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Abstract 

Development of therapeutic drugs, including small molecules, peptides, proteins, and 

nucleic acids, is centered upon their function through novel molecular targets or enhanced 

efficacy in comparison to existing drugs. However, one of the major limitations these drugs 

often suffer from is low drug concentration at the target site due to fast clearance post 

administration, which leads to overdosing and frequent dosings that can have further 

complications such as safety and patient compliance. Hence, there has been a strong effort 

during the past few decades in the field of biomaterials to develop drug delivery vehicles that 

enhance the localization of drugs at the site of disease while minimizing side effects. In 

particular, polymeric nanoparticles and microparticles have been utilized as platform 

technologies to protect, carry, and release the drug cargo in controlled fashion. 

This thesis presents multiple approaches to engineering polymeric nanoparticles and 

microparticles based on different targeting modalities with the goal of maximizing the 

bioavailability of the drug in cancer and ocular disease applications. Two types of polymers, 

poly(beta-amino ester) (PBAE) and poly(lactic-co-glycolic acid) (PLGA), were utilized to 

optimize the delivery of a small molecule, peptides, and plasmid DNA. To maximize the 

delivered dose of the drug cargo of interest, physical size and shape modifications of 

nanoparticles were investigated for passive targeting. In particular, poly(ethylene glycol)-

modified PBAE polymer was used to formulate pDNA-carrying polyplex and small molecule-

carrying micelles for enhanced diffusion by size and prolonged circulation by shape, 

respectively. Next, biochemical modifications of polymers were explored for active targeting 

of nanoparticles to target tissue. Specifically, polymer structure-dependent tissue targeting was 

investigated with PBAE-pDNA polyplex nanoparticles, and active tumor targeting with 
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integrin-binding peptide-coated PLGA nanoparticles were studied. Finally, optimization of 

PBAE nano- and PLGA microparticles delivering nucleic acids and therapeutic peptide, 

respectively, were studied to enhance patient compliance and long-term therapeutic efficacy 

following two different local delivery routes to ocular spaces. Taken together, the findings 

from these polymeric nano- and microparticles with different targeting modalities show their 

clinical potential as efficient drug delivery systems. 
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Chapter 1 

 

Introduction to the thesis 

 

1.1 Significance of drug delivery systems 

With the advancement of scientific tools and a better understanding of pathological 

targets, an increasing number of novel drugs is being investigated at the research and pre-

clinical stages. These drugs often show therapeutic efficiency in pre-clinical disease models, 

but still suffer from high attrition rate going through clinical trials1. Clinical translation of these 

drugs is often limited due to two major reasons: aqueous solubility and poor pharmacokinetics 

profile. More than 40% of the drug candidates are considered to be non-soluble in aqueous 

solution2 and need to be modified to become water-soluble and thus biocompatible. For 

example, conjugation of hydrophilic molecule poly(ethylene glycol) to drugs led to many 

FDA-approved products3, while particle systems encapsulating smaller drug cargos are also 

widely explored4. Moreover, low bioavailability of the drugs at the target site can result from 

degradation, non-specific absorption or lack of specific absorption, and elimination through 

the mononuclear phagocytic system or kidney secretion5,6. Insufficient pharmacokinetic 

properties are exacerbated in the presence of mucosal layer, as in the case with oral delivery 

or topical ocular delivery (eye drop)7,8. In order to overcome such drawbacks, there has been 

recent effort to adapt an in silico method to systematically design drug that would have 

advantageous physicochemical properties in their native form9. Drug delivery systems, such 

as particles, hydrogels, or other depot systems, are also a very active field of research that aims 
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to increase bioavailability of the cargo drug through protection, targeted delivery, and/or 

spatiotemporally controlled release. In particular, this thesis will focus on polymeric 

nanoparticles and microparticles as drug delivery vehicles. 

 

1.2 Biological barriers to successful drug delivery 

While drug delivery systems are aimed to enhance a drug’s bioavailability at the target 

site, they must overcome the same biological barriers as naked drugs would face in order to 

reach the site of action. The barriers can vary depending on the route of administration, the 

target organ or disease, and the mode of drug’s action. For local injection, drug delivery 

particles need to be administered to an accurate position and either efficiently diffuse 

throughout the affected disease area or form a stable depot for sustained release. In systemic 

injection, the vehicles must evade clearance by body’s immune system, in particular 

monocytes and macrophages, extravasate around the target organ, and diffuse throughout the 

affected disease area10,11. The particles’ role may extend at the cellular level with the drug’s 

mechanism of action. For exogenous DNA or molecules that function within the nucleus, the 

particles must facilitate cellular endocytosis, endosomal escape, and nuclear transport. Nuclear 

transport is not necessary for drugs whose action is in the cytoplasm, such as siRNA. For drugs 

that can either penetrate the cell membrane well or induce downstream effect by binding to 

cell membrane proteins, then the particles must be able to release the cargo in the extracellular 

space. Each of these barriers has resulted in investigation of diverse methods for modifying 

nanoparticles and microparticles to optimize bioavailability. 
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1.3 Approaches to modifying polymeric nanoparticles and 

microparticles for tissue targeting 

While efficiently targeting the diseased tissue remains one of the biggest challenges of 

drug delivery, many targeting modalities are being explored to enhance specific tissue 

accumulation. In particular, polymeric nanoparticles and microparticles are extensively 

investigated because they are composed of synthetic polymers that can be modified or tuned 

in various ways to enable different designs with unique physical and chemical properties12.  

Targeting methods can be broadly categorized into three groups: passive targeting, active 

targeting, and local delivery (physical targeting).  

Passive targeting involves increasing the chance of particle accumulation at the target 

tissue by prolonging systemic circulation time13. In cancer, the hypothesis that small particles 

of less than 200 nm can extravasate to the tumor tissue through leaky vasculature around the 

tumor, known as the enhanced permeability and retention effect, led to strategies such as 

surface coating with poly(ethylene glycol) to produce small, stable nanoparticles14. Other ways 

to increase blood half-life include increasing aspect ratio of particles to evade phagocytosis15, 

surface decorating with self-recognition CD47 peptide16, or more recently red blood cell (RBC) 

membrane coating or RBC hitchhiking17,18.  

Active targeting is mediated by specific receptor-ligand interaction. A widely utilized 

method is to conjugate ligands to the surface of nanoparticles that will specifically bind to 

receptors that are only present or overexpressed on the target cell(s). For example, cyclic RGD 

and folate have been used to home to tumor endothelium and tissue via integrin and folic 

receptor binding, respectively19,20. Transferrin is another molecule that has also been studied 

to bind to their respective receptors on endothelial cells in brain vasculature to mediate 
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transcytosis21. Moreover, there have been a number of studies that showed the ability of 

polymer’s chemical structure to direct tissue targeting22,23. Namely, Jeong et al. showed that 

different molecular weights of polyethylenimine result in varying biodistribution profiles22.  

Lastly, many drug delivery systems are physically targeted to the disease tissue by local 

or direct injection into the site of interest. Although this method may guarantee the highest 

drug concentration where needed, it often necessitates an invasive operation that can minimize 

patient compliance and/or require more sophisticated drug design to satisfy the clinical 

requirement of the local environment. The wafer-type design of Gliadel® is well-suited as it 

is placed in the cavity that is created from surgical resection of a brain tumor24. For ocular 

application, microneedles have been developed to inject therapeutics into the artificially 

created suprachoroidal space, along with an excipient to facilitate the spread of the fluid 

following the injection25.  

 

1.4 Specific aims 

 In this thesis work, six different tissue targeting modalities are reported using polymeric 

nanoparticles and microparticles. The thesis begins with passive targeting of nanoparticles by 

control of physical size (chapter 2) and shape (chapter 3), followed by active targeting with 

polymer’s structure (chapter 4) and non-canonical peptide (chapter 5), and concludes with the 

discussion of two local delivery routes in ocular application, suprachoroidal (chapter 6) and 

intravitreal (chapter 7).  

 

Aim 1. Develop poly(ethylene glycol)-coated poly(beta-amino ester)-based nanoparticles for 

passive targeting to tumor 
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 1.1 Small, stable poly(beta-amino ester) nanoparticles for gene delivery 

 1.2 Filamentous-shaped poly(beta-amino ester) micelles for small molecule delivery 

Aim 2. Investigate biomaterial- and ligand-mediated active targeting of polymeric 

nanoparticles 

 2.1 Biodistribution of poly(beta-amino ester)-DNA nanoparticles via polymer 

      structure-dependent targeting 

 2.2 Pharmacokinetics of poly(lactic-co-glycolic acid)-poly(ethylene glycol)   

      nanoparticles surface-coated with integrin-targeted biomimetic peptide 

Aim 3. Optimize polymeric nano- and microparticles as local drug delivery vehicles for ocular 

applications 

 3.1 Suprachoroidal delivery of plasmid DNA using poly(beta-amino ester)  

      nanoparticles 

 3.2 Intravitreal delivery of poly(lactic-co-glycolic acid) microparticles containing  

      anti-angiogenic peptide 

 

1.5 References 
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Chapter 2 

 

Synthesis and application of poly(ethylene glycol)-co-poly(β-

amino ester) copolymers for cancer gene therapy 

 

2.1 Introduction 

1Small cell lung cancer (SCLC) is a neuroendocrine subtype of lung cancer that 

accounts for 15% of all lung cancer cases.1 SCLC is initially sensitive to chemotherapy and 

radiation, most often involving a combination of cisplatin-etoposide chemotherapy with chest 

radiation, prophylactic cranial irradiation, or hyperfractionated thoracic radiation.2 

Glioblastoma (GBM) is the most common form of brain tumor in adults that accounts for 

more than 10000 deaths in the United States in spite of tumor resection, chemotherapy, and 

radiation.3,4 It has also been reported recently that GBM tumor mass consists of fully 

differentiated cancer cells and brain tumor initiating cells (BTIC), which possess stem-like 

properties and can be insensitive to chemotherapeutic drugs, hence responsible for 

recurrence.5 However, SCLC and GBM still have one of the highest fatality rates among 

cancers due to its high recurrence and metastasis.6,7 New therapies are needed to improve the 

survival of patients with these tumors. 

Gene therapy is a promising technology due to its tremendous potential as a selective 

and potent therapeutic for genetic diseases including cancer. Many approaches to DNA-based 

                                                        
Parts of this chapter were originally published in and modified from Kim J, Kang Y, Tzeng SY, Green JJ. 

“Synthesis and application of poly(ethylene glycol)-co-poly(beta-amino  ester) copolymers for small cell lung 

cancer gene therapy,” Acta Biomaterialia, 2016, 41:293-301. 
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therapeutics have been identified and validated, such as tumor suppressor genes including 

TNF-related apoptosis-inducing ligand (TRAIL) and p53.8,9 Another method is suicidal gene 

therapy, which induces apoptosis of tumor cells by delivering exogenous DNA, such as that 

encoding Herpes simplex virus thymidine kinase (HSV-tk) that converts prodrugs in situ to 

an active form.10 

There has been parallel effort to develop efficient, safe, and stable gene delivery 

vectors. Although viral vectors have the advantage of high transduction efficacy, limitations 

in cargo capacity, difficulty of production, and safety concerns due to immunogenic and 

mutagenic factors have led to the emergence of non-viral approaches as alternatives.11,12 

Poly(β-amino ester)s (PBAEs), a class of biodegradable cationic polymers, have been shown 

to exhibit low levels of toxicity and high rates of both DNA and siRNA transfection in 

various types of cells.13-17. These cationic polymers are able to bind with negatively charged 

nucleotides and form polyplexes by electrostatic interactions. Previous studies have shown 

that the biophysical properties of these PBAE polyplexes allow them to overcome critical 

barriers to gene delivery at the cellular level, including cellular uptake and endosomal escape 

via pH buffering.18,19 However, there has been limited effort to modify PBAE polyplexes to 

promote biological stability at the systemic and tissue levels, which is a critical property to 

facilitate efficient in vivo utilization and crossing of extracellular barriers.20-22 

Poly(ethylene glycol) (PEG), a water-soluble molecule with low toxicity, is widely used with 

a variety of biomaterials to minimize unwanted interactions with biomolecules. Its neutral 

and hydrophilic structure not only reduces surface charge of particles but also provides steric 

hindrance to reduce non-specific adsorption and aggregation. These properties have been 
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shown to significantly enhance stability and increase half-life of biologics and particles in 

systemic circulation.23,24 

PEGylation has the potential to reduce non-specific interactions between polyplexes 

and biological molecules and off-target cells. However, PEGylating polyplexes also 

generally has a negative effect on cellular uptake and transfection to target cells, which has 

been referred to as the “PEG dilemma.”25 Due to the shielding of positive surface charge by 

neutral PEG molecules, polyplexes are not only preventing non-specific protein adsorption 

but also become less associated with the plasma membrane of target cells. Decreased 

polyplex-cell interaction has been correlated to reduced cellular uptake and transfection.26,27 

The present study introduces a synthesis method to conjugate PEG to PBAE polymers 

and a combinatorial method was used to formulate polyplexes from a blend of PEGylated 

PBAEs (PEG-PBAEs) and end-capped PBAEs (ePBAEs) developed in our lab16 in order to 

overcome the PEG dilemma. The resulting PEG-PBAE polyplexes maintain particle stability 

and efficacy over time, diffuse through brain tumor mass in vivo, successfully transfect 

SCLC, BTIC375 and GBM1A cells in vitro, and deliver suicidal gene HSV-tk in vitro to 

activate ganciclovir to kill SCLC cells. 

 

2.2 Methods 

Materials 

 

1,4-butanediol diacrylate (B4), 4-amino-1-pentanol (S4), 5-amino-1-pentanol (S5), 1-

(3-aminopropyl)-4-methylpiperazine (E7) (Alfa Aesar), 1,5-pentanediol diacrylate (B5) 

(Monomer Polymer & Dajac Labs), 2-methylpentane-1,5-diamine (E4) (TCI America), 2-(3-
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aminopropylamino)ethanol (E6) (Fluka), poly(ethylene glycol) methyl ether thiol (800 Da), 

branched 25 kDa poly(ethylenimine) (PEI) (Sigma-Aldrich), α-Mercaptoethyl-ω-methoxy 

polyoxyethylene (5000 Da) (NOF America Corporation), and cell culture media components 

were purchased and used as received. pEGFP-N1 (EGFP) DNA (purchased from Elim 

Biopharmaceuticals and amplified by Aldevron, Fargo, ND), ganciclovir (Invivogen, San 

Diego, CA), Label IT-Tracker Cy3 kit (Mirus Bio LLC), and CellTiter 96 AQueous One 

MTS assay (Promega, Fitchburg, WI) were obtained from commercial vendors and used per 

manufacturer’s instructions. HSV-tk gene was cloned into the pcDNA3.1 vector (Life 

Technologies) and amplified (Aldevron, Fargo, ND). 

 

Polymer synthesis and characterization 

 

ePBAEs and PEG-PBAEs were synthesized in a two-step reaction using small 

commercially-available molecules as described in Figure 2.1. As an example, acrylate-

terminated base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) was 

first synthesized by mixing a backbone monomer (B4) and a side-chain monomer (S4) at 

1.2:1 or 1.05:1 B4:S4 monomer molar ratios in DMSO as a 500 mg/mL solution and stirring 

at 90 °C for 24 h. The base polymer was purified in cold diethyl ether, dried under vacuum 

with desiccant for 24 h, and the molecular weight and chemical structure of the base polymer 

were confirmed by Bruker Avance III 500 MHz NMR spectrometer in CDCl3. Base polymers 

were end-capped with a small molecule (E4, E6, or E7) by dissolving base polymer and end-

capping molecule at 1:30 M ratio in THF as a 100 mg/mL solution and shaking the mixture 

at room temperature for 3 h. Final ePBAE polymers were purified in cold diethyl ether, dried 
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under vacuum with desiccant for 24 h, confirmed with 1H NMR for complete conjugation, 

and then stored with desiccant at −20 °C as 100 mg/mL solutions in DMSO. 

Amine-catalyzed, thiol-ene Michael addition reaction was used to conjugate PEG to 

the base polymer B4S4.28 Briefly, B4S4, methoxy PEG-thiol, and E7 molecules were mixed 

at 1:2.5:0.2 M ratios as a 100 mg/mL solution in DMSO and stirred at room temperature for 

24 h at 1000 rpm. Final block copolymers were precipitated in diethyl ether at room 

temperature without centrifugation, confirmed with 1H NMR for complete conjugation, and 

stored with desiccant at −20 °C as 100 mg/mL solutions in DMSO. The nomenclature of 

different PEG-PBAEs used in this study is listed in Table 2.1. 

 

Particle formulation and characterization 

 

PBAE polyplexes were made at 60 and 75 w/w mass ratios of ePBAE to DNA in 

25 mM sodium acetate buffer (pH = 5). For example, diluted polymer solution at 3.6 mg/mL 

was mixed into diluted DNA solution at 0.06 mg/mL at equal volume to form 60 w/w 

polyplexes, and the mixture was incubated for 10 min to allow complexation. 75 w/w was 

tested to check for cytotoxicity of ePBAE at higher polymer concentration. 

PEG-PBAE polyplexes were made at 30, 60, 90 w/w ratios of total polymer to DNA 

in 25 mM sodium acetate buffer (pH = 5). Polymer used to condense DNA was a mixture of 

ePBAE and PEG-PBAE at three different mass ratios of 1:2, 1:1, and 2:1. For example, 

50 μg of ePBAE 447 and 100 μg of PEG-PBAE 5k-4k were diluted to 3.6 mg/mL total 

polymer concentration with 25 mM sodium acetate buffer (pH = 5), and the polymer solution 

was mixed with diluted DNA solution at 0.06 mg/mL at equal volume to form polyplexes 
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with 447:5k-4k 1:2 w/w and polymer:DNA 60 w/w ratios. These polyplexes were incubated 

for 10 min to allow complexation. 

The polyplex size was determined by nanoparticle tracking analysis (NTA) using 

Nanosight NS500 (Malvern Instruments, 532 nm laser) and dynamic light scattering (DLS) 

using Malvern Zetasizer Nano ZS (Malvern Instruments, detection angle 173°, 633 nm laser). 

The polyplexes prepared at DNA concentration of 0.1 mg/mL were diluted 1000-fold and 2-

fold into 25 mM sodium acetate buffer or 2× PBS to a total volume of 400 μL for Nanosight 

and Zetasizer, respectively. To determine polyplexes’ stability over time, cuvettes with the 

polyplex solution were stored in dark at room temperature until specific time points, then the 

polyplex size was re-measured following a brief resuspension. The polyplexes were diluted 

in artificial cerebrospinal fluid (ACSF) in order to determine the particle stability over time 

by Zetasizer for application in therapy against glioblastoma. Only number-weighted 

measurements with particle concentrations above 15 particles/frame by NTA and intensity-

weighted Z-average measurements passing the quality control expert advice criteria by DLS 

are reported. Zeta potential was determined using Malvern a Zetasizer Nano ZS (Malvern 

Instruments) with samples prepared at DNA concentration of 0.03 mg/mL diluted 2-fold into 

25 mM sodium acetate buffer (pH = 5.0) for a total volume of 800 μL. The mean and 

standard deviation were calculated. 

 

Cell culture 

 

H446 small cell lung cancer cells (ATCC) were cultured at 37 °C and 5% CO2 in ATCC-

modified RPMI 1640 media (Life Technologies A10491-01), supplemented with 10% FBS 
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and 1% penicillin/streptomycin. IMR-90 human lung fibroblast cells (ATCC) were cultured 

at 37 °C and 5% CO2 in Eagle’s minimum essential media (Cellgro 10-009-CV), 

supplemented with 10% FBS. BTIC375 brain tumor initiating cells and GBM1A 

glioblastoma cells (Quinones lab) were cultured at 37 °C and 5% CO2 in DMEM/ F-12 (1:1) 

(Cellgro 10-009-CV) with 1X B-27 supplement, 1% antibiotic-antimycotic (Invitrogen), 20 

ng/mL basic fibroblast growth factor (bFGF), and 20 ng/mL epidermal growth factor (EGF). 

 

DNA delivery assays 

 

Polyplex delivery. Cells were plated at a density of 15,000 cells/well (100 μL/well) in 96-

well tissue culture plates and were incubated for 24 h. For BTIC375 and GBM1A, 96-well 

plates were incubated with laminin (5 μg/mL) for 2 h prior to cell seeding. pEGFP labeled 

with Cy3 per manufacturer’s instructions (Label IT Tracker kit) and unlabeled pEGFP were 

used for uptake and transfection experiments, respectively. Polyplexes were prepared as 

described above to a final DNA concentration of 0.03 mg/mL. Then, 20 μL of polyplexes 

was added to 100 μL of serum-containing medium in each well. For PEI polyplexes, pEGFP-

Cy3 diluted into 150 mM NaCl to 60 μg/mL was mixed with equal volume of PEI diluted 

into 150 mM NaCl to 120 μg/mL (2 w/w) from a stock solution of 1 mg/mL in dH2O. PEI 

polyplexes were also incubated for 10 min to complex, and 20 μL of polyplex solution was 

added to 100 μL of medium in each well. For uptake experiments, cells were incubated with 

polyplexes for 4 h for H446 and 2 h for BTIC375/GBM1A, washed twice with heparin-

containing PBS (50 μg/mL), and prepared for flow cytometry. For transfection experiments, 

cells were incubated with polyplexes for 4 h for H446 and 2 h for BTIC375/GBM1A, washed 
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twice with heparin-containing PBS, and incubated with 100 μL fresh media for an additional 

48 h, and analyzed qualitatively with fluorescent microscope and quantitatively with FACS 

analysis. 

Cell viability. Cells were treated following the same protocol as transfection. Following 4 h 

(H446) or 2 h (BTIC375, GBM1A) of incubation with polyplexes, cells were washed twice 

with heparin-containing PBS, added with 100 μL of fresh media, and incubated for an 

additional 24 h at 37 °C. 20 μL of CellTiter 96 AqueousOne MTS reagent were added per 

well, cells were incubated with reagent at 37 °C, and absorbance was measured at 490 nm 

using a Synergy 2 plate reader (Biotek) every 30 min until the highest absorbance signal 

reached 1.2. Absorbance signal was normalized to that of untreated cells after subtracting the 

background signal. All conditions were prepared in quadruplicates. 

Flow cytometry. To prepare for flow cytometry (Accuri C6 with HyperCyt high-throughput 

adaptor), cells were detached using 30 μL of 0.05% trypsin, resuspended with 170 μL of 

FACS buffer (PBS containing 2% v/v FBS), transferred to a round-bottom 96-well plate and 

centrifuged at 800 rpm at 4 °C for 5 min. 170 μL of supernatant was removed, and the 

remaining 30 μL was triturated to resuspend the cells. Propidium iodide (PI) (Invitrogen, 

Carlsbad, CA) was added to FACS buffer at 1:200 to detect cells in the process of apoptosis 

for transfection assay. 

For uptake, % positive is the percentage of total cells that are Cy3+ as measured by 

two-dimensional gating of FL1 vs. FL2 using FlowJo 7.6.5 software. For transfection, % 

positive is the percentage of total cells that are EGFP+ as measured by sequential two-

dimensional gating of PI- by FSC-H vs. FL2 and EGFP+ by FL1 vs. FL2. At least 500 cell 

counts were analyzed for each measurement. All conditions were prepared in quadruplicates. 
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Delivery of pHSV-tk and ganciclovir 

 

Cells were treated following the same protocol as transfection using pHSV-tk DNA. 

Following 4 h (H446) or 2 h (BTIC375, GBM1A) of incubation with polyplexes, cells were 

washed twice with heparin-containing PBS and incubated with 100 μL of fresh media for 

24 h at 37°C. The media was then replaced with fresh media containing 10 or 20 μg/mL of 

ganciclovir. Following additional 48 h incubation at 37°C, the media was replaced with fresh 

media containing 10 or 20 μg/mL of ganciclovir. Cell death was measured 24 h after the 

second ganciclovir treatment with CellTiter 96 AQueous CellTiter reagent as described 

above. All conditions were prepared in quadruplicates. Stock ganciclovir solution at 

5 mg/mL was prepared by dissolving it in 2% 1 M NaOH, and then neutralizing the pH with 

1% 1 M HCl, 40% dH2O, and 57% 1X PBS by volume. 

 

In vivo nanoparticle diffusion in orthotopic glioblastoma xenograft 

 

Athymic nude male mice were anesthesized and stereotatically injected with 5 x 105 

primary human brain tumor initiating cells (BTIC375) at 8 weeks old. After a 4-week period 

for tumor formation, polyplexes carrying Cy5-labeled (Label IT Tracker kit, Mirus Bio) 

pEGFP DNA (4 μL, 0.7 μg DNA) were stereotatically injected at the site of tumor. 

Polyplexes were either non-PEGylated polyplex composed of 447 30 w/w or PEG-PBAE 

polyplex composed of 447 and 0.8k-13k 1:2 45 w/w that were lyophilized with 30 mg/mL 

sucrose, stored at -20 C, and resuspended in water. After 24 h, mice were sacrificed and 
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perfused and fixed with 1X PBS and 10% formalin to remove the brain. Harvested brains 

were stored overnight in 10% formalin, transferred to 30% sucrose for 24 h, embedded in 

optimal cutting temperature (OCT) compound, and cryo-sectioned in 10-μm slices. Slices 

were imaged by fluorescence microscopy to observe particle spread (Cy5) using an Axio 

Observer A1. 

 

Statistics 

 

All statistical analysis was performed with GraphPad Prism 5 software package. One-

way ANOVA with post-hoc Dunnett test was used to test statistical significance of multiple 

conditions against the control group (p < 0.05). A Student’s t-test was used to test statistical 

significance of cell death from the same HSV-tk and ganciclovir treatment between H446 

and IMR-90 cells (p < 0.01). 

 

2.3 Results  

Synthesis and characterization of PBAE and PEG-PBAE polymer 

 

We first sought to synthesize and confirm the molecular weight as well as the 

completion of synthesis of ePBAEs and PEG-PBAEs. Both types of PBAEs share the same 

base polymer, with the molecular weight controlled by the molar ratio of backbone (B) to 

side-chain (S) monomers in the Step 1 reaction (Figure 2.1). Two molar ratios, 1.2:1 and 

1.05:1, as well as two (B) and (S) monomer types each were used to synthesize four different 
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acrylate-terminated base polymers with molecular weight distribution as shown in Figure 

2.2; the closer the monomer ratio is to unity, the greater the degree of polymerization. 

A total of 9 ePBAEs were synthesized with three base polymers, B4S4, B4S5, and B5S5 of 

approximately 10 kDa, and three end-capping (E) molecules, E4, E6, and E7, by Step 2A 

end-capping reaction (Figure 2.1). Similar molecular weights were selected for each polymer 

structure. An example of an ePBAE nomenclature is 457, which is base polymer B4S5 end-

capped with E7. A total of 4 PEG-PBAEs were synthesized with two base polymers (B4S4 at 

4 and 13 kDa), and two methoxy PEG-thiol molecules (0.8 and 5 kDa). E7 was selected as 

the amine catalyst in this Step 2B PEGylation reaction because of its use in our lab for end-

capping of PBAEs and its non-toxicity in our studies.4 A trace amount of E7 (5% mol) was 

used to ensure PEGylation occurred and not E7-endcapping. 

Because end-capping reactions involve a nucleophilic addition to acrylates, the 

completion of end-capping can be confirmed using 1H NMR. Once the diacrylates on the 

base polymer (Figure 2.3A/B) reacted with (E) molecules to yield ePBAE or with methoxy 

PEG-thiol molecules to yield PEG-PBAE (Figure 2.3C), the signature peaks for protons on 

acrylates disappeared, verifying that every base polymer in the reaction was completely end-

capped. 

 

Preparation and characterization of PEG-PBAE polyplexes 

 

Polyplexes are formulated via electrostatic interaction between cationic polymer and 

negatively charged DNA. Thus, N/P ratio, the ratio of amines in the polymer (N, positively 

charged) to phosphates in the DNA (P, negatively charged), is an important parameter for 
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polyplex formulation. N/P ratio can also be converted to the total or the effective weight-to-

weight ratio (w/w) between the polymer and the DNA, or vice versa, as long as the amine 

density and molecular weight are known. The total polymer:DNA w/w ratios that were used 

are converted to the effective PBAE:DNA w/w ratios and N/P ratios in Table 2.2. For PEG-

PBAE polyplexes, ePBAE was also blended in with PEG-PBAE, and their weight to weight 

ratio was added as another parameter. 

Polyplex stability over time was investigated with both nanoparticle tracking analysis 

(NTA) and dynamic light scattering (DLS) by measuring the increase in particle size over 

24 h. While NTA directly measures the number-averaged hydrodynamic diameter, DLS 

reports an intensity-weighted average that is skewed towards larger or aggregated 

particles.29,30 Polyplex formulations that yielded significant aggregation or decomplexation as 

indicated by low particle concentration on NTA or large particle size over the detection limit 

on DLS were eliminated from further consideration as candidate gene delivery formulations 

(Figure 2.4A). PBAE polyplex size of 447 60 w/w was similar to that reported in previous 

literature.31 Four formulation conditions, indicated by red arrows, showed an initial particle 

size of 90–110 nm and minimal aggregation over time by NTA in 25 mM sodium acetate 

buffer. These small polyplex formulations were ePBAE blended with 5k-4k 1:2 30 w/w, 5k-

4k 1:1 30 w/w, 5k-13k 1:2 30 w/w, and 5k-13k 1:1 30 w/w, and they were selected for 

subsequent transfection evaluation. A similar trend was observed when PEG-PBAE 

polyplexes are formulated with another ePBAE, 457 (Figure 2.5). While polyplexes with 

PEG-PBAE polymer synthesized from 4 kDa PBAE base polymer significantly aggregated 

over time in PBS, polyplexes with PEG-PBAE polymer synthesized from 13 kDa PBAE base 

polymer remained nanosized (∼300 nm) after 24 h incubation in PBS. All four formulations 
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showed a slight decrease in surface charge to +7 mV in NaAc, although not statistically 

significant, in comparison to 447 60 w/w PBAE polyplexes (Figure 2.4B). When the PEG-

PBAE polyplexes was sized in artificial cerebrospinal fluid (ACSF), formulations of 447 

ePBAE blended with 0.8k-6k at 2:1, 1:1, and 1:2 30 w/w showed an extended period of 

stability between 2 h and 5 h in comparison to 447 60 w/w alone or blended with other PEG-

PBAE polymer (Figure 2.6). Maintaining small size until 5 h can be critical, as the 

polyplexes may still diffuse through the tumor tissue during the first hours post-injection. 

Beyond that, the polyplexes may disintegrate due to polymer degradation or be cleared out of 

the tissue through the body’s natural mechanism. 

 

High-throughput evaluation of uptake, transfection and cytotoxicity 

 

High-throughput evaluation was sequentially performed at two levels to select the 

most optimized polyplex formulation based on uptake and transfection of polyplexes in 

H446, BTIC375, and GBM1A cells. For SCLC, PBAE polyplexes formed with 9 different 

ePBAEs were initially tested to select the best ePBAE polymer that would be blended with 

PEG-PBAE polymers in the subsequent screening. As shown in Figure 2.7B, ePBAEs with 

more hydrophobic base polymer generally formed polyplexes with higher cytotoxicity to 

H446 cells, evidenced by B5S5 polyplexes leaving no viable cells 48 h after transfection. 

Higher H446 cellular uptake of ePBAE polyplexes with B4S5 base polymer did not result in 

a higher transfection rate than those with B4S4 base polymer, possibly due to different 

endocytosis pathways or rate-limiting downstream steps (Figure 2.7A/C, 2.8).18 Top 

performing ePBAEs 444, 446, 447, and 457 with cell viability over 80% and transfection 
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efficacies of 60–75% were blended into four selected PEG-PBAE polyplex formulations for 

subsequent evaluation.  

As anticipated due to the shielding properties of PEG, the H446 cellular uptake and 

transfection efficacy of PEG-PBAE polyplexes significantly decreased in comparison to 

unPEGylated PBAE polyplexes (Figure 2.9A/C, 2.8). Among PEG-PBAE polyplexes, 

formulation with 5k-4k polymer generally resulted in higher uptake efficacy than that with 

5k-13k polymer, which is consistent with the enhanced particle stability of 5k-13k 

polyplexes (Figure 2.4A/B), potentially from greater PEG shielding, limiting the polyplexes’ 

interaction with the cell membrane. However, transfection efficacies of PEG-PBAE 

polyplexes formed with 5k-4k and 5k-13k polymer at 1:1 30 w/w condition were similar, 

indicating polyplexes with 5k-13k polymer more efficiently deliver the DNA cargo to the 

nucleus to be transcribed following endocytosis. Also, PEG-PBAE polyplexes blended with 

457 ePBAE resulted in the highest SCLC uptake and transfection overall, which is 

comparable to the results from PBAE polyplex screening. This may be due to hydrophobicity 

of 457 that allows for stronger condensation and more stable particles. Specifically, PEG-

PBAE polyplex formed from 457 blended with 5k-13k at 1:1 30 w/w condition was 

internalized in 30% of H446 cells, and transfected 40%. The higher measured transfection 

rate compared to the measured uptake rate is likely due to the lower sensitivity of measuring 

successful cellular uptake compared to successful gene expression (expressed plasmid leads 

to an amplified GFP florescence signal compared to the fluorescence signal from the labeled 

plasmid itself). This formulation also showed second highest geometric mean GFP 

fluorescence intensity, which is an indicator of the amount of protein expressed by the 

transgene per cell (Figure 2.10). 
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For BTIC375 and GBM1A, five ePBAEs were tested (Figure 2.11A/B, 2.12A/B) for 

the initial screen to select the best transfecting polymer. Interestingly, more hydrophobic 

ePBAEs with B4S5 base polymer and with E7 or E3 end-groups showed lowest cell viability 

in both BTIC375 and GBM1A. However, 447 and 457 gave the highest transfection efficacy, 

in terms of both % of cells and geometric mean fluorescence, again in both cell types. Based 

on the result with H446 that blending of PEG-PBAE to ePBAE can reduce cytotoxicity, we 

selected 447 and 457 for subsequent PEG-PBAE polyplex screening despite ePBAE’s 

toxicity due to the high transfection efficacy. As shown in Figure 2.11C-E, we observed 

tolerable cell viability in a few formulations with BTIC375, including 447 blended with 0.8k-

13k 1:2 45 w/w or with 0.8k-4k 1:2 90 w/w. These formulations also resulted in 70-80% 

transfection efficacy, which is comparable to that of 447 ePBAE alone. Surprisingly, there 

was a decrease in cell viability for GBM1A with some formulations of PEG-PBAE polyplex, 

such as 2k-5k 2:1 60 w/w and 90 w/w (Figure 2.12C). Polyplexes composed of 447 blended 

with 0.8k-5k PEG-PBAE polymers did not cause cytotoxicity, and 447 + 0.8k-5k 2:1 60 w/w 

formulation showed transfection efficacy of approximately 27% (Figure 2.12D). It is 

important to note that two distinct PEG-PBAE polyplexes had optimal cell viability and 

transfection for each of the cell types that are present in glioblastoma tissue. This suggests 

that the ideal therapeutic approach could be a combination of the two polyplexes to attack 

both fully differentiated and stem-like brain tumor cells. 

 

Therapeutic activity against small cell lung cancer with PEG-PBAE/pHSV-tk polyplexes and 

ganciclovir 
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Ganciclovir is a widely investigated prodrug of interest for suicide gene therapy for 

different types of cancer.4,32,33 The nontoxic ganciclovir prodrug is phosphorylated into 

ganciclovir triphosphate by the HSV-tk gene product, which then disrupts DNA replication 

and causes cell death.34,35 We examined PEG-PBAE polyplexes as a functional vehicle for 

small cell lung cancer gene therapy by delivering PEG-PBAE/pHSV-tk polyplexes followed 

by ganciclovir treatment. The optimal PEG-PBAE polyplex formulation 457 + 5k-13k 1:1 30 

w/w was chosen and was compared to 457 60 w/w PBAE polyplexes for transfection of both 

H446 human small cell lung cancer cells and IMR-90 human lung fibroblasts as a healthy 

control cell type. PBAE and PEG-PBAE polyplexes were able to kill 60% and 35% of cancer 

cells, respectively (Figure 2.13A). Interestingly, the level of cell death induced by two types 

of polyplexes correlated closely with their EGFP transfection efficacies of 73% and 43% 

(Figure 2.7A and 2.9A), but not with their EGFP geometric mean intensities of 170,000 and 

4000 RFUs (Figure 2.10). The expression of HSV-tk, followed by treatment with 

ganciclovir, is expected to cause death of the transfected cell. A twofold increase of the 

ganciclovir dosage had negligible effect on cell death, demonstrating that the exogenous gene 

expression of HSV-tk was the limiting factor determining cell killing. 

The same PEG-PBAE and PBAE polyplexes showed different outcomes with IMR-

90 human lung fibroblasts. First, polyplexes formed with 457 ePBAE complexed with 

pEGFP at 60 w/w had significant inherent cytotoxicity of 50% (Figure 2.13B). This 

demonstrates the potential fragility of healthy human cells and the need for biocompatible, 

non-cytotoxic formulations. This concern with potential PBAE polyplex cytotoxicity is 

resolved when 457 ePBAE is blended with 5k-13k at 1:1 ratio, as evidenced by near 100% 

viability from pEGFP as well as pHSV-tk + 0 μg/mL ganciclovir controls. This reduced 
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cytotoxicity is likely due to a combination of less 457 ePBAE being used to form PEG-

PBAE polyplexes in comparison to non-PEGylated PBAE polyplexes of the same total w/w 

and due to PEG molecules shielding potentially unfavorable interaction between surface-

exposed positively charged 457 and cellular components. In addition, the same PEG-

PBAE/HSV-tk DNA polyplexes + ganciclovir system is more specific in promoting killing 

of human lung cancer H446 cells than healthy human lung IMR-90 fibroblasts with statistical 

significance (p < 0.01); 35% of H446 cells and 15% of IMR-90 cells are killed at the 

10 μg/mL ganciclovir dosage. Overall, these results show the potential of stable and effective 

PEG-PBAE polyplexes for lung cancer gene therapy. 

 

Brain tumor tissue penetration following local injection in vivo 

 

We next investigated the ability of PEG-PBAE polyplexes to diffuse through the 

dense tumor tissue following injection, which would allow greater affected (transfected) area 

and effective inhibition of tumor growth or even recession. The presence of PEG on the 

surface of nanoparticles enhances diffusivity because it allows neutral surface with steric 

hindrance to prevent particle aggregation as well as non-specific adsorption of serum 

proteins. As a preliminary study, Cy5-labeled PEG-PBAE polyplex composed of 447 and 

0.8k-13k 1:2 45 w/w was injected directly into the orthotopic BTIC375 tumor in the brain 

and the spread was imaged on histological sections. As shown by the representative image in 

Figure 2.14, PEG-PBAE polyplexes were able to diffuse further from the injection site over 

24 h period than 447 30 w/w PBAE polyplexes. This demonstrates the utility of safe PEG-

PBAE polyplexes to penetrate and target wider area of diseased tissue. 
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2.4 Discussion 

Nanoparticles, including polyplexes that are formed by electrostatic interaction 

between cationic polymer and negatively charged nucleic acids, that are intended to be used 

for systemic administration, need to overcome challenges of destabilization in physiological 

saline, adsorption of serum proteins, and aggregation post-administration, which all can lead 

to rapid clearance from the blood. Furthermore, colloidal stability at sub-400 nm diameter is 

critical for nanoparticles in cancer therapy to utilize passive targeting to tumors and their 

leaky vasculature via the enhanced permeation and retention (EPR) effect.25,36 In addition, 

these nanoparticles must be able to enter and diffuse into the tumor tissue to effectively target 

greater number of cancer cells. A new copolymer synthesized by conjugating the hydrophilic 

molecule PEG to selected PBAE base polymers provided steric hindrance to the resulting 

PEG-PBAE polyplexes that minimized particle aggregation and maintained an effective size 

for the EPR effect and enhanced diffusivity. 

When formulating both PBAE and PEG-PBAE polyplexes, the N/P ratios used are 

relatively high in comparison to polyplexes of different polymers, such as PEI (Table 2.2). 

Non-degradable PEI, with its high charge density, becomes cytotoxic at higher N/P ratios 

unless it is modified with degradable moieties.37,38 Two features of the PBAE chemical 

structure allows for polyplexes with much higher N/P ratios. Firstly, PBAE has repeated ester 

bonds along its backbone and hence is hydrolytically degradable into small bioeliminable 

units and thus much higher w/w ratios can be utilized.19 Secondly, most of PBAEs’ positive 

charge is from tertiary amines, some of which are not protonated in the physiological range 

of pH 5.1–7.4.19 Thus, N/P ratio is a function of pH and not the necessarily the same as the 
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ratio of positive charges to negative charges within the polyplexes. This pH dependence of 

the PBAE polyplexes’ charge is an important feature as it provides pH buffering capacity, 

protecting DNA in endosomes and promoting endosomal escape consistent with the proton 

sponge hypothesis, enabling successful transfection.39 

PEG-PBAE polyplexes have ePBAE blended in at different mass ratios of ePBAE to 

PEG-PBAE. Although PEG-PBAE polymer has tertiary amines along the backbone that can 

be protonated and associate with the DNA, the end-group structure of ePBAE has been 

implicated to serve important and complimentary functions. For example, different end-

groups were found to regulate specific uptake mechanisms and downstream steps leading to 

successful transfection.18,19 PEGylating polyplexes of various polymers has been shown to 

affect cellular uptake and intracellular trafficking significantly,40 often reducing cellular 

uptake and gene delivery efficacy in vitro. While residual positive charge on the surface can 

contribute to particle-cell interaction, the presence and exposure of select ePBAE in PEG-

PBAE polyplexes can promote cellular uptake via specific pathways that leads to greater 

transfection.  

457 ePBAE, which was selected from high-throughput screening of H446 SCLC cells 

to be blended into PEG-PBAE polyplexes, yielded results that were in agreement to previous 

literature, which showed high in vivo efficacy of 457 PBAE polyplexes in a subcutaneous 

H446 xenograft mice model.41 Interestingly, the PEG-PBAE polyplexes used against H446 

small cell lung cancer cells were able to kill cancer cells more than IMR-90 lung fibroblasts 

through HSV-tk/ganciclovir treatment. This cancer cell selectivity in efficacy is possibly due 

to a higher doubling rate of cancer cells than fibroblasts, since ganciclovir phosphorylated by 

HSV-tk kills cells by disrupting DNA replication in actively dividing cells.34 However, 
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another potential explanation is cancer specificity of the ePBAE polymer. Our group has 

previously shown that specific ePBAE structure (including the (3-Aminopropyl)-4-

methylpiperazine (E7) end-group) leads to increased transfection in various tumor cells in 

comparison to the healthy cells in the same tissue 3,42 including glioblastoma. This is also in 

concert with our finding that 447 ePBAE has the highest transfection efficacy amongst 

ePBAEs tested against BTIC375 and GBM1As. Intriguingly, this ePBAE polyplex cancer 

cell transfection specificity with E7 is evident in corresponding tumor and non-tumor 

primary cell samples that show the same cell doubling time and have the same percentage of 

polyplex cellular uptake.3 

 Since the current PEG-PBAE polyplexes do not have an active targeting 

functionality, further modification for cancer targeting, such as conjugation of a targeting 

ligand to the polymer and/or insertion of a cancer-specific promoter in the plasmid DNA, can 

further enhance their therapeutic efficiency in cancer therapy.43 This work demonstrates an 

important step in the design of non-viral vectors that utilize the PBAE platform. Through the 

synthesis of new PEGylated PBAE polymers and new PEG-PBAE/ePBAE formulations via 

combinatorial approach, stability was enhanced and non-specific cytotoxicity was prevented. 

Our PEG-PBAE polyplexes are anticipated to show enhanced in vivo functional efficacy due 

to two main effects: bioavailability and cellular transfection. PEGylation of PBAE 

polyplexes may enhance diffusion in the tissue, as shown through our in vivo finding, and 

pharmacokinetics in the systemic circulation. Also, a blend of best performing ePBAE in 

PEG-PBAE polyplex may also allow for cell specificity, efficient cellular uptake, and 

transfection, thereby overcoming the “PEG dilemma.” 
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2.5 Conclusion 

PBAEs are a class of cationic polymers that has been shown to transfect a wide range 

of cell types with high efficiency. In an effort to make more stable PBAE polyplexes, we 

synthesized PEG-PBAEs using thiol-ene Michael addition reaction and fabricated new 

polyplexes with blends of PEG-PBAEs and ePBAEs. After selecting the best performing 

ePBAEs through screening against cytotoxicity and transfection in small cell lung cancer 

cells (H446) and glioblastoma cells (BTIC375 and GBM1A), PEG-PBAE polyplexes of 

varying conditions, including PEG-PBAE molecular weight, mass ratios of ePBAE to PEG-

PBAE, and total polymer to DNA mass ratios, were further evaluated for nanoparticle size, 

stability, cytotoxicity and transfection efficacy. Optimal PEG-PBAE formulation maintained 

its size under 300 nm over 24 h in physiological PBS or over 5 h in artificial cerebrospinal 

fluid and transfected cancer cells at the level comparable to ePBAE formulation. When 

human lung cancer cells were transfected with HSV-tk using the optimized PEG-PBAE 

polyplex and subsequently treated with ganciclovir, 35% of the cells were killed in contrast 

to 15% cell death to healthy human lung fibroblasts (IMR-90). The present study used a 

novel method to synthesize PEG-PBAE polymer and to formulate stable polyplexes that do 

not exhibit biomaterial-based cytotoxicity, can successfully transfect cancer cells, and can 

induce their death via HSV-tk/ganciclovir prodrug gene therapy. 
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2.7 Figures & Tables 

 
 

 

 

Figure 2.1. Polymer synthesis. (A) Synthesis scheme of conventionally end-capped 

poly(β-amino ester)s (ePBAEs) and poly(ethylene glycol)-co-poly(β-amino ester)s (PEG-

PBAEs). (B) Chemical structures of monomers used. 
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Figure 2.2. Polymer molecular weight. The molecular weights of four PBAE 

backbone polymers used to PEGylate or end-cap. Ratios are molar ratios of (B) to 

(S) monomers used during polymer synthesis. Molecular weights are determined 

using 1H NMR spectrum by taking ratios of area under peaks.  
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Figure 2.3. 1H NMR spectra of PBAE polymers. (A) B4S4 1.2:1, (B) B4S4 1.05:1, (C) 

B4S4 1.2:1 end-capped with PEG5k to synthesize 5k-4k. The removal of acrylate peaks 

(shown by red circles) confirms the complete conjugation of PEG-SH molecule. 

 

(A) and (B) B4S4 

 

a: 1.2–1.35 (m, NCH2CH2CH2CH2OH) 
b: 1. 5-1.6 (m, NCH2CH2CH2CH2OH)  
c: 1.6-1.75 (t, COOCH2CH2CH2CH2OOC) 
d: 2.35-2.6 (t, NCH2CH2CH2CH2OH)  
e: DMSO solvent 
f: 2.7-2.85 (t, COOCH2CH2NCH2CH2OOC)  
g: 3.55-3.7 (t, NCH2CH2CH2CH2OH)  
h: 4.0-4.2 (t, COOCH2CH2CH2CH2OOC) 

i: 5.6-5.85 (dd, COOCCHCH2)  
j: 6.0-6.25 (dd, COOCCHCH2)  
k: 6.3-6.5 (dd, COOCCHCH2) 
 

(C) PEG-B4S4-PEG 

 

a: 1.2–1.35 (m, NCH2CH2CH2CH2OH) 
b: 1. 5-1.6 (m, NCH2CH2CH2CH2OH)  
c: 1.6-1.75 (t, COOCH2CH2CH2CH2OOC) 
d: 2.35-2.6 (t, NCH2CH2CH2CH2OH and t, COOCH2CH2SCH2CH2O)  
e: DMSO solvent 
f: 2.7-2.85 (t, COOCH2CH2SCH2CH2O and t, COOCH2CH2NCH2CH2OOC)  
g, h: 3.55-3.7 (t, NCH2CH2CH2CH2OH and s, SCH2CH2OCH2CH2OCH3)  
i: 4.0-4.2 (t, COOCH2CH2CH2CH2OOC) 
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Figure 2.4. 447 ePBAE polyplex size stability and surface charge. (A) The size of 

polyplexes formed by self-assembly of enhanced green fluorescent protein (pEGFP) DNA 

with 447 alone or in combination with PEG-PBAE at various polymer:DNA and 447:PEG-

PBAE w/w ratios. The stability of the polyplexes was tested by sizing them after a 24-h 

incubation in either sodium acetate or PBS at room temperature. #: Indicates formulation 

conditions where polyplex aggregation is occurring, leading to unreliable size 

measurements (low particle concentration by NTA or greater than a micron in size by DLS).  

(B) The zeta potential of polyplexes. Data are mean ± SD of particle population for NTA 

and mean ± SD of 3 independent measurements for DLS.  
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Figure 2.5. 457 vs. 447 ePBAE polyplex size stability. The NTA size measurement of 

polyplexes formed by self-assembly of enhanced green fluorescent protein (pEGFP) DNA 

with ePBAE 457 alone at 60 w/w or in combination with 5k-13k at 1:1 30 w/w, compared 

with polyplexes formed with ePBAE 447. The stability of the polyplexes was tested by 

sizing them after a 24-h incubation in either sodium acetate or PBS at room temperature. 

#: Indicates formulation conditions where polyplex aggregation is occurring, leading to 

unreliable size measurements (low particle concentration by NTA). 
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Figure 2.6. ePBAE and PEG-PBAE polyplex size stability in artificial cerebrospinal fluid. The size of polyplexes formed by 

self-assembly of enhanced green fluorescent protein (pEGFP) DNA with 447 alone or in combination with PEG-PBAE at various 

polymer:DNA and 447:PEG-PBAE w/w ratios. The stability of the polyplexes was tested by sizing them at 0, 2, 5, and 20 h time 

points following incubation in artificial cerebrospinal fluid. 
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Figure 2.7. ePBAE polyplex uptake, transfection, and cytotoxicity screening on H446. (A) 

Flow cytometry data showing the uptake and transfection efficacy of nine PBAE polyplexes 

in H446 cells at 4 hrs and 2 days post-transfection, respectively. The efficiency is in terms of 

percentage of live H446 cells positive for Cy3 (uptake) or EGFP (transfection). Efficacy of 

ePBAEs is compared to that of polyethylenimine (PEI) 2 w/w. Data are mean ± SD (n=4) (*** 

p < 0.001 compared to untreated). (B) Cytotoxicity of PBAE polyplexes, quantified by 

normalizing metabolic activity to untreated cells. Data are mean ± SD (n=3) (*** p < 0.001, 

** p < 0.01, * P < 0.05 compared to untreated). (C) Representative fluorescence microscope 

images (10x) of H446 cells transfected with 4 different PBAE polyplexes at 60 w/w and 

controls. Scale bar is 200 m for all panels. 
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Figure 2.8. FACS plot for H446 cellular uptake and transfection. Flow cytometry plot 

showing the uptake and transfection efficacy of 446 60 w/w PBAE polyplexes, 457 + 5k-13k 

1:1 30 w/w PEG-PBAE polyplexes, and untreated control in H446 cells. 
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Figure 2.9. PEG-PBAE polyplex uptake, transfection, and cytotoxicity screening on 

H446. (A) Flow cytometry data showing the uptake and transfection efficacy of 16 

different formulations of PEG-PBAE polyplexes in H446 cells 4 hrs and 2 days post-

transfection, respectively. The efficiency is in terms of percentage of live H446 cells 

positive for Cy3 (uptake) or EGFP (transfection). Data are mean ± SD (n=4) (*** p < 0.001, 

** p < 0.01 compared to untreated). (B) Cytotoxicity of PEG-PBAE polyplexes, quantified 

by normalizing metabolic activity to untreated cells. Data are mean ± SD (n=3) (*** p < 

0.001, ** p < 0.01, * P < 0.05 compared to untreated). (C) Representative fluorescence 

microscope images (10x) of H446 cells transfected with 6 different PEG-PBAE polyplex 

formulations. 
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Figure 2.10. Geometric mean fluorescence following PEG-PBAE polyplex transfection of 

H446. Flow cytometry data showing the uptake and transfection efficacy of 16 different 

formulations of PEG-PBAE polyplexes in H446 cells, in terms of the normalized geometric 

mean fluorescence intensity of Cy3 (uptake) or EGFP (transfection). Data are mean ± SD (n=4). 
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Figure 2.11. ePBAE polyplex transfection, and cytotoxicity screening on BTIC375. 

Cytotoxicity of (A) ePBAE and (C) PEG-PBAE polyplexes, quantified by normalizing 

metabolic activity to untreated cells. Data are mean ± SD (n=3). Flow cytometry data showing 

the transfection efficacy of (B) 30 ePBAE polyplexes and (D) 48 PEG-PBAE polyplexes in 

BTIC375 cells at 48 h post-transfection. The efficiency is in terms of percentage of BTIC375 

cells positive and geometric mean fluorescence for EGFP (transfection). Data are mean ± SD 

(n=4) (E) Representative fluorescence microscope images of BTIC375 cells transfected with 

447 ePBAE 30 w/w and PEG-PBAE (447 + 0.8k-13k 1:2 45 w/w) polyplexes (scale bar = 200 

m). 
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Figure 2.12. ePBAE polyplex transfection, and cytotoxicity screening on GBM1A. 

Cytotoxicity of (A) ePBAE and (C) PEG-PBAE polyplexes, quantified by normalizing 

metabolic activity to untreated cells. Data are mean ± SD (n=3). Flow cytometry data showing 

the transfection efficacy of (B) 15 ePBAE polyplexes and (D) 18 PEG-PBAE polyplexes in 

GBM1A cells at 48 h post-transfection. The efficiency is in terms of percentage of GBM1A 

cells positive and geometric mean fluorescence for EGFP (transfection). Data are mean ± SD 

(n=4). 

D 
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Figure 2.13. pHSV-tk and GCV-mediated H446 and IMR-90 cell killing by ePBAE and PEG-PBAE polyplexes. Percent killing 

of (A) H446 and (B) IMR-90 cells transfected with the optimized PEG-PBAE polyplex formulation (457 + 5k-13k 1:1 30 w/w) and 

PBAE polyplexes (457 60 w/w) delivering pHSV-tk, followed by two sequential ganciclovir treatments at either 10 or 20 g/mL 

dosage. Cell death is measured by MTS assay and normalized to metabolic activity of untreated cells. Data are mean ± SD (n=4) (* p 

< 0.05, *** p < 0.001 compared to pEGFP control of each group).  
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Figure 2.14. Polyplex spreading in vivo in orthotopic BTIC375 xenograft. Diffusion of 

Cy5-labeled (red) ePBAE (top, 447 30 w/w) and PEG-PBAE (bottom, 447 + 0.8k-13k 1:2 45 

w/w) polyplexes in BTIC375 tumor mass (green). Arrow: point of injection. Dotted line: 

needle track. Scale bar: 200 μm 

  

447 30 w/w 

447 + 0.8k-13k 1:2 45 w/w 
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PEG-PBAE Name 

PEG0.8k-B4S44k-PEG0.8k 0.8k-4k 

PEG0.8k-B4S413k-PEG0.8k 0.8k-13k 

PEG5k-B4S44k-PEG5k 5k-4k 

PEG5k-B4S413k-PEG5k 5k-13k 

 

 

Table 2.1. Nomenclature of different PEG-PBAE polymers. 
The PBAE used was 1-4-butanediol diacrylate-co-1,4-

aminobutanol (B4S4). 
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Polymers 
ePBAE:PEG-PBAE 

w/w 
Polymer:DNA w/w 

Converted 

PBAE:DNA w/w 

Converted 

N/P 

44713k + 0.8k - 4k 1:2 

30 24.3 29.7 

60 48.6 59.5 

90 72.9 89.2 

44713k + 0.8k - 4k 1:1 

30 25.7 31.5 

60 51.4 63.0 

90 77.1 94.5 

44713k + 0.8k - 4k 2:1 

30 27.1 33.2 

60 54.3 66.5 

90 81.4 99.7 

44713k + 0.8k - 13k 1:2 

30 27.8 33.2 

60 55.6 66.3 

90 83.4 99.5 

44713k + 0.8k - 13k 1:1 

30 28.4 33.8 

60 56.7 67.6 

90 85.1 101.4 

44713k + 0.8k - 13k 2:1 

30 28.9 34.5 

60 57.8 68.9 

90 86.7 103.4 

44713k + 5k - 4k 1:2 

30 15.7 19.2 

60 31.4 38.5 

90 47.1 57.7 

44713k + 5k - 4k 1:1 

30 19.3 23.6 

60 38.6 47.2 

90 57.9 70.9 

44713k + 5k - 4k 2:1 

30 22.9 28.0 

60 45.7 56.0 

90 68.6 84.0 

44713k + 5k - 13k 1:2 

30 21.3 25.4 

60 42.6 50.8 

90 63.9 76.2 

44713k + 5k - 13k 1:1 

30 23.5 28.0 

60 47.0 56.0 

90 70.4 84.0 

44713k + 5k - 13k 2:1 

30 25.7 30.6 

60 51.3 61.2 

90 77.0 91.8 

44713k No PEG-PBAE 

30 30 37.6 

60 60 75.2 

70 90 112.8 

 

Table 2.2. Chart for w/w to N/P conversion. (44713k = 13 kDa MW ePBAE 447) 
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Chapter 3 

 

Verteporfin-loaded poly(ethylene glycol)-poly(beta-amino ester)- 

poly(ethylene glycol) triblock micelles for cancer therapy 

 

3.1 Introduction 

2Polymeric nano-vehicles have been investigated as gene and drug delivery systems 

due to their small size and high loading capacity.1,2 Specifically, amphiphilic block 

copolymers self-assemble into nano-sized structures due to the hydrophobic effect when 

exposed to an aqueous environment. This process produces micelles with a hydrophobic core 

and hydrophilic shell. As the majority of small molecule drugs have low solubility in 

aqueous medium, there is a significant need to engineer delivery vehicles capable of 

encapsulating poorly water-soluble drugs and enabling administration of these drugs at 

physiologically relevant dosages.3 In addition, when designing a nanomedicine, it has been 

demonstrated that a hydrophilic corona, often consisting of poly(ethylene glycol) (PEG), can 

promote colloidal stability and neutralize surface charge, and consequently reduce clearance 

by the reticuloendothelial (RES) system, increase passive accumulation at neovasculature 

around a tumor, and improve diffusion through the interstitial space.4,5 

Poly(beta-amino ester)s (PBAE) compose a class of cationic biodegradable polymers, 

that due to their positive charge, have been used by researchers to form polyplexes for the 

                                                        
Parts of this chapter were completed based on research in collaboration with Shamul JG, Shah SR, Shin A, Lee 

BJ, Quinones-Hinojosa A, and Green JJ.   
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delivery of hydrophilic anionic nucleic acid cargo, but have not been well-investigated for 

the potential to carry non-genetic cargo.6,7 The capacity to synthesize libraries of PBAEs with 

distinct chemical properties through the use of monomers with differential structures has 

been an asset to explore structure/function relationships for gene delivery.6,8 PBAE 

copolymers can be further developed through the synthesis of hydrophobic PBAE blocks 

combined with hydrophilic blocks to create an amphiphilic copolymer capable of forming 

micellar structures.9 Tuning hydrophobicity of the PBAE segment of PBAE-based 

amphiphilic copolymers can affect the packing parameter thermodynamic equilibrium of the 

polymers in solution, and change the shape of the resulting micelles, such as spheres, 

filaments, and multilamellar vesicles.10 Different shapes of particles have been previously 

shown to exhibit varying pharmacokinetics and biodistribution.11 Also, one of the critical 

properties of gene delivery cationic polymers is their tertiary amines along the backbone that 

provide the pH buffering capacity to facilitate endosomal escape.12 For PBAE-based 

micelles, the many tertiary amines can enable similar endosomal escape.  In addition, the pH-

sensitive ester linkages of PBAEs can allow environmentally-triggered release as pH-

sensitive cargo release has been demonstrated in the more acidic tumor microenvironment 

with this class of materials.5  

 Verteporfin (VP) is a small molecule also known as benzoporphyrin derivative 

monoacid ring A, which belongs to the porphyrin family of photosensitizers in photodynamic 

therapy (PDT). Due to VP’s low solubility of 13.6 µg/mL in aqueous medium, liposomal VP 

formulations were developed to as a PDT agent in neovascular age-related macular 

degeneration (NVAMD) and tumor.13,14 Although Visudyne® remains the only FDA-

approved liposomal VP for PDT against NVAMD, other nanoparticle VP formulations has 
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been tested in PDT against subcutaneous cancer in vivo, such as Meth-A sarcoma and 

rhabdomyosarcoma.15,16  

 It was recently demonstrated that VP leads to inhibition of growth and proliferation of 

human retinoblastoma cells and a number of central nervous system-derived cancer cells in 

the absence of light activation.17,18 VP has been associated with down-regulation of the yes-

associated protein-transcriptional enhancer factor domain (YAP-TEAD) complex, which is 

involved in the Hippo pathway in cancer cells to induce uncontrolled proliferation, but is 

inactive in healthy tissues.18,19 This mechanism facilitates specific anti-cancer treatment of 

cancer cells without harming healthy cells.20 YAP signaling is also known to be 

hyperactivated in epithelial-derived carcinomas. As liposomal VP formulations can readily 

destabilize in the presence of blood plasma21 and can be quickly cleared by the 

reticuloendothelial system, there is a need to develop safe and effective alternative delivery 

vehicles to administer VP locally or systemically for specific treatment against cancer. 

 In this study, stable polymeric micelles encapsulating VP were formulated with a 

novel PEG-PBAE-PEG triblock copolymer and evaluated for non-photodynamic 

chemotherapy in vitro in two epithelial cancer cells, human small cell lung cancer (H446) 

and human triple-negative breast cancer (MDA-MB 231) cells. Furthermore, two different 

types of the triblock copolymers were synthesized to generate spherical and anisotropic 

micelles that showed shape-dependent differential uptake by macrophages. Anisotropic 

micelles exhibited longer blood half-life and greater tumor accumulation than spherical 

micelles in human glioblastoma (GBM1A) xenograft flank model in mice. 

 

3.2 Methods 
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Materials 

 

1,4-butanediol diacrylate (B4), octylamine (S8m), decylamine (S10m), pyrene 

(Sigma-Aldrich), 1,6-hexanediol diacrylate (B6), 1-(3-aminopropyl)-4-methylpiperazine (E7) 

(Alfa Aesar), dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), hexane, methoxy 

poly(ethylene glycol) thiol (2 kDa and 800 Da) (Laysan Bio, Inc), and Verteporfin (VP) 

(U.S. Pharmacopeial Convention, Inc.) were purchased and used as received. CellTiter 96 

AQueous One MTS assay (Promega, Fitchburg, WI) was used per manufacturer’s 

instructions.  

 

Synthesis of PEG-PBAE-PEG triblock copolymer  

 

A PBAE-based triblock amphiphilic copolymer was synthesized by a two-step 

polymer synthesis. First, 1,4-butanediol diacrylate (B4) was reacted with octylamine (S8m) 

by Michael addition reaction at molar ratio of 1.15:1 at 90oC for 72 h to yield acrylate-

terminated hydrophobic PBAE base polymer (B4S8m) as shown in Figure 3.1A/B. The 

B4S8m base polymer was subsequently precipitated in hexane twice and then dried under 

vacuum with desiccant overnight. The structure and molecular weight of the base polymer 

was confirmed using Bruker Avance III 500 MHz 1H NMR spectrometer in CDCl3. 

Following the procedure described by Kim et al., the base polymer reacted with 2 kDa 

mPEG-thiol in DMSO with trace amounts of 1-(3-aminopropyl)-4-methyl-piperazine (E7) as 

a primary amine-containing catalyst by thiol-ene Michael addition reaction at molar ratio of 

1:6:0.25 (B4S8m : PEG : catalyst) while stirring at 50°C for 24 h.22 The B4S8m triblock 
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copolymer with PEG 2 kDa, named PP1, was purified by first removing DMSO with a rotary 

evaporator and then precipitating with hexane twice. The structure of the PEG-PBAE-PEG 

triblock copolymer was confirmed using 1H NMR in CDCl3. The identical procedure was 

used for synthesis of B6S10m triblock copolymer with PEG 800 Da, named PP2. The 

partition coefficient of each copolymer was determined using ChemBioDraw software.  

 

Formulation of micelles  

 

Spherical VP-loaded micelles (sVPM) and filamentous VP-loaded micelles (fVPM) 

were prepared using nanoprecipitation method. First, PEG-PBAE-PEG triblock copolymer 

was dissolved in DMF at 20 mg/mL. Next, an equivalent volume of 1 mg/mL VP solution in 

DMSO was added to the polymer solution and vortexed. Each nanoprecipitation reaction was 

limited to 5 mg of the 10 mg/mL VP-polymer solution. 500 µL (5 mg) of the VP-polymer 

solution was added slowly using an insulin syringe into 3x volume of ultrapure water, while 

stirring at 500 rpm. Spherical blank micelle (sBM) and filamentous blank micelles (fBM) 

batches were identically synthesized excluding the presence of VP. Immediately after adding 

the solution, the reaction vial was placed in a water bath sonicator for 1 min and then placed 

back on stir plate for 4 h. The solution was then added to a 10 kDA MWCO filter (EMD 

Millipore, Burlington, MA) and spun for 15 minutes. Next, the remaining solution was added 

to a Sephadex column with Sephadex S-500 High Resolution. After spinning for 3 minutes at 

800 g, the filtrate was spun at 17,000 g for 15 min. The supernatant was collected and then 

filtered through a 0.22 µm PTFE syringe filter.  The micelle solution was lyophilized with 
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10% final sucrose solution as a cryoprotectant. Several aliquots were lyophilized without 

sucrose to measure loading and release of VP.  

 

Characterization of micelles 

  

Critical micelle concentration (CMC) of sVPM was measured by 

spectrofluorophotometry using pyrene as the indicator of micelle formation. Pyrene emission 

peaks shift depending on the polarity of the local environment. Briefly, 185.8 ng of pyrene in 

acetone was left to dry and 1.5 mL of water was added. Organic phase with a range of 

polymer concentrations in DMSO: DMF (1:1 v/v) was added to the aqueous solution as 

described above and sonicated for 1 min. Following the 4 h stirring step, excitation spectrum 

of the samples was recorded with a constant emission value of 390 nm. The intensity ratios 

of the excitation peaks at 339 and 335 nm were calculated and then plotted as a function of 

log[PEG-PBAE-PEG]. The inflection point of the fitted sigmoidal graph was determined as 

the CMC. 

 Micelle size and morphology was determined by transmission electron microscopy 

(TEM). 0.5% uranyl acetate was used as a negative stain for TEM. ImageJ was used to 

determine aspect ratio distribution of fVPM. Dynamic light scattering (DLS) with Malvern 

Zetasizer Nano ZS (Malvern Instruments, Malvern, U.K.) was used to determine initial size 

and particle stability at 0, 1, 3, 5, 12 and 31 h time points of micelle formulations. To 

determine particle stability, sVPM and sBM micelles were reconstituted with deionized water 

to reach isotonic concentration of 10% w/v sucrose and then further with four different 

mediums to reach a polymer concentration of 1 mg/mL:  1) 10% sucrose solution, 2) 1x PBS, 
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and 3) human serum plasma. Zeta potential was determined with Malvern Zetasizer by 

preparing micelle sample in 10 mM NaCl at 1 mg/mL. 

 

Loading and release kinetics of VP 

 

Dilution series of lyophilized VPM were made by dissolving in DMSO at the highest 

polymer concentration of 1.0 mg/mL. Fluorescence intensity was measured with excitation 

wavelength of 420 nm and emission wavelength of 680 nm using Synergy 2 plate reader 

(Biotek). Each concentration was tested as triplicates, and fluorescence intensity was 

translated to VP mass by using a standard curve. The DLC (drug loading content) and the 

DLE (drug loading efficiency) were then calculated according to the following formulas:  

 

DLC (%) = (mass of loaded drug / mass of polymer) x 100% 

 

DLE (%) = (final mass of loaded drug in lyophilized batch / initial mass of drug added during 

formulation) x 100% 

 

Micelles were dissolved in a mixed buffer of citric acid monohydrate and sodium 

phosphate dibasic at three different pH’s (5.0, 6.5, 7.4) at 0.1 mg/mL and 1 mL of each was 

transferred into separate scintillation vials. The vials were incubated on a shaker at 37°C. At 

time points of 1, 3, 5, and 12 h entire volume was spun down at 500k g for 20 min at 4°C to 

pellet remaining micelles. Released VP in the supernatant was stored in a separate tube for 

fluorescence measurement. Pelleted micelles were resuspended in 1mL of fresh buffer and 
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transferred to a new scintillation vial for incubation at 37°C oven until the next time point. 

The release samples (supernatant solutions) were read under plate reader (Biotek) and 

concentration of VP was calculated based on the VP standard curve.  

 

Cell culture  

 

Human triple-negative breast cancer cells MDA-MB231 and murine macrophages 

RAW 264.7 (ATCC) were grown in high-glucose Dulbecco’s modified Eagle medium 

(Invitrogen, Carlsbad, CA) with 10% FBS and 1% penicillin/streptomycin at 37°C and 5% 

CO2.  

Human small cell lung cancer cells H446 (ATCC) were grown with ATCC-modified RPMI 

1640 media (Life Technologies, Carlsbad, CA), supplemented with 10% FBS and 1% 

penicillin/streptomycin, at 37°C and 5% CO2. 

 

Cellular uptake of VPM, BM, and free VP 

 

MDA-MB 231, H446, and RAW 264.7 cells were seeded in 96 well plates at 15,000 

cells per well in 100 µL of media, and incubated for 24 h at 37°C with 5% CO2. Cells were 

then treated with free VP in 0.4% DMSO solution, sVPM and sBM in 10% sucrose solution, 

and fVPM and fBM in 1X PBS at 2-fold increasing final concentrations from 1.25 µM - 20 

µM for 1.5 h. VPM and BM were sonicated for 10 s at 20% amplitude just prior to being 

added to cells. MDA-MB 231 and H446 cells were then washed twice with heparin-

containing PBS (50 μg/mL) to remove VP adhered to cells’ surface, trypsinized, resuspended 
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with 170 μL of FACS buffer (PBS with 2% FBS), transferred to a round-bottom 96-well 

plate, centrifuged at 800 rpm for 5 min, resuspended in 30 μL FACS buffer, and analyzed by 

flow cytometry (BD Accuri C6 with HyperCyt adaptor). The same procedure was followed 

for RAW 264.7 except vigorous trituration was performed to detach cells from the plate 

rather than trypsinization. The results were analyzed by FlowJo 7.6.5 software using FSC-H 

vs. SSC-H gating for singlet cells and FL3 vs. FSC-H gating for VP-positive cells. Wells 

with more than 500 singlet events were counted in analysis. All conditions were tested in 

quadruplicates. 

 

Cell killing with VPM 

 

MDA-MB 231, H446, and RAW 264.7 cells were seeded in 96-well plates at 15,000 

cells per well and incubated for 24 h. Free VP, VPM, and BM were added to each well at 2-

fold increasing final VP concentrations from 2.5 µM – 20 μM. VPM and BM were sonicated 

for 10s at 20% amplitude just prior to being added to cells. Following 2 h incubation, cells 

were washed with 1X PBS and replenished with fresh media. Cells were observed under 

bright-field microscope for viability at 2, 6, 24, and 48 h post-treatment. At each time-point, 

cell killing was measured by CellTiter 96AqueousOne MTS assay. Cells were incubated with 

100 μL of media and cell titer reagent solution (6:1 v/v) at 37°C for 2 h, and absorbance at 

490 nm was measured using Synergy 2 plate reader. All conditions were tested in 

quadruplicates. 

 

In vivo pharmacokinetics and biodistribution 
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 Athymic nude mice 5-7 weeks of age were inoculated with 2 x 106 human 

glioblastoma (GBM1A) cells in matrigel solution in the flank. Once tumors reached 150 

mm3, they were randomized into 4 different groups (n=4 each) for blood half-life and tissue 

distribution studies. For each study, one group was injected in tail-vein with spherical 

micelles while the other group was injected with filamentous micelles. These micelles were 

formulated following the protocol above with IR-dye (Lumiprobe) encapsulated in place of 

verteporfin for fluorescence imaging, lyophilized, and reconstituted to 1.75 mg/mL of IR-dye 

prior to injection. To study pharmacokinetics, blood was collected from saphenous vein at 5, 

10, 30 min, 1, 2, 4, and 8 hr time points post injection into heparinized capillary tubes. 

Fluorescnece in capillary tubes was imaged using IVIS. To study biodistribution, whole 

animal live image was acquired using IVIS at 0, 0.5, 1, 2, 4, 8, and 24 hr post injection. Then, 

animals were sacrificed at 24 hr and organs (liver, spleen, kidneys, bladder, lungs, and heart) 

were harvested for imaging individually with IVIS. All IVIS fluorescence images were 

quantified with Living Image 3.2 software. 

 

Statistics 

 

GraphPad Prism 6 software package was used to perform statistical analysis. One-

way ANOVA with Dunnett post-hoc test was performed to compare multiple conditions 

against the control group, Tukey post-hoc test to compare all pairs, or Student’s t-test to 

compare two conditions. (* = p < 0.05) 
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3.3 Results  

Synthesis and characterization of PBAE and PEG-PBAE-PEG triblock copolymer  

  

Both hydrophobic PBAE backbone polymers, B4S8m and B6S10m, were synthesized 

with a 1.15:1 ratio of diacrylate to alkylamine monomer. Resulting molecular weights of 

each PBAE polymer were 5100 and 4300 Da for B4S8m and B6S10m, respectively, as 

determined by 1H NMR (Figure 3.2A-C). The partition coefficients determined from the 

chemical structure of B4S8m and B6S10m matched the predicted hydrophobicity of both 

polymers (Figure 3.2C). B4S8m and B6S10m were then endcapped with 2000 Da and 800 

Da mPEG-thiol to create PP1 and PP2 triblock copolymers, respectively (Figure 3.1C). PP2 

exhibits greater hydrophobic proportion in the amphiphilic polymer chain in comparison to 

PP1. The thiol-ene Michael addition of PEG to both ends of PBAE was confirmed using 1H 

NMR by the disappearance of the peaks from the acrylates (Figure 3.2A/B).  

 

Formulation and characterization of micelles  

 

 To measure the critical micelle concentration (CMC), pyrene was loaded into the 

micelles at increasing concentrations of PP1 polymer, while keeping the organic solvent to 

water ratio and the final volume constant. The log of the polymer concentration is plotted 

against the ratio of the intensity values at two wavelengths. In Figure 3.3A, the resulting 

sigmoidal plot of log[PP1] vs. I339/I336,  has an inflection point at an exact concentration of 

0.056 mg/mL. The increase in the intensity ratio as polymer concentration is increased 

corresponds to the shift of pyrene excitation peak. This demonstrates micelle formation and 
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pyrene encapsulation. To further corroborate micelle formation and to confirm the 

morphology, resulting micelle structures pre- and post- lyophilization were visualized under 

TEM (Figure 3.3B). Micelles were spherical in shape, and there was no significant 

difference in shape or size between loaded micelles with VP (sVPM) and unloaded micelles 

(sBM), and between pre-lyophilized and post-lyophilized samples. 

The size, polydispersity index (PDI), and zeta potential of micelles were measured 

with DLS. In order to be an effective vehicle for VP delivery via passive targeting, the size of 

our micelles should be below 200 nm to enter into the small pores on tumor tissue.23 Before 

lyophilization and after filtration and removal of unloaded VP, spherical micelles sVPM and 

sBM were both sized at 50 nm in water (Figure 3.3C), which is similar to the size visualized 

under TEM.  sVPM showed a lower PDI and standard deviation between multiple batch 

measurements, which can possibly be explained by more stable micellar structure with the 

presence of VP which increases the hydrophobic force the micelle formation. The surface 

charge of sVPM and sBM in 10 mM NaCl were approximately neutral at -3 ± 4 mV and 3 ± 

5 mV, respectively, demonstrating that the PEG is effective at shielding the particle (Figure 

3.3D).  

 Particle stability was determined by time-course DLS size measurement of 

lyophilized micelles that are reconstituted in different medium (Figure 3.3E). sVPM showed 

excellent size stability in 55:45 v/v human serum:1x PBS over 31 hr, with no aggregation 

occurring over time. The control solution of human serum and PBS solution contained 

particulates with a size of approximately 50 nm, which likely represents the various serum 

protein aggregates and extracellular vesicles present in the serum. In 1x PBS, sVPM was 

approximately stable at a moderately larger size of 160 nm.  Both blank sBM samples were 
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initially smaller than their respective loaded samples, which is attributed to particle size 

needing to be larger to accommodate the VP cargo. While particle size is stable with time for 

sVPM samples in human serum and PBS, size increased over time for the empty sBPM 

particles, which signifies that the VP helped to improve the stability and minimize the 

aggregation of sVPM over time, likely due to the interactions between the hydrophobic VP in 

the hydrophobic core of the sVPMs. The amount of VP molecule encapsulated in VPM was 

measured by dissolving VPM with DMSO to release the VP and measuring the intrinsic 

fluorescence of VP molecule. Loading capacity is the amount of VP loaded per mass of 

particles, while loading efficiency is the amount of VP loaded per starting mass of VP. The 

loading capacity and efficiency of sVPM were 5.36% and 43.7%, respectively.  

 

pH-sensitive release of VP from sVPM 

 

 PBAE-based polymers consist of tertiary amines along the backbone, enabling pH 

buffering at acidic conditions.24 The release kinetics of VP from sVPM at pH 7.4, 6.5, and 

5.0 at 37 °C in citrate-phosphate buffer was evaluated to simulate the intravenous, tumoral, 

and lysosomal environments, respectively. The release plot in Figure 3.4 shows that pH 5.0 

has the fastest release rate, 6.5 the slowest, and 7.4 has intermediate release. All three pH 

conditions followed similar kinetic trends, only varying in the absolute mass of VP released. 

Interestingly, the micelles showed the least total release of VP at pH 6.5 and an intermediate 

release at pH 7.4.  

 

Filamentous micelle characterization and shape dependence of macrophage uptake  
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We next investigated micelle shape as a parameter by tuning the hydrophobicity of 

the amphiphilic triblock copolymer to create high-aspect ratio anisotropic micelles. The 

morphology of VP-loaded micelles formulated with PP2 was determined with TEM (Figure 

3.5A). Analysis using ImageJ confirmed that the filamentous VP-loaded micelles (fVPM) 

had an average length of 651 nm, width of 31 nm, and resulting average aspect ratio (AR) of 

20±10 (Figure 3.5B). The size of lyophilized fVPM determined using DLS was 69 nm with 

greater PDI than sVPM (Figure 3.5C). This is expected because DLS estimates the 

hydrodynamic diameter assuming that the sample being measured is spherical so filamentous 

micelles with variation to aspect ratio would be instead detected as spheres of varying sizes. 

There was no difference in particle size following lyophilization and re-suspension (Figure 

3.5C). 

 After this filamentous morphology was confirmed, the cellular uptake to RAW 264.7 

macrophages was compared between sVPM and fVPM to evaluate the potential advantage of 

anisotropic PEG-PBAE-PEG micelles at reducing non-specific uptake, which could be useful 

to better evade the immune system. As shown in Figure 3.5D, fVPM treatment resulted in a 

significantly lower percentage of macrophages that internalized the fVPM compared with 

sVPM at equivalent VP concentrations evaluated. Similarly, the normalized geometric mean 

values for internalized VP using fVPM as the vehicle were 15 – 20% of that for sVPM at all 

concentrations evaluated, demonstrating that there is significantly less VP uptake per cell in 

fVPM-treated cells (Figure 3.5D). Interestingly, as the concentration of VP decreased from 

0.08 to 0.04 µM, the uptake percentage for fVPM shows a sharp decrease from 55% to 6% in 
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comparison to little decrease for sVPM. There was no cytotoxicity of macrophages resulting 

from delivered VP at the concentrations tested by either type of particle (Figure 3.6). 

 

Cellular uptake by MDA-MB 231 and H446 cells  

 

 In order to investigate the level of internalized VP in MDA-MB 231 triple-negative 

human breast cancer cells and H446 human small cell lung cancer cells, the cellular uptake 

was measured by incubating the cells with equivalent concentrations of VP in the forms of 

free VP drug, sVPM, and fVPM for 1.5 hr. Figure 3.7A/C shows that there was near 100% 

cellular uptake for free VP, and sVPM in both cancer cells. At the concentrations tested, 

fVPM showed a slight decrease in the cellular uptake percentage. However, on a per cell 

basis, a much greater decrease in cellular uptake of fVPM occurred compared to free VP and 

sVPM in MDA-MB 231 cells as demonstrated by the normalized geometric mean 

fluorescence, which measures the level of VP uptake on a per cell basis in relative 

fluorescence units (RFU), (Figure 3.7B). This is in concert with the observation with 

macrophages. In the H446 cells, there is a similar significant decrease for fVPM as compared 

to sVPM and free VP in cellular uptake measured by geometric mean fluorescence, and also 

there is higher per cell uptake as compared to MDA-MB 231 for all VP formulations in 

general. This may be explained by differential cellular uptake pathways as well as varying 

degree of exocytosis between different cells.25 The difference in cellular uptake is in part 

demonstrated by the difference in the level of total signal between the two cell types, as 

indicated by the scale on y-axes (Figure 3.7B/D).  
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VP-induced death of MDA-MB-231 and H446 cells 

 

 To determine cancer cell death induced by VP-loaded micelles, both cancer cells 

were incubated with free VP, sVPM and fVPM for 2 hr, and cell viability was measured at 2, 

6, 24, and 48 hr post treatment. For MDA-MB 231 cells, free VP and sVPM showed similar 

cell killing of approximately 85% and 40% at 20 µM and 10 µM VP concentrations at 48 hr, 

respectively, which corresponds to similar cellular uptake level (Figure 3.8A / 3.9A). This 

suggests that once endocytosed, free VP and sVPM have similar efficiencies of VP 

ultimately reaching the nucleus. For fVPM, as expected from the lowest cellular uptake, cell 

killing was either equivalent to or was the the lowest of the formulations at all VP 

concentrations and time points tested, with 20 µM VP concentration measured at 48 hr 

showing the maximum cell killing of fVPM at 44% of MDA-MB 231 cells. All negative 

controls, including 0.4% DMSO 99.6% PBS solution for free VP vehicle and blank micelles 

(sBM and fBM), did not show any toxicity, demonstrating the therapeutic effect is from the 

VP drug payload (Figure 3.9).   

 For H446 cells, there was an overall greater sensitivity towards VP as compared with 

MDA-MB 231 cells, which follows the cellular uptake findings (Figure 7D). All three VP 

treatments fully killed the human small cell lung cancer cells at the two highest 

concentrations of 10 µM and 20 µM at the 24 and 48 time points (Figure 3.8C / 3.9A). Cell 

killing by sVPM was very effective at even lower concentrations, showing 100% and 69% 

cell death at 5 and 2.5 µM, respectively. These efficiencies are significantly greater than both 

free VP and fVPM. sVPM may therefore improve the transport of VP intracellularly to the 

nucleus compared to free VP. For fVPM, its low cellular uptake can also lead to lower cell 
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killing efficiency compared with sVPM. It is important to also note the difference in cell 

death kinetics between MDA-MB 231 and H446 cells (Figure 3.8B/D), which can be due to 

a combination of downstream steps following cellular uptake and perhaps greater drug 

resistance to VP by the human triple negative breast cancer cells compared to the human 

small cell lung cancer cells, or different level of YAP activity between the two cell types. 

This observation highlights that the same drug and delivery vehicle may require different 

optimization across different tumors to be most effective. 

 

In vivo pharmacokinetics and biodistribution 

 

Based on the efficient cancer cell killing and shape-dependent macrophage uptake of 

the micelles in vitro, we compared in vivo blood half-life and biodistribution between 

spherical and filamentous micelles in tumor-bearing mice. Micelles loaded with a near-

infrared dye were injected through tail-vein in nude mice with human glioblastoma implanted 

in the flank, and the fluorescence signal was monitored in the blood and in various organs 

over time through imaging. Figure 3.10A shows the IR fluorescence signal in blood 

collected at different time points, with exponential decay curves fitted to calculate the half-

life. As expected, filamentous micelles showed approximately five-fold increase in the half-

life of systemic circulation time, potentially by evading reticuloendothelial system-mediated 

clearance. Moreover, there was a corresponding two-fold increase in the tumor accumulation 

of 7.4% for the filamentous micelles in comparison to spherical micelles (Figure 3.10B/C). 

This can be partially explained through enhanced passive targeting to the tumor 

microenvironment from prolonged blood circulation. 
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3.4 Discussion 

While polymeric drug delivery systems can provide clear advantages and 

opportunities for cancer therapy, there is a need to safely optimize these systems with 

biodegradable materials to minimize delivery to off-target cells and tissues while maximizing 

delivery to cancer cells.26 We wished to i) evaluate a new putative anti-cancer drug, 

verteporfin, for efficacy to human triple negative breast cancer cells and human small cell 

lung cancer cells; ii) evaluate a new biodegradable micelle system for drug delivery based on 

poly(ethylene glycol)-poly(beta-amino ester)- poly(ethylene glycol) triblock copolymers; and 

iii) explore the role of shape of PEG-PBAE-PEG micelles in varying cellular uptake and drug 

delivery. Our proof-of-concept spherical drug delivery system was further optimized by 

inducing a high aspect ratio morphological shift through chemical modifications to the 

triblock copolymer backbone. Our group has shown that hard polymeric particles can be 

produced via a “top-down” stretching platform after synthesis, however chemical tuning of 

soft nanoparticles via a “bottom-up” approach does not require post-synthesis steps and can 

also confer greater scalability and manufacturability for this nanomedicine system.27  

 Two new PEG-PBAE-PEG triblock copolymers were synthesized, each with a 

varying number of carbons in the diacrylate monomer and the primary amine monomer, and 

a different PEG molecular weight. This chemical tuning shifts the packing parameter value, 

which can be used to predict the shape of the resulting self-assembled micelles11. This 

parameter value is defined by the effective hydrocarbon volume of the polymer chain V, 

divided by the product of the area of the hydrophilic headgroup α0 and the fully extended 

chain length lc.
10 PP2 consists of longer hydrocarbon chain monomers for the PBAE 
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backbone as well as smaller molecular weight PEG at both ends, leading to increased 

packing parameter and more anisotropic structures. This prediction corroborates the observed 

morphological shift with the PEG-PBAE-PEG micelles. 

 Interestingly, the novel PEG-PBAE-PEG micelles show biphasic release trends with 

varying pH. This is consistent with a previous finding from Zhang et al. that a VP-analog 

molecule has shown to dimerize at pH 6.5, which could affect the drug release from the 

micelles.28 Also, it has been shown previously that PBAE nanoparticles can release more 

slowly at weakly acidic conditions.29 Non-protonated amines in the backbone of PBAEs at 

pH 7.4 can act as weak bases, sequestering protons from water molecules, leaving free 

hydroxyl groups to act as nucleophiles and degrade ester bonds, and releasing the cargo 

faster than at weakly acidic pH. However, tertiary amines along the backbone of PBAE 

become protonated at pH 5 to allow disintegration of micelles and release of VP. This 

balance between VP dimerization, base-catalyzed hydrolysis, and micelle disassembly cause 

the pH-sensitive release kinetics. The slower release of VP at pH 6.5 compared to 7.4 and the 

fastest release at pH 5.0 have an advantage with intracellular VP delivery to cancer cells. The 

tumor microenvironment can have a pH range from 6.5-7.2, therefore it can be favorable for 

an intracellular drug, such as VP, to be released less in the extracellular space. Intracellularly 

following endocytosis as the pH is reduced below 6.5 in the endosomes/lysosomes, VP can 

be released following demicellization to target the nucleus.     

The cellular uptake of spherical and filamentous micelles by macrophages shows that 

at moderate doses, fVPM cellular uptake by macrophages is a bottleneck that is sensitive to 

fVPM concentration whereas for sVPM it is not a bottleneck and cellular uptake to 

macrophages is high even at reduced dosages. This difference is likely due to the high aspect 
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ratio filamentous structures limiting the number of nanoparticles entering macrophages, via 

physically resisting macrophage engulfment.30  

For cellular uptake by cancer cells, there is a significantly higher amount of sVPM 

entering cancer cells than fVPM as expected from the morphology-dependent cellular uptake 

effect, according to the normalized geometric mean fluorescence of cellular uptake. This 

observation translates into greater cell killing efficacy by sVPM compared with fVPM at 

several concentrations. Therefore, at the cellular level, spherical shape of VP-loaded micelles 

is shown to be more advantageous than filamentous shape. However, the capability of fVPM 

to avoid macrophage uptake is an advantageous feature at the systemic level, as shown by 

prolonged circulation and greater accumulation of the drug at the tumor site. This can 

improve anti-cancer efficacy as well as reduce off-target effects in macrophages and other 

phagocytic cells. Since we were able to tune the triblock copolymer chemistry to observe a 

morphological shift from spherical micelles to filamentous micelles, a similar approach could 

be used to fabricate PEG-PBAE-PEG micelles with alternative aspect ratios and cargos 

depending on the application. We found dramatic efficacy of VP in killing human triple 

negative breast cancer cells and human small cell lung cancer cells without the need of a 

photodynamic trigger.  This non-photodynamic approach to using VP therapeutically could 

obviate the many of the detrimental side effects of using a photodynamic therapy, such as 

skin photosensitivity or systemic toxicity.31 Moreover, VP acts on the Hippo pathway of 

tumor cells, hence would have minimal toxicity against normal cells. Alternatively, PEG-

PBAE-PEG micelles for the delivery of VP could open up the possibility of combination 

therapies where the micelles could preferentially accumulate in the tumor compared to 

standard VP due to their shape properties and then a photodynamic trigger could further 
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potentiate their efficacy.  This work represents an important advancement in the design of 

anisotropic pH-sensitive PBAE delivery systems and the utility of VP as a chemotherapeutic 

agent. 

 

3.5 Conclusion 

 PBAE polymers are excellent candidates for polymeric drug delivery systems due to 

their intrinsic biodegradability and pH-sensitivity, but their use for non-nucleic acid delivery 

has been limited. Through novel PBAE polymer design and modification, we synthesized a 

PEG-PBAE-PEG micellar system of two different morphologies capable of encapsulating 

and delivering a water-insoluble, newly emerging anti-cancer therapeutic drug, verteporfin. 

The spherical micelles displayed excellent stability in both human serum and PBS buffers, 

with size measuring sub-150 nm. The creation of PBAE-based filamentous micelles with an 

average aspect ratio of 20 enabled avoidance of off-target macrophage uptake. Filamentous 

micelles were able to persist in systemic circulation longer and localize at flank glioblastoma 

tumor in comparison to spherical micelles in vivo. When treated to both human triple 

negative breast cancer cells and human small cell lung cancer cells in vitro, the micelles 

showed a larger therapeutic range when compared with free VP, being more effective at 

lower concentrations. This work demonstrates the first anisotropic PBAE-based self-

assembled drug delivery system, and in addition, one of the first validations of VP 

nanomedicine as a direct anti-cancer approach without the need of external photodynamic 

therapy. 
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3.7 Figures & Tables 

 

 

 
 
Figure 3.1. Schematic diagram of polymer synthesis. (A) Two-step Michael addition 

reaction for PEG-PBAE-PEG synthesis, (B) chemical structures of diacrylate and primary 

amine monomers used in the synthesis, and (C) nomenclature of final polymers.  
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B4S8m:  

0.85-1.00 (o, 3H, t, NCH2CH2CH2CH2CH2CH2CH2CH3) 

1.2-1.35 (j/k/l/m/n, 10H, br, NCH2CH2CH2CH2CH2CH2CH2CH3),  

1.35-1.45 (I, 2H, br, NCH2CH2CH2CH2CH2CH2CH2CH3),  

1.65-1.8 (e, 4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)), 

2.3-2.4 (f/h, 6H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and 

NCH2CH2CH2CH2CH2OH),  
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2.6-2.7 (g, 4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)),  

3.9-4.05 (d, 4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)),  

5.9-6 (b, 1H, d, COOCH=CH2),  

6.1-6.2 (c, 1H, dd, COOCH=CH2),  

6.3-6.4 (a, 1H, d, COOCH=CH2) 

  

B6S10m:  

0.85-1.00 (r, 3H, t, NCH2CH2CH2CH2CH2CH2CH2CH2CH2CH3) 

1.2-1.35 (k/l/m/n/o/p/q, 14H, br, NCH2CH2CH2CH2CH2CH2CH2CH2CH2CH3),  

1.35-1.45 (j/f, 6H, br, NCH2CH2CH2CH2CH2CH2CH2CH2CH2CH3 and 

CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)),  

1.65-1.8 (e, 4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)), 

2.3-2.4 (g/I, 6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and 

NCH2CH2CH2CH2CH2OH),  

2.6-2.7 (h, 4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)),  

3.9-4.05 (d, 4H, br t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)),  

5.9-6 (b, 1H, d, COOCH=CH2),  

6.1-6.2 (c, 1H, dd, COOCH=CH2),  

6.3-6.4 (a, 1H, d, COOCH=CH2) 
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Figure 3.2. Polymer characterization. 1H NMR spectra for the backbone PBAE (top) and 

the PEG-thiol endcapped PBAE (bottom) for (A) PP1 and (B) PP2 polymers. The absence of 

the acrylate peaks (red box) in the copolymer plot confirms that methoxy-PEG-thiol has 

successfully conjugated to the diacrylate ends of the PBAE base polymer. (C) Polymer 

structure of B4S8m and B6S10m PBAE base polymers with letters to indicate corresponding 

hydrogen peaks in NMR spectra. (D) Molecular weight and partition coefficient of two base 

PBAE polymers used to synthesize PEGylated triblock copolymer. 
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Figure 3.3. Spherical PP1 micelle characterization. (A) Critical micelle concentration 

(CMC) measured by pyrene sensitivity assay, (B) TEM images of both sBM and sVPM pre- 

and post-lyophilization (scale bar = 100 nm), (C) DLS mean size and PDI of both (sBM) and 

(sVPM) (n=3, mean ± SD, Student’s t-test), (D) zeta potential of sBM and sVPM measured 

with Zetasizer, and (E) stability of sBM and sVPM in 1x PBS and human serum (45% serum, 

55% 1X PBS) at room temperature for 31 hours (n=3, mean ± SD, One-way ANOVA with 

Dunnett post-hoc test compared to the initial size).  
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Figure 3.4. pH-sensitive VP release kinetics. Release of VP from sVPM at 37oC  at 1, 3, 5, 

and 12 hour time points in buffers prepared to pH 7.4, 6.5, and 5.0 (n=3, mean ± SD). 
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Figure 3.5. Filamentous PP2 micelle (fVPM) characterization. (A) TEM image (scale bar 

= 100 nm), (B) aspect ratio (AR) distribution of fVPM post-lyophilization reconstituted in 

water, (C) DLS mean size and PDI of fVPM following reconstitution with 1x PBS (n=3, 

mean ± SD), and (D) sVPM and fVPM uptake efficiency in RAW 264.7 cells and geometric 

mean of uptake normalized to untreated cells measured by flow cytometry after treatment for 

1 hr at equivalent VP concentrations (n=4, mean ± SD, One-way ANOVA with Bonferroni 

post-hoc test).   
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Figure 3.6. RAW 264.7 cell viability. Metabolic activity measured by MTS assay of 

macrophages 24 h post-treatment with free VP, sVPM, and fVPM at concentrations ranging 

from 0.01 – 0.08 μM (n=4, mean ± SD, One-way ANOVA with Tukey post-hoc test). 
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Figure 3.7. Cancer cell uptake. (A/C) Percentage of cells that internalize VP in human 

triple-negative breast cancer (MDA-MB 231) and human small cell lung cancer (H446) cells 

incubated with free VP, sVPM, and fVPM at equivalent VP concentrations from 2.5-20 µM 

for 1.5 hr and (B/D) the corresponding geometric mean fluorescence of cellular uptake 

normalized to the untreated condition (RFU) (n=4, mean ± SD, One-way ANOVA with 

Tukey post-hoc test). 
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Figure 3.8. VP-induced cell death. (A/C) VP delivery dose-response to cell viability in 

MDA-MB 231 and H446 cells incubated with free VP, sVPM, and fVPM at equivalent VP 

concentrations from 2.5- 20 µM for 2 hrs and measured over time, and (B/D) cell killing 

kinetics measured at 2, 6, 24, and 48 hr time points at stated VP concentrations (n=4, mean ± 

SD, One-way ANOVA with Tukey post-hoc test). 
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Figure 3.9. VP-induced cell death. (A) Cell 

killing kinetics with free VP, sVPM, and fVPM 

measured at 2, 6, 24, and 48 hr time points at 

equivalent VP concentrations from 2.5 - 20 µM 

(n=4, mean ± SD, One-way ANOVA with Tukey 

post-hoc test), (B) statistical analysis summary, 

and (C) representative bright-field image of 

MDA-MB 231 and H446 cells at stated VP 

concentration at 24 hr. 
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Figure 3.10. Pharmacokinetics and biodistribution of spherical and filamentous 

micelles. IRD-loaded micelles are injected via tail-vein into nude mice bearing human 

glioblastoma in the flank. (A) Fluorescence signal from IRD-loaded micelles in blood 

collected at different time points normalized to time = 0 min. Exponential decay function is 

fitted to calculate the half-life. (B) Fluorescence signal from different organs harvested at 8 

hr and 24 hr time points, normalized to the total fluorescence from all organs (n=4, mean ± 

SD, two-tailed Student t-test for tumor comparison). 
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Chapter 4 

 

High-throughput in vivo screening of biomaterial-mediated tissue 

targeting of PBAE nanoparticles using DNA barcodes 

 

4.1 Introduction 

 3Gene therapy as a modality to treat disorders with genetic origin has gained much 

research and clinical attention. Replacing or eliminating genetic defects with exogenous 

DNA or RNAi, respectively, has the advantage of potentially curing diseases and not just 

treating symptoms.1,2 More recently, using genetic engineering to reprogram cells ex vivo for 

applications in cell therapy has shown some success, such as the recent FDA approval for 

CAR T-cell therapy.3 However, there remains the need for improvement in the design of a 

safe and effective vector that can deliver the nucleic acids to the target site. While modified 

viruses are widely investigated for their high transduction efficiency, their safety concerns 

and design limitations have triggered parallel effort to engineering biocompatible synthetic 

polymers as gene delivery vectors.4-6 

 Poly(beta-amino ester) (PBAE) is a class of biodegradable polymer that becomes 

positively charged at low pH and complexes with negatively charged nucleic acids to form 

nanoparticles.7 PBAE nanoparticles have been shown to effectively transfect multiple types 

of cells, including stem cells and various cancer cells.8-11 An important property that 

                                                        
Parts of this chapter were completed based on research in collaboration with Vaughan H, Zamboni CG, Wilson 

DR, Shin A, and Green JJ.   
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strengthens the utility of PBAEs as gene delivery vectors is their tunability of chemical 

structure via synthesis design, which can lead to a library of polymers with differential 

structures.12 Our group has also shown previously that individual PBAEs or group of PBAEs 

with similar structures can have specific structure-function relationships that can improve 

aspects of intracellular delivery such as the cellular uptake, endosomal escape, transfection, 

and cell-type specificity.11,13-15 

 This chapter expands on PBAE’s structure-function relationships beyond the cellular 

level to systemic circulation and tissue targeting. Nanoparticle optimization for passive and 

active targeting modalities based on particle size and specific ligand-receptor binding, 

respectively, has been an active area of research, but less attention has been given to a 

biomaterial’s potential inherent property to control tissue targeting.16 Previous literature has 

shown that different forms (linear or branched) and molecular weights of polyethylenimine 

(PEI) can result in differential tissue targeting.17 Another group used a layer-by-layer 

technique to expose different biomaterials on the surface to also show unique biodistribution 

of each nanoparticle type.18 Here, we demonstrate that specific structures of PBAEs can 

determine the final destination of the resulting nanoparticles in an organism once injected 

into the blood stream. Such an in vivo biodistribution study with many possible variant 

structures of the PBAE polymer could quickly become cost- and time-ineffective, as well as 

prone to variability between animals. Hence, we also validate a novel high-throughput 

method using circular plasmid DNA as a barcode to investigate biomaterial-mediated tissue 

targeting and subsequent transfection from a library of PBAE polymers.  

 

4.2 Methods 
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Materials 

 

 1,4-butanediol diacrylate (B4), 4-amino-1-pentanol (S4), 5-amino-1-pentanol (S5), 1-

(3-aminopropyl)-4-methylpiperazine (E7) (Alfa Aesar), 1,5-pentanediol diacrylate (B5) 

(Monomer Polymer & Dajac Labs), 2-methylpentane-1,5-diamine (E4) (TCI America), and 

2-(3-aminopropylamino)ethanol (E6) (Fluka) were purchased and used as received. pEGFP-

N1 DNA was purchased from Elim Biopharmaceuticals and amplified by Aldevron, Fargo, 

ND. Purelink Genomic DNA Extraction kit (Thermo Fisher Scientific), PowerUp SYBR 

Green Master Mix (Applied Biosystems, Foster City, CA), Label IT®-Tracker™ Cy™3 and 

Cy™5 kit (Mirus Bio LLC, Madison, WI) were obtained from commercial vendors and used 

per manufacturer’s instructions. 

 

Polymer synthesis and characterization 

 

 Linear PBAE polymer is synthesized via a two-step Michael addition reaction as 

shown in Figure 4.1. First, acrylate-terminated base polymer is created by reacting a 

diacrylate monomer with a primary amine-containing side chain monomer at a stoichiometric 

molar ratio of 1.2:1 for 24 h at 90oC. Then, the base polymer is reacted with 20-fold excess 

molar amount of primary amine-containing end-capping molecule in THF for 3 h at room 

temperature. The final polymer was ether-precipitated and stored in DMSO at 100 mg/mL in 

-20oC. A total of 9 PBAE polymers were synthesized using 2 different diacrylate monomers, 

1,4-butanediol-diacrylate (B4) and 1,5-pentanediol-diacrylate (B5), 3 side chain monomers, 

3-amino-1-propanol (S3), 4-amino-1-butanol (S4), and 5-amino-1-pentanol (S5), and 3 end-
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capping molecules. Nomenclature for the final polymer follows the label of each monomer 

used. For example, a polymer synthesized with B4, S5, and E7 is named B4S5E7 or 457 in 

short. The molecular weights of three base polymers were determined with Bruker Avance 

III 500 MHz 1H NMR spectrometer and Bruker TopSpin software by analyzing the AUC 

ratio between hydrogen peaks in repeating and non-repeating unit (Table 1).  

 

 Nanoparticle formulation and characterization 

 

 Nanoparticles were formed by bulk mixing of PBAE polymer and plasmid DNA to 

allow electrostatic interaction. PBAE polymer in DMSO at 100 mg/mL and plasmid DNA in 

water at 1 mg/mL were diluted to 15 mg/mL and 0.5 mg/mL, respectively, using 25 mM 

sodium acetate (NaAc) buffer at pH 5.0. Equal volume of polymer and DNA solutions were 

mixed and incubated for 10 min to form nanoparticles. This ensures the mass ratio of 

polymer to DNA to be consistent at 30 w/w across different nanoparticles. 

 Hydrodynamic diameter and zeta potential were measured by dynamic light scattering 

using Zetasizer Nano ZS (Malvern Instruments, detection angle 173°, 633 nm laser). 

Nanoparticles were diluted to polymer concentration of 1 mg/mL with 25 mM NaAc 

buffer to a final volume of 100 μL and 750 μL prior to size and surface charge 

measurements, respectively. The mean and standard deviation were calculated. 

 

Plasmid preparation 
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 A total of five plasmids were used, three encoding for fluorescent proteins and two 

encoding random nucleotide sequences. In order to ensure that all plasmids were similar in 

size and had the same backbone, pEGFP-N1 was used as the base plasmid and genes 

encoding other fluorescent proteins, mOrange and iRFP, or two random sequences were 

cloned in to replace EGFP gene.  

 For two plasmids with random sequences, two random 1500–b.p. sequences were 

first generated using an online software with 25% fraction each of A, C, G, and T nucleotides 

(URL - http://users-birc.au.dk/biopv/php/fabox/random_sequence_generator.php). The 

double-stranded linear DNAs were custom ordered using gBlock Gene Fragments (IDT, Inc, 

Skokie, IL). All plasmids were stored at 1 mg/mL in sterile water at 4oC. 

 

Primer optimization 

 

 In order to generate forward and reverse primers specific to each plasmid DNA and 

avoid non-specific amplification of other plasmids or murine genomic DNA, Basic Local 

Alignment Search Tool (BLAST) from National Institute of Health’s National Center for 

Biotechnology Information was used to extensively check for homology. First, Primer-

BLAST was used to generate 50 primer candidates for each plasmid that match the 

conditions listed in Figure 4.2A. Then, the primer candidates for each plasmid were used as 

query sequence in BLASTn to check for homology against other plasmids as well as mouse 

genome. Primer candidates that showed undesired homology (matching sequence) in the last 

6 base pairs or in more than 10 base pairs total were excluded (Figure 4.2B). Lastly, the top-

scoring candidate for each plasmid was checked for hairpin, self-dimerization and hetero-

http://users-birc.au.dk/biopv/php/fabox/random_sequence_generator.php
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dimerization using IDT OligoAnalyzer 3.1. The final primer sequences were custom ordered 

(IDT, Inc, Skokie, IL), and stored as 3 μM aliquots in -20oC. 

 Primer sequences were experimentally checked for their specificity toward the 

corresponding plasmids by quantitative real time polymerase chain reaction (qRT-PCR) and 

gel electrophoresis. Briefly, 100 ng of each plasmid was amplified against each of the five 

primer pairs to determine CT values and generate the melt curve. 2 μL of plasmid DNA, 2 μL 

of 3 μM forward primer, 2 μL of 3 μM reverse primer, and 14 μL of PowerUp SYBR Green 

Master Mix solutions were mixed for qRT-PCR amplification. PCR reaction consisted of 

initial polymerase activation stage at 95oC for 2 min, followed by 40 cycles of denaturation at 

95oC for 15 sec, annealing at 55oC for 15 sec, and elongation at 72oC for 1 min. After PCR 

amplification, the 25 amplified products along with DNA ladder were also run through gel 

electrophoresis in 1% agarose gel.   

 

Föster resonance energy transfer (FRET) between Cy3- and Cy5-labeled nanoparticles 

 

 Förster resonance energy transfer (FRET) analysis was conducted to investigate any 

intermixing between different nanoparticles co-dispersed in a single solution. One batch of 

nanoparticles was formulated using PBAE polymer 447 with Cy3-labeled pDNA, and 

another batch was formulated using a different PBAE polymer 457 with Cy5-labeled pDNA. 

The two nanoparticle batches were incubated together with gentle pipette mixing, and the 

emission spectrum was read with Cy3 excitation wavelength (550 nm) to measure peak Cy3 

(570 nm) and Cy5 (670 nm) emission intensities using spectrofluorophotometry (Shimadzu 
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RF-5301). A mixed plasmid positive control batch of nanoparticles was formulated by 

complexing PBAE polymer 447 with a 1:1 mixture of Cy3-labeled and Cy5-labeled DNAs. 

 

Generating standard curves of the amount of plasmid vs. CT values for each organ 

 

 Standard curves were generated to be able to determine the absolute amount of 

plasmid present in PCR samples based on CT values from the amplification plot. The plot of 

overall workflow is shown in Figure 4.3. 5-7 week old female balb/c mouse was euthanized 

and major organs – liver, kidneys, spleen, lungs, heart, bladder – were harvested. Organs 

were washed with 1X PBS three times, cut into small pieces with a razor blade, and minced 

between the frosted ends of two microscope slides. Then, 10 mg of liver sample and 5 mg of 

samples from all other organs were separately placed into eppendorf tubes. Tissues were 

digested using digestion solution provided in the Purelink Genomic DNA Extraction kit. 

Following the digestion and prior to the subsequent steps instructed in the manual, 10X 

dilutions of each plasmid DNA, from 100 ng to 100 pg, were spiked into digested tissue. 

Once DNA was purified through the extraction column, it was diluted with water 10-fold for 

liver samples and 2-fold for all other organ samples. 2 μL of extracted DNA, 2 μL of 3 μM 

forward primer, 2 μL of 3 μM reverse primer, and 14 μL of PowerUp SYBR Green Master 

Mix solutions were mixed for qRT-PCR amplification. The same PCR reaction protocol was 

used as described above.  

 

High-throughput in vivo screening 
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 Biodistribution of 13 different PBAE polymers was tested in vivo in high-throughput 

manner in 5-7 week old female balb/c mice. The workflow is again shown in Figure 4.4, 

however, this chapter only discusses the results from qRT-PCR, and not from flow 

cytometry. For each mouse, 200 μL of a cocktail solution with five different PBAE 

nanoparticles was prepared for tail-vein injection. Each of the five nanoparticles was paired 

with one of the five plasmid DNAs to serve as the identifier barcode (Table 4.2). Each 

nanoparticle formulation had 10 μg pDNA for a total of 50 μg pDNA in the cocktail solution. 

Five additional mice were injected with 447 30 w/w nanoparticles alone with 50 μg DNA 

dose as controls to compare biodistribution with high-throughput samples. All nanoparticle-

injected mice were sacrificed 30 min post injection for DNA extraction. Major organs – liver, 

kidneys, spleen, lungs, heart, bladder – were harvested, washed with 1X PBS three times, cut 

into small pieces with a razor blade, and minced between the frosted ends of two microscope 

slides. Then, 10 mg of liver sample and 5 mg of samples from all other organs were 

separately placed into eppendorf tubes. Plasmid DNA was extracted from minced tissues 

using the Purelink Genomic DNA Extraction kit and following the manual instruction. Once 

DNA was purified through the extraction column, it was diluted with water 10-fold for liver 

samples and 2-fold for all other organ samples. 2 μL of extracted DNA, 2 μL of 3 μM 

forward primer, 2 μL of 3 μM reverse primer, and 14 μL of PowerUp SYBR Green Master 

Mix solutions were mixed for qRT-PCR amplification. The same PCR reaction protocol was 

used as described above.  

 

4.3 Results & Discussion 

Nanoparticle characterization 
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 Nanoparticles formulated with 9 different PBAE polymers were characterized based 

on particle size and surface charge. These physicochemical properties of these nanoparticles 

were determined to hold as potential confounding variables for affecting biodistribution. As 

shown in Figure 4.5, the hydrodynamic diameter measured by dynamic light scattering 

ranged from 150 – 200 nm for most nanoparticle formulations. 446 polymer / DNA particles 

resulted in aggregation, yielding particles greater than a micron in diameter. 200 – 250 nm 

nanoparticles were made with PBAEs 444 and 536, while sub-200 nm nanoparticles were 

made with 537 PBAE polymers. All nanoparticles formed from these linear PBAE polymers 

showed positive zeta potential between +30 to +40 mV, due to exposure of positively 

charged polymer on the particle surfaces.  

 

Melt curve and gel electrophoresis showing primer specificity 

 

 Primers were selected using BLAST using the most conservative conditions to ensure 

the greatest specificity to each plasmid used in the study. The forward and reverse primer 

pairs for each plasmid were designed to produce an approximately 100-basepair long 

amplicon. Each of the primer pairs specific to the corresponding plasmid was mixed with all 

five plasmids individually for qRT-PCR reaction to confirm the specificity. As shown in 

Figure 4.6A, only conditions with correctly matched primers and plasmid resulted in 

amplification. Also, each set of primers was run alone or mixed with other primer sets, and 

did not yield any false positive result from self- or hetero-dimerization. In addition, the melt 

curve also showed a clean single peak only for correctly matched conditions, which indicates 
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that there is no non-specific amplification occurring in the PCR reaction (Figure 4.6B). 

PCR-amplified products were run on gel electrophoresis to confirm that the amplicons had 

the expected length, based on our primer design. Gel image shows bands appearing for 

primer-plasmid matching conditions only at the height level of approximately 100-basepair 

mark on the DNA ladder (Figure 4.6C). When the primers were mixed with fresh animal 

tissue lysates from all major organs listed above for PCR reaction as the final quality control 

test for the designed primers, they did not show any amplification (data not shown). All of 

these observations strongly confirmed the specificity of each primer set to its corresponding 

plasmid. 

 

FRET analysis showing the absence of nanoparticle intermixing 

 

 The high-throughput screening method requires different nanoparticles be injected as 

a cocktail solution into a single animal and be individually identified in tissue lysates by the 

plasmid DNA barcodes. Therefore, it is critical to ensure that a nanoparticle formulation 

maintains the same plasmid DNA from the original synthesis step until the detection step 

from tissue lysates. We employed a FRET tool to validate that there is no intermixing of 

nanoparticles in the cocktail solution that would void plasmid DNA’s role as the barcode for 

each PBAE nanoparticle. Plasmid DNA was either labeled with Cy3 or Cy5 fluorophores, 

which act as FRET pair dyes when in close proximity to each other. Figure 4.7A shows 

fluorescence intensity measured at Cy3’s emission wavelength when samples are excited at 

Cy3’s excitation wavelength. A positive control sample, where Cy3-labeled and Cy5-labeled 

plasmid DNAs are used together to form a single nanoparticle batch, demonstrated a 
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reduction in Cy3 emission intensity, as some energy is absorbed by neighboring Cy5 

fluorophores. In contrast, FRET does not occur in the condition where two separate 

nanoparticles each formulated first with Cy3-labeled or Cy5-labeled DNA are then co-

incubated together in a cocktail solution, demonstrating that there is no exchange of plasmid 

DNAs between two PBAE nanoparticle types that would allow both fluorophores to be 

positioned close enough to transfer energy. This is further supported by an increase in Cy5 

emission intensity for the positive control sample and a drop to baseline level for the cocktail 

solution condition (Figure 4.7B). The absence of FRET signal in a cocktail solution verifies 

that different nanoparticles are able to retain their own specific plasmid DNAs. 

 

Standard curve of plasmid DNA concentration vs. CT values 

 

 qRT-PCR is often used to produce results in terms of relative expression level of the 

target gene with respect to a housekeeping gene, such as GAPDH. However, as Ho et al. 

have shown, standard curves can be made for each plasmid DNA in each organ / tissue lysate 

in terms of DNA concentration vs. amplification CT values for absolute quantification of the 

amount of DNA.19 We produced 30 different standard curves with R2 > 0.96 for all possible 

combinations from 5 plasmids and 6 major organs. Each panel in Figure 4.8A shows the 

standard curves for each plasmid in 6 different organs. Plasmid amplification was not 

affected by the type of tissue lysates, as demonstrated by the overlapping standard curves in 

each panel. The same data was used to plot Figure 4.8B, where each panel now shows 

standard curves for 5 plasmids in each organ. As expected, distinct standard curves were 
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created for different plasmids in the same organ / tissue lysate, indicating that PCR was 

dependent on the amplification efficiency of specific primers-plasmid pair.  

 

High-throughput screening of biomaterial-mediated tissue targeting 

 

 With the generated standard curves, the absolute amount of each plasmid DNA 

accumulated in different organs 30 min after injection was calculated by qRT-PCR. The 

accumulation of each plasmid DNA can be translated to that of each nanoparticle type due to 

the specific PBAE structure used in the formulation. Figure 4.9 shows the biodistribution of 

each PBAE nanoparticle formulation in all organs, while Figure 4.10 shows the 

accumulation of all PBAE nanoparticles in each organ. As expected, there was the greatest 

proportion of accumulation in the liver for all PBAE nanoparticle types, as it is one of the 

main organs responsible for reticuloendothelial system (RES)-mediated clearance. There was 

near zero signal detected from the bladder. As such, there was no statistically significant 

difference between PBAE nanoparticles in the liver, spleen, and bladder. However, we 

observed significantly higher amount of 446 and 536 PBAE nanoparticles in the kidneys, 

lungs, and heart. In the case of 446 nanoparticle, accumulation in the lungs may be explained 

by its large particle size rather than the polymer structure. But particle size may be 

insufficient to explain its buildup in the kidneys and heart. 536 nanoparticle’s high 

accumulation in these three organs is more likely to be independent of particle’s 

physicochemical properties since another formulation (444) with similar physicochemical  

properties showed a different biodistribution profile.  
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 qRT-PCR shows the accumulation of nanoparticles in an organ over time, however its 

efficacy does not necessarily translate to the final function of these nanoparticles, gene 

transfection. As shown by previous studies, there are unique structure-function relationships 

at the cellular level affecting the cellular uptake, endosomal escape, and transfection. 

Therefore, it is critical to conduct a follow-up study to investigate level of transfection by 

these nanoparticles (flow cytometry for fluorescence read-out or qRT-PCR of mRNA read-

out) in parallel to qRT-PCR from the same tissue sample. This would allow a more holistic 

perspective to selecting the PBAE nanoparticle formulation most optimal for specific target 

and application. This is one of the advantages of our DNA barcode system, in comparison to 

other previously reported system, such as using a short linear DNA sequence as the 

barcode.20 A short linear DNA barcode may be a confounding variable since it is an extra 

material added to a nanoparticle formulation, may be more susceptible to inter-nanoparticle 

mixing, and is unable to provide a functional output to determine transfection efficacy. 

 Finally, in order to further validate our novel high-throughput tissue targeting 

screening method, we compared the biodistribution of 447 nanoparticles when injected alone 

in mice to that when injected as a cocktail solution along with four other nanoparticle 

formulations. There was no statistical difference in the proportion of nanoparticle 

accumulation in the major organs between the two conditions (Figure 4.11). This further 

validates that using a high-throughput approach does not interfere with the pharmacokinetic 

behavior of the individual nanoparticle formulations.   

 

4.4 Conclusion 
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With gene therapy emerging as one of the major clinical options to cure various 

diseases, optimizing the delivery vectors for nucleic acids has become an active area of 

research. Particularly, different targeting modalities have been investigated to achieve 

specific biodistribution with gene delivery vehicles. We explored the capability of a 

polymer’s chemical structure to direct specific tissue targeting. A novel high-throughput 

method using DNA as barcodes was successfully validated by comparing biodistribution 

profile of a nanoparticle formulation from independently tested animals against that from 

high-throughput animals. We then showed that 446 and 536 PBAE structures accumulate to 

the kidneys and lungs significantly more than other polymer structures, making them ideal 

candidates for gene delivery vectors targeting disease in those organs. Future study of 

assessing tissue targeting by PCR and transfection efficacy by functional output 

simultaneously would allow more holistic approach to optimizing polymeric vectors from 

injection to end-point transfection. 
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4.6  Figures & Tables 

 

 
 

 

Figure 4.1. Polymer synthesis scheme. A library of biodegradable, cationic polymer is 

created by synthesizing PBAE polymers via (A) two-step Michael addition reaction with (B) 

base (B), side-chain (S), and end-capping (E) monomers. 

  

A 

B 
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Figure 4.2. Primer design with BLAST. (A) Generating forward and reverse primer 

candidates through Primer-BLAST based on minimizing homology against the plasmid 

backbone, restricting amplicon size, and ensuring a window of melting temperature,  and (B) 

checking specificity of primer candidate for a plasmid through BLASTn by comparing its 

homology against sequence of plasmids other than the one it was generated for. 

 
 
  

Total # of match: less than 10 

Forward primer: plus/plus (acting as forward) 

                              plus/minus (acting as reverse) 

Reverse primer: plus/plus (acting as forward) 

                              plus/minus (acting as reverse) 
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Figure 4.3. Workflow for generating standard curves. Schematic diagram 

showing the procedure for preparing samples to make standard curves of plasmid 

DNA concentration vs. CT values in qRT-PCR. 
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Figure 4.4. Workflow for high-throughput screening. Schematic diagram 

showing the high-throughput procedure for preparing samples to investigate tissue 

targeting (qRT-PCR) and cellular transfection (flow cytometry) simultaneously 

using DNA barcode. 

 

Simultaneous evaluation of biodistribution and transfection 
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Figure 4.5. PBAE nanoparticle characterization. Hydrodynamic diameter and zeta potential of 12 different PBAE 

nanoparticles measured by dynamic light scattering using Zetasizer Nano ZS. Samples are diluted in 25 mM NaAc pH 

5.0 to approximately 1 mg/mL polymer concentration for measurement (n=3, mean ± SD). 
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Figure 4.6. Primer specificity confirmation. (A) CT values from qRT-PCR reaction of all 

possible combinations of 5 plasmids and 5 corresponding primer sets, showing only specific 

amplification occurred and (B) melt curve from qRT-PCR reaction, showing that there was 

no non-specific amplification. (C) Gel electrophoresis of PCR-amplified product, showing 

specific amplicons’ size of approximately 100 base-pairs. For each plasmid, there are 6 wells 

with primers’ order of EGFP, mOrange, iRFP, RDM1, and RDM2 going from left to right. 

DNA ladder: 1 kbp left and 100 bp right. 
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Figure 4.7. Absence of inter-nanoparticle DNA mixing. FRET analysis using Cy3-labeled and Cy5-labeled DNA. Cy3 

emission (570 nm) and Cy5 emission (670 nm) was recorded following Cy3 excitation (550 nm) of nanoparticles individually 

made with Cy3- or Cy5-labeled DNA, nanoparticles made with both Cy3- and Cy5-labeled DNA together, and two nanoparticles 

made separately with either Cy3- or Cy5-labeled DNA then co-incubated together in a single solution. All values are normalized 

to the fluorescence signal measured from 25 mM NaAc only control. 
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Figure 4.8. Standard curves of plasmid DNA concentration in tissue lysates of 6 major organs vs. CT values.  
qRT-PCR is run on tissue lysate samples with known concentrations of plasmid DNA spiked in to generate standard 

curves for (A) each plasmid in different organs and (B) each organ with 5 different plasmids (n = 4, mean ± SD). 
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Figure 4.9. Biodistribution of each PBAE nanoparticle in 6 major organs. Each panel shows pooled biodistribution data 

of a PBAE nanoparticle formulation with 5 distinct DNA barcodes from 5 different mice. The amount of DNA accumulated 

was measured by the amplification of DNA barcodes in the organs 30 min after injection. (n=5, mean ± SD)  
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Figure 4.10. Organ accumulation of 9 PBAE nanoparticles in each organ. Each panel shows pooled data of 9 PBAE 

nanoparticle formulations with 5 distinct DNA barcodes from 5 different mice. Left: bar graph, Right: scatter dot plot (n=5, 

mean ± SD, One-way ANOVA with Bonferroni post-hoc test; α=0.05).  
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Figure 4.11. Comparison of single- vs. high-throughput screening of tissue 

targeting. Biodistribution profile of 447 nanoparticles injected alone (n=4) was 

compared against that of 447 nanoparticles from high-throughput screening (n=5), 

shown as % distribution normalized to total DNA mass detected in all measured 

organs (mean ± SD, Two-way ANOVA with Sidak’s multiple comparison test α=0.05). 
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Table 4.1. Molecular weight of 3 PBAE base polymers. Molecular weight of 

acrylate-terminated PBAE base polymers were calculated based on the ratio of AUC 

for hydrogen peaks in non-repeating and repeating units, as measured by 1H NMR. 

  

 Ac-B4S4-Ac Ac-B4S5-Ac Ac-B5S3-Ac 

Molecular weight 
(Da) 

5354 5085 4869 
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Table 4.2. Matrix of 9 different cocktail solutions for injection in 9 mice. For each mouse, 

5 PBAE polymers are paired individually with each of the 5 plasmids listed on the right (a-

e) for injection as a cocktail solution. A total of 9 mice results in n=5 for each of the 9 PBAE 

nanoparticles via the high-throughput screening method.  
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Chapter 5 

 

Targeted poly(lactic-co-glycolic acid)-co-poly(ethylene glycol) 

(PLGA-PEG) nanoparticles using a biomimetic peptide as both 

targeting and therapeutic agent 

 

5.1 Introduction 

4Drug delivery of chemotherapeutic compounds to breast cancer and other solid 

tumors is often limited by short half-lives and systemic toxicity stemming from an inability 

to specifically target the tumor site.1-3 A commonly proposed solution to this problem is 

encapsulation of drugs within a biodegradable polymer nanoparticle (NP) with specifically 

altered surface chemistry to aid in targeting of the tumor tissue.4,5 For example, PEGylated 

poly(lactic-co-glycolic acid) (PLGA-PEG) NPs have been used to improve the blood 

circulation time and accumulation in tumors, thereby enhancing efficacy of doxorubicin,6 

platinum prodrugs,5,7 docetaxel,8,9 paclitaxel,10,11 and other common chemotherapeutics in 

animal models. However, compared to the number of preclinical studies reported, these 

PLGA-PEG NPs have had relatively little success achieving FDA approval due to 

insufficient drug efficacy in the tumor and potential accumulation in off-target tissue such as 

the liver.12 Protein and peptide-loaded NPs have been explored as well, but are often limited 

                                                        
Parts of this chapter were originally published in and modified from Bressler EM*, Kim J*, Shmueli RB*, 

Mirando AC, Bazzazi H, Lee E, Popel AS, Pandey NB, Green JJ. “Biomimetic peptide display from a 

polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer 

cells.” J Biomed Mater Res Part A, 106(6): 1753-1764, 2018. 
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by packing density within the polymer matrix of the NPs and challenges with 

encapsulation.13  

Early strategies for targeting PLGA-PEG and other NPs to tumors relied in large part 

on the passive enhanced permeability and retention (EPR) effect, which hypothesized that 

NPs can extravasate through leaky neovasculature near the tumor and are not easily drained 

by irregularly formed lymph vessels.14 Though this effect has been shown to contribute to NP 

accumulation in solid tumors, further targeting is needed to reduce nonspecific accumulation 

and buildup in other healthy tissues. Growing effort has focused on developing active 

targeting methods using ligands that target receptors known to be upregulated on the surface 

of neovasculature and tumor cells, such as integrin αvβ3 
5,15,16 and folate receptors.11,17,18 A 

common ligand used in conjunction with PLGA-PEG NPs to target integrin αvβ3 is the 

peptide sequence RGD, including cyclic-RGD peptide. The RGD motif is present in the 

extracellular matrix components such as fibronectin and vitronectin, aiding in the binding of 

these components to the cell surface. The use of cyclic-RGD ligands has been shown to 

increase tumor localization and improve efficacy of a number of chemotherapeutic drugs in 

preclinical models.19 However, despite promising preclinical studies, integrin facilitated drug 

delivery has not been validated in clinical applications to date. In addition, aside from cyclic-

RGD ligands and RGD mimics, non-RGD-based αvβ3 integrin targeting systems for NPs 

have not yet been developed.19 Alternative nanomedicine targeting strategies utilize other 

biological molecules to reach different cellular targets, such as ribonucleic acid aptamer 

ligands to prostate-specific membrane antigen, to better target PLGA-PEG NPs to prostate 

cancer cells.20  

The roles of particle physical properties, such as size and shape, are increasingly 
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being investigated in polymeric and inorganic NP drug delivery systems.21-23 The size of 

particles can be controlled such that following systemic administration, particles are large 

enough to avoid filtration by the kidneys (particle diameter designed to be greater than ~10 

nm) and small enough to enable enhanced diffusion to reach a target tissue (particle diameter 

designed to be less than ~100 nm). Discoidal and ellipsoidal particles can marginate to the 

side of the blood vessel, enhancing their possibility of extravasation at the tumor site. While 

the delivery of drugs by polymeric NPs can also be improved by targeting, encapsulation 

capacity of drugs in PLGA-PEG NPs is generally limited to a small percentage of the total 

weight of the particle.4 Targeted NP systems are canonically limited to drug loading within 

the particle while the targeting ligand decorates the outside. The hydrophobic nature of 

polymeric NPs makes them ideal delivery systems for hydrophobic drugs, but limits the 

ability to load many drugs into this system with high efficiency.24 This poses a problem when 

a relatively larger dose of drug is required for therapeutic efficacy or enhanced durability. If a 

drug, such as a peptide, were covalently coupled to the NP surface, the total loading could 

potentially be increased by an order of magnitude compared to loading by physical 

encapsulation alone. A surface tethered drug can target a receptor of interest, facilitate 

avidity, and potentiate a therapeutic effect. If the surface tethered drug contains degradable 

linkages, it could also be designed to enable controlled release from the NP. Further, the 

amount of the targeting ligand on the surface of NPs can be optimized to increase 

accumulation in the tumor and minimize off target delivery, avoid interaction and clearance 

through the reticuloendothelial system, and enhance targeted cellular uptake.25,26  

Anti-angiogenesis is one of many key methods of cancer therapy, as tumor growth 

requires robust neovascularization in its microenvironment for increased oxygen and nutrient 
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supply.27 Popel et al. showed that a collagen-IV derived 20-mer peptide, that we refer to here 

as AXT050, inhibit tumor growth in a number of models, including a metastatic tumor 

model, through its potent anti-angiogenic, anti-lymphangiogenic, and anti-tumorigenic 

activities.28-31 The naked peptide is also shown to bind to integrin αvβ3 and disrupt integrin-

dependent protein signaling pathways, thereby expanding the arsenal of vascular endothelial 

growth factor (VEGF)-independent, anti-angiogenesis based cancer therapies. By surface-

functionalization and encapsulation of the AXT050 peptide in PLGA-PEG NPs, we 

hypothesize that targeted NPs with high loading capacity can be fabricated. As naked 

AXT050 biomimetic peptide can therapeutically modulate angiogenesis through extracellular 

interactions, we further hypothesize that presentation of AXT050 from the NP surface and 

soluble PEG-AXT050 conjugates released from the surface through hydrolysis can directly 

inhibit angiogenesis.  

Herein, we design, characterize, and validate PLGA-PEG-AXT050 NPs, including in 

vitro adhesion and proliferation inhibition using both whole particles and the breakdown 

products of degraded particles. We also report the optimization of PLGA-PEG NPs 

functionalized with AXT050 peptide for in vivo biodistribution to tumors using an orthotopic 

human triple-negative breast cancer (MDA-MB-231) mouse model that is challenging to 

target through conventional approaches.  

 

5.2 Methods 

Materials 

 

Poly(D,L-lactide-co-glycolide) (65/35), dimethyl formamide (DMF), dimethyl 
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sulfoxide (DMSO), di-isopropylethylamine (DIPEA), methanol, and ether were purchased 

from Sigma- Aldrich (St. Louis, MO). Poly(vinyl alcohol) [PVA; Mw 25,000] was purchased 

from Polysciences (Warrington, PA). Poly(D,L-lactide-co-glycolide) (50/50) with terminal 

methoxy groups (PLGA-mPEG) or terminal n-hydroxysuccinimide groups (PLGA-PEG-

NHS) (each with Mw 20,000:5,000 Da, PLGA:PEG) were purchased from Akina (West 

Lafayette, IN). AXT050,28,30 AXT051 (AXT050 analog where the last amino acid residue is 

swapped from a F to a W to enable stronger intrinsic fluorescence), biotinylated AXT050, 

and AXT050-IRD800 were custom synthesized and ordered from New England Peptide 

(Gardner, MA). Human recombinant integrin was purchased from R&D Systems 

(Minneapolis, MN). IRDye 800 CW was purchased from LI-COR (Lincoln, NE). Tissue 

culture reagents and cell lines were purchased from Lonza (Portsmouth, NH). Biological 

buffers were purchased from Fisher Scientific (Hampton, NH).  

 

Binding kinetics between AXT050 and integrin αvβ3  

 

The ForteBio Octet RED96, capable of an automated high-throughput assay using 96-

well plates, was used to investigate the binding kinetic profile of AXT050 to integrin αvβ3. 

Twenty five micromolar stock of biotinylated AXT050 in 5% DMSO/95% water was diluted 

100-fold using 0.05% Tween 20 in 1X phosphate buffered saline (PBS). The peptide was 

incubated with streptavidin biosensor probe from Pall ForteBio (Fremont, CA) for 300 s, 

flanked by 60 s of incubation in the same buffer without the peptide. Subsequently in the 

binding association step, the peptide-attached biosensor probe was incubated with various 

concentrations of integrin αvβ3 ranging from 10 to 300 nM in the same buffer solution for 
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600 s. The probe is further incubated in the buffer solution without integrin for 1800 s to 

observe the dissociation profile. Optical interference signal resulting from the binding of 

integrins to peptide-attached probe was exported for analysis in MATLAB (Mathworks 

2015). A 1:1 binding model was implemented in MATLAB and the resulting differential 

equation describing the concentration changes in peptide and peptide-integrin binding 

complex was solved using ODE15s function. The fitting was performed using pattern-search 

algorithm as part of the MATLAB optimization toolbox to determine kon and koff of the 

reaction using the experimental time course data.  

 

Formulation of spherical and ellipsoidal PLGA NPs  

 

PLGA NPs was formulated using an emulsion method. First, PLGA (65/35) was first 

dissolved into dichloromethane (DCM) at 20 mg/mL in a test tube, vortexed to fully dissolve, 

and mixed with 20 mg/mL AXT050 stock in DMSO at the desired mass ratio of peptide to 

PLGA; a common formulation is 1:50 peptide:PLGA. The mixture was sonicated with the 

test tube on ice. Sonication (Misonix) was performed with an amplitude of 30A, which 

equals approximately 5–10 W, for 20 s. This primary emulsion was immediately poured into 

50 mL of 1% PVA solution and sonicated at an amplitude of between 30 and 100A for 2 min 

on ice. The full volume was then transferred to 100 mL of 0.5% PVA solution and stirred in a 

chemical hood for 3.5 h. Then, NPs were washed three times by centrifuging at 48oC, 17 

krpm for 10 min, removing the supernatant, and resuspending NPs with 30 mL of 

refrigerated Milli-Q water. After the last wash, 5 mL of water was added to resuspend the 

sample, which was then snap-frozen with liquid nitrogen for lyophilization. NPs were stored 
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at -20oC prior to use.  

To generate ellipsoidal PLGA NPs, pre-made spherical PLGA NPs were stretched 

using a previously described method.32 Briefly, lyophilized spherical PLGA NPs were 

suspended in water and mixed with 10% PVA/2% glycerol solution at 5 mg/mL NP 

concentration. The solution was added to a mold (5 x 7 cm rectangular petri dishes) and 

allowed to dry into a film. The film was heated above the Tg of PLGA and then stretched 

through a custom made stretching device, after which the film was dissolved, NPs washed as 

described above, and stored for future use. 

 

Synthesis of peptide-functionalized PLGA-PEG 

 

PLGA-PEG-NHS was dissolved at 170 mg/mL in DMF, and AXT050 or AXT051 in 

DMSO at 100 mg/mL was added at a 1.2:1 molar ratio in excess of the peptide. A 40-fold 

molar excess of DIPEA was added to the mixture and stirred overnight at room temperature. 

The mixture was then added drop-wise to a cold mixture of ether (50%) and methanol (50%) 

and spun down to produce a pellet. The supernatant was discarded and the pellet was 

disturbed and washed in 100% methanol, and spun down repeatedly to remove unreacted 

peptide. The pellet was left to dry under vacuum for several hours to yield solid PLGA-PEG-

AXT050. Typical batches yield 10–100 mg, approximately 80% of the starting material. A 

similar protocol was used for the functionalization of PLGA-PEG-NHS polymer with IR-

Dye 800 CW to prepare fluorescent NPs.  

High performance liquid chromatography was used to confirm the conjugation. Five 

hundred microgram of the AXT051-functionalized PLGA-PEG reaction mixture (prior to 
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precipitation in methanol and ether) was diluted in acetonitrile and run through an Agilent 

Poroshell 300 column. AXT051 was utilized as an analog of AXT050 that allows improved 

quantification of intrinsic ultraviolet absorption/fluorescence through the tryptophan residue 

at the C-terminus of the peptide. The reaction mixture was compared to a control mixture 

using PLGA-mPEG in place of the reactive PLGA-PEG-NHS. Area under the curve (AUCs) 

of peaks from unreacted peptide were compared to determine the extent of the reaction, 

which was calculated according to signals at 220 nm (peptide backbone), 280 nm (trp 

absorption), and 295/348 excitation/emission (trp fluorescence). 

 

Formulation of peptide-functionalized PLGA-PEG NPs 

 

The functionalized PLGA-PEG NPs were formulated following a nanoprecipitation 

method. PLGA-PEG-AXT050 and PLGA-mPEG were each dissolved in DMF in any desired 

mass ratio (i.e., 10% NP: 1 to 9 mass ratio of PLGA-PEG AXT050 to PLGA-mPEG) at 10 

mg/mL total polymer concentration. For encapsulation, this was then mixed with AXT050 in 

DMSO at 5% (w/w) and/or with a dye such as 5-carboxytetramethylrhodamine (TAMRA). 

The polymer/peptide mix was then added drop-wise to a volume of deionized water ten times 

larger than the DMF solution under magnetic stirring. After 4–6 h stirring in a chemical 

hood, the NPs were filtered and concentrated using ultracentrifugation columns (EMD 

Millipore, UFC810096) and GPC spin columns (Thermo Scientific) using S-400 HR media 

(Sephacryl) to ensure all free peptide was filtered. NPs were then either used immediately or 

stored overnight at 4oC before use.  
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Quantification of peptide content on functionalized NPs  

 

LavaPep peptide quantification kit (Gel Company, LP022010) was used to determine 

peptide content following NP formation. As per the LavaPep protocol, particles were 

incubated at 3 mg/mL in the dark in the Lava- Pep working solution for 1 h. The 

epicocconone dye interacts with the arg residues in the peptide to become highly fluorescent. 

Fluorescence was read at 530/590 nm on a Biotek HT Synergy plate reader. The signal from 

the NPs was compared to a standard dilution curve of known amounts of free peptide. 

 

Characterization of NPs 

 

The particle size distributions were generally measured through dynamic light 

scattering (Malvern Zetasizer Nano ZS90) at 25oC at a scattering angle of 908 and at a 

concentration of approximately 1 mg/mL NP in water, PBS, or fetal bovine serum (FBS). NP 

tracking analysis (NTA) was performed using a Nanosight NS500 instrument and NP 

solutions were diluted so that the NP concentrations were appropriate for NTA analysis.33 

NTA videos were captured for 60 s and analyzed using Nanosight NTA software. For 

transmission electron microscopy (TEM) sizing, 10 μL of NP sample at 1 mg/mL was 

dropped onto carbon coated copper grids and left to dry in chemical hood for 2 h. Unstained 

TEM imaging was then performed using the Philips CM120 system. Zeta potential was 

measured on a Malvern Zetasizer Nano ZS90 at 1 mg/mL in 10 mM NaCl.  

 

In vitro targeting activity assay 
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MDA-MB-231 cells and microvascular endothelial cell (MEC) cells were trypsinized 

and suspended in appropriate media at 2000 cells/mL. One hundred percent AXT050 peptide 

coated NPs and non-coated PEG-PLGA NPs that encapsulated TAMRA dye were added at 5 

mg/mL to the cells in suspension, and the mixture was incubated while shaking at 37oC for 1 

h to allow binding between cells and particles. After 1 h, cells were spun down and 

supernatant was discarded. Cells were resuspended in PBS and spun down twice to wash 

away any non-bound particles or dye in solution. Cells were resuspended in 1 mL of PBS and 

100 μL of that solution was assessed for TAMRA fluorescence using a Biotek Synergy Plate 

Reader at 530/590 nm excitation/emission.  

Integrin αvβ3, α5β1¸and human serum albumin (HAS) were labeled with AlexaFluor 

488 Protein Labeling Kit (Thermo Scientific) according to the manufacturer’s instructions. 

Labeled proteins at 50 mg/mL were incubated with either peptide conjugated or non-

conjugated NPs in PBS at concentrations of 5 mg/mL. After 1 h shaking at 37oC, NPs were 

separated from free proteins in solution through GPC spin columns (Thermo Scientific) using 

S-400 HR media (Sephacryl) and the fluorescence of the filtrate was measured. For free 

peptide competition experiments, a similar protocol was followed, but a 100-fold excess of 

non-labeled AXT050 peptide or an inactive scrambled peptide control sequence known to 

have no activity in in vitro adhesion activity assays was added to the NP solution before the 

addition of labeled peptide. 

 

In vitro antitumor functional activity assay 
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Prior to use in in vitro activity assays, particles were transferred from ultrapure water 

to appropriate media using the same ultracentrifugation columns used for purification after 

NP formation. To test activity in an adhesion assay, particles were concentrated to 20 mg/mL 

in media and added to 96 well plates. Regular media was used as a negative control and 

media supplemented with 100 and 25 μM of free AXT050 were used as positive controls. 

MDA-MB-231 triple-negative breast cancer cells or primary MECs were added at 20,000 

cells/well on top of the particles. The plate was then incubated for 2 h at 37oC and 5% CO2. 

Wells were next washed twice with dulbecco’s phosphate buffered saline (DPBS) with Ca2+ 

and Mg2+ and then filled with media containing 4 μg/mL Calcein AM dye. Plates were then 

incubated for 30 min and washed again with DPBS with Ca2+ and Mg2+. Fluorescence was 

read on a Biotek Synergy HT at 485/528 nm excitation/emission to quantify the number of 

cells adhered to the surface of the well.  

Particle breakdown products were assessed for their efficacy relative to fully intact 

particles and free peptide by allowing hydrolysis of 10% functionalized particles in PBS at 

37oC for 5 days on a shaker. The resulting broken down particles were confirmed to have lost 

their structure through dynamic light scattering as described above, and were determined to 

be broken down when particles could no longer be detected at sufficient concentration to 

analyze particle size. The breakdown products were then added to MDA-MB-231 cells as 

above and compared to free peptide and to equal amounts of peptide included on intact 

particles at 10% functionalization.  

To test activity on MEC cells in a proliferation assay, 2000 cells/well were plated in 

96-well plates in phenol red-free ECM-2 MV media and allowed to adhere over 18–20 h. 

Media was replaced with particles suspended in media at 5 mg/mL or AXT050 peptide in 
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media or media alone. After four days, media was replaced with 100 μL 3-(4,5-

dimethylthiazol- 2-yl)-2,5 diphenyltetrazolium bromide (MTT) reagent as per the 

manufacturer’s recommendations. After 4 h, 100 μL of sodium dodecyl sulfate (SDS) 

solution was added to each well and incubated at 37oC for another 4 h. Absorbance was read 

at 570 nm on a Biotek Synergy HT plate reader to capture the change from MTT to formazan 

by mitochondrial reductase in the living cells. 

 

In vivo pharmacokinetics of functionalized PLGA-PEG NPs 

 

Animals were housed and treated in accordance with NIH and IACUC guidelines for 

the care and use of laboratory animals (NIH Publication #85–23 Rev. 1985), and used 

protocols approved by the Johns Hopkins University Animal Care and Use Committees. 2 x 

106 human triple-negative breast cancer cells (MDA-MB-231) mixed 1:1 with matrigel 

(Corning) were implanted orthotopically or on the flank of a 5-week old athymic nude mouse 

(Charles River Laboratories, Wilmington, MA). Tumors were then allowed to grow until 

they reached a volume of 100 mm3. Mice received tail-vein injection of PBS, naked peptide, 

spherical or ellipsoidal PLGA NPs, or PLGA-PEG NPs with 0, 10, and 100% peptide 

functionalization. In the non-targeted biodistribution experiment, peptide was labeled with 

IRD-800 CW dye. In the functionalized NP experiment, 1% of the polymer used to form 

particles was bound to IRD-800 CW dye by NHS chemistry described above. All NPs 

contained 1% (w/w) IRD-800 CW. Blood samples were taken through saphenous vein in 

heparin-coated glass capillary tubes at 5, 15, 30, 60, 120, and 300 min as well as at 24 h. 

Fluorescence in capillary tubes were imaged with LI-COR Pearl Impulse NIR Imager and 
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quantified by assigning ROI. For biodistribution, whole live animals were imaged at 5 and 24 

h, and then the animals were sacrificed at 24 h to harvest, weight, and image organs 

separately. For imaging, Xenogen IVIS Spectrum Imager (Living Image v4.1 software) was 

used for naked peptide and non-targeted NP studies, while LI-COR Pearl Impulse NIR 

Imager (Pearl Impulse v2.0 software) with higher resolution and sensitivity was used for 

targeted NP studies. 

 

5.3 Results 

Peptide AXT050 has high molecular binding affinity to integrin αvβ3 

 

αvβ3 is one of the most overexpressed integrin isoforms in endothelial cells that 

compose the leaky vasculature around tumor tissue as well one of the most overexpressed 

integrin isoforms in tumor and tumor progenitor cells.34,35 As our goal was surface 

engineering of NPs to target tumors and their vasculature, we evaluated the binding affinity 

between AXT050 and recombinant integrin αvβ3. The ForteBio Octet RED96, a label-free 

molecular binding assay that employs bio-layer interferometry to detect specific, native 

interaction of ligand and receptor, was used. The binding of AXT050 to αvβ3 revealed a 

kinetic binding curve typical of 1:1 association and dissociation (Figure 5.1A). The reaction 

rate constants kon and koff were determined to be 1 μM-1s-1 and 0.0032 s-1, respectively, by 

fitting the raw binding data to simple single-binding site association model in MATLAB. 

The resulting equilibrium dissociation constant KD was determined to be 3.2 nM, which is a 

strong affinity with the same order of magnitude to that of antibodies and specific enzyme–

substrate interactions.  Strong binding affinity to integrin αvβ3 measured here corroborates a 
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recent report that the anti-angiogenic peptide’s mechanism of action is through downstream 

signaling from its specific binding to integrin isoforms.29 

 

AXT050 localizes to tumor tissue following systemic delivery 

 

Based on the biding affinity to integrin αvβ3, a biodistribution experiment of near-

infrared fluorescence-tagged AXT050, AXT050-IRD800, injected intravenously was 

performed. An orthotopic human xenograft triple-negative breast cancer (MDA-MB-231) 

mouse model was used for this experiment with liver, kidneys, spleen, lungs, heart and the 

tumor harvested at 24 h post-injection to detect fluorescence. Small biological molecules, 

such as a peptide composed of natural amino acids, are expected to degrade and clear from 

the blood quickly, and we find that AXT050 is cleared from the blood with a half-life of 

approximately 11 min. However, due to its binding affinity to integrin αvβ3, approximately 

15% of AXT050 was able to reach the tumor based on the fluorescence signal from tumor 

relative to the other organs within each mouse. As expected, kidneys were the main route of 

clearance for the small peptide, as seen by the highest level of its detection in the kidneys 

compared to other organs. Figure 5.1B–D illustrates these biodistribution findings. 

 

Formulation and characterization of non-targeted NPs 

 

Three different NP systems were developed and investigated to enable improved 

delivery of the anti-angiogenic AXT050 peptide. For the first approach, PLGA NPs were 

fabricated using a double emulsion protocol to encapsulate peptide. The sonication settings 
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and surfactant concentration were varied to determine their effect on particle size measured 

by NTA as shown in Figure 5.2A. Increasing the sonication setting from 30 to 60 A 

decreased hydrodynamic particle size from a micron scale to a size of approximately 200 nm, 

but further increases to the sonication power did not affect particle size. Increasing the PVA 

concentration from 2 to 3% also did not affect the NP size. TEM images of the NPs are 

shown in Figure 5.2A. Loading efficiency of the peptide into these PLGA NPs was found to 

be approximately 20–30%.  

To improve drug delivery, properties such as physical shape (higher aspect ratio) and 

chemical surface functionalization (PEGylation) have been previously shown to influence the 

biological response of drug delivery NPs and enhance blood circulation and passive 

targeting.36,37 To explore the effect of shape on the NPs, a previously developed thin-film 

stretching particle method32 was utilized on the approximately 200 nm spherical PLGA NPs 

to create ellipsoidal PLGA NPs with aspect ratio of 2.8 by stretching two-fold along one axis 

(Figure 5.2B). To explore the role of surface coating, PLGA-PEG NPs were also prepared to 

deliver the peptide. These NPs were made with PLGA-PEG block copolymers using a 

nanoprecipitation method. PLGA-PEG NPs had a stable hydrodynamic particle of 

approximately 70 nm in a range of media, including water, phosphate buffered saline (PBS), 

and 100% fetal bovine serum (FBS) (Figure 5.2C). 

 

Biodistribution of non-targeted NPs 

 

A biodistribution experiment with the same design as with the naked peptide was 

performed using the non-targeted NP systems. The injected groups were PBS only, spherical 
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PLGA NPs, ellipsoidal PLGA NPs, and PLGA-PEG NPs all loaded with AXT050-IRD800 

labeled peptide. In all treated groups, the total amount of peptide injected was the same, at 20 

mg per mouse. In Figure 5.2D and Figure 5.3, the relative distribution of the fluorescence 

across the different organs within each mouse is shown. By encapsulating AXT050 in NPs, 

the liver became the primary organ of biodistribution for all three conditions (spherical 

PLGA NP, ellipsoidal PLGA NP, and PEGylated PLGA NP). There were no statistically 

significant differences between the groups in terms of accumulation in the tumor after 24 h 

(7–15%). 

 

Formation and characterization of targeted NPs 

 

In order to enhance accumulation of NPs in the tumor, we engineered targeted PLGA-

PEG NPs using AXT050 peptide as the targeting ligand. We synthesized surface-

functionalized PLGA-PEG NPs by conjugating AXT050 to PLGA-PEG-NHS and then 

forming NPs through nanoprecipitation such that AXT050 ligands coat the outer surface of 

the particles as illustrated in Figure 5.4A/B. High performance liquid chromatography 

showed approximately 90% conjugation of PLGA PEG-NHS to free peptide (Figure 5.5). 

Formation of functionalized PLGA-PEG copolymers prior to NP formation allowed control 

over the amount of peptide exposed on the surface of the NPs and optimization of surface 

ligand density. As physicochemical properties, such as ligand density, surface charge, and 

particle size, have a large effect on stealth properties and thus half-life of the particle,36 this 

synthesis method was important as it allowed us to mix functionalized and inert PLGA-PEG 

polymers in any ratio that we desired to tune the surface properties of the NPs.  
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NP size was found to be affected by functionalization, with a greater percentage of 

AXT050 peptide on the surface leading to greater particle size as seen in Figure 5.6A/B. The 

percentage (e.g., 100, 50%) represents the percentage of conjugated polymer (PLGA-PEG-

AXT050) by mass relative to the total polymer (conjugated polymer and methoxy-terminated 

PLGA-PEG) used in NP formulation. NP size, as measured by z-average hydrodynamic 

diameter, ranged from approximately 65 nm for 0% NP to 80 nm for 100% NP. A similar 

effect of increased size has been seen in other studies, which show that PEG length can have 

a significant effect on size.38 Increased peptide surface-functionalization also resulted in 

wider particle size distributions. Zeta potential was observed to be negative (approximately -

20 mV) and not significantly affected by the surface peptide content, which may be 

explained by the overall neutral charge of the peptide (Figure 5.6C). LavaPep peptide 

quantification determined that approximately 80% of the theoretical peptide mass was 

exposed on the surface of the NP, regardless of the ratio of peptide-conjugated polymer to 

non-conjugated polymer used in the NP formulation.  

 

AXT050 targeted NPs bind to cells and recombinant integrin in vitro  

 

In order to confirm the preferential homing of the targeted NPs to integrin, which we 

found to have a high molecular binding affinity, the NP binding to vascular cells expressing 

integrins, cancer cells expressing integrins, and free recombinant integrin was evaluated. 

First, 100% AXT050 peptide-coated PLGA-PEG NPs, which refers to the mass percentage of 

PLGA-PEG-AXT050 compared to PLGA-mPEG, encapsulated with TAMRA-dye were 

incubated with MECs and triple-negative breast cancer cells, and then spun down to separate 
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free NPs from those bound to cells. As depicted in Figure 5.7A, cells incubated with surface-

functionalized NPs consistently showed approximately four- and two-fold higher signals to 

indicate binding compared to control PLGA-PEG NPs without peptide (0%) in MEC and 

MDA-MB-231 cells, respectively.  

When NPs were incubated with labeled αvβ3, α5β1, and HSA, 100% AXT050-

functionalized targeted NPs showed significantly higher binding compared to non-targeted 

0% AXT050 NPs with both integrin isoforms (Figure 5.7B). Critically, NPs were found to 

have higher binding to the integrins compared to HSA, indicating that the targeted NPs bind 

preferentially to these integrins with low non-specific interactions. Finally, when 100% NPs 

were incubated with labeled αvβ3 and a 100-fold excess of AXT050 or an active fragment of 

AXT050 (AF_AXT050) (Figure 5.7B), competition from the excess peptide completely 

prohibited binding of the targeted PLGA-PEG-AXT050 NPs to integrin. In contrast, when an 

inactive scrambled variant of AXT050 peptide was used as the free competitor rather than 

active AXT050, signal from the PLGA-PEG-AXT050 NPs binding to labeled integrin 

persisted. Although interactions between functionalized NPs and additional biomolecules 

may also be present, the specificity and high-affinity of the binding between the peptide-

coated NPs and αvβ3 integrin can enable cellular targeting of the NPs.  

 

Efficacy of targeted NPs in vitro  

 

Human triple-negative breast cancer cells (MDA-MB-231) and primary MEC were 

used to demonstrate anti-tumorigenic and anti-angiogenic activity of peptide-functionalized 

and peptide-loaded NPs in vitro with dose response related to both the density of targeting 
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ligand and the presence or absence of encapsulated peptides. Recently, we demonstrated that 

the naked form of an analog peptide could inhibit the proliferation and adhesion of MDA-

MB-231 cells at concentrations of approximately 25–100 mM in vitro.39 At NP concentration 

of 10 mg/mL, particles showed a peptide dose-dependent inhibition of adhesion on both cell 

types. NPs were analyzed at varying levels of functionalization and encapsulation as shown 

in Figure 5.8A/B. Relative to control wells, wells with 100% PLGA-PEG-AXT050 NPs 

encapsulating 1% (w/w) free AXT050 consistently showed the highest adhesion inhibition on 

all cell types. This is expected as this condition represents the greatest amount of peptide 

delivered to the target cells. Increased levels of surface conjugated AXT050 and 

encapsulated AXT050 increased efficacy in a dose dependent fashion. Whether AXT050 was 

encapsulated or not, as AXT050 conjugation and display from the NP surface increased 

(100%>50%>10%>0%), so did the biological activity of the NPs. When comparing surface 

conjugated AXT050 NPs to free bolus administration of AXT050, it was observed that 

unloaded 10% PLGA-PEGAXT050 NPs, which correspond to approximately 40 mM of 

surface conjugated peptide, showed significantly less (p<0.001) inhibition of adhesion on 

both cell types than 25 μM naked bolus AXT050 peptide, suggesting the availability and 

presentation of the peptide from the NP surface could affect its biological potency. Since the 

cells are plated in a monolayer, and the peptide is displayed from the NP’s three-dimensional 

surface, it is likely that more than half of the displayed peptide could be inaccessible to the 

cellular integrins due to the peptide’s orientation on the NPs in vitro. However, this effect 

may become less relevant in vivo as particle breakdown occurs over several days within a 

tumor microenvironment compared to several hours as measured in in vitro adhesion assays. 

Decorated particles with no encapsulated peptide that were subject to degradation in PBS 
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solution at 37oC showed increased activity in in vitro adhesion assays using MDA-MB-231 

cells compared to intact particles, but decreased activity compared to equal doses of free 

peptide (Figure 5.9). The increased efficacy after particle breakdown is likely due to PEG-

peptide released from the surface as particles undergo hydrolysis. This is consistent with our 

findings that PEG-peptide shows adhesion activity against MDA-MB-231 cells, but with less 

activity as the length of the PEG increases (Figure 5.10). Degradation of particles in the days 

following initial administration could result in further efficacy when PEG-peptide fragments 

and peptide metabolites escape the NPs through hydrolysis and proteolysis, respectively. In 

MDA-MB-231 cells, 50–100% PLGAPEG- AXT050 NPs encapsulating 1% AXT050 

reduced human cancer cell adhesion by 80–81%. In MECs, these two leading NP 

formulations reduced adhesion in these endothelial cells by 85–87% as well. These results 

demonstrate that these peptide-coated NPs have the biological capability to disrupt the 

endothelial cells that make up the leaky vasculature supplying oxygen and nutrients to 

tumors as well as disrupt the human breast cancer cells themselves. 

We also evaluated NP activity against MEC proliferation over 4 days. In addition to 

adhesion, NPs also inhibit proliferation of MECs with dose dependence of the peptide at the 

NP concentration of 5 mg/mL. Unlike the adhesion assay, where the effective peptide 

concentration appeared lower than surface conjugated peptide, likely due to orientation of 

immobilized peptide, proliferation inhibition more clearly followed the total amount of 

peptide present in the NP. As shown in Figure 5.8C, unloaded 10 and 50% NPs, which have 

equivalent total peptide concentration of 20 and 100 mM, show comparable levels of 

proliferation inhibition as 25 and 100 mM bolus naked peptide groups. One possible 

explanation is particle degradation over the 4-day experiment. Free, soluble peptide becomes 
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available through release of encapsulated peptide, release of PEG-AXT050 through 

hydrolysis of PLGA,4 or protease-mediated degradation of AXT050 into active fragments. 

For example, AXT050 conjugated with PEG of two different molecular weights still resulted 

in adhesion inhibition of MECs at 25 and 100 mM concentrations (Figure 5.10). This 

suggests that the combination of PEG-AXT050 and AXT050 metabolites have activity in 

addition to the activity generated by PLGA-PEG-AXT050 in an intact particle. This provides 

a mechanism for sustained release of active AXT050 in the tumor microenvironment 

following initial binding of the PLGA-PEG-AXT050 NPs to overexpressed αvβ3 integrin on 

tumors and tumor vasculature. In this manner, the surface-conjugated peptide functions as a 

NP targeting agent, a multivalent surface-bound drug agent, and a reservoir for controlled 

release of drug agent over time. This combined function, along with multimodality at 

affecting both tumors and tumor vasculature (endothelial cells), is promising for a cancer 

nanomedicine strategy. 

Finally, we investigated the effect of AXT050 peptide surface coating to improve the 

targeting of PEG-PLGA NPs to mice inoculated with human triple-negative breast cancer 

(MDA-MB-231) (Figure 5.11A-D). We evaluated the pharmacokinetics of the PLGA-PEG-

AXT050 NPs in the blood and the effect of increasing AXT050 conjugation. Figure 5.11C 

shows the half-life curves for targeted NPs over approximately 5 h, after which the signal 

reached baseline levels. We observed blood half-lives of approximately 110, 103, and 45 min 

for 0, 10, and 100% PLGA-PEG-AXT050 NPs, respectively. This extended half-life of 

nearly 2 h for 0–10% PLGA-PEG-AXT050 (100–90% PEG-PLGA) NPs clearly 

demonstrates the beneficial effect of PEGylation at slowing the clearance of these particular 

NPs from the blood. Half-life was found to decrease with increasing amount of peptide 
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conjugated to the surface of the NP. This decrease in half-life may be a result of increased 

peptide density obviating the stealth effect of PEG, leading to particle destabilization or 

increased opsonization and subsequent uptake by the immune system.40 Alternatively, it is 

possible that a very high density of the peptide on the surface of the NPs could lead to 

increased avidity and potential off-target binding of the NPs. Thus, maximizing the amount 

of peptide on the NP surface does not lead to optimal pharmacokinetics.  

Interestingly, biodistribution results showed a biphasic trend in tumor accumulation 

of targeted NPs (Figure 5.11A/B). Using labeled AXT050 peptide, the fluorescence signal in 

the tumor for 10% PLGA-PEG-AXT050 (90% PEG-PLGA) NP at 24 h post-injection was 

14% of the total fluorescence measured in all harvested organs, a 2.2-fold increase compared 

to non-targeted 0% PLGA-PEG-AXT050 (100% PEG-PLGA) NP and a 3.5-fold increase 

from 100% PLGA-PEG-AXT050 in this head-to-head study. Moreover, 10% NP showed 

14% lower signal in liver than both 0 and 100% NP. This finding highlights the utility of 

combining the AXT050 targeting peptide to the surface of the PEGylated NPs. This finding 

also demonstrates the double-edged sword of using a ligand such as AXT050 for targeting. 

Too little surface functionalization and the NPs circulate for a long time but without 

sufficient active targeting to the tissue of interest, and too much active targeting and the NPs 

are cleared to off-target sites too quickly (Figure 5.11D). The relatively high amount of the 

injected dose that reaches the tumor is quite promising when compared to the median 0.9% 

targeted NP accumulation of an injected dose to the tumor as has been reported by Wilhelm 

et al. by analyzing the literature from the past decade.41 Faster clearance by the reticulo-

endothelial system of the 100% NPs that has the least PEG shielding could explain both its 

short half-life and low tumor accumulation. Non-specific accumulation of the NPs occurred 
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in liver, kidneys, and spleen, which are the expected routes of clearance, but minimally in 

lungs and heart, organs that must be avoided for safety considerations. It is also important to 

note that no acute systemic toxicity was observed in the animals injected with any 

formulation of NPs at the doses given and the NPs were chosen so that they were composed 

of biodegradable and bio-eliminable materials. 

 

5.4 Discussion 

The half-life of PLGA-PEG NPs and factors affecting clearance time in vivo has been 

widely studied, with half-life increasing significantly, often several orders of magnitude, 

upon PEGylation of PLGA NP.42 This is thought to decrease recruiting of opsonins on the 

surface of NPs that cue macrophages for clearance. Other means of elimination include off-

target endocytosis, renal clearance, hepatic clearance, splenic filtration, and degradation of 

the polymer prior to arriving on target. While PEGylation allows longer circulation and 

potential passive accumulation in leaky vasculature, it does not enable specific binding to 

tumors or their vasculature.  

Biomimetic peptide-PEG-PLGA NPs are a promising method of drug delivery 

addressing difficulties in both targeting and controlled release. Surface properties of NPs are 

incredibly important for facilitating successful transport from the site of injection to the 

tumor site,43 thus targeting ligands used to increase uptake in the tumor must be optimized to 

prevent clearance prior to reaching the tumor site. Many targeting ligands have been used to 

target biomarkers to tumors and tumor vasculature, including integrin-targeted cyclic-RGD 

peptide, folate receptor-targeted folic acid, and prostate-specific membrane antigen-targeted 

small molecules.44-46 However, since previously reported ligands generally only function as 
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targeting agents, cancer treatments with these particles rely on the delivery of additional 

therapeutic components such as chemotherapies like paclitaxel, doxorubicin, and docetaxel, 

that are physically encapsulated at low loading content within these particles. In the current 

study, we wanted to utilize and evaluate a novel biomimetic molecule on NP surfaces that 

could function as both a targeting agent and a multimodal therapeutic agent. By chemically 

conjugating the peptide to PEG-PLGA polymer, rather than relying on just physical 

encapsulation, we can increase the loading of the peptide in NPs, enable multivalent display 

from the surface of the particle to the surface of the cell, and consequently induce a greater 

therapeutic effect.  

The slow off-rate constant and nanomolar KD between the short AXT050 peptide and 

its cellular target suggests a strong interaction between the AXT050-coated NPs and the 

surfaces of cancer cells and angiogenic endothelial cells where αvβ3 is overexpressed. 

Multivalency and avidity between AXT050 presented from the NP surface to integrin αvβ3 

clustered on the cellular surface could further enhance the strength of the interaction and 

duration of effect.47 This could also explain the shorter half-life and reduced tumor 

accumulation of 100% NP compared to 10% NP, since greater surface exposure of the 

peptide could result in strong binding of the NPs with integrin receptors at sites with low 

expression of integrin αvβ3 in addition to the tumor microenvironment where there is high 

integrin αvβ3. Another explanation for faster clearance of 100% NP from the circulation 

could be the loss of stealth properties, as all surface PEG molecules are covered by the 

peptide.  

In vitro targeting assays clearly showed affinity of the targeted NPs for integrin αvβ3, 

an important upregulated target in tumor neovasculature. In addition, the therapeutic 
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potential of the NPs was also validated through in vitro biological activity assays against 

human triple-negative breast cancer (anti-tumorigenic) and MEC (anti-angiogenic) cells. We 

observed activity of the functionalized particles against tumor cells and endothelial cells in 

short-term adhesion assays through their surface interactions despite the spatial restrictions 

that this places on the peptide. In addition, the surface peptide has further activity over time 

as it is released from the particle surface that is dependent on the hydrolytic breakdown of the 

particle, similar to release of encapsulated drug within the particle.  

While this work has demonstrated that AXT050 peptide can be an effective targeting 

agent for nanomedicine by increasing the accumulation of NPs to human triple-negative 

breast cancer tumors significantly while also reducing liver accumulation, clearance and 

remaining accumulation in the liver and spleen still remain as issues. The non-specific 

accumulation in the liver and spleen is mostly due to clearance and elimination through the 

mononuclear phagocyte system (MPS). It is important to note that the peptide, unlike a 

traditional chemotherapy, is designed to only affect cells with upregulated integrin αvβ3, in 

particular tumor cells and their neovasculature, and will therefore trigger a minimal effect on 

the specific function of these off-target clearance cells. Nonetheless, the potential dose 

responsive systemic side effects of such a NP system should be further investigated in 

multiple preclinical animal models to ensure the safety of this approach. 

 

5.5 Conclusion 

We have found that AXT050, a multimodal peptide with anti-tumorigenic and anti-

angiogenic properties, can function as both a targeting ligand and a therapeutic bioactive 

agent useful for NP-mediated delivery to human triple-negative breast cancer cells. We found 
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that these AXT050-targeted NPs were able to target integrin αvβ3 on the surface of cells in 

culture, which was confirmed through a series of binding experiments. The AXT050 NPs 

exhibit in vitro activity in adhesion and proliferation assays against human triple-negative 

breast cancer MB-MDA-231 cells and MEC endothelial cells, both through surface 

presentation of peptide and controlled release of the peptide from the NP. We also 

determined a biphasic response with peptide surface coating density and tumor targeting in 

vivo. Optimal 10% PLGA-PEG-AXT050/ 90% PEG PLGA NPs were found to exhibit an 

extended 103 min half-life and accumulate 14% of the peptide dose in human triple-negative 

breast cancer tumors in a xenograft mouse model. As the components of this NP system are 

each biodegradable and bio-eliminable, and as the AXT050 peptide NPs have the potential to 

target and disrupt both cancer cells and endothelial cells, this technology may be promising 

for applications in cancer nanomedicine. 
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5.7 Figures & Tables 

 

 

 

 

  

Figure 5.1. AXT050 binding and biodistribution. A: AXT050 binds to αvβ3 with a kon 

of 1 μM-1s-1, koff of 0.0032 s-1, and KD of 3.2 nM. B, C: AXT050 accumulated in MDA-

MB-231 tumors and was cleared through the kidney with (D) a blood circulation half-

life of approximately 11 min. 
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Figure 5.2. Biophysical characterization of non-targeted AXT050-containing PLGA 

NP. A: Hydrodynamic diameter (NTA) of non-modified PLGA NPs formulated with 

different conditions and a representative TEM image of PLGA NPs from “60A” condition, 

(B) TEM image of anisotropic PLGA NPs (“60A” PLGA NPs stretched twofold), (C) 

Stability of PLGA-PEG NPs over 3 days in different media by DLS (closed circle/solid line: 

size, open circle/dashed line: polydispersity index), and (D) Biodistribution of non-targeted 

NPs. NTA: mean ± SD (n>200 particles), TEM: scale bar = 1 μm. 
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Figure 5.3. Biodistribution of non-targeted PLGA AXT050 NPs. Biodistribution 

quantified by fluorescence intensity normalized per organ area. 
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Figure 5.4. Fabrication of PLGA-PEG-AXT050 NPs. A: PLGA-PEG-NHS polymer is 

reacted with AXT050 to form PLGA-PEG-AXT050 conjugates. B: NPs are formed by 

nanoprecipitation utilizing PLGA-PEG-AXT050 and PLGA-mPEG at varied mass ratios 

including 100%:0%, 50%:50%,10%:90%, and 0%:100% PLGA-PEG-AXT050: PLGA-

mPEG polymer. 
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Figure 5.5. Characterization of PLGA-PEG-NHS coupling to AXT050 peptide. (A) 

HPLC spectrum showing absorbance at 280 nm, (B) 220 nm, (C) Fluorescence at 295/348 

excitation/emission, and (D) Reaction efficiency calculated by the ratio of AUC for the peak 

at t = 5 mins. 
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Figure 5.6. Biophysical characterization of PLGA-PEG-AXT050 NPs. A: The PLGA-

PEG-AXT050 NPs have a hydrodynamic particle diameter of approximately 65–80 nm. B: 

Hydrodynamic particle diameter increased slightly as the percentage of AXT050 peptide 

conjugation increased. C: Particle zeta potential was determined to be approximately 220 

mV, without AXT050 conjugation content significantly affecting the surface charge. 
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Figure 5.7. Targeted binding of NPs to cells and integrin molecules. A: Binding of 

targeted (PLGA-PEG-AXT050) 100% NPs to MEC cells and MDA-MB-231 cells in 

suspension normalized to the binding of untargeted (PLGA-mPEG) 0% NPs. B: Binding of 

targeted 100% NPs and non-targeted 0% NPs to integrin αvβ3, α5β1, and to HSA as a 

negative control. Binding of targeted 100% NPs to integrin αvβ3 in the presence of a 100-

fold excess of AXT050 peptide, an active fragment of AXT050 peptide, and scrambled 

AXT050 peptide. 
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Figure 5.8. Functional biological activity of NPs composed of 0%-100% PLGA-PEG-AXT050 that contain 

(+) or do not contain (-) encapsulatedAXT050. NPs inhibit adhesion of (A) MDA-MB231 cells and (B) MECs. 

C: NPs also inhibit the proliferation of MECs normalized to untreated control. One-way ANOVA with Bonferroni 

post-tests comparing all pairs. Due to space limitations on the figures, representative comparisons with 10% 

PLGA-PEG-AXT050 encapsulating AXT050 found to be statistically significant are shown in the figures and all 

other comparisons are shown in the Supporting Information, (α=0.05; *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001). 



168 
 

 

 

 

 

 
 

Figure 5.9.  PLGA-PEG-AXT050 nanoparticle biodegradation increases biological 

activity at inhibiting the adhesion of MDA-MB-231 human breast cancer cells. A 30 µM 

peptide dose is used in each case, whether conjugated (10% AXT050) to the NPs and used 

directly (Intact AXT050 NPs), conjugated to the NPs (10% AXT050) and allowed to degrade 

in PBS at 37C for 5 days (Degraded AXT050 NPs), or used as a bolus (Free AXT050 

Peptide).  One-way ANOVA and multiple comparisons were performed using Bonferroni 

post-tests to compare all pairs, (=0.05; **: p<0.01, ****: p < 0.0001).  
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Figure 5.10.  AXT050 peptide conjugated with PEG retains the ability to cause adhesion 

inhibition of MECs at 25 and 100 µM concentrations. Higher PEG-AXT050 doses and 

shorter length PEG conjugates improve efficacy. One-way ANOVA and multiple 

comparisons were performed using Bonferroni post-tests (=0.05; **: p<0.01, ***: 

p<0.001). 
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Figure 5.11. In vivo tumor targeting of PLGA-PEG-AXT050 NPs to human triple-negative breast cancer 

tumors. A, B: PLGA-PEG-AXT050 NPs accumulate in human TNBC tumors and exhibit a biphasic relationship 

between the level of AXT050 conjugation and TNBC tumor accumulation with 10% PLGA-PEG-AXT050/90% 

PLGA-mPEG NPs being optimal. C: The half-life of the 100% PLGA-PEG-AXT050 NPs was 45 min and longer 

half-lives were observed with 10% NPs (103 min) and 0% NPs (110 min), which were composed of increasing 

levels of PLGA-mPEG rather than PLGA-PEG-AXT050. D: Animal imaging demonstrates the whole body 

biodistribution of the peptide NPs, with the greatest tumor accumulation being with the 10% NPs. 
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Chapter 6 

 

Suprachoroidal injection of PBAE nanoparticles for long-term 

retinal expression of exogenous DNA 

 

6.1 Introduction 

5Neovascular age-related macular degeneration (NVAMD) is an ocular disease that 

affects more than 2 million people as the leading cause of blindness in the United States.1 It 

involves macular damage from edema as fluid leaks out of choroidal neovasculature growing 

into subretinal space.2 Therefore, anti-angiogenesis at the posterior of the eye in retinal and 

choroidal layer near the macula is the therapeutic target for NVAMD. The unique biological 

architecture of the eye allows targeted drug delivery to this region to be achieved by local 

injection using a few different administration routes.3  

Topical delivery, including eye drops, has the advantage of being minimally invasive, 

but also has the disadvantages of difficulty in self-administration by elderly patients as well 

as low level of drug accumulation due to limited mucus penetration and fast clearance.4 On 

the other hand, intravitreal injection is the method clinically used for delivering many anti-

angiogenic compounds to localize the drug in confined space with better pharmacokinetics 

than topical administration.5 However, it suffers from invasive procedure leading to low 

                                                        
Parts of this chapter were originally published in and modified from Kim J*, Mirando A*, Popel AS, Green JJ. 

“Gene delivery nanoparticles to modulate angiogenesis,” Advanced Drug Delivery Reviews, 119:20-43, 2017. 

Other parts of this chapter were completed based on research in collaboration with Shen J, Ding K, Tzeng SY, 

Campochiaro P, and Green JJ.  
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patient compliance and potential complications with hemorrhage, endophthalmitis, and 

cataract. High concentration of drugs can be delivered to the retinal pigment epithelial (RPE) 

cells with subretinal injection, but it can lead to retinal detachment.6 More recently, there has 

been increased effort in investigation of suprachoroidal space as the potential region for local 

drug delivery.7 Suprachoroidal (SC) region is a space that is created only when a material is 

injected at the fine division between choroid and sclera layers. Due to high pressure 

generated, the injected fluid containing the drug can spread to all area surrounding the eye, 

including the posterior region.  

Viral vectors have been widely investigated for gene therapy via intravitreal or 

subretinal delivery due to their efficiency and potential for long-term expression of 

transduced genes. Adeno-associated virus (AAV/AAV2)8,9, lentivirus10, and hybrid AAV 

with serotypes that targets specific cell populations (rAAV)11 have all shown positive results 

against CNV in preclinical animal studies. These viruses have transferred genes encoding 

endogenous angiogenic inhibitors such as soluble VEGF receptor (sFlt-1)8,9, pigment 

epithelium-derived factor (PEDF)12,13, endostatin and angiostatin10, and tissue inhibitor of 

metalloproteinases-3 (TIMP3)14. However, long-term expression of exogenous gene at 

distant sites due to viruses that made their way into the systemic circulation is a potential 

safety concern.15 

Non-viral nanoparticles pose a safer alternative to gene therapy in comparison to viral 

complexes. There have been studies evaluating both in vitro and in vivo transfection of the 

RPE cell layer with non-viral gene delivery nanoparticles that have led to therapeutic 

efficacy against CNV.16-18 In particular, Sunshine et al. demonstrated the utility of polymeric 

nanoparticle library approach for ocular gene therapy.18 180-nm nanoparticles formed from a 
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library of poly(beta-amino ester)s (PBAEs) with varying structures were screened and 

analyzed for transfection against RPE cells in vitro. When the best performing formulation 

was injected into the subretinal space, high expression was observed 72-h post injection by 

both reverse transcription polymerase chain reaction (RT-PCR) and fluorescence microscopy 

of a genetically-encoded reporter in both retina and RPE/choroid. The specificity and 

efficiency of PBAE nanoparticles were enhanced through the polymer library screening 

approach. 

In this chapter, we aimed to transfect retinal cells in vivo by delivering plasmid DNA 

with PBAE nanoparