
Essays on Unit Commitment and Interregional Cooperation

in Transmission Planning

by

Saamrat Kasina

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

July, 2017

c⃝ Saamrat Kasina 2017

All rights reserved



Abstract

One of the most challenging problems in the power industry is deciding which trans-

mission lines to build. The process of answering this question leads to some very

interesting and complex optimization problems. Answers to subsidiary questions

about the detail of generator operations to simulate, generator siting, environmental

regulations, political boundaries, and the ways in which these factors interact with

each other, together inform the decision of building transmission lines. For example,

carbon taxes may favor transmission expansion to areas with high levels of renewable

energy, and consequently, fast ramp-rate generation may be desired to balance the

variable nature of renewable energy sources.

Transmission investment decisions can have far-reaching consequences for investors

and a host of other entities connected to the electric grid. In addition to being ex-

pensive and time-consuming to build, these lines influence other transmission and

generation investments, operations, and electricity prices.

This work presents a series of essays on the transmission planning problem. There

are two main themes: the effects of short-term operations, and the effects of political

ii



ABSTRACT

boundaries, on long-term transmission plans. Contributions of these essays include

the following:

1. An alternative formulation of the Unit Commitment (UC) problem that solves

faster than the standard UC formulation, and UC approximations that improve

computational performance while maintaining high fidelity in the quality of the

solution (reduction of binary variables and tightening of constraints).

2. Demonstrating how to bridge the gap between short-term (hours) operational

models and long-term (years) transmission and generation co-optimization mod-

els, using an application of the U.S. Western Interconnection.

3. Demonstrating that short-term operational constraints have the potential to af-

fect long-term transmission and generator investments. As an example, we find

that, when operational constraints such as ramp-rates and minimum-run capac-

ities are considered, transmission investment can sometimes act as a substitute

to generation investments.

4. A novel formulation of the noncooperative regional transmission planning prob-

lem that shows how regional transmission operators acting in their own self-

interest can negatively impact transmission investments.

5. Demonstrating that adjoining transmission operators can both benefit from

cooperating with each other in the transmission planning process. Interestingly,

we find that it is not enough to focus on seam lines connecting two regions.
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There are lines internal to each region that have interregional benefits and are

identified only though a cooperative planning process.

6. Approximations of the non-cooperative transmission planning model that aid

scale-up of this framework to large data-sets, further improving computational

performance.

Limitations of these models, practical issues involved, and future research directions

are discussed in the concluding chapter.

Together, these essays illuminate the effects of operational constraints and political

boundaries on transmission planning, and encourage decision makers to consider them

in their planning processes.

Primary Reader: Dr. Benjamin F. Hobbs

Secondary Readers: Dr. Hugh Ellis

Dr. Sauleh Siddiqui
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Chapter 1

Introduction

1.1 Motivation

The U.S. electric transmission grid is a vast network with more than 200,000 miles

of high-voltage transmission lines [4]. This grid delivers electricity from generators

to distributors, who in turn deliver it to wholesale and retail consumers. The United

States electric grid is mainly comprised of three regions - The Eastern Interconnec-

tion, The Western Interconnection, and the Texas Interconnection. Transmission or

generator outages have the potential to ripple through these interconnections, leaving

a significant number of people, industries, and public service providers without power.

In 2003, a software bug in the alarm system at a control room in Ohio ultimately led

to a blackout affecting 45 million people across eight states in Northeastern U.S.A.

1
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and an additional 10 million people in Canada [5]. Outside the U.S.A, in India in

2012, a combination of weather, political, infrastructural, and electrical causes led to

an imbalance between electricity generation and demand. These disturbances cas-

caded over the Indian electric grid, and caused the largest blackout in the history of

the world, affecting 620 million people [6].

An argument has been made that the U.S. has under-invested for years in trans-

mission [7] [8], and that we need to make up for that, including proposals for “super-

grids” [9] [10] to take advantage of renewable and load diversity. Currently, trans-

mission makes up 18% of the total annual capital expenditure [11], and transmission

charges make up 9% of the U.S. average electricity [12]. But transmission’s importance

may be greater than its fraction of the cost. In fact, [13] argues that transmission is

the most important issue to be dealt with in integrating renewable energy sources.

Traditionally the majority of transmission upgrades in the U.S. were performed

by vertically integrated utilities (VIUs) to meet grid reliability standards set by the

North American Electric Reliability Corporation (NERC). The objective of these

standards was to ensure grid stability and reliability for smooth power delivery from

generators to consumers. Deregulation of the power sector started changing the focus

of transmission planning. Federal Energy Regulatory Commission (FERC) Order 888

sought not only to promote competition in the wholesale market by providing non-

discriminatory access to transmission — thereby separating the transmission planning

process from generators and consumers — but also gave utilities the right to recover

2
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costs of transmission investments from energy consumers. This emphasis on trans-

mission costs and their recovery is inextricably tied to the question of who benefits

from transmission. As a result, it became important to understand the benefits of

transmission investment and to compare these with the corresponding costs [14].

Interest in new methods of transmission planning was also fueled by the push to

integrate more renewables into the energy mix. High-quality renewables are often

located far from load centers in the USA. For example, states like Wyoming and

Idaho have outstanding wind generation potential [15], but the development of these

resources would require investment in high-voltage transmission lines from the wind

farms to the load-pockets that can use the generated energy. Recognizing that trans-

mission investment was no longer driven by just reliability, ISOs focused more on

public-policy driven transmission planning.

While some ISOs have developed new methodologies to plan for transmission in-

vestments driven by both reliability standards and policy, there is a current lack of

industry standard to achieve this [16] [17]. Moreover, most ISOs still follow simple

production costing methodologies [14] that ignore the chronological nature of elec-

tricity demand and the physical nature of generators. This lack of a comprehensive

view on how to plan for transmission is due, in no small part, to the complexity of

the issues being considered. This complexity arises due to multiple factors, including

the following:

1. Transmission upgrades are costly. A poor planning process might result in

3
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over-investment (“stranded” assets whose costs exceed their benefits) or under-

investment (which can result in inefficient operations, such as extensive wind

curtailment, as in Texas in the 2000s [18] or presently in China [19], and solar

curtailment, as in India now [20]), as well as inefficient siting of generators.

2. Power cannot be directed manually. The grid is governed by the laws of physics

(Kirchhoff’s laws).

3. Transmission lines take time to be built. The process of planning, getting ap-

proval, and building a transmission line is a 7-10 year long process. Thus, plan-

ners need to commit to investment decisions without knowledge of the political,

regulatory and economic landscape 10 years later.

Keeping these complexities in view, there was increased interest in new, com-

prehensive economic transmission planning methods. For instance, [21] proposed a

market-driven model that estimates probabilistic uncertainty in nodal prices and used

this to find which upgrades are needed. However, the study does not consider future

policy uncertainty nor allows for multiple rounds of investment as happens in real-

ity, where decisions are made and revised gradually over time. A two-stage stochastic

model that lets planners consider uncertainty and allows for multiple rounds of invest-

ments was proposed in [22], which was then expanded upon by including Kirchhoff

Voltage Laws and by applying the framework to a larger test system in [23].

4
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1.2 Scope and contribution

There are multiple system-level metrics that can be used to measure the impact of po-

tential infrastructure additions (in this case, transmission lines) and operations on the

system. Some of these metrics are vulnerability, resilience, reliability, and economic

performance. Most studies focus on endogenously evaluating system performance in

terms of a subset of these metrics. For example, [24] and [25] include n− k reliability

constraints1 into economic evaluations of system operations.

The main focus of this thesis is economic electric transmission planning - i.e.,

estimating the benefits and costs of transmission additions using mathematical models

with the ability to decide when, where, and what line investments are required. The

specific chapters in this thesis and the questions addressed within these chapters are:

1.2.1 Chapters 2 and 3: Unit commitment approximations

in transmission planning

Planning models, in general, have two components that interact with each other:

an investment component that proposes candidate investments in generation and

transmission, and an operations component that simulates system operational costs

with those investments. In a competitive market framework, the model’s objective is

usually to maximize the system’s net economic benefits (surplus) given the physical

1Reliability constraints that ensure that blackouts do not occur even when k components of the
system are disrupted.

5



CHAPTER 1. INTRODUCTION

constraints on the system. Traditionally, in order to reduce computational costs, load

duration curves (LDC) were used to represent load in capacity-expansion models

[26], [27]. In such models, generators are considered to be infinitely flexible within

their capacity bounds, i.e., there is an implicit assumption that ramp rates, start-up

costs, and other intertemporal constraints have little impact on the solution. But

[28], [29], and [30] demonstrate the importance of using chronological data and Unit

Commitment (UC) constraints in capacity expansion problems. We address this issue

in Chapters 2 and 3:

Chapter 2 Since embedding a full UC formulation into a capacity expansion model is

impractical given the computational burden of UC problems, we develop

UC approximations that give tight relaxations of the full UC Mixed

Integer Linear Program (MILP). In this chapter, we ask the following

questions:

• Does a linear approximation of UC exist that can predict system

energy costs and energy prices?

• How accurately do these approximations (linear and mixed-integer)

predict energy prices, decisions, and total system costs relative to

full UC models?

Chapter 3 We embed a linear UC approximation developed in Chapter 2 into a

multi-stage stochastic transmission planning model such as in [22] and

6
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[23].2 In this chapter, we address the following questions:

• Does modeling UC have the potential to change transmission and

generation investments. If yes, then under what conditions is this

potential the greatest?

• What is the value of considering UC in long-term transmission plan-

ning processes?

1.2.2 Chapters 4 and 5: Cooperation in interregional

transmission planning

In Chapter 3, the transmission expansion model we use is a single optimization model

that assumes perfect competition (i.e., players are price takers) and that all players’

decisions occur simultaneously. Another important assumption is that there is one

central transmission planner (or multiple planners with side-payments, both being

equivalent in this context). But in reality, there are multiple regional transmission

planning agencies (usually defined by the boundaries of their respective control re-

gions) with little to no coordination among themselves during planning. We address

this issue in Chapters 4 and 5.

Chapter 4 We develop and explore a mathematical program that defines the rela-

tionship between transmission planners, regional boundaries, generation

2The WECC 21-zone test-case used in Chapter 3 was compiled by Yueying (Jasmine) Ouyang,
Jonathan Ho, and Qingu Xu.
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investments, and the energy market equilibrium. The problem is mod-

eled as a bi-level problem with the transmission planner as the leader,

and the generation planners and market operator as followers. In this

chapter, we ask the following questions:

• How are the transmission plans from a noncooperative planning pro-

cess and a cooperative planning process different from each other?

• What is the value of cooperation among multiple planners in trans-

mission planning?

Chapter 5 This chapter aids in the scale up of the equilibrium problems developed

in Chapter 4 to larger test cases. These are mixed-integer non-convex

problems that are difficult to solve in mathematical programming, due

to their irregular and disconnected feasible spaces. We develop approx-

imations (based on McCormick envelopes [31]) of the noncooperative

transmission planning problem faced by each regional planner. In this

chapter, we ask the following questions:

• How can McCormick envelopes be used to model convex approxima-

tions of the regional transmission planner’s optimization problem as

developed in Chapter 4?

• Can the tightness of these approximations be improved?

• What are the trade-offs associated with a tighter approximation?

8



Chapter 2

Unit Commitment Approximations

for Generator Production Costing

2.1 Abstract

The generator unit commitment (UC) problem, being a large mixed-integer problem

(MIP), is often impractical to solve as a subproblem of market simulation or planning

optimization models because of the many operating hours that must be considered.

This paper presents a tight formulation of the UC problem and two computationally

efficient extensions of this formulation - an LP and an MILP. First, we formulate a

MILP that defines a tighter constraint set than the standard formulation in literature

[32]. Second, we consider its LP relaxation. This LP is the limiting case as unit size
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shrinks to zero: start-up and minimum-run levels are treated as continuous variables.

Third, an alternative approximation based on an hour-sampling technique restricts

unit commitment variables to be binary only for some generators in crucial intervals,

reducing the dimensionality of the traditional UC problem. We use test cases to

compare the costs, market prices, and generator profits from these approximations

with those from full UC models, and indicate that our methods outperform other

approximations in the literature, such as load a duration curve method, in terms of

accuracy of predicting the aforementioned metrics. Our formulations solve 1-4 orders

of magnitude faster than the full UC MIP.

2.2 Notation

2.2.1 Sets and Indices

G Set of Generators g

H Set of Hours h

2.2.2 Parameters

αg Incremental fuel consumption of g [Th/MWh]

βg Fixed term of fuel consumption of g [Th/h]

γg Fuel consumption of g during start-up [Th]
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θg Fuel consumption of g during shut-down [Th]

Cfuel
g Cost of fuel consumed by g [e/Th]

Com
g Cost of operation and maintenance of g [e/MWh]

Qmin
g Minimum power output from generator g [MW]

Qmax
g Maximum power output from generator g [MW]

Dh Demand in hour h [MW]

URg Maximum Up-Ramp of g [MW]

DRg Maximum Down-Ramp of g [MW], a negative quantity

SRRg Maximum 10-min ramp of g [MW]

XR Required operating reserve as fraction of demand

2.2.3 Variables

q
′

g,h Rampable output from generator g in hour h [MW]

qg,h Power generated from generator g in hour h [MW]

qg,h Upper-Bound on output from generator g in hour h [MW]

rg,h Spinning reserve from generator g in hour h [MW]

ug,h ∈ {0, 1}: 1 if generator g is running in hour h
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yg,h ∈ {0, 1}: 1 if generator g is started up in hour h

zg,h ∈ {0, 1}: 1 if generator g is shut down in hour h

cyg,h Fuel consumed if unit is started-up in hour h [Th]

czg,h Fuel consumed if unit is shut-down in hour h [Th]

2.3 Introduction

Unit commitment (UC) models solve important operations problems in the power in-

dustry. In the US deregulated markets, for example, a central operator collects supply

bids or cost information from generators, and runs an area-wide UC model. The UC

model then specifies a schedule for commitments and generation that minimizes over-

all system costs, recognizing various physical constraints such as generator capacity,

transmission line loading limits, and generator minimum-run capacities. Schedules

are generated in day-ahead markets (24 h horizon) and in real-time for fast start units

(1-2 h horizon), to minimize the cost of electricity provision.

Advances in mixed integer programming (MIP) software have allowed the indus-

try to move from the Lagrangian relaxation (LR) methods that were used before the

1990s, to more flexible and comprehensive formulations in market operations [33].

PJM has estimated that moving from LR to MIP-based methods led to savings of

$100 million per year [34]. Despite these computational advances, however, solving

large-scale unit commitment models is still a challenge. As the system size increases,
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MIP’s Branch-and-Bound algorithm faces larger decision trees, which increases so-

lution times. This computational cost has limited the application of UC models in

market simulation and planning models because analyses of policies and investments

may require thousands of simulations to represent varying load, wind, and solar con-

ditions across operating hours for all years over a planning horizon.

Planning models usually have two components that interact with each other: an

investment component that proposes candidate investments in generation and trans-

mission, and an operations component that simulates system operational costs with

those investments. In a competitive market, the model’s objective is usually to min-

imize the overall cost to the system (investment and operations), subject to system

constraints. Traditionally, as mentioned in Chapter 1, in order to increase computa-

tional efficiency, load duration curves (LDC) were used to represent load in capacity

expansion models [26], [27]. In such models, generators were sorted in ascending order

of marginal costs and dispatched in merit-order (cheapest-first). However, dispatching

units solely based on merit-order removes load chronology thereby ignoring dynamic

constraints, such as ramping limits, and costs, such as start-up costs, assuming an

insignificant impact on solutions.

But [28], [29], and [30] demonstrated that it is important to use chronological data

and capture inter-temporal constraints, such as minimum-run capacity and ramp-

rates in capacity expansion problems. For example, system costs and greenhouse gas

emissions increase by 17% and 34% respectively, when inter-temporal constraints are
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considered [30]. Therefore, the flexibility of units and its on-off operations can signifi-

cantly affect the estimated profits in generation investments as shown in [35]. All this

points towards a need to more accurately model generator operational characteris-

tics. Indeed, looking at including wind variability in generation planning models, [36]

specifically argued for “less computationally costly approaches that can adequately ac-

count for the mixed-integer nature of generating units and chronology of net-demand.”

In the past, studies have tried to solve the unit commitment problem faster by

reducing the number of binary variables in the formulation [32]. Using decomposition

methods such as the Benders’ algorithm [37], is another way to manage the burden

of solving large UC problems [38]. Planning models that ignore inter-temporal con-

straints include a method to reduce the computational burden by adjusting the level

of operational detail. For example, [39] uses 12 non-chronological hours to represent

the future, while [40] uses 38 such hours.

In addition to planning models, market-simulation models that predict future

prices and generator outputs need to model operational details such as start-ups and

ramps. This becomes especially pertinent as the penetration of renewable energy

generation increases [41]. Since integrating full UC models into these planning and

simulation models is not practically possible, it is useful to have tight approximations

of the UC problem that can estimate start-up costs and quickly bound the full UC

model. Recent research that extends UC to consider uncertainty in wind output

[42] or fuel prices [43] further accentuates the need to develop efficient and accurate
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approximations to UC problems.

In this study, we propose three models, the second and third of which are the

proposed approximations. Our first model is a Tight Unit Commitment (TUC) for-

mulation. TUC is a MILP that gives the same optimal solution as the standard

formulation in the literature, but includes constraints that define a tighter constraint

set. Second, in the Tight Relaxed Unit Commitment (TRUC), the binary variables

are relaxed in the TUC formulation, and we look at the resulting LP relaxation. Unit

running variables, ug,h, are now treated as continuous variables and this can be seen

as representing the limiting case in which the size of an individual generating unit

becomes very small. Our third model, the Tight Partial Relaxed Unit Commitment

(TPRUC), is a version of TRUC where the commitment decisions of a subset of gen-

erating units are represented by binary variables in a subset of hours. This approach

reduces the dimensionality of the UC problem, thereby giving rise to a smaller MILP

while still capturing the discrete nature of the problem in the most crucial periods.

In this study, these crucial periods are assumed to be intervals where load changes

most rapidly.

In Section 2.4.1, we present some preliminary definitions to clarify the idea of valid

inequalities. Then, in Section 2.5.1, we describe the basic unit commitment model

followed by its linear relaxation, BCRUC, in Section 2.5.2. We then present the TUC

formulation in Section 2.5.3 and in Section 2.5.4, its linear relaxation, TRUC. Our

third model, TPRUC, is presented in Section 2.5.5 followed by a discussion on load
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duration curves in Section 2.5.6. We describe our test case in 2.6 and describe the

different systems we use to compare the performance of the models. We present

results in Section 2.7. First, in Section 2.7.2, we show that TUC solves faster than

the base case MILP formulation (while giving the same primal and dual solution) for

every system size we test. In Section 2.7.3, we compare the performance of the base

case formulation, TRUC, and TPRUC in terms of how accurately they predict total

system costs and hourly energy prices. We also see how these metrics change with

the size of the system. We see that, in TPRUC, with a small fraction of the total

number of binary variables, we are able to solve the full UC MILP to a high degree of

accuracy while still reducing computational times significantly. In Section 2.7.6, we

compare the performance of all the linear models - the base case relaxation, TRUC,

and a load duration curve approach, in terms of the accuracy with which they predict

total system costs, hourly energy prices, and a new generator’s short-run profits. In

Section 2.7.8 we introduce renewables into the system making the net demand profile

more variable. While comparing the performance of TUC, TPRUC, and TRUC, we

show that this variability makes the models solve much slower, further bolstering the

need for efficient approximations of the UC formulation. We conclude in Section 2.8.
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2.4 Preliminaries

2.4.1 Definitions

Definition 2.4.1. Valid Inequalities [44]

An inequality αu ≤ β is valid for a set K ⊂ Rd if it is satisfied by every point u ∈ K.

Definition 2.4.2. Convex Hull [45]

The convex hull of a set C, denoted conv C, is the set of all convex combinations of

points in C

conv C =

{
k∑

i=1

θixi|xi ∈ C, θi ≥ 0, i ∈ N, i ≤ k,
k∑

i=1

θi = 1

}

2.4.2 The role of Valid Inequalities in MILP solvers

There are many general types of valid inequalities (e.g., Gomory cuts [46], Round-

ing Cuts [47]), many of which are employed by state-of-the-art MILP solvers (e.g.,

CPLEX, GUROBI) to get tight relaxations at the root node, while solving MILPs.

Modern solvers rarely employ an elementary Branch-and-Bound approach [48] to solv-

ing MILPs, but rather use some variation (or a combination) of techniques that are

based on Branch-and-cut process [49]. At every node, the MILP is relaxed, checked

for integrality, and if possible, valid inequalities or cuts are added. These cuts serve

to shrink the feasible size of the LPs eliminating points that are not valid for the

MILP, but if left untrimmed, could spawn sub-trees of their own.
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In addition to the cuts that are added by the solver, valid inequalities can be added

by the user depending on the specific structure of the problem being solved. These

can help trim portions of the branch-and-cut tree and help in quicker convergence of

the MILP solution. Simply put, valid inequalities are used to cut away parts of the

polytope of the LP relaxation without cutting away any valid point of the MILP.

2.5 Model formulations

In this section, we present the models we use in this case study. We make two

modeling assumptions to simplify our case study: 1) ignore minimum-on and -off

time constraints (i.e., refractory periods after a generator is turned on or off); 2)

assume start-up costs are constant for a unit (i.e., no warm-start capability). These

assumptions can be revised as needed.1

2.5.1 Base Case Unit Commitment (BCUC)

This is the formulation against which we compare the performance of our models.

This is a standard UC model in literature from [32]. The formulation was modified

to include spinning reserve requirements and to make minimum-up and -down times

1 h. The objective function and constraints of the basic unit commitment model are:

MIN
∑
g,h

{ Cfuel
g (βgug,h + cyg,h + czg,h + αgqg,h) + Com

g qg,h} (2.1)

1Also see Section 6.4.
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s.t.
∑
g

qg,h = Dh ∀h (2.2)

∑
g

qg,h ≥ (1 +XR)Dh ∀h (2.3)

qg,h − qg,h ≤ SRRg ∀g, h (2.4)

cyg,h ≥ γg(ug,h − ug,h−1) ∀g, h (2.5)

czg,h ≥ θg(ug,h−1 − ug,h) ∀g, h (2.6)

ug,hQ
min
g ≤ qg,h ≤ qg,h ∀g, h (2.7)

0 ≤ qg,h ≤ ug,hQ
max
g ∀g, h (2.8)

qg,h − qg,h−1 ≤ ug,h−1URg +Qmin
g (ug,h − ug,h−1) +Qmax

g (1− ug,h) ∀g, h (2.9)

qg,h − qg,h ≤ DRgug,h +Qmin
g (ug,h−1 − ug,h) +Qmax

g (1− ug,h−1) ∀g, h (2.10)

qg,h ≤ Qmax
g ug,h +Qmin

g (ug,h − ug,h+1) ∀g, h (2.11)

qg,h, qg,h, c
y
g,h, c

z
g,h ≥ 0 ∀g, h (2.12)

ug,h ∈ {0, 1} ∀g, h (2.13)

The objective (2.1) minimizes the costs of start-ups and commitment, energy pro-

duction, and of non-fuel operation and maintenance. Constraint (2.2) specifies that

the sum of generation should meet hourly demand. The spinning reserve requirement

and the spinning reserve capacity that can be provided by a generator are specified

by (2.3) and (2.4), respectively. Start-up costs are stipulated by (2.5), while (2.6)

dictate costs of shutting down. Constraints (2.7), and (2.8) are the generator’s min-

imum and maximum production capacity constraints. Constraints (2.9) and (2.10)
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are the inter-temporal ramp constraints while (2.11) constrains the maximum capac-

ity of a generator in an hour with whether it is being started up in an hour or not.

Constraints (2.12) and (2.13) specify non-negative and binary variables respectively.

