to expand the class of models for variable-domain func-

tional regression. The models in this section are theoretically equivalent to (2.2).

However, in practice, each model will give different results due to choice of basis set,

smoothness assumptions, and the scale of the numerical approximation of the integral

term. We will compare these models more thoroughly in Section 2.5.

2.4.1 Lagged Time

Let u = t − Ti denote the “negative lagged” time, i.e. the time remaining until

the end of one’s function, Ti, expressed as a negative number. This is the scale that

one would obtain if each function was aligned according to their final measurement
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rather than their first, and this time was denoted as time u = 0. (2.2) becomes

g(µi) = α +Ziγ +
1

Ti

∫ 0

−Ti
Xi(u+ Ti)β(u+ Ti, Ti) du

= α +Ziγ +
1

Ti

∫ 0

−Ti
X∗i (u)β∗(u, Ti) du (2.3)

where X∗i (u) = Xi(u + Ti) and β∗(u, Ti) = β(u + Ti, Ti), and the functions {X∗i (u)}

fall on the domain [−Ti, 0]. The main advantage of this approach is that it assumes

smoothness based on the lagged-time as opposed to the original time, which may be

more appropriate in certain applications. For example, if Xi(t) is a longitudinally-

measured covariate and it is assumed that the most recent measurements will have a

stronger effect than the earlier ones, then it makes more sense to impose smoothness

based on the lagged time. The coefficient function still falls on a triangular or trape-

zoidal domain, defined by {u, Ti : mini−Ti ≤ −Ti ≤ u ≤ 0}. Although this domain is

the mirror image of that of β(t, Ti) in (2.2) (projected over the Ti-axis), the functions

X∗i (u) are translations, rather than reflections, of the original functions Xi(t). The

model may be estimated using a thin plate regression spline basis, in much the same

way as we proposed to fit (2.2).

2.4.2 Domain-Standardization

In Section 1, we noted that a common approach in the functional regression liter-

ature for handling variable-domain data is to transform each function to a common
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domain. With the change of variable transformation s = t/Ti, model (2.2) becomes

g(µi) = α +Ziγ +

∫ 1

0

X̃i(s)β̃(s, Ti) ds (2.4)

where X̃i(s) = Xi(sTi) and β̃(s, Ti) = β(sTi, Ti). The new covariate functions {Xi(s)}

all fall on the common domain [0, 1], and the new domain variable s has the interpre-

tation of representing the proportion of the way through the function. Thus, X̃i(.5)

is equal to Xi(t0) at t0 = Ti/2 (i.e., halfway between 0 and Ti), and X̃i(1) is the final

recorded value of Xi(t).

The coefficient function β̃(s, Ti) still allows for a weight function β̃(s, ·) that

changes with Ti. In fact, model (2.4) is a particular instance of a varying coeffi-

cient functional regression model (Wu et al., 2010), one for which the functional

coefficient varies with Ti. The domain of the coefficient function is the rectangle

{s, Ti : 0 ≤ s ≤ 1, 0 ≤ Ti ≤ maxi Ti}, which allows us to approximate the surface

with an anisotropic basis suited for a rectangular surface, such as a tensor-product

basis. Since B-splines are the most common basis found in the functional regression

literature (Cardot et al., 2003; Cardot and Sarda, 2005; Marx and Eilers, 1999, 2005),

we apply a tensor-product B-spline basis to the surface. For comparison, we also fit

the model using thin plate regression splines over the same surface.
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2.4.3 Parametric Interactions

Domain standardization provides another benefit by allowing us to easily parametrize

how Ti affects the weight function β̃(s, ·). For example, if we assume β̃(s, Ti) = β1(s)+

β2(s)Ti, the model becomes a linear interaction model. Letting X̃i(s)Ti = Ai(s), (2.4)

becomes

g(µi) = α +Ziγ +

∫ 1

0

X̃i(s) {β1(s) + β2(s)Ti} ds

= α +Ziγ +

∫ 1

0

X̃i(s)β1(s) ds+

∫ 1

0

Ai(s)β2(s) ds (2.5)

Thus, restricting β(s, Ti) to be linear in Ti reduces the problem to a standard scalar-

on-function regression model with two functional predictors, X̃i(s) and Ai(s). Simi-

larly, if we assume β̃(s, Ti) = β1(s) + β2(s)Ti + β3(s)T 2
i , we obtain a quadratic inter-

action model. Technically, there is little difference between the linear and quadratic

interaction models. Indeed, if X̃i(s)T
2
i = Bi(s) then the model becomes

g(µi) = α +Ziγ +

∫ 1

0

X̃i(s)
{
β1(s) + β2(s)Ti + β3(s)T 2

i

}
ds

= α +Ziγ +

∫ 1

0

X̃i(s)β1(s) ds+

∫ 1

0

Ai(s)β2(s) ds+

∫ 1

0

Bi(s)β3(s) ds(2.6)

which is a standard scalar-on-function regression model with three functional pre-

dictors. Alternatively, we can make the stricter assumption that β̃(s, Ti) does not

change with Ti, that is β̃(s, Ti) = β(s). The resulting model, which is not an inter-
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action model at all, is equivalent to the standard functional regression model (2.1)

using the domain-standardized predictor functions.

Any of the models presented in this section may be fit using existing functional re-

gression software that accepts multiple functional predictors, such as pfr (Goldsmith

et al., 2011). To maintain consistency across all models, our implementation does not

use existing functional regression software, but instead calls mgcv::gam directly, as

was done for the non-parametric models discussed previously. As all models are fit

using mixed model software, pointwise confidence intervals are available. We use a

penalized B-spline basis to approximate the univariate coefficient functions in (2.1),

(2.5), and (2.6) above.

2.5 Simulation Studies

2.5.1 Simulation Design

We now investigate the performance of these models via simulations, under a

variety of true coefficient functions β(t, Ti). For simplicity, we consider the scenario

where there are no non-functional covariates Z, and only a single functional predictor

X(t). We consider every combination of the following simulation parameters, resulting

in 3× 2× 2× 4× 2 = 96 total scenarios:

1. Three choices for the sample size, N : 100, 200, and 500
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2. Two distributions for Ti: uniform or right-skewed

3. Four different possibilities for the true coefficient function, β(t, Ti), defined be-

low

4. Two different types of outcomes: continuous and binary. We fit gaussian models

to the continuous outcomes, and logistic models to the binary outcomes

5. Two choices for measurement error in X(t): none vs. some.

For notational convenience, we will assume that our functions are observed at

whole-numbered time points, {tj = 0, 1, . . . , J = 100}. For each value of N , we

generate R = 1000 datasets of functional covariates according to the following model,

which is adapted from Goldsmith et al. (2011):

Wi(tj) = Xi(tj) + δi(tj)

Xi(tj) = ui +
10∑
k=1

{
vik1 sin

(
2πk

100
tj

)
+ vik2 cos

(
2πk

100
tj

)}

where δi(tj) ∼ N(0, σ2
X), ui ∼ N(0, 1), and vik1, vik2 ∼ N(0, 4/k2). In this notation,

{Xi(·)} are the true underlying functions, whereas {Wi(·)} are the observed func-

tions. We consider σ2
X ∈ {0, 1}, corresponding to no measurement error and some

measurement error.

The domain width Ti is generated for each function independently, either from

a Uniform(0, 100) distribution, or from a NegBin(1, p = 0.04) distribution that is

truncated at a maximum Ti of 100. The latter distribution is right-skewed so as to
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produce more values of Ti that are small, such as those we observe in the ICAP data.

Each function Xi(tj) and Wi(tj) is then truncated to only allow for tj ≤ Ti.

We generate both continuous and binary outcomes for each dataset of functional

covariates, based on the model ηi = 1
Ti

∑Ti
tj=0 βb(tj, Ti)Xi(tj), where b indexes the

particular true coefficient function used. The continuous outcomes are simulated

as Yi = ηi + εi, εi ∼ N(0, 1), whereas the binary outcomes are simulated from a

Bernoulli(pi) distribution, pi = exp(ηi)/ (1 + exp(ηi)). Four possible bivariate coeffi-

cient functions βb(t, Ti) are considered:

β1(t, Ti) = 10
t

Ti
− 5

β2(t, Ti) =

(
1− 2Ti

J

)
×

(
5− 40

(
t

Ti
− 0.5

)2
)

β3(t, Ti) = 5− 10

(
Ti − t
J

)
β4(t, Ti) = sin

(
2πTi
J

)
×
(

5− 10

(
Ti − t
J

))

These coefficient functions all fall within the range [−5, 5], similar to what we will

observe in our application, and are plotted as heat maps in Figure 2.2. The coefficient

functions are meant to reflect one of two realistic scenarios. The first of these scenarios

corresponds to a situation in which the relative position (t/Ti) within the function

drives the association between Xi(t) and g(µi). This scenario is reflected in β1(t, Ti)

and β2(t, Ti). The remaining two coefficient functions reflect a scenario in which the

lag, Ti − t, drives the strength of the association.
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We fit seven versions of the VDFR model to each simulated data set. The first

one, which uses the untransformed predictor functions as described in Section 2.3, will

be referred to as the “Untransformed” model. The second uses the lagged predictor

functions as described in Section 2.4.1, and is referred to accordingly as the “Lagged”

model. The remaining five models use the domain-standardized predictor functions.

The first two allow for the interaction with Ti to be non-parametric (Section 2.4.2),

either with a thin plate regression spline basis or a tensor-product B-spline basis.

We refer to them as “DS (TPRS)” and “DS (TPBS)”, respectively. The final three

models parametrize the interaction as described in Section 2.4.3. We refer to the

models with no interaction, linear interaction, and quadratic interaction as “DS (No

Int)”, “DS (Lin)”, and “DS (Quad)”, respectively.

In addition to the seven functional models, we fit 14 “non-functional” models to

the simulated data (Table 2.2). The first five of these models were simple linear or

logistic regressions of the outcome against a single summary statistic of each subject’s

predictor function. The remaining nine were more complicated parametric or semi-

parametric models involving the within-subject mean X̄i and the domain width Ti.

Variables and parameterizations of each model are listed in Table 2.2. All smooth

functions are modeled using a thin-plate regression spline basis.
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2.5.2 Evaluation criteria

Performance of models was evaluated in two ways. First, we measure the ability of

each model to predict the outcome in each scenario. For the models fit to the contin-

uous outcomes, this is measured through the cross-validated root mean squared error

(rMSE), whereas for the binary outcome models, we calculated the cross-validated

area under the receiver operating characteristic curve (AUC). All cross-validation is

10-fold. Good predictive accuracy is indicated by low rMSE or high AUC.

For the seven models that produce functional estimates, we also measure the

ability of each model to estimate the true coefficient function. This ability is evaluated

using the average mean squared error (AMSE) of the estimate over all possible values

of tj and Ti. More precisely,

AMSE(r)
(
β̂b(·, ·)

)
=

1

J(J + 1)

J∑
k=0

k∑
j=0

{
β̂

(r)
b (tj, k)− βb(tj, k)

}2

,

where β̂
(r)
b (tj, k) is the estimated coefficient function from the rth simulated dataset

evaluated at t = tj, Ti = k, and βb(tj, k) is the value of the true coefficient function

at this location. Before this calculation is performed, all estimates (other than the

one from the Untransformed model) are converted back to the original (triangular)

domain. For the Lagged model, this is a simple translation of the estimates. For the

five models fit using the domain-standardized predictor functions over a rectangular

grid, we stratify estimates for each Ti into Ti + 1 bins, and calculate the mean value

31



CHAPTER 2. VARIABLE-DOMAIN FUNCTIONAL REGRESSION

in each bin.

2.5.3 Simulation results

The median cross-validated AUC statistics for the case when N = 200, Ti is

chosen from a skewed distribution, measurement error is present, and the outcome

is binary are presented in Table 2.2. This scenario is presented because it is most

similar to our application; results from other scenarios appear in the supplemental

material. For the presented scenario and in nearly every other scenario, the model

with the lowest median cross-validated mean squared error (continuous outcome) or

highest median cross-validated AUC (binary outcome) was one of the seven functional

models. In many cases, the performance of the non-functional models was extremely

poor, resulting in cross-validated AUC statistics around 0.5 or even below, indicating

that the given model does not help predict the outcome at all. The only cases where

the best model was one of the non-functional models occurred with the smallest

sample size, binary outcome, and skewed distribution for Ti, under β3(t, Ti). In these

cases there were a number of models that all predicted outcome very well, and the

best-performing model happened to be one of the non-functional ones.

The results for the seven functional models under the above scenario are presented

more fully in Figures 2.2 and 2.3. The former presents the rAMSE and cross-validated

AUC values across the 1000 iterations as box plots, whereas the latter depicts the

estimated coefficient function for the estimate with median AMSE among the 1000
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β1(t, Ti) β2(t, Ti) β3(t, Ti) β4(t, Ti)
Functional Models:

Untransformed 0.862 0.744 0.947 0.886
Lagged 0.863 0.746 0.946 0.887
DS (TPRS) 0.902 0.778 0.963 0.904
DS (TPBS) 0.900 0.775 0.933 0.905
DS (No Int) 0.905 0.602 0.948 0.790
DS (Lin) 0.901 0.716 0.964 0.866
DS (Quad) 0.897 0.767 0.959 0.872

Summary Statistic Models:
Mean 0.434 0.634 0.955 0.854
Median 0.436 0.637 0.949 0.847
Maximum 0.439 0.601 0.842 0.776
Cumulative 0.431 0.646 0.915 0.817
Slope 0.820 0.429 0.438 0.431

Additional Models:
β1X̄i + β2Ti 0.459 0.631 0.954 0.850
β1X̄i + f2(Ti) 0.466 0.628 0.951 0.846
f1(X̄i) + β2Ti 0.466 0.621 0.953 0.845
f1(X̄i) + f2(Ti) 0.472 0.620 0.949 0.842
f(X̄i, Ti) 0.465 0.720 0.938 0.865
β1X̄i + β2Ti + β3X̄iTi 0.458 0.636 0.958 0.864
β1X̄i + f2(Ti) + f3(X̄iTi) 0.468 0.647 0.953 0.856
f1(X̄i) + β2Ti + f3(X̄iTi) 0.472 0.650 0.955 0.857
f1(X̄i) + f2(Ti) + f3(X̄iTi) 0.475 0.649 0.952 0.852

Table 2.2: Median cross-validated AUC for all models applied to the simulated
data, for the case when N=200, Ti is skewed, measurement error is present, and
the outcome is binary. Models include seven functional models, five simple logistic
regressions on the indicated summary statistic, and nine more complicated parametric
or semi-parametric functions of the within-subject mean (X̄i) and the domain width
(Ti).
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iterations, as a heat map. The four nonparametric models seem to perform well

regardless of the true coefficient function. For β1(t, Ti) and β2(t, Ti), the domain-

standardized models tend to perform better than the Untransformed and Lagged

models. The DS (TPRS) and DS (TPBS) models tend to perform similarly for

all coefficient functions other than β3(t, Ti), where there appears to be much more

variability in the performance of the DS (TPBS) model. The reasons for this are

not clear, and this effect does not occur when the outcome is gaussian (supplemental

material). The Untransformed and Lagged models tend to perform similarly for all

four coefficient functions, including β3(t, Ti) and β4(t, Ti), which were designed to be

lag-based.

The parametric functional models are among the best-performing models in the

cases when the interaction with Ti is simple enough to be accounted for by the para-

metric assumption. For example, all three parametric models perform well under

β1(t, Ti), which contains no interaction on the domain-standardized scale. However,

the DS (No Int) model cannot account for the linear interactions that are present in

the other three coefficient functions, resulting in an estimate that is quite homoge-

nous in both the t and Ti directions. The three parametric models are outperformed

by the domain-standardized nonparametric models for both β2(t, Ti) and β4(t, Ti),

which contain more complicated interactions. The quadratic model especially pro-

duces estimates that are quite unstable in the region with high Ti. Recalling that

these estimates are from the scenario where Ti is chosen from a right-skewed distribu-
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Figure 2.2: Simulation results for the case when N = 200, Ti is skewed, measure-
ment error is present, and the outcome is binary. The top row depicts a heat map
of the true coefficient functions. The second and third rows depict the root average
mean squared error (rAMSE) of β̂(t, Ti) and 10-fold cross-validated area under the
ROC curve (AUC), respectively, for each of the seven models. Smaller rAMSE and
larger AUC indicate better model performance. Results are presented as Tufte box
plots, with the median represented by a dot, the interquartile range by the white space
around the dot, and the smallest and largest non-outlying points by the endpoints of
the lines. Outliers are defined as values not within 1.5 times the interquartile range
of the nearest quartile. Arrows indicate lines that extend outside the plotting range.
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Figure 2.3: Heat maps of the estimate with median AMSE across the 1000 simulated
datasets, for each model and coefficient function, in the case where N = 200, Ti is
skewed, measurement error is included, and the outcome is binary. The range for each
plot is from -6 (blue) to 6 (red), with values outside of this range indicated by white
space. The numbers in the lower-right corner of each plotting area are the rAMSE
statistics for each estimate.

tion, this observation reflects the instability of extrapolating higher-order polynomial

functions to regions outside the bulk of the data.

Tables and plots of the rAMSE, rMSE, and AUC under other scenarios (different

sample sizes, distribution of Ti, amount of measurement error, and continuous out-

comes) are available in the supplemental material. In general, we found the results

discussed above to hold true under these scenarios as well. As expected, both esti-

mation and prediction error tend to be lower as the sample size increases, when the

distribution of Ti is uniform, and when measurement error is not present. rAMSE

values tended to be much lower when the outcome was continuous as opposed to
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binary. They were also much less variable, resulting in more clear differentiation be-

tween models. Overall patterns of comparative model performance were similar to

the binary case.

2.6 Application to ICAP Data

2.6.1 Model Specification

For both binary outcomes in the ICAP data, we fit each of the seven VDFR

models discussed in the preceding sections. Each model includes SOFA as a functional

covariate and controls for age, gender, Charlson comorbidity index (a commonly used

index of baseline health, (Charlson et al., 1987)), and the log of the ICU length of

stay Ti, as fixed (non-functional) effects.

We investigated whether de-meaning the functional predictors and/or modeling

log(Ti) as a smooth term rather than a linear term improved model performance.

Based on cross-validated AUC statistics, we found the optimal performance for the

mortality outcome occurred when the SOFA functions were not de-meaned and when

log(Ti) was modeled smoothly. For physical function, highest cross-validated AUC

scores occurred without de-meaning when log(Ti) was included as a linear term. It is

these results that we present below. Additionally, since the domain width Ti is highly

right-skewed, we investigated whether the interaction in the functional models should
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occur with a transformation of this variable. In other words, instead of estimating

the coefficient function β(t, Ti), we estimate β∗(t, w(Ti)), where w(·) is a monotonic

transformation function. The two w(·) functions considered were the log function,

and the empirical quantiles of Ti. In addition to evening out the amount of data over

the estimated surface on these scales, this approach assumes that the true interaction

takes place on the transformed scale. Since the w functions are monotonic, the

resulting models are theoretically equivalent, but in practice may be different due

to the choice of basis and level of smoothness. However, we found that differences

between the three methods were quite small in the ICAP dataset. Since the lengths

of stay are approximately log-normally distributed, we present the results using the

log-transformed Ti.

In addition to the seven functional models, we fit 13 non-functional models to the

data, similar to those fit to the simulated data. All models are adjusted for the same

covariates (age, gender, Charlson index, and log(Ti)) as the functional models.

2.6.2 Model Performance

AUC statistics for each model are presented in Table 2.3, both in-sample and

under cross-validation, with 95% confidence intervals based on 1000 bootstrapped

samples. The in-sample statistic measures the discriminative ability of each model

on the existing dataset, whereas the cross-validated statistic estimates discriminative

ability for a new sample, and is more relevant for model selection as it is less prone

38



CHAPTER 2. VARIABLE-DOMAIN FUNCTIONAL REGRESSION

Table 2.3: AUC statistics for each model, applied to the binary outcomes of in-
hospital mortality and physical function in the ICAP dataset. Results are presented
as LXR, where X is the estimate, and (L,R) are the lower and upper bounds, re-
spectively, of a 95% confidence interval based on 1000 bootstrapped samples. Both
in-sample and cross-validated AUC statistics are presented. Cross validation is N -fold
for the estimates, and 10-fold for the bootstrapped confidence intervals. All models
are adjusted for age, gender, Charlson comorbidity index, and the log length of stay.
Log length of stay is included as a smooth term for mortality and as a linear term for
physical impairment.

Mortality Physical Impairment
In-sample Cross-validated In-sample Cross-validated

Functional Models:
Untransformed 0.9400.9480.977 0.9130.9190.955 0.8130.8380.911 0.7560.7840.871

Lagged 0.9410.9470.977 0.9110.9180.955 0.8120.8360.911 0.7600.7900.875

DS (TPRS) 0.9420.9490.983 0.9220.9330.960 0.8250.8470.943 0.7660.7900.888

DS (TPBS) 0.9420.9500.981 0.9200.9360.961 0.8110.8290.945 0.7500.7840.883

DS (No Interaction) 0.9340.9460.971 0.9160.9340.957 0.7670.8260.886 0.7270.7970.860

DS (Linear) 0.9370.9470.973 0.9140.9330.957 0.7730.8310.902 0.7250.7940.862

DS (Quadratic) 0.9430.9500.977 0.9190.9350.959 0.7890.8300.907 0.7350.7880.863

Summary Statistic Models:
Mean 0.8770.8990.927 0.8700.8930.922 0.7550.8200.870 0.7190.7980.854

Median 0.8760.8980.929 0.8680.8910.923 0.7520.8200.872 0.7160.7980.852

Maximum 0.8600.8850.913 0.8530.8790.908 0.7570.8190.874 0.7280.7990.858

Cumulative 0.8050.8420.876 0.7930.8330.868 0.7600.8180.872 0.7310.7970.854

Slope 0.7440.7950.856 0.7280.7850.847 0.7500.8100.868 0.7230.7900.851

Additional Models:
β1X̄i + f2(Ti) 0.8800.9010.930 0.8710.8920.922 0.7960.8210.892 0.7470.7920.862

f1(X̄i) + β2Ti 0.8770.8990.927 0.8680.8930.920 0.7670.8200.879 0.7130.7960.852

f1(X̄i) + f2(Ti) 0.8800.9010.930 0.8690.8920.920 0.7970.8210.895 0.7400.7900.862

f(X̄i, Ti) 0.8780.8990.933 0.8650.8930.921 0.7670.8200.917 0.7270.7980.865

β1X̄i + β2Ti + β3X̄iTi 0.8760.9000.927 0.8690.8930.922 0.7530.8180.871 0.7170.7950.851

β1X̄i + f2(Ti) + f3(X̄iTi) 0.8820.9010.933 0.8690.8910.921 0.8020.8200.905 0.7450.7810.858

f1(X̄i) + β2Ti + f3(X̄iTi) 0.8800.9010.930 0.8690.8910.922 0.7730.8200.899 0.7360.7910.859

f1(X̄i) + f2(Ti) + f3(X̄iTi) 0.8840.9010.934 0.8680.8910.921 0.8090.8200.915 0.7450.7810.858

39



CHAPTER 2. VARIABLE-DOMAIN FUNCTIONAL REGRESSION

to over-fitting. The cross-validated statistics are based on leave-one-out (i.e., N -fold)

cross-validation, but the confidence intervals are based on 10-fold cross-validation

to reduce the computation time. This will likely produce slightly wider confidence

intervals than if we had used N -fold cross-validation.

Comparing the seven functional models for the mortality outcome, we see that the

five models that used the domain-standardized functions all performed quite similarly

by both metrics. The Untransformed and Lagged models both performed slightly

worse under cross-validation. Each of the functional models resulted in higher AUC

statistics than the non-functional ones, both in-sample and cross-validated. While the

absolute differences in AUC between the functional and non-functional models may

not be very large, we note that a perfectly discriminating model would have an AUC of

1. Thus, the difference between each AUC and 1 offers a measure of the “imperfection”

of each model. From this perspective, the best-performing functional model (Domain-

standardized B-splines) offers an improvement over the best-performing summary

statistic model (mean SOFA) of 40% in terms of cross-validated AUC.

For physical function, AUC statistics were quite a bit lower than those for the

mortality outcome, reflecting the weaker association between SOFA patterns and

impaired physical function. Additionally, we do not see the same benefit in using

a functional modeling approach. Although the functional models result in higher

in-sample AUC statistics than the non-functional models, this does not hold under

cross-validation. This result indicates that the functional nature of the SOFA curves
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is not a strong predictor of impaired physical function. The functional model with

no interaction performs quite well under cross-validation in both of the two outcome

scenarios, indicating that there is not much benefit in terms of discriminative ability

to allowing β(t, Ti) to change with Ti.

2.6.3 Estimated Coefficient Functions

The estimates for the coefficient functions for mortality and physical function are

presented in Figures 2.4 and 2.5, respectively. Rather than presenting the triangular

surface β̂(t, Ti) estimated by each model as a heat map, we present the univariate

weight functions β̂(t, T0) for 10 different values of T0 spread evenly across the domain

of Ti. The top row in these figures displays these estimates, with T0 indicated by

color as well as the support along the t-axis, and the bottom row of plots displays

the corresponding pointwise Z-scores, β̂(t, T0)/SE(β̂(t, T0)).

For mortality, we see a consistent pattern among all models of a strong, positive

spike in the association between death and high SOFA scores at the end of one’s

ICU stay, regardless of Ti. In most cases, the pointwise associations in these regions

is statistically significant, according to a Wald test with α = 0.05. This pattern is

expected: subjects with higher SOFA scores (i.e., more severe organ failure) right

before the end of their ICU stay are likely to have their ICU stay end in death, rather

than be discharged alive. Moreover, increasing SOFA scores have been associated with

withdrawal of life support, leading to subsequent mortality (Turnbull et al., 2014).
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Figure 2.4: Estimated coefficient functions for the association between daily SOFA
score and in-hospital mortality in the ICAP dataset. Each column corresponds to one
of our six functional models. In the top row of plots, estimates are depicted as β̂(t, T0)
for 10 evenly-spaced values of T0. AUC statistics subject to 10-fold cross-validation
are also provided. The bottom row displays the corresponding pointwise Z-scores,
β̂(t, T0)/SE(β̂(t, T0)), as a function of t. The value of T0 is indicated both by color
and by the support of each function. The zero line is indicated with a horizontal
dotted line, and dashed lines correspond to Z-scores of ±1.96.
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Figure 2.5: Estimated coefficient functions for the association between daily SOFA
score and impaired physical function in the ICAP dataset, presented similarly to
Figure 2.4.

The linear and quadratic models show a tendency for this spike to move later into

one’s ICU stay when Ti is long. This pattern suggest that the last few days in the ICU

are most important for predicting mortality, regardless of Ti. The models that allow

for a more flexible interaction with Ti also estimate a positive association between

early SOFA scores and mortality for subjects with long lengths of stay, resulting in

“U-shaped” weight functions. Although there may be some effect on mortality related

to the severity of the event that caused the onset of ALI/ARDS, we note that there

are very few subjects that have these high lengths of stay (only seven subjects with

Ti > 75), and this effect may be spurious. This hypothesis is supported by the fact

that the pointwise associations in these regions are not statistically significant.

For physical function, one might be tempted to ignore the coefficient estimates

from the functional models, which had lower cross-validated AUC statistics than some
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of the simpler, parametric models. However, these estimates may still be revealing, as

they are able to estimate types of associations that are not possible to be estimated

by traditional approaches, and still may identify important trends in the data. For

this outcome, we find that the functional association decreases over one’s ICU stay,

quite linearly in each case. However, the magnitude of these associations is relatively

small, and the pointwise 95% confidence intervals cover 0 in every region of all models,

except for some very small locations in the Untransformed and DS (TPRS) models.

This lack of a strong association reflects our observations from Figure 2.1 and Table

2.3, each of which showed weak functional relationships between SOFA and physical

impairment.

For both mortality and physical impairment, there are certain features in the

estimates that were somewhat unexpected, and these features have fundamental im-

plications on the interpretation of the coefficient functions. For mortality, we were

initially surprised that there were regions of each estimate that lied below the zero

line. This means that, for two subjects with the same SOFA scores during the regions

where the coefficient function is positive, the model predicts that the one with lower

scores (i.e., the healthier patient) in the region with negative coefficient function is

more likely to die. Similarly, even though the estimates for physical impairment were

not statistically significant (in a pointwise sense), we were surprised the the predom-

inant trend was for the weight functions to decrease over one’s ICU stay. According

to these models, a subject whose condition gradually deteriorates throughout their
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hospitalization will be less likely to have impaired physical function upon hospital

discharge than a subject who improves.

To further illustrate these points, consider the hypothetical SOFA curves plotted in

Figure 2.6. Subjects A and B have the same SOFA scores during the latter portion of

their hospitalization, but Subject A experiences a temporary spike in his SOFA scores

during the middle of his hospitalization, whereas Subject B experiences a temporary

drop during this same time period. Both subjects were assigned the same values

for their non-functional covariates (age, gender, Charlson index, and length of stay).

According to each of the functional models, the subject who experienced the lower

scores is more likely to die than the subject with higher scores. High SOFA scores, in

the early and middle portion of one’s ICU stay, appear to be associated with higher

likelihood of survival. Similarly, in the lower plots both subjects had the same SOFA

scores for the first 7 days of their ICU stay, but then Subject C’s condition improved

over the final 6 days whereas Subject D’s health declined. However, the functional

models predict that the subject whose health improved is more likely to leave the

ICU with impaired physical function than the one whose condition deteriorated. The

lone exception is the Lagged model, whose estimate has a shorter period where it is

negative compared to the other models.

At first glance these observations may appear counter-intuitive, but each may be

explained in the context of the full model. Since subjects similar to Subject A contain

peaks in their SOFA scores early in their ICU stay, it means that they survived a
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DS (TPBS) 0.370.610.81 0.690.860.95

DS (No Int) 0.430.650.82 0.700.860.94

DS (Lin) 0.430.640.80 0.740.880.95

DS (Quad) 0.360.590.78 0.760.900.96

Summary Statistic Models:
Mean 0.720.810.87 0.360.450.53

Median 0.610.700.78 0.500.590.67

Maximum 0.600.680.76 0.190.250.32

Cumulative 0.400.470.54 0.280.340.41

Slope 0.340.400.47 0.470.550.63
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Untransformed 0.490.760.91 0.210.720.96

Lagged 0.520.760.90 0.120.570.93

DS (TPRS) 0.580.820.94 0.050.420.92

DS (TPBS) 0.530.720.86 0.050.320.81

DS (No Int) 0.570.750.87 0.060.350.82

DS (Lin) 0.560.740.87 0.050.310.80

DS (Quad) 0.500.710.86 0.020.240.80

Summary Statistic Models:
Mean 0.500.660.79 0.500.770.92
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Maximum 0.490.610.72 0.560.790.91

Cumulative 0.480.620.74 0.480.720.87

Slope 0.480.590.70 0.160.360.61

Figure 2.6: Trajectories of four hypothetical patients, along with their predicted
probabilities of outcome according to each model. Top row corresponds to the mor-
tality outcome, and bottom corresponds to impaired physical function.
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serious episode that caused a temporary peak (worsening of health); if they did not,

then their SOFA function would end at this point. Thus, subjects whose SOFA

scores peak early in their ICU stay might have greater baseline physiological reserve

than those who did not experience this peak, as demonstrated by their ability to

survive this severe organ failure. Moreover, for two subjects who have the same

SOFA pattern towards the end of their ICU stay, the one whose scores peaked earlier

during their hospitalization must have experienced improvement since then. Thus,

although Subject A was quite sick in the middle of his ICU stay, the trend in the

latter half of hospitalization indicates relative improving health. In contrast, Subject

B may have improved early on, but since that point their condition declined. The

negative estimated coefficient function early in one’s ICU stay captures this effect,

whereas the non-functional models do not.

The high predicted probabilities of physical impairment for Subject C relative to

D may be explained by recognizing that the subjects eligible for this outcome not

only survived their ICU stay, but were also deemed healthy enough to be discharged

from the ICU. If a subject has experienced a rapid improvement in their physiological

metrics, a physician may be more likely to allow the subject to leave the ICU, even

if he is still has some physical limitations as measured by the ADL scale. Conversely,

a subject who still has some evidence of poor organ function will likely only be

discharged from the ICU if he has demonstrated tremendous improvement in his

outward appearance, such as proving to be unrestricted in daily activities. Though
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it is possible that these effects are only spurious, as these models were outperformed

by some of the non-functional ones, we feel these trends are noteworthy and should

perhaps be investigated in future studies.

2.7 Discussion

In this paper, we investigated methods to capture the effect of a functional pre-

dictor, where the domain of this predictor may vary widely from subject-to-subject.

Such a situation is most commonly encountered when the domain variable is time,

and each subject (or unit) is measured for a different length of time, as in our applica-

tion. This investigation motivated our development of the variable-domain functional

regression model (VDFR), which estimates a weight function to capture the effect of

a functional predictor, but allows this weight function to vary (smoothly) based on

the total follow-up time for each subject.

The VDFR models were able to identify features of the association between a

longitudinally collected covariate and an outcome that traditional multivariate re-

gression methods are not equipped to handle. In the analysis of ICAP mortality, we

saw specifically how the functional models incorporate information related to both

the magnitude of one’s SOFA score and their trajectory over time to provide better

discriminative ability than naive (non-functional) approaches. They also allow us to
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ask previously unanswerable questions, such as whether or not it is optimal to treat

a longitudinal covariate with subject-specific domain as a function, and how the do-

main width affects the covariate-outcome relationship. Although we were not able to

identify any evidence for a strong functional relationship between SOFA score and

physical function at hospital discharge, without these methods we would not have

known how to answer such a question.

It is important to recognize that the models that we fit are not causal models, and

we do not employ them to try to identify a causal relationship between the covariate

function and outcome. For example, we identified a pattern in the data that increasing

SOFA scores towards the end of one’s hospitalization, which indicate a decline in one’s

overall health, are associated with a higher likelihood that a surviving subject has

limitations in their activities of daily living. We do not believe that organ failure

causes a subject to have improved physical function; such a claim would run contrary

to logic. One must take care in the interpretation of the coefficient functions not only

in the VDFR models, but in any functional regression model. The magnitude of the

coefficient function at any particular point (t, Ti) = (t0, T0) should only be interpreted

conditional on the rest of the curve, the domain width Ti, and the patient population

under consideration.

Among the various VDFR models, we observed an advantage in domain-standardization

as compared to the Untransformed and Lagged models, both in our simulations and

when applied to the ICAP data. The key difference between the fit via the domain-
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standardized models and the Untransformed/Lagged models is the scale on which

the smoothness is applied. The Untransformed/Lagged models apply the same de-

gree of smoothness between adjacent time points regardless of the domain width, Ti.

The domain-standardized models, on the other hand, implicitly relax the amount of

smoothness between adjacent days when Ti is short, as compared to when Ti is long,

because these points are stretched further apart on the domain-standardized scale. It

is quite likely that one would want to allow for a greater separation in the estimated

weights on days 1 and 2 when a subject is only followed for 3 only days, for example,

than when he is followed for 30 or 100. A potential solution would be to employ a

smoothness criterion that allows the degree of smoothness to vary with Ti, which we

do not attempt in this paper.

It may seem unnatural to stretch a function with a domain of only a few days

to be the same width as a function with a domain of 100 or more days, however we

remind the reader that we avoid any problems by allowing the coefficient function to

change with Ti. We are unsure whether or not we would see the same advantage to

domain-standardization if there was not such a large amount of variability in Ti, or if

the minimum Ti was greater than just a single day, as is the case in the ICAP data.

These questions should be explored in future work. Another advantage of domain-

standardization is that it easily allowed us to implement three parametric interaction

models (no interaction, linear interaction, and quadratic interaction). These models

were usually outperformed by their nonparametric counterparts, but they did offer
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a number of potential benefits, including more robust estimates, tighter confidence

intervals, and greater interpretability.

Our proposed methodology is not without limitations. First and foremost is its

inability to dynamically predict mortality during one’s ICU stay. The ability to

predict whether a subject is likely to survive while they are in the ICU would be

quite useful for patient prognostication and treatment. We intend to investigate

whether this methodology can be extended to this scenario in future work, perhaps by

incorporating ideas from joint models for longitudinal and survival data. Additionally,

our methods currently fail to account for missing observations, or sparse or unevenly

sampled functional covariates. For the SOFA data, we avoid this scenario by imputing

SOFA scores to fill the gaps in our functions. This approach ignores the informative

missingness of this data, but we were encouraged by the fact that our sensitivity

analyses, including a complete-case-only analysis, produced similar results. This is

likely in part due to the fact that only 4% of possible patient days are missing. In cases

where the missing data mechanism is assumed uninformative, a preferred approach

is to approximate each function using a functional principal components expansion,

which would impute each function by borrowing strength from similar functions that

do not contain gaps. This procedure has not yet been developed for variable-domain

functions. We hope to explore these issues in future work.
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Chapter 3

Cox Regression with Functional

Predictors

3.1 Introduction

We introduce the proportional hazard functional regression model for data where

the outcome is the possibly censored time to event and the exposure is a densely

sampled functional process measured at baseline. The methodology was inspired by

and applied to a study of the association between survival time after hospital discharge

of survivors of acute respiratory distress syndrome (ARDS), and daily measures of

organ failure during hospitalization.

The main innovation of our approach is to provide a fast and easy to use Cox model

for functional regression based on modern developments in nonparametric smoothing,
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survival analysis methods and software, and functional data analytic concepts. More

precisely, the method we propose has three important characteristics: 1) it employs

penalized splines (Eilers and Marx, 1996; O’sullivan et al., 1986; Ruppert et al.,

2003) to model the functional coefficient(s); 2) it treats the proportional hazards

model that incorporates the functional parameter as a hazard rate with a mixed

effects format on the log scale and uses modern survival data fitting techniques that

incorporate nonparametric smoothing and frailty regression (Gray, 1992; Therneau

and Grambsch, 1998; Verweij and Van Houwelingen, 1993); and 3) it estimates the

amount of smoothing of the functional parameter using a likelihood-based information

criterion such as AIC (Therneau et al., 2003; Verweij and Houwelingen, 1994), and

thus avoids the use of principal component truncation, which may lead to highly

unstable coefficient shapes.

Functional data regression is under intense methodological development (Cardot

et al., 1999, 2003; Cardot and Sarda, 2005; Ferraty, 2011; Ferraty and Vieu, 2006;

Goldsmith et al., 2011; Harezlak and Randolph, 2011; James, 2002; James et al., 2009;

Marx and Eilers, 1999; McLean et al., 2013; Müller and Stadtmüller, 2005; Ramsay

et al., 2009; Reiss and Ogden, 2007), though there are only a few modeling attempts

in the case when outcome is time-to-event data. Probably the first paper to consider

this topic was James (2002), who used a functional generalized linear model to model

right-censored life expectancy, where censored outcomes are handled using the pro-

cedure of Schmee and Hahn (1979). The procedure has two steps: 1) use a truncated
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normal distribution to estimate the unobserved failure times; and 2) incorporate these

estimates in standard least squares equations. The entire procedure is then iterated

using the EM algorithm. This method for accounting for censored survival times is

similar in spirit to the better known Buckley-James estimator (Buckley and James,

1979; Miller and Halpern, 1982). Müller and Zhang (2005) developed an alternative

model for the mean remaining lifetime given a longitudinal covariate up to a given

time, though their model does not allow for censored outcomes. Chiou and Müller

(2009) incorporate the ideas of functional data analysis by modeling hazard rates as

random functions, but they do not allow for functional predictors.

In parallel with these efforts in functional data analysis, important developments

have been achieved by researchers in survival data analysis. Specifically, non-parametric

smoothing approaches have been introduced to account for the possibly nonlinear ef-

fects of scalar covariates in a proportional hazards model. Therneau and Grambsch

(1998) showed how to fit a model with a smooth covariate effect using penalized

splines, and how this model was closely related to the more well-studied gaussian

frailty model. Kneib and Fahrmeir (2007) developed an expanded mixed model that

allows for non-parametric effects of scalar covariates, spatial effects, time-varying co-

variates, and frailties. Strasak et al. (2009) allowed for smooth effects of time-varying

covariates. These techniques have now matured, are accompanied by high quality

software (Belitz et al., 2013; Therneau, 2012, 2014), and continue to be developed.

Our approach will take advantage of decades of development in survival data analysis,
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functional data analysis, and nonparametric smoothing. In particular, we will iden-

tify the most robust, easiest to use combination of approaches to achieve our goal:

modeling survival data with nonparametric functional regression parameters.

Thus, we take advantage of these methods in order to model the effect of a func-

tional covariate on a (possibly censored) survival time, by including the functional

covariate as a term in a Cox proportional hazards model (Cox, 1972). This approach

has several advantages. First, the proportional hazards model is one of the most

popular regression models ever, has been well-studied, and has a form that is familiar

to a general audience. Second, the Cox model is widely considered to be the standard

in regression for survival data due to its interpretability, applicability, and inferential

flexibility. Third, it allows simple extensions of the fitting procedure to incorporate

functional covariates. These properties allowed us to develop a model that is easy to

implement and computationally efficient. Indeed, our software will be made publicly

available as part of the pcox package in R (R Development Core Team, 2014), and

fitting the model requires only one line of code.

We now briefly review some of the existing functional regression techniques that

are relevant to this article. Scalar-on-function regression models the relationship

between a scalar outcome and a functional covariate. Suppose that {Yi} are a set

of scalar outcomes, {Xi(t)} are functional covariates defined on the interval [0, 1],

and {Zi} are non-functional covariates, where i ∈ {1, 2, . . . , N}. Then the general-

ized functional linear model that relates Yi to Zi and Xi(t) is g(µi) = α + Ziγ +
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∫ 1

0
Xi(t)β(t) dt, where Yi follows an exponential family distribution with mean µi,

and g(·) is an appropriate link function (James, 2002; McCullagh and Nelder, 1989;

Müller and Stadtmüller, 2005). The key feature of this model that differentiates

it from a standard (non-functional) generalized linear model is the integral term,∫ 1

0
Xi(t)β(t) dt, which captures the contribution of the functional covariate Xi(t) to-

wards g(µi). The integration essentially serves as a weighting mechanism for Xi(t),

where the weights are given by the coefficient function β(t). Thus, we think of β(t)

as the optimal weight function to express the contribution of Xi(t) towards g(µi).

In the next section, we propose an extension of the Cox proportional hazards model

that incorporates a similar integral term for functional covariates, and describe how

the parameters in such a model may be estimated. Section 3.3 describes a number

of extensions to the model that allow for added flexibility. Section 3.4 assesses the

performance of our model in a simulation study. In Section 3.5, we apply our model

to our application of interest, and we conclude with a discussion of our findings in

Section 3.6. Additional details regarding our software implementation using R’s pcox

package may be found in the supplemental material.
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3.2 Cox Model with Functional Covari-

ates

3.2.1 Proportional Hazards Model

Let Ti be the survival time for subject i, and Ci the corresponding censoring

time. Assume that we observe only Yi = min(Ti, Ci), and let δi = I(Ti ≤ Ci).

We also assume that for each subject, we have a collection of covariates Zi =

{Zi1, Zi1, . . . , Zip}. The Cox proportional hazards model (Cox, 1972) for this data

is given by log hi(t;γ) = log h0(t) +Ziγ, where hi(t;γ) is the hazard at time t given

covariates Zi and h0(t) is a non-parametric baseline hazard function. The parame-

ter vector exp(γ) is commonly referred to as the vector of hazard ratios, because it

represents the multiplicative change in the hazard function for a one-unit increase in

Zi.

Suppose now that in addition to Zi, we have also collected a functional covariate,

Xi(s) ∈ L2[0, 1], for each subject. Without loss of generality, we assume that Xi(s)

is centered by subtracting an estimator of the population mean function from the

observed data. We propose the following functional proportional hazards model

log hi [t;γ, β(·)] = log h0(t) +Ziγ +

∫ 1

0

Xi(s)β(s) ds (3.1)
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The functional parameter, β(s), is slightly more difficult to interpret than its

non-functional counterpart, γ. One interpretation is that the term exp
{∫ 1

0
β(s) ds

}
corresponds to the multiplicative increase in one’s hazard of death if the entire covari-

ate function, Xi(s), was shifted upwards by 1 unit (with Zi held constant). In this

context, one can refer to β(s) as a functional log hazard ratio. More generally, β(s)

serves as a weight function for Xi(s) to obtain its overall contribution towards one’s

hazard of mortality. The model assumes proportional hazards; i.e., this contribution

is the same over the entire domain t of the hazard function.

We note in particular the the domain of the functional predictor, s, is not the

same as the time domain t over which the event is followed. We assume that Xi(s) is

fully available at baseline, before the event can occur. If the functional predictor is

measured concurrently with the event, then this predictor is a time-varying covariate.

Alternative methods exist for this scenario, ranging from traditional approaches (Cox,

1972) to more modern developments in joint modeling of longitudinal and survival

data (Ibrahim et al., 2010; Rizopoulos, 2012; Tsiatis and Davidian, 2004).

As proposed above, (3.1) is under-determined unless we make assumptions on

the form of the functional coefficient β(s). We will take the common approach

of approximating β(s) using a spline basis (Cardot and Sarda, 2005; Goldsmith

et al., 2011; Marx and Eilers, 1999; Ramsay and Silverman, 2005). Let φ(s) =

{φ1(s), φ2(s), . . . , φKb
(s)} be a spline basis over the s-domain, so that β(s) =

∑Kb

k=1 bkφk(s).
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Then (3.1) becomes

log hi(t;γ, b) = log h0(t) +Ziγ +

∫ 1

0

Xi(s)φ(s)b ds

= log h0(t) +Ziγ + c′ib (3.2)

where b = {b1, b2, . . . , bKb
} and ci is a vector of lengthKb with kth element

∫ 1

0
Xi(s)φk(s) ds.

Note that this integral is based only on the covariate function and the (known) basis

functions, and may be calculated using numerical integration.

As a choice of basis, we prefer penalized B-splines (Eilers and Marx, 1996), also

known as P-splines. B-splines adapt flexibly to the data, have no boundary effects,

and are fast to compute. In addition, by using a large number of knots and applying

a roughness penalty, we prevent overfitting while eliminating the necessity to choose

the number and precise location of the knots (O’Sullivan, 1988; O’sullivan et al.,

1986). We have fit the model using other penalized bases, with minimal change to

the estimated coefficient function.

3.2.2 Estimation via Penalized Partial Likelihood

For notational convenience, let θ =

[
γ b

]
and ηi(θ) = Ziγ+c′ib. Then the par-

tial likelihood for this model is L(p)(θ) =
∏

i:δi=1

[
exp{ηi(θ)}

/∑
j:Yj≥Yi exp{ηj(θ)}

]
.

In order to ensure the smoothness of the coefficient function β(t), we will impose a

penalty on the spline coefficients, b. Based on the above partial likelihood, we define
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the penalized partial log-likelihood (PPL) as

`
(p)
λ (θ) =

∑
i:δi=1

ηi(θ)− log

 ∑
j:Yj≥Yi

exp{ηj(θ)}

− λP (b)

where P (b) is an appropriate penalty term for the spline coefficients b, and λ is

parameter that controls the smoothness of the resulting coefficient function.

The use of a penalized partial likelihood function in Cox models is not new. Gray

(1992) introduced the function to allow for smooth effects of scalar covariates in

a Cox model, and this method was extended and implemented in R by Therneau

and Grambsch (1998). Verweij and Houwelingen (1994) and Therneau et al. (2003)

exploited the well-known connection between mixed effects models and penalized

splines to estimate frailty models via the penalized partial likelihood. Here, we follow

a similar procedure to incorporate functional predictors into the Cox model.

We will assume that we can express the penalty term as P (b) = 1
2
λθ′Dθ, where

D is a symmetric, non-negative definite penalty matrix. Also, let W i =

[
Zi c′i

]
be the row of the design matrix corresponding to subject i, such that ηi(θ) = W ′

iθ.

Then for a given λ, the first and second derivatives (i.e., the gradient and hessian

matrix) of `
(p)
λ (θ) may be easily computed. We can estimate the regression coefficients

θ by maximizing the partial log-likelihood (for a given λ) using a Newton-Raphson

procedure. In the results presented in Sections 3.4 and 3.5, we use a second-order

difference penalty. This penalty is a discrete approximation to the integrated second
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derivative penalty, is computationally efficient, and is commonly used in P-splines

(Eilers and Marx, 1996).

3.2.3 Optimization of the smoothing parameter

An essential step in the algorithm is the optimization of the smoothing param-

eter, λ. Unfortunately, typical optimization criteria, such as Allen’s PRESS (cross-

validated residual sum of squares) and Mallow’s Cp, are not appropriate for Cox

models. Verweij and Van Houwelingen (1993) proposed the cross-validated log like-

lihood (CVL) for the purpose of optimizing the smoothing parameter of a penalized

partial likelihood. Let θ̂
λ

(−i) be the value of θ that maximizes `
(p)
λ,(−i)(θ), the penalized

partial log-likelihood when observation i is left out. Then the CVL for a given value

of λ is given by CVL{λ} =
∑n

i=1 `
(p)
λ,i

{
θ̂
λ

(−i)

}
, where `

(p)
λ,i(·) = `

(p)
λ (·)− `(p)

λ,(−i)(·) is the

contribution of subject i to the penalized partial log-likelihood.

This expression is quite computationally intensive, as it requires calculating `
(p)
λ,i(θ̂

λ

(−i))

for each i. In practice, a computationally efficient alternative is the penalized version

of the AIC, AIC(λ) = `
(p)
λ (θ̂

λ
)− e(λ), where e(λ) = tr

[
Hλ(θ̂

λ
)−1H(θ̂

λ
)
]

is the effec-

tive dimension and H(·) is the unpenalized portion of the Hessian matrix. Although

the AIC does not approximate the CVL directly, it is known that the changes in

AIC or CVL from the null model are approximately equal, making the AIC a useful

surrogate (Verweij and Houwelingen, 1994). pcox makes the AIC available, as well

as two related criteria: the corrected AIC (AICc) of Hurvich et al. (1998), and the
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EPIC criterion of Shinohara et al. (2011). The AICc criterion has been recommended

in cases with small n or large number of parameters to avoid overfitting (Burnham

and Anderson, 2002), while the EPIC criterion corresponds to a likelihood ratio test

at the α = 0.05 level for testing the significance of one additional parameter in two

nested models. Practically, the three optimization methods offer three different levels

of smoothness for the functional coefficient, with AIC resulting in the least smooth

and EPIC the smoothest estimate.

3.2.4 Inference

There have been at least two proposals for the variance-covariance estimate of the

parameter estimates in penalized partial likelihood models. Gray (1992) suggested

using V 1 = Hλ(θ̂
λ
)−1I(θ̂

λ
)Hλ(θ̂

λ
)−1. On the other hand, Verweij and Houwelingen

(1994) use V 2 = Hλ(θ̂
λ
)−1, and refer to the square root of the diagonal elements of

this matrix as “pseudo-standard errors”. Therneau et al. (2003) make both of these

estimates available in their implementation, and we choose to take the same approach.

For either choice of V , a pointwise 95% confidence interval for β(s0) = φ(s0)b may

be constructed as β̂(s0)±1.96
√
φ(s0)V 22φ(s0), where V 22 is the lower-right Kb×Kb

matrix of V .

Nonetheless, both proposals above for the variance-covariance matrix V are only

valid when the smoothing parameter λ is fixed. When λ is optimized using one of

the methods discussed in Section 3.2.3, these proposals may underestimate the true
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standard error. Thus, in addition to these two methods we propose to use a bootstrap

of subjects (Crainiceanu et al., 2012) to calculate the pointwise and joint confidence

intervals for the model parameters. The performance of these four types of confidence

intervals will be compared via simulation in Section 3.4.

3.3 Extensions

3.3.1 Additional penalized model covariates

An advantage of using penalized splines is that they are modular (Ruppert et al.,

2003), making it very easy to extend Model (3.1) to include additional penalized

terms. This makes the inclusion of additional functional predictors, smooth effects of

scalar covariates, or frailty terms straightforward. Time-varying coefficients for scalar

covariates, Xiβ(t), may also be included by applying a penalized spline basis to the

coefficient function, allowing for non-proportional hazards (Grambsch and Therneau,

1994; Zucker and Karr, 1990). Each of these terms requires a corresponding penalty

term in the penalized partial likelihood, with a separate smoothing parameter for

each one. The pcox software package allows for each of these specialized terms in the

model formula.

63



CHAPTER 3. COX REGRESSION WITH FUNCTIONAL PREDICTORS

3.3.2 Full Likelihood Approach

An alternative estimation procedure may be employed by assuming a spline basis

for the baseline hazard, and maximizing the penalized full data log likelihood (PFL).

Such an approach was originally proposed by Cai et al. (2002) using a linear spline

basis for the baseline hazard without any penalized covariates, and has been further

extended to include penalized predictors including smooth covariate effects, spatial

effects, and frailties by Kneib and Fahrmeir (2007); Strasak et al. (2009).

Since our model treats functional predictors as penalized regression terms, the

PFL approach may be used to fit (3.2). Let ψ(t) = {ψ1(t), ψ2(t), . . . , ψK0(t)} be

a spline basis over the time domain t, such that log h0(t) = g0(t) =
∑K0

k=1 b0kψk(t)

is a spline approximation of the log baseline hazard, with spline coefficient b0 =

{b01, b02, . . . , b0K0}. Then the PFL is

`
(f)
λ (θ) =

n∑
i=1

{
δiηi(Ti,θ)−

∫ Ti

0

eηi(u,θ) du

}
− λ0

2
b′0D0b0 −

λ1

2
b′Db

where ηi(t,θ) = Ziγ+b0ψ(t)+c′ib, and λ0 and D0 are the smoothing parameter and

penalty matrix for the baseline hazard, respectively. The full likelihood approach has

been shown to have advantages over the partial likelihood approach in cases where

data is interval-censored (Cai and Betensky, 2003). However, in our application we

do not have interval-censored data and we expect minimal benefit to using the PFL

approach over the PPL approach. Due to the increased computational demand of
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using the PFL approach, we have chosen to use the PPL approach throughout this

paper. The PFL approach will be offered in our software package.

3.3.3 Missing and unequally-spaced data

A common complication in functional regression occurs when the observed func-

tional predictors are observed at widely spaced, unequal time intervals. This could

occur for example when the functional predictor is measured at follow-up times that

are not the same for each subject, or when there is substantial missingness in these

observations. Goldsmith et al. (2011) showed how a functional principal components

(FPCA) basis could be used to pre-smooth the observed data in a functional re-

gression context, with minimal loss of information. We follow this approach in our

modeling strategy. We perform FPCA by smoothing the empirical covariance matrix,

as described in Staniswalis and Lee (1998) and Yao et al. (2003), and implemented

using the fpca.sc() function in the R package refund (Crainiceanu et al., 2012).

3.4 Simulation Study

3.4.1 Simulation design

In order to assess the performance of our model under a variety of conditions,

we conducted an extensive simulation study. Of interest was our model’s ability to
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accurately identify the coefficient function β(s). For simplicity, we consider only

the scenario where there are no non-functional covariates Z, and only a single func-

tional predictor Xi(s), of fixed domain. Let {sj = j/100 : j = 0, 1, . . . , J = 100} be

our grid of time points over the interval [0, 1]. For each subject i ∈ 0, . . . , N , we

generate the survival time Ti and functional predictor Xi(s) based on the model

hi(t) = h0(t) exp(ηi), where ηi = 1
J

∑J
j=1Xi(sj)β(sj) and Xi(sj) = ui1 + ui2sj +∑10

k=1 {vik1 sin (2πksj) + vik2 cos (2πk10sj)}. Here, hi(t) is the hazard of T for sub-

ject i, h0(t) is the baseline hazard, ui1 ∼ N(0, 25), ui2 ∼ N(0, 4), and vik1, vik2 ∼

N(0, 1/k2). This model for simulating our functional predictors is based on the pro-

cedure employed by Goldsmith et al. (2011), which was in turn adapted from Müller

and Stadtmüller (2005). We generated random survival times according to this pro-

portional hazards model by following Bender et al. (2005). The baseline hazard was

chosen to follow a Weibull distribution with shape parameter 0.75 and mean 600,

where time is assumed measured in days. All subjects are censored at Ci = 730 days.

These values were chosen to approximate the data that was used in our application.

Based on the baseline hazard and censoring mechanism, we expect approximately

27% of subjects to be censored.

We apply three data-generating coefficient functions: β1(s) = 2 sin
(
πs
5

)
, β2(s) =

2(s/10)2, and β3(s) = −2φ(s|2, 0.3) + 6φ(s|5, 0.4) + 2φ(s|7.5, 0.5), where φ(·|µ, σ) is

the density of a normal distribution with mean µ and standard variance σ2. The

three coefficient functions appear in the top row of Figure 3.1.
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We consider three different sample sizes, N ∈ {100, 200, 500} subjects. We are

also interested in the amount of information that is lost when there is a large amount

of missing data in the covariate measurements. In order to address this issue, we

generate an “incomplete” version of the full covariate dataset as follows. First, for

each subject we randomly select the number of measured values Ji as a random integer

between 10 and 51, with equal probability. We then randomly select Ji of the J = 100

observations that are to be included in the incomplete dataset, again with equal

probability. The result constitutes the observed, incomplete dataset. The incomplete

coefficient functions are then smoothed using a functional principal components basis

that retains enough principal components to explain 99% of the variability in the

covariate functions.

For each combination of sample size, true coefficient function, and level of missingess

(full vs. incomplete dataset), we generate R = 1000 simulated datasets and apply our

model for Cox regression with a single functional predictor. The three versions each

use a different criterion for selecting the smoothing parameter: AIC, AICc, or EPIC.

In all cases, we use penalized B-splines to model the coefficient function (Marx and

Eilers, 1999), using the difference penalty of Eilers and Marx (1996).

3.4.2 Evaluation criteria

The primary measure of model performance is its ability to estimate the true

coefficient function. This is assessed by the average mean squared error (AMSE),
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defined as AMSE
(
β̂(s)

)
= 1

J+1

∑J
j=0

{
β̂(sj)− β(sj)

}2

, where β̂(sj) is the estimated

coefficient function at s = sj and β(sj) is the value of the true coefficient function

at this location. A secondary measure of model performance is its predictive ability,

which we measure with the cross-validated concordance probability, or C-Index (Har-

rell et al., 1996; van Houwelingen and Putter, 2012). The C-Index is the proportion of

all pairs of observations for which the order of survival times are concordant with the

model-based linear predictor; we use a 10-fold cross validated version of this statistic.

We also evaluated the coverage probability of four different pointwise 95% confi-

dence intervals. The first two confidence intervals are formed using the two model-

based estimates of the variance, as described in Section 3.2.4. The second two are

bootstrap estimates based on 100 bootstrapped samples. One of these is a Wald-type

confidence interval based on the bootstrap estimate of the variance, and the other is

based on 2.5% and 97.5% quantiles of the bootstrap distribution of the estimates.

3.4.3 Simulation results

Box plots of the AMSE and cross-validated C-Index appear in Figure 3.1, along

with the coefficient function estimates that had median AMSE for the scenario when

N = 200. Overall, there is very little difference in the performance between the three

optimization criteria. The EPIC criterion tends to have slightly better performance

under β2(s), as this coefficient function is very smooth and EPIC favors smoother

estimates, but these gains are minimal.

68



CHAPTER 3. COX REGRESSION WITH FUNCTIONAL PREDICTORS

0 2 4 6 8 10

−
2

−
1

0
1

2

s

β1(s)

●
●

●

● ● ●

● ● ●

● ●

●

● ● ●

● ● ●

Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.

N=100 N=200 N=500

0.
01

0.
1

1

A
M

S
E

●
●

●
● ● ●

● ● ●

● ● ●

● ● ●
● ● ●

Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.

N=100 N=200 N=500

0.
65

0.
7

0.
75

0.
8

C
−

In
de

x

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

s

β2(s)

●
●

●

● ●
●

● ●
●

● ●
●

● ● ●
● ● ●

Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.

N=100 N=200 N=500

0.
00

1
0.

01
0.

1
1

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.

N=100 N=200 N=500

0.
87

5
0.

9
0.

92
5

0.
95

0 2 4 6 8 10

−
2

0
2

4
6

s

β3(s)

● ●
●

● ● ●

●
●

●

● ● ●

● ●

●

● ● ●

Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.

N=100 N=200 N=500

0.
25

0.
5

1
2

●
●

● ● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.Full Incomp. Full Incomp. Full Incomp.

N=100 N=200 N=500

0.
85

0.
87

5
0.

9
0.

92
5

Figure 3.1: Simulation results. In all plots, color indicates the method for optimiz-
ing the smoothing parameter: red (AIC), green (AICc), or blue (EPIC). The top row
displays the true coefficient functions (black), as well as the estimates with median
AMSE when N = 200. The estimates based on the full data are given by the solid
lines, and those based on the incomplete dataset are dashed. The second and third
rows contain Tufte box plots of the distributions of AMSE and cross-validated concor-
dance probability (C-Index) respectively, over the 1000 simulated datasets, stratified
by sample size and missingness. The median value is indicated by a dot, the interquar-
tile range by white space around the dot, and the smallest and largest non-outlying
values by the endpoints of the colored bars. Outliers are defined to be data points
more than 1.5 times the interquartile range from the nearest quartile. Lower AMSE
and higher C-Index are indicative of better model performance.

β3(s), with its sharp peaks and valleys, is by far the most difficult coefficient

function to estimate, especially in the incomplete data case. Interestingly, despite its
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estimation resulting in the highest AMSE measurements, the models under this coef-

ficient perform fairly well in terms of predictive ability, with median cross-validated

C-indices near 90%. This observation reflects that this coefficient function’s peaks,

while difficult to estimate precisely, are relatively high in magnitude, which causes

the model to “target” certain predictor functions as being more strongly or weakly

associated with mortality. On the other hand, β1(s) is relatively easy to estimate,

but is much less strongly associated with survival. This result is due to the fact that

the sine wave contains an equal amount of area that is positive and negative, causing

subjects with relatively flat Xi(s) to not be clearly identified as either “high-risk”

or “low-risk” for mortality. Only subjects who display a clear increasing or decreas-

ing trajectory (high to low or low to high) in their predictor functions will be easily

separable.

As expected, estimation of the coefficient functions is more difficult with low

sample size and in the incomplete case, resulting in higher AMSE measurements.

However, the model still seems to be useful in these cases. Interestingly, lower sample

sizes and incomplete data do not seem to cause a very large drop in the C-Index

measurements, indicating that these more challenging scenarios do not cause the

model to lose much in terms of predictive ability. In order to assess whether differences

in AMSE between the incomplete and full data scenarios were due the missing data

in the incomplete case or the FPCA step that this data requires, we fit the same

models to a version of the full data that was pre-smoothed by FPCA. The results
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Table 3.1: Mean coverage probability of each of the four pointwise 95% confidence
intervals (averaged across s), under each scenario. V1 and V2 are Wald-type confi-
dence intervals based on the model-based estimates of the variance V1 and V2, defined
in Section 3.2.4. B-V is a Wald-type confidence interval based on the variance of the
bootstrap estimates, and B-Q is constructed from the 2.5% and 97.5% quantiles of
the boostrap distribution.

N Dataset
Opt. β1(s) β2(s) β3(s)

Method V1 V2 B-V B-Q V1 V2 B-V B-Q V1 V2 B-V B-Q

100

Full
AIC 90 83 100 99 88 82 100 99 76 64 100 99
AICc 87 81 100 98 86 82 100 98 70 58 99 95
EPIC 68 63 96 94 82 80 100 96 56 46 93 86

Inomplete
AIC 63 54 98 98 88 81 100 98 66 41 85 82
AICc 60 52 98 98 87 80 100 98 64 40 85 81
EPIC 50 44 96 96 84 79 100 97 55 36 82 77

200

Full
AIC 95 89 100 98 86 81 100 99 80 68 100 97
AICc 95 88 100 98 86 81 100 98 76 64 99 95
EPIC 89 80 97 94 79 76 100 96 61 50 86 82

Inomplete
AIC 78 65 95 98 86 80 99 98 64 37 73 71
AICc 76 64 95 98 85 79 100 98 63 36 72 70
EPIC 65 56 91 96 78 75 100 97 53 33 69 67

500

Full
AIC 97 91 100 98 88 83 100 99 83 72 99 96
AICc 97 92 100 98 88 82 100 99 82 71 99 95
EPIC 95 87 98 94 79 75 99 96 63 51 80 81

Inomplete
AIC 92 68 93 97 87 79 99 98 66 27 62 63
AICc 92 68 93 97 87 79 99 98 66 27 61 63
EPIC 88 65 90 96 80 74 98 96 56 25 59 60

(supplemental material) show very similar performance to those corresponding to

the unsmoothed full dataset, indicating that it is the lack of information due to the

missing data, and not the FPCA step, that causes the decreased model performance.

Coverage probabilities of the confidence intervals are shown in Table 3.1. The

two model-based confidence intervals (V1 and V2) perform well in moderate-to-large

sample size (N ≥ 200) with no missing data, for β1(s) and β2(s). However, when

N is small or missing data is present, both tend to underestimate the variance of

the estimates. This underestimation can be quite severe, with coverages as low as

25% in the most difficult scenarios. V1 tends to be more conservative than V2. The
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two bootstrap-based confidence intervals maintain coverage probabilities above 95%,

except under β3(s). However, in scenarios that are easier to estimate (full dataset,

large N , and β2(s)) these coverages seem to be overly conservative, especially B-V.

Under β3(s), which is the most difficult coefficient function to estimate, the bootstrap-

based confidence intervals perform well when there is no missing data, but perform

much more poorly on the incomplete datasets. Interestingly, this problem is exacer-

bated in larger sample sizes. We suspect that coverage may be improved by taking

more than 100 bootstrap samples, which is what was chosen for these simulations.

In all scenarios, coverage probabilities were highest when using the AIC criterion

to optimize smoothness, and lowest with EPIC. These results are emphasized when

examining plots of the pointwise coverage probability as a function of the domain s

(supplemental material).

3.5 Effect of SOFA Score on Post-ICU Mor-

tality

3.5.1 Data description

The Improving Care of Acute Lung Injury Patients (ICAP) study (Needham

et al., 2006) is a prospective cohort study that investigates the long-term outcomes

of patients who suffer from acute lung injury/acute respiratory distress syndrome
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(ALI/ARDS). ALI/ARDS is a severe condition characterized by inflammation of the

lung tissue. It can be triggered by a wide variety of causes, including pneumonia, sep-

sis, or trauma. Treatment consists of supported care, including mechanical ventilation

in the intensive care unit (ICU), until the patient’s condition stabilizes. Short-term

mortality from ARDS can exceed 40% (Zambon and Vincent, 2008), and those that

do survive are at increased risk for physical, cognitive, and emotional impairments,

as well as death.

The ICAP study enrolled 520 subjects, with 237 (46%) dying in the ICU. We are

concerned with long-term survival among the 283 survivors, once they are discharged

from the hospital. Out of the 283 survivors, 16 subjects (5.7%) did not consent

to follow-up, their mortality status was unknown after hospital discharge, and they

were excluded from the analysis. Thus, our analysis is based on the remaining 267

subjects. All patients in the ICAP study who are discharged alive from the hospital

and consented to follow-up were followed for up to two years from their date of

enrollment in the study. If the subject died, mortality information was recorded to

the nearest day, based on family report or publicly available records.

In the ICAP study, data recording starting upon enrollment in the study, and

then daily thereafter during the patient’s ICU stay. One measurement recorded daily

during each subject’s ICU stay is the Sequential Organ Failure Assessment (SOFA)

score, which is a composite score of a patient’s overall organ function status in the

ICU. It consists of six physiological components (respiratory, cardiovascular, coagu-

73



CHAPTER 3. COX REGRESSION WITH FUNCTIONAL PREDICTORS

lation, liver, renal, and neurological), each measured on a scale of 0-4, with higher

scores indicative of poorer organ function. The total SOFA score is the sum of these

six subscores, ranging from 0-24. We consider each subject’s history of measured

SOFA scores, over time, to be a functional covariate, Xi(u), where u is the ICU day.

These functions are depicted in the left panel of Figure 3.2 as a lasagna plot (Swihart

et al., 2010).

3.5.2 Analysis plan

Our goal will be to estimate the association between post-hospital mortality and a

patient’s SOFA function. In addition to the SOFA function, our model also includes
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Figure 3.2: SOFA functions, before and after domain-standardization, depicted as
lasagna plots. Each row corresponds to a subject, with color indicating the SOFA
score at each time point. Subjects are ordered by domain width of the untransformed
functions, Ui, within each outcome category (event vs. censored), in both plots.
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three non-functional covariates, which are meant to control for a subject’s baseline risk

of post-hospital mortality: age, gender, and Charlson co-morbidity index (Charlson

et al., 1987). We consider “time zero”, the first day the subject is eligible for our

event of interest, to be the day the subject is discharged from the hospital following

ALI/ARDS, and subjects are censored at two years following their ALI diagnosis.

There are two features of the data that raise compilations in our analysis. The

first complication occurs because some subjects are discharged from the ICU (due to

an improvement in their condition) to a hospital ward, only to be readmitted to the

ICU later during their hospitalization. Since SOFA measurements are only recorded

in the ICU, these subjects will have gaps in their SOFA functions (indicated by gray

space in Figure 3.2). Of the 267 subjects, 20 (7.5%) had gaps of this type, for a

total of 4.4% of missing patient days. Based on clinical advice, we complete these

gaps using a last observation carried forward (LOCF) imputation, though we test the

sensitivity and sensibility of this approach by using alternative imputation approaches

and by comparing to the complete case only analysis. As differences were found to

be minimal, we present results for the LOCF imputation only.

The second, more significant complication is that each subject remains in the ICU

for a different length of time, Ui. Since we use time as the domain of our functional

covariate, this means that each function, Xi(u), will be measured over a different

domain, [0, Ui]. The distribution of Ui up to 35 days can be seen in Figure 3.2,

and overall ranges from as short as 2 days to as long as 157 days. Gellar et al.

75



CHAPTER 3. COX REGRESSION WITH FUNCTIONAL PREDICTORS

(2014) have proposed methods for accounting for this type of data in the context of

classical functional regression using domain-dependent functional parameters. These

approaches could be incorporated here, but we focus on a more traditional approach

here to keep presentation simple. More precisely, we apply the subject-specific domain

transformation s := gi(u) = u/Ui to each function. This allows us to define new

SOFA functions, X̃i(s) = Xi(sUi), that are each defined over [0, 1]. The new SOFA

functions defined over the s domain are a linearly compressed version of the original

SOFA functions (Figure 3.2, right panel), and s, has the interpretation of being the

proportion of the way through one’s ICU stay that the measurement was taken. For

example, X̃i(0.5) represents a subject’s SOFA score half way through his ICU stay,

and X̃i(1) is the SOFA score on the subject’s last day in the ICU. We evaluate X̃i(s)

at J = maxi(Ui) = 157 time points for each function.

Standardizing each subject’s SOFA curve to a common domain may cause us to

lose some potentially valuable information; specifically, we lose information regard-

ing the original domain width, Ui. However, we note (Figure 3.3) that the average

domain-standardized SOFA trajectory tends to be markably consistent across differ-

ent strata of Ui. In particular, we do not observe any strong patterns in the functions

across these strata, and Ui does not appear to affect the difference in curves between

those who do and do not experience the event. These observations support our deci-

sion to standardize the SOFA functions to a common domain. In addition, since Ui

itself could be a strong predictor of long-term mortality, we incorporate it into our
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Figure 3.3: Mean domain-standardized SOFA functions, stratified by Ui and event
status, as well as the difference in mean functions between those who did and did not
experience the event. All curves are smoothed using a lowess smoother.

model using a smooth effect on the log scale. The resulting model is

log hi(t;γ, β(·)) = log h0(t) +Ziγ +

∫ 1

0

X̃i(s)β(s) ds+ f{log(Ui)} (3.3)

where the the scalar covariates Zi include subject age, gender, and Charlson Co-

morbidity Index. The Charlson Index (Charlson et al., 1987) is a commonly used

measure of baseline health, with each existing clinical conditions assigned a score

from 1-6 based on severity. In ICAP, total Charlson scores range from 0 to 15. A

P-spline basis is used to approximate both the functional coefficient β(·) and the

additive term f(·).

3.5.3 Results

We plot the estimated additive function f̂{log(Ui)} and coefficient function β̂(s)

based on (3.3) in Figure 3.4, under each of the three optimization criteria. Overall,
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Figure 3.4: Estimated associations between one’s log hazard of mortality and their
ICU length of stay (top row of figures) and the standardized SOFA functions (bot-
tom row), under each of the three methods for optimizing λ. Pointwise 95% confi-
dence intervals are formed by one of four methods. The first two (V1 and V2) are
from model-based estimates of the variance. The second two are based on 10,000
bootstrapped samples of the dataset, one (B-V) which uses the pointwise bootstrap
variance, and the other (B-Q) which uses the pointwise quantiles.

we see very little functional association between one’s SOFA function and time to

death after hospital discharge, as the 95% confidence interval covers the horizontal

line β(s) = 0 throughout the entire domain s. This implies that the integral term of

the model,
∫ 1

0
X̃i(s)β(s) du, will be close to zero for all subjects, so X̃i(s) offers little

contribution towards one’s hazard of death. There seems to be a positive association

with length of stay for lengths of stay less than 5 days, but not for those greater

than or equal to 5. On the other hand, two of the non-functional covariates, age

78



CHAPTER 3. COX REGRESSION WITH FUNCTIONAL PREDICTORS

and Charlson co-morbidity index, are highly associated with an increased hazard

of death. According to the model optimized using AICc and the confidence interval

calculated from the quantiles of the bootstrap distribution, we found that one’s hazard

of mortality increases by 5% (95% CI 4%-9%, p < 0.001) for every 1-year increase in

age, and it increases by 12% (95% CI 6% - 36%, p = 0.001) for every 1-point increase

in Charlson Index.

We see that the EPIC criterion imposes a stronger degree of smoothness in both

f̂(·) and β̂(·) than the other two smoothing criteria, to the extent that very little

functional signal can be detected for either estimate. The widely-varying bootstrap

confidence intervals, especially for β(s), is likely due to a flat likelihood, without much

information contributed by Xi(s). By imposing a higher degree of smoothness, the

EPIC criterion results in more reasonable intervals.

In order to compare the three sets of estimates, we calculate the N -fold cross-

validated C-Index for each one (Table 3.2, top 3 rows), as a measure of how well

each model would predict mortality when applied to an independent dataset. The

model fit with EPIC had the highest predictive ability. This observation reinforces the

conclusion that there is not a very strong functional relationship between SOFA score

in the ICU and long-term mortality among patients surviving their hospitalization,

as EPIC favors estimates closer to the zero line.
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3.5.4 Follow-up Models

While often functional regression models are viewed as the final part of the infer-

ence, here we use them as exploratory tools. Indeed, a more careful examination of

Figure 3.4 reveals some potentially important patterns; in this section we investigate

those patterns further. First, we note that the plots for f̂{log(LOS)} obtained using

the AIC and AICc criteria indicate that the function may be appropriately modeled

by a linear spline with one knot at 5 days. There is a visually striking effect after

100 days, as well, but as only three survivors had a length of stay longer than 100

days, we have decided to ignore it. Additionally, we note a number of regions over the

s-domain of β̂(s) with relatively large magnitude, even if the point-wise confidence

intervals cover 0. These regions occur around s =0, 0.15, 0.3, and 1.

Using these observations as a guide, we fit a series of follow-up parametric models,

and investigate their predictive ability via the N -fold cross-validated C-Index (Table

3.2). These models differed in their treatment of the functional predictor and the Ui

variable. We also investigated whether or not incorporating the age covariate as a

smooth term improved model fit, but in each case it did not so we only present results

that treat age linearly. Interestingly, we have found that parameterizing the additive

and functional effects resulted in superior predictive performance. In particular, we

observed that removing the SOFA scores from the model completely resulted in a

higher cross-validated C-Index than including them as functional effects; this seems

to indicate that there is not a strong functional relationship between SOFA score and

80



CHAPTER 3. COX REGRESSION WITH FUNCTIONAL PREDICTORS

Table 3.2: Predictive ability of each model, measured by the N -fold cross-validated
C-Index. All models are adjusted for the scalar covariates age, gender, and CCI,
and they differ in the way they model the length of stay Ui and the SOFA function
Xi(s), as well as the method for optimizing any smoothing parameters. M1-M4 refer
to the mean SOFA scores in the regions [0, 0.05], [0.05, 0.2], [0.2, 0.4], and [0.85, 1] of
the s-domain, respectively. S1-S3 refer to the slopes of a regression line through the
SOFA scores in the regions [0, 0.15], [0.15, 0.3], and [0.3, 0.45].

Ui SOFA λ-Opt C-Index
P-Spline Functional Effect AIC 0.700
P-Spline Functional Effect AICc 0.714
P-Spline Functional Effect EPIC 0.715

Linear Spline Functional Effect AIC 0.702
Linear Spline Functional Effect AICc 0.730
Linear Spline Functional Effect EPIC 0.733
Linear Spline M1 + M2 + M3 + M4 0.737
Linear Spline M1 + M2 + M4 0.738
Linear Spline M1 + M4 0.736
Linear Spline M1 0.735
Linear Spline M4 0.739
Linear Spline S1 + S2 + S3 0.729
Linear Spline None 0.733

None None 0.739

long-term mortality in this subset of patients.

The best-performing model included the scalar covariates Zi, a linear spline for

log(Ui), and the mean SOFA score over the region s ∈ [0.85, 1] (M4 in Table 3.2). The

mean SOFA over s ∈ [0, 0.05] (M1) also shows a potentially important association.

Investigating the effects in these regions further, Figure 3.5 depicts the Kaplan-Meier

estimates of the survival curve, stratified by high vs. low values of M1 and M4. Based

on these findings, we think that more exploration of functional approaches followed

by aggressive thresholding of functional parameter estimates may actually lead to

improved prediction and interpretation. This is likely to be the case in applications

with a small to moderate number of subjects and weak functional effects.
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3.6 Discussion

We develop new methodology to account for functional covariates in a Cox propor-

tional hazards model. We use a spline basis to approximate the functional coefficient,

and estimation is accomplished by maximizing the penalized partial likelihood, with

the degree of smoothness determined by optimizing one of three presented informa-

tion criteria. The model is flexible and modular, in that it can be easily extended to

incorporate a number of advances both in the fields of survival analysis and in func-

tional data analysis. We have developed easy to use and computationally efficient

software to implement this model.

We demonstrate through simulations that this model does a good job of estimating

the true coefficient function even in cases with a moderate amount of missing data,
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except when the true coefficient function is especially complicated. Model-based

estimates of the standard error resulted in pointwise confidence intervals that tended

to be too narrow, and we therefore recommend bootstrap-based confidence intervals

as a more conservative alternative.

We applied this model to estimate the functional association between SOFA score

and post-hospital mortality among patients with ARDS. We found that this associa-

tion is quite close to zero, throughout the domain of our functional predictor. Despite

the null result, this observation is potentially quite clinically meaningful. It tells us

that, among this patient population, one’s survival after leaving the hospital does not

appear to depend heavily on patterns of organ failure in the ICU, after accounting

for age, gender, comorbidity status, and ICU length of stay. It was previously hy-

pothesized by our collaborators that we may observe different patterns in mortality

based on one’s SOFA pattern. This analysis does not support that hypothesis.

Another possibility is that this model is mis-specified. Recall that we modified

our original SOFA functions X(u) by collapsing them to X̃(s). While this conve-

niently allowed us to avoid the problem of each function falling on a different domain,

[0, Ui], it may have caused us to lose important information that was present in the

original functions. A more appropriate model would allow for the coefficient function

to change with Ui, resulting in a variable domain functional regression model with

bivariate coefficient function β(u, Ui), similar to that proposed by Gellar et al. (2014).

Another alternative is to allow for a time-varying effect of the SOFA functions, which
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would involve replacing the coefficient function β(s) in (3.3) with the bivariate coeffi-

cient function β(s, t). We do not explore these models in this paper, and leave them

to future work.

Even though our analysis suggested a very weak functional relationship between

SOFA and mortality, we were able to use our functional estimates to guide the design

of simpler models that parameterize this association. These simpler models proved

to demonstrate better predictive accuracy than the full functional approach, as mea-

sured by the cross-validated C-Index. This process shows the strength of functional

regression techniques as an exploratory tool for understanding the relationship be-

tween a functional predictor and an outcome. In some cases the full functional model

may be most appropriate, but more often than not this association may be simplified

to a more parsimonious and interpretable relationship.
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The Historical Cox Model

4.1 Introduction

Consider the scenario when one observes a time-to-event outcome and a densely-

sampled time-varying predictor. For example, in the ICU we observe if and when

people die from the moment they are admitted in the ICU (time to event outcome)

and the severity of their health status every day (densely sampled SOFA score). Let

(Ti, Ci) denote the event and censoring times, respectively, for subject i, and we

observe only Yi = min(Ti, Ci), and δi = I(Ti ≤ Ci). Suppose that we also observe a

time-varying predictor {Xi(tij), j = 1, . . . , Ji, tiJi = Yi}, measured over a dense grid

until time Yi, as well as fixed, baseline covariates Zi = {Zi1, Zi2, . . . , Zip}. We assume

that Ti and Ci are independent, given the covariates.

One of the primary challenges in including time-varying covariates in a Cox re-
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gression model is the need to specify the form of the predictor (Fisher and Lin, 1999).

Traditionally, these terms are incorporated into the model by allowing one’s hazard

function at time t to depend only on the value of the time-varying covariate at that

time; i.e., by including the term βXi(t) in the model formula (Cox, 1972). We refer

to this type of effect as a concurrent effect of a time-varying covariate. The coefficient

β has the interpretation of being the log ratio of the hazard functions at any fixed

time t, comparing two subjects whose value of Xi(t) differs by 1 unit, holding all

other variables constant. This parameterization is familiar and commonly used, but

in some cases it can be overly restrictive. For example, in the intensive care unit

(ICU), mortality has been found to be associated not only with the patient’s status

at a particular time, but with patterns in their status leading up to that time (Gellar

et al., 2014; Sakr et al., 2012). This problem was reported in other scenarios as well

(Cavender et al., 1992).

More generally, one can allow the hazard function to depend on any function g(·)

of the covariate history up to time t, X
H(t)
i (s) = {Xi(s) : s ∈ [0, t]}. g{XH(t)

i (s)} =

Xi(t) results in the concurrent effect described in the preceding paragraph. Another

common technique is to use a time lag, i.e. g{XH(t)
i (s)} = Xi(t − δ0) for some fixed

δ0, or a summary statistic of X
H(t)
i (s), such as the mean, maximum, or cumulative

exposure. Another option is to compute the slope of a linear regression through some

or all of the domain s ∈ [0, t], and then plug in the slope of the regression into the

Cox survival model as a parameter.
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Here, we present a method for incorporating time-varying covariates into a Cox

model without making assumptions on the form of the predictor. Instead, we apply

a flexible method of weighting the entire history X
H(t)
i (s), to express its contribution

towards the hazard function hi(t). This allows all values of the covariate history up to

time t to impact the hazard at time t, using functional regression techniques. The key

innovation of our approach is the use of a bivariate coefficient function, β(s, t), which

defines a weight function for X
H(t)
i (s) that varies for each time t. The weights are

integrated across the domain s ∈ [0, t] to provide the total contribution of X
H(t)
i (s)

towards hi(t). A flexible spline basis is applied to the coefficient function, and the

spline parameters are estimated by maximizing the penalized partial likelihood. Our

method is implemented as part of the pcox package in R.

The remainder of this article is organized as follows. Section 4.2 introduces the

historical Cox model and describes our estimation procedure. Section 4.3 extends the

model to two useful contexts: the competing risks context, and the joint modeling

context. We perform a detailed simulation exercise in Section 4.4. Section 4.5 applies

our model to a study of mortality in the ICU, and we conclude with a discussion in

Section 4.6
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4.2 The Historical Cox Model

4.2.1 Model

We propose the following model to relate the hazard function hi(t) to the covariates

{Xi(t),Zi}:

log hi(t) = log h0(t) + γZi +
1

t

∫ t

0

Xi(s)β(s, t) ds (4.1)

We call this model the historical Cox model. Here, h0(t) is an unspecified baseline haz-

ard function, γ are scalar coefficients, and β(s, t) is a bivariate functional coefficient.

The key feature of this model is the historical functional term 1
t

∫ t
0
Xi(s)β(s, t) ds,

which relates X
H(t)
i (s) to hi(t). The functional coefficient β(s, t), which is the pri-

mary target of our estimation, describes this relationship. Note that since the variable

of integration s ∈ [0, t] for all t, we are only interested in β(s, t) over the restricted

domain 0 ≤ s ≤ t. This domain covers a triangular surface (Figure 4.1).

The interpretation of β(s, t) is most easily understood by fixing t at a particular

value, say t0 (Figure 4.1). With t fixed, β(s, t0) is a univariate weight function with

domain s ∈ [0, t0], which is applied to X
H(t0)
i (s). The weighted covariate function

{Xi(s)β(s, t0) : s ∈ [0, t0]} is integrated over its domain and scaled by 1/t0, with

the result representing the total contribution of X
H(t0)
i (s) towards hi(t0). Regions of

X
H(t0)
i (s) that are positively associated with hi(t0) will result in positive estimates

of β(s, t0) at the corresponding s locations, and vice versa for negative associations.
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Figure 4.1: Illustration of how β(s, t) acts on the covariate functions Xi(t), at
t = t0 = 75. Both the coefficient function and covariate functions used in this
figure are fabricated. (a) Heat map of a bivariate β(s, t). For this illustration, we
set β(s, t) = sin(2πs/100 − 2πt/100 − 3π/2). β(s, t0) can be viewed as a single
horizontal slice from this heat map. (b) Two examples of potential covariate functions,
Xi(t). The weight function β(s, t0) is overlaid in red over each covariate function. (c)

The weight function is multiplied by each covariate history X
H(t0)
i (s), pointwise, to

create the weighted covariate functions Xi(s)β(s, t0), s ∈ [0, t0]. This function is then
integrated over its domain and divided by t0, with the result interpreted as the total
contribution of X

H(t0)
i (s) to hi(t0).

The β(s, t0) in Figure 4.1, which uses fabricated data, implies that increasing covari-

ate histories such as X
H(t0)
1 (s) are positively associated with hi(t0), and decreasing

covariate histories such as X
H(t0)
2 (s) are negatively associated with hi(t0).

As t changes, β(s, t) changes, smoothly, in both dimensions. This corresponds to

our intuition that covariate histories at nearby times will be weighted similarly, while

covariate histories at times farther apart may be weighted quite differently.

Note that the fraction 1/t in (4.1) is unnecessary, as it could be absorbed into the

89



CHAPTER 4. THE HISTORICAL COX MODEL

nonparametric β(s, t). However, we include it for two reasons. The first is that its

inclusion standardizes the magnitude of β(s, t) across different widths of integration,

and gives the weight function β(s, t0) an interpretation per unit of time. The second

is that it suggests a solution for how to handle the term for t = 0. Since X
H(0)
i (s)

consists of a single observed point, the integration range at t = 0 is zero. Without

the factor 1/t, the integral would be zero regardless of the value of Xi(0), implying

that Xi(0) does not affect the hazard at that time. When 1/t is included the term is

undefined, but we can replace the expression with its limit as t approaches 0. Since

limb→a
1
b−a

∫ b
a
f(x) dx = f(b), we have limt→0

1
t

∫ t
0
Xi(0)β(0, t) = Xi(0)β(0, 0), which

is just a concurrent effect for the one available value of the time-varying covariate.

We are not the first to introduce historical terms such as 1
t

∫ t
0
Xi(s)β(s, t) ds into

regression models. Malfait and Ramsay (2003) included a similar term when they

introduced the historical functional linear model, which expresses the contribution of

the past history of a functional predictor to a functional outcome when both functions

are measured concurrently. This model was later expanded on by Harezlak et al.

(2007), who introduced various penalization schemes for the coefficients, and Scheipl

et al. (2012), who placed the term in a broader mixed model framework. Gellar et al.

(2014) used a similar term to express the contribution of covariate functions with

subject-specific domains to scalar outcomes. Müller and Zhang (2005) incorporated

a historical functional term in a parametric survival model, though their approach

did not allow for censored observations. By taking advantage of the Cox regression
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framework, we allow for censored observations, and also are able to leave the baseline

hazard function unspecified. Also, to the best of our knowledge we are the first to

make available working code for historical functional regression in general and for its

extensions to Cox regression, in particular. Developing reproducible and robust code

requires special attention to methodological details and smoothing choices. Below we

describe these choices.

4.2.2 Estimation

In order to estimate β(s, t) in (4.1), we assume β(s, t) =
∑K

k=1 bkφk(s, t), where

{φk(s, t)} are known bivariate basis functions. We favor a thin-plate regression spline

(TPRS) basis (Wahba, 1990; Wood, 2003), which adapts well to estimating non-

rectangular surfaces. We did not find the finite element basis of Harezlak et al. (2007);

Malfait and Ramsay (2003) to be particularly stable, which led to computational

instability. We also avoided a tensor product basis because they are designed for

rectangular surfaces and not for the triangular surfaces we have to deal with here.

One possible criticism of the TPRS basis is that it is isotropic, and smoothness cannot

be controlled separately in the s and t directions. Nonetheless, simulations have shown

that the basis quite flexible and can easily capture a wide variety of bivariate surfaces

(Section 4.4).

We also take the approach of applying a roughness penalty to the TPRS coeffi-

cients, which is common in both the smoothing and functional regression literature
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(Cardot and Sarda, 2005; Goldsmith et al., 2011; Marx and Eilers, 1999; Ruppert

et al., 2003; Wood, 2006). The penalty we use is a second derivative penalty on the

scale of the log likelihood, λ
∫∫ [(

∂2β
∂s2

)
+
(
∂2β
∂s∂t

)
+
(
∂2β
∂t2

)]
ds dt, which is common for

thin plate regression splines. Applying the penalty has two benefits. The first is that

it promotes smoothness in β(s, t). The second is that it eliminates the need to opti-

mize K, the basis dimension. As long as K is large enough to capture the complexity

of β(s, t), additional increases in K will likely not affect the model fit considerably

(Ruppert, 2002). Here we will assume some familiarity with these concepts and we

are simply using well established choices in nonparametric smoothing.

Estimation of functional coefficients in survival models is described in detail in

Gellar et al. (2015), which we briefly review here. Let θ = [ γ b ] for spline coeffi-

cients b = (b1, . . . , bK) and ηi(t;θ) = Ziγ+ci(t)
′b, where ci(t) is the length K vector

with the kth element 1
t

∫ t
0
Xi(s)φk(s, t) ds. Then the log penalized partial likelihood

(PPL) function (Gray, 1992; Therneau and Grambsch, 1998) for this model is

`
(p)
λ (θ) =

∑
i:δi=1

[ηi(θ)− log(
∑

j:Yj≥Yi

exp{ηj(θ)})]− λP (b) (4.2)

where λ is a smoothing parameter, and P (b) is the appropriate penalty. We restrict

our discussion to quadratic penalties P (b) = b′Db, where D is a positive semi-

definite matrix. For a given λ, the PPL may be maximized using the Newton-Raphson

algorithm. The smoothing parameter λ can be optimized using a likelihood based
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information criterion such as AIC, AICc (Hurvich et al., 1998), or EPIC (Shinohara

et al., 2011). See Gellar et al. (2015) for a comparison of these criteria. In practice,

EPIC imposes the highest degree of smoothness on β(s, t), and AIC the lowest.

Pointwise confidence intervals may be obtained using either of the two model-based

variance estimates suggested by Gray (1992) or Verweij and Houwelingen (1994). Gel-

lar et al. (2015) found through simulations that both estimates tend to underestimate

the true standard error, and suggest that confidence intervals with correct coverage

may be obtained through a nonparametric bootstrap procedure.

As an alternative to the PPL approach, we could have used the penalized full

likelihood as a cost function, by approximating the baseline hazard function with a

penalized spline basis (Cai et al., 2002; Kneib and Fahrmeir, 2007; Strasak et al.,

2009). As our model already includes penalized splines, this approach would fit

neatly into our framework. However, we have found these methods to be difficult to

implement, slow to fit, while providing similar results to the PPL approach. Because

we are aiming for simplicity and implementability, we will not use the penalized full

likelihood here. Additionally, we are unaware of any software that maximizes the full

likelihood and is flexible enough to incorporate penalized regression coefficients. We

therefore leave the implementation of the PFL estimation to future work.
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4.2.3 Software Implementation

The model has been implemented in R (R Development Core Team, 2014) language

as part of the pcox package. pcox is a wrapper for two other widely used R packages:

mgcv for setting up the basis and penalization, and survival for maximizing the

PPL. The model may be fit with just a single line of code:

fit <- pcox(Surv(time, event) ~ Z + hf(X), data=dat)

In this formula, X is an N × (maxi Ji) matrix containing the time-varying covariates

in what we call “variable-domain functional form”, a way of representing a two-

dimensional ragged array. In this form, xij = Xi(tij) is the matrix element at row i

and column j of X. Cells that correspond to unobserved time points (e.g., they occur

after that subject’s event or censoring time) should contain a value of NA. Here, Z

is an N × p matrix containing the baseline covariates, and dat is a data frame with

N rows and 4 variables: time, event, Z, and X. Note that two of these variables are

matrices.

The accessory function hf() defines the historical functional term from (4.1). The

above code assumes that all subjects are observed at the same integer time points

t ∈ 0, 1, . . . , tJi , but hf() contains options to allow for non-integer and also subject-

specific time indices. Options also exist to change the basis type and/or penalization,

use modified integration limits, or to make the effect non time-varying. There is

also an option to make the functional effect of X
H(t)
i (s) nonlinear, analogous to the

functional generalized additive model of McLean et al. (2013).
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4.3 Extensions

4.3.1 Partial Integration Limits

The historical Cox model allows one’s hazard at any time t to depend on the

entire history of the time-varying covariate, X
H(t)
i (s). This approach is quite flexible,

but sometimes this amount of flexibility is unnecessary. In particular, when the effect

of the time-varying covariate history is contained in a small number of observations

leading up to time t, estimating the full triangular surface may be unnecessary. To

address this issue the integration limits for the integral term in (4.1) can be changed

log hi(t) = log h0(t) + γZi +
1

ζ(t)− α(t)

∫ ζ(t)

α(t)

Xi(s)β(s, t) ds (4.3)

for some pre-specified functions α(t), ζ(t) such that 0 ≤ α(t) ≤ ζ(t) ≤ t for all t. For

example, setting α(t) = max{0, t−α0} and ζ(t) = t will restrict the effect of X
H(t)
i (s)

on hi(t) to its value over the α0 time units leading up to time t. For t > α0, this will

be {Xi(s) : s ∈ [t − α0, t]}, and for t ≤ α0, this will be the entire covariate history

X
H(t)
i (s). Note that setting α0 =∞ results in (4.1).

A further extension of the historical Cox model allows for subject-specific integra-

tion limits by replacing α(t) with αi(t) and ζ(t) with ζi(t) in (4.3). This may be useful

if the time-varying covariate was not observed over the full range [0, Yi] for some or

all subjects, and the start and stop times of measurement are subject-specific. Since
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our data application does not exhibit this feature, we leave further discussion of this

model to future work.

4.3.2 Alternative Basis Parameterizations

The variable-domain functional regression model of Gellar et al. (2014) estimates

a triangular surface similar to that of β(s, t) in (4.1). The authors introduced an

expanded class of models built by re-scaling or re-parameterizing the functional pre-

dictors, resulting in improved model fit. Here, we show how an equivalent effect

can be achieved by re-parameterizing the basis functions, and leaving the data un-

touched. The two parameterizations that we focus on are the lagged-time basis and

the domain-standardized basis.

Recall that we approximate β(s, t) with
∑

k bkφk(s, t). The lagged-time basis sets

φk(s, t) = φ∗k(s
∗, t), with s∗ ≡ s − t, and the basis functions {φ∗k(·, ·)} are used to fit

the model. Note that s∗ is the negative time between any observed Xi(s) and the

observation at time t. By using this re-parameterization, the (s, t) coordinates along

the right edge (hypotenuse) of the triangular surface in 4.1 are stacked vertically

from the perspective of the basis, bringing them closer together. This causes the

smoothness across different levels of t to be based on the amount of time until time t,

as opposed to the amount of time since time 0. The practical effect is that smoothness

is increased along this edge of β(s, t), and decreased along the left (vertical) edge.

For the domain-standardized basis, we set φk(s, t) = φ∗k(s
∗, t∗), with t∗ = t/maxi(Yi)
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and s∗ = s/t for t 6= 0 and s∗ = 0.5 for t = 0. Note that the coordinates (s∗, t∗) will

fall on the unit square [0, 1]× [0, 1] for the observed data. Using this basis causes the

smoothness to be based on the proportion s/t, instead of on s, over different levels of

t. The t coordinate is scaled down by maxi(Yi) so that t∗ ∈ [0, 1], because isotropic

bases such as thin-plate regression splines assume the scale of each coordinate of the

basis to be the same. Since the coordinates (s∗, t∗) fall on the unit square, we could

alternately use a tensor product basis for {φ∗k(·, ·)}. The practical effect of this re-

parameterization is that a greater amount of smoothness is assumed at high levels

of t than at low levels. It may be desirable to allow the resulting weight functions

β(s, t0) to be more variable for low t0 than for high t0.

4.3.3 Competing Risks

Suppose that instead of a single possible event, each subject experienced one of K

different types of events, and let Πi ∈ {1, . . . , K} indicate the event type experienced

by subject i, and that the event times are possibly correlated.

The classical analysis for competing risks data models the cause-specific hazard

functions, hk(t) = lim
∆t→0+

Pr(t ≤ T < t + ∆t,Πi = k|T ≥ t)/∆t, k = 1, . . . , K,

under a proportional hazards assumption (Holt, 1978; Larson, 1984; Prentice et al.,

1978). More recently, it has been argued that it is more appropriate to model the

subdistribution hazard, hk(t) = lim
∆t→0+

Pr{t ≤ T ≤ t+∆t,Π = k|T ≥ t∪(T ≤ t∩Π 6=

k)}, k = 1, . . . , K (Gray, 1988; Pepe, 1991), as in the model of Fine and Gray (1999).
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Although arguments can be made for either model, we will focus on the former as

it is the more natural extension of the historical Cox model (4.1), and it is easier to

implement using existing software.

Combining this approach with model (4.3), the cause-specific historical Cox model

with partial integration limits may be written as

log hik(t) = log h0k(t) + γkZi +
1

ζ(t)− α(t)

∫ ζ(t)

α(t)

Xi(s)βk(s, t) ds (4.4)

, k = 1, . . . , K. The model may be fit as two separate historical Cox models, one for

each of the two outcome types (Beyersmann et al., 2013; Lunn and McNeil, 1995).

Estimation and inference extend naturally from the approaches presented in Section

4.2.2.

4.4 Simulations

In this section we conduct two detailed simulation studies to investigate the per-

formance of model (4.1) under a variety of conditions and modeling choices. The

first simulation looks at model performance when the data-generating model is of the

type of model (4.1), and the goal is to accurately estimate the bivariate coefficient

function, β(s, t). The second scenario investigates how the model performs when the

data-generating model includes a simple concurrent effect βXi(t) of the time-varying

covariate, or a lagged version βXi(t−δ0). For both simulations, we vary the following
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parameters:

1. Three different sample sizes N : 100, 200, or 500 subjects

2. Three different true coefficient functions β(s, t) for Simulation 1, and four dif-

ferent true lags δ0 (0, 1, 3, or 5 days) for Simulation 2

3. Models based on the full history, and on the partial history of width 3, 5, and

10 days

4. Models based on three different domain transformations: s (untransformed),

s− t, and s/t.

5. Three different criteria for optimizing the smoothing parameter: AIC, AICc, or

EPIC

For simplicity we consider time-varying covariates observed over an integer-valued

time grid, tj = j : j ∈ [1, . . . , 100]. For each sample size N we generate R = 1000

datasets of predictor functions according to the modelXi(tj) = ui+
∑10

k=1 {vik1 sin(2πktj/100) + vik2 cos(2πktj/100)},

where ui ∼ N(0, 1), vik1, vik2 ∼ N(0, 4/k2). This model is adapted from Goldsmith

et al. (2011) and was also used in Gellar et al. (2014).

Survival times are generated according to the model log hi(t) = log h0(t) + ηi(t),

where ηi(t) differs for each of the two simulation exercises. This is done through

an adaptation of the permutation algorithm of Sylvestre and Abrahamowicz (2008).

The adaptation we implemented allows for both time-dependent covariates and time-

dependent effects, and are included as part of the pcox package in R. We assume

uniform censoring over the time interval [1, 100].
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4.4.1 Simulation 1: Estimation of β(s, t)

In this simulation, ηi(t) =
∫ t

0
Xi(s)βb(s, t) ds for three different true coefficient

function shapes, βb(s, t). The coefficient functions (displayed as heat maps in the

left column of Figure 4.2) are β1(s, t) = M
(
1− t−s

50
)
)
, β2(s, t) = M (2s/t− 1),

and β3(s, t) = M sin(2πt/100)(1 − t−s
50

). Three different values of the effect size

(magnitude) M (1, 2, and 5) are investigated. For this exercise, the goal is the

ability to estimate βb(s, t), so our results focus on the model fit over the full his-

tory. This is measured by the Average Mean Squared Error, AMSE
(
β̂b(·, ·)

)
=

1
J(J+1)

∑J
k=0

∑k
j=0

{
β̂b(tj, tk)− βb(tj, tk)

}2

, i.e., the average of the squared difference

between the estimate and the true value of the coefficient function, averaged over its

entire surface. We also consider model fit, as measured by the concordance probabil-

ity, or C-Index (Harrell et al., 1996; van Houwelingen and Putter, 2012). The C-Index

is the proportion of all pairs of observations for which the order of survival times are

concordant with ηi(t).

Results for this simulation for moderate effect size (M = 2) and EPIC optimiza-

tion appear in Figure 4.2. As expected, both estimation (as evidenced by decreasing

AMSE) and model fit (as evidenced by increasing C-Index) improve as the sample

size is increased. We also see that model performance may be substantially affected

by transforming the domain over which the basis is applied. Applying the s/t trans-

formation improves the estimation of β2(s, t), but results in much poorer estimation

of β1(s, t). From looking at the functional form or the heat map of the two functions,
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Figure 4.2: Results for Simulation 1, for EPIC estimation under effect size M =
2. Each row of plots corresponds to a different true coefficient function, which is
depicted in the first column as a heat map. The second column displays the median-
performing estimate (as measured by AMSE) over 1000 datasets for the scenario
where N = 200 and no domain transformation is used; this is done to provide context
to the AMSE values. The third and fourth columns present Tufte box plots of the
distributions of the AMSE and C-Index, respectively, stratified by sample size and
domain transformation. For these plots, the median of each distribution is indicated
by the center dot, the interquartile range by the white space around the dot, and the
“whiskers” by the colored bars. Lower values of AMSE and higher values of C-Index
are indicative of better model performance.

it is clear why this would be. The value of β2(s, t) is based on the the fraction s/t, so

a procedure that explicitly take this into account in the smoothness assumption per-

forms better. β1(s, t), on the other hand, is based on s− t, so the s/t transformation

is counterproductive. We saw very little difference between the untransformed (s)

and s− t-transformed estimates, though the s− t estimates tend to perform slightly

better. This is due to the relatively minor changes to the smoothness assumption

that is induced by applying this transformation.
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Increasing the effect size M of the coefficient function expected increase in C-

Index and decrease in AMSE (Supplemental Material). It is notable, though, that

the C-Index was affected to a much greater degree than the AMSE, indicating that

the model was able to adequately estimate β(s, t) even when less information was

available to associate the covariate history with the outcome. We generally saw very

little difference in model performance based on the optimization method, with EPIC

tending to perform slightly better than both AIC and AICc.

4.4.2 Simulation 2: Performance Under Concur-

rent and Lagged Data-Generating Models

For our second simulation we consider a model where data is generated according

to a model with ηi(t) = βXi(t−δ0), for four different values of δ0 (0, 1, 3, and 5 days).

For t < δ0, we assume ηi(t) = 0, i.e. no information is supplied by the time-varying

covariate. For this simulation, we set β ≡ 1 for all scenarios. Since these simulations

are not based on a true coefficient function, AMSE is not an appropriate metric of

model performance, so we instead focus on the C-Index for each fit.

For each simulated dataset, we fit the full historical Cox model (4.1), as well

as three versions of the model with partial integration limits (4.3). For the partial

models we set ζ(t) = t and α(t) = max{0, t− α0} for α0 ∈ {3, 5, 10}; thus the model

considers the covariate history over the 3, 5, or 10 days leading up to time t. As in
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Section 4.4.1, the model is fit for three different domain transformations and three

different criteria to optimize the smoothing parameter. We also fit the model with

two more traditional representations of the time-varying covariate: the concurrent

effect model, i.e. βXi(t), and the lagged effect model that “knows” the true lag δ0,

i.e. βXi(t− δ0).

Figure 4.3 presents heat maps of the historical estimate from the median-performing

fit (as measured by C-Index) for each combination of α0 (defining the integration lim-

its) and δ0 (true lag), as well as the full distribution of C-Index statistics for each

model over the 1000 iterations. Note that the heat maps are plotted with the lagged

domain s− t along the x-axis, for interpretability and to avoid excessive white space

in the plots. For some of the combinations of (α0, δ0), we observe a stronger signal

around s − t = δ0, which indicates that the model is highlighting the true lag in its

estimate. However, this signal tends to be spread out over neighboring s − t values,

likely due to the correlation in the functional predictors Xi(t). Other estimates do

not show any type of noticeable pattern based on s− t, and instead show a tendency

towards increasing magnitude at larger values of t. Since this effect is not present

in the data-generating model, it may be related to the fact that less information is

available for larger values of t, because most subjects have either experienced the

event or been censored before these times.

It is notable that all the historical models tend to perform well in terms of the

C-Index. The “Lagged” model should perform optimally, because it corresponds most
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Figure 4.3: Results for Simulation 2, for AIC estimation with the s − t domain
transformation. δ0 indicates the true lag of the model (δ0 = 0 indicates a concurrent
effect), and α0 indicates the maximum integration width (δ0 =∞ corresponds to the
full historical Cox model). The left panel of the figure depicts a heat map of the
median-performing estimate (as measured by C-Index) for each combination of α0

and δ0, for the scenario when N = 200. Note that the heat maps are transformed to
the lagged domain (s − t) on the x-axis, to avoid excessive white space in the plots.
The right panel of the figure displays the distribution of C-Index across the 1000
iterations of the simulation, for each model, true lag, and sample size. See Figure 4.2
for a description of Tufte box plots. The “Lagged” model assumes the true value δ0

is known.

closely to the data-generating model, but there is not a large drop off in performance

using any of the historical models. In some cases the historical models are the top

performers, but this is likely due to over-fitting. As δ0 increases, there is a substan-
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tial decrease in performance in the “Concurrent” model, but the historical models

continue to perform well.

4.5 ICU Mortality among ARDS Patients

4.5.1 Data Description

We apply our methods to study the relationship between organ failure and mortal-

ity for patients hospitalized with acute respiratory distress syndrome (ARDS). ARDS,

sometimes referred to as Acute Lung Injury (ALI), is a severe lung condition char-

acterized by inflammation of the lung tissue. It can be initiated by a wide variety

of causes, including trauma, infection, or sepsis. A patient with ARDS is typically

treated with mechanical ventilation in the intensive care unit (ICU), while physicians

attempt to treat the underlying cause of the inflammation. Studies of ARDS report

mortality rates as high as 40 and 60 percent (Ware and Matthay, 2000).

Our data data comes from the Improving Care of ALI Patients (ICAP) study,

(Needham et al., 2006), a multi-site prospective cohort study conducted in Baltimore,

MD. Of the 520 subjects enrolled in ICAP, 283 (54%) survived their hospitalization.

Data regarding patient treatment and status is recorded daily while the patient re-

mains in the ICU. Among these daily measurements is the Sequential Organ Failure

Assessment score, a composite measure of overall organ function. The SOFA score

is based on a set of physiological criteria, with larger values indicating poorer organ
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Figure 4.4: SOFA scores in the ICAP dataset, stratified by event type. Left: lasagna
plot of the first 35 days of SOFA scores, with each row corresponds to a subject and
the SOFA score is indicated by color. Top right: spaghetti plot of each subject’s last
10 (or fewer if Yi < 10) SOFA scores, with a lowess smooth overlaid. Bottom right:
density plot of the distribution of ICU length of stay, Yi, on the log scale.

function. When physiological measurements are recorded multiple times during a day,

the worst 24-hour score is used. Our goal is to understand the relationship between

SOFA and mortality, and to evaluate its use as a predictive biomarker.

SOFA scores are depicted in the left panel of Figure 4.4 as a lasagna plot (Swihart

et al., 2010). We see that SOFA scores tend to be higher (more red) for those who die

in the hospital, especially towards the end of their hospital stay. We also see a trend

over the last 10 days of one’s hospitalization of increasing scores for those who died,
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and decreasing scores for those who survived (Figure 4.4, bottom right). This is not

surprising, but it highlights the fact that longitudinal trends, as opposed to just the

last SOFA value, may contribute to one’s mortality risk at any point in time.

4.5.2 Model Specification

Subjects in the ICAP study leave the risk set in one of two ways: death or hospital

discharge. One modeling option would be to consider those who are discharged alive

from the hospital to be censored in a historical Cox model. However, Cox regres-

sion models assume independent censoring, meaning that one’s instantaneous risk for

death at time t, given the covariates up to that time, is unaffected by whether or

not that subject has been discharged from the hospital. Although this assumption is

untestable, we feel it is unlikely to hold for this dataset. The alternative approach

that we take is to model hospital discharge as a competing event (Beyersmann et al.,

2013; Jackson et al., 2014)

We fit four versions of our comepting risks model (4.4) to the data, each with

different time-specific integration limits [α(t), ζ(t)]. All models set ζ(t) = t and

α(t) = max{0, t − α0}, but they differ in the choice of α0: 5, 10, 25, or ∞. Recall

that α0 =∞ results in integration over the domain of the full covariate history, [0, t].

All models are adjusted for age, gender, and baseline health status as measured by

the Charlson co-morbidity index (Charlson et al., 1987).

107



CHAPTER 4. THE HISTORICAL COX MODEL

4.5.3 Results: Historical Models

We assess the performance of each model by calculating the C-Index. Uncertainty

in these estimates is expressed by constructing a 95% confidence interval based on

the 2.5th and 97.5th percentiles of 1000 bootstrap samples. We also compute the

proportion of bootstrap samples for which the C-Index of the concurrent model is

greater than or equal to that of each historical model. This statistic is a p-value

for the null hypothesis that the concurrent model out-performs the corresponding

historical model, with performance measured by the C-Index.

C-Index results are presented in Table 4.1 for models fit with the EPIC criterion

(results for AIC and AICc are available in the supplemental material). Concordances

for all models are higher for death than for hospital discharge, which may reflect

SOFA having a stronger association with death than with hospital discharge. This

makes scientific sense, as increasing SOFA scores (and thus declining health) will often

precede death, but a patient with declining SOFA scores might not necessarily be

discharged immediately if the physician does not deem it appropriate. The historical

models tend to outperform the concurrent model for death, but for hospital discharge

the concurrent model resulted in a higher C-Index than most of the historical models.

One exception is for the model with α0 = 5 and s/t transformation, which resulted

in a higher concordance probability for hospital discharge than the concurrent model

(0.783 vs. 0.776, p=0.037).

We plot the estimated coefficient functions β(s, t) for the s/t transformation with
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Table 4.1: C-Index for each historical model applied to the SOFA data, using the
EPIC optimization criterion. C-Index values are expressed as LXU , where X is the
C-Index, and (L,U) are the lower and upper bound of the 95% confidence interval
based on 1000 bootstrap samples. p-values correspond to the null hypothesis that
the C-Index for each indicated model is less than or equal to the C-Index for the
concurrent model, which were 0.7810.8120.844 for Death and 0.7430.7760.807 for hospital
discharge. α0 indicates the range of integration for models fit with partial limits.

Death Discharge
Model Domain C-Index p-value C-Index p-value

s 0.7900.8160.851 0.082 0.7160.7520.793 0.936
Full History s− t 0.7920.8220.851 0.044 0.7210.7520.797 0.888

s/t 0.7890.8120.851 0.170 0.7500.7730.816 0.216
s 0.7890.8210.852 0.125 0.7190.7490.793 0.944

α0 = 25 s− t 0.7890.8220.851 0.131 0.7210.7500.798 0.851
s/t 0.7990.8150.855 0.036 0.7520.7750.815 0.146
s 0.7930.8200.850 0.050 0.7240.7530.793 0.969

α0 = 10 s− t 0.7930.8200.851 0.041 0.7340.7560.802 0.802
s/t 0.8000.8190.856 0.013 0.7490.7740.812 0.268
s 0.7890.8170.848 0.108 0.7350.7650.799 0.836

α0 = 5 s− t 0.7900.8180.848 0.094 0.7350.7650.798 0.863
s/t 0.8020.8210.857 0.019 0.7550.7830.818 0.037

EPIC optimization as heat maps in Figure 4.5. Estimation is unstable at high values

of t; this problem occurs because length of stay is right-skewed and approximately

log-normal, see the bottom-right plot of Figure 4.4. Accordingly, our analysis focuses

on t ≤ 50, as this region contains 92% of all observed days.

All four models depict the same overall pattern: a strong positive association along

the right (s = t) edge of the estimate for death, and a strong negative association along

this edge for hospital discharge. This is unsurprising, and reflects our observations

based on Figure 4.4 that subjects who die have higher SOFA scores immediately before

their death. In the estimates based on the full historical model, the association is
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Figure 4.5: Estimation results for the historical Cox models fit to the SOFA data,
using the s/t transformation and EPIC optimization criterion, for t ≤ 50. Top left:
Estimates of β(s, t) for the full historical Cox model (α0 = ∞), with corresponding
C-Index values listed. Top right: Estimates for the historical Cox models with partial
integration limits, with the lagged scale s− t used for the x-axis to prevent excessive
white space. C-Indices for these fits (and others) appear in Table 4.1. Bottom:
Time-varying AUC curves for the four historical models, as well as the concurrent
time-varying covariate model.

very close to zero outside this range. This observation suggests that we may be able

to obtain a better fit if we focus our estimation along this edge by using a model with

partial integration limits, a proposal that is supported by the C-Index estimates in

Table 4.1

Somewhat less expected is the trend that occurs in the partial integration esti-

mates around s − t ∈ [−15,−5]. Around this range (with slight differences among
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the three models), the association with both death and hospital discharge flips di-

rections. In other words, high SOFA scores 5-15 days prior to time t are positively

associated with hospital discharge, and negatively associated with death. This seem-

ingly counterintuitive observation was noted in Gellar et al. (2014) with the same

data (with mortality was treated as a binary as opposed to time-to-event outcome),

and reflects the ability of the model to capture information regarding the trajectory

of one’s SOFA scores. For two subjects with the same scores in the five days leading

up to time t, the subject with worse scores before then is at lower risk of death at

time t, because that subject experienced a relative decline in their SOFA scores over

time, or at least a less steep incline in those scores. Note that this does not imply

that high SOFA score are in any way reflective of better health, as the association of

expected direction in the s− t ∈ [0, 5] range is of greater magnitude than the previous

period.

In order to further investigate the differences in performance of the various mod-

els, we calculate the time-varying AUC curve for each model, AUC(t) = P (ηj(t) >

ηk(t)|Tj = t, Tk > t). We calculate this statistic using the risksetROC package in R

(Heagerty and Saha-Chaudhuri, 2012), which follows the procedure of Heagerty and

Zheng (2005), using the “incident/dynamic” definition of time-varying sensitivity and

specificity. From these plots (Figure 4.5, bottom) we see that the historical models

are most useful for predicting outcome at low or high values of t, but the concurrent

model performs best at moderate values of t. This effect is especially pronounced in
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the models for hospital discharge at low values of t, where AUC(t) for the concurrent

model is around 0.8, but it is above 0.9 for all historical models. One possible ex-

planation for this observation is that in the first few days of one’s hospital stay, the

trajectory of their SOFA scores, not just the magnitude, is strongly associated with

whether or not the subject will be discharged from the hospital. Another potential

reason for this result is that the true association between SOFA and discharge is

concurrent but time-varying, i.e. β(t)Xi(t), and since the historical model allows for

time-varying effects it captures this association.

4.6 Discussion

In this paper, we introduce a new method for accounting for time-varying covari-

ates in a Cox regression model that allows one’s entire (or partial) history of the

covariate to impact the hazard at any time. This is accomplished by including the

covariate in the model as a historical functional term, and estimating a time-varying

functional coefficient that changes smoothly both across one’s history at any time t,

and with t itself. The resulting coefficient function is interpretable, for a fixed t, as a

weight function applied to one’s covariate history at that time.

When we applied various versions of our historical Cox model to the SOFA data

from the ICAP study, we observed a slight improvement in the concordance probabil-

ity associated with mortality over the more traditional concurrent effect model. For
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the competing risk of hospital discharge, we only observed a significant improvement

in concordance for the model with α0 = 5 and the s/t transformation. In fact, we

observed the s/t transformation to generally improve model performance for both

outcomes. This improvement occurs because the transformation effectively relaxes

the smoothness for low values of t, when few observations are available, and increases

it at higher values of t when more information is available.

It is unclear how often in practice it is necessary to consider such a historical

effect. We developed this model for the purpose of applying it to the SOFA data

because previous work (Gellar et al., 2014) suggested that one’s SOFA trajectory

over the last 5-10 days of their hospitalization, and not just their final SOFA score,

is useful in distinguishing survivors from non-survivors. Our analysis shows only

small improvements over more traditional approaches by using the historical model.

Nonetheless, without these methods we would have no way of determining whether

the current value of a time-varying covariate captures its entire relationship with one’s

mortality risk, or if previous values are also informative.

It is important to note that we do not intend for the parameter estimates from

these models to be interpreted as causal effects. In particular, a causal model would

have to take account for the potential of time-varying confounders (Daniel et al.,

2013). For example, Turnbull et al. (2014) showed that limitations or withdrawal

of life support is associated with higher SOFA scores, and SOFA scores are in turn

likely to affect subsequent decisions to limit or withdraw life support. Our method
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does not control for this type of confounding, and in order to estimate causal effects

in this situation specialized methods are required, e.g. Hernán et al. (2000); Robins

(1986); Robins et al. (1992). It would be interesting to see if these approaches could

be improved by incorporating the techniques presented in this paper.

As specified in this paper, the historical Cox model cannot be directly used for

dynamic prediction of mortality: the ability to predict a subject’s future survival

curve while they are still in the hospital, based on all information collected up to that

point in time. This is because the hazard function in (4.1) is conditional on the most

current values of the time-varying covariate, and dynamic prediction looks at future

mortality conditional on the current information. However, the model may be com-

bined with existing approaches for dynamic prediction, such as landmarking models

(van Houwelingen and Putter, 2012; Van Houwelingen, 2007) or joint modeling of the

longitudinal and survival processes (Rizopoulos, 2011). These approaches should be

explored in future work.
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Final Remarks

In this thesis I have presented three novel methods for the inclusion of longitudinal

predictors in regression models. Chapter 2 introduced variable-domain functional

regression, a flexible approach for relating an outcome to a longitudinal predictor in

the common scenario where each subject is followed for a different length of time.

Chapter 3 presents a blueprint for the inclusion of a baseline functional predictor

in a Cox regression model, which to our knowledge had not been attempted prior

to this work. Finally, Chapter 4 defines the historical Cox model, which combines

approaches from the previous two chapters to present a novel method for modeling

time-varying covariates in a Cox model.

The approaches presented in this thesis inspire an entire new area of method-

ological research that involves functional regression approaches to longitudinal and

survival data. For example, one could use the same historical approaches presented
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in the historical Cox model of Chapter 4 in the context of time-series data, where

the outcome is an observed stochastic process recorded over time. Such an approach

would have applications, for example, in growth models, which measure child or fetal

development regularly over time.

Another important extension of these techniques would be to allow for dynamic

prediction of an outcome. The goal of dynamic prediction is to predict future out-

comes based on all currently available information, and update those predictions as

more information becomes available (van Houwelingen and Putter, 2012). Current

approaches to this problem include landmarking (Van Houwelingen, 2007) and joint

modeling of longitudinal and survival data (Garre et al., 2008; Proust-Lima and Tay-

lor, 2009; Rizopoulos, 2011; Yu et al., 2008). These models usually assume a concur-

rent effect of the longitudinal variable, but one could build on their work by treating

the history of that variable as functional or historical. These principles could also

be applied to landmarking approaches when the outcome is a time series, as opposed

to mortality. I am unaware of any existing attempts to perform a landmark analysis

with time series data.

Finally, another possible direction of future research would be to extend non-

parameteric approaches such as functional principal component analysis (fPCA) or

functional penalized least squares (fPLS) to variable-domain functional data. Such

approaches would be useful either as an exploratory tool or as a method for pre-

smoothing variable-domain data. The principal component or scores could also be
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used directly in a regression model as an extension of functional principal component

regression or functional penalized least squares (Reiss and Ogden, 2007).

I believe the approaches presented in this thesis will become increasingly important

and useful as biomedical studies become more complex in the years ahead, and I am

pleased to present this contribution towards the field.
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