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Abstract

My thesis work focuses on aiding the practical implementation of advanced sta-

tistical methods. Chapter 2 concerns the common practice of visual exploratory

data analysis, and the extent to which humans can visually detect statistical sig-

nificance from plots. We find that human accuracy in detecting significance was

initially poor, but improved with practice. Chapter 3 aids the implementation of

bootstrap principal component analysis, by providing significant computational

improvements. In a dataset of brain magnetic resonance images, the proposed

method can reduce bootstrap standard error computation times from approxi-

mately 4 days to 47 minutes. Chapter 4 proposes an approximate optimization

technique for adaptive clinical trials, aimed at lowering the expected sample size

or expected duration of a trial.
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Chapter 1

Introduction

My thesis work focuses on aiding the practical implementation of advanced

statistical methods. This goal is achieved by improving their computational

speed, increasing their efficiency, or providing insight into their practical use. A

common component across the research presented here is an attention to mul-

tiple hypothesis testing problems. In Chapter 2, we study the extent to which

multiple informal significance tests during a visual exploratory data analysis

may bias later hypothesis tests towards significance. In Chapter 3, we discuss

high dimensional confidence regions that simultaneously test several aspects of a

multivariate test statistic. In Chapter 4, we compare approaches for repeatedly

testing a set of hypotheses as data accrues. While these chapters all pertain

to multiple testing problems, they also span a wide range of applications and

primary goals.

Chapter 2 generally discusses the variability in statistical conclusions due

to differences in how statistical methods are implemented by analysts. This

focus on human analyst variability stands in contrast to traditional statistics
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research on uncertainty due to random sampling. Understanding which statis-

tical methods are most easily replicated across analysts is an important aspect

of creating guidelines and recommendations for analysis. We look here at the

specific practice of visually observing scatterplots in order to identify signifi-

cant relationships between variables – a common exploratory procedure that is

highly subject to human variability. We find that analysts have poor baseline

accuracy in visually identifying significant relationships, but that accuracy in

certain scenarios can improve with practice.

Chapter 3 proposes a novel, fast algorithm for estimating sampling variabil-

ity in patterns found in large datasets. We specifically look at patterns discov-

ered by principal component analysis (PCA), a common tool for summarizing

variability in high dimensional data (e.g. in brain imaging, genomics, or air

pollutant compositions). We develop a fast, exact bootstrap algorithm for esti-

mating standard errors and confidence regions for PCA outputs, or for methods

that depend on PCA outputs. In a dataset of brain magnetic resonance images,

we demonstrate that our method can reduce standard error computation times

from approximately 4 days to 47 minutes.

Chapter 4 proposes an approximate optimization procedure for reducing the

expected sample size of an adaptive clinical trial. We consider a class of adaptive

trials known as adaptive enrichment designs, which allow the enrollment criteria

to be modified at interim analyses based on preset decision rules. The trial

design also includes parameters that characterize the way in which multiplicity

corrections are done for tests of treatment effects in each subpopulation. An

obstacle to using these designs is that there is no general approach to determine

what decision rules and other design parameters will lead to good performance

2



for a given research problem. To address this, we present a simulated annealing

approach for optimizing the parameters of an adaptive enrichment design for a

given scientific application. Optimization is done with respect to either expected

sample size or expected trial duration, and subject to constraints on power

and Type I error rate. We find that optimized designs can be substantially

more efficient than simpler designs using Pocock or O’Brien-Fleming boundaries.

Much of this added benefit comes from optimizing the decision rules concerning

when to stop a subpopulation’s enrollment, or the entire trial, due to futility.

3



Chapter 2

A randomized trial in a massive
online open course shows people
don’t know what a statistically
significant relationship looks
like, but they can learn

2.1 Introduction

Over the last two decades there has been a dramatic increase in the amount

and variety of data available to scientists, physicians, and business leaders in

nearly every area of application. Statistical literacy is now critical for anyone

consuming data analysis reports, including scientific papers, newspaper reports

Beyth-Marom et al. (2008), legal cases Gastwirth (1988), and medical test re-

sults Schwartz et al. (1997); Sheridan et al. (2003). A lack of sufficient training

in statistics and data analysis has been responsible for the retraction of high-

profile papers Ledford (2011), the cancellation of clinical trials Pelley (2012),

and mistakes in papers used to justify major economic policy initiatives Cassidy

(2013).
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Despite the critical importance of statistics and data analysis in modern life,

we have relatively little empirical evidence about how statistical tools work in

the hands of typical analysts and consumers. The most well-studied statistical

tool is the visual display of quantitative information. Previous studies have

shown that humans have difficulty interpreting linear measures of correlation

Cleveland et al. (1982), are better at judging relative positions than relative

angles Heer and Bostock (2010); Cleveland et al. (1985), and view correlations

differently when plotted on different scales Cleveland et al. (1982). These studies

show that mathematically correct statistical procedures may have unintended

consequences in the hands of users. The real effect of a statistical procedure

depends, to a large extent, on psychology and cognitive function.

Here we perform a large-scale study of the ability of average data analysts

to detect statistically significant relationships from scatterplots. Our study

compares two of the most common data analysis tasks, making scatterplots

and calculating P-values. It has been estimated that as many as 80% of the

plots published across all scientific disciplines are scatterplots Tufte and Graves-

Morris (1983). At the same time, and despite widely publicized controversy over

their use Nuzzo (2014), P-values remain the most common choice for reporting

a statistical summary of the relationship between two variables in the scientific

literature. In the decade 2000-2010, 15,653 P-values were reported in the ab-

stracts of the The Lancet, The Journal of the American Medical Association,

The New England Journal of Medicine, The British Medical Journal, and The

American Journal of Epidemiology Jager and Leek (2007).

Data analysts frequently use exploratory scatterplots for model selection and

5



building. Selecting which variables to include in a model can be viewed as vi-

sual hypothesis testing where the test statistic is the plot and the measure of

significance is human judgement. However, it is not well known how accurately

humans can visually classify significance when looking at graphs of raw data.

This classification task depends on both understanding what combinations of

sample size and effect size constitute significant relationships, and being able

to visually distinguish these effect sizes. We performed a set of experiments to

(1) estimate the baseline accuracy with which subjects could visually determine

if two variables showed a statistically significant relationship; (2) test whether

accuracy in visually classifying significance was changed by the number of data

points in the plot or the way the plot was presented; and (3) test whether

accuracy in visually classifying significance improved with practice. Our intu-

ition is that potential improvements with practice would be better explained by

an improved cognitive understanding of statistical significance, rather than an

improved perceptive ability to distinguish effect sizes.

2.2 Methods and results

Our study was conducted within the infrastructure of a statistics massive on-

line open course (MOOC). While MOOCs have previously been used to study

MOOCs Do et al. (2013); Mak et al. (2010); Liyanagunawardena et al. (2013),

to our knowledge this is the first example of a MOOC being used to study the

practice of science. Specifically, our survey was conducted as an ungraded, vol-

untary exercise within the Spring 2013 Data Analysis Coursera class. This class

was 8 weeks long, and consisted of lecture content, readings, and a weekly quiz.

6



Although 121,257 students registered for the course, only 5,306 completed the

final weekly quiz. The survey was made available to all students in the class,

and 2,039 students responded – approximately 38% relative to the number of

active users. In one of the weekly quizzes preceding the survey, students were

asked two questions relating to the concept of P-values (see supplemental mate-

rials for specific question text). Students had two attempts at each question and

their accuracies were: 73.5% (1st attempt, 1st question), 96.1% (2nd attempt,

1st question), 73.1% (1st attempt, 2nd question), and 95.4% (2nd attempt, 2nd

question). These questions were not identical to the questions in our survey but

suggest that students understand the concepts behind a P-value, assuming that

almost all students completed the graded quizzes before submitting responses

to the optional exercises that followed.

Each student who participated in the survey was shown a set of bi-variate

scatterplots (examples shown in Figure 2.1). The set of plots included eight plots

from seven different categories (Table 2.1), with two plots from the reference

category (of which one was significant and one was not) and one plot from each

of the other categories (each randomly chosen to be either significant or non-

significant). These plot categories (Table 2.1) were selected to allow analysis of

whether students’ accuracy in visually classifying significance changed based on

the number of data points in the plot, or the plot’s presentation style. Each set

of plots shown to a user was randomly selected from a library containing 10 plots

from each category (see supplemental materials for full library and generating

code), of which half were statistically significant (P-values from testing the slope

coefficient in a linear regression relating X and Y were between 0.023 and 0.025;

e.g., Figure 2.1 left) and half were not statistically significant (P-values between

7



0.33 and 0.35; e.g., Figure 2.1, right).

Figure 2.1: Examples of Plots Shown to Users

For each plot, students were asked to visually determine whether the bi-

variate relationship shown was statistically significant at the 0.05 level (in the

example plots shown in Figure 2.1, the correct answer would have been “statis-

tically significant” for the left plot, for which the P-value of a linear relationship

between the X and Y variables is 0.024, and “not statistically significant” for

the right plot, for which the P-value is 0.341). All eight plots were shown at

the same time and students submitted responses for all plots in a single sub-

mission. Students were also able to submit a partial response by leaving some

of the survey questions blank. 94.4% of users completed their first attempt of

the survey. After submitting their responses, students were shown the correct

answers and given the opportunity to retake the survey with a new set of plots.

Students were not told any information about the structure of the survey and

so were not able to use the structure of the survey (e.g., the fact that one of the
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Reference 100 data points (e.g., Figure 2.1)
Smaller n 35 data points
Larger n 200 data points

Best-fit line 100 data points, with best fit line added
Lowess 100 data points, with smooth lowess curve added (using R “lowess”

function)
Axis Scale 100 data points, with the axis range increased to 1.5 standard devi-

ations outside X and Y variable ranges (e.g., “zoomed out”) Cleve-
land et al. (1982)

Axis Label 100 data points, with fictional X- and Y -axis labels added corre-
sponding to activation in a brain region (e.g., “Cranial Electrode
33 (Standardized)” versus “Cranial Electrode 92 (Standardized)”)

Table 2.1: Plot Categories Shown to Users

“Reference” plots was significant and one was not) to improve their accuracy.

To analyze responses, we created separate models for the probability of cor-

rectly visually classifying significance in: (1) graphs that showed two variables

with a statistically significant relationship (e.g., Figure 2.1, left) and (2) graphs

that showed two variables with a statistically non-significant relationship (e.g.,

Figure 2.1, right). These two types of visual classification correspond to the

separate accuracy metrics: human sensitivity to significance (accuracy in giving

a positive result in cases where a condition is true) and human specificity to

non-significance (accuracy in giving a negative result in cases where a condi-

tion is false). In this framework, the hypothetical baseline case where humans

have no ability to classify significance corresponds to the sensitivity rate being

equal to one minus the specificity rate, which means that the probability of

visually classifying a plot as significant is unaffected by the actual significance

level of the plot. Accuracy in both metrics was modeled by logistic regressions

with person-specific random intercept terms, using the “lme4” package in R (see

supplemental materials).
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Figure 2.2: Accuracy of Significance Classifications Under Different Conditions:
Point estimates and confidence intervals for classification accuracy for each pre-
sentation style (Table 2.1). Accuracy rates for plots with truly significant under-
lying relationships (sensitivity) are shown in blue, and accuracy rates for plots
with non-significant underlying relationships (specificity) are shown in red.

We found that, overall, subjects tended to be conservative in their classifi-

cations of significance. In the reference category (100 data points; Table 2.1,

examples in Figure 2.1), students accurately classified graphs of significant re-

lationships as significant only 47.4% (95% CI: 45.1%-49.7%) of the time (i.e.,

47.4% sensitivity) and accurately classified graphs of non-significant relation-

ships as non-significant 74.6% (95% CI: 72.5%-76.6%) of the time (i.e., 74.6%

specificity) (Figure 2.2). Specificity exceeded sensitivity across all of the plot

categories presented (Figure 2.2).

When comparing the reference plot category of 100 data points to other plot

categories (Table 2.1), sensitivity and specificity were in some cases significantly
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changed by the number of points displayed in the graph or the style of graph pre-

sentation (Figure 2.2). Changes to the plots that increased sensitivity correlated

with changes that decreased specificity. For example, reducing the number of

data points shown (“Smaller n” plot category) significantly decreased sensitivity

(Odds Ratio (OR) = 0.454, 95%CI: 0.385-0.535) and increased specificity (OR

= 1.67, 95%CI: 1.39-2.04). Adding visual aids (best-fit line, lowess curve) sig-

nificantly improved sensitivity (OR = 1.62 and 1.26 respectively, with 95%CIs:

1.38-1.89 and 1.08-1.47), but significantly reduced specificity (OR = 0.600 and

0.699 respectively, with 95%CIs: 0.508-0.709 and 0.590-0.829). Changing the

scale of the axes also increased sensitivity (OR = 1.32, 95%CI: 1.13-1.55), but

decreased specificity (OR = 0.670, 95%CI: 0.567-0.792). Finally, changing the

axes label had no significant effect on sensitivity (OR = 1.02, 95%CI: 0.871-

1.19) and only a marginally significant effect on specificity (OR = 0.811, 95%CI:

0.682-0.965). Because any gain in either specificity or sensitivity tended to come

at the cost of the other, none of these plot categories represented a uniform in-

crease in accuracy across all true significance levels of the data underlying the

plots.

The exception to this counter-balancing trend came in “Larger n” plots of

200 data points, where students showed a significant drop in specificity (OR

= 0.320, 95%CI: 0.271-0.377), and no significant change in sensitivity (OR =

0.891, 95%CI: 0.763-1.04). For plots in this category, the probability that users

would classify a relationship as significant was fairly similar across truly signif-

icant plots and nonsignificant plots. One possible explanation for this is that

larger samples require a lower correlation to attain the same significance level.

If the correlation becomes imperceptibly small, then the probability that an
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observer classifies a relationship as significant might be less affected by the true

significance level of the plot.

To test if accuracy in visually classifying significance improved with prac-

tice, we selected only the students who submitted the quiz multiple times (101

students) and compared accuracy rates between these students’ first and second

attempts. Of these students, 92% completed their first attempt of the survey,

and 99% completed their second attempt of the survey. Because these students

self-selected to take the survey twice, they may not form a representative sam-

ple of the broader population. However, they may still be representative of

motivated students who wish to improve their statistical skills.

We found that, for the “Reference”, “Best Fit”, and “Smaller n” categories,

sensitivity improved significantly on the second attempt of the survey (OR =

5.27, 2.98, and 4.51, with 95%CIs: 2.69-10.33, 1.28-6.92, and 1.79-11.37; Figure

2.3). For the “Reference” and “Best Fit” categories, the sensitivity improve-

ments were not associated with significant changes in specificity, indicating an

improvement in overall accuracy in the visual classification of significance. In

the “Smaller n” plot category however, the increased sensitivity came at the

cost of a significant decrease in specificity (OR = 0.163, 95%CI: 0.059-0.447).

For plot in this “Smaller n” category, practice did not necessarily improve over-

all accuracy in visually classifying significance, but rather increased a student’s

odds of classifying any graph as “significant,” regardless of whether the rela-

tionship it displayed was truly significant. It is possible that this was due to

students over-correcting for their conservatism on their first attempts of the

survey. For the remaining plot categories (“Larger n”, “Axis Label”, “Lowess”,

“Axis Scale”), there were no statistically significant changes in sensitivity or
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Figure 2.3: Classification Accuracy on Repeat Attempts of the Survey: Each
plot shows point estimates and confidence intervals for accuracy rates of human
visual classifications of statistical significance on the first and second attempt
of the survey. For the truly significant underlying P-values, users showed a
significant increase in accuracy (sensitivity) on the second attempt of the survey
for the “Reference,” “Smaller n,” and “Best Fit” presentation styles. For non-
significant underlying P-values, accuracy (specificity) decreased significantly for
the “Smaller n” category. Because these accuracy rates were estimated only
based on the data from students who submitted more than one response to the
survey, the confidence intervals here are wider than those in Figure 2.2.
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specificity between first and second attempts.

2.3 Discussion

Our research focuses on the question of how accurately statistical significance

can be visually perceived in scatterplots of raw data. This work is a logical

extension of previous studies on the visual perception of correlation in raw data

scatterplots Cleveland et al. (1982); Meyer and Shinar (1992); Rensink and

Baldridge (2010), and on the visual perception of plotted confidence intervals in

the absence of raw data Belia et al. (2005). The results of this trial are not only

relevant towards anyone who wishes to more intuitively understand P-values

in scientific literature, but also towards designers and observers of scatterplots.

Designers of plots should keep in mind that adding trend lines to a plot tends to

make viewers more likely to perceive the underlying relationship as significant,

regardless of the relationship’s actual significance level, so that they can prevent

their plots from misleading viewers. Similarly, viewers of scatterplots may want

to slightly discount their perception of statistical significance when trend lines

are shown.

Our results also suggest that, on average, readers can improve their abil-

ity to visually perceive statistical significance through practice. Our intuition

is that this improvement is better explained by an improved understanding of

what effect sizes constitute significant relationships, rather than an improved

ability to visually distinguish these effect sizes. It would follow that the appar-

ent baseline poor accuracy in visually detecting significance is largely due to a

false intuition for what constitutes significant relationships. A broad movement
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towards practicing the task of visually classifying significance could improve this

intuition, and better the efficiency and clarity of communication in science.

To help readers train their sense for P-values, we’ve created an interactive on-

line application where users can explore the connection between the significance

level of a bi-variate relationship and how the data for that relationship appears

in a scatterplot (http://glimmer.rstudio.com/afisher/EDA/). Users can see

the visual effect of changing sample size while holding the P-value constant.

They can also add lowess curves and best-fit lines to the scatterplot.

This research is also relevant to debate over the misuse of EDA. It has been

argued that when EDA and formal hypothesis testing are applied to the same

dataset, the “data snooping” committed through EDA process can increase the

Type I error rates of the formal hypothesis tests Berk et al. (2010). However, the

apparently low sensitivity with which humans can detect statistically significant

relationships in scatterplots implies that both the costs of EDA misuse, as well

as the benefits of responsibly conducted EDA, may be smaller than expected.

Data analysis involves the application of statistical methods. Our study

highlights that even when the theoretical properties of a statistic are well un-

derstood, the actual behavior in the hands of data analysts may not be known.

Our study highlights the need for placing the practice of data analysis on a firm

scientific footing through experimentation. We call this idea evidence based

data analysis, as it closely parallels the idea evidence based medicine, the term

for scientifically studying the impact of clinical practice. Evidence based data

analysis studies the practical efficacy of a broad range of statistical methods

when used, sometimes imperfectly, by analysts with different levels of statisti-

cal training. Further research in evidence based data analysis may be one way
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to reduce the well-documented problems with reproducibility and replicability

of complicated data analyses.

Supplemental materials

Supplemental materials, including more details on our survey, and code for our

analysis, are available at

https://github.com/aaronjfisher/visual_pvalue/tree/master

The organization of the supplement is described in the “readMe.md” file.
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Chapter 3

Fast, exact bootstrap principal
component analysis for p > 1
million

3.1 Introduction

Principal component analysis (PCA) (Jolliffe, 2005) is a dimension reduction

technique that is widely used fields such as genomics, survey analysis, and im-

age analysis. Given a multidimensional dataset, PCA identifies the set of basis

vectors such that the sample subjects’ projections onto these basis vectors are

maximally variable. These new basis vectors are called the sample principal

components (PCs), and the subjects’ coordinates with respect to these basis

vectors are called the sample scores. The sample PCs can be thought of as

estimates of the population PCs, or the eigenvectors of the population covari-

ance matrix. It has been shown that, as dimension increases, whether or not

the sample PCs converge to their population counterparts depends on the rate

of sample size growth, the rate of dimension growth, and the spacing of the

eigenvalues of the population covariance matrix (Shen et al. (2012a), for a re-

cent literature review, see Koch (2013)). Nadler (2008) and Shen et al. (2012a)
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discuss PC consistency under the “spike covariance” model introduced by John-

stone (2001), where the first several eigenvalues of the population covariance

matrix are assumed to be much larger than the remaining eigenvalues. Jung

and Marron (2009) introduced consistency conditions for cases where sample

size is fixed, dimension grows, and groups of eigenvalues grow with dimension

at different rates. Shen et al. (2013) discuss consistency conditions for sparse

PCA, when the first eigenvector of the population covariance matrix can be as-

sumed sparse. Consistency conditions for the n-length, right singular vectors of

high dimensional sample data matrices are discussed by Leek (2011) and Shen

et al. (2012b).

A fundamental drawback of the PCA algorithm is that it is purely descrip-

tive – there is no clear method for estimating the sampling variability of the

scores, the PCs, or proportion of variance that each PC explains. Analytically

derived, asymptotic confidence intervals for PCs typically require the assump-

tion of normally distributed data (Girshick, 1939; Tipping and Bishop, 1999),

or existence and computation of fourth order moments which results in O(p4)

complexity (Kollo and Neudecker, 1993, 1997; Ogasawara, 2002), where p is the

sample dimension. As an alternative to analytical, asymptotic confidence inter-

vals, Diaconis and Efron (1983) proposed bootstrap based confidence intervals

for PCA results. Hall and Hosseini-Nasab (2006) gave a theoretical justifica-

tion for using bootstrap confidence regions to estimating sampling variability of

functional PCA output. Goldsmith et al. (2013) applied a bootstrap procedure

in functional PCA to estimate confidence bands for subject-level underlying

functions, accounting for additional uncertainty coming from the PC decom-

position. Salibián-Barrera et al. (2006) use the bootstrap in the context of a
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robust PCA procedure. There, the authors applied an eigenvalue decomposition

to a robust estimate of the population shape matrix, which is a scaled version of

the population covariance matrix. The bootstrap has also been discussed in the

context of factor analysis (Chatterjee, 1984; Thompson, 1988; Lambert et al.,

1991), and in the context of determining the number of nontrivial components

in a dataset (Lambert et al., 1990; Jackson, 1993; Peres-Neto et al., 2005; Hong

et al., 2006). However, when applying the bootstrap to PCA in the high di-

mensional setting, the challenge of calculating and storing the PCs from each

bootstrap sample can make the procedure computationally infeasible.

To address this computational challenge, we outline methods for exact cal-

culation of PCA in high dimensional bootstrap samples that are an order of

magnitude faster than the current standard methods. These methods leverage

the fact that all bootstrap samples occupy the same n-dimensional subspace,

where n is the original sample size. Importantly, this leads to bootstrap vari-

ability of the PCs being limited to rotational variability within this subspace.

To improve computational efficiency, we shift operations to be computed on

the low dimensional coordinates of this subspace before projecting back to the

original p-dimensional space.

There has been very little work applying bootstrap to PCA in the high

dimensional context, largely due to computational bottlenecks. The methods

we propose drastically reduce these bottlenecks, allowing for simulation studies

of PCA in high dimensions, and for further study of bootstrap PCA in real

world, high dimensional scientific applications.

Our methods can also be directly applied to determine the resampling-based

variability of any model that depends on a singular value decomposition of the
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sample data matrix. For example, in Independent Component Analysis (ICA,

Bell and Sejnowski, 1995), the first step is typically to use PCA to represent

the data on a low dimensional space (Calhoun et al., 2001). Other examples

include bootstrap and cross-validation variability for principal component re-

gression (PCR), ridge regression, and, more generally, regression with quadratic

penalties.

The remainder of this paper is organized as follows. Section 3.1.1 presents

some initial mathematical notation, and gives a basic summary of PCA and

the bootstrap procedure. Section 3.1.2 outlines the intuition for fast bootstrap

PCA. Section 3.2 discusses two motivating data examples – one based on sleep

electroencephalogram (EEG) recordings, and one based on brain magnetic res-

onance images (MRIs). Section 3.3 presents the full details of our methods

for fast, exact bootstrap PCA. The computation complexity of our methods

depends on the final sampling variability metric of interest. For example, point-

wise standard errors for the PCs can be calculated more quickly than the full,

high dimensional bootstrap distribution of the PCs. Section 3.4 uses simulations

to demonstrate coverage rates for confidence regions around the PCs. Section

3.5 applies fast bootstrap PCA to the EEG and MRI datasets.

3.1.1 A brief summary of PCA, SVD, the bootstrap, and
their accompanying notation

In the remainder of this paper, we will use the notation X[i,k] to denote the

element in the ith row and kth column of the matrix X. The notation X[,k]

denotes the kth column of X; X[k,] denotes the kth row of X; X[,1:k] denotes the

first k columns of X; and X[1:k,1:k] denotes the block of matrix X defined by the
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intersection of the first k columns and rows. The notation v[j] denotes the jth

element of the vector v, the notation 1k denotes the k-length vector of ones, and

the notation Ik denotes the k×k identity matrix. We will also generally use the

term “orthonormal matrix” to refer to rectangular matrices with orthonormal

columns.

In order to create highly informative feature variables, PCA determines the

set of orthonormal basis vectors such that the subjects’ coordinates with respect

to these new basis vectors are maximally variable (Jolliffe, 2005). These new

basis vectors are called the sample principal components (PCs), and the subjects

coordinates with respect to these basis vectors are called the sample scores.

Both the sample PCs and sample scores can be calculated via the singular

value decomposition (SVD) of the sample data matrix. Let Y be a full rank,

p×n data matrix, containing pmeasurements from n subjects. Suppose that the

rows of Y have been centered, so that each of the p dimensions of Y has mean

zero. The singular value decomposition of Y can be denoted as VDU′, where

V is the p× n matrix containing the orthonormal left singular vectors of Y, U

is the n×n matrix containing the right singular vectors of Y, and D is a n×n

diagonal matrix whose diagonal elements contain the ordered singular values of

Y. The principal component vectors are equal to the ordered columns of V, and

the sample scores are equal to the n×n matrix DU′. The diagonal elements of

(1/(n− 1))D2 contain the sample variances for each score variable, also known

as the variances explained by each PC. Approximations of Y using only the

first K principal components can be constructed as Ŷ :=
∑K

k=1V[,k](DU′)[k,].

Existing methods for fast, exact, and scalable calculation of the SVD in high

dimensional samples are discussed in the supplemental materials.
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The sampling variability of PCA can be estimated using a bootstrap pro-

cedure. The first step of this procedure is to construct a bootstrap sample, by

drawing n observations, with replacement, from the original demeaned sample.

PCA is reapplied to the bootstrap sample, and the results are stored. This

process is repeated B times, until B sets of PCA results have been calculated

from B bootstrap samples. We index the bootstrap samples by the superscript

notation b, so that Yb denotes the bth bootstrap sample. Variability of the PCA

results across bootstrap samples is then used to approximate the variability of

PCA results across different samples from the population. Unfortunately, recal-

culating the SVD for all B bootstrap samples has a computation complexity of

order O(Bpn2), which can make the procedure computationally infeasible when

p is very large.

3.1.2 Fast bootstrap PCA – resampling is a low dimen-
sional transformation

It’s important to note that the interpretation of principal components (PCs)

depends on the coordinate vectors on which the sample is measured. Given the

sample coordinate vectors, the PC matrix represents linear transformation that

aligns the coordinate vectors with the directions along which sample points are

most variable. When the number of coordinate vectors (p) exceeds the number

of observations (n), this transformation involves first reducing the coordinate

vectors to a parsimonious, orthonormal basis of n vectors1 whose span still

includes the sample data points, and then applying the unitary transformation

1Note, if the data has been centered, then n − 1 basis vectors are sufficient. For brevity
of notation though, we will generally refer to the subspace under either scenario, centered or
uncentered, as n-dimensional.
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that aligns this basis with the directions of maximum sample variance. The first

step, of finding a parsimonious basis, is more computationally demanding than

the alignment step. However, if the number of coordinate vectors is equal to the

number of data points, then the transformation obtained from PCA consists of

only an alignment.

The key to improving computational efficiency of PCA in bootstrap sam-

ples is to realize that all resampled observations are contained in the same low

dimensional subspace as the original sample. Because the span of the principal

components V includes all observations in the original sample, the span of V

also includes all observations in any bootstrap sample. Thus, in each bootstrap

sample, Yb, we can skip the computationally demanding dimension reduction

step of the PCA by first representing Yb in terms of the parsimonious, or-

thonormal basis V. Viewing the bootstrap procedure as a loop operation over

several bootstrap samples, we see that the low dimensional subspace on which

all sample points lie is loop invariant.

To translate this intuition into the calculation of the SVD for bootstrap

samples, we first note that Yb can be represented as YPb, where Pb
[i,j] = 1 if

Yb
[,j] = Y[,i] and zero otherwise. In each bootstrap sample, we then calculate its

SVD, denoted by VbDbUb′ , via the following steps

Yb = YPb where Pb represents a resampling operation
= VDU′Pb where DU′Pb is the matrix of resampled scores
= V(AbSbRb′) where AbSbRb′ := svd(DU′Pb)
= (VAb)Sb(Rb)′ where (VAb) and (Rb) are orthonormal, and Sb is diagonal
= svd(Yb)

Rather than directly decomposing the p-dimensional bootstrap sample Yb,

we reduce the problem to a decomposition of the n-dimensional resampled
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scores, svd(DUPb) =: AbSbRb′ . Because V and Ab are both orthonormal,

their product VAb is orthonormal as well. Since S is diagonal and Rb is or-

thonormal, (VAb)Sb(Rb) is equal to the SVD of Yb. The singular values, and

right and left singular vectors of the Yb can then be written respectively as

Db = Sb, Ub = Rb, and Vb = VAb. If only the first K principal components

are of interest, then it is sufficient to calculate and store Ab, Ub, and Db as the

matrices containing only the first K singular vectors and values of DU′Pb. Full

details of our proposed methods for bootstrap PCA are discussed in section 3.3.

Daudin et al. (1988) applied an equivalent result to eigen-decompositions of

bootstrap covariance matrices in the p < n setting, but this result has not been

widely used, nor has it been generalized to the p >> n setting. Daudin et al.

(1988) suggested that, rather than decomposing the p × p covariance matrix,

a more computationally efficient approximation is to decompose the covariance

matrix of the k leading resampled score variables. The eigenvectors of this k×k

covariance matrix can then be projected onto the p-dimensional space to ap-

proximate the eigenvectors of the full p × p covariance matrix. In the p >> n

setting, however, if k is set equal to n, then the approximation becomes exact.

Note also that in the p >> n setting, it is the projection onto the p-dimensional

space that is most computationally demanding step (computational complex-

ity O(KBpn)), rather than the n-dimensional decompositions (computational

complexity O(KBn2)).

To gain intuition for why that the columns of VAb are the principal com-

ponents of Yb, note that the resampled scores, DU′Pb, are equivalent to the

resampled data, Yb, expressed in terms in terms of the coordinate vectors V.

This implies that the principal components of the resampled scores, Ab, give the
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transformation required to align the coordinate vectors of the scores, V, with

the directions along which the resampled scores are most variable. Applying

this transformation yields VAb – the bootstrap principal components in terms

of the sample’s original, native coordinate vectors.

Random orthogonal rotations comprise the only possible way that the fitted

PCs can vary across bootstrap samples. Because of this, the bootstrap proce-

dure will not be able to directly estimate PC sampling variability in directions

orthogonal to the observed sample, not unlike how a bootstrap mean estimate

must be a weighted combination of the observed data points. However, when

the inherent dimension of the population is small, the sampling variability of

the PCs will generally be dominated by variability in a handful of directions,

and these directions will generally be well represented by the span of the boot-

strap PCs. Variability in directions not captured by the bootstrap procedure

will tend to be of a much smaller magnitude.

The rotational variability of the bootstrap PCs is directly represented by

the Ab matrices. More specifically, information about random rotations within

the K leading PCs is captured by the Ab
[1:K,1:K] block matrices, which show how

much each of the K leading bootstrap PCs weight on each of original K leading

components. When the majority of bootstrap PC variability is due to rota-

tions within the K leading PCs, the Ab
[1:K,1:K] matrices provide a parsimonious

description of this dominant form of variability.

Decomposing Vb into an alignment operation, Ab, applied to the original

sample components, V, can drastically reduce the storage and memory require-

ments required for the bootstrap procedure, making it much more amenable

to parallelization. Using this method, we’re able to store all the information
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about the variability of Vb only by storing the Ab matrices, which can later be

projected onto the high dimensional space. Calculating the Ab matrices only

requires the low dimensional matrices DU′ and Pb, and does not require either

operations on the p× n matrix Yb, or access to the potentially large data files

storing Y. In the context of parallelizing the bootstrap procedure, this allows

for minimal memory, storage, and data access requirements for each computing

node.

Furthermore, in many cases, it is not even necessary to calculate and store

the p-dimensional components, Vb
[,1:K]. Instead we can calculate summary

statistics for the bootstrap distribution of the low dimensional matrices Ab,

and translate only the summary statistics to the high dimensional space. For

example, we can quickly calculate bootstrap standard errors for V[,1:K] by first

calculating the bootstrap moments of Ab, and projecting these moments back

onto the p-dimensional space (see section 3.3.2). Joint confidence regions for the

PCs can also be constructed solely based on the bootstrap distribution of Ab

(see section 3.3.3). Similar complexity reductions are available when calculat-

ing bootstrap distribution of linear functions of the components, such as the the

arithmetic mean of the kth PC (i.e. (1/p)1′
pV

b
[,k]). For any bootstrap statistic of

the form q′Vb
[,k] = (q′V)Ab

[,k], where q is a p-length vector, the n-length vector

q′V can be pre-calculated, and the complexity of the bootstrap procedure will

be limited only by n.
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3.2 Motivating data

In this section we apply standard PCA to a dataset of sleep EEG recordings

(p=900), and to a dataset of preprocessed brain MRIs (p=2,979,666). A boot-

strap procedure is later applied in section 3.5, to estimate sampling variability

for the fitted PCs.

There has been demonstrated interest in the population PCs corresponding

to both datasets (Di et al., 2009; Crainiceanu et al., 2011; Zipunnikov et al.,

2011a,b). For our purposes, the functional EEG data form an especially useful

didactic example, as the sample PCs are also functional, and easily visualizable.

We include the MRI dataset primarily to demonstrate computational feasibility

of the bootstrap procedure when dimension (p) is large.

3.2.1 Sleep EEG

The Sleep Heart Health Study (SHHS) is a multi-center prospective cohort

study, designed to analyze the relationships between sleep-disorder breathing,

sleep metrics, and cardiovascular disease (Quan et al., 1997). Along with many

other health and sleep measurements, EEG recordings were taken for each pa-

tient, for an entire night’s sleep. An EEG uses electrodes placed on the scalp

to monitor neural activation in the brain, and is commonly used to describe

the stages of sleep. Our goal in this application is to estimate the primary pat-

terns in EEG signal that differentiate among healthy subjects, and to quantify

uncertainty in these estimated patterns due to sampling variability.

To reflect this goal, we selected a subsample of 392 healthy, comparable
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controls from the SHHS (n = 392). Our sample contained only female partic-

ipants between ages 40 and 60, with no sleep disordered breathing, no history

of smoking, and high quality EEG recordings for at least 7.5 hours of sleep. In

order to more easily register EEG recordings across subjects, only the first 7.5

hours of EEG data from each subject were used. Although the EEG recordings

consist of measurements from two electrodes, we focus for simplicity only on

measurements from one of these electrodes (from the left side of the top of the

scalp).

To process the raw EEG data, each subject’s measurements were divided

into thirty second windows, and the proportion of the signal in each window

attributable to low frequency wavelengths (0.8-4.0 Hz) was recorded. This pro-

portion is known as normalized δ power (NPδ), and is particularly relevant to

deep stage sleep (NREM Stage 3). The preprocessing procedure used here to

transform the raw EEG data into NPδ is the same as the procedure used by

Crainiceanu et al. (2009). A lowess smoother was then applied to each sub-

ject’s NPδ function, as a simple means of incorporating the assumption that

the underlying NPδ process is a smooth function. This preprocessing proce-

dure resulted in 7.5 hours × (60 minutes / hour) × (2 thirty second windows /

minute) = 900 measurements of NPδ per subject (p = 900).

The left panel of Figure 3.1 shows examples of NPδ functions for five sub-

jects, as well as the mean NPδ function across all subjects, denoted by µ. The

first five principal components of the NPδ data are shown in the right panel

of Figure 3.1. The first PC (PC1) appears to be a mean shift, indicating that

the primary way in which subjects differ is in their overall NPδ over the course

of the night. The remaining four PCs (PC2, PC3, PC4, and PC5) roughly

28



Figure 3.1: Summary of EEG dataset - The left panel shows examples of nor-
malized δ power (NPδ) over the course of the night for five subjects, as well as
the mean NPδ function across all subjects (µ). The right panel shows the first
five PCs of the dataset.

correspond to different types of oscillatory patterns in the early hours of sleep.

These components are fairly similar to the results found by (Di et al., 2009),

who analyze a different subset of the data, and employ a smooth multilevel

functional PCA approach to estimate eigenfunctions that differentiate subjects

from one another.

Collectively, the first five PCs explain approximately 55% of the variation,

and the first ten PCs explain approximately 76% of the variation (see scree

plot in supplemental materials). These estimates for the variance explained by

each component are much lower than the estimates from Di et al. (2009). The

difference is most likely due differences in how the MFPCA method employed

by Di et al. (2009) incorporates the assumption of underlying smoothness in

NPδ.
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3.2.2 Brain magnetic resonance images

We also consider a sample data processed using voxel based morphometry

(VBM) (Ashburner and Friston, 2000), a technique that is frequently used to

study differences in the size of brain regions across subjects, or within a sin-

gle subject over time. Our data came from an epidemiological study of former

organolead manufacturing workers (Stewart et al., 2006; Schwartz et al., 2007,

2010; Bobb et al., 2014). We focused on the baseline MRIs from the 352 subjects

for which both baseline and followup MRIs were recorded.

VBM images were constructed based on brain MRIs. The original MRIs

were stored as 3-dimensional arrays, with each array element corresponding to

tissue intensity in a voxel, or volumetric pixel, of the brain. Creating VBM

images typically begins by registering each subject’s brain MRI to a common

template image, using a non-linear warping. The number of voxels mapped

to each voxel of the template image during the registration process is recorded.

This information is used to create subject-specific images on the template space,

where each voxel’s intensity represents the size of that voxel in the subject’s

original MRI. The VBM images used here were processed using a generalization

of the regional analysis of volumes examined in normalized space (RAVENS)

algorithm (Goldszal et al., 1998; Davatzikos et al., 2001), and are the same as

the baseline visit images used in (Zipunnikov et al., 2011b,a).

To create a single p×n data matrix, each subject’s VBM image was vector-

ized, omitting the background voxels that did not correspond to brain tissue.

The vector for each subject contained 2,979,666 measurements (p=2,979,666).
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Because the resulting data matrix was 3.5 Gb, it is difficult to store the en-

tire data matrix in working memory, and block matrix algebra is required to

calculate the sample PCs (see supplemental materials).

A central slice from each of the first three PCs is shown in the first row of

Figure 3.3. PC1 appears to roughly correspond with grey matter, indicating

that the primary way in which subjects regions tend to differ is in their overall

grey matter volume. Together, the first 30 PCs explain approximately 53.3% of

the total sample variation (see scree plot in supplemental materials).

In the remainder of this paper, we refer to this dataset primarily as to

demonstrate the computational feasibility of bootstrap PCA in especially high

dimensions. Additional interpretation of the sample PCs is given in (Zipunnikov

et al., 2011b,a).

3.3 Full description of the bootstrap PCA al-

gorithm

In this section we outline calculation methods for bootstrap standard errors,

bootstrap confidence regions, and for the full bootstrap distribution of the prin-

cipal components (PCs). The overall computational complexity of the proce-

dure depends on the bootstrap metric of interest, but the initial steps of all our

proposed methods are the same.

Building on the notation of sections 3.1.1 and 3.1.2, let K be the number

of principal components that are of interest, which typically will be less than

n − 1. For simplicity of presentation, we assume that each dimension of the

bootstrap sample Yb has mean zero. Manually recentering Yb however will not

add any high dimensional complexity to the procedure, as this is equivalent
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to recentering the n × n matrix of resampled scores DU′Pb (see supplemental

materials).

For each bootstrap sample, we begin by calculating the leading K singular

vectors and singular values of the resampled scores DU′Pb. As noted in section

3.1.2, the leading left and right singular vectors ofDU′Pb are stored as solutions

for the n×K matrices Ab and Ub respectively. The leading singular values of

DU′Pb are the solutions for the diagonals of theK×K matrixDb. In the typical

case where K is less than or equal to the rank of DU′Pb, the first K singular

values of DU′Pb are positive and unique, and the solutions for the columns

of Ab and Ub are unique up to sign changes. Arbitrary sign changes in the

columns of Ab will ultimately result in arbitrary sign changes in the bootstrap

PCs. Adjusting for these arbitrary changes is discussed in section 3.3.1.

We find in approximately 4% of bootstrap samples from the MRI dataset,

that although a solution to the SVD of DU′Pb exists, the SVD function fails

to converge. We handle these cases by randomly preconditioning the matrix

DU′Pb, reapplying the SVD function, and appropriately adjusting the results

to find the SVD of the original matrix. The full details of this procedure are

described in the supplement materials.

These baseline steps require a computational complexity of order O(KBn2).

They are sufficient for calculating the leading K bootstrap scores and the vari-

ance explained by the leading K bootstrap PCs.2

When moving on to describe the bootstrap distribution of the PCs, we have

2The bootstrap score matrix is equal to DbUb′ , and the variances explained by each
bootstrap PC are equal to the diagonals of (1/(n− 1))(Db)2. These variances explained can
also be expressed as a proportions of the total variance of the bootstrap sample, which can be
calculated as trace(V ar(Yb)) = (1/(n−1))||DU′Pb||2 = (1/(n−1))

∑n
i=1

∑n
j=1(DU′Pb)2[i,j].
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several options, each requiring a different level of computational complexity:

• Standard errors for the PCs can be calculated based on the boot-

strap mean and variance of the columns of Ab (see section 3.3.2). These

standard errors can be used to create pointwise confidence intervals (see

section 3.3.3). This option requires additional computational complexity

of order O(Kpn2 +KBn2).

• Joint confidence regions for the PCs and for the principal subspace

can be constructed using the methods in section 3.3.3. This option requires

no additional computational complexity on the high dimensional scale.

• The full bootstrap distribution of PCs can be calculated by project-

ing the principal components of the bootstrap scores onto the p-dimensional

space (i.e. Vb
[,1:K] = VAb). The bootstrap PC vectors (Vb

[,1:K]) can then

be used to create pointwise percentile intervals for the PCs (see section

3.3.3). If p is sufficiently large such that the matrix V cannot be held

in working memory, block matrix algebra can be used to break down the

calculation of VAb into a series low memory operations (see supplemental

materials). Calculation of all bootstrap PCs requires additional computa-

tional complexity of order O(KBpn). If K is set equal to n− 1, then the

computational complexity of this method is roughly equivalent to that the

standard methods (O(Bpn2)). The total computation time, however, will

still be approximately half the time of standard methods, as the matrices

Yb′Yb need not be calculated (see supplemental materials).
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3.3.1 Adjusting for axis reflections of the principal com-
ponents

Because the singular vectors of Yb are not unique up to sign, arbitrary sign

changes, also known as reflections across the origin, will induce variability in

both the sampling and bootstrap distributions of the principal components (Vb).

These reflections, however, do not affect the interpretation of the PCs, and so

their induced variability will cause us to overestimate sampling variability of

the patterns decomposed by PCA (Efron and Tibshirani, 1993, see section 7.2;

Mehlman et al., 1995; Jackson, 1995; Milan and Whittaker, 1995). For example,

arbitrary sign changes can cause the confidence interval for any element of any

principal component to include zero, even if the absolute value of that element

is nearly constant and nonzero across all bootstrap samples.

To isolate only the variation that affects the interpretation of the PCs, we

adjust the sign of the columns of Vb so that the dot products Vb′

[,k]V[,k] are

positive for k = 1, 2, . . . , K. Note that because Vb = VAb, sign changes in

the columns of Vb are equivalent to sign changes in the columns of Ab. For

the same reason, sign adjustments for the columns of Vb are equivalent to

sign adjustments for the columns of Ab, which can be simpler to compute.

Here, the dot products Vb′

[,k]V[,k] for k = 1, 2, . . . , K actually do not require

any additional calculations, as they can be found on the diagonal elements of

V′Vb = V′VAb = Ab. Independent of our work, this calculation simplification

is also noted by Daudin et al. (1988). Whenever Ab
[k,k] is negative, we declare

that an arbitrary sign change has occurred, and adjust by multiplying Ab
[,k] and

Ub
[,k] by -1. The resulting PCs and scores are still valid solutions to the PCA
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algorithm.

Since Vb
[,k] and V[,k] each have norm equal to one, their dot product is equal

to the cosine of the angle between them. As a result, using the dot product

Vb′

[,k]V[,k] to adjust for sign will ensure that the angle between Vb
[,k] and V[,k] is

between −π/2 and π/2. This range of angles is exactly the range that affects

our interpretation of the bootstrapped PCs. Using these dot products for sign

adjustment is also equivalent to choosing the sign of Vb
[,k] that minimizes the

Frobenius distance ||Vb
[,k]−V[,k]||, a method that has been previously suggested

(Lambert et al., 1991; Milan and Whittaker, 1995).

It has also been suggested that the sign of each PC should be switched based

on the correlation between the columns of Vb and the columns of V, rather than

the dot products Vb′

[,k]V[,k] (Jackson, 1995; Babamoradi et al., 2012).3 We advo-

cate against this correlation method, in favor of the cross product method. Of

course, the two methods are very similar, as the correlation method is equiva-

lent to applying a cross product operation after first centering and scaling the

two vectors. Pre-scaling has no practical effect, as only the sign of the correla-

tion is retained. However, pre-centering removes information that is potentially

relevant to the sign switch decision. For example, consider the case where V[,k]

is proportional to a sine wave, shifted up by 2, and scaled appropriately to have

norm 1. Furthermore, let Vb
[,k] be proportional to the same sine wave, shifted

down by 2, and similarly scaled to have norm 1. Note that V[,k] has all positive

elements, and Vb
[,k] has all negative elements. These two vectors will be pos-

itively correlated, but have a negative crossproduct. The correlation rule will

3Here, the correlation operation is taken across the p elements of the vector, without the
operation’s common statistical interpretation that each vector element is a new observation
of a random variable.
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not result in a sign change, which can yield a bimodal bootstrap PC distribu-

tion with PCs clustered on either side of the zero line. Alternatively, the cross

product rule will result in a sign change, making a bimodal bootstrap distribu-

tion less likely. In the supplemental materials, we illustrate such cases in more

detail, and further argue for the use of the cross product over the correlation.

3.3.2 Bootstrap moments of the principal components

Traditional calculation of the mean and variance ofVb
[,k] requires first calculating

the bootstrap distribution of Vb
[,k], and then taking means and variances over all

B bootstrap samples. However, using our characterization of Vb as VAb, and

properties of expectations, the same result can achieved without calculating or

storing Vb
[,k].

Specifically, the bootstrap mean E(Vb
[,k]) can be found via E(VAb

[,k]) =

VE(Ab
[,k]), where the operation E is the expectation with respect to the boot-

strap distribution. The bootstrap variance of Vb
[i,k] can be found via

V ar(Vb
[i,k]) = Cov(Vb

[,k])[i,i] = Cov(VAb
[,k])[i,i] = [VCov(Ab

[,k])V
′][i,i] = (V[i,])

′Cov(Ab
[,k])(V[i,])

Where V ar and Cov are variance operators with respect to the bootstrap

distribution. The total computational complexity of finding Cov(Ab
[,k]) and

then V ar(Vb
[i,k]) for each combination of i = 1, 2, . . . , p and k = 1, . . . , K is only

O(Kpn2 +KBn2)).4

4In practice, we calculate the diagonals of VCov(Ab
[,k])V

′ by the row sums of

(VCov(Ab
[,k])) ◦ (V), where ◦ denotes element-wise multiplication as opposed to traditional

matrix multiplication.
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This improvement in computation speed comes from pre-collapsing the com-

plexity induced by having a large number of bootstrap samples before trans-

forming to the high dimensional space. This allows us to separate calculations of

order B from calculations of order p. Similar speed improvements are attainable

whenever summary statistics or parametric models for the bootstrap distribu-

tion of Ab can be translated into summary statistics or parametric models for

the high dimensional components Vb.

3.3.3 Construction of confidence regions

Several types of confidence regions can be constructed based on the bootstrap

distribution the PCs. In this section, we specifically discuss (1) pointwise con-

fidence intervals (CIs) for the PCs, based on either the bootstrap moments or

bootstrap percentiles; (2) confidence regions (CRs) for the individual PCs; and

(3) CRs for the principal subspace. Only the pointwise percentile intervals re-

quire calculation of the full bootstrap distribution of the high dimensional PCs.

All other CRs can be calculated solely based on the bootstrap distribution of

the low dimensional Ab matrices.

Pointwise confidence intervals for the principal components

The simplest pointwise confidence interval for the principal components is the

moment-based, or Wald confidence interval. For the ith element of the kth PC,

the moment-based CI is defined as E(Vb
[i,k]) ± σ(Vb

[i,k])z(1−α/2), where α is the

desired alpha level, z(1−α/2) is the 100(1−α/2)th percentile of the standard nor-

mal distribution, and the E and σ functions capturing the mean and standard

deviation of Vb
[i,k] across bootstrap samples. Both E(Vb

[i,k]) and σ(Vb
[i,k]) can be

37



attained without calculating or storing the full bootstrap distribution of Vb
[i,k]

(see section 3.3.2).

Another common pointwise interval for Vb
[i,k] is the bootstrap percentile CI,

defined as (q(Vb
[i,k], α/2), q(V

b
[i,k], 1−α/2)), where q(Vb

[i,k], α) denotes the 100α
th

percentile of the bootstrap distribution of Vb
[i,k]. Unlike the moment-based CI,

the percentile CI does require calculation of the full bootstrap distribution of

Vb
[i,k].

Estimating the percentile interval tends to require more bootstrap samples

(e.g. B=1000-2000) than estimating the moment-based interval (e.g. B=50-

200), as the quantile function is more affect affected by the tails of the bootstrap

distribution than the moments are (Efron and Tibshirani, 1993). Interpretation

of both these pointwise CIs is discussed further in section 3.5.

Our methods can also be used to quickly calculate bias corrected and accel-

erated (BCa) CIs (Efron, 1987), as others have suggested (Timmerman et al.,

2007;Salibián-Barrera et al., 2006).

Confidence regions for the principal components

Each principal component can be represented as a point in p-dimensional space.

More specifically, because of the norm 1 requirement for the PCs, the param-

eter space for the principal components is restricted to the p-dimensional unit

hypersphere, Sp = {x ∈ Rp : x′x = 1}. To create p-dimensional CRs for each

PC, Beran and Srivastava (1985) suggest so-called confidence cones on the unit

hypersphere, of the form

{x ∈ Sp : |x′V[,k]| ≥ q(|Vb′

[,k]V[,k]|, α) = q(|Ab
[k,k]|, α)}
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Here, q(ab, α) is the quantile function denoting the 100αth bootstrap per-

centile of the statistic ab. As noted in section 3.3.1, the calculation of Vb′

[,k]V[,k]

can be simplified to Vb′

[,k]V[,k] = Ab
[k,k]. Geometrically, the dot product condi-

tion of this CR is equivalent to a condition on the angle between x and V[,k].

Note that this CR automatically incorporates the sign adjustments described

in section 3.3.1. Beran and Srivastava (1985) provide a theoretical proof for the

coverage of CRs constructed in this way.

It is also possible to create joint confidence bands (jCBs) for the PCs accord-

ing the method outlined by Crainiceanu et al. (2012). However, such bands will

also contain vectors that do not have norm 1, and may even exceed 1 in absolute

value for a specific dimension. As a result, many vectors contained within the

jCBs will not be valid principal components, which complicates interpretation

of the jCBs.

Confidence regions for the principal subspace

To characterize the variability of the subspace spanned by the first K PCs,

also known as the principal subspace, it is not sufficient to simply combine

the individual CRs for each PC. This is because the sampling variability of

the individual fitted PCs is influenced by random rotations of the fitted PC

matrix Vb
[,1:K], while the sampling variability of the subspace is not. Similarly,

most models whose fit depends on the leading PCs are unaffected by random

rotations.

To characterize the sampling variability of the principal subspace, we first

note that any bootstrap principal subspace can be defined by the p×K matrix

with columns equal to the leading K PCs. Any such matrix must be contained
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within the set of all of p×K orthonormal matrices. This set can be written as

the Stiefel manifold MK(R
p) := {X ∈ F p×K : X′X = IK}, where F p×K is the

set of all p×K matrices. To create CRs for the principal subspace, we can use

the following generalization of CRs for the individual PCs

{X ∈ MK(R
p) : ||X′V[,1:K]|| ≥ q(||Vb′

[,1:K]V[,1:K]||, α) = q(||Ab
[1:K,1:K]||, α)}

Here, the norm operation refers to the Frobenius norm. Beran and Srivastava

(1985) suggest CRs of this form to characterize variability of a set of sample co-

variance matrix eigenvectors whose corresponding population eigenvalues are all

equal. However, the CR construction method can also be applied in the context

of estimating the principal subspace. As with CRs for the individual PCs, we

can make the simplification that Vb′

[,1:K]V[,1:K] = Ab
[1:K,1:K]. Note that such CRs

automatically adjust for random rotations of the first K principal components –

if R is a K×K orthonormal transformation matrix, then ||(XR)′V|| = ||X′V||.

3.3.4 Maintaining informative rotational variability

When several of the leading eigenvalues of the population covariance matrix are

close, the fitted PCs in any sample may be a mixtures the leading population

PCs. In these cases, the bootstrap PCs will often be approximate rotations of

the leading sample PCs. Others have argued if the parameter of interest is the

principal subspace or the model fit, then the bootstrap PCs should be adjusted

to correct for rotational variability, as the principal subspace is unaffected by

rotations among the leading PCs. Specifically, it has been suggested to use a

Procrustean rotation to match the bootstrap PCs to the original sample PCs

(Milan and Whittaker, 1995), and to then create pointwise confidence intervals
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(CIs) based on the rotated PCs (Timmerman et al., 2007; Babamoradi et al.,

2012).5 We argue however that bootstrap rotational variability is informative of

genuine sampling rotational variability, and that adjusting for rotations is not

an appropriate way to represent sampling variability of the principal subspace,

or the sampling variability of model fit. This is because pointwise CIs are not

designed to estimate the sampling variability of the principal subspace. The

pointwise CIs generated from rotated bootstrap PCs also do not capture the

sampling variability of standard PCs, as the rotated PCs are not valid solutions

to the PCA algorithm.

Rather than rotating towards the sample, it has also been proposed to rotate

both the sample and bootstrap PCs towards a p × K target matrix T, which

is pre-specified before collecting the initial sample Y (Raykov and Little, 1999;

Timmerman et al., 2007).6 The target matrix T may be based on scientific

knowledge, or previous research. Such an approach can also be used to test

null hypotheses about the principal subspace by rotating Vb
[,1:K] toward a null

PC matrix V0 (Raykov and Little, 1999), and checking if elements of V0 are

contained in the resulting CRs.

Our opinion is that if investigators are interested in the sampling variability

of the output from a model that uses PCA, then it is the model output, and not

the principal components, for which CRs should be calculated. If the sampling

variability of the subspace is of interest, than CRs specifically designed for the

5One interpretation of CIs constructed from rotation adjusted bootstrap PCs is that if the
population PC matrix is rotated towards the each sample from the population, then average
pointwise coverage of rotation adjusted CIs should be approximately 100α%

6The computational complexity of finding the appropriate rotation matrix in each boot-
strap depends on the taking the SVD of the K × K matrix Vb′

[,1:K]T = Ab′

[,1:K]V
′T, where

V′T can be pre-calculated before the bootstrap procedure.
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subspace should be used (see section 3.3.3), rather than adjusted CIs for the

elements of the PCs. Rotating towards a pre-specified target matrix T can also

be a useful approach, although it may be more interpretable to calculate the

bootstrap distribution of the variance explained by the columns of T,7 rather

than the bootstrap distribution of the fitted PCs after a rotation towards T.

3.4 Coverage rate simulations

In this section we present simulated coverage rates for the CRs described in

section 3.3.3. In order to make these simulations as realistic as possible, we

simulated data using the empirical PC vectors of the EEG dataset as the true

population basis vectors. As a baseline simulation scenario we set the sample

size (n) equal to 392, and the true number of basis vectors in the population

(denoted by K0) equal to 5.

Measurement vectors for each subject were simulated according to the model

yi =
∑K0

k=1 sikΨk + ϵi, where yi is a p-length vector of simulated measurements

for the ith subject; Ψk is the kth true underlying basis vector, which is set equal

to the kth empirical PC of the EEG dataset; sik is a random draw from the

empirical, univariate distribution of the scores for the kth PC; and ϵi is a vector

of independent random normal noise variables, each with mean 0 and variance

σ2/p. Setting the variance of ϵi equal to σ2/p implies that the total variance

attributable to the random noise will be approximately equal to σ2, and will not

depend on the number of measurements (p). The parameter σ2 was set equal to

7In each bootstrap sample, the variance explained by the columns of T is equal to the
variance of the resampled data after a projection onto the space spanned by T. The projected
data is equal to T(T′T)−1T′Yb = (T(T′T)−1T′V)DU′Pb, where T′(T′T)−1T′V is an n×n
matrix that can be precalculated before the bootstrap procedure.

42



the sum of the variances of the K0+1 to nth empirical score variables, implying

that for each simulated sample, the first K0 basis vectors (Ψ1,Ψ2, . . . ,ΨK0)

were expected to explain approximately the same proportion of the variance

that they explained in the empirical sample. For each simulated subject, yi,

the K0 score variables si1, . . . , siK0 were all drawn independently. Coverage

was compared across 1000 simulated samples. For each simulated sample, the

number of bootstrap samples created for estimation (B) was set to 1000.

As comparison simulation scenarios, we increased the number of measure-

ments (p) to 5000 and to 20000, by interpolating the empirical EEG data and

recalculating the principal components and scores. We also compared against

simulated sample sizes (n) of 100 and 250. Because much of the variability in

fitting principal components is determined by the spacing of eigenvalues in the

population, we simulated separate scenarios where the empirical score distribu-

tion was scaled so that each basis vector explained half as much variance as the

preceding basis vector. In other words, we scaled true population distribution of

scores such that the vector of variances of the 5 score variables was proportional

to the vector (24, 23, 22, 21, 1). The total variance of the first 5 score variables

was kept constant across all simulations. We refer to the modified eigenvalue

spacing as the “parametric spacing” simulation scenario, and refer to the origi-

nal eigenvalue spacing as the “empirical spacing” simulation scenario. Finally,

we also simulated scenarios where the total variance due to the random noise

(σ2) was scaled up 50%, and where it was scaled down by 50%. Considering all

combinations of eigenvalue spacing, random noise level, sample size, and num-

ber of measurements, we conducted 2×3×3×3 = 54 sets of simulations. Thus,

our simulation study required the calculation of 54× 1000× 1000 = 54 million
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principal component decompositions, with the ranges for p and n mentioned

above.

The total elapsed computation time for these 54 simulations was 28 hours.

The simulations were run as a series of parallel jobs on an x86-based linux clus-

ter, using a Sun Grid Engine for management of the job queue. As many as 200

jobs were allowed to run simultaneously. Each job required between approx-

imately .5Gb and 2Gb maximum virtual memory, depending on the scenario

being simulated.

3.4.1 Simulation results

The left of Figure 3.2 compares simulation results across different levels of resid-

ual variance, sample size, and eigenvalue spacing. In this 3 × 2 array of plots

we fix p at 900, but results were similar for alternate values of p. For each

simulation scenario, we calculated the median pointwise CI coverage across all

900 measurements. Both the moment-based and percentile intervals generally

perform well, with all 54 simulation scenarios (including those not shown here)

having median coverage rates between 92.4% and 98.1%. When the eigenvalues

of the estimated PCs are well spaced (e.g. for PC1 in the empirical spacing

scenario, or PCs 1-3 in the parametric spacing scenario), the coverage rates

converge to 95% as the sample size increases. However, when the eigenvalues

are not clearly differentiated, higher sample sizes can lead to slightly overly

conservative CIs.

In the supplemental materials we further explore coverage by examining the

full distribution of coverage rates across each of the p dimensions of the PCs,

rather than summarizing by taking the median. We find that for both PC2
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Figure 3.2: Coverage across simulation scenarios - The (3× 2) array of plots on
the left shows the median coverage rate across all p estimated CIs for the PC
elements (p = 900). Rows correspond to the PC being estimated. Simulation
cases using the empirical eigenvalue spacing are shown on the left column, and
simulation cases where where each PC explains half as much as the previous PC
are shown on the right column. The (3 × 2) array of plots on the right shows
coverage for CRs for the PCs.
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and PC3, the moment-based intervals give close to 95% coverage, but that the

percentile intervals may give poor coverage in certain regions.

The right side of Figure 3.2 shows coverage rates of confidence cones for

the principal components (section 3.3.3). Coverage appears to improve when

the eigenvalues are well spaced and when sample size increases. Differences in

coverage are also more noticeable here than in the median coverage rates for

pointwise intervals. Coverage rates of CRs for the principal subspace (section

3.3.3) are shown in the supplemental materials, and follow the same general

pattern as CRs for the individual PCs.

To more formally summarize our simulation results for the confidence cones,

we modeled PC coverage rate as a function of the sample dimension, sample

size, eigenvalue spacing, and residual noise variance. Specifically, we considered

the ordinary linear regression model |Coverage− .95| = β0 + β1log(p) + β2n+

β3s + β4f + e, where s is an indicator of the parametric spacing for the eigen-

values, f is the scaling factor applied to the variance of the residual noise in

the simulation, and e is a random normal error accounting for unmodeled vari-

ability in coverage. We separately fit this model on coverage rates for each PC,

treating the all coverage rates as having independent and identically distributed

random errors. For PC1, larger sample sizes and the parametric eigenvalue spac-

ing both significantly improved coverage (β̂2 = −5.1 × 10−5, β̂3 = .0097, with

95% CIs: (−6.5× 10−5,−3.8× 10−5) and (−0.013,−0.0064) respectively), and

higher levels of residual noise significantly worsened coverage (β̂4 = 0.0084, 95%

CI: (0.0045, 0.012)). For PC2 and PC3, larger sample sizes also significantly

improved coverage (β̂2 estimates 6.1× 10−5 and −6.1× 10−5 respectively, with

95% CIs: (−8.0 × 10−5,−4.2 × 10−5) and (−8.5 × 10−5,−3.5 × 10−5)), but no
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other variables had significant effects.

We also studied coverage of parameters relevant to the first three score vari-

ables. Because the scores themselves are subject-specific random effects rather

than population parameters, we focused on coverage of best linear unbiased

predictors (BLUPs) for the score variables (Robinson, 1991). We calculated the

true BLUPs conditional on the observed data matrix being equal to ΨS, where

S is the matrix from which we draw the score variables (si1, si2, . . . , siK0), and

Ψ is the matrix of first K0 true population PCs. In each bootstrap sample

we then calculated the empirical BLUPs (EBLUPs) for the scores (Fitzmaurice

et al., 2012), and used the bootstrap distribution of the EBLUPs to calculate

percentile and moment-based CIs.

Coverage rates for the BLUP CIs generally followed a similar pattern as

coverage rates for the pointwise PC CIs, although the coverage was worse when

the sample size was small and the residual noise was high. In the smallest sample

size tested, coverage of BLUPs was as low as 85% coverage for the percentile

CIs, and 90% for the moment-based CIs. Poorer coverage in these scenarios

is to be expected though, as the EBLUPs depend not only on estimates of

the PCs, but also on estimates of the eigenvalues of the population covariance

matrix, which are known to be biased (Daudin et al., 1988). Note that if we

had instead focused on estimates of Ψ′yi, then proper coverage would have been

implied by proper coverage of the pointwise CIs for the PCs, as both parameters

are projections of the true basis vectors. A full description of coverage rates for

the BLUPs, as well as the calculation procedure for the BLUPs and EBLUPs,

is given in the supplemental materials.

As a secondary analysis, we also looked at the distribution of the angles
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between the sample PCs and the true population PCs. In general, when the kth

eigenvalue of the population covariance matrix was on a different order of mag-

nitude than the other eigenvalues, the kth sample PC tended to be close to the

kth population PC. This was the case for PC1 in the empirical spacing scenario,

and PCs 1 through 3 in the parametric spacing scenario. When the leading five

eigenvalues of the population covariance matrix were not well separated from

each other but were well separated from the remaining eigenvalues, the indi-

vidual sample PCs were not necessarily close to their corresponding population

PCs but did tend to be close to the subspace spanned by the leading popula-

tion PCs. This was the case for PCs 2 and 3 in the empirical spacing scenario.

These results are all consistent with what we would expect based on Theorem

2 of Jung and Marron (2009). Because we fixed the proportion of variability

explained by each PC, regardless of dimension, our increases in dimension cor-

respond to the case described in Shen et al. (2012a) where the dimension and

the leading eigenvalues all grow at the same rate. In this context, Theorem 4.1

of Shen et al. (2012a) suggests that our sample PCs should converge to their

population counterparts as n increases, regardless of dimension. This is indeed

what we see in our results (see the supplemental materials of this chapter).

3.5 Applying fast bootstrap PCA

3.5.1 Sleep EEG

When applying fast bootstrap PCA to the EEG dataset, we find that bootstrap

estimates of PC1 exhibit minimal variability. PC2 and PC3 are estimated with
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considerably more variability, but most of this variability is due to random rota-

tions among PCs 2 through 4, all of which roughly correspond with oscillatory

patterns.

Figure 3.3 shows the results of this analysis. The first row shows 95% point-

wise intervals for each dimension of each of the three PCs. A random subsample

of 30 draws from the bootstrap distribution of each PC are shown in gray. We

see that the moment-based and percentile intervals generally agree, although

they tend to differ more when the fitted PC elements are further from zero.

Since the width of the percentile and moment-based CIs are fairly similar, dis-

agreements between the two types of intervals are reflective of skewness in the

underlying bootstrap distribution.

The sets of pointwise intervals shown in the top row of Figure 3.3 form

bands around the fitted sample PCs. It’s important to note these bands are only

calibrated for pointwise 95% coverage – they are not expected to simultaneously

contain the true population PC in 95% of samples. Statements about the overall

shape of the population PCs that are based on these intervals will be somewhat

ad hoc. Furthermore, many curves contained within these bands do not satisfy

the norm 1 requirement for principal components, and are not valid solutions

to PCA. For example, the upper and lower boundaries of the bands do not have

norm 1, and thus are not in the parameter space for the PCs. Similarly, the

zero vector is also not in the parameter space.

The top row of Figure 3.3 shows that both sets of intervals for PC1 are fairly

tight, implying that there is little sampling variability in PC1. The pointwise

CIs for PC2 are wider, especially in the first four hours of the night. If examined

alone, this feature of the CIs might erroneously lead readers to think that the
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oscillatory pattern in V[,2] is artificial, and not present in the population PC.

However, if we also look at a subsample of draws from the bootstrap distribution

of PC2 (shown in gray), we see that the negative spike in hour 1 and the positive

spike in hour 2 are often shifted in bootstrap samples. Pointwise variability in

the oscillatory pattern is better explained by a simultaneous shift of both peaks

than by a magnitude change in either peak. Those bootstrap draws of Vb
[,2] that

are most shifted tend to bear a closer resemblance to V[,3].

This resemblance is shown more directly in the bottom row of Figure 3.3,

which shows pointwise CIs summarizing the distribution of Ab
[,k] for k = 1, 2, 3.

Recall that the bootstrap PCs are equal toVb = VAb, such thatAb
[j,k] represents

the weight that the kth PC of the bth bootstrap sample (Vb
[,k]) places on the jth

PC of the original sample (V[,j]). Low bootstrap variability for the kth PC

is generally characterized by Ab
[k,k] being close to 1, and all other elements of

Ab
[,k] being close to zero. While this is the case for bootstrap variability in PC1

(bottom-left panel of Figure 3.3), the bootstrap draws of PC2 tend to place

high weight on V[,3], in addition to V[,2]. Equivalently put, bootstrap draws for

both Ab
[2,2] and Ab

[3,2] tend to have high absolute values (bottom-center panel of

Figure 3.3). A similar pattern is shown for PC3. Overall, the bottom row of

Figure 3.3 shows that the majority of the variation in PCs 2-3 is due to rotations

among the leading PCs.

Note that the moment-based CIs shown on the right column of Figure 3.3

can exceed one in absolute value, which will surely violate the norm condition

for PCs. In practice, such violations should be accounted for by truncating the

CIs at -1 and 1, but we keep the violation for illustrative purposes in Figure

3.3. It is also worth noting that the percentile CIs for Ab
[k,k] will rarely include
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the value 1, which can be thought of as the fitted value of Ab
[k,k] in the original

sample (shown in black in Figure 3.3). The low dimensional percentile CIs

for the elements of Ab also fully contain the information required to create

confidence cones for each PC (section 3.3.3).

Figure 3.4 shows the bootstrap distribution of the first three eigenvalues of

the sample covariance matrix (the diagonals of (1/(n − 1))(Db)2). In general,

there is a known upward bias in the first eigenvalue of the sample covariance ma-

trix, relative to the first eigenvalue of the population covariance matrix (Daudin

et al., 1988). The amount of bias can be estimated using bias in the bootstrap

distribution of covariance matrix eigenvalues. Each bootstrap sample can be

seen as a simulated draw from the original sample, in which the eigenvalues are

known. Here, we define the percent bias in the bootstrap eigenvalues as the

difference between the average eigenvalue across all bootstrap samples and the

eigenvalue in the original sample, divided by the eigenvalue of the original sam-

ple. For the first three covariance matrix eigenvalues in the EEG dataset (Figure

3.4), there is only a slight upward bias in the bootstrap estimates (percent bias

= 1.1%, 4.5%, and 5.0% respectively).

3.5.2 Brain MRIs

We also apply our bootstrap procedure to estimate sampling variability of the

PCs from the brain MRI dataset. This is primarily included as an example

to show the computational feasibility of our method in the high dimensional

setting. A deeper interpretation of the sample PCs is provided by (Zipunnikov

et al., 2011b,a).

Our results imply that PC1 is estimated with fairly low sampling variability,
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Figure 3.3: Bootstrap PC variability - Each column of plots corresponds to a
different PC, either the first, second or third. The top row shows the fitted prin-
cipal components on the original high dimensional space (V[,k] for k = 1, 2, 3),
along with pointwise confidence intervals, and 30 draws from the bootstrap dis-
tribution. The bottom row shows the same information, but for the low dimen-
sional representation of the bootstrap PCs (Ab

[,k] for k = 1, 2, 3). In the bottom

row, the thick black line corresponds to the case when Ab
[,k] = In[,k], where In[,k]

is the kth column of the n×n identity matrix, such that Vb
[,k] = VAb

[,k] = V[,k].
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Figure 3.4: Bootstrap eigenvalue distribution - For both the EEG and MRI
datasets, we show bootstrap distribution for the first three eigenvalues of the
sample covariance matrix. Tick marks show the eigenvalues from the original
sample covariance matrix.

but that sampling variability is higher for PC2 and PC3. The first two rows of

Figure 3.5 respectively show the fitted sample PCs and the bootstrap standard

errors for the PCs. For PC1, the standard errors are generally of a lower order of

magnitude than the corresponding fitted values. A direct comparison is given

in the bottom row of Figure 3.5, which shows the fitted sample PCs divided

by their pointwise bootstrap standard errors. These ratios can be interpreted

as Z-scores under the element-wise null hypotheses that the value of any one

element of the population PC is zero. Z-scores with absolute value less than

1.96 are omitted from the display.

To estimate sampling variability due to rotations of the leading population

PCs, Figure 3.6 shows pointwise confidence intervals for the truncated vectors

Ab
[,k], for k = 1, 2, 3. These intervals are analogous to the intervals shown in the

bottom row of Figure 3.3. A substantial proportion of the bootstrap variability
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for the second two PCs is due to random rotations between them.

The second panel of Figure 3.4 shows the bootstrap distribution of the eigen-

values of sample covariance matrix. Relative to the fitted eigenvalues in the

original sample, the bootstrap eigenvalues show a small, but notable upward

bias (percent bias = 1.7%, 12.2%, and 9.2% respectively). Figure 3.4 also il-

lustrates that, for both datasets, the first eigenvalue is well separated from the

second and third eigenvalues. This makes the relatively small variability in PC1,

and the largely rotational variability in PCs 2 and 3, consistent with what we

would expect from Theorem 2 of Jung and Marron (2009).

3.6 Discussion

In this paper we outline methods for fast PCA in high dimensional bootstrap

samples, based on the fact that all bootstrap samples lie in the same low dimen-

sional subspace. We show computational feasibility by applying this method to

a sample of sleep EEG recordings (p = 900), and to a sample of processed brain

MRIs (p =2,979,666). Bootstrap standard errors for the first three components

of the MRI dataset were calculated on a commercial laptop in 47 minutes,

as opposed to approximately 4 days with standard methods (see supplemental

materials for computational comparisons against standard methods for different

values of p and n).

Ultimately, the usefulness of high dimensional bootstrap PCA will depend

not on its speed, but on its demonstrated ability to capture sampling variability.

We found that the bootstrap performed well in the simulation settings presented

here (section 3.4). However, bootstrap PCA has rarely been applied to high
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Figure 3.5: Fitted sample values, bootstrap standard errors, and Z-scores for the
MRI PCs - The voxelwise values for the PCs and Z-scores (top and bottom rows)
have been binned, and shaded according to the value of their corresponding bin’s
midpoint. This allows us to visually show both sign (color) and magnitude
(opacity). Because the standard errors (middle row) are always positive, the
binning procedure is not necessary, and the voxels are shaded on a continuous
scale.

dimensional data in the past, and its theoretical properties in high dimensions

are still not well understood. Specifically, to our knowledge, the theoretical

coverage of bootstrap-based confidence intervals have not been well studied. The

lack of study on this topic is likely due, in part, to the computational bottlenecks

of standard bootstrap PCA, which are compounded in theoretical research that

includes simulation studies. Our hope is that the methods presented here will

expand the use of bootstrap PCA, and allow for theoretical properties of the
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Figure 3.6: Low dimensional CIs for the MRI PCs - Moment-based CIs, per-
centile CIs, and 30 random bootstrap draws for Ab

[1:15,k], where k = 1, 2 and
3.

bootstrap PCA procedure to be studied and verified via simulations.

When interpreting the results of bootstrap PCA, we find it particularly use-

ful to generate confidence intervals around elements of the low dimensional Ab

matrices (Figures 3.3 and 3.6). These CIs are a parsimonious way to display the

dominant directions in PC bootstrap variability, which often correspond to rota-

tions among the leading sample PCs. Calculating these CIs also does not require

operations on the p-dimensional scale, beyond the initial SVD of the sample.

Another potential way to summarize the dominant directions of PC bootstrap

variability would be to create elliptical CRs constrained to the p-dimensional

hypersphere, a topic which we discuss in the supplementary materials.

Interpretation of bootstrap PCA results is complicated by the fact that

many PCA results are interdependent. For example, each PC is only defined

conditionally on the preceding PCs. If we want to isolate only the variability of

the kth PC that affects this conditional interpretation, it can be useful to first

assume that the first k − 1 PCs are estimated without error. Logistically, we

can condition on the leading k − 1 PCs by resampling from the residuals after

56



projecting the dataset onto the matrix V[,1:(k−1)]. This is equivalent to setting

the first k − 1 score variables to zero before starting the resampling process.

Alternatively, we could assume that the first PC is a mean shift, and estimate

the sampling variability of the remaining PCs by resampling from the residuals

after projecting the dataset onto a constant, flat basis vector. This general

approach requires the strong assumption that the leading PCs are known, but

the procedure can still be useful in exploring the sources of PC variability.

R Package Code

Code for this paper is available as an R package at

http://cran.r-project.org/web/packages/bootSVD/index.html
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Chapter 4

Stochastic optimization of
adaptive enrichment designs for
two subpopulations

4.1 Introduction

Prior uncertainty regarding treatment effect heterogeneity can pose a challenge

to trial designers. If the treatment only benefits a subset of the population, stan-

dard clinical trials enrolling from the entire population may have low power. On

the other hand, if the entire population benefits, a standard trial enrolling only

one subpopulation will not provide any information about the complementary

population.

These issues can be mitigated with the use of an adaptive enrichment trial

design. Such designs consist of a set of decision rules for early stopping of

participant enrollment in different population subsets based on interim analyses

of accrued data at predefined stages (Wang et al., 2009). For example, early

stopping can occur if there is strong evidence early in the trial of the treatment’s

benefit or harm for a subpopulation. The design also includes a procedure to

test null hypotheses for each population of interest. Alternatively, one-stage,
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non-adaptive designs that test hypotheses on multiple subpopulations can also

be constructed. One-stage designs will often have a lower maximum sample size

than adaptive designs, but at the cost of a higher expected sample size due to

their lack of ability to stop early.

We aim to optimize the enrollment modification rule and multiple testing

procedure for an adaptive enrichment design. The goal is to minimize either

expected sample size or expected trial duration, under constraints on power

and the Type I error rate. We focus on designs that are guaranteed to strongly

control the familywise Type I error rate, i.e., where the probability is at most α

that one or more true null hypotheses is rejected, regardless of the (unknown)

data generating distribution.

The optimization problems we consider are challenging in that no existing

approach is guaranteed to find the global optimum. The main difficulty is that

there are many design parameters to optimize over, as well as many constraints.

The parameters in our adaptive enrichment designs include the following (plus

additional parameters in some settings): the number of stages; per-stage sam-

ple sizes; and, for each population and stage, an efficacy boundary and futility

boundary. As an example, in the case of 2 subpopulations and 5 stages, there

are over 30 variation independent parameters. We consider searches that do

not restrict the parameter space by imposing a preset structure, e.g., forcing

the boundaries to be proportional to those of O’Brien and Fleming (1979). To

the best of our knowledge, we are the first to address the problem of optimizing

adaptive enrichment designs with such a large number of parameters. Addition-

ally, we consider using the results of an unstructured search to inform a choice

of structure to use in a restricted parameter search.
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While our approach based on simulated annealing (described below) does

not ensure that a global optimum is found, we show that it can substantially

reduce the expected sample size compared to standard designs. In one of the

examples considered here, the proposed procedure reduces expected sample size

by approximately 37%. However, in another example we consider, with longer

follow-up time to measurement of patient outcomes, all adaptive designs per-

formed poorly, as many patients must be enrolled before the first measurements

are taken. Here the proposed procedure outperformed standard adaptive de-

signs, but only improved the expected sample size of one-stage trials by less

than 2%.

General approaches exist for constructing optimal designs for simpler prob-

lems, such as those involving a single null hypothesis (Eales and Jennison,

1992; Hampson and Jennison, 2013). Hampson and Jennison (2015) extend

this approach to handle multiple hypotheses, but the resulting designs may not

strongly control the familywise Type I error rate. Thall et al. (1988) perform

a 2-dimensional grid search to minimize the expected sample size of a 2-stage

trial comparing the effects of several treatments. Krisam and Kieser (2015) and

Graf et al. (2015) consider optimizing different parametrization of a two-stage

design with two subpopulations, and respectively search over 2-dimensional and

3-dimensional parameter spaces. In contrast, our aim is to search over more

flexible, higher dimensional families of designs. For trials involving two subpop-

ulations, optimal 2-stage designs can be found via sparse linear programming

(Rosenblum et al., 2014), but this approach becomes computationally infeasible

for more than two stages. The approach of Rosenblum et al. (2015) is restricted

to O’Brien-Fleming boundaries, two null hypotheses, and a much smaller design
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space than considered here.

For trial design problems where no existing approach is guaranteed to find

an optimal solution, one may turn to general-purpose, approximate methods

such as simulated annealing (SA). Wason et al. (2012) apply SA to optimize the

estimated worst-case expected sample size of a group sequential design, with

penalties added to the objective function for violations of either Type I or Type

II error constraints. Wason and Jaki (2012) extend these results by applying

SA to optimize a multi-arm, multi-stage trial where several treatments groups

are compared against a shared, single control group.

Our optimization problem differs from that of Wason and Jaki (2012) in that

our futility boundaries are non-binding (which is typically preferred by regula-

tors such as the U.S. Food and Drug Administration, as noted by Liu and Anderson (2008)),

and our designs allow continuation after one null hypothesis is rejected (so other

hypotheses may be rejected at later stages). We also set our efficacy boundaries

using error-spending functions in order to handle unknown information incre-

ments, and include a final adjustment step after the SA procedure to ensure

that power constraints are met. Without such additions, optimizing a penal-

ized objective function does not guarantee that Type I or Type II constraints

will be satisfied. Another difference is that we apply a parallelized version of

SA. These and other differences between our implementation of SA and that of

Wason and Jaki (2012) are discussed in Section 4.4.

In Section 4.2, we introduce motivating data examples based on a new sur-

gical intervention for stroke, and on a hypothetical intervention for Alzheimer’s

disease. In Section 4.3, we introduce a class of adaptive enrichment designs,

referred to hereafter as “adaptive designs.” We discuss how efficacy boundaries
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can be constructed by incorporating either the covariance of the test statistics

(Rosenblum et al., 2015), or by using alpha-reallocation (Maurer and Bretz,

2013). We also introduce different levels of trial design complexity, which bal-

ance design flexibility versus simplicity. In Section 4.4, we outline our approach

for optimization. In Section 4.5, we explore the performance of each type of

trial, and compare to standard trial designs using approximate O’Brien Flem-

ing boundaries (O’Brien and Fleming, 1979) or Pocock boundaries (Pocock,

1977). We end with a discussion of future work.

4.2 Applications

4.2.1 Application 1: surgical treatment of stroke (MISTIE)

We first describe an example of planning a Phase III trial of a surgical treatment

for stroke, which was also considered by Rosenblum et al. (2015). The treatment

is called Minimally-Invasive Surgery Plus rt-PA for Intracerebral Hemorrhage

(MISTIE), and is described in detail by Morgan et al. (2008). The primary

outcome is based on each participant’s disability score on the modified Rankin

Scale (mRS) measured 180 days (d) from enrollment. A successful outcome is

defined as a mRS score less than or equal to 3.

In planning the Phase III trial, the investigators were interested in two sub-

populations defined by size of intraventricular hemorrhage (IVH) at baseline.

“Small IVH” participants are defined to have IVH volume less than 10ml and

not requiring a catheter for intracranial pressure monitoring. The remaining

participants are called “large IVH”. The Phase II trial only recruited small

IVH participants. A preliminary analysis of the data resulted in an estimated

62



treatment effect of approximately 12.1%. Knowledge of the underlying biology

of these types of brain hemorrhage suggested a possible benefit for those with

large IVH as well. However, there was greater uncertainty about the treatment

effect in the large IVH subpopulation. Investigators inquired about the possi-

bility of running a phase III trial that included both small IVH and large IVH

participants, but with the option to stop a subpopulation’s enrollent (using a

preplanned rule) if interim data indicated that a benefit was unlikely.

4.2.2 Application 2: Alzheimer’s Disease Neuroimaging
Initiative (ADNI)

We also consider an example based on data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI, www.adni-info.org), which prospectively follows a

cohort with mild cognitive impairment or early Alzheimer’s disease at baseline.

The ADNI was launched in 2003 as a public-private partnership, led by Princi-

pal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been

to test whether serial magnetic resonance imaging, positron emission tomogra-

phy, other biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impairment and

early Alzheimer’s disease. We focus on subpopulations defined by a partici-

pant’s apolipoprotein E (APOE) ϵ4 allele carrier status, which is associated

with increased risk of late onset Alzheimer’s disease (Sadigh-Eteghad et al.,

2012).

Clinical investigators, who were planning a Phase III trial of a new treatment

to prevent progression from mild cognitive impairment to Alzheimer’s disease,

suspected that there may be treatment effect heterogeneity across carrier status.
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The primary outcome is the 2-year change in Clinical Dementia Rating Sum of

Boxes score (CDR-SB), an aggregate measure of Alzheimer’s symptom severity.

The enrollment rate was projected to be approximately 500 participants per

year.

4.3 Adaptive trial designs

4.3.1 Notation, hypotheses, and test statistics

We consider two subpopulations that partition the overall population. Let j =

1, 2, C be a group index respectively denoting subpopulation 1, subpopulation 2,

or the combined population. The treatment effect for a population is defined as

the difference between the mean outcome for treatment and control. Outcomes

may be continuous, binary, or on any scale that allows the treatment effect

to be estimated with a difference in means z-statistic. The data collected for

each participant is a vector (S,A, Y ) representing his/her subpopulation, study

arm assignment, and outcome, respectively. We assume each participant’s data

vector is an independent, identically distributed draw from an unknown joint

distribution on (S,A, Y ).

Let πj denote the proportion of the combined population in group j (with

πC = 1 by convention). Let δj denote the treatment effect in group j. It follows

that δC = π1δ1 + π2δ2. Let H1, H2, and HC respectively be the null hypotheses

of no average treatment benefit in groups 1, 2 and C, i.e., Hj : δj ≤ 0. Each

corresponding alternative hypothesis has the form δj > 0. Let σ2
tj and σ2

cj denote

the variances in group j under treatment and control, respectively, with all

variances assumed known. We assume that treatment assignment is randomized
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with probability 1
2
, and that each participant’s outcome is measured after a delay

of d years from enrollment.