Other constraints such as transmission limits can be included in the model, but are

omitted here for simplicity.2

2.5.2 Base Case Relaxed Unit Commitment (BCRUC)

A common UC approximation is to relax all integer variables [50] [51] [52]. We call

this the Base Case Relaxed Unit Commitment (BCRUC), which amends the base

case UC model from section 2.5.1 by replacing constraint (2.13) with the following

constraint:

0 ≤ ug,h ≤ 1 ∀g, h (2.14)

2.5.3 Tight Unit Commitment (TUC)

Now, we present a MILP UC formulation that gives the same solution as the base

case, but defines a tighter constraint set and provides a tighter relaxation than the

base case.3

MIN
∑
g,h

{ Cfuel
g (βgug,h + γgyg,h + θgzg,h + αgqg,h) + Com

g qg,h} (2.15)

2We address this limitation in the next chapter.
3 We show results from numerical experiments supporting this in Section 2.7. For example,

BCUC and TUC, both report an objective value of 13572.25 ke/week and solve in 449 and 132 s
respectively for our smallest test case. Details of the test cases are given in Section 2.6.
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s.t.
∑
g

qg,h = Dh ∀h (2.16)

rg,h + qg,h ≤ ug,hQ
max
g ∀g, h (2.17)∑

g

rg,h ≥ XRDh ∀h (2.18)

ug,h − ug,h−1 = yg,h − zg,h−1 ∀g, h (2.19)

qg,h − q
′

g,h = ug,hQ
min
g ∀g, h (2.20)

(rg,h + q
′

g,h)− q
′

g,h−1 ≤ URgug,h−1 ∀g, h (2.21)

q
′

g,h − (rg,h−1 + q
′

g,h−1) ≥ −DRgug,h ∀g, h (2.22)

rg,h + q
′

g,h ≤ ug,h−1(Q
max
g −Qmin

g ) ∀g, h (2.23)

rg,h−1 + q
′

g,h−1 ≤ ug,h(Q
max
g,h −Qmin

g,h ) ∀g, h (2.24)

rg,h ≤ ug,h−1SRRg ∀g, h (2.25)

rg,h ≤ ug,hSRRg ∀g, h (2.26)

rg,h ≤ ug,h+1SRRg ∀g, h (2.27)

ug,h ∈ {0, 1} ; qg,h, q
′

g,h, rg,h ≥ 0 ∀g, h (2.28)

0 ≤ yg,h, zg,h ≤ 1 (2.29)

Objective (2.15) minimizes the fixed cost of running the unit, start-ups, shut-downs,

and the variable costs of operation and maintenance. Constraint (2.16) ensures that

supply and demand of energy is balanced in every hour. Constraint (2.17) is the upper

bound on the amount of reserve and energy that can be produced from a generator g

in any given hour. Constraint (2.18) ensures that there is enough reserve capacity in
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the system and (2.19) defines the relationship between start-up, shut-down and the

binary variables ugt that represent whether the generator is online (1) or offline (0).

Constraint (2.20) defines the relationship between the total energy produced from the

generator and the rampable part of the output q
′

g,h. Constraints (2.21) and (2.22)

limit the amount by which generation can be ramped up and down respectively.

These constraints also leave headroom in both directions for deliverable reserves.

Notice that these two constraints would not change the primal MILP solution if the

binary variables, ug,h, were removed from their respective RHS’s. By explicitly linking

a generator’s running status, ug,h, to its ramp capability, the root relaxation of this

MILP has a comparatively smaller feasible set, which helps in solving the MILP faster

(and we prove this using numerical experiments in Section 2.7). We follow a similar

strategy and add more valid inequalities (2.23) - (2.27). Constraint (2.23) limits the

value of rg,h and q
′

g,h during start-ups. Similarly, (2.24) constrains these values during

shut-down. Equations (2.25) - (2.27) constrain the amount of reserve that can be

provided in any given hour. Constraint (2.28) specifies that ug,h are binary variables,

and reserve and energy outputs cannot be negative. Constraint (2.29) bounds the

start-up and shut-down variables.

As mentioned above, in this formulation, the constraints on ramping, on reserves,

and on energy produced during startups and shutdowns, all define a tighter constraint

set.4 All constraints are linked to the start-up or shut-down variables and reduce the

4See footnote 3.
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feasible space of the relaxed LP at every node of the branch-and-bound process in ad-

dition to shrinking the size of the binary tree, ultimately accelerating the convergence

process.

2.5.4 Tight Relaxed Unit Commitment (TRUC)

The Tight Relaxed Unit Commitment (TRUC) is the LP relaxation of TUC (section

2.5.3). This is a tighter relaxation than the linear relaxation of the base case for-

mulation, i.e., BCRUC. We show this using numerical experiments in Section 2.7.6.

The TRUC model is relevant for evaluating the effects of inter-temporal constraints

in long-term planning models, as described in Section 2.3.

2.5.5 Tight Partially Relaxed Unit Commitment (TPRUC)

The Tight Partial Relaxed Unit Commitment (TPRUC) is an extension of TRUC. In

this, we assume that some hours or sequences of hours are more sensitive than others

for UC. For example, if an operator knows, by experience, that start-ups of plants

A, B and C in hours h ∈ H′ are most likely important (for example, the set of hours

that experience the steepest increase in load over their preceding hours), commitment

variables for those units in those times can be modeled as binary variables in TPRUC.

This partial relaxation approach is similar to the relax-and-fix idea originally pro-

posed by [53], in which a model is run with integrality constraining only a subset of

the actual binary variables. This takes advantage of the tight linear formulation with-
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out the computational burden of solving the full MIP UC of Section 2.5.1. TPRUC

is formulated as follows:

Min (2.15)

s.t. (2.16)− (2.27), (2.29)

qg,h, q
′

g,h, rg,h ≥ 0 ∀g, h (2.30)

ug,h ∈ {0, 1} ∀ g ∈ G
′
, h ∈ H

′
(2.31)

0 ≤ ug,h ≤ 1 ∀ g, h (2.32)

Here G
′
is the subset of generators and H

′
is the subset of hours for which the

corresponding start-up variables, ug,h, are binary. This leads to smaller MIPs which

can potentially solve faster, as branch-and-bound explores a smaller tree.

2.5.6 Load Duration Curve (LDC)

Many market and planning models ignore intertemporal constraints, and assume gen-

erators are dispatched in merit-order (i.e, cheapest first) based on marginal cost [54]

[55] [56]. This model, LDC, ignores all intertemporal constraints and, start-up, shut-

down, and running costs. The LDC model under-estimates the system cost due to

the artificial flexibility bestowed to the system, such as assuming infinite ramp rates

and no refractory period after a unit is started-up or shut-down.
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2.5.7 Augmented Load Duration Curve (LDC’)

The augmented load duration curve (LDC’) approach is a commonly used variant of

the LDC approach, LDC’ [57]. Here, the data is again non-chronological, but the

generators’ heat-rates (αg) are adjusted upwards based on their estimated number of

start-ups and shut-downs [57]. Here, we use start-ups and shut-downs from the base

case UC to do this adjustment.

In Figure 2.1, we summarize our hypotheses and the relationships among the

different model formulations, in terms of their respective estimates of total system

costs, and computation time.

2.6 Experimental design and assumptions

Our three formulations are tested on a system with 11 thermal generators from [58].5

The time-frame considered is 168 hours (1 week) and the models are solved simulta-

neously for the week, not a sequence of 24 h models. The average hourly demand is

3.5 GW and the spinning reserve capacity required is set as a fraction, XR = 0.02, of

total demand in each hour. To sample for a subset of important hours for TPRUC,

we select the 60 hours of the total 168 hours whose (absolute value of) net-demand

ramps over their previous hours are higher than 1 standard deviation or more from

the mean hourly net-demand ramps. In other words, these 60 hours see the steepest

5Generator data is presented in Table 6.1 of the appendix.
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net-demand ramps over their preceding hours in the week. Within these hours, we

constrain only the commitment variables for mid-and peak-load units (Gas and Oil

units) to be binary. The reasoning behind this is that in these hours, base load units

will be committed to their full capacity and will not be cycled, while the mid and

peaker units will be cycled, shut-down, or started-up. This reduces the number of

binary variables from 1848 (11 × 168) to 360 (6 × 60), an 80.5% reduction.

We also test the performance of these models on larger systems. The original

11-generator system is considered to be size 1x. We test the performance of our for-

mulations on six different system sizes. A system double this size, 2x, has double the

number of generators (and double the number of binary variables) as 1x, double the

system capacity (MW), and double the hourly load. For example, a 100 MW coal

generator from 1x is represented by two 100 MW coal generators in 2x, both with

the same characteristics as the original 100 MW generator. In order to compare the

results, we divide the objective values from every model by the system size factor

(2 in this example). This increases the size of the TUC and TPRUC models (which

associate binary variables with generators), but not the TRUC model (since all vari-

ables are continuous; as a result, two 100 MW generators of a given type with the

same costs, can still be exactly represented as a single 200 MW generator. That is,

any level of unit commitment and dispatch for the single 200 MW generator can be

represented by a TRUC version with two 100 MW generators, and the same cost will

occur, and vice versa.). We solve all the MILP models (base case, TUC, TPRUC)
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with priority constraints [59]. These constraints break ties between units that have

exactly the same characteristics.

We test each of these approximations on system sizes 1x, 2x, 3x, 4x, 7x, and

10x and evaluate their performance in terms of how accurately they estimate overall

system cost, hourly prices, and weekly profits for each generator type, as obtained

by the original full UC model. These results are shown in Section 2.5.1. We also

show the time each model takes to solve for each system size. In Section 2.5.4, we

compare our linear approximation (TRUC) with other linear approximations from

literature, a Relaxed Unit Commitment (RUC) [32] and a Load Duration Curve

(LDC) method [60] and show that it outperforms them in predicting system cost,

and energy prices for the larger test cases.

2.7 Results and discussion

2.7.1 Indices measuring model performance

The metrics used to compare model performances in this case study are described

below:

Total systems costs: This is the objective function of the models. This measures

the total cost to the system of meeting load and having enough capacity to

meet spinning-reserve requirements. The base case values set the standard and

cost-estimates from other models are compared to these.

28



CHAPTER 2. UNIT COMMITMENT APPROXIMATIONS FOR GENERATOR
PRODUCTION COSTING

RMSE in price prediction: This is the Root Mean Square Error (RMSE) [61] of

hourly energy prices across the operating horizon (a week, in this case study)

from each model when compared with the actual hourly energy prices (as pre-

dicted by the base case formulation). The lower the RMSE, the better the

prediction.

Time to solve: This is the CPU time taken for a model to solve (to optimality —

a 0.00% MIP gap — in some cases, and to a pre-specified gap in some cases.6).

This is measured in seconds. The smaller this value, the faster the model solves,

and the better the associated model is in this metric.

Generators short-run profits: These is a generator’s short-run profit. It is mea-

sured by calculating the generator’s revenue (using prices from the energy bal-

ance constraint) minus the costs of energy production across all the hours in a

week (the operating horizon in this case study) while correcting for make-whole

payments.7 The closer a model’s estimate of these profits to the actual profits

(as estimated by the base case), the better the model is in this metric.

2.7.2 Comparison of BCUC and TUC formulations

To show that the Tight Unit Commitment formulation (TUC) is indeed tighter than

the base case formulation, we ran the test systems of all sizes (1x - 4x, 7x, 10x) with a

6See Table 2.3 for more details
7See Section 2.7.7 for more details.
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condition to exit the solution process if the relative optimality gap drops below 0.1%

or reaches a time-limit of 1000 s, whichever condition is met first.

Base Case TUC

Sys. size No. of Binaries MIP Gap (%) Time (s) MIP Gap (%) Time (s)

1x 1848 0.00 449 0.00 132

2x 3696 0.098 911 0.098 313

3x 5544 0.092 971 0.09 223

4x 7392 0.093 551 0.076 448

7x 12936 12.5 1000 0.08 598

10x 18480 0.485 1000 0.073 925

Table 2.1: Comparing Base Case and TUC MILP performance

In Table 2.1, we see that for every size we tested, TUC performed better8. Specif-

ically, for the larger test-systems (7x and 10x), TUC reached the gap of 0.1% without

hitting the time-limit of 1000s. For these two sizes, the base case MILP formulation

reaches the time-limit and reports gaps of 12.5% and 0.485% respectively, which are

much larger than those reported by TUC.

8All runs were done with default CPLEX 12.6.3 settings. The performance of CPLEX could
potentially be improved by parameter tuning. Also see Section 6.2.
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2.7.3 Total system costs

As the system size increases, the (normalized) cost decreases for the full UC problem

(Figure 2.2). This is expected as, with increasing size, the system is more granular,

giving the MIP flexibility to allocate resources more efficiently thereby lowering costs.

For example, suppose a single 100 MW generator served a 50 MW load. Then, in a

2x system, two 100 MW generators must serve a 100 MW load. Since only one of

these is required for this task, start-up and other fixed costs can be ignored for the

second generator. For TRUC, the same total system cost is predicted for all sizes.

This is necessarily the case, as in this system, TRUC’s results depend only on the

total capacity of each generator type, not on the size of the individual units (see

Section 2.6). As hypothesized earlier, TRUC’s cost appears to be a limit that the

other models approach as system size increases.9

In Section 2.7.2, we saw a MILP formulation that solves faster than the base case

(from Section 2.5.1). Now, from Figure 2.2, we see that, with a careful, yet simple,

selection of hours, we can get a MILP that accurately captures system costs from

the full MILP base case formulation (Section 2.5.1). TPRUC estimates system costs

better than TRUC (closer to the base case cost estimates). This is to be expected as

TRUC is a relaxation of TPRUC and hence, under-estimates the objective function.

The percentage errors of TRUC and TPRUC’s cost estimation are shown in Table

9We do not show total system cost estimates from BCRUC, LDC, and LDC’ in this plot. They
are shown in Section 2.7.6 when their performance is compared to TRUC.

10All sizes in Base Case were solved to less than a MILP gap of 0.1%.
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Figure 2.2: Total cost as a function of system size.10

2.2. From the table, we see that TRUC estimates costs for all system sizes with a

≥ 99.4% accuracy and with TPRUC, this accuracy increases to 99.6%. Furthermore,

we see that in this case study, for the largest test case (10x), with TPRUC and just

19.4% of binary variables of the full UC MILP, we are able to capture the objective

value with a ≥ 99.9% accuracy.

11All TPRUC sizes were solved to optimality. Error is calculated against the full UC MILP Base

Case results which were solved to a gap less than 0.09% without a time-limit. For example, the size

10x took 8995s or approx. 2.5h to get to 0.083% gap. See Table 2.3.
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Size TRUC TPRUC 11

1x 0.59% 0.38%

2x 0.28% 0.17%

3x 0.22% 0.13%

4x 0.19% 0.11%

7x 0.17% 0.09%

10x 0.16% 0.09%

Table 2.2: Percentage errors in estimating total system costs. TRUC had a max-

imum error of 0.59% while TPRUC (with only 19.4% of the number of binary vari-

ables), had a maximum error of 0.38%.

2.7.4 Hourly energy prices

Figure 2.3 shows the RMSE in hourly price predictions from TRUC and TPRUC. As

system size increases, TRUC gets better at predicting prices (lower RMSE with in-

creasing size). TPRUC estimates prices better than TRUC for every system size. For

the largest size, 10x, TPRUC predicts average price with an error of only e0.4/MWh.

Indeed, this reduction in price-prediction RMSE can be clearly seen in the Price Du-

ration Curves shown in Fig. 2.4. As the system size increases, TRUC and TPRUC

converge towards the actual price curve.

12UC refers to the actual prices (from Base Case).
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Figure 2.3: RMSE in price prediction from TRUC and TPRUC.

2.7.5 Time to solve

We also look at the time taken to solve these models as one of the goals of these ap-

proximations is to accurately mimic the full UC while reducing computational effort.

From Table 2.3, we see that, TRUC and TPRUC solve faster than the base case UC.

For example, for size 2x, TUC, TPRUC, and TRUC’s solution times are 1-4 orders of

magnitude faster than full UC. In general, for all sizes, we see that the LP (TRUC)

solves fastest, followed by the MILPs, TPRUC and TUC. All models were solved on

a Windows 7 PC with an Intel Core i7-860 Processor 2.80 GHz processor and 8 GB

RAM using CPLEX 12.6.3.

34



CHAPTER 2. UNIT COMMITMENT APPROXIMATIONS FOR GENERATOR
PRODUCTION COSTING

(a) Size 1x Price Duration Curve.

(b) Size 10x Price Duration Curve.

Figure 2.4: Price duration curves for systems of sizes 1x and 10x.12
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Model 1x 2x 3x 4x 7x 10x

Base Case 449 1470 1434 1305 4540 8995

TUC 132 313 223 448 598 949

TPRUC 8 32 176 351 4472 3094

TRUC < 1 3 5 19 54 75

Table 2.3: Time to solve (s)∗

∗Size 1x was solved to optimality for all models. For sizes 2x-10x, Base Case and TUC were solved to a ≤ 0.09%

gap. TPRUC was solved to optimality for all sizes. TPRUC Sizes 7x and 10x solve to 0.09% gap in 145 s and 259 s

respectively. UC sizes 2x-10x were solved with priority constraints, which break ties between units that have exactly

the same characteristics. Without these constraints, UC 2x-10x took more than 10000 s to solve.

2.7.6 Comparison of linear approximations

TPRUC allows system operators to incorporate their insights by giving them the

ability to use binary variables for the subsets of units and hours they think are

important. But the models are still MIPs and can become difficult to solve for large

systems. Thus, having good linear UC approximations is both useful and practical

because, in addition to being relatively faster to solve (compared to MIPs), they

can quickly provide valuable insights into overall system costs and unit scheduling by

providing lower bounds to the system costs of the full UC problem. Furthermore, they

can be incorporated into decomposition techniques such as Benders decomposition

[62] (that require subproblems to be convex, and so we cannot use MIPs) where, if

used in the subproblem, they can generate valid cuts because they are convex. These

cuts can then be used to guide the convergence of the master problem.
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We compare our LP (TRUC) to two LP models used in the power industry lit-

erature - Relaxed Unit Commitment (BCRUC), a load duration curve (LDC) ap-

proach [55]. A BCRUC model is the full UC model (here, the Base Case model from

Section 2.5.1) with relaxed integrality constraints (Equation(2.12)). The LDC model

sorts load non-chronologically such that intertemporal and fixed costs are ignored. It

is widely used in market and planning models [54] [55] [56] due to its simplicity and

computational efficiency. As mentioned in section 2.5.7, LDC’ is a variant (also non-

chronological) of LDC, but with adjusted heat-rates based on start-up frequency [57].

Here, we use start-ups and shut-downs from the base case UC for Size 1x to do this

adjustment. We compare these linear models on the basis of how accurately they

estimate system costs and prices.

Figure 2.5 shows the error in estimating total costs for the 1x and 10x system

sizes by the linear models. We see that TRUC estimates total costs better the other

linear approximations. With TRUC, we are able to capture more than 99.4% of the

total system costs for the 1x system.13 From Figure 2.2, we know that, as system

size increases, the base case UC’s costs approach the results from the TRUC model,

therefore, TRUC’s accuracy can only improve. Hence, we see that TRUC’s error in

predicting system costs reduces even further from 0.59% for the 1x system to 0.16%

for the 10x system. Note that the strength of this model is that it is a (suboptimal)

LP formulation that attempts to capture the solutions from an MIP without using

13These are all LP approximations, so by definition they under-estimate costs of the cost-
minimizing UC MILP.
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Figure 2.5: Percentage error in total cost from linear approximations relative to

UC (1x). Negative error implies the model under-estimates system costs compared

to base case UC.

integer variables. Thus, for a small reduction in the quality of the solution, we gain

a significant advantage in computational performance as evidenced by the solution

times in Table 2.3.

Estimating energy prices is crucial as they determine generator margins which in

turn affect generator investments [35]. The ability to accurately predict generator

margins is valuable in any market simulation tool. In this test case, prices are calcu-

lated as the marginal cost of serving load, fixing the values of all binary variables [63].

From Figure 2.6, we see that, as system size increases, TRUC’s price estimates

improve as shown by the decreasing RMSE. For the smaller test cases, the simple
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relaxation (BCRUC) has the least error. LDC’s price-prediction is poor and its RMSE

increases with system size.

Figure 2.6: RMSE in prices from linear approximations relative to UC.

2.7.7 Estimating a new generator’s profit

Short-run profits14 provide incentives for future investments. These profits in turn

depend on both energy prices over time and costs to generators. Gross margin (rev-

enue minus operating cost) provides an integrated index of the effect of these factors

on generator profitability.

As mentioned in Section 2.3, LDC and LDC’ are commonly used to represent

operations within planning models. We compare the performance of TRUC against

14Not to be confused with long-run profits, which subtracts capital costs from gross margin.
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these models, in terms of estimating investment profitability, by examining the gross

margin of small increments in capacity (10 MW) of each type. Repeating this process

for all technologies, we calculate weekly margins for these 10 MW capacity generators

after correcting for make-whole payments.15

Figure 2.7: A small generator’s gross margin (Revenue — Operating Cost) as pre-

dicted by UC linear approximations for 1x system. For larger system sizes, we expect

TRUC’s performance to improve as its RMSE reduces.

From Figure 2.7, we see that while all linear approximations generally over-

estimate generator profits, TRUC predicts profits best, except in two cases. These

are for a small Lignite generator (where LDC performs better than TRUC) and for a

15MIPs, being non-convex, can result in market prices that yield negative short-run margins for
some generators [63]. Make-whole payments are additional payments made to generators after-the-
fact, to cover losses they may have incurred due to such prices. We calculate make-whole payments
for each 10 MW unit separately for each day, consistent with US market practices.
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small Fuel Oil generator (where LDC’ performs better). In addition to better profit-

predictions, TRUC is the only model to correctly order the profitability of the two

most (Nuclear, Anthracite) and two least profitable units (Gas, Fuel oil). Gas and

Fuel oil are expected to be the least earning as they are on the margin most of the

time while Nuclear and Anthracite are base-loaded.

2.7.8 Increasing net load variability due to wind

The US and other countries around the world are witnessing an increasing share of

their energy needs being met from variable renewable variable sources such as wind

and solar. Keeping this in view, it is important to explore how the accuracy of

UC approximations is affected by a generation mix with a large amount of variable

renewables. We do this by modifying our models such that the thermal generators now

have to meet net demand (i.e, Demand − Wind Output). The load and the net load

profiles used in this case study are shown in Figure 2.8. Wind energy now meets 13%

of the total weekly demand lowering the average hourly demand (3.50 GWh to 3.04

GWh) and increasing its standard deviation (0.67 GWh to 0.76 GWh). Additionally,

demand becomes more volatile. Its volatility16 is now 0.37 GWh compared to 0.19

GWh in the case without wind. Since wind energy is modeled as negative load (and

in this case is always less than total hourly load), we implicitly assume no wind

curtailment.17

16As measured by the average of the absolute value of the hourly ramp in net load.
17This is a restrictive condition and system costs might be reduced by allowing spillage.
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Figure 2.8: Load profiles with and without wind

Figure 2.9: Total cost with wind as a function of system size.18
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Figure 2.9 shows the total cost to the system as estimated by TUC, TPRUC, and

TRUC. All TUC models were solved to a 1% MILP relative optimality gap. For the

10x TUC case, although it might appear that the system cost is greater than that

of 7x, this is within the aforementioned 1% optimality gap. It is not possible for an

optimal 10x solution to be worse than an optimal 7x solution as the former model has

fewer constraints than the latter (See Section 2.7.3 for a more detailed explanation).

Given the optimality gap for the 10x solution, the true optimum for this system size

could be in the range of [11,928 ke/week, 12,009 ke/week].19

The relative performance of the UC models is similar in both the with (Figure 2.2)

and without wind (Figure 2.9) cases.20 In both cases, the actual cost to the system (as

predicted by TUC) decreases with increasing system size and TRUC’s cost appears

to be a limit that the other models approach as system size increases. Additionally,

similar to the case without wind, by designating the commitment variables of a subset

of generators in specific hours as binary,21 TPRUC provides a better estimate of total

system costs compared to TRUC. However, when compared to the case without wind,

the errors in predicting total system costs increase for both TPRUC and TRUC. For

the smallest system size, 1x, TPRUC and TRUC underestimate costs by 2.3% and

18For the 10x TUC case, although it might appear that the system cost is greater than that of
7x, this is within the aforementioned 1% optimality gap.

19The minimum value of the interval being 1% less than the current 10x TUC solution and the
maximum value being the 7x TUC solution.

20TUC and BCRUC give the same objective values and we have shown that these formulations
describe the same feasible region.

21Similar to the case without wind, we designate as binary the commitment variables of mid- and
peak-load units in the 50 hours that experience the steepest net-load ramps.
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2.8% as opposed to 0.4% and 0.6% respectively in the case without wind.22 It should

be noted that this is a worst-case scenario estimate for TPRUC and TRUC since

all TUC models in the case with wind were solved to a larger optimality gap (1%

gap) when compared to the case without wind (0.09%). As TUC is solved to smaller

optimality gaps, TPRUC and TRUC’s system cost estimates can only improve.

The main difference, though, between running the full MILP TUC model with and

without wind is the computation cost. In this case study, TUC takes much longer to

solve when wind is added to the energy mix (see Table 2.4).23 For example, for size

1x, TUC takes 10 times longer to solve the case with wind than the one without, even

with a more powerful computer and an optimality gap of 1%. TRUC, being an LP,

still solves much faster than the MILP models.24 The increases in TUC computation

22These errors decrease with increasing system size as shown in Figure 2.9 and the associated
footnote.

23All models with modified net load profile were solved on a Windows Server 2012 with 112 GB
RAM and an AMD Opteron 6274 2.20 GHz processor. The specifications of this computer are
different (and much higher) than the one on which test cases without wind were solved.

24We believe this increase in computation time will be exaggerated even further for BCRUC based
on the differences in the time taken to solve in the case without wind. However, we were not able
to solve the BCRUC case to reasonable optimality gaps for this case study.
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times reinforce the importance of efficient unit commitment approximations.

Model 1x 2x 3x 4x 7x 10x

TUC 1267 2564 8196 10000 10000 10000

TPRUC 132 15411 264 263 318 622

TRUC 2 9 38 139 619 256

Table 2.4: Time to solve (s)∗ models with high penetration of variable renewables.

*Stopping criteria for all TUC models was a time limit of 10000 s or a gap of 0.1%, whichever condition was met first.

For TPRUC, sizes 1x and 2x were solved to optimality. System sizes 3x-10x were solved to a ≤ 0.1% gap. TPRUC was

solved to optimality for all sizes. TPRUC Sizes 1x and 2x solve to 0.1% gap in 145 s and 281 s respectively. Similar

to Section 2.7.3, all MILP models of sizes 2x-10x were solved with priority constraints, which break ties between units

that have exactly the same characteristics. Without these constraints, TUC 2x-10x took more than 10000 s to solve.

2.8 Conclusion

There are important trade-offs between accuracy and computational burden in unit

commitment (UC) models. Approximations that capture most of the characteristics

of unit commitment, but solve quickly, can be useful. Each approximation has advan-

tages and disadvantages that need to be considered, keeping the size of the problem,

the available computational resources, and the purpose of the analysis in mind.

We presented a MILP UC formulation (which we call TUC), that defines a tighter

constraint set than the standard UC formulation from literature. We showed that

this solves faster than the base case.25 We then relaxed this MILP and showed that

the resulting LP, TRUC, compares well with common linear approximations from

literature such as those based on load duration curves (models LDC and LDC’ from

25When using the default settings of an out-of-box solver such as CPLEX 12.6.3.

45



CHAPTER 2. UNIT COMMITMENT APPROXIMATIONS FOR GENERATOR
PRODUCTION COSTING

Sections 2.5.6 and 2.5.7) and a linear relaxation (BCRUC from Section 2.5.2) of the

base case MILP. This was measured in terms of reduced error in estimating system

costs and hourly energy prices. TRUC has the advantages of being an LP, including

solving many orders of magnitude faster than the full UC model, and easier scaling-up

to larger system sizes. We also saw that, for problem size 1x, TRUC’s estimates of

system costs were within 1% of those predicted by the full UC, and this improved

for larger systems (see Figures 2.2 and 2.5). Comparatively, the errors for system

cost estimates from LDC and LDC’ were around 13% and 10% respectively for the

1x system.

We also used selective hour-sampling to extend TRUC to TPRUC by including

binary commitment variables for a subset of hours that experience steep load ramps.

We have shown that TPRUC is a smaller MIP that solve faster than the full UC while

capturing system characteristics, such as total costs and energy prices, better than

TRUC. Additionally, we have shown that the approximations correctly identify the

two most profitable and the two least profitable generators.26 Overall, these approxi-

mations are helpful steps towards fulfilling the need to have models that approximate

UC quickly.

The tight linear approximation of the UC model we presented in this chapter,

TRUC, can be thought of as starting a series of small plants with similar charac-

26Although TRUC over-estimates generator profits for the smallest size 1x, it performs better
than currently used linear approximations. Furthermore, we expect TRUC’s estimates of generator
profits to become more accurate with increasing system size due to the decreasing RMSE in hourly
price estimation.
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teristics instead of one big generator. Hence, it is likely to be most useful in large

systems, in which individual generators tend to be aggregated anyway. The ad-

vantages of TRUC are likely to be particularly important for a multistage stochastic

planning model, such as [64], where the planning component of the problem is already

complex.27 Embedding a linear UC approximation such as TRUC, which is an LP,

yet estimates system costs (to within 1% accuracy in our case study), energy prices

(error for 10x system was e0.4/MWh), and generator profits more accurately than

current linear models from literature (LDC and LDC’), into a multistage stochastic

planning model enables us to determine the effect of UC constraints on long-term

generation and transmission investments. We do this in the next chapter along with

addressing some of the limitations of the approximations we presented in the current

chapter, i.e., lack of a network with realistic data, lack of transmission constraints,

and the lack of renewable energy sources in the energy mix.

27In such cases, TRUC also readily fits into a decomposition approach, such as Benders’ de-
composition, which require subproblems to be convex, and has been previously used to solve such
problems [65] [66].
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Chapter 3

Transmission Planning with

Intertemporal and Generator

Operational Constraints

3.1 Abstract

In the previous chapter, we presented a tight linear relaxation of the unit commit-

ment (UC) problem. We showed that for large systems, this approximation estimates

system costs with a ≥ 99.8% accuracy. We also showed that it estimates average

hourly prices and generator profits better than linear approximations that are com-

monly used in the literature. In this chapter, we use this LP formulation, TRUC,
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to demonstrate the effects of UC on long-term transmission and generation planning.

We compare the results from a transmission planning model that includes UC con-

straints (in the form of TRUC), with those from a traditional transmission planning

model, where operations are represented using a load duration curve that ignores

inter-temporal constraints such as ramp rates and minimum-run capacities. We find

that UC’s potential to affect long-term transmission plans is the greatest when there

are slow-moving generators in the mix that are cycled.

3.2 Notation

3.2.1 Sets and Indices

B Set of buses b

H Set of hours h

L Set of all transmission lines l

LE Set of all existing transmission lines

LN Set of all new transmission lines

T Set of (time) stages t (three stages).

R Set of internal-regions r (For Renewable Portfolio Standard constraint)

G Set of generators g
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GR Set of renewable generators gr (GR ⊂ G)

S Set of scenarios s. A scenario is a distinct set of constraint and objective

function parameters for a future stage (t = 2, 3).

3.2.2 Parameters

B
E/N
l Susceptance of existing (E) and new lines (N)

CZ
l,t,s Cost of building line l in stage t and scenario s

CX
b,g,t,s Cost of building unit g at bus b in stage t and scenario s

CY
b,g,t,s Marginal Cost of generating energy from unit g, bus b, stage t, scenario s

C
SU/SD
b,g,t,s Cost of starting-up/shutting-down unit g, bus b, stage t, scenario s

Pt,s Scenario probabilities

V OLLb,t,s Value of Lost Load in bus b, stage t, and scenario s

QPmin
b,g Minimum-run capacity as a fraction of total capacity

Qmin
b,g Minimum-run capacity of generator g

X1
b,g Existing capacity of generator g and bus b

PORg Planned Outage Rate of generator g

FORg Forced Outage Rate of generator g
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XR
b,g,t Capacity being retired in stage t (exogenous)

Xb,g,t,s Maximum capacity of generator g allowed at bus b

Rg Fraction of capacity that can provide reserves

XR Fraction of load that contributes to reserve requirement

RPb,g Fraction of maximum capacity that can be ramped up or down for unit g

Mb,l Line-incidence matrix mapping buses to lines. 1 and -1 indicate to and

from buses respectively.

M A large scalar (Big-M)

Db,h,t,s Load at bus b, hour h, stage t, and scenario s

RPSr State-mandated fraction of yearly load that must come from renewables

F
E/N

l,t,s Maximum flow on existing (E) and new lines (N)

F
E/N
l,t,s Minimum flow on existing (E) and new lines (N)

3.2.3 Variables

zl,t,s {0, 1}: Invest in line l in stage t, scenario s

xb,g,t,s Capacity of generator g built at bus b

qb,g,h,t,s Output from g in hour h in stage t and scenario s
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lb,h,t,s Curtailment at bus b in hour h, stage t, scenario s.

pmin
b,g,h,t,s Minimum-run capacity online in hour h from g in stage t and scenario s

rb,g,h,t,s Reserves in hour h from generator g in stage t and scenario s

xb,g,t,s Generator g’s capacity in stage t and scenario s

pSUb,g,h,t,s Capacity started up in hour h from generator g in stage t and scenario s

pSDb,g,h,t,s Capacity shut down in hour h from generator g in stage t and scenario s

f
E/N
l,h,t,s Flow on existing (E) and new (N) lines in hour h, stage t, scenario s

θb,h,t,s Bus angle at bus b, hour h, stage t, and scenario s

3.3 Introduction

There is growing evidence supporting the inclusion of UC constraints in long-term

generation and transmission planning models [30] [36] [29]. Despite this, due to the

computational difficulties associated with solving UC problems, limited studies have

focused on short-term operational constraints in the context of planning. Up until the

early 2000s, large-scale UC problems (without planning) were complex enough, that

it was necessary to use techniques such as Lagrangian Relaxation (LR) [67] [68] or

Benders’ decomposition [69] [70], to solve them. However, development of faster com-

puters, and algorithmic advances in Mixed Integer Programming (MIP) techniques
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starting in late 1980s [71] [72] made large-scale MIPs more tractable and efficient to

solve. These algorithms were also applied to problems in the power industry and (as

mentioned in Chapter 2) by 2006 it was estimated that the transition from LR to

MIP-based methods had led to savings of $100 million per year for the PJM market

alone [34]. This new tractability of UC problems allowed recent studies such as [30]

and [36] to re-assess planning methods and the effect of generator operational con-

straints on them. Ref. [36] especially found that while UC has the potential to affect

investments, there is currently a dearth of models that account for the discrete na-

ture of generators and commitment decisions. In Chapter 2, we developed one such

model (TRUC) that adequately approximates the full UC MILP (capturing ≥ 99%

of the total system costs) while remaining tractable enough computationally to be

used within large-scale investment planning models. The goal of this chapter is to

bridge the gap between UC and planning models and determine whether UC has the

potential to affect long-term investments and, if yes, to explore its conditions and

causes.

If UC does indeed affect planning decisions, it would mean that the recommenda-

tions from load duration curve (LDC) methods, that are commonly used for planning

currently, are suboptimal. These suboptimal solutions can in turn again lead to in-

efficient generation and transmission siting and inefficient operations. The potential

savings from using more accurate investment models could be significant.
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Contributions

The contributions of this chapter are as follows:

1. In our experience,1 even with a decomposition approach such as Benders [73],

that separates large MIPs into smaller problems, a planning problem with an

embedded full MILP UC model could not be solved a reasonable time. In this

chapter, we address this issue by incorporating approximated UC constraints

(using TRUC) into a multi-stage stochastic transmission planning model [22]

[65] and applying it to a large region (the U.S. Western Interconnection).

2. We investigate whether UC has the potential to affect long-term investments in

planning models when compared to using a simple load duration curve-based

method. If it does have the potential, we explore the conditions under which

investments change.

3. We recognize that integrating UC and planning models has some practical dis-

advantages. First, it increases the number of constraints and variables in an

already complex planning model. Second, more data is required as the opera-

tional characteristics of each unit (e.g. minimum-run and ramp capabilities) are

needed to include chronology into the model. We evaluate these trade-offs by

quantifying “regret” i.e., the additional cost the system incurs if it implements

decisions recommended by a model that uses a simple LDC curve to represent

1Results not shown.
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operations in a planning model.

4. We consider uncertainty in the form of future scenarios in a two-stage stochastic

planning model with recourse, and show that short-term operational constraints

have the potential to change both the deterministic and the stochastic invest-

ment solutions. We also found that the solution is sensitive to the probabilities

assigned to the individual scenarios.

First in Section 3.4, we present an overview of a two-stage stochastic planning model

from literature [64] [22]. In this model, operations are depicted using a load dura-

tion curve, and intertemporal constraints as well as fixed costs such as start-up and

shut-down costs are ignored. Then, in Section 3.4.2, we present the modified two-

stage stochastic transmission and generation planning model with UC constraints.

Short term start-up and shut-down costs, and ramping constraints are depicted in

this model using the linear relaxation, TRUC, of the Tight Unit Commitment for-

mulation presented in Section 2.5.4. We compare results from these two models in

a deterministic setting (no uncertainty in the future) in Section 3.6, and show that

UC indeed has the potential to change long-term transmission and generation invest-

ments. In Section 3.6.3, we show an example of how UC changes the depiction of

unit operations within planning models. Then, in Section 3.6.3.1, we present results

from a sensitivity analysis to determine the conditions under which UC affects trans-

mission plans. We expand the deterministic case study to a stochastic framework

by considering regulatory and policy uncertainty in Section 3.7. We also show that
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the probabilities assigned to scenarios has an effect on how UC changes investment

recommendations.

3.4 Two stage stochastic transmission planning

The two-stage stochastic transmission planning model we use is based on models pro-

posed previously in literature [64] [22]. It has two stages of investment - investments

that have to be made today (here-and-now) while considering an uncertain future2,

and recourse decisions (including operations and investments in future years) that can

be made upon realization of the future. The timeline of the model is shown in Figure

3.1. In the first stage, t1, - today - the only decisions made are investments (genera-

tion and transmission). These decisions are made before uncertainty is revealed and

are represented by I. We assume that these investments take 10 years to build and

come online in the next stage - Stage 2 (t2, 10 y from today). This is a typical lead

time for large power plants and new transmission. At the beginning of t2, uncertainty

is revealed and we know which scenario has materialized. In this stage, we simulate

10 years of systems operations while a second round of generation and transmissions

investments (i.e., recourse investments) are made for any realizable scenario. These

two decisions (Investments and Operations for every possible scenario) are shown as

I(s) + O(s) in Figure 3.1. These investments come online at the beginning of Stage

2In this case-study, scenarios are considering to be possible futures with a range of possible
technological, policy, and economic developments. There are multiple uncertain parameters in each
scenario - fuel prices, capital costs, renewable policy etc.

56



CHAPTER 3. TRANSMISSION PLANNING WITH INTERTEMPORAL AND
GENERATOR OPERATIONAL CONSTRAINTS

t1

I

t2

I(s)+O(s)

t3

O(s)

Figure 3.1: Two-Stage stochastic model schematic. Squares represent decision

nodes. Uncertainty is depicted by the chance node (circle) and the branches rep-

resent scenarios.

3 (t3, 20 y from today) after a 10 year construction period. In this stage, the grid,

with all the new generation and transmission investments, is operated for a period of

30 years without new investments or remaining uncertainty.

3.4.1 Transmission planning model ignoring inter-temporal

operational constraints

This is a two-stage stochastic planning model from literature [64] [1]. We compare

transmission and generation investments, and generator operations from this model

to the modified planning model (with UC constraints) presented in Section 3.4.2.

Min Pt,s

[∑
l,t,s

CZ
l,t,szl,t,s +

∑
b,g,t,s

CX
b,g,t,sxb,g,t,s +

∑
b,g,h,t,s

CY
b,g,t,sqb,g,h,t,s+

∑
b,h,t,s

V OLLb,t,slb,h,t,s

]
(3.1)

s.t., rb,g,h,t,s + qb,g,h,t,s ≤ (1− PORg)(1− FORg)xb,g,t,s ∀b, g, h, t, s (3.2)

xb,g,2,s = X1
b,g + xb,g,1 −

2∑
t=1

XR
b,g,t ∀b, g, s (3.3)
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xb,g,3,s = X1
b,g + xb,g,1 + xb,g,2,s −

∑
t

XR
b,g,t ∀b, g, s (3.4)

xb,g,t,s ≤ Xb,g,t,s ∀b, g, t, s (3.5)

rb,g,h,t,s ≤ Rgxb,g,t,s ∀b, g, h, t, s (3.6)∑
g

qb,g,h,t,s −
∑
l

Mb,l(f
E
l,h,t,s + fN

l,h,t,s) + lb,h,t,s = Db,h,t,s ∀b, h, t, s (3.7)

∑
b,g

rb,g,h,t,s ≥ XRDb,h,t,s ∀h, t, s (3.8)

FE
l ≤ fE

l,h,t,s ≤ F
E

l ∀l ∈ LE, h, t, s (3.9)

zl,t,sF
N
l,t,s ≤ fN

l,h,t,s ≤ zl,t,sF
N

l,t,s ∀l ∈ LN , h, t, s (3.10)∑
b∈B(r),gr,h

qb,gr,h,t,s ≥ RPSr

∑
b∈B(r)

Db,h,t,s ∀r, t, s (3.11)

qb,g,h,t,s, rb,g,h,t,s, xb,g,t,s ≥ 0 ∀b, g, h, t, s (3.12)

zl,t,s ∈ {0, 1} ∀l, t, s (3.13)

The objective function (3.1) minimizes investment costs of new transmission and

generation, variable operating costs of existing and new generators, and monetary

penalties from lost load. Constraints (3.3)-(3.4) are inventory constraints that enforce

relationships between total capacity in different years: the capacity at any stage is

a function of investments and retirements from previous stages. Constraint (3.5)

enforces upper-bounds on the amount of new capacity that can be built in every

stage for each generator type. Constraint (3.6) limits the quantity of spinning reserve

provided by a generator to a fraction of its capacity. Constraint (3.7) is the Kirchhoff’s
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Current Law (KCL) which ensures that the net injections and withdrawals at every

bus in every hour are equal.3. Constraint 3.8 ensures that there is enough spinning

reserve capacity available and constraints (3.9) and (3.10) impose thermal limits on

flows on existing and new lines respectively. Constraint (3.11) enforces Renewable

Portfolio Standards (RPS) on the energy produced annually across WECC. This

constraint ensures that a fraction of the total electricity generated is from renewable

sources. This is consistent with WECC’s policies, where multiple states have their

own renewable standards. For example, the state of California has set itself a goal

of procuring 33% of its electricity by 2020 and 50% by 2030 [76]. Lastly, constraints

(3.12) and (3.13) enforce non-negativity on energy and reserve variables, and restrict

transmission investments to binary variables. To run a deterministic case, the weights

assigned to the scenarios, Pt,s, become zero for all, except for the selected scenario.

The difference between the above model and those from [64] and [22] is in the

depiction of generator operations. The aforementioned studies use non-chronological

hours and ignore inter-temporal constraints, whereas we include them, by embedding

the TRUC formulation (Section 2.5.4 from Chapter 2) into this two-stage stochastic

transmission planning model.

3This is a DCOPF approximation of the Optimal Power Flow (OPF) problem embedded within
the long-term transmission planning problem. Considering line-flow losses would modify this con-
straint. See references [74] and [75] for a full explanation of linearized DCOPF model, including
assumptions, approximations, and derivations from the ACOPF model.
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3.4.2 Transmission planning model with unit commitment

constraints

This is the two-stage stochastic planning model that is modified to include UC con-

straints. This is done by embedding the TRUC formulation from Section 2.5.4 into

the planning model from Section 3.4.1.

Min Pt,s

[∑
l,t,s

CZ
l,t,szl,t,s +

∑
b,g,t,s

CX
b,g,t,sxb,g,t,s +

∑
b,g,h,t,s

CY
b,g,t,sqb,g,h,t,s+

∑
b,h,t,s

V OLLb,t,slb,h,t,s +
∑

b,g,h,t,s

CSU
b,g,t,s

Qmin
b,g,t,s

pSUb,g,h,t,s +
∑

b,g,h,t,s

CSD
b,g,t,s

Qmin
b,g,t,s

pSDb,g,h,t,s

]
(3.14)

s.t., Constraints(3.3)− (3.5), (3.7)− (3.13)

pmin
b,g,h,t,s ≤ QPmin

b,g xb,g,t,s ∀b, g, h, t, s (3.15)

pmin
b,g,h,t,s ≤ qb,g,h,t,s ∀b, g, h, t, s (3.16)

rb,g,h,t,s + qb,g,h,t,s ≤ (1− PORg)(1− FORg)
pmin
b,g,h,t,s

QPmin
b,g

∀b, g, h, t, s (3.17)

rb,g,h,t,s ≤ Rg

pmin
b,g,h,t,s

QPmin
b,g

∀b, g, h, t, s (3.18)

pmin
b,g,h,t,s − pmin

b,g,h−1,t,s = pSUb,g,h,t,s − pSDb,g,h−1,t,s ∀b, g, h, t, s (3.19)

(
rb,g,h,t,s + qb,g,h,t,s − pmin

b,g,h,t,s

)
−
(
qb,g,h−1,t,s − pmin

b,g,h−1,t,s

)
≤ RPb,g

(
pmin
b,g,h,t,s

QPmin
b,g

− pmin
b,g,h,t,s

)
∀b, g, h, t, s

(3.20)
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(
qb,g,h,t,s − pmin

b,g,h,t,s

)
− (qb,g,h−1,t,s − pmin

b,g,h−1,t,s) ≥ −RPb,g

(
pmin
b,g,h−1,t,s

QPmin
b,g

− pmin
b,g,h−1,t,s

)
∀b, g, h, t, s

(3.21)

qb,g,h,t,s − pmin
b,g,h,t,s ≤

pmin
b,g,h,t,s

QPmin
b,g

−
pSUb,g,h,t,s
QPmin

b,g

∀b, g, h, t, s (3.22)

qb,g,h,t,s − pmin
b,g,h,t,s ≤

pmin
b,g,h,t,s

QPmin
b,g

−
pSDb,g,h,t,s
QPmin

b,g

∀b, g, h, t, s (3.23)

pmin
b,g,h,t,s, p

SU
b,g,h,t,s, p

SD
b,g,h,t,s ≥ 0 ∀b, g, h, t, s (3.24)

The objective of the planning model is to minimize investment costs of new trans-

mission and generation, operating costs of existing and new generators, monetary

penalties from lost load, and costs of generator start-up and shut-down. This is

given by the objective function (3.14). The new variable
pmin
b,g,h,t,s

QPmin
b,g xb,g,t,s

is equivalent to

the relaxed binary variable ug,h from the TRUC formulation of Chapter 2 (Section

2.5.4). The continuous non-negative variable pmin
b,g,h,t,s is upper-bounded by the must-

run (minimum-run) capacity of the generator, QPmin
b,g xb,g,t,s. This relationship is given

by constraint (3.15). Constraints (3.16) and (3.17) define the lower and upper-bounds

respectively on the energy produced from a generator in any given hour. Observe how

the latter constraint is different from constraint (3.2). Similar to the valid inequalities

from the previous chapter (Section 2.5.3), the RHS of constraint (3.17) depends on

the fraction of generator capacity running. Constraint (3.18) limits the quantity of

spinning reserve provided by a generator. The upper-bound on the spinning reserve

from a generator depends on the fraction of the capacity that is running, pmin
b,g,h,t,s.

Constraint (3.19) ensures that the additional capacity started up in hour h, is con-
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sistent with the values of the start-up and shut-down variables. Constraints (3.20)

- (3.21) are the inter-temporal ramping constraints. These constraints leave enough

head-room for reserves while ramping up, and ensure that the generator’s ramping

capability is consistent with the running capacity in that particular hour. Constraints

(3.22) and (3.23) ensure that the maximum output from a unit is consistent with the

capacity that is started-up or shut-down in that particular hour. Variables indicating

capacity that is running, started-up, and shut-down in a given hour are defined as

non-negative values in constraint (3.24).

3.5 Case study: WECC 21-zone network

The data-set used for this case study is a 21-bus representation of the Western In-

terconnection (the area managed by the Western Electricity Coordinating Council or

WECC). It is a reduced network derived from a 300-bus model of WECC, that was

developed by a team from the Johns Hopkins University (JHU) in collaboration with

a team from the Arizona State University (ASU).4 A map of this network is shown

in Figure 3.2. A detailed description of the data-set can be found in [77].

Chronological load data was sampled to find one day matching peak load from the

North-West (winter-peaking), one day matching peak load South-West US (summer-

peaking), and one day that matches WECC-wide average load. This brought our

4Yueyang (Jasmine) Ouyang, Jonathan Ho, Qingyu Xu, and Pearl Donohoo-Valett from JHU.
Yujia Zhu and Dan Tylavsky from ASU.
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Figure 3.2: 21-zone network representation of the Western Interconnection [1].

total sampled hours to 72 (three days). A load duration curve was constructed and

the number of hours with load greater than two standard-deviations away from the

average load were counted. This fraction (in a year) of peak-load hours was used to

assign weights to the sampled peak-days (assuming one day contains a maximum of

one peak-hour). The remaining weight was divided up equally among the hours of

the average day. Additionally, wind and solar data were scaled in the selected days

to match annual regional averages.
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3.6 Results from a deterministic case-study

In a deterministic model (as opposed to a stochastic or probabilistic model), the effect

of a single scenario is considered. All parameters in the model are treated as known,

with no uncertainty assumed about the future. In the following simple deterministic

example, using the 21-bus network and a two-stage deterministic model, we show how

UC affects long-term transmission and generation investments. The parameters that

we used for the deterministic case study are from the ‘Economic Recovery’ planning

scenario from the WECC Scenario Planning Steering Group study [78]. Details of

this scenario (and the others used in the stochastic case) can be found in Section 3.7.1

and [1].

3.6.1 Generator flexibility in the short-run (hours) affects

long-run (years) transmission plans: Changes in first

stage investments

In this section, we show that operational constraints indeed have the potential to

affect both the 1st and 2nd stage transmission and generation investments suggested

by the models.

Figure 3.3 shows the effects of operational constraints on Stage 1’s transmission

5These were filtered for values smaller than 10 MW.
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Figure 3.3: Changes in Stage 1 transmission investment: Left panel shows invest-

ments (wind farms in green and gas plants in blue) without UC and right panel shows

investments with UC. See Table 3.1 for generation investment changes.
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Zone Wind Gas CCGT

Alberta 0 -767

Colorado -26 0

Montana -424 0

Utah 0 -493

Wyoming & Colorado -154 0

Table 3.1: First-stage generation investment changes (With UC - Without UC) in

the deterministic case (in MW). A negative value means that less capacity is built

when UC constraints are added to the planning model.5

investments and Table 3.1 details the changes to Stage 1’s generation investments. In

Figure 3.3, on the left are the lines and (additional) generation that are built without

UC constraints (using the model from Section 3.4.1), while the right panel represents

investments with Unit Commitment (using the model from Section 3.4.2). We see

that one extra line is built today (in Stage 1, corresponding to the first 10 years) when

you add UC constraints to the planning model. This line (circled in green in the right

panel) is built in lieu of extra generation capacity that is built in if a LDC is used

(highlighted in the left panel of Figure 3.3 and detailed in Table 3.1). Uneconomical

wind farms in Wyoming, Montana, and Colorado along with gas plants in Alberta,

and the Wyoming & Colorado zone are built. With UC, we build less of these units

and instead build one extra transmission line (marked in green).
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Here, short-term operational constraints favor transmission as an alternative to

generation investment.6 This need not always be the case as transmission investments

are lumpy by nature (high fixed costs for a line and binary variables mean that partial

lines cannot be built). When investments are lumpy, transmission need not be the

only alternative to constrained generation. More flexible generation can be built (as

opposed to the high costs that will be incurred if a transmission line has to be built)

or existing generators can be operated more. In other cases, renewables can be built

either locally or elsewhere if congestion on the lines allows shipment of power to the

place it is needed. Indeed, in the following sections, we will see some of these results

under varying conditions.

3.6.2 Economic regret

If only a load duration curve is used, it is sufficient for the planner to know the

capacity of every plant. But to include short-term operational constraints into long-

term planning models, planners require estimates of start-up and shut-down costs,

minimum-run capacities, and a host of other generator operational details. This addi-

tional data procurement costs the planner - in terms of data collection and modeling

effort. In order to determine the circumstances under which use of the model is jus-

tified, we quantify the economic regret, or the loss of economic efficiency from using

a suboptimal transmission system (from the simple LDC model).

6In results not shown here, the second stage generation and transmission investments change as
well.
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We define economic regret as the cost difference between the UC planning model,

and the Stage 1 LDC planning model results applied to the UC planning model. It is

an estimate of the monetary cost the system incurs from basing first-stage investments

on the results of an inaccurate LDC model rather than the more accurate (UC) model.

There are three possible outcomes:

1. 1st stage decisions of the LDC planning model and UC model are the same =⇒

No economic regret.

2. 1st stage decisions differ, but the LDC first stage decisions result in the same

cost as the UC model solution when tested on the UC model. This means the

set of LDC first stage transmission investments is an alternate optima for the

UC model. =⇒ No economic regret.

3. 1st stage decisions differ, and the LDC first stage decisions result in a higher

cost than the UC model solution when tested on the UC model. This means

the set of LDC first stage transmission investments is a suboptimal solution for

the UC planning model. =⇒ Positive economic regret.

In the case study above, we found that the 1st stage transmission investments were

different in the LDC model when compared with the UC planning model (See Figure

3.3). One less transmission line was built, and when this set of suboptimal first

stage transmission investments was imposed on the UC planning model, the economic

regret was found to be $731 Million. This is 7% of today’s (Stage 1’s) transmission

68



CHAPTER 3. TRANSMISSION PLANNING WITH INTERTEMPORAL AND
GENERATOR OPERATIONAL CONSTRAINTS

investment cost.

So, in this case study, the planning committee needs to assess the additional

effort involved in moving to more accurate models that consider unit commitment,

against $ 731 M, which is the regret the decision makers potentially faces from using

less-accurate planning models.

3.6.3 Operations are more accurately depicted due to UC

constraints

In addition to generation and transmission investments, the overall energy generation

mix changes in terms of location and type of generators. As an example, Stage 1’s

major energy mix changes (with UC — without UC) are shown in Figure 3.4. In

Alberta, with UC, we observe an increase in Combustion Turbine (CT) generation

and a reduction in Combined Cycle Gas Turbines (CCGT) generation, when com-

pared to the LDC model’s generation mix. We see less coal operated in Arizona/NE

New Mexico while more coal operated in Western Wyoming and Wyoming/Colorado.

Overall, the imposition of UC constraints and costs causes the yearly generation mix

to shift from slow-ramping and inflexible coal generation to faster and flexible CCGTs

and CTs.

At the root of all these generation and transmission changes are differences in

unit-level generator operations (within the planning model), including the effects of

7Also see Table 6.2 in the appendix.
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Figure 3.4: Changes in Stage 1 operations by generator type and zone (With UC

minus Without UC).7

start-up costs, minimum-run, and ramp-rate constraints. Figure 3.5 illustrates unit-

level changes by comparing the operations of generators at a single bus (Colorado)

with and without UC constraints. It should be noted that the total output from

generators in Colorado differ between the with and without UC cases (Figure 3.5).

Coal-powered units are slow-ramping and, because of their operating constraints,

cannot be shut down for a few hours in between operations. In Figure 3.5, we can

see the LDC model starts up and shuts down the coal capacity twice in a day, and

ramps it rapidly. This is not actually feasible. So, including UC constraints rectifies

the traditional LDC models’ representation of coal operations. We note more uniform

ramping characteristics, and reduced short-span shutdowns. These basic changes in

operations, such as the ones shown in Figure 3.5, occur in all buses, stages, and
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Figure 3.5: Example of how UC affects short-runs operations depiction. These are

operations in Colorado without and with UC. Results are from Stage 1 operations

from a deterministic ‘Economic Recovery’ case. We see that UC now forces the model

to make coal plants’ dynamics more realistic in terms of starting up, shutting down,

and ramping.
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scenarios simulated, and they have the potential to change the relative economic at-

tractiveness of operating different technologies. For example, as we see from Figure

3.5, imposing UC constraints makes coal less valuable (less flexible), and either in-

creases its costs (generate more when not needed, as in the second figure) or causes

it to be used less in favor of more flexible technologies (not shown here). This change

in technologies’ relative economic attractiveness, can in turn, change the investments

needed to economically meet demand.

3.6.3.1 Where and why do we see these changes? - The example of coal

units and carbon prices

As we will show in this section, UC’s potential to affect long-term investments is

the greatest when slow-moving generators (e.g. coal units) appear in the energy mix

and are cycled frequently. For example, consider the effect of increasing the carbon

tax. As Figure 3.6 shows, as carbon taxes increase, coal’s capacity factor decreases,

indicating it is gradually priced out of the energy mix.8 The UC constraints interact

with the tax in interesting ways. Figure 3.7 shows how the addition of UC constraints

changes coal units’ capacity factors at each level of carbon tax. A positive change

implies that with UC constraints, coal is being run more and a negative change implies

that coal is being run less.

At low carbon taxes ($0 and $20/ton), coal usage increases with UC constraints.

8The deterministic model was re-run with different carbon price trajectories for CO2. For the
previous results, a carbon tax of $59/ton was used.
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Figure 3.6: Effects of carbon tax upon the capacity factor (CF) of coal plants (2024,

WECC 1 Economic Growth scenario, no unit commitment constraints)

This is because, in these cases, coal is cheap, and since it carries no/low penalties,

coal-powered units operate for longer than without UC due to constraints on shutting-

down and ramping.9 We see this effect in Figure 3.7 above. For medium carbon taxes

($30 and $59/ton), coal is used less than the case without UC. In these cases, coal

plants are not started up as often as it would have been without UC. For the highest

carbon tax ($100/ton), the coal unit is run longer. This is because at this high penalty,

it is being used only as a peaker unit, and at these times, the ramp constraints keep

it on for longer.

What is interesting are the cases when UC shows the potential to change invest-

ments. Today’s (Stage 1) transmission investments change with the addition of UC

constraints only in the medium carbon tax range (marked in green in Figure 3.7).

This occurs when coal is started-up less frequently and, when running, is being cy-

9The coal results are all only for existing units. We assume new coal units cannot be built in
WECC.
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Figure 3.7: Effects of unit commitment constraints upon the capacity factor (CF) of

coal plants under alternative CO2 prices, and the resulting impacts on transmission

investments. A positive value indicates that coal is operated more with the addition of

UC constraints as compared to without. Green denotes change in Stage 1 transmission

plans.
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cled. This may be intuitive because, at very low and very high carbon taxes, coal

is either completely base-loaded (no cycling) or completely priced out of the energy

mix (very little overall share of the mix; used just for peak). In both these cases, UC

constraints do not matter as much because the units are rarely ramped or started up.

It is in the mid-ranges that carbon tax changes investments because this is when coal

plants (and other slow-moving inflexible units) are being cycled enough while hav-

ing a sizable share in the energy mix to make a difference to the long-term relative

attractiveness of technologies when UC is considered.

3.6.3.2 Economic regret faced by the system at different mid-range

carbon taxes

In the mid-range of carbon taxes, as shown in Section 3.6.3.1, there is a strong

possibility that the inclusion of UC will change Stage 1 transmission investments.

We showed the economic regret faced by the system at one carbon tax ($59/ton in

Section 3.6.2). In this section, we calculate the economic regret10 faced by the system

at different mid-range carbon taxes, to further understand how the extent of coal unit

cycling affects transmission investments.

Table 3.2 shows that as carbon tax increases, economic regret first increases and

then decreases.11 Again, this is intuitive as units are slowly moving up the merit-order

10Here, economic regret is defined as the cost difference between the UC planning model, and the
Stage 1 transmission investments from the LDC planning model imposed on the UC planning model.

11This economic regret is calculated at the given carbon taxes and the effect of UC might change
under different carbon taxes.
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Carbon tax ($/ton)
Economic Regret (ER)*

(in $ Million)
ER (as a percentage of Stage 1
transmission investment cost)

45 177.5 1.3 %

50 329.4 3.2 %

59 731.0 7 %

65 321.1 2.3 %

70 334.7 2.4 %

Table 3.2: Economic regret for medium range carbon taxes calculated as a per-

centage of Stage 1 transmission investment cost without UC. It should be observed

that this economic regret is calculated at the given carbon taxes and the effect of

UC might change under different carbon taxes. For example, the same two sets of

transmission investments (one each from a model with UC and without UC) can

result in different economic regrets at different carbon taxes.

* Calculated using the assumed carbon tax.
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— from being completely baseloaded to being used as peakers. As they move up, the

amount they are cycled first increases and then decreases. This further confirms that

it is the intersection of inflexible generation with cycling that causes UC to change

investments.

3.7 Five-scenario stochastic two-stage program

The above deterministic model had only one scenario.12 We now add four scenarios to

this,13 and show results from the corresponding two-stage stochastic program under

two sets of weights assigned to each scenario. Details of these scenarios and probabil-

ities are given in Section 3.7.1. The goal of the stochastic model is to determine if UC

still has the potential to change the transmission plans compared to a LDC model

when the future looks uncertain. In this model, we explicitly take that uncertainty

into account.

3.7.1 Scenarios’ description and probabilities used

The five scenarios we use were developed by the WECC Scenario Planning Steering

Group [78]. Every uncertain future parameter (natural gas prices, carbon tax, load

growth, state RPS, federal RPS etc.) could take on three values - Low (L), Medium

(M), and High (H), depending on the scenario. Table 3.3 gives an overview of the

12Multiple solutions were discussed, each being from a deterministic model with a different carbon
tax.

13Table 3.4 shows the probabilities we use.
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Scenarios

Uncertain Parameters Base Case WECC 1: Econ-
-omic Recovery

WECC 2: Clean
Energy

WECC 3: Short-Term
Consumer Costs

WECC 4: Long-Term
Societal Costs

Gas Prices M H M M L

Carbon Prices M M H L H

Load Growth M H H L L

State RPS M M H L H

Federal RPS M M H M H

Wind Capital Cost M H L H L

Geothermal Capital Cost M M L M M

Solar Capital Cost M M L H M

Demand Growth Rate M H H L L

In-state RPS M M L M H

IGCC with CCS Capital Cost M M L M M

Table 3.3: Levels of uncertain parameters in each of the five scenarios. L, M, H

indicate Low, Medium, and High respectively. The values can be found in Table 4.1

of [1].

five scenarios. The values of these levels can be found in Table 4.1 of [1].

These five scenarios were considered by WECC in their 2013 transmission plan

[78]. ‘Base case’ is a Business-As-Usual scenario, where all parameters take the

medium-level values. In ‘Economic Recovery’, there is high load growth (includ-

ing high growth of peak demand). Gas prices and wind capital costs are also high. In

the ‘Clean Energy’ scenario, it is assumed that capital costs of low-carbon sources of

energy such as wind, geothermal, and solar are cheaper to build. In addition to high

carbon prices, high State and high Federal RPS standards incentivize new renewable

sources development. In ‘Short-term consumer costs’, economic growth in Western
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No. Scenarios Set 1 Set 2

1 Base Case 0.2 0.2

2 WECC 1: Econ Recovery 0.2 0.1

3 WECC 2: Clean Energy 0.2 0.1

4 WECC 3: Short-Term Consumer Costs 0.2 0.47

5 WECC 4: Long-Term Societal Costs 0.2 0.13

Table 3.4: Two sets of probabilities were tested with and without UC Constraints

US is restrained and proven and low-risk technologies are favored [78]. Wind and

solar plants are more expensive to build, whereas load growth and carbon prices are

low. In ‘Long-term societal costs’, consumers are willing to pay a higher cost for more

environmentally friendly sources of energy. This is characterized by reduction in gas

prices, increase in price of carbon and aggressive RPS requirements. See Table 3.3

for a comparison of the scenarios.

Table 3.4 shows the two sets of probabilities that are used in the results here. In

Set 1, all scenarios are equally weighted, while in Set 2, the probabilities are a result

of a moment-matching linear program that minimizes the squared error between the

expected mean of seven parameters in all scenarios, and the mean of the parameters

across the five scenarios. An additional constraint in this LP is that every scenario

has to have a minimum assigned probability of 0.1.14

14This moment-matching was done by Qingyu Xu, a graduate student at The Johns Hopkins
University. More details of the moment-matching method can be found in [1].
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3.7.2 Does UC change stochastic 10-year and 20-year

investments?

We find that Unit Commitment (UC) indeed has the potential to change the trans-

mission and generation investment decisions from a two-stage stochastic program that

uses LDC to depict operations. First, we look at Stage 1 investments change under

both sets of probabilities shown in Table 3.4.

3.7.2.1 Effect on stage 1 investments

In Figure 3.8, blue lines indicate 10-year transmission investments recommended by

both models — one using Set 1 weights and the other using Set 2 weights. Under

Set 1 weights, there is no change in today’s transmission investments. All the lines

that are recommended without UC are also recommended with UC. These lines are

shown in Figure 3.8a.15. We do see differences in generation investment though. Less

CCGT is built and (slightly) more wind is built. These values are shown in Table

3.5.

From Figure 3.8b, we see that under the second set of weights (Set 2), Unit Com-

mitment constraints favor building a transmission line (shown in green), and building

gas and wind plants in Texas/New Mexico and then shipping power to Southern Cali-

fornia instead of building gas units locally (as is the case without Unit Commitment).

We also see the associated generation investment changes in Table 3.6. Overall, less

15Only one panel is shown as line investments are the same with and without UC
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(a) No change in transmission investments with and without UC (Set 1 probabilities)

(b) With UC constraints (right), one additional line is built instead of local generation
under an alternative set of probabilities when compared to the without UC case.

Figure 3.8: 10-year transmission investments (here-and-now decisions) with and
without UC (Set 2 probabilities).

81



CHAPTER 3. TRANSMISSION PLANNING WITH INTERTEMPORAL AND
GENERATOR OPERATIONAL CONSTRAINTS

Zone Wind Gas CCGT

Alberta 0 -767

Montana -54 0

Texas & New Mexico -161 0

Western Wyoming 0 33

Wyoming & Colorado 259 0

Table 3.5: Set 1 probabilities: 1st stage generation investment changes (with UC

- without UC). Less investment in CCGT units and less investment overall. Wind

investment changes geographically.

gas capacity (CCGT) is built and more wind capacity is built with UC than without.

Summarizing the impacts on 1st stage transmission and generation investments,

UC affected Stage 1’s transmission investments only under one set of probabilities (Set

2), but generation investment was affected under both sets. Although the magnitudes

varied, overall, totaling investments over the WECC-region, less gas was invested in

and more wind was favored. Furthermore, with Set 2 probabilities, we saw that UC

can not only favor transmission as an alternative to local generation investment, but

result in more renewable sources investment than without UC.
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Zone Wind Gas CCGT

Alberta 0 -774

Montana -57 0

Southern California 0 -3750

Texas & New Mexico 3736 1220

Western Wyoming 0 40

Table 3.6: Set 2 probabilities: 1st stage generation investment changes (with UC

- without UC). Less investment in CCGT units and more investment in wind is

observed.

3.7.2.2 Effect on stage 2 investments

When UC constraints are added, Stage 2 generation and transmission investments

change as well. As an example of these changes, Figure 3.9 shows the second-stage

transmission changes for the ‘WECC 1: Economic Recovery’ scenario under both

sets of probabilities. From the left panel of Figure 3.9, we see that under one set of

probabilities (Set 1), UC builds one additional line (connecting Texas/New Mexico

and Wyoming). At the two ends of this line, we see that less gas and wind is built

in Wyoming and less gas, but more wind is built in Texas/New Mexico. Across the

entire region though, less wind, less solar, and less CCGT investment takes place with

UC when compared to without UC. There is also a geographical change in where these
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Figure 3.9: 20-year transmission investments (wait-and-see decisions) with and

without UC using two sets of probabilities for the ‘WECC 1: Economic Recovery’

scenario. Left panel: Green line indicates that the line is built with UC constraints,

but not without. These are using Set 1 probabilities. Right panel: Red line indi-

cates the line that is not built with UC constraints, but is built without, i.e., it is a

sub-optimal line. These are using Set 2 probabilities.

investments take place. This is shown in Figure 3.10.16

In terms of transmission changes under Set 2, one less line is built with UC

than without. It is interesting to note the effects of UC on 2nd stage generation

investments under the second set of probabilities (Set 2) — The overall pattern of

less generation investment is similar to Set 1. Here, it is less wind, less CCGT,

and less CT investment. This is shown in Figure 3.11. But along with geographical

16Data is given in Table 6.3 of the appendix.
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Figure 3.10: Second stage generation changes with Set 1 probabilities. Solar in-

vestments change geographically, more wind investments, and gas units change oper-

ations. The data is shown in Table 6.3 of the appendix.
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Figure 3.11: Second stage generation changes with Set 2 probabilities. Gas opera-

tions change geographically and wind investment is being concentrated.

changes, preferences for technologies change at each bus. For example, consider the

Texas/N Mexico zone (bottom-right) in Figure 3.9. We see that under Set 1, at this

location, UC prefers more wind and less CCGT, while under Set 2, UC builds less

wind and more CCGT. Stage 2 generator investments, under Set 2 probabilities, with

and without UC are shown in Tables 6.5 and 6.4 of the appendix respectively.

Summarizing the effects of UC on second stage generation investments, overall,

less generation is invested in. When investments happen with UC, they are at different

locations when compared to those from a no UC model. We also saw that UC affects

second stage transmission investments differently under different scenario-weights.

Under Set 1, it favored building an extra line, while under Set 2, it favored building one
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less. For convenience, the effects of UC on generation and transmission investments

in the five-scenario 2-stage stochastic model are summarized in Table 3.7.

Set 1 Set 2

Stage 1 Transmission No Change 1 extra line

Stage 1 Generation
More wind
Less CCGT

More wind
Less CCGT

Stage 2 Transmission 1 extra line 1 less line

Stage 2 Generation

Less solar
Less wind
Less CCGT

Less wind
Less CCGT
Less CT

Table 3.7: Changes in stochastic solutions based on the probability set.

3.8 Conclusions

In conclusion, we showed how to represent chronological operational constraints within

long-term multi-stage transmission planning models. We also showed that Unit com-

mitment has the potential to change today’s (Stage 1) and future (Stage 2) trans-

mission and generation investments, potentially increasing costs, as measured by

economic regret. This regret is the economic cost of basing today’s transmission

investments on results from an inaccurate LDC model. Specifically, we find that:

• If slow-moving generators are expected to be in the energy mix with the po-

tential of being cycled (for example, in scenarios with a medium carbon-tax

where coal is cycled), it is important to consider UC constraints as these are
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the scenarios where transmission investments are most likely to change.

• Depending on the solar, wind, hydro profiles, the changes to investments can

be as follows:

– Transmission can be considered an alternative to generation.

– The set of generation investments shifts to more flexible units.

– A different mix of generators (technology + geographically) can be built,

and power can be shipped to load-centers instead of local generation in-

vestment.

– More investment in renewable power generation is favored.

• There is a cost to not considering operational constraints in planning. In the

simple deterministic ‘Economic Recovery’ case, this economic regret was found

to be approximately $700 million when one of the eight transmission lines is

foregone.

• The solution is sensitive to factors that affect the merit-order (e.g., Carbon tax,

different weights to scenarios).

• Although this is not a focus of this chapter, I confirm that considering uncer-

tainty is important [22]. Stochastic 1st stage investments can be different from

deterministic 1st Stage investments, confirming findings in previous papers as

well [22] [65] [64].
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• Stochastic 1st stage investments with UC can be very different from each other

depending on our estimates of scenario probabilities.

Overall, based on the results in this chapter, we recommend including Unit Com-

mitment constraints in long-term planning models. The benefits of including UC are

potentially the highest, in grids where the energy mix contains slow-moving genera-

tors that are cycled. We find that the recommendations from planing models which

consider future uncertainty, also are affected by UC constraints.
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Chapter 4

An Equilibrium Model For

Noncooperative Interregional

Transmission Planning

4.1 Abstract

Optimization methods for regional transmission planning overlook the boundaries be-

tween transmission planning entities and do not account for lack of coordination. The

practical result of those boundaries is inefficient plans because one planning region

may disregard the costs and benefits its network changes impose on other regions. We

develop a bi-level model that represents multiple noncooperative transmission plan-
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ners in the upper level together with consumers and generators for the entire region in

the lower level. We find that the transmission plans from such a framework can differ

significantly from those from a cooperative framework and have fewer net benefits.

Importantly, we find that cooperation among transmission planners leads to increased

competition among generators from adjoining regions, which in turn leads to more

efficient generator investments. We prove that the system-wide benefits from coop-

eration among transmission planners is always positive. We then calculate the value

of this cooperation for a small test case with two transmission planners, while also

identifying the market parties who gain - and those who lose - from this cooperation.

4.2 Notation

4.2.1 Sets and Indices

K Set of technologies k

B Set of buses b

H Set of hours h

B(i) Set of buses in region i

L(i) Set of transmission lines owned by ISOi

K(b) Set of generators at bus b
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b ∈ L(i) Set of buses incident upon L(i)

l ∈ B(i) Set of lines incident upon B(i)

Si Seam lines of region i

4.2.2 Parameters

Db,h Demand [MW]

BE
l Susceptance of existing line l

BN
l Susceptance of possible new line l

Mb,l Line Incidence Matrix

FE
l ;F

E

l Bounds on flow on existing line l [MW]

FN
l ;F

N

l Bounds on flow on new line l [MW]

CXb,k Annualized cost of building tech k at b [$/MW]

CYb,k Marginal cost of generating energy [$/MW]

CZl Annualized cost of building line l [$]

Wb,k,h Capacity factor of unit k at bus b

Xb,k Existing capacity of unit k at bus b [MW]

Xb,k Maximum possible capacity of k at b [MW]
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δ Discount factor

N Number of sampled hours

P 8760/N

TI Length of time (y) after today when generation and transmission investments

come online

TO Length of time (y) for which operations are assumed after investments come

online

V OLLb Value of Lost Load [$/MW]

4.2.3 Variables

xb,k Capacity of technology k built in bus b [MW]

yb,k,h Energy output from k in hour h and bus b [MW]

zl {0, 1}: 1 if line l is built

fE
l,h flow on existing line l in hour h [MW]

fN
l,h flow on new line l in hour h [MW]

lb,h Load curtailed b and hour h [MW]

θb,h Phase angle in bus b and hour h

pb,h Price at bus b in hour h [$/MWh]
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4.3 Introduction

4.3.1 Problem definition

In 1996, the Federal Electricity Regulatory Committee (FERC) issued orders 888

and 889 that resulted in the unbundling of generation, transmission, and distribution

assets [79]. Now, in the US, no one entity controls all aspects of the market, and

administrative bodies called the Independent System Operators (ISOs) operate the

energy market as a neutral third party by taking supply side bids from generators

and demand side bids from consumers. An additional responsibility of ISOs is to

plan for transmission expansion. But since they are not responsible for generation

planning, ISOs have to take generators’ and consumers’ response to network additions

and transmission prices into account when evaluating potential grid reinforcements

[65]. On the other hand, in regions where utilities are still vertically integrated,

transmission planning is undertaken by the utilities themselves.

Transmission planning is inherently complex. Several factors contribute to this

complexity, including:

1. Transmission upgrades are costly. A poor planning process might result in

over-investment (“stranded” assets whose costs exceed their benefits) or under-

investment (which can result in inefficient operations, such as extensive wind

curtailment, as in Texas in the 2000s [18] or presently in China [19] and solar
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curtailment, as in India now [20]), as well as inefficient siting of generators.

2. Power flows are governed by the laws of physics (Kirchhoff’s laws).

3. One region’s grid and dispatch decisions affect other regions’ costs and benefits.

Notwithstanding these difficulties, US regional transmission planning entities (see

Fig. 4.1) each have planning processes for transmission investment in their control

regions. But these processes usually focus on the benefits of investments to the plan-

ner’s own region without considering (a) the reactions of generator investment to

these investments (i.e., no transmission-generation co-optimization), or (b) the ef-

fect of the proposed lines on dispatch and transmission investment in other regions

(which in turn may affect the planner’s own region). Examples of such processes

are [80] and [81]. In fact, FERC order 1000 [82] recognizes the latter problem by

explicitly obligating public utility transmission providers to set-up processes that can

identify “possible transmission solutions that may be located in neighboring transmis-

sion planning regions”. The adoption of this order by FERC is an acknowledgment

of the need to consider spillover benefits and costs in other regions, including their

quantification and use as a basis for cost allocation. But current interregional trans-

mission planning initiatives such as [83] and [84] often ignore the political boundaries

within which individual ISOs operate, focusing on identifying lines that “benefit”

the entire system without recognizing that it may be difficult to finance and permit

lines that benefit multiple regions. For instance, [83] develops transmission plans for
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Figure 4.1: Transmission planning regions in USA [2].

the western interconnection using simple production costing and implicitly assuming

a single planner. The Eastern Interconnection Planning Collaborative (EIPC) [84]

does the same for its region.

Many researchers have also proposed solving a single optimization problem to

identify transmission reinforcements that would enhance the system’s “total economic

surplus” or “social welfare”. This is generally done by solving a single cost minimiza-

tion Mixed Integer Program (MIP) that minimizes the cost of generator investments,

transmission investments, and generator dispatch. Such a cost minimizing model

is used because under certain assumptions, it can be shown that the investments

resulting from cost minimization are same as the investments from multiple profit-

maximizing players’ problems. Some of these assumptions are:

1. The players all behave competitively, i.e., they act as if they maximize their

individual profit subject to fixed prices.
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2. They all hold the same beliefs about future load growth, fuel prices, and envi-

ronmental policies.

3. They all take decisions simultaneously.

4. There is a single market operator who is also the grid planner.

5. There is no significant spillover of benefits or costs to neighboring regions.

This equivalence can mathematically be proven by showing that the Karush-Kuhn-

Tucker (KKT) conditions of the single problem and the individual players’ KKT

conditions are the same. More details can be found in [85].

But using such a model for a large region encompassing multiple transmission

planning entities might not be a good way to identify lines that will end up getting

built, given regional planners’ imperfect cooperation and focus on benefits within their

region. Evidence for the divergence of local and market-wide benefits is provided by

some promising instances of interregional cooperation and information exchange in

transmission planning. For example, MISO and SPP had to re-evaluate proposed

interregional lines upon observing that the estimates of some lines’ benefits differed

significantly when evaluated by regional models versus an interregional model [86].

Therefore, there is a need for modeling frameworks that explicitly take into account

this inconsistency between one subregion’s incentives and the overall benefits to all

the subregions. Addressing this inconsistency is considered difficult. For example,

FERC commissioner at the time, Philip Moeller, has been quoted as saying, “There

97



CHAPTER 4. AN EQUILIBRIUM MODEL FOR NONCOOPERATIVE
INTERREGIONAL TRANSMISSION PLANNING

are so many benefits to interregional transmission, but they’re so hard to identify and

to figure out how to get them built...but it’s where there’s a lot of inefficiencies.” [87].

Models that identify transmission lines that get built when regional planners do

not cooperate with each other can serve as a way to delineate the benefits each

regional planner may gain by cooperating with other regional planners. At the same

time, such models can be used to identify different side payment arrangements among

the planners that could result in benefits for all regions (a strict Pareto improvement).

In this chapter, we develop such models representing centralized and noncooperative

planning processes, and compare their results.

4.3.2 Relationship with previous work

A classic paper in multi-player transmission expansion is [88] which models different

State Electricity Boards in India playing a cooperative game (with side payments

amongst the states), where the objective of each state is to maximize its gain by

choosing either to act on its own or join a coalition. The drawbacks of this study

are that the gains of the coalitions and players are known beforehand and are not

considered endogenous to the problem. Furthermore, each state is modeled as con-

trolling both the generation and transmission within its boundaries. While this was

(and still is) true in India, much of the US is now deregulated, with generators sep-

arated from transmission operators. Another example is [89], which also looks at

coalition formation when being in a coalition means sharing the costs of building
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transmission lines connecting the coalition’s member regions. Unlike the models we

propose, that study does not take generators’ response to transmission investments

into account, and the only transmission decisions made by the model concern lines

connecting different regions, and not lines within a region.

A more recent study dealing with multiple planners is [90] where the authors

propose a three-stage equilibrium model to identify transmission investments that

result from a game among different planners. The study assumes that there is a

supra-player at a level above the planners whose objective is to invest in cross-border

transmission lines that maximize the welfare of the interregional system and who

correctly anticipates how each planner will react to its proposed plans by investing

in its regional non-seam lines. In this chapter, we present a more general framework

in which every potential line addition is the responsibility of just one of the non-

cooperative planners with no supra-player, and it can be easily extended to depict

multiple cost-sharing arrangements. We also consider generators’ reaction (investing

in generation) to the transmission investments being made by the regional planners.

Furthermore, ref. [90]’s assumptions might lead to two regions being forced to build

and share the costs of a line which neither of them would want to build in the absence

of the supra-player. This cannot happen in our model. In addition to this, while [90]

treats transmission investment decisions as continuous variables, we treat them as

discrete i.e., it is not possible to build fractions of a line.
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4.3.3 Scope

We address the need for a model that represents the independence of planners in

different regions by modeling multiple players in the market (ISOs, generators, and

consumers) while also recognizing that individual regional planners have their own

planning processes that focus primarily on benefits for their own region. We model

this interaction as a Nash noncooperative game.

Our models and results are organized as follows. In section 4.4, we develop the

mathematical structure of a single regional planner’s optimization problem where the

goal of the ISO is to maximize the surplus of its region. That surplus is defined as the

combined surplus of the generators and consumers in the region and the planner’s

own surplus (Here, for simplicity, we generalize the concept of a regional planner

to that of an ISO where the ISO controls investment in transmission lines in its

control region and its surplus arises from its operation of the spot markets.) These

problems are structured as Mathematical Programs with Equilibrium Constraints

(MPECs). In section 4.5, we expand this model to the case where there are multiple

regional planners who simultaneously (but separately and noncooperatively) make

their individual investment decisions, each anticipating the spot market’s reaction

to their decisions. This problem has the structure of an Equilibrium Program with

Equilibrium Constraints (EPEC).

Then in section 4.7, in a case-study using a 17-bus system based on the CAISO
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network, we show how this multi-planner EPEC can be solved. Consistent with

the Nash noncooperative game framework, this is done assuming that each region

assumes that other regions do not change their strategies (the transmission lines they

build). We then consider whether the transmission plans differ from a noncooperative

planning process differ from plans based upon a single-central planner. We also ask

what the value is, if any, of regional planners cooperating with each other when

considering transmission investments.

4.4 Single-ISO MPEC: Non-cooperative

transmission planning

We start by modeling a single regional planner’s (ISO’s) problem as a co-optimization

in which the ISO makes transmission investments anticipating how generators and

consumers (in all the regions) respond to those investments. Generators respond

to transmission investments by building generation capacity they see as profitable

and operating their units economically. Consumers respond by consuming energy

(demand is assumed to be inelastic here, but more general formulations can have

elastic demand).

The ISO’s objective is to maximize the economic surplus of all players within

its region. We consider this to be a combination of the consumers’, generators’,

and the ISO’s own economic surpluses. Consumer surplus can be thought of as the
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monetary gain by consumers from buying power at prices less than the maximum they

would have willingly paid.1 Generators’ profit can similarly be thought of as their

net monetary gain from selling power at prices higher than what they would have

willingly produced at minus expenditures from new generation capacity investments.2

The ISO only controls line investments within its control-region and its surplus can

be thought of as its net monetary gain from acting as a price-taking spatial arbitrager

and transmission investor. We arbitrarily allocate any lines connecting buses in two

regions to one of the two regions.

The structure of the problem lends itself naturally to a hierarchical model where

the regional planner (ISO) is in the upper level making decisions knowing that its

objective function (the regional surplus) is affected by outcomes of the generation

investment and spot market equilibrium model in the lower level. So, the problem

facing each ISO has the structure shown in Fig. 4.2. The subscript i in ISOi indicates

this is a single region’s optimization problem.

These bi-level hierarchical problems are also called MPECs since a portion of the

ISO’s constraints corresponding to market operations is itself an equilibrium problem

[91]. Bi-level problems have been used to depict the structure of leader (here, the

ISO) and followers (here, generators and consumers in the entire market) since at

least 1934, when the economist von Stackelberg published his book Market Structure

1Consumer surplus is the integral of the consumers’ demand function from 0 to the quantity (q)
purchased, minus the cost of purchasing q.

2Producer surplus is the difference between what the producers got paid for selling quantity q
to consumers and the sum of the integral of their supply curve from 0 to q and expenditures from
generator investments.
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ISOi Upper Level

Generators ∀i

Consumers ∀i
Lower Level

Figure 4.2: Hierarchical structure of a single region’s transmission planning problem.

Regioni (its planner) is in the upper level and the generators and consumers of the

entire market (all regions) are in the lower level.

t

zil

t

xb,k

t+TI

yb,k,h
TO

Figure 4.3: Time line of transmission investments, generation investments, and

system operation

and Equilibrium [92] [93]. Therein, he described the hierarchical problems that came

to be known as Stackelberg games, which are sequential games in which the leader

moves first knowing how followers would react. The followers then react naively,

taking prices as exogenous not realizing that their actions affect market outcomes.

In the U.S. power sector, the need for such hierarchical equilibrium models has

increased since the market was unbundled [94]. Now there are multiple players in the

market, each trying to make the best decisions possible for themselves while in some

cases anticipating other players’ reactions. The structure of MPECs naturally fits

many of these problems. For instance, [95] uses MPECs to analyze market power in
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oligopolistic power markets and [96] uses them to model optimal bidding strategies by

generators in the day-ahead energy market. [97] models and solves an MPEC where

in the upper level, a strategic generator makes investment and operation decisions

anticipating how the market clears in response to her decisions. Similarly, [98] also

models a strategic generator looking to invest, but the generator now faces uncertainty

regarding rival generators’ actions. When transmission operators are explicitly mod-

eled in multi-level models, they are generally modeled as a single entity controlling

all regions [99] or as the spot market operator in the lower level [100].

We now present our lower and upper level formulations for the single-ISO case in

sections 4.4.1 and 4.4.2 respectively.

4.4.1 Lower-level problem: Generator investments and

energy market equilibrium

The lower-level problem is a manifestation of the ISO’s belief that in the future (once

it commits to investing in the lines it plans to invest in and communicates that to

the lower level), the generation market operates based on certain assumptions. These

assumptions were listed above (Section 4.3) and they allow the lower-level player

problems (Generators and Consumers) to be combined into a single cost-minimization

optimization (a linear program, LP) [85].3 Their lower-level equilibrium problem is

as follows (dual variables are shown to the right of constraints):

3This is the case if demand is considered to be inelastic. If demand is linear, it is a quadratic
program (QP), and if elastic, it is an nonlinear program (NLP) [101].
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Min
∑
b,k

CXb,kxb,k + P
[∑
b,k,h

CYb,kyb,k,h +
∑
b,h

V OLLblb,h

]
(4.1)

s.t.
∑

k∈K(b)

yb,k,h −
∑
l

Mb,l(f
E
l,h + fN

l,h) + lb,h = Db,h : (pb,h) ∀b, h (4.2)

FE
l ≤ fE

l,h ≤ F
E

l : (ξ−l,h, ξ
+
l,h) ∀l ∈ E, h (4.3)

z∗l F
N
l ≤ fN

l,h ≤ z∗l F
N

l : (β−
l,h, β

+
l,h) ∀l ∈ N, h (4.4)

fE
l,h −BE

l

∑
b

Mb,lθb,h = 0 : (λE
l,h) ∀l ∈ E, h (4.5)

−(1− z∗l )M ≤ fN
l,h −BN

l

∑
b

Mb,lθb,h ≤ (1− z∗l )M : (λN−
l,h , λN+

l,h ) ∀l ∈ N, h (4.6)

0 ≤ yb,k,h ≤ Wb,k,h(xb,k +Xb,k) : (φ−
b,k,h, φ

+
b,k,h) ∀b, k, h (4.7)

0 ≤ xb,k +Xb,k ≤ Xb,k : (α−
b,k, α

+
b,k) ∀b, k (4.8)

0 ≤ lb,h ≤ Db,h : (ν−
b,k, ν

+
b,k) ∀b, h (4.9)

The lower level is a DCOPF approximation [74] of the transmission-constrained mar-

ket equilibrium problem with generation investment.4 The lower-level objective is to

minimize the cost of operating existing and new generation, investing in new genera-

tion, and from lost load over the planning horizon.5

Constraint (4.2) ensures that demand is met at every bus in every hour, or that

4The assumptions on which this model is based are listed in Section 4.3 and in [85].
5For simplicity, we assume that both generation and transmission investments are decided today,

i.e., as soon as the new transmission plans are announced, generators react and decide their invest-
ments accordingly. We further assume their construction time is the same and they come online
after TI years. We then assume the system is operated for TO years after the investments come
online (Fig. 4.3). The model can be easily changed to reflect alternative assumptions without loss
of generality.
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a loss in load occurs and is penalized. Constraints (4.3) and (4.4) restrict flows on

existing and new lines to be within their thermal limits. Constraints (4.5) and (4.6)

ensure that line flows on all lines obey Kirchhoff’s Voltage Law (KVL). Constraints

(4.7) - (4.9) impose upper bounds on generation output, investment and load cur-

tailment. For simplicity, active power losses on lines are neglected, although other

Stackelberg models include them [102].

The dual variable of the power balance constraint at each bus b, pb,h, is its Lo-

cational Marginal Price (LMP) in hour h. The asterisks on transmission investment

variables z∗l in constraints (4.4) and (4.6) indicate that they are viewed by the lower-

level problem as fixed at the values decided by the upper level. Note that since load

can be curtailed, the lower-level problem is feasible for any feasible solution, ẑl, of the

upper level problem.

4.4.2 Upper Level Problem: ISO maximizing surplus of

players within its region

The above optimization problem [(4.1) - (4.9)] defines the reaction of generators and

the energy market given transmission investment z∗l from the upper level. The leader’s

(regional ISO’s) objective (4.10) is to maximize the total surplus within its region i,

subject to this reaction.

The upper level problem is given in equations (4.10) - (4.12).
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Max P
[ ∑

h
b∈B(i)
k∈K(i)

(pb,h − CYb,k)yb,k,h +
∑
h

b∈B(i)

(V OLLb − pb,h)Db,h−

∑
h

L∈L(i)

(fE
l,h + fN

l,h)
∑

b∈B(L(i))

Mb,lpb,h

]
−
∑
l∈L(i)

CZlzl (4.10)

s.t., zl ∈ {0, 1} (4.11)

The equilibrium problem [(4.1)− (4.9)] (4.12)

The surplus of a region is the total surplus of the region’s producers, consumers,

and the ISO’s own surplus. In the objective (4.10), the regional generators’ surplus

is the profit they make by selling their marginal-costed production at their respective

bus LMPs. The consumer surplus is the benefit from load served (not curtailed)

minus expenditures, and the ISO’s own surplus is from congestion rents. Congestion

rent is the money collected by the owners of the rights to a transmission line (in this

chapter, the ISO). Typically, this amount is equal to the flow on the line times the

energy price differential across the line [103]. The interpretation here is that the ISO

collects congestion rents and passes them on to consumers in its region. Equation

(4.11) constrains line investment variables to binary variables. The ISO’s strategic

planning model is constrained by the lower-level solution given by (4.12).
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4.4.3 Solving the individual ISO’s MPEC

Bi-level MPECs such as the one described in (4.10) - (4.12) are optimization prob-

lems that are constrained by equilibrium problems. Here, the lower-level problem

[equations (4.1) - (4.9)] is a LP and hence could be replaced by its KKT conditions.

Equivalently, it can also be replaced by the combined set of its primal constraints,

dual constraints, and strong duality condition [104].6 We do this for the single-ISO

MPEC by writing out the lower-level problem’s dual constraints and strong duality

condition. These, when combined with the primal constraints [(4.2) - (4.9)], can then

be inserted into the constraint set of the upper level problem which can then be solved

as a single optimization problem.

4.4.3.1 Lower level’s dual constraints

CXb,k −
∑
h

φ+
b,k,hWb,k,h − α−

b,k + α+
b,k = 0 ∀b, k (4.13)

CYb,kP − φ−
b,k,h + φ+

b,k,h + pb,h = 0 ∀b, k, h (4.14)

V OLLbP + pb,h − ν−
b,h + ν+

b,h = 0 ∀b, h (4.15)∑
l

Mb,l

(
−λE

l,hB
E
l

)
+
∑
l

Mb,l

(
λN−
l,h BN

l

)
−

∑
l

Mb,l

(
λN+
l,h BN

l

)
= 0 ∀b, h (4.16)

−
∑
b

pb,hMb,l + λE
l,h − ξ−l,h + ξ+l,h = 0 ∀l ∈ E, h (4.17)

6This would not be the case if the lower problem were an NLP.
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−
∑
b

pb,hMb,l − λN−
l,h + λN+

l,h − β−
l,h + β+

l,h = 0 ∀l ∈ N, h (4.18)

Additionally, in equations (4.19) - (4.20), dual variables λN−
l,h , λN+

l,h are constrained

to be zero when there is no investment in the corresponding transmission line.

λN−
l,h ≤ zlM (4.19)

λN+
l,h ≤ zlM (4.20)

Here M is a very large scalar. Everything is now tied together by adding the following

non-linear strong duality condition which equates the lower-level problem’s primal and

dual objective values at the optimal solution.

4.4.3.2 Strong duality condition

∑
b,k

CXb,kxb,k + P
∑
b,k,h

CYb,kyb,k,h + P
∑
b,h

V OLLblb,h =

−
∑
b,k,h

φ+
b,k,hWb,k,hXb,k −

∑
b,k,h

pb,hDh +
∑
l,h

β−
l,hzlF

N
l −

∑
l,h

β+
l,hzlF

N

l −

∑
b,k

α+
b,k(Xb,k −Xb,k)−

∑
b,h

ν+
b,hDh −

∑
l,h

ξ+l,hF
E

l,h +
∑
l,h

ξ−l,hF
E
l,h

(4.21)

The resulting problem is a Mixed Integer Quadratically Constrained Quadratic

Program, which is more difficult to solve to global optimality than LPs or MILPs

due to the presence of bilinear terms in (4.21). We simplify the solution process by

linearizing as many non-linear terms as possible in the model.
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4.4.3.3 Linearizing the non-linear terms in strong duality condition

We replace constraint (4.4) in the lower-level constraints with two equivalent con-

straints. These are:

FN
l ≤ fN

l,h ≤ F
N

l : (β−
l,h, β

+
l,h) ∀l ∈ N, h (4.22)

z∗l M
N
l ≤ fN

l,h ≤ z∗l M
N

l : (γ−
l,h, γ

+
l,h) ∀l ∈ N, h (4.23)

Two new dual variables γ−
l,h, γ

+
l,h now enter the associated dual constraint (4.18)

which now becomes:

−
∑
b

pb,hMb,l − λN−
l,h + λN+

l,h − β−
l,h + β+

l,h − γ−
l,h + γ+

l,h = 0 ∀l ∈ N, h (4.24)

To describe the relationship between zl and γ−
l,h, γ

+
l,h, we add two constraints:

γ−
l,h ≤ (1− zl)M (4.25)

γ+
l,h ≤ (1− zl)M (4.26)

This results in the exactly linearized strong duality condition (4.27).

∑
b,k

CXb,kxb,k + P
∑
b,k,h

CYb,kyb,k,h + P
∑
b,h

V OLLblb,h =

−
∑
b,k,h

φ+
b,k,hWb,k,hXb,k −

∑
b,k,h

pb,hDh +
∑
l,h

β−
l,hF

N
l −

∑
l,h

β+
l,hF

N

l −

∑
b,k

α+
b,k(Xb,k −Xb,k)−

∑
b,h

ν+
b,hDh −

∑
l,h

ξ+l,hF
E

l,h +
∑
l,h

ξ−l,hF
E
l,h

(4.27)

Summarizing, the single-ISO MPEC’s constraints are all linear now and the prob-

lem is summarized below:
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Minimize (4.10)

s.t. (4.2)− (4.3), (4.5)− (4.9), (4.24) (Lower primal constr.)

(4.13)− (4.17), (4.19), (4.20), (4.25), (4.26) (Lower dual constr.)

(4.27) (Strong duality)

Note that we still have non-linearities in the single-ISO MPEC’s objective function

(4.10) in the form of bilinear terms.7 These bilinear terms make the problem a non-

convex MINLP, and problems of this type are in general more difficult to solve than

comparitively sized LPs and MILPs [105]. While state-of-the-art solvers such as

CPLEX and Gurobi can solve LPs and MILPs efficiently, their ability to solve non-

convex MINLPs is limited [106].

4.5 Multi-ISO EPEC: Non-Cooperative

transmission planning

The next step is to expand this single-ISO framework to the multi-ISO case by com-

bining all individual ISO’s MPECs into a single framework (see Fig. 4.4). In effect,

we are trying to find an equilibrium for the situation where each regional ISO is trying

to make transmission investments that maximize its own regional surplus. Problems

with this structure, where there are multiple leaders (ISOs) and a single follower (the

market), are called Equilibrium Programs with Equilibrium Constraints (EPECs).

7In the next chapter, we show that this objective function cannot be exactly linearized.
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EPECs have been used to model many energy market applications. For exam-

ple, [95] solves a series of MPECs with each MPEC depicting a generator’s bidding

problem in an oligopolistic market while anticipating rival generators’ reactions. [107]

generalizes this by optimizing generators’ bids while also considering demand stochas-

ticity, making this a stochastic EPEC. Other examples are [100] and [95] which model

generators with the knowledge that their output affects transmission prices (the price

of moving power from one bus to another).

EPECs can be solved in a variety of ways, the most popular method being diag-

onalization, which is what we use in this study. Diagonalization is a variant of the

Gauss-Siedel method [108], which is used to find solutions of simultaneous equations.

In essence, diagonalization solves the MPEC of one leader at a time, assuming that

the strategies of the other leaders are fixed. The leaders’ strategies are updated at

each iteration to the most recently computed values. This is done iteratively until

there is no change in the leaders’ strategies from one iteration to the next. For an

overview of this and other methods used to solve EPECs, see [94]. MPECs in general

are non-convex. So, the corresponding EPEC (when using diagonalization) might not

converge. For example, while [95] reports that their diagonalizations converged for

every test case they used, [109] reports that their diagonalization did not converge for

certain instances. Non-convergence does not necessarily imply that a pure-strategy

equilibrium does not exist. It could be that though one or more equilibria exist, the

algorithm fails to converge to one of them.
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ISO1 ISOi ISOn

Generators

Consumers

Figure 4.4: Hierarchical structure of Multi-ISO transmission planning problem. All

ISOs are in separate upper level problems, and there is a single energy market in

the lower level they interact with and it consists of generators and consumers in all

regions.

If the EPEC converges, there is no guarantee that the equilibrium found is unique

or the best possible equilibrium for all players involved (i.e., Pareto superior to all

other equilibria). In the general case, each MPEC’s constraint set defines a non-convex

feasible region. So, not all MPEC local optima are necessarily globally optimal.

Hence, nothing in general can be said about the existence or uniqueness of EPEC

solutions [94]. In fact, [110] points out that non-unique solutions are common.

4.6 Cooperative transmission planning

The noncooperative ISO planning problem solution above is compared to a benchmark

cooperative solution which is the least-cost co-optimized transmission/generation so-

lution. Here, all the regional planners are assumed to fully cooperate with each other

in the planning process. When there is a single lower-level energy market in which all
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players are competitive, the cooperative transmission planning model takes the form

of a single cost minimization model. The equivalence between such a cost minimiza-

tion model and a model where all players and their actions are modeled explicitly can

be established by showing that their KKT conditions are the same [85]. This is in

line with centralized transmission planning models such as [64] and [22].

The objective function is to minimize the total cost of the transmission and gen-

eration investments and the assumed operations for TO years from year TI onward:

MIN
∑
l

CZlzl +
∑
b,k

CXb,kxb,k + P
∑
b,k,h

CYb,kyb,k,h + P
∑
b,h

V OLLblb,h (4.28)

The constraint set is formed by concatenating the constraint sets of each of the

regional transmission planner, i.e., the constraint set defining the market equilibrium

and the generators’ response to the transmission planners’ investments. These include

equations (4.1) - (4.9) and (4.11).

In effect, this is an Integrated Planning Model, except the interpretation here

is that regional transmission planners fully cooperate with each other, generators

are reacting competitively by making their investments simultaneously, and these

reactions are correctly anticipated by the “proactive” transmission planner [111].

4.7 Case study

In this section, we (a) illustrate how our model can be applied to a small test case,

(b) show how the transmission and generation investment results from a noncooper-
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ative model can be very different from a cooperative (cost-minimization) model, and

(c) calculate the economic value each individual player in the system gains (or loses)

if transmission planners from the different ISOs cooperate. The last point directly

addresses the notion that there will be “winners” and “losers” when the planning

paradigm changes. We then define and calculate the net monetary Value Of Co-

operation (VOC) and show how this framework can be used to evaluate proposed

side-payment agreements between control regions that could leave everyone better

off.

4.7.1 Test case

To test our model, we used the CAISO 17-bus data set from [65]. We selected a

subset of 12 hours from the dataset to represent yearly operations. The subset of

hours was chosen to match the yearly averages, standard deviations, and geographical

correlation of load and wind. Specifically, we used hour sampling techniques from [22]

to minimize the total squared error of the above metrics between the samples and

yearly data. We use a discount rate of 5% per year and we assume that transmission

investments take 10 years to be built and come online since the time of the decision.

Lastly, we assume the Value Of Lost Load (VOLL) to be $1000/MWh.
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4.7.2 Results and discussion

We consider the simplest case where there are two regional planners and they have

a common follower (the energy market). We arbitrarily divide the region into two

regions, roughly along the North-South axis.8 We then solve the two-region EPEC

using Gauss-Seidel diagonalization [94] where we solve each planner’s MPEC assuming

it to be a Nash player. Note that henceforth, we use “Regional Planner” instead of

“ISO”.

4.7.2.1 Changes in transmission and generation investments

From Table 4.1, we see the following changes under cooperative planning relative

to noncooperative planning. One extra line is built in Region 1 while 4 lines are

dropped from Region 2’s noncooperative plans and 2 different lines are built that

would not have built by Region 2 on its own (see Figure 4.5). At the same time, we

see a change in how generators’ respond to these changes in transmission investments.

From Table 4.2, we see that generators in Region 1 increase their overall investment by

1.3 GW while generators in Region 2 decrease theirs by 1.6 GW. Furthermore, the mix

changes. With cooperative transmission plans, more combined cycle (CCGT) units

are built as opposed to combustion turbines (CT) in Region 1. No load curtailment

occurs in either solution.

8 Note that this arbitrary geographical division is for illustrative purposes and not meant to
reflect or represent any real planning agency in the State of California or elsewhere.
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Region line l Non-Cooperative Cooperative

1

5 ✓ ✓

19 ✓ ✓

20 ✓ ✓

21* ✓

2

2† ✓ ✓

6 ✓ ✓

7 ✓

8† ✓

11 ✓

14* ✓

16† ✓ ✓

17 ✓ ✓

22* ✓

23 ✓

Table 4.1: Region-wise transmission investment. † indicates a seam line while *

indicates a region’s internal line that is built only in the cooperative framework.
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(a) Transmission investments without in-

terregional cooperation

(b) Transmission investments with interre-

gional cooperation

Figure 4.5: Transmission investments change with cooperative transmission plan-

ning. N and - - - indicate nodes and lines of Region 1. � and — represent Region 2.

Parallel lines between two nodes indicate transmission investment. Lines connecting

N and � are seams lines. Only bus numbers are indicated for clarity.
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Region ∆ (Cooperative - Non Cooperative)(GW)

1 CT: -1.3, CCGT: 2.6

2 CCGT: -1.6

Table 4.2: Generation Investment Changes

Even though Region 1’s generators invest more with cooperation, their profit

decreases compared to the noncooperative framework (Table 4.3). This is partly due

to increased competition from cheaper generation in Region 2 which the cooperative

solution’s additional transmission capacity now makes more accessible to Region 1’s

consumers. Overall, Table 4.3 indicates that a cooperative framework invests in more

transmission (in $) than the noncooperative framework and in less generation (in $)

across both regions.

It is interesting to note the nature of some of this new transmission under the

cooperative framework. We see that there is one line in Region 1 and two lines in

Region 2 (indicated by † in Table 4.1), that are internal to each region (not seam

lines) and are only built under the cooperative framework. These internal lines have

interregional benefits and are only built if the regional transmission planners cooper-

ate with each other. Surprisingly, investments in seams lines (indicated by † in Table

4.1) are not affected, as much as internal lines, by whether the cooperative or non-

cooperative framework is used. Only one seam line is built differently, as opposed to

three internal lines that are built differently, under the two frameworks. Therefore, it
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i ∆CXi (in $ M) ∆CZi (in $ M) ∆pi ($/MWh)

1 117.74 19.52 -0.59

2 -122.95 -13.01 1.83

Table 4.3: Change in Annualized Investment Cost and Energy Prices by Region

(Cooperative - Non Cooperative)

should not be assumed that the primary effect of cooperation is upon the economics

of lines connecting regions; here, internal lines were more affected.

4.7.2.2 Value of Cooperation

We calculate the Value Of Cooperation (VOC), which is the benefit each (group of)

player (consumers, producers, and the ISO itself) gains as a result of the two trans-

mission planning entities cooperating with each other in the planning process. The

concept of VOC is related to cooperative game theory’s notion of the ‘characteris-

tic function’ which calculates the total payoff for a set of players. This idea first

appeared in Neumann and Morgenstern’s seminal 1944 book on Game theory [112].

More recently, this concept appeared in a variety of studies, including transmission

planning [88], water-resource sharing [113], and in analyzing competitive advantage

in farmers’ markets [114].

In this study, VOC is the difference between a player’s surplus in the cooperative

setting and the noncooperative setting. Hence, a player’s VOC, if positive, indicates
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Party Region 1 VOC (in $ M) Region 2 VOC (in $ M)

Consumers 536.97 -36.42

Producers -229.72 107.84

ISO -103.97 -114.61

Regional 203.29 -43.19

Interregional 160.10

Table 4.4: Breakdown of Annualized Value of Cooperation [∆ Surplus (Cooperative-

Noncooperative)]

that cooperation in transmission planning benefits the player while a negative VOC

indicates a loss. While we cannot say anything in general about the nature of these

individual surplus’ changes, the total interregional surplus can only increase with co-

operative planning. This is due to the fact that under our assumptions, by definition,

the cooperative model maximizes total surplus. Table 4.4 indeed indicates that the

interregional VOC is positive. Note that these are annualized surplus values over a

period of TO years’ worth of market operations, in this case 30 years.

As expected, with cooperative transmission planning, the overall investment and

operational cost to the system decreases and the total interregional surplus increases.

Region 1’s consumers benefit most from cooperation because the region’s average

hourly energy price falls by $ 0.59/MWh with cooperative planning. This is due to

increased access to cheaper generation from Region 2, where as expected, we see an
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increase in the average hourly energy prices (by $ 1.83/MWh). Commensurate with

this is an increase in Region 2’s producer profit and a reduction in Region 1’s profit

as shown in Table 4.4.

We also find the total regional VOC to be 83% of the total transmission invest-

ment cost. That is, the benefits of cooperation are of the same magnitude as total

transmission investment, and must therefore be viewed as significant.

4.7.2.3 Using this framework to evaluate side-payment agreements

This framework can be used to evaluate different side-payment agreements between

the regions. For example, in this case study, we can see from Table 4.4 that Region

2’s net surplus decreases if it cooperates with Region 1 in transmission planning (due

to increased prices to consumers and lesser arbitrage opportunities for the ISO itself).

Therefore, Region 2 would only cooperate if Region 1 agrees to compensate for its

losses. So, Region 1 has to compensate Region 2 by at least an annualized amount

of $ 43.19 M to incent Region 2 to cooperate in transmission planning. With a

side-payment exceeding this value, both regions could be better off.

For illustrative purposes, one practical way of accomplishing this transfer is for

Region 1 to pay for a part or the entirety of the cost of reinforcing Region 2’s seam

lines. In this case, lines 2, 8, and 16 are Region 2’s seam lines and in the cooperative

solution, lines 2 and 16 are reinforced with an annualized cost of $ 79.78 M. If Region

1 pays for these lines, it will still be left with an annualized net profit of $ 123.51 M
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and Region 2 is better off by $ 36.59 M (compared to their respective noncooperative

solutions).

4.7.2.4 Computational performance

All models were run on a Windows 7 PC with 4 GB of RAM and Intel Gen-3 Core-i5

processor. The cooperative models are MILPs and these were solved using CPLEX

12.6 in AIMMS [115].

For very small test-cases, CPLEX (V 12.3 and above) can be used to solve the non-

cooperative MPECs which are non-convex MIQPs [116]. For larger cases, CPLEX’s

progress is extremely slow and we used a Multi-start Outer-Approximation algo-

rithm in AIMMS [117] which is based on the outer-approximation algorithm proposed

by [118] to solve the individual planner MPEC. For each MPEC, we ran the algo-

rithm twice, first with 20 iterations and next with 30 iterations to help find good

initial feasible solutions as suggested in [117]. For the multi-start algorithm, we ran

the algorithm with 10 initial random starting points and chose the best solution from

amongst them. In each iteration of the EPEC diagonalization, this solution was fixed

for one planner and the other transmission planner’s MPEC was solved in a similar

manner until the convergence criterion was met.
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4.8 Conclusion

In this study, we developed the optimization problems facing regional transmission

planners while explicitly recognizing that there is little cooperation in planning across

political boundaries. We showed how the multi-planner problem can be formulated

as an EPEC. We also showed how this can be solved using an Outer-Approximation

algorithm. For this case-study, the EPEC converged. Convergence is not guaranteed

and even if it occurs, multiple equilibria might exist, as mentioned in Section 4.5.

We demonstrated the applicability of our model by running a small 17-bus test

case. In this, we showed that the transmission plans can be very different with regional

cooperation than without. Further, generation investments can change in reaction to

these transmission investment changes. With this cooperation, consumers in some

regions gain access to cheaper generation from other regions, lowering their average

energy price. Additionally, there are three lines that are internal to the regions (not

seam lines), which have interregional benefits, but are built only under when regional

transmission planners cooperate with each other.

We also calculated the Value Of Cooperation (VOC) for each player involved,

defined as the increase in their surplus when transmission planners from different

regions cooperate with each other. We showed that the entire region benefits from

cooperative transmission planning and in this test-case, the region-wide benefit is of

the same order of magnitude as the transmission investment cost. Thus, the models’
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calculation of VOC can pave the way for interregional cooperation by identifying

grid reinforcements that benefit the entire system, as well as side-payments that may

incent each region to cooperate. Although it is natural to have “winners” and “losers”

while moving from a noncooperative to a cooperative planning paradigm, in our case

study it was possible to allocate the costs of new interregional transmission so that

every region is made better off.
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Chapter 5

McCormick Envelopes to

Approximate Large-Scale

Interregional Noncooperative

Transmission Planning Models

5.1 Abstract

In the previous chapter, we described a non-convex MPEC model where an ISO non-

cooperatively maximizes the profit of the players within its region. Then an EPEC

was defined by combining these individual ISO MPECs. The resulting equilibrium
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indicates the transmission investments made when two ISOs plan for transmission

investment noncooperatively. In each ISO’s MPEC, we exactly linearized all con-

straints, only leaving nonlinear terms in the objective function. We then solved the

non-convex MIPs using the Outer Approximation algorithm [117] on a 17-bus test

case. In this chapter, we show that these nonlinearities cannot be exactly linearized,

and use McCormick envelopes [31] to demonstrate the impact of these approxima-

tions on the solution quality. We compare the above McCormick-based solution to

the non-convex solution from the previous chapter, and examine the trade-off between

accuracy, complexity of McCormick envelopes, and computational costs.

5.2 Introduction

Non-convex optimization problems are relatively difficult to solve to global optimal-

ity compared to linear programming problems, especially when considering integer

variables. Out-of-box solvers can rarely be used to solve these non-convex MINLPs.

Even for the small case in Chapter 4 with 17-bus case that includes 12 time steps, we

found that CPLEX — which, from version 12.3 onwards, could solve MINLPs whose

integer variables are binary — converges extremely slowly, if at all. Most non-convex

MINLPs algorithms involve dividing the problem into a continuous and an integer

sub-problem and then iteratively and sequentially solving each sub-problem (with

information sharing) until local convergence is achieved. This method was used, for

example, in the previous chapter, for solving the 17-bus, 12 time step case, using the
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outer approximation algorithm.

Moreover, long-term optimal investment problems are prone to scaling issues [119],

due to the large difference in scales for parameters (e.g., hourly marginal operating

cost vs. capital cost of investment). The issue of scaling is exacerbated by the use of

the Big M technique [120], which adds very large scalar values to the constraints that

are linearized. Most nonlinear solvers are fundamentally based on the Line Search

algorithm [121] that relies on calculating the Hessian matrix at a given point [122].

When the Hessian matrix is ill-conditioned, solvers require the problem to be rescaled

to avoid unbounded and infeasible problems. Indeed, we found the non-convex MPEC

from Chapter 4 to be very sensitive to scaling.

Furthermore, while MPECs, in general, are non-convex problems, for which there

exist algorithms that can guarantee local solutions (if they exist), convergence is how-

ever not guaranteed in EPECs. The reported solution may not be a global solution to

all leaders [100] [123]. In light of these challenges in solving MPECs and non-convex

MINLPs in general, we explore convex relaxations of the MPEC from Chapter 4.

Specifically, we use a relaxation based on McCormick envelopes [31]. These relax-

ations could then be solved using out-of-box solvers such as CPLEX or Gurobi. It

would also be easier to scale these relaxations up to larger test-cases.

In Section 5.3, we show that the nonlinearities in the objective function of the

single-ISO MPEC, proposed in Chapter 4, cannot be exactly linearized. We also

explain the physical interpretation of the reasoning behind this. Then in Section
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5.5, we introduce McCormick envelopes. In Section 5.6, we develop these envelopes

for the bi-linear terms in our single-ISO MPEC. Then, in Section 5.7, we evaluate

the quality of this relaxation by comparing the primal solution (the recommended

transmission investments) with those from the original single-ISO MPEC. In Section

5.8, we improve the quality of these envelopes by the piece-wise remodeling of bilinear

terms. We measure the improvement in the quality of the envelopes for a numerical

example and highlight the trade-off between this improvement and the increased size

of the formulation.

5.3 All nonlinear terms in the objective function

cannot be linearized

The inability to exactly linearize the objective function (4.10) is a direct conse-

quence of Theorem 1 in Wu et al.’s seminal 1996 paper on folk theorems in transmis-

sion access [124]. The nonlinear terms in the objective function are
∑

b,h,k pb,hyb,h,k

(from generators surplus), equal to the sum of price times sales, and
∑

l∈i,h(f
E
l,h +

fN
l,h)[
∑

b∈B(L(i))Mb,lpb,h], which is the flow on that line times the price difference across

it. Although the former term can be linearized using the KKT conditions of the lower-

level problem,1 the latter term, which is equivalent to the net payment from ISO to

generators for moving power out of a bus, cannot. To understand why this term

1See [125] and [94] for examples on how to do this.
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cannot be exactly linearized, let us look at the dual constraint (4.17) and the comple-

mentary slackness condition associated with constraint (4.3). Multiplying that dual

constraint by fE
l,h, we have:

−fE
l,h

∑
b

pb,hMb,l + fE
l,hλ

E
l,h − fE

l,hξ
−
l,h + fE

l,hξ
+
l,h = 0 ∀l ∈ E, h (5.1)

But from complementary slackness conditions for the flow capacity constraint (4.3),

we have:

0 ≤ ξ−l,h ⊥ −FE
l,h + fE

l,h ≥ 0 ∀l ∈ E, h (5.2)

0 ≤ ξ+l,h ⊥ F
E

l,h − fE
l,h ≥ 0 ∀l ∈ E, h (5.3)

i.e., the shadow price of the constraint can be strictly positive only if flow on the

line, fE
l,h, equals either the maximum or minimum capacity limits on the line. So,

equations (5.2) and (5.3) imply

ξ−l,hf
E
l,h = ξ−l,hF

E
l,h (5.4)

ξ+l,hf
E
l,h = ξ+l,hF

E

l,h (5.5)

Substituting the linear terms on the RHS of equations (5.4) -(5.5) for their corre-

sponding LHS (bilinear) terms in (5.1) results in the following revision of (5.1):

−fE
l,h

∑
b

pb,hMb,l = −fE
l,hλ

E
l,h + FE

l,hξ
−
l,h − F

E

l,hξ
+
l,h ∀l ∈ E, h (5.6)

If a line l is un-congested in an hour h, the corresponding variables ξ−l,h and ξ+l,h

are zero and they drop out from the above equation, but the first term on the RHS
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remains. So, equation (5.6) suggests that it is possible to have a non-zero price

difference across two buses even when lines directly connecting them are uncongested.

The dual value of the Kirchhoff’s Voltage Law (KVL), λE
l,h, is a free variable rather

than non-negative, and therefore, an analogous trick cannot be used to linearize its

product with flow on that line. So, the KKT conditions of the lower-level problem do

not allow exact linearization of this term (using linearization principles used in [125]).

KVL is one of the fundamental laws governing power flow. Therefore, the very nature

of electricity when combined with artificial political boundaries (restricting complete

cooperation and trade across adjoining regions) prevent us from studying this problem

easily with linear models.

Cross-border energy arbitrage terms do not cancel out when there is strategic

interaction among adjoining transmission planners. In contrast, the nonlinear terms

do drop out in a competitive market model with a single transmission planner, as

demonstrated next.

5.4 Why we do not see these nonlinear objective

function terms in a competitive market model

Amarket where all players are competitive can be re-written as a single cost-minimization

model [85], because one player’s cost is another player’s revenue, which cancel each

other out, except at the system’s “boundaries” (i.e. the system’s inputs and outputs,
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such as raw material provision). These assumptions fail to hold when we consider the

strategic reaction of individual players to other player’s actions because the objective

function of one player only includes either the payments or receipts, but not both.2

This becomes clearer when we consider the simple example of a 4-bus system with

two regional players, as shown in Fig. 5.1. Green buses and lines are owned by the

first regional ISO and the other buses and lines by the second.

A

B

C

D

1

4 2

3

5

Figure 5.1: 4-bus example network with two regions. Green (solid) indicates buses

and lines in Region 1 and Black (dashed) indicates Region 2.

Using the definitions above, the Consumers’, Producers’, and ISO Surplus of Re-

gion 1 are given below.

Producers’ Surplus in Region 1 (green):

∑
b∈Bi

k∈K(Bi)

(pb − CYb,k) yb,k −
∑
b∈Bi

k∈K(Bi)

CXb,kxb,k =
∑
b∈Bi

pb
∑

k∈K(Bi)

yb,k −
∑
b∈Bi

k∈K(Bi)

CYb,kyb,k −
∑
b∈Bi

k∈K(Bi)

CXb,kxb,k

(5.7)

2Exceptions to this exist on a case-by-case basis. For example, sometimes, if the players are
Nash-Cournot, a complementarity problem can be re-written as an equivalent single optimization
problem [126].
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Applying the energy balance (KCL) constraint (4.2), the first term on the RHS can

be rewritten, yielding:

∑
b∈Bi

pb(Db − lb) + pa(f1 + f2 + f4)− pb(f4 + f3)−
∑
b∈Bi

k∈K(Bi)

CYb,kyb,k −
∑
b∈Bi

k∈K(Bi)

CXb,kxb,k

(5.8)

Consumers’ Surplus in Region 1:

∑
b∈Bi

(V OLLb − pb) (Db − lb) =
∑
b∈Bi

V OLLb(Db − lb)−
∑
b∈Bi

pb(Db − lb) (5.9)

ISO Surplus in Region 1:

(pc − pa)f1 + (pb − pa)f4 −
∑
l∈Li

CZlzl (5.10)

Regional Social Welfare (PS + CS + ISO surplus), Region 1:

✘✘✘✘✘✘✘✘
∑
b∈Bi

pb(Db − lb) + pa(��f1 + f2 +��f4)− pb(��f4 + f3)−
∑
b∈Bi

k∈K(Bi)

CYb,kyb,k −
∑
b∈Bi

k∈K(Bi)

CXb,kxb,k+

∑
b∈Bi

V OLLb(Db − lb)−
✘✘✘✘✘✘✘✘
∑
b∈Bi

pb(Db − lb) + (pc −✚✚pa)f1 + (✚✚pb −✚✚pa)f4 −
∑
l∈Li

CZlzl

(5.11)
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So, the Single-ISO MPEC objective function becomes:

pcf1
ISO1 selling
on own line
exporting to
Region 2

+ paf2 − pbf3  
ISO1 selling & buy-
-ing on ISO2 lines
(imports/exports
with Region 2)

+
∑
b∈i

V OLLb(Db − lb)−
∑
b∈Bi

k∈K(Bi)

CYb,kyb,k −
∑
b∈Bi

k∈K(Bi)

CXb,kxb,k −
∑
l∈Li

CZlzl

(5.12)

The products of flow and prices do not all cancel out; price-flow terms for imports

and exports (on lines connecting ISO1 with ISO2 remain). We see that these cross-

border trade terms get canceled out when there is a single entity arbitraging across

borders, or a single entity that owns and operates all the lines. If there is more than

one ISO, and power exchanges between those ISOs, these terms remain in each ISO’s

objective function and make the problem nonlinear.

5.5 McCormick envelopes

McCormick envelopes are sets of linear under- and over-estimators used to create

convex envelopes of multilinear terms. These were first proposed by G.P. McCormick

in 1976 [31]. These envelopes are a convex relaxation of the bilinear term and can be

used to generate bounds on the solution of the associated nonlinear Program (NLP)

when bilinear terms appear in the objective function or constraint set.

For the simplest case where the bilinear term is the product of two bounded contin-

uous variables (e.g. w = xy) , the associated simple McCormick envelopes are defined

by the two under- and two over-estimators (see Figure 5.2) described by constraints
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Figure 5.2: McCormick envelopes [3].

(5.15), (5.16) and (5.17), (5.18) respectively.3 These four constraints together define

the convex envelope within which the approximated value of the original bilinear term

falls.

xL ≤ x ≤ xU (5.13)

yL ≤ y ≤ yU (5.14)

Constraints (5.13) and (5.14) define the lower and upper bounds on each of the

variables in the bilinear term. Constraints (5.15) and (5.16) are under-estimators and

(5.17) and (5.18) are the corresponding over-estimators of the bilinear term.

3This example and the associated figure are from [3].
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w ≥ xLy + xyL − xLyL (5.15)

w ≥ xUy + xyU − xUyU (5.16)

w ≤ xUy + xyL − xUyL (5.17)

w ≤ xyU + xLy − xLyU (5.18)

It is clear from the above equations that the quality (tightness) of the envelopes

depend to a large degree on the bounds of the variables themselves as well as the

severity of the nonlinearity. The wider the domain of the variables, the larger the

envelope, and the bigger the potential error in approximations.

5.6 McCormick envelopes for the bilinear terms

In the single-ISO MPEC from Section 4.4.3.3, the bilinear terms in the objective

function are of the form
∑

(l,b)∈Si
pb,hfl,h for every hour. Similar to the example from

Section 5.4, this term captures the net monetary gain by the regional ISO i from its

spatial arbitrage of electricity across its seams with neighboring ISOs. The variable

fl,h indicates flow on a transmission line whose value in the optimization problem is

bounded by thermal limits on the lines (see constraints (4.3) and (4.4)). The second

variable, pb,h, is the hourly Locational Marginal Price (LMP) for energy at bus b.

This is the dual variable associated with the energy balance constraint (which is an
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equality constraint), and hence, is free and unbounded [122].4 Acknowledging these

as loose-bounds, we use a large scalar (big-M) for values of P and P , the lower and

upper bounds on pb,h, respectively. Constraints (5.19) and (5.20) define the bounds

on both variables.

P ≤ pb,h ≤ P ∀b, h (5.19)

F l ≤ fl,h ≤ F l ∀l, h (5.20)

Let us define5:

wl,b,h = pb,hfl,h (5.21)

This new variable wl,b,h is the bilinear term and its corresponding McCormick en-

velopes are given by constraints (5.22) - (5.25).

wl,b,h ≥ Pfl,h + pb,hF − PF l ∀l, b, h (5.22)

wl,b,h ≥ Pfl,h + pb,hF − PF l ∀l, b, h (5.23)

wl,b,h ≤ Pfl,h + pb,hF − PF l ∀l, b, h (5.24)

wl,b,h ≤ pb,hF l + Pfl,h − PF l ∀l, b, h (5.25)

We now substitute the bilinear terms in the objective function with the new vari-

able wl,b,h. With this new substitution, the original single-ISO MPEC (section 4.4)

4Nevertheless, we know that pb,h refers to the energy prices at each bus. So, if historical price
data is available, they can be used to derive these bounds.

5Flow on existing and new lines are combined here for notational simplicity.
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becomes the new approximated single-ISO MPEC which takes the following form,

and we refer to this problem as MCC1 henceforth.

Max
∑

(l,b)∈si

wl,b,h +
∑
b∈i

V OLLb(Db − lb)−
∑
b,k∈i

CYb,kyb,k −
∑
b,k∈i

CXb,kxb,k −
∑
l∈Li

CZlzl

(5.26)

s.t. (4.2)− (4.3), (4.5)− (4.9), (4.24) (5.27)

(4.13)− (4.17), (4.19), (4.20), (4.25), (4.26) (5.28)

(4.27) (5.29)

(5.19), (5.22)− (5.25) (5.30)

This is similar to the non-convex Single-ISO MPEC from Chapter 4 (section 4.4).

The only differences are that the bilinear terms in the objective function are replaced

by the new equivalent approximated variable, wl,b,h, and equations (5.22) - (5.25)

envelope these variables to constrain the bilinear term. This approximation is now

linear and can be solved using out-of-the-box MILP solvers such as CPLEX and

Gurobi. By definition, an approximated solution is sub-optimal (the original MPEC

solution maximizes regional surplus). Hence, use of the line recommendations from

the the McCormick approximation will under-estimate the regional surplus.

138



CHAPTER 5. APPROXIMATIONS FOR LARGE-SCALE NONCOOPERATIVE
TRANSMISSION PLANNING MODELS

Player Actual MCC1

1 1,20,21 1,9,19,20

2 2,16,22 4,7,8,10,11,12,13,14,15,17

Table 5.1: Comparing primal solutions from two MPECs - Lines chosen to be built

5.7 Quality of the single MCC envelope (MCC1)

for the 17-bus CAISO dataset

We use the 17-bus CAISO dataset from the previous chapter to compare the solutions

from the full nonlinear single-ISO MPEC solution (which I will call the “original

model”) with the MCC1 approximation — both solved under similar assumptions

about the second players’ actions. To compare the quality of the approximation, we

take the upper-level solution (proposed transmission lines) from MCC1 and impose

these solutions on the original model to calculate the actual value of the objective

function corresponding with those lines (which in general will have different flows and

prices than MCC1).

From Table 5.1, we see that the original model and MCC1 primal solutions,

i.e., recommendations of transmission line investments, are very different for the two

ISOs. The difference is even more stark for ISO 2 where a total of 10 lines are
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Player MCC1 % error

1 2.7%

2 6.4%

Table 5.2: Error in Objective value from two MPECs, calculated by imposing the

upper level solution from the approximation upper level solution on the original single-

ISO MPEC.

recommended from the approximated model as opposed to the 3 lines from the original

solution. Note that in addition to monetary costs, each line also incurs political and

bureaucratic costs. To measure the quality of the McCormick approximation, we

measure the deviations in ISO surplus from the original model.

From Table 5.2, we see that for ISO 1, surplus is underestimated by 2.7% while

for ISO 2, the quality of the solution is worse with an underestimation of 6.4%.

5.8 Tightening McCormick envelopes

The quality of McCormick envelopes can be improved by piece-wise modeling (divid-

ing up the domain of some or all of the variables and constructing convex envelopes

for each part separately). For the two variables in our bilinear term, the simplest way

to do this is to separate each variable into positive and negative parts. This is done

by constraints (5.31) - (5.36).
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P ≤ −p−b,h ≤ 0 (5.31)

0 ≤ p+b,h ≤ P (5.32)

pb,h = p+b,h − p−b,h (5.33)

F l ≤ −f−
l,h ≤ 0 (5.34)

0 ≤ f+
l,h ≤ F l (5.35)

fl,h = f+
l,h − f−

l,h (5.36)

Constraints (5.33) and (5.36) split the variables pb,h and fl,h into non-negative and

non-positive terms.6 With these bounds, we can construct convex envelopes for each

of the four new bilinear terms that make up the original one i.e., for each of the terms

in the RHS of equation (5.37).

pb,hfl,h = (p+b,h − p−b,h)(f
+
l,h − f−

l,h) (5.37)

The corresponding McCormick envelopes for the first of these four terms are given

below: w1
b,l,h = p+b,hf

+
l,h:

w1
b,l,h ≥ 0 (5.38)

w1
b,l,h ≥ Pf+

l,h + p+b,hF l − PF l (5.39)

w1
b,l,h ≤ Pf+

l,h (5.40)

w1
b,l,h ≤ p+b,hF l (5.41)

6Ideally, only one of these split-terms will take on a non-negative value without additional
constraints
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Similarly, we can write McCormick envelopes for the three remaining new bilinear

variables w2
b,l,h, w

3
b,l,h, and w4

b,l,h. These are:

w2
b,l,h = p−b,hf

+
l,h:

w2
b,l,h ≥ 0 (5.42)

w2
b,l,h ≥ −Pf+

l,h + p−b,hF l + PF l (5.43)

w2
b,l,h ≤ −Pf+

l,h (5.44)

w2
b,l,h ≤ p−b,hF l (5.45)

w3
b,l,h = p+b,hf

−
l,h:

w3
b,l,h ≥ 0 (5.46)

w3
b,l,h ≥ Pf−

l,h − p+b,hF l + PF l (5.47)

w3
b,l,h ≤ Pf−

l,h (5.48)

w3
b,l,h ≤ −p+b,hF l (5.49)

w4
b,l,h = p−b,hf

−
l,h:

w4
b,l,h ≥ 0 (5.50)

w4
b,l,h ≥ −Pf−

l,h − p−b,hF l − PF l (5.51)

w4
b,l,h ≤ −Pf−

l,h (5.52)

w4
b,l,h ≤ −p−b,hF l (5.53)

Equations (5.38) - (5.53) together make up the original nonlinear term via the
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following inequality:

pb,hfl,h = w1
b,l,h − w2

b,l,h − w3
b,l,h + w4

b,l,h (5.54)

The updated optimization problem facing each individual ISOi is given below:

Max
∑

(l,b)∈Si

(
w1

l,b,h − w2
l,b,h − w3

l,b,h + w4
l,b,h

)
+
∑
b∈Bi

V OLLb(Db − lb)−

∑
b∈Bi

k∈K(Bi)

CYb,kyb,k −
∑
b∈Bi

k∈K(Bi)

CXb,kxb,k −
∑
l∈Li

CZlzl (5.55)

s.t. (4.2)− (4.3), (4.5)− (4.9)

(4.13)− (4.17), (4.19), (4.20)

(4.24)− (4.27)

(5.31)− (5.36), (5.38)− (5.53)

Ideally, the non-negative and non-positive components of p and f should be or-

thogonal, i.e., only one component should be non-zero. However, our simulations7

resulted in non-orthogonal behavior with positive values for both components. For

example, if the value of fl,h is 2000 MWh, the model may have returned f+
l,h = 2500

and f−
l,h = 500 instead of f+

l,h = 2000 and f−
l,h = 0. We refer to this as spurious

splitting.

7Results not shown here.
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5.8.1 Does spurious splitting matter?

Spurious splitting does not affect the solution of the optimization problem, provided

that the following conditions are met:

• The split parts should always add up to the whole.

• The parts should never appear separately in the model, except to contribute to

the whole.

If these two conditions are satisfied, the exact split of the variables does not matter.

In our case though, the second condition does not hold. It is not the parts that

contribute to the whole, but approximations of the parts in the form of w1
b,l,h...w

4
b,l,h.

The variables p+b,h, p
−
b,h, f

+
l,h, f

−
l,h appear separately (from each other and in combination

with other parameters) to set bounds on these approximations. For example, on the

RHS of equations (5.39)-(5.41). So, there is an incentive for the model to spuriously

split the terms resulting in a looser set of bounds in the constraints.

5.8.2 Additional constraints needed to correctly split the

variables

The following additional constraints involving binary variables are needed to correctly

split the terms.

0 ≤ p+b,h ≤ zb,hpb,h (5.56)
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0 ≤ p−b,h ≤ −(1− zb,h)pb,h (5.57)

0 ≤ f+
l,h ≤ yl,hfl,h (5.58)

0 ≤ f−
l,h ≤ −(1− yl,h)fl,h (5.59)

zb,h, yl,h ∈ {0, 1} (5.60)

Constraints (5.56) and (5.57) use a binary variable zb,h to ensure that only one of

the components of the variable pb,h takes on a non-zero value. Constraints (5.58) and

(5.59) do the same for variable fl,h.

However, it can be seen that there are bilinear terms in the above constraints that

make the problem nonlinear again (which is exactly what we were trying to avoid

using McCormick approximations in the first place). Fortunately, these bilinear terms

are all products of binary and continuous variables (and not products of continuous

variables) which can be exactly linearized using big-M techniques specified in [120].

Using these techniques, equation (5.56) will for example be replaced with the following

four constraints.

0 ≤ p+b,h ≤ bb,h (5.61)

−zb,hP b,h ≤ bb,h ≤ zb,hP b,h (5.62)

pb,h − (1− zb,h)P b,h ≤ bb,h ≤ pb,h − (1− zb,h)P b,h (5.63)

bb,h ≤ pb,h + (1− zb,h)P b,h (5.64)

Constraints (5.61) - (5.64) ensure that the bilinear term zb,hpb,h takes on a value of 0
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if zb,h is 0 and takes on the value of pb,h when zb,h is 1. We define a new variable bb,h

which is equivalent to zb,hpb,h. Specifically, if zb,h is zero, constraint (5.62) restricts

bb,h to be zero. If zb,h is 1, constraints (5.63) and (5.64) ensure that bb,h takes on the

value of pb,h.

Constraints (5.57) - (5.59) are also replaced by similar constraints corresponding

to (5.61) - (5.64) and henceforth, we refer to the resulting piece-wise approximation

as MCC2.

5.9 Performance of piece-wise McCormick

approximation

In this section, we look at how well the McCormick approximation, obtained by div-

ing the variables pb,h and fl,h piece-wise into positive and negative segments (MCC2),

performs in relation to the original single-ISO MPEC solution and the MCC1 approx-

imation.

5.9.1 Changes in line investment and overall surplus

We see from Table 5.3 that in MCC2, both ISOs end up building an equal or lesser

number of lines when compared to MCC1. The difference is drastic for ISO 2 which

builds only two lines as opposed to the 10 lines recommended by MCC1. This is

closer in number to the original MPEC solution (3 lines). In the next paragraph, we
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Player Actual MCC1 MCC2

1 1,20,21 1,9,19,20 1,5,19,20

2 2,16,22 4,7,8,10,11,12,13,14,15,17 8,23

Table 5.3: Primal Solutions: Comparison of the approximations’ transmission in-

vestments with the original recommendations.

Player MCC1 % error MCC2 % error

1 2.7% 2.5%

2 6.4% 2.5%

Table 5.4: Percentage underestimation of Objective value: Imposing approximation

upper level solution on original MPEC. Green indicates a reduction in error. For all

four models, it is assumed that the other player builds no transmission lines.

measure the accuracy with which MCC2 approximates the original MPEC solution’s

ISO surplus 5.4.

We get the values in Table 5.4 by imposing the upper-level transmission invest-

ments from MCC2 for ISOs 1 and 2 on their respective non-convex MPECs (with

the same assumptions about the other player). The values shown in the table are the

percentage changes from the original MPEC’s regional surplus predictions. We know

that these new predicted surpluses will always be smaller than the actual surpluses

(as the approximated solutions are suboptimal).
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From Table 5.4, we see that the tighter approximation performs better than the

simple approximation MCC1. We see the error reduces to 2.5% in both cases from

2.7% and 6.4% for ISOs 1 and 2 respectively. We conclude that for MPECs, in this case

study, piece-wise approximations predicts both regions’ surpluses more accurately

than the simple McCormick approximation.

5.9.2 Effect of approximations’ quality on EPEC solution

The goal of this approximation is to be able to accurately predict the equilibrium

reached by both regional transmission planners when they are acting strategically

to maximize the profits of their individual regional players. To evaluate the qual-

ity of the approximation, we use diagonalization to solve two EPECs - one with the

MCC1 MPEC approximation, and the other with the MCC2 MPEC approximation.

We then take the equilibrium transmission investment recommendations from these

EPECs and impose them on the original MPEC each ISO faces, and calculate the re-

sulting regional surplus. Again, since these values are sub-optimal solutions, we might

expect the objective value to be underestimated (since each MPEC is a maximiza-

tion problem). However, since this is an equilibrium problem (not a maximization),

this might not happen. The difference between these surpluses and the ISOs’ actual

surpluses - as calculated in Chapter 4 from the original EPEC - indicates the quality

of our approximations.

Table 5.5 shows that if each ISO faces the MCC1 approximation, ISO 1’s surplus
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Player MCC1 % error MCC2 % error

1 4% 3.5%

2 1.2% 1.7%

Table 5.5: Error in Objective value - Imposing approximated EPEC solution on

EPEC

is under-estimated by 4% and ISO 2’s surplus is under-estimated by 1.2%. With the

tighter approximation, these errors decrease to 3.5% but increase to 1.7% for Regions

1 and 2, respectively. It is interesting to note that, although, as we see from Table

5.4, the tighter approximation, MCC2, predicts regional surpluses better than MCC1

given the same starting point, the same does not necessarily translate into a better

EPEC solution (as evidenced by the increased error of 0.5% in predicting Region 2’s

surplus).

5.10 Increase in size of approximations

The number of constraints and variables increases as the complexity of the McCormick

envelopes increases. For example, for each bilinear term in the objective function of

the single-ISO MPEC, the additional number of variables and constraints required

for the simple (MCC1) and piece-wise McCormick envelopes (MCC2) are shown in

Table 5.6.
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Per bilinear term MCC1 MCC2

Additional variables 4 20 (8 binaries)

Additional Constraints 4 26

Table 5.6: Size of the problem increases with complexity of McCormick envelopes

We see that for each bilinear term in the original problem, there is a 4-fold increase

in the number of variables and constraints if we use simple McCormick envelopes

(MCC1), whereas, with the piece-wise approach (MCC2), there is about a 20-fold

increase in number of variables and constraints. Some of these additional variables are

binary, which increases the complexity of the MIP relaxation. The decision-maker

needs to consider problem size and complexity when evaluating relaxations of the

noncooperative transmission planning problem.

5.11 Conclusion

In Chapter 4, we saw that the optimization problem faced by regional ISOs, when

they look to maximize the profit of the consumers, generators, and themselves, takes

the form of a non-convex MINLP. While we used an Outer-Approximation algorithm

to solve the MPEC, scaling the framework to larger datasets is difficult due to non-

convexities and the mixed-integer nature of the problem.

In this chapter, we used McCormick envelopes to create convex relaxations of the
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aforementioned MPEC problem. First, we used loose bounds on one of the variables

in the bilinear term pb,h to generate simple McCormick envelopes and evaluated the

quality of the resulting approximation by comparing the primal solutions, as well as

the error in surplus estimation of the regional ISOs. This was done using the same

CAISO 17-bus dataset and two regional planners as used in Chapter 4. Next, we

improved upon this approximation by constructing piece-wise McCormick envelopes

based on tighter bounds on the two variables in the bilinear term. This tighter

approximation was then used to solve the regional ISOs’ problems, and we found that

it provided a closer estimate of the actual regional surpluses. Although this accuracy

comes at the cost of an additional 26 constraints and 20 variables (including 8 binary

variables) for each bilinear term in the objective function, the tradeoff here is that we

do not have to solve a MINLP. The approximation is a MILP which can be solved for

large datasets using powerful out-of-the-box solvers. These solvers routinely handle

problems with a large number of binary variables and constraints. Decision makers

need to consider the computational speed-ups of these approximations and other

advantages such as easier scaling up to larger datasets against the loss in accuracy

of 1.7% - 3.5% (for this case-study). Additionally, depending on the computational

resources available, these approximations can be improved (albeit with an increase

in size of the associated MILPs) by further tightening the bounds on the variables in

the bilinear term.
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Conclusion

In this thesis, our goal was to develop computational tools that can aid decision

makers in effective transmission planning. We did this by focusing on two themes:

bridging the gap between short-term operations and long-term planning, and explor-

ing the effects of regionality on transmission planning.

We start by summarizing the contributions of this thesis in Section 6.1. In Sections

6.2 and 6.3, computational difficulties we faced are discussed. We then discuss the

limitations of these studies, and future research directions in Sections 6.4 and 6.5

respectively.
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6.1 Summary and contributions

The unit commitment (UC) problem is a very large mixed integer program that is

used to determine generator schedules in daily system operations. Historically, the

computational burden of unit commitment was so large that the effects of short-term

operational constraints, such as ramp-rates and minimum-run constraints, could not

be explicitly inculded in long-term transmission planning models (which by them-

selves are complex mixed integer programs [64]). In Chapters 2, we aimed to remedy

this issue by presenting a tight unit commitment MILP formulation, whose relax-

ation performs better than currently used linear approximations from literature. In

Chapter 3, we applied this to a U.S. Western Interconnection application and show

that UC indeed changes long-term transmission and generation investments. Specific

contributions of Chapters 2 and 3 are discussed below.

6.1.1 Improved approximations of unit commitment

In Chapter 2, we proposed a Mixed-Integer Tight Unit Commitment (TUC) formu-

lation that defines a tighter constraint set for the unit commitment problem. This

is achieved by selectively trimming the relaxed MILP without removing valid points

in the original problem. We validated our results by simulating unit commitment

operations on systems based on an 11-generator test-case over a period of 168 hours

(1 week). We showed that, for all system sizes, the TUC formulation converges faster
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than the standard UC formulation while giving the same primal and dual solutions.

We then showed that the relaxation of this formulation (TRUC) is tight enough to

predict system costs with a ≥ 99% accuracy for all system sizes. TRUC outperformed

the following linear approximations common in literature:

1. A load duration curve (LDC) model, which orders hours in decreasing order

of magnitude of load and dispatches generators according to a “merit-order”

stack (i.e., cheapest-first). This approach ignores inter-temporal ramping and

minimum-run constraints, and start-up and shut-down costs.

2. A variant of LDC, LDC’, which averages out the total start-up and shut-down

costs into the marginal cost of generation.

3. A relaxed unit commitment formulation for the standard UC formulation (BCRUC)

where the integrality constraints on unit status (running/not running) are re-

laxed.

For larger test cases, we also showed that TRUC predicts hourly energy prices and a

new, small generator’s profits better than the linear approximations. In TRUC, we

have a linear approximation of the Unit Commitment problem that can estimate the

total system costs and energy prices, which are signals for generator investment, with

a high degree of accuracy, while remaining a tractable linear programming problem.

Sophisticated algorithms based on the Simplex and Inter-point methods exist that

solve linear programs significantly faster than a comparatively sized MILP. With
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TRUC representing operations within a large-scale planning model, decomposition

techniques (such as Benders’ algorithm) can be applied, as LPs can be used as sub-

problems.

In the same chapter, we showed how a Partially Relaxed TUC formulation (TPRUC)

can reduce the computational burden of the full UC MILP while more accurately pre-

dicting price and total system cost. The partial relaxation allows power system plan-

ners and operators to select critical periods where variables remain binary in nature

(e.g., fast-ramping periods). For example, in the smallest system (1x), we designated

the 60 hours (out of 168) corresponding to the steepest changes in net-load as binary

variables for shoulder and peaking units (e.g., CCGT, CT, and oil units). These

plants and periods were selected because they were most likely to violate ramping

constraints in a significant manner. By relaxing all other variables, the number of

binary variables was reduced to 19% of its original quantity, with 99.9% fidelity in

system cost and an RMSE of $0.75/MWh. Depending on the system size, TPRUC

also solves 30-56 times faster than the base case UC.

In summary, the main contributions of Chapter 2 are the Tight Unit Commitment

(TUC) model and its approximations. We showed that the MILP formulation, TUC,

solves faster than the standard formulation from the literature [32], while giving

the same primal and dual solutions. We also showed that the linear relaxation,

TRUC, estimates system costs and prices better than the linear approximations used

in literature (LDC and LDC’), especially for larger system sizes. A way to incorporate
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operator insight into UC models (in TPRUC) was also shown. This model has only

19.4% of the number of binary variables in the standard formulation, yet predicts

system costs and energy prices accurately.

In Chapter 3, we applied TRUC to a planning problem for which it would have

been impractical to use a full UC formulation with binary variables. This applica-

tion allowed us to consider unit commitment constraints without rendering the model

impractical. In Chapter 3, we demonstrated, by applying TRUC on a two-stage multi-

period investment model, that short-term operational constraints (e.g., ramping lim-

its) can have an impact on transmission investment. More specifically, by comparing

the dispatch from the UC and LDC models, we found that transmission investment

differences are caused by the inflexibility of certain generators at an hourly time scale.

For example, in one instance, when a LDC was used, coal units were started-up and

shut-down for a few hours in the afternoon and then ramped up to their full ca-

pacity in the evenings. With UC constraints, coal generators are more accurately

modeled as having slower ramps and longer start-up/shut-down times. Our results

show that wind, solar and hydro generation (both deterministic and stochastic) and

load profiles can widely affect long-term transmission and generation investments.

Specifically, we find that flexible generation, such as CTs, is sometimes favored over

less flexible CCGTs, in order to accommodate high ramp rates in load or renewable

energy generation profile. As mentioned, transmission investments are also impacted

by operational constraints. Transmission line investment provides the option of bring-
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ing generation from distant centers to load pockets, rather than building new local

generation.

We also found that these results are sensitive to factors affecting the merit-order

stack. For example, as carbon-tax is increased from $0/ton to $100/ton, coal, in-

tuitively, becomes un-competitive and is not dispatched. However, in the medium-

carbon tax range, when coal is neither completely base-loaded nor completely priced

out, unit commitment has the largest potential to affect long-term investments. This

is the carbon-tax range where coal is being cycled the most (compared to other

carbon-tax ranges) and this is where ramping, start-up, shut-down, and minimum-run

constraints have the most effect on long-term investments. A second factor affecting

investments is the weight given to the scenarios is a stochastic model. We showed

that under one set of weights, Stage 1 (here-and-now) transmission decisions are not

affected while under a different set of weights the model recommends a different set

of transmission and generation investments.

In summary, for first time in the literature, the analysis in Chapter 3 explicitly

considered short-term intertemporal operational constraints within a generation and

transmission optimization model. . The computational burden of integrating a full

UC model into expansion models was previously too great because both are mixed

integer programs. We address this by integrating a tight linear approximation of

UC from Chapter 2 — which we showed more accurately estimates hourly energy

prices, total system costs, and generator profits than other linear approximations from
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literature — with a two-stage stochastic planning model. We then showed that short-

term UC constraints indeed have the potential to change long-term transmission and

generation investments. This potential is the greatest when there are slow-moving,

inflexible generators in the energy mix which are cycled.

6.1.2 Noncooperative vs cooperative transmission planning

In Chapter 4, we address the fact that, although, the United States’ electricity grid,

at a high level, is comprised of three interconnections, each interconnection is made

up of multiple Independent System Operators (ISOs) or Regional Transmission Op-

erators (RTOs). Further down, the western North American market is comprised of

38 balancing authorities who are responsible for maintaining and safely operating the

power system for their regions. Their responsibility is to ensure that generators and

consumers have access to the transmission system. Since electricity follows the laws of

physics (e.g., Kirchhoff’s Voltage Laws or KVLs) rather than geopolitical boundaries,

long-term investments are a complex problem that should, in theory, be addressed in

a coordinated fashion by all entities involved in planning and operating the system.

But in practice, each ISO has its own transmission planning process.

Traditionally, production costing or single-shot cost-minimization/benefit-maximization

optimization models were used in literature (and sometimes in practice) to identify

potential transmission line investments. Following deregulation, equivalent models

were still used to find optimal investments, with the assumption of perfect competi-
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tion and information symmetry. In reality, rather than maximizing profits, non-profit

ISOs make investments that benefit the players in their own region [127], while con-

sidering cross-border electricity trade (e.g., bilateral contracts and self-scheduling on

the spot markets).1 Until now, to the best of our knowledge, no model had adequately

addressed this noncooperative nature of transmission planning.

In Chapter 4, we first look at a single regional planner’s (ISO’s) problem. We for-

mulate the problem where the planner’s objective is to identify candidate transmission

investments that maximize the net surplus of regional players, including consumers,

generators, and the ISO itself. The model identifies these investments anticipating

that, in the future, generators and consumers will behave competitively both in the

spot market and while making investment decisions. Furthermore, the ISO also as-

sumes that all trades are competitive.

This structure naturally gives rise to a leader-follower game (in this case, a Math-

ematical Program with Equilibrium Constraints, or MPEC) with the ISO being the

leader, while the generators and the players in the spot-market are the followers. We

then showed how to combine multiple players’ problems by integrating the follower’s

primal constraints, dual constraints, and the strong duality condition into the main

problem. We exactly linearized the resulting nonlinear constraints generated by the

MPEC, leaving only some nonlinearities in the objective function.

Later in the chapter, we extend this single-ISO framework into an Equilibrium

1This is a simplified assumption of reality.
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Problem with Equilibrium Constraints (EPEC) where multiple regional ISOs all face

the same optimization problem with a common follower — the spot market and gen-

erators making investments in all regions. This model attempts to find an equilibrium

among two or more regional ISOs’ MPEC problems, assuming Nash equilibrium be-

havior over their individual transmission investment strategies. Using a test-case with

17-buses, 12 hours, and 2 regional planners, we solve the EPEC using diagonaliza-

tion (while solving the single-ISO MPEC using an Outer-Approximation algorithm).

We compare the resulting set of transmission investments to those from a traditional

cost-minimization optimization problem (i.e., central planning), and show that our

game-theoretic approach can help quantify the changes in the profits of all entities

(consumers, producers, and the ISO itself), when the ISOs fully cooperate with each

other in the transmission planning process. Specifically, for our case study, we found

this Value of Cooperation (VOC) to be 83% of the total transmission investment cost.

We found that if the regional planners cooperated with each other, cross-border

trades increased, as cooperative transmission investments gave consumers in one re-

gion access to cheaper generation from another region. We also showed that this

competition from one region’s generation will then force cheaper generation invest-

ment in a neighboring region. Moreover, we were able to identify the lines internal to

both regions that have interregional benefit. In this case, the cooperative model re-

sults in more transmission built, but in lines internal to each of the regional markets,

and not between the markets.
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Overall, we showed that cooperative transmission planning benefits both regions,2

while exactly identifying the “winners” and “losers” (from the status-quo noncooper-

ative planning). As long as side-payment agreements exist that can bring the players

that lose (due to this planning paradigm change) on board, cooperative planning can

benefit the region. We explore one such side-payment agreement in our case-study

where the region that benefits overall from the cooperation agrees to shoulder some

of the second region’s costs of building transmission.

Using these formulations to identify winners, losers, and the effects of cooperation

on each player can help ISOs not only operate more efficiently, but also negotiate

beneficial side-payment agreements. Furthermore, this also helps the ISOs comply

with federal regulations (such as FERC Order 1000, which mandates interregional

cooperation in transmission planning).

In summary, the contribution of Chapter 4 is that for the first time in the lit-

erature, noncooperative transmission planning by adjoining regions is framed as a

bi-level equilibrium model, where these regions make investments without a supra-

player (regulatory body) directing the investments. We showed that the problem

each region’s planner faces takes the form of an MPEC, which can be re-cast as a

non-convex MINLP. An outer-approximation algorithm was used to solve this MPEC,

while solving the EPEC of all regional planners. The results from this framework were

compared to those from a cooperative framework in which regional planners fully co-

2Subject to side-payments.
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operate with each other in transmission planning. It was shown that cooperation can

only benefit the entire region, and the resulting changes to surpluses of individual

players from both regions were quantified.

Although we were able to solve the single-ISO MPEC for a 17-bus system with

12 hours of operations, directly scaling these formulations up to larger test-cases and

more hours is difficult, because non-convex MINLPs are some of the most challenging

problems in optimization to solve to global optimality. In Chapter 5, to aid scaling up,

we use McCormick envelopes to convexify and linearize the optimization problem. We

first construct simple McCormick envelopes around the nonlinear term in the objective

function. We solve the resulting EPEC (consisting of approximated MPECs), and

compare the approximation’s quality with the actual solution from Chapter 4.

The quality of McCormick envelopes depends, to a large degree, on the bounds

of the variables. For example, in our single-ISO MPEC problem, one of the bilinear

terms includes the dual variable associated with the energy balance constraint due

to KCL (i.e., the hourly energy price of energy). Because the latter is an equality

constraint, it is difficult to bound its associated dual variable. Tighter bounds on

the variables could theoretically tighten the McCormick envelopes leading to a better

solution. We separated the energy price and power flow variables on seam lines into

positive and negative components, and constructed McCormick envelopes for each

of the four bilinear terms. Further, we added constraints to guarantee orthogonality

between the respective positive and negative components.
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Using the tighter piece-wise McCormick envelopes resulted in improved solution

quality in the single-ISO MPEC (measured by the difference in predicted regional sur-

plus), but produced mixed results for the multiple-ISO EPEC. Overall, we found that

McCormick can be a suitable convex approximation of the multi-regional noncoop-

erative transmission planning problem if tight bounds are available on the variables

that make up the bilinear term. Although energy prices are dual variables, they

have a practical interpretation, and decision makers can generate tight bounds for

energy prices based on historical data. Then, based on the available computational

resources, piece-wise envelopes can be constructed for the bilinear terms in the ob-

jective function, where more pieces result in higher solution quality at the cost of

creating additional variables. The resulting EPEC can be solved using diagonaliza-

tion and out-of-box solvers such as CPLEX or Gurobi.

In summary, the contribution of Chapter 5 is that we showed McCormick envelopes

to be a suitable tool that can aid in scaling up the noncooperative framework from

Chapter 4 to large networks. Depending on the available computational resources, the

quality of these envelopes can be improved, while re-casting the non-convex MINLP

faced by each ISO as a MILP. We showed that, in this case study, an approximation

with tighter McCormick envelopes (MCC2) estimates the individual regional profits

better than a simple McCormick approximation (MCC1).

Next, we discuss some practical computational issues we encountered while run-

ning the formulations we used in this thesis.
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6.2 Computational difficulties

Computing power has improved exponentially the past few decades. Yet, we encoun-

tered a number of challenges while solving the Unit Commitment and Transmission

Planning models from these chapters. For example, in Chapters 2 and 3, we were

able to initially include only 24 h of operations (with default CPLEX settings on a

Windows Server 2012 PC with an AMD Opteron 6274 2.20GHz Processor and 112

GB RAM, these models took about 6 - 7 h to solve). But with tuning of solver param-

eters (which in general is problem specific), we were able to include more hours (72 h

of operations) and solve the same model in 2 - 2.5 h. When scaling-up a model while

facing computational limits, traditional single-level optimization models (i.e., models

solved as a single instance) may be inadequate. To partially address computational

limits, it is possible to use decomposition techniques (e.g., Benders’ decomposition

and Progressive hedging) with high-throughput computing facilities [66] [128].

In Chapters 4 and 5, we used an Outer Approximation algorithm to solve the

single-ISO MPEC for 12 h of operations. As mentioned in Chapter 4, theoretically,

CPLEX (from version 12.3 onwards) can optimally solve MINLPs whose integer vari-

ables are binary, when their non-convexities are concentrated in the objective function.

However, practically, the computational cost was unreasonable for solving 3 hours of

operations in a 17-bus model. Moreover, scaling is a major issue in the MPECs (due

to the required bounds on dual variables and the presence of disjunctive constraints).
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In summary, transmission planning models are computationally challenging by

themselves. Their complexity increases when the embedded operations component

links generation production between different hours using inter-temporal ramping and

minimum-run constraints. We found that tuning solver parameters greatly helped

computational times, and we were then able to simulate operations for more hours.

We also found that CPLEX currently takes a long time to solve very simple non-

convex MIPs.

6.3 When is the additional effort justified?

Simplifications have always been part of long-term power systems planning models

- simplifications related to network resolution, operations depiction, market struc-

ture, political boundaries, etc. Deregulation and increasing penetration of variable

renewable energy (VRE) has increased the need to include more operational detail

into planning models as we showed in Chapters 2 and 3. However, this inclusion

comes with additional data, modeling, and computational efforts. For example, more

constraints need to be added to the formulation which increases the computational

time, and additional data about each generator’s operational characteristics such as

start-up, shut-down times, and minimum-run capacities needs to be obtained.

Decision makers need to be aware of this effort and weigh their trade-offs against

the potential benefits from using these more accurate models. For example, our lin-

ear Unit Commitment approximation, TRUC, has the potential to be most useful
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when the system has a mix of inflexible (slow-moving) generation and highly variable

renewable energy sources in the mix. These are the conditions under which it is nec-

essary to adequately account for the effects of flexibility (or inflexibility) of generators

on the system, as this is when steep ramps are required to accommodate renewable

energy that bid at very low prices. This effect can be significant enough to change the

relative economic attractiveness of different generation and transmission investments.

On the other hand, if the inflexible generation is base-loaded all the time or only used

for peaks, then TRUC is unlikely to change operations enough relative to a model

without UC constraints to affect investments.

Regarding the transmission planning models from Chapters 4, these models are a

more accurate representation of reality than a traditional vertically integrated model,

in that they explicitly consider the incentives faced by regional ISOs. Hence, the

transmission recommendations from such models can be used by decision makers to

identify the “winners” and “losers” of noncooperative or cooperative planning. But,

there are computational challenges in solving these MPECs, which are MINLPs, that

need to be addressed.

6.4 Limitations of the studies

The models and the analyses presented in these essays address important issues,

such as the effect of short-term operations and political boundaries, on transmission

planning. However, there are limitations to what our models currently address. For

166



CHAPTER 6. CONCLUSION

example, our models do not consider reactive power or transmission line losses. Now,

we delve into the specific limitations of each chapter.

• Chapter 2: In the TUC formulation and its approximations, we do not model

minimum-up and down time constraints. Our models implicitly assume these

times to be 1 h, i.e., when turned off, there is no restriction on when these

units can be started up again. In reality, tens of hours are sometimes required

for a nuclear or coal unit to be switched on after being turned off. Start-up

costs and marginal costs of generation also depend on the length of time the

unit has been off [129]. In this study, we assume these costs are constant.

While we do not include network constraints, such as transmission line thermal

limits, in the formulations in this chapter (operations and load at a single bus

are considered), these are included when TRUC is used in the next chapter.

Additionally, we do not evaluate the performance of these formulations with

variable renewable energy sources in the energy mix. Preliminary testing has

shown us that high variability in net-load profile (from one hour to the next)

could increase solve-times.

• Chapter 3: In Chapter 3, we do not consider Kirchhoff’s Voltage Laws (KVLs)

in the two-stage stochastic (and deterministic) planning model. These con-

straints have indeed been shown to affect long-term transmission plans [64].

Another limitation is that we use only 72 hours (three days) to represent yearly

operations. Industrial scale generation production costing runs (without plan-
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ning, multiple-stages, or stochasticity) generally simulate the entire 8760 hours

of yearly operations.

• Chapters 4 and 5: The main limitation of our non-cooperative transmission

planning models from Chapter 4 is scale. In our case-study, we used a 17-bus

system representation of the region maintained by the California ISO (CAISO).

But, in reality, these regions contain thousands of buses and transmission lines.

Furthermore, we only consider 12 hours to represent yearly load and renewable

conditions. But this non-cooperative MPEC is a non-convex MIP and solving

these models is challenging. In fact, this was the motivation for the McCormick

approximations in Chapter 5. In these approximations, we only divide each

variable constituting the bilinear term into two variables. This can be improved

by increasing the number of parts each variable (from the bilinear term) is

divided into.

6.5 Future research

The essays in this thesis address some key challenges in long-term transmission plan-

ning. The following extensions can be used to address some of the limitations we

mention in Section 6.4 as well as to explore future directions of work.

• Including minimum-up and -down time constraints in unit commitment: In-

cluding these constraints in the UC formulations from Chapter 2 would allow
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the models to represent generator shut-down times which are an important con-

sideration in generator scheduling. With this, more resolution can be added to

the generator fixed costs as well. For example, start-up costs depend on the

length of time a generator is turned off.

• More hours in the transmission planning models from Chapter 3: One challenge

in this direction is that most planning models use a sampling [22] or clustering

methodology [64] to choose non-chronological hours to match yearly averages

and geographical correlations between variable data such as load, wind, so-

lar, and hydro profiles. But including inter-temporal operational constraints

automatically necessitates the use of continuous swathes of hours (e.g., full

days). In Chapter 3, we select 72 hours and normalize variable energy profiles

to match yearly averages. We plan to improve upon this by exploring tech-

niques, e.g., [130], that will allow us to capture continuous hours that match

yearly (or seasonal) averages and geographical correlations between load and

variable energy source outputs.

• Scaling the noncooperative transmission planning framework: For the non-cooperative

single-ISOMPECmodel from Chapters 4 and 5, we plan to explore the challenge

of concurrently improving solutions for the single-ISO MPEC approximations,

while using realistically scaled models.

• Incorporating current cross-border practices into transmission planning: An-
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other avenue we would like to focus on is to incorporate current cross-border

artefacts such as hurdle-rates, which have been previously described as eco-

nomic “friction” on the system [131]. Incorporating these artefacts will help

us truly understand the effects of non-cooperation between neighboring ISOs

in the planning process, and hopefully pave the way to more cooperation in

planning (which we showed can only benefit the system). This can also help in

negotiating side-payment agreements by pin-pointing the exact effects of current

policies and regulations, and the market-participants directly affected.
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g αg βg γg θg URg DRg Cfuel
g Com

g Qmax
g Qmin

g
Power
factor

NUCLEAR 1 0 5 0.5 0.02 0.02 3.5 1.2 1 0.23 0.95

LIGNITE 3 0.015 2 0.2 0.038 0.038 8 2.4 0.35 0.23 0.94

SUBBITUMIN 2.6 0.03 2 0.2 0.044 0.044 8.5 1.8 0.35 0.21 0.95

BITUMINOUS 2.3 0.035 1.4 0.14 0.04 0.04 8 1.2 0.35 0.22 0.93

ANTHRACITE 2.2 0.06 1.9 0.19 0.118 0.118 7 1.2 0.55 0.18 0.96

CCGT 1 1.3 0.09 1.1 0.11 0.065 0.065 20 1.2 0.4 0.2 0.98

CCGT 2 1.3 0.09 1.1 0.11 0.065 0.065 20 1.2 0.4 0.2 0.98

CCGT 3 1.3 0.09 1.1 0.11 0.065 0.065 20 1.2 0.4 0.2 0.98

FUEL OIL 1 2.1 0.08 0.07 0.007 0.125 0.125 20 1.2 0.54 0.14 0.94

FUEL OIL 2 2.1 0.08 0.07 0.007 0.125 0.125 20 1.2 0.54 0.14 0.94

GAS 2 0.09 0.11 0.011 0.075 0.075 18 2 0.38 0.14 0.94

Table 6.1: Generator data (size 1x) for Unit Commitment models from Chapter 2.
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CHAPTER 6. CONCLUSION

Zone Solar PV Wind Gas CCGT

Alberta 0 0 -454

British Columbia 0 0 715

Colorado 0 -783 404

Mexico 0 0 -298

Montana 0 54 0

Northern California 0 0 -363

Northern Nevada 0 0 288

San Francisco 0 0 -601

Southern California 0 0 -377

Southern Nevada -2442 0 -581

Texas & New Mexico 0 161 -1880

Utah 0 0 162

Wyoming & Colorado 0 -259 -437

Table 6.3: 2nd stage generation investment changes (with UC - without UC) for Set

1 probabilities. Overall, we see that there is less investment across all technologies.
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Zone Geothermal Solar PV Wind Biomass Gas CCGT Gas CT

Alberta 0 0 4429 0 12575 0

Arizona/North East
New Mexico 0 5522 521 329 0 0

British Columbia 340 0 4721 0 687 0

Colorado 0 0 0 0 2804 0

Idaho 329 0 1649 0 0 0

IID 486 3405 0 19 0 0

Mexico 0 0 2936 0 951 188

Montana 0 0 7006 0 0 0

Northern California 0 0 0 0 354 0

Northern Nevada 792 0 0 0 5173 0

Pacific Northwest 832 0 6175 0 0 0

San Francisco 0 0 0 0 1367 0

Southern California 0 12665 5297 126 7348 0

Southern Nevada 0 3475 0 12 163 0

Texas & New Mexico 0 0 5730 224 430 0

Utah 375 0 0 0 7831 0

Wyoming & Colorado 0 0 19274 0 10689 0

Table 6.4: 2nd stage generation investment changes under Set 2 probabilities with-

out Unit Commitment. Compare this with Table 6.5.
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CHAPTER 6. CONCLUSION

Zone Geothermal Solar PV Wind Biomass Gas CCGT Gas CT

Alberta 0 0 4429 0 12128 0

Arizona/North East
New Mexico 0 5522 521 329 0 0

British Columbia 340 0 4721 0 1236 0

Colorado 0 0 0 0 2653 0

Idaho 329 0 1649 0 0 0

IID 486 3405 0 19 0 0

LADWP 0 0 0 0 0 0

Mexico 0 0 2936 0 844 0

Montana 0 0 7063 0 0 0

Northern Nevada 792 0 0 0 4976 0

Pacific Northwest 832 0 6175 0 0 0

San Francisco 0 0 0 0 770 0

Southern California 0 12665 5297 126 6971 0

Southern Nevada 0 3475 0 12 2597 0

Texas & New Mexico 0 0 1994 224 3342 0

Utah 375 0 0 0 7681 0

Wyoming & Colorado 0 0 18786 0 6391 0

Table 6.5: 2nd stage generation investment changes under Set 2 probabilities with

Unit Commitment. Compare this with Table 6.4.
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[17] T.-O. Léautier and V. Thelen, “Optimal expansion of the power transmission

grid: why not?” Journal of Regulatory Economics, vol. 36, no. 2, pp. 127–153,

2009.

[18] Y. Gu, L. Xie, B. Rollow, and B. Hesselbaek, “Congestion-induced wind curtail-

178

http://www.eei.org/issuesandpolicy/transmission/Documents/Trans_Project_lowres_bookmarked.pdf
http://www.eei.org/issuesandpolicy/transmission/Documents/Trans_Project_lowres_bookmarked.pdf
http://apps2.eere.energy.gov/wind/windexchange/windmaps/resource_potential.asp
http://apps2.eere.energy.gov/wind/windexchange/windmaps/resource_potential.asp
http://nescoe.com/consistent-planning-bergeron-sep2015/


BIBLIOGRAPHY

ment: Sensitivity analysis and case studies,” in North American Power Sympo-

sium (NAPS), 2011. IEEE, 2011, pp. 1–7.

[19] L. T. Lam, L. Branstetter, and I. M. Azevedo, “Chinas wind electricity and

cost of carbon mitigation are more expensive than anticipated,” Environmental

Research Letters, vol. 11, no. 8, p. 084015, 2016.

[20] J. Manley, “India already has a problem with wasting renewable energy on the

grid,” Accessed 02/28/2017. [Online]. Available: https://www.greentechmedia.

com/articles/read/how-can-india-avoid-wasting-renewable-energy

[21] M. Buygi, G. Balzer, H. Shanechi, and M. Shahidehpour, “Market-based trans-

mission expansion planning,” IEEE Transactions on Power Systems, vol. 19,

no. 4, pp. 2060–2067, Nov 2004.

[22] A. H. van der Weijde and B. F. Hobbs, “The economics of planning electric-

ity transmission to accommodate renewables: Using two-stage optimisation to

evaluate flexibility and the cost of disregarding uncertainty,” Energy Economics,

vol. 34, no. 6, pp. 2089 – 2101, 2012.

[23] F. D. Munoz, B. F. Hobbs, J. L. Ho, and S. Kasina, “An engineering-economic

approach to transmission planning under market and regulatory uncertainties:

WECC case study,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp.

307–317, 2014.

179

https://www.greentechmedia.com/articles/read/how-can-india-avoid-wasting-renewable-energy
https://www.greentechmedia.com/articles/read/how-can-india-avoid-wasting-renewable-energy


BIBLIOGRAPHY

[24] K. W. Hedman, M. C. Ferris, R. P. O’Neill, E. B. Fisher, and S. S. Oren,

“Co-optimization of generation unit commitment and transmission switching

with N-1 reliability,” IEEE Transactions on Power Systems, vol. 25, no. 2, pp.

1052–1063, 2010.

[25] A. Street, F. Oliveira, and J. M. Arroyo, “Contingency-constrained unit com-

mitment with n− k security criterion: A robust optimization approach,” IEEE

Transactions on Power Systems, vol. 26, no. 3, pp. 1581–1590, 2011.

[26] F. H. Murphy, S. Sen, and A. L. Soyster, “Electric utility capacity expansion

planning with uncertain load forecasts,” AIIE Transactions, vol. 14, no. 1, pp.

52–59, 1982.

[27] A. Moreira, K. Rocha, and P. David, “Thermopower generation investment in

Brazil-economic conditions,” Energy Policy, vol. 32, no. 1, pp. 91–100, 2004.

[28] C. Nweke, F. Leanez, G. Drayton, and M. Kolhe, “Benefits of chronological

optimization in capacity planning for electricity markets,” in Proc. IEEE Int.

Conf. Power System Tech. (POWERCON), 2012, pp. 1–6.

[29] A. Rosso, J. Ma, D. Kirschen, and L. Ochoa, “Assessing the contribution of

demand side management to power system flexibility,” in Proc. 50th IEEE Con-

ference on Decision and Control - European Control Conference (CDC-ECC),

2011, pp. 4361–4365.

180



BIBLIOGRAPHY

[30] B. Palmintier and M. Webster, “Impact of unit commitment constraints on

generation expansion planning with renewables,” in Proc. IEEE PES General

Meeting, 2011, pp. 1–7.

[31] G. P. McCormick, “Computability of global solutions to factorable noncon-

vex programs: Part iconvex underestimating problems,” Mathematical program-

ming, vol. 10, no. 1, pp. 147–175, 1976.

[32] M. Carrion and J. Arroyo, “A computationally efficient mixed-integer linear

formulation for the thermal unit commitment problem,” IEEE Transactions on

Power Systems, vol. 21, no. 3, pp. 1371–1378, 2006.

[33] B. F. Hobbs, M. H. Rothkopf, R. P. ONeill, and H. P. Chao, The Next Gener-

ation of Electric Power Unit Commitment Models. Kluwer, 2001.

[34] R. O’Neill, “It’s getting better all the time (with mixed integer

programming),” 2007, Accessed 04/24/2017. [Online]. Available: http:

//www.hks.harvard.edu/hepg/ONeill Richard.pdf

[35] M. Lynch, A. Shortt, R. Tol, and M. O’Malley, “The effect of operational

considerations on the return of electricity generation investment,” in Proc. IEEE

PES General Meeting, 2013, pp. 1–5.

[36] A. Shortt, J. Kiviluoma, and M. O’Malley, “Accommodating variability in gen-

181

http://www.hks.harvard.edu/hepg/ONeill_Richard.pdf
http://www.hks.harvard.edu/hepg/ONeill_Richard.pdf


BIBLIOGRAPHY

eration planning,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp.

158–169, 2013.

[37] J. F. Benders, “Partitioning procedures for solving mixed-variables program-

ming problems,” Numerische mathematik, vol. 4, no. 1, pp. 238–252, 1962.

[38] T. Niknam, A. Khodaei, and F. Fallahi, “A new decomposition approach for the

thermal unit commitment problem,” Applied Energy, vol. 86, no. 9, pp. 1667 –

1674, 2009.

[39] D. Shi, D. Shawhan, N. Li, D. Tylavsky, J. Taber, R. Zimmerman, and

W. Schulze, “Optimal generation investment planning: Pt. 1: network equiva-

lents,” in Proceedings of the North American Power Symposium (NAPS), 2012,

pp. 1–6.

[40] D. L. Shawhan, J. T. Taber, D. Shi, R. D. Zimmerman, J. Yan, C. M. Marquet,

Y. Qi, B. Mao, R. E. Schuler, W. D. Schulze, and D. Tylavsky, “Does a detailed

model of the electricity grid matter? Estimating the impacts of the Regional

Greenhouse Gas Initiative,” Resource and Energy Economics, vol. 36, no. 1, pp.

191 – 207, 2014.

[41] J. Wang, A. Botterud, R. Bessa, H. Keko, L. Carvalho, D. Issicaba, J. Sumaili,

and V. Miranda, “Wind power forecasting uncertainty and unit commitment,”

Applied Energy, vol. 88, no. 11, pp. 4014–4023, 2011.

182



BIBLIOGRAPHY

[42] R. Barth, H. Brand, P. Meibom, and C. Weber, “A stochastic unit-commitment

model for the evaluation of the impacts of integration of large amounts of in-

termittent wind power,” in International Conference on Probabilistic Methods

Applied to Power Systems (PMAPS), 2006., 2006, pp. 1–8.

[43] S. Takriti, B. Krasenbrink, and L. S.-Y. Wu, “Incorporating fuel constraints and

electricity spot prices into the stochastic unit commitment problem,” Operations

Research, vol. 48, no. 2, pp. 268–280, 2000.
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