Our designs have K > 0 stages, each concluding with an analysis. These

analyses may lead to stopping enrollment in one or both subpopulations, ac-

cording to a set of predefined rules that are functions of the accrued data. The

kth stage is said to be completed once πjnk additional participant outcomes

have been measured from each subpopulation j that is still being enrolled. The

nk terms are predetermined design parameters. Let N :=
∑K

k=1 nk denote the

maximum total sample size. The enrollment decision at the end of stage k takes

as input the following cumulative test-statistic:

Z
(k)
j := δ̂j

(
σ2
cj + σ2

tj

1
2

∑k
k′=1 nk′πj

)− 1
2

,

for each population j ∈ {1, 2, C} that is still being enrolled, where πC = 1,

and δ̂j denotes the difference in sample means estimator for δj based on the

accrued data. The combined population statistic Z
(k)
C is undefined if one or

more subpopulations had enrollment stopped early at a previous stage.

At the analysis just after stage k, each statistic Z
(k)
j is compared against a

predetermined efficacy boundary e
(k)
j and futility boundary f

(k)
j . If Z

(k)
j > e

(k)
j ,

Hj is rejected. Equivalently, efficacy boundaries can also specified on the p-value

space rather than the z-statistic space. Whenever H1 and H2 are both rejected,

we automatically reject HC as well. Rejecting any hypothesis implies that the

hypothesis remains rejected in all future stages. If Z
(k)
j ≤ f

(k)
j , then recruitment

in group j is stopped for futility. We use non-binding futility boundaries, i.e.,

strong control of the familywise Type I error rate is asymptotically guaranteed

for all designs in this paper, even if futility boundaries are ignored and both
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subpopulations are enrolled through the end of the last stage K.

For each subpopulation j ∈ {1, 2}, its enrollment continues until one (or

more) of the following occurs: Hj is rejected (Z
(k)
j > e

(k)
j ), subpopulation j is

stopped for futility (Z
(k)
j ≤ f

(k)
j ), the combined population is stopped for futility

(Z
(k)
C ≤ f

(k)
C ), or the maximum sample size for subpopulation j is reached. Under

this setup, rejecting the combined population null hypothesisHC does not imply

stopping all trial enrollment; further tests of H1 and H2 may still be conducted.

Since Z
(k)
C is only defined if the combined population is enrolled through stage

k, we do not conduct the test Z
(k)
C > e

(k)
C at stages after enrollment for at least

one subpopulation has stopped; it is still possible to reject HC at future stages,

if both subpopulation null hypotheses are rejected.

Because participant outcomes are measured with delay, there can be enrolled

participants at interim analyses whose outcomes are not yet measured and can-

not be analyzed. These participants are referred to as “pipeline participants.”

Pipeline participants do not contribute to test statistic calculations, although

they always contribute to realized sample size of the trial.

We compare two methods for calculating efficacy boundaries. The first uses

an error spending approach based on the covariance matrix for the test statis-

tics Z
(k)
j (Rosenblum et al., 2015). The second method uses efficacy boundaries

where the proportion of Type I error allocated to hypothesis Hj can be real-

located to remaining hypotheses if Hj is rejected (Bretz et al., 2009; Maurer

and Bretz, 2013). We refer to these two types of multiple testing procedures as

H COV and H MB, respectively. For both, Type I error is calculated under the

assumption that futility boundaries are never adhered to (to give the worst-case

Type I error under non-binding futility boundaries). Power, expected sample
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size, and expected duration are calculated under the assumption that futility

boundaries are adhered to.

4.3.2 Multiple testing procedure 1: covariance approach

Rosenblum et al. (2015) propose a method for efficacy boundary calculation

that incorporates the correlation between the test statistics (which is assumed

known), both across stages and across groups. We refer to this approach as

H COV . Rosenblum et al. (2015) show that for their designs to strongly control

the familywise Type I error rate, it is sufficient to control the familywise Type I

error rate under the global null hypothesis of no treatment effect in any subpop-

ulation. Under this global null hypothesis the z-statistics described in Section

4.3.1 asymptotically follow a multivariate normal distribution with mean zero

and covariance structure described by

Cov(Z
(k)
j , Z

(l)
j ) =

√∑k
k′=1 nk′∑l
l′=1 nl′

, Cov(Z
(k)
1 , Z

(l)
2 ) = 0, and

Cov(Z
(k)
j , Z

(l)
C ) =

√πj

(
σ2
cj + σ2

tj

σ2
cC + σ2

tC

)(∑k
k′=1 nk′∑l
l′=1 nl′

)
,

for j = 1, 2, C, and stages k and l such that 1 ≤ k ≤ l ≤ K.

Given this null distribution, the familywise Type I error can be controlled

using an error spending approach. The first step of this approach is to pre-

specify an ordering for the hypothesis tests. For example, pre-specifying the

ordering 1 < 2 < C implies that we always first testH1, thenH2, and finallyHC ,

at each stage where all three hypotheses are still being tested. If only a subset
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of hypotheses are still being tested at a given stage, the same ordering applies

to these remaining hypotheses. The second step is to limit the probability that

any one test statistic Z
(k)
j is the first test statistic to lead to a rejection of any

hypothesis. Let α
(k)
j be this allowed probability that Z

(k)
j is the first test statistic

to lead to a rejection. Let α denote the required familywise Type I error rate,

with
∑

j∈{1,2,C}
∑K

k=1 α
(k)
j = α. Finally, let wj :=

∑K
k=1 α

(k)
j

α
be the proportion of

α allocated to hypothesis Hj. The efficacy boundaries {e(k)j }(j,k)∈{(1,2,C)×(1:K)}

can then be iteratively calculated by solving

PH1∩H2(Z
(k)
j > e

(k)
j ; and Z

(k′)
j′ ≤ e

(k′)
j′ for all k′, j′ such that (k′, j′) ≺ (k, j)) = α

(k)
j ,

(4.1)

using the known covariance for the test statistics. Here, we define the condition

(k′, j′) ≺ (k, j) to hold whenever k′ < k, or when (k′ = k and j′ < j).

Rather than individually specifying each α
(k)
j , it is common to instead spec-

ify a structured alpha spending function to determine the alpha allocation

across stages. For example, we consider setting the alpha allocated to each

stage k and hypothesis Hj to be wj × (ak − ak−1), where ak =
(∑k

k′=1 nk′

N

)ρej
and a0 = 0. In this way, rather than choosing 3 × K values for the α

(k)
j

terms, investigators need only specify the six design parameters wj and ρej for

j = 1, 2, C. For a group sequential design testing only one hypothesis, setting

ρej to be 1 or 3 results efficacy boundaries that are similar to Pocock boundaries

(Pocock, 1977) or O’Brien Fleming boundaries (O’Brien and Fleming, 1979) re-

spectively (Jennison and Turnbull, 1999).
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4.3.3 Multiple testing procedure 2: alpha-reallocation
approach

Maurer and Bretz (2013) propose a procedure that allows for alpha-reallocation

if one of the hypotheses is rejected, which we refer to here as H MB. This

approach also accounts for correlation of test statistics across stages, but does

not explicitly adjust for correlation of test statistics across hypotheses.

Before the start of the trial, investigators initialize a set of Type I error

weights wj for j = 1, 2, C such that
∑

j wj = 1 and αwj is the allowed probability

under the global null that Hj is rejected. As described in more detail below,

these weights can later be changed if one or more hypotheses is rejected during

the trial. For each hypothesis Hj, investigators also choose a set of nonnegative

functions αkj which further subdivide the error rate αwj across stages of the

trial. Specifically, αjk(αwj) represents the portion of αwj to be allocated to

each stage k, or the probability under the global null that Hj is rejected in

stage k. As in Section 4.3.2, investigators may choose to specify a structured

alpha spending function for each hypothesis rather than specifying separate αjk

functions for each combination of j and k.

Test-statistics are constructed by converting each Z
(k)
j into a p-value p

(k)
j .

Each p-value p
(k)
j is then compared against a nominal boundary denoted by

α∗
jk(αwj), which is calibrated to produce the appropriate Type I error rate of

αjk(αwj). The value α∗
jk(αwj) generally will not equal αjk(αwj) unless a Bon-

ferroni correction is used to adjust for multiple tests across stages (i.e. tests of

Z
(k)
j and Z

(k′)
j ). Instead, a more powerful test procedure results from calibrating

α∗
jk(αwj) using the known correlation across stages (i.e. Cov(Z

(k)
j , Z

(k′)
j )). At
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each stage, the hypotheses Hj is rejected if p
(k)
j < α∗

jk(αwj).

If any hypothesis is rejected, the weights for the other hypothesis may be

proportionally increased according to a pre-specified procedure. This realloca-

tion allows for increased power in the testing procedure, despite a lack of ex-

plicit adjustment for correlations across hypotheses. Weight reallocations must

be pre-specified as transition matrix, which can be intuitively visualized as a

graph (Bretz et al., 2009). Specifically, let gij be the proportion of wi to be

reallocated to Hj in the event that Hi is rejected. If Hi is rejected we calculate

an updated weight w′
j = wj + wigij, and then calculate new boundaries for Hj

equal to α∗
jk(αw

′
j) for each remaining hypothesis not yet rejected. From this

point onward, each hypothesis Hj can be tested using the higher, less conserva-

tive boundaries α∗
jk(αw

′
j). The transition weights gij must also be adjusted after

each rejection, to reflect the fact that a hypothesis has been removed. Every

additional hypothesis rejection results in an additional reallocation of weights.

For example, in our case of three hypotheses, rejecting two hypothesis results in

a weight of 1 for the remaining hypothesis in the remaining stages of the trial.

In this way, rejecting any one hypothesis gives us greater power to reject

other hypotheses without inflating the familywise Type I error. One intuition

for this is that familywise Type I error does not reflect the number of false rejec-

tions, only whether any false rejections have occurred. Thus, once a hypothesis

is rejected, it no longer remains necessary to continue correcting for that hy-

pothesis. Maurer and Bretz (2013) prove that this procedure is equivalent to

a consonant closed testing procedure, and therefore strongly controls Type I

error.
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4.4 Optimization

4.4.1 Power constraints and goals for optimization

Let δ = (δ(1), δ(2)) denote a vector of possible values for the treatment effect in

each subpopulation, and let δmin > 0 denote the minimum value of the treatment

effect that is clinically meaningful. We consider the following values for δ:

δ(0) = (0, 0); δ(1) = (δmin, 0); δ(2) = (0, δmin); and δ(C) = (δmin, δmin).

Let D be a trial design, which contains a list of values for the parameters

necessary to fully specify the analysis plan for a trial (i.e. K, {nk}Kk=1, initial

alpha allocations, alpha reallocation rules, futility boundaries, and a hypothesis

testing framework such as H MB or H COV ). Let 1− βj(δ
′,D) be the power of

the design D to reject at least Hj by the end of the trial when (δ1, δ2) is equal

to the vector δ′. We consider the following constraints on power and familywise

Type I error:

1. 1− β1(δ
(1),D) ≥ 0.8

2. 1− β2(δ
(2),D) ≥ 0.8

3. 1− βC(δ
(C),D) ≥ 0.8

4. Strong control of the familywise Type I error rate, i.e.,

sup
δ1,δ2∈R

Pδ1,δ2(reject one or more true null hypotheses) ≤ α = 0.025.

Expected sample size is computed with respect to a distribution Λ on the

possible treatment effects (δ1, δ2). We refer to this as the prior distribution on

71



the treatment effects. However, all of our designs have guaranteed asymptotic,

familywise Type I error control without regard to this prior, i.e., it holds for

any possible pair (δ1, δ2).

Subject to the constraints above, we aim to minimize the expected sample

size averaged over Λ. In other words, subject to the above constraints, we aim

to minimize over D :

EΛ(ñ(D)) :=

ˆ
δ1,δ2

Eδ1,δ2(total participants enrolled)dΛ(δ1, δ2), (4.2)

where ñ(D) is a random variable denoting the realized sample size from the trial

design D . In this paper, we set Λ to be a discrete distribution with equal mass

at δ(0), δ(1), δ(2), and δ(C). Under such a prior, EΛ(ñ(D)) is the average expected

sample size across these four scenarios. While minimizing expected sample

size is our primary goal, we also consider the problem of minimizing expected

duration – the expected time from start of enrollment until both subpopulations

have accrual stopped. This expectation is taken with respect to the same prior

for the treatment effects. We combine our power constraints with the above

expected sample size objective in Section 4.4.2.

4.4.2 Objective function

Due to the difficulty in directly solving the optimization problem (4.2) under

the power and Type I error constraints, we instead define an unconstrained

optimization problem where the constraints are incorporated as penalty terms

as in (Wason and Jaki, 2012; Wason et al., 2012). The unconstrained objective

function we aim to minimize over D is
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J(D) := EΛ(ñ(D)) + λ
∑

j∈{1,2,C}

(
0.8− (1− βj(δ

(j),D))
)3
+
, (4.3)

where λ is a positive tuning parameter (set here to 100), and (x)+ = max{x, 0}.

The first term can also be replaced with the expected trial duration. If any

of the power constraints in Section 4.4.1 are violated, the objective function

will incur a severe penalty. The exponent in the penalty term is meant to allow

second order differentiability of J(D) with respect to the power of the trial. This

exponent is not necessary, but is potentially useful for some of the approaches

discussed in Section 4.5.

Evaluating J(D) requires the calculation of several multidimensional inte-

grals. Due to the computational obstacle of these calculations, we instead esti-

mate J(D) via simulation. We used 10,000 simulation iterations, such that the

Monte Carlo standard error for estimating a power close to 0.80 is approximately√
0.8(1−0.8)

10000
= 0.004.

Since we parametrize the trial in terms of alpha allocations whose levels

sum to α = 0.025, all of our proposed designs are asymptotically guaranteed

to control the familywise Type I error as proved in (Rosenblum et al., 2015;

Maurer and Bretz, 2013), and it is not necessary to penalize for violations of

the required familywise Type I error rate in the manner of (Wason and Jaki,

2012; Wason et al., 2012).

4.4.3 Search using simulated annealing

We search for a minimizer D of J(D) using Simulated Annealing (SA). The

general form of SA is as follows. Given a trial design D as a reference point,
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SA randomly perturbs D in order to generate a new proposal design D ′. If

J(D ′) < J(D) then the proposal is “accepted,” and D becomes the new ref-

erence point. If J(D ′) > J(D), then D ′ is accepted according to a certain

probability, and discarded otherwise. The nonzero probability of exploring un-

desirable regions of the parameter space allows SA to avoid becoming stuck at

local minima. As the algorithm progresses, new proposal designs D ′ are taken

from a closer neighborhood around the reference design, and the probability of

accepting inferior designs decreases. Both of these changes are modulated by

a parameter known as the “temperature,” which decreases with each iteration.

We use the variant of SA implemented in the optim function in R, which is based

on the algorithm of (Bélisle, 1992). We implemented SA in parallel across 100

nodes, each starting with a different random seed. Our implementation is “em-

barrassingly parallel” in that each node runs the SA algorithm independent of

the others (i.e., without communication between nodes); when the SA search

terminates for all nodes, we select the best design found.

The search space for D consists of a positive integer K; non-negative sample

sizes nk; alpha allocation proportions α
(k)
j summing to α; transition weights gij

satisfying
∑

j ̸=i gij = 1; and futility boundaries f
(k)
j . Separate searches are

performed for the two hypothesis testing frameworks H MB and H COV . One

difficulty is that the dimension of this search space changes with the value of K,

since greater values of K require additional sample sizes, efficacy boundaries,

and futility boundaries. We give details on our method to address this issue in

the supplemental materials.

The SA algorithm allows proposed design parameters to take any real values,

which may violate the constraints on our search space of feasible designs. In
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particular, since the alpha allocated to each test at each stage must be bounded

between 0 and α, we instead use SA to search for the logit transform of the

alpha allocated, i.e., log{α(k)
j /(1 − α

(k)
j )}. We then transform proposed values

for logit(α
(k)
j ) back to the (0,1) interval, and rescale them to sum to α. In the

same way, we search over the logit of the transition weights gij. Because we

have only three hypotheses, alpha from one hypothesis can be reallocated to

at most two other hypotheses, and so it is sufficient to simply search for g12,

g2C and gC1. These will uniquely determine the remaining transition weights

according to
∑

j ̸=i gij = 1. Non-negative and integer constraints for nk and

K are achieved by truncating and rounding respectively. Additionally, rather

than searching for each individual nk, we search across the space for N and

separately search over the proportion of N allocated to each stage. Under

this parametrization, the total sample size can naturally be changed without

affecting the efficacy boundaries, as the efficacy boundaries depend only on the

relative sample size at each stage. We refer to the resulting trial design as DSA.

Penalized approaches such as (Wason and Jaki, 2012; Wason et al., 2012),

or approaches based on (4.3), will not necessarily guarantee that the resulting

optimized design meets the power constraints in Section 4.4.1, as there may be

cases where a small penalty is outweighed by a larger reduction in expected

sample size. For the designs proposed by (Wason and Jaki, 2012; Wason et al.,

2012), these concerns also apply to Type I error control.

To address the above issue, we built in an extra step to correct for cases

where, after the SA algorithm completes, the resulting design DSA fails to satisfy

one or more of the power constraints. This step involves starting with DSA, and

increasing only the total sample size parameter N . A binary search over N is
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conducted to find the smallest value such that the constraints in Section 4.4.1

are met. During this search, all other elements of DSA are held constant. When

implementing the SA procedure in parallel, we apply this extra step after SA

completes in each node. These supplemental searches also reduce the danger

of choosing the tuning parameter λ in (4.3) to be too small. Our specific use

of binary search is motivated by our empirical experience of EΛ(ñ(D)) being

monotonically increasing in N for a variety of tested scenarios, and by the fact

that the power constraints can always be satisfied by a sufficient increase to N .

In order to derive designs that are simpler to interpret and perform approx-

imately optimally, we propose a two-step procedure for discovering efficacy and

futility boundaries. First, we optimize as above. Next, we consider a lower

dimensional parametrization that has a simpler form (e.g., with efficacy and

futility boundaries restricted to vary smoothly rather than being allowed to

oscillate wildly), and solve the same optimization problem in this restricted

space. If the value of the objective function is very close to that attained in the

unrestricted case, we report the simpler “structured” solution along with the

“unstructured” one, as the former may be easier to communicate. We discuss

our specific choice of structured boundaries in Section 4.5.

4.5 Results

We compare the performance of optimized adaptive designs against that of sev-

eral more traditional designs. We find that optimized designs can offer substan-

tial benefits, but that these benefits can be highly contingent on the delay time

to the measurement of outcomes. Specifically, in the case the ADNI dataset,
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the long delay time results in 1000 participants needing to be enrolled before

the first participant outcome is measured. Less information is then available

at interim decision points, and efficiency gains from any adaptive design are

meager. In contrast, expected sample sizes can be substantially reduced in the

MISTIE example, where the time to measurement is much faster relative to the

trial enrollment rate. Here also, optimized adaptive designs offer a much greater

benefit than more traditional adaptive designs.

We compare optimized adaptive designs against three types of traditional de-

signs, which we denote as “standard one-stage designs,” “optimized one-stage

designs,” and “standard multistage designs.” We define standard one-stage

designs as trials with equal alpha allocation and reallocation. We define op-

timized one-stage designs as trials where the alpha allocations and realloca-

tions are found either through a grid search (for H COV ) or through SA (for

H MB). Finally, we define standard multistage designs as 5-stage trials with

equal participant recruitment across stages, equal alpha allocation and reallo-

cation across hypotheses, and futility boundaries set equal to zero. For standard

multistage designs, the initial alpha allocations across stages were set according

to the structured alpha spending function in Section 4.3.2, with ρej set equal

to either 1 or 3 for all j. These settings for ρej result in boundaries similar to

Pocock boundaries (Pocock, 1977) or O’Brien Fleming boundaries (O’Brien and

Fleming, 1979) respectively (Jennison and Turnbull, 1999). For all comparison

designs, the maximum sample size was selected to be the smallest value that

satisfied the power constraints in Section 4.4.1.
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4.5.1 MISTIE example

We first explore results for the MISTIE data example. We refer to those with

small IVH as subpopulation 1, and those with large IVH are subpopulation 2.

Based on prior research by Hanley (2012), the proportion of participants with

small IVH (π1) was projected to be 0.33. As many as 420 participants could be

enrolled per year, from the combined population. The probability of a positive

outcome under control was projected to be 0.290. Investigators aimed to satisfy

the power constraints listed in Section 4.3 for δmin = 0.122. Based on this, we set

the variance of the outcome under control at σ2
c1 = σ2

c2 = 0.290(1− 0.290), and

the variance of the outcome under treatment at σ2
t2 = σ2

t1 = 0.412(1− 0.412).

The first row of Figure 4.1 shows the initial (i.e., before any alpha-reallocation

has taken place) z-statistic boundaries and per-stage sample sizes for the adap-

tive designs optimized for H COV and for H MB. These boundaries are the

result of the (unstructured) search for each individual alpha allocation and fu-

tility boundary. Initial efficacy boundaries for H COV and H MB are highly

similar, each roughly resembling Pocock boundaries. Futility boundaries are

similar across hypothesis testing frameworks as well, with futility boundaries

for H1 or H2 being highest at the midpoint of the trial, and futility boundaries

for HC remaining low throughout the trial. Within a given design, symmetry

between the futility boundaries for H1 and H2 is not necessarily to be expected,

as π1 ̸= π2.

We implemented the 2-step procedure described in the last paragraph of

Section 4.4.3. Step 1 is the above optimization. Based on these results, we

proposed the following structured form for the futility boundaries in step 2: let
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f
(k)
j be equal to cj + lj × (bk − bk−1), where bk =

(∑k
k′ nk′

N

)ρfj
, b0 = 0, and lj,

cj, and ρfj are design parameters for j = 1, 2, C. This form mirrors that of

the parametric form for alpha allocation (see Section 4.3.2), but with additional

shift parameters to capture the behavior discovered in the first row of Figure 4.1.

We reapplied our SA procedure optimizing over the parameters cj, lj, and ρfj for

each j, as well as the parameters wj and ρej as described in Section 4.3.2. The

design discovered in this second stage had an expected sample size within 1.5%

of the unstructured optimized design, and actually led to small improvements

in expected sample size. The z-statistic boundaries and per-stage sample sizes

for these optimized structured designs are shown in the second row of Figure

4.1.

Figure 4.2 shows the sample size distributions in the MISTIE data exam-

ple for the optimized structured multistage designs, and for the comparison

designs described above. The sample size distributions for multistage designs

are shown as violin plots, and the fixed sample sizes of optimized and standard

one-stage designs are shown as horizontal lines. All sample size distributions

are calculated based on the prior distribution for the treatment effects in Sec-

tion 4.4.1. Standard trials with Pocock boundaries improve expected sample

size relative to a standard one-stage design (from 1891 to 1554 for H COV , and

from 1885 to 1532 for H MB), but did not improve on optimized one-stage de-

signs (1447 for H COV ; 1443 for H MB). Expected sample sizes for standard

trials with O’Brien Fleming boundaries were similar (1649 for H COV ; 1670 for

H MB), outperforming standard one-stage trials but not optimized one-stage

trials. Relative to optimized one-stage designs, these two standard multi-stage
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Figure 4.1: Design Parameters for the MISTIE Scenario - Here we show the
initial efficacy and futility boundaries for the z-statistics, as well as per-stage
sample sizes, for four different optimized trial designs (one in each panel). Dots
and triangles mark the points at which interim analyses are scheduled to take
place, with corresponding sample sizes on the x-axis. Each column of panels
corresponds to a different hypothesis testing framework, with H COV on the
left and H MB on the right. The top row of panels shows results from opti-
mizing each boundary individually, while the second row shows the results from
optimizing over a specific structured form for the boundaries. For H MB, the
boundaries shown represent initial boundaries before any alpha reallocation.
The alpha reallocation rules from the optimized designs are given in the supple-
mental materials, along with tables of the initial alpha allocations for all four
designs.
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Figure 4.2: Trial Sample Sizes for the MISTIE Scenario - Violin plots are used
to represent the sample size distributions for three types of multistage designs:
optimized designs with structured boundaries (optim), O’Brien Fleming Bound-
aries (OBF), and Pocock boundaries (Pocock). These violin shapes represent
smoothed histograms of the distribution of simulated sample sizes, aligned ver-
tically for easier comparison with reference points. The sample size distribution
is taken with respect to the prior for the treatment effects described in Section
4.4.1, with the mean sample size for each design shown as an “×” mark. As
reference points, horizontal lines show the deterministic sample sizes from two
types of one-stage designs (either with equal alpha allocation and reallocation,
or with optimized alpha allocation and reallocation). Each panel corresponds
to a different hypothesis testing framework, with H COV on the left and H MB

on the right.

designs also come with the cost of a much higher maximum sample size. In con-

trast, adaptive designs optimized for H COV and H MB respectively reduced the

expected sample size to 976 and to 970, with smaller increases to the maximum

sample sizes (to 1678 and 1761 respectively).

Figure 4.3 shows approximate improvements to trial design performance in

the MISTIE example at each iteration of the parallel, unstructured SA search.

For each scenario, optimizations were parallelized across 100 computing nodes.
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Each node was set to run for 5000 iterations or 24 hours, whichever occurred

first. The curves in Figure 4.3 represent the trajectory of the cumulative min-

imum objective function value found by each parallel node. Quartiles with

respect to the distribution of final objective function values are shown as hori-

zontal lines. The figure is approximate in that no binary search corrections have

yet been made to guarantee that power constraints are met. (See Section 4.4.3.)

The most notable increases in performance occur in the early stages of SA, after

which the distribution of performance across nodes remains relatively constant.

This implies that a reduced number of search iterations might achieve similar

performance if the temperature parameter of the search was set to decrease

more slowly.

The quartile lines in Figure 4.3 can be used to estimate performance in

cases where fewer computing resources would be available. For instance, if only

5 parallel nodes had been available, the probability of achieving a result below

the first quartile would be approximately (1 − 0.755) = 76%. Thus, at least

some amount of parallelization appears to be an important component of the

search.

4.5.2 ADNI example

We next consider simulations based on the ADNI data example. Here we denote

non-carriers of the APOE ϵ4 allele as subpopulation 1, and participants who

carry at least one allele as subpopulation 2. We set additional parameters based

the subset of the ADNI data with baseline CDR-SB ≥ 0.5, of which 46.9%

carry at least one APOE ϵ4 allele. We set the sample variance in the 2-year

change in CDR-SB to be 3.44 for non-carriers (σ2
c1 = σ2

t1 = 3.44), and 3.72
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Figure 4.3: Objective Function over Parallel Search iterations, for the MISTIE
Scenario - Each decreasing curve shows the trajectory of the cumulative mini-
mum value of the objective function discovered by a parallel computing node.
Black dots show the terminal of each node’s trajectory. For nodes that did
not complete 5000 iterations of SA within 24 hours, these dots mark the last
iteration completed. Horizontal lines show the 0.25, 0.5, and 0.75 quantiles,
respectively, for the final distribution of objective function values across the
100 parallel nodes. Each panel corresponds to a different hypothesis testing
framework, with H COV on the left and H MB on the right.
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for carriers (σ2
c2 = σ2

t2 = 3.72). The average change CDR-SB in the combined

population was estimated at 1.41. The minimum clinical difference was set at

a 30% reduction in this CDR-SB change, or δmin = 1.41× 0.3 = 0.42. Based on

our choice of outcome, the delay time from enrollment to outcome measurement

(d) is exactly 2 years.

In contrast to the MISTIE example, no adaptive trial in the ADNI example

was shown to lower expected sample size by more than 2% relative to an op-

timized one-stage design. As mentioned above, this can be largely attributed

to the high enrollment required before any outcomes are measured. However,

slight efficiency gains can still be made in terms of the trial’s expected duration,

as trials showing no treatment benefits can be stopped before waiting for all par-

ticipant outcomes to be measured. Figure 4.4 shows performance comparisons

for the ADNI example analogous to Figure 4.2, but with the y-axis showing

the distribution of trial durations rather than the distribution of sample sizes.

Here, multistage designs optimized for shorter trial durations were able to re-

duce expected duration by 8% using H MB, or 7% using H COV , relative to an

optimized one-stage trial.

4.5.3 Alternative optimization algorithms

We also compared the performance of SA against other optimization algorithms

available in the optim function in R. For each combination of testing procedure

(H MB or H COV ), application (ADNI or MISTIE) and boundary form (struc-

tured or unstructured), each optimization method was allowed to run on 250

parallel nodes for either 4 hours or 2500 iterations, whichever occurred first.

Rather than searching for the optimal number of stages (K), we fixed K within
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Figure 4.4: Trial Durations for the ADNI Scenario - Violin plots show the
sample size distributions for three types of multistage designs: optimized designs
with structured boundaries (optim), O’Brien Fleming Boundaries (OBF), and
Pocock boundaries (Pocock). The duration distribution is taken with respect
to the prior for the treatment effects described in Section 4.4.1, with the mean
duration for each design shown as an “×” mark. As reference points, horizontal
lines show the deterministic duration from two types of one-stage designs (either
with equal alpha allocation and reallocation, or with optimized alpha allocation
and reallocation). Each panel corresponds to a different hypothesis testing
framework, with H COV on the left and H MB on the right.
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a node at either 2, 3, 4, 5, or 6. These values for K were evenly distributed such

that each unique configuration was allotted 250/5 = 50 parallel nodes. The

minimum objective function value across all 250 parallel nodes was recorded for

comparison.

SA outperformed gradient methods such as BFGS, L-BFGS-B, and Con-

jugate Gradient by 5-8% in the ADNI example and 11-36% in the MISTIE

example. Nelder-Mead and SA performed much more similarly. In the ADNI

example, Nelder-Mead outperformed SA by approximately 2%. In the MISTIE

example however, where more efficiency gains were available, SA outperformed

Nelder-Mead by approximately 2%.

We also compared against a version of SA where the objective function for

the current design D is re-evaluated at each comparison to a new candidate

design D ′, as discussed in the conclusion of Branke et al. (2008). Such an ap-

proach will double the number of simulations required, but will decrease the

probability that the algorithm becomes stuck at an inferior design where per-

formance is initially over-estimated due to Monte Carlo error. This altered

SA algorithm improved over gradient based methods, but was outperformed by

both Nelder-Mead and by standard SA.

4.6 Discussion

We show empirical evidence that SA can yield adaptive enrichment trial designs

with substantially lower expected sample sizes than a one-stage trial, or stan-

dard multistage designs with approximate Pocock or O’Brien Fleming bound-

aries. Relative to one-stage designs, optimized designs discovered here come at
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the cost of smaller increases in maximum sample size. Much of the efficiency gain

from optimization appears to be driven by changes to the futility boundaries.

We use SA to compare approximate best-case implementations of covariance-

based and alpha-reallocation-based trial designs, and find such best-case designs

to be similar in both their design parameters and their performance.

One exciting area of future work is to more actively account for the Monte

Carlo simulation error in our objective function evaluations. Some optimization

methods leverage noise present in the objective function, or add noise to the

objective function (Kushner, 1987; Maryak and Chin, 2001), in order to increase

the probability of reaching a global minimum. In the specific context of SA,

(Fink, 1998; Branke et al., 2008) argue that noise in the objective function is

analogous to having a higher temperature parameter.
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Chapter 5

Supplement to Chapter 3

5.1 Block matrix algebra for when the data

cannot fit into memory

When the number of measurements is especially large (i.e., p >10,000), it is

common that either the p × n data matrix Y, or the p × B matrices storing

each of the K fitted PCs across bootstrap samples, may be too large to store in

working memory. This issue can be remedied by using block matrix algebra to

subdivide the SVD computation into a series of low memory steps.

The standard algorithm for calculating the SVD of a high dimensional p×n

matrixY begins by first calculating the n×n matrixY′Y. Calculating the SVD

of Y′Y yields UD2U′. The matrix V can then be calculated as V = YUD−1.

When p is much larger than n, the computational complexity of this method is

O(pn2).

For the case where Y is too large to be stored in working memory, define

{s1, s2, ...sm} to be the set of m indexing vectors, each of length p/m, such that

the p-length concatenated vector (s1, s2, ...sm) is equal to vector (1, 2, 3, ...p).

Note that Y can now be partitioned as Y′ = [Y′
[s1,]

Y′
[s2,]

... Y′
[sm,]]. The matrix
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Y′Y can be calculated as
∑m

i=1Y
′
[si,]

Y[si,], where each term of the sum can be

calculated separately. We can similarly partition V′ = [V′
[s1,]

V′
[s2,]

... V′
[sm,]],

with V[sm,] = Y[sm,]UD−1. Neither the entire matrix Y nor the entire matrix

V need ever be stored in memory. (Zipunnikov et al., 2011a)

For the bootstrap percentile intervals described in section 3.3.1 of the main

paper, note that the bootstrap CIs for each block of V can be calculated sepa-

rately. In each bootstrap sample, the fitted PCs can be partitioned as

Vb′

[,1:K] = [Vb′

[s1,1:K] V
b′

[s2,1:K] ... V
b′

[sm,1:K]]

and calculated according to the relation Vb
[si,1:K] = V[si,]A

b
[,1:K]. The bootstrap

percentiles for the elements of each partition of the PC matrix can be calculated

separately, without storing the high dimensional the bootstrap distribution of

Vb
[,1:K] in working memory. Of the different CIs and CRs proposed in section

3.3 of the main paper, percentile intervals form the only case where memory

constraints become a potential issue in the bootstrap calculations. For the

moment-based pointwise intervals, as well as the other confidence regions dis-

cussed in section 3.3, only the low dimensional bootstrap distribution of Ab
[,1:K]

is required.

5.2 Random preconditioning for when the SVD

fails to converge

We find in approximately 4% of bootstrap samples from the MRI dataset, that

although a solution to the SVD of DU′Pb exists, the SVD function fails to con-

verge. We handle these cases by randomly preconditioning the matrix DU′Pb,
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and reapplying the SVD function. We then adjust the output of this precondi-

tioned SVD operation to find the solution for the SVD of the original matrix

DU′Pb.

The specific steps of this adjusted SVD algorithm are described below, in

terms of their application to an arbitrary n×m matrix Σ.

• Step 1: To find svd(Σ), first generate a two random orthonormal matrices

Qn and Qm, of dimension n × n and m × m respectively. Each matrix

can be obtained by taking the QR decomposition of a square matrix of

random normal noise.

• Step 2: Calculate the SVD of Q′
nΣQm, and denote the result as VDU′.

• Step 3: If this SVD operation also fails to converge, repeat steps 1-2 until

either a solution is found, or a pre-specified maximum number of attempts

is reached. We generally find that a single iteration is sufficient.

• Step 4: Write the SVD of Σ as (QnV)D(QmU)′.

Note (QnV) and (QmU) are both orthonormal, D is diagonal, and

(QnV)D(QmU)′ = QnVDU′Q′
m = QnQ

′
nΣQmQ

′
m = Σ

So (QnV)D(QmU)′ is indeed a solution to the SVD of Σ. If the SVD of Σ

is unique, then (QnV)D(QmU)′ is the unique solution to the SVD.

When Σ is a square matrix, this procedure can be simplified by letting

Qm = Qn. The procedure can also be made slightly faster by replacing Qm and

Qn with random permutation matrices.
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5.3 Centering bootstrap samples by centering

scores

Centering the p × n matrix Y can be achieved by right multiplying by (In −

(1/n)1n1
′
n), where In is the n×n identity matrix, and 1n is the n-length vector

of ones. Since Y(In − (1/n)1n1
′
n) = VDU′(In − (1/n)1n1

′
n), centering Y is

equivalent to centering the n× n matrix of scores, DU′.

Similarly, consider the bootstrap sample Yb = YPb. Because YPb(In −

(1/n)1n1
′
n) = VDU′Pb(In−(1/n)1n1

′
n), centering Yb is equivalent to centering

the n×n matrix of resampled scores, DU′Pb. Instead of taking the SVD of the

resampled scores, we can simply take the SVD of the resampled and centered

scores.

5.4 Changing the sign of bootstrap PCs - dot

product v. correlation

We often wish to switch the sign of a bootstrap PC, Vb
[,k], to better align it

with its corresponding sample PC, V[,k]. Switching the sign based on the cross

product between Vb
[,k] and V[,k] can yield a different decision than switching

based on the correlation between Vb
[,k] and V[,k]. In this section, we compare

cases where these two methods disagree, and argue that the results of the dot

product approach are more interpretable.

The left panel of Figure 5.1 shows a case where cor(V[,k],V
b
[,k]) < 0, but

V′
[,k]V

b
[,k] > 0. Here, the correlation rule would suggest that the sign of Vb

[,k]

be inverted, but the dot product rule would imply that the sign should not be

inverted. The right panel shows the opposite case, where cor(V[,k],V
b
[,k]) > 0,
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Figure 5.1: Axis reflections for Vb
[,k]

implying that no sign inversion should be done, but V′
[,k]V

b
[,k] < 0, implying

that an inversion should in fact be done. In both examples, we find the results

of the dot product rule to be more intuitive. For PCs that are fairly flat, the

correlation rule has the potential to create bimodal bootstrap distributions of

Vb
[,k] on either side of the zero line.

5.5 Supplemental figures for the EEG and MRI

Datasets

Figure 5.2 shows approximate reconstructions of the observed subjects’ EEG

measurements using only the K leading PCs, for K = 1, 2, 5, and 391. We see

that the more PCs are included in the approximation, the more variability is

retained from the original dataset. In the first panel (K = 1), the variability

in the reconstructed dataset is roughly due to different within-subject average

NPδ levels. This panel also shows the average NPδ across subjects, denoted

by µ. In panel 2 we add in variability attributable to the second PC (K = 2),

and see that reconstructed NPδ measurements now also vary in terms of broad
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oscillatory patterns in the early stages of sleep. Panel 3 shows variability due

to the first five PCs (K = 5), and highlights how the primary patterns in NPδ

variability take place in the first three hours of the night. The final plot shows

the full reconstruction of the dataset with all n− 1 PCs, and contains the most

overall variability.

Figure 5.3 shows the cumulative variance explained by the first 30 PCs of

the EEG dataset, and by the first 30 PCs of the MRI dataset. These curves are

proportional to the cumulative sum of the eigenvalues of the sample covariance

matrices for each dataset.

5.6 Additional simulation results

5.6.1 Pointwise interval coverage

Here we discuss the simulation results for pointwise confidence interval coverage

rates in the baseline simulation scenario, with p = 900, n = 392, the empirical

residual variance, and the empirical eigenvalue spacing. The line plots on the

right of Figure 5.4 show coverage rates for the each of the p elements of the

three PCs. Pointwise coverage for all elements of PC1 is very close to 95%. For

both PC2 and PC3, the moment-based intervals consistently give close to 95%

coverage, but the percentile intervals appear to give poor coverage in certain

regions. This may be an artifact, however, due to how the percentile inter-

val responds to skewness in the underlying bootstrap distribution. Adjusted

percentile intervals, such as the BCa interval (Efron, 1987), might account for

this apparent coverage problem. It is possible that the difficulty in estimating

coverage is also affected by the spacing of the eigenvalues – PC1 corresponds to
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Figure 5.2: Reconstructions of EEG data with leading PCs - The first three
panels respectively show approximations constructed using the first PC, the
first two PCs, and the first five PCs. The first panel also shows the mean
NPδ across subjects, denoted by µ. The bottom panel uses all of the PCs to
reconstruct the sample points exactly. To avoid over-plotting, reconstructions
are shown only for a random subsample of 100 subjects.
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Figure 5.3: Cumulative proportion of variance explained by the first 30 PCs.

an eigenvalue that is clearly differentiated, while the eigenvalues for the second

two components are less clearly differentiated from the remaining eigenvalues.

The violin plots on the left side of Figure 5.4 show the distribution of cov-

erage rates across the PC curves as we vary the sample size and eigenvalue

spacing. In this panel, the dimensionality (p) is fixed at 900, and only the em-

pirical residual noise variance level (σ2) is used, but results were very similar

for alternate levels of dimensionality and residual variance. Coverage rates for

all regions of the PC curves converges to 95% as sample size increases. The

coverage is also more accurate when the eigenvalues are well spaced, such as

when the first PC is being estimated, or when the parametric spacing for the

eigenvalues is used.
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Figure 5.4: Pointwise coverage of the PCs - Pointwise bootstrap-based CIs
can be calculated for each of the p dimensions of each PC. The violin plots
on the left show the distribution of coverage rates across each of the p CIs,
under different simulation settings (p fixed at 900). Simulation cases using the
empirical eigenvalue spacing are shown on the left column of violin plots, and
simulation cases where where each PC explains half as much variance as the
previous PC are shown on the right column. For ease of viewing, coverages
are cropped at 80%. This resulted in 5.0%, 2.3% and 1.3% of coverage rates
being cropped out for the PC2 percentile intervals, for n = 100, 200 and 300
respectively. The lowest simulated coverage rates in these respective cases were
52.1%, 66.9%, and 74.1%. For PC3, 4.6% of coverage rates were cropped from
the figure for n = 100, with the minimum coverage rate occurring at 69.7%. The
line plots on the right further explore coverage rates for the specific simulation
setting of n = 392, p = 900, and the empirical eigenvalue spacing. Coverage
rates are shown for each of the p CIs, with the x-axis corresponding to the p-
dimensional PC element index (time). In both sets of plots, rows correspond to
the PC being estimated.
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Figure 5.5: Coverage of CRs for the principal subspace

5.6.2 Coverage of confidence regions for principal sub-
space

Figure 5.5 shows coverage rates of confidence regions (CRs) for the principal

subspace (see section 3.3.3 of the main paper). Coverage generally improves

when the eigenvalues are well spaced and when sample size increases.

5.6.3 Coverage of best linear unbiased predictors for the
scores

Our data was generated under the model y = Ψs+ϵ, where y is a p-dimensional

outcome for a simulated subject, s is a K0-dimensional vector of random,

subject-specific scores, Ψ is the (p × K0) matrix of true basis vectors, and ϵ

is a p-dimensional vector of random errors. In calculating the best linear un-

biased predictors (BLUPs) for s, we assume s ∼ N(0,G) and ϵ ∼ N(0, Ipσ
2),

where G is diagonal with diagonal elements (λ1, λ2, . . . , λK0). Thus, y and s

form a joint multivariate normal with(
y
s

)
∼ N

((
0
0

)
,

(
ΨGΨ′ + Ipσ

2 ΨG
GΨ′ G

))
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And the BLUP is given by the conditional expectation of y given s

E(s|y) = GΨ′(ΨGΨ′ + Ipσ
2)−1y (5.1)

By the Sherman–Morrison–Woodbury formula, the inverse in Equation (5.1)

is equal to

(ΨGΨ′ + Ipσ
2)−1 = Ipσ

−2 − Ipσ
−2Ψ(G−1 +Ψ′Ipσ

−2Ψ)−1Ψ′Ipσ
−2

= Ipσ
−2 −Ψ(G−1 + IK0σ

−2)−1Ψ′σ−4

Note that (G−1 + IK0σ
−2)−1 is diagonal with diagonal elements ((λ−1

1 +

σ−2)−1, (λ−1
2 +σ−2)−1, . . . , (λ−1

K0
+σ−2)−1). Now, Equation (5.1) can be calculated

as

E(s|y) = GΨ′(Ipσ
−2 −Ψ(G−1 + IK0σ

−2)−1Ψ′σ−4)y

= G(Ψ′σ−2 − (G−1 + IK0σ
−2)−1Ψ′σ−4)y

= G(IK0σ
−2 − (G−1 + IK0σ

−2)−1σ−4)Ψ′y (5.2)

In each bootstrap sample, we estimate the BLUPs using the empirical BLUPs

(EBLUPs). This estimator consists of plugging the empirical estimates of G, Ψ,

and σ2 into Equation (5.2) (Fitzmaurice et al., 2012). We use (Db
[k,k])

2(1/(n−1))

to estimate λk, V
b
[,1:K0] to estimate Ψ, and

∑n
K0+1(D

b
[k,k])

2(1/(n− 1))(1/p) to
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estimate σ2.1We then create percentile and moment-based CIs from the boot-

strap distribution of the EBLUPS. Coverage of these CIs under different cir-

cumstances is shown in Figure 5.6.

5.6.4 Simulated accuracy of sample principal components

In each simulated sample, we recorded the angle between each sample PC and

its corresponding population PC. We also record the angle between each sample

PC and the subspace spanned by all K0 population PCs. For each simulated

scenario, Figure 5.7 shows the resulting 95% percentiles for these angles – in

95% of simulated samples, the angles were less than or equal to the ones shown

here.

5.7 Computation times for bootstrap PCA

We tested the speed of our bootstrap PCA procedure for several combinations

of sample size (n) and dimensionality (p). Varying n and p was achieved by

using subsets of the measurements and subjects from the MRI dataset. All cal-

culations were run on a standard laptop (2.5GHz Intel Core i5, 12 Gb memory),

without parallelization.

Figure 5.8 shows the results of these tests. We compare our proposed meth-

ods against an approximate “brute force” calculation time, which is attained

by multiplying the calculation time for the first 3 sample PCs by the num-

ber of bootstrap samples (B = 1000). This approximation is conservative in

that it does not include time required for saving and loading the p-dimensional

1Note that Vb
[,1:K0] only appears in the form Vb′

[,1:K0]y = Ab′
[,1:K0]V’y, where V′y can

be precalculated before the bootstrap procedure.
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Figure 5.6: Coverage for Best Linear Unbiased Predictors (BLUPs) - For a given
simulation scenario, the y-axis shows the average coverage across all BLUPs
from all simulations. Moment-based CIs are shown on the left, and percentile
CIs are shown in the right.
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Figure 5.7: 95% Percentiles for angles between estimated PCs and generating
basis
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bootstrap PCs. Still, our methods offer significant speed improvements over

the approximate brute force method in all tested scenarios. In particular, for

the most computationally demanding scenario tested (p = 2,979,666; n = 352),

pointwise percentile intervals based on the full bootstrap distribution of the PCs

were calculated in 118 minutes using our method, as opposed to 5,693 minutes

(3.95 days) with the brute force method. Calculating bootstrap standard errors

with our method took only 47 minutes.

While the brute force method can be parallelized on a high powered com-

puting cluster to reduce the total elapsed calculation time, the parallelization

procedure will incur bottlenecks when multiple nodes attempt to simultane-

ously load the sample data files into memory. The sample data files will only

be able to be accessed by one node at a time. This is an especially relevant

problem for the high dimensional scenario, when the data must be stored as a

set of block matrices that are loaded into memory sequentially (see section 5.1

of these supplemental materials). In contrast, our proposed method for fast,

exact bootstrap PCA can be parallelized without incurring these bottlenecks,

as each node only needs to import the n× n matrix of sample scores (DU′).

5.8 Elliptical confidence regions on the hyper-

sphere

One potential method for describing the dominant patterns in bootstrap PC

variability, is to use p-dimensional elliptical confidence regions (CRs) of the

form

{x ∈ Sp : (x−V[,k])
′Cov(Vb

[,k])
−(x−V[,k]) ≤ q((Vb

[,k]−V[,k])
′Cov(Vb

[,k])
−(Vb

[,k]−V[,k]), α)}
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Figure 5.8: Computation times for bootstrap PCA - The two plots show com-
putation times for sample sizes of 100 (left) and 352 (right). The horizontal
axis shows the dimensionality (p = 3,000; 30,000; 300,000; and 2,979,666) and
the vertical axis shows total elapsed computation time of each method. The
spacing for both axes is on the log scale, in base 10. Computation times are
shown for calculating the first 3 sample PCs, all n sample PCs, bootstrap stan-
dard errors, and bootstrap percentiles. For the bootstrap standard errors and
percentiles, the computation time shown includes the time required for the full
SVD of the original sample. An approximation of the time required to calculate
the bootstrap distribution of the PCs using standard methods is also shown.

Where Sp is the p-dimensional hypersphere, q(yb, α) is the 100αth percentile

of the bootstrap variable yb, Cov(Vb
[,k]) is the p × p bootstrap covariance ma-

trix of the kth PC, and Cov(Vb
[,k])

− is the generalized inverse of Cov(Vb
[,k]).
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Note that the use of the generalized inverse, or some form of regularization,

is required, as the covariance matrix Cov(Vb
[,k]) is not full rank and not in-

vertible. As a result, these CRs will not describe sampling variability in di-

rections orthogonal to the span of the observed sample points. Note also that

Cov(Vb
[,k])

− = (VCov(Ab
[,k])V

′)− = V(Cov(Ab
[,k])

−)V′. Thus, the above CR is

equivalent to the easily calculable region

{x ∈ Sp : (V
′x−δk)

′Cov(Ab
[,k])

−(V′x−δk) ≤ q((Ab
[,k]−δk)

′Cov(Ab
[,k])

−(Ab
[,k]−δk), α)}

Where δk is the k
th column of the n×n identity matrix. These elliptical CRs

can be fully defined by the length and directions of their primary axes, which,

in the case of spacial data, can be plotted on the p-dimensional scale.
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Chapter 6

Supplement to Chapter 4

6.1 Changing dimension of search space

Because we have several stage-specific design parameters, the dimension of our

search space for an optimal design depends on the number of stages K. Within

our simulated annealing (SA) search, a newly proposed trial design D ′ may

require an expansion or contraction of the search space, according to its proposed

value for K. In order to address this, we restrict K to be less than or equal to

10, and maintain length-10 lists for the efficacy boundaries, futility boundaries,

and per-stage sample sizes of each proposed design. In any one iteration of SA

only the first K ′ elements of these lists are used, where K ′ is the proposed value

for K at that iteration. For example, if the proposed design D ′ contained the

length-10 list of stage-specific futility boundaries for HC of (-10,-9,-8,-7,-6,-5,-

4,-3,-2,-1), and the proposed value of 6 for K, then the stage-specific futility

boundaries for HC used in evaluating J(D ′) would be (-10,-9,-8,-7,-6,-5) for

stages 1 through 6 respectively.
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6.2 Full tables showing optimized parameters

Here we show additional parameters of the optimized designs for the MISTIE

scenario. Tables 6.1, 6.2 and 6.3 show designs from optimizing with no structural

restrictions on the alpha allocations. Tables 6.4, 6.5 and 6.6 show results from

optimizing over the structured form proposed in the main text.

Stage: 1 2 3 4
H1 0.000464 0.002682 0.005421 0.003945
H2 0.001461 0.005204 0.001342 0.000666
HC 0.001123 0.002040 0.000318 0.000333

Table 6.1: Stage-Specific Alpha Allocations in Unstructured Design Optimized
for H COV (MISTIE)

Stage: 1 2 3 4 5
H1 0.000682 0.003301 0.002953 0.001482 0.003335
H2 0.001717 0.002472 0.000540 0.000422 0.001074
HC 0.001954 0.002341 0.001188 0.000892 0.000646

Table 6.2: Stage-Specific Initial Alpha Allocations in Unstructed Design Opti-
mized for H MB (MISTIE)

Reallocation Proportion
g12 0.050
g2C 0.059
gC1 0.261

Table 6.3: Alpha Reallocations in Unstructured Design Optimized for H MB

(MISTIE)
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1 2 3 4 5
H1 0.000063 0.000687 0.001890 0.003874 0.011057
H2 0.002328 0.000944 0.000618 0.000515 0.000644
HC 0.000250 0.000423 0.000441 0.000485 0.000780

Table 6.4: Stage-Specific Alpha Allocations in Structured Design Optimized for
H COV (MISTIE)

1 2 3 4 5 6
H1 0.000697 0.002259 0.002174 0.001503 0.004799 0.007198
H2 0.001097 0.000856 0.000481 0.000263 0.000655 0.000722
H3 0.001345 0.000356 0.000160 0.000079 0.000180 0.000175

Table 6.5: Stage-Specific Initial Alpha Allocations in Structured Design Opti-
mized for H MB (MISTIE)

Reallocation Proportion
g12 0.253
g2C 0.965
gC1 0.555

Table 6.6: Alpha Reallocations in Structured Design Optimized for H MB

(MISTIE)
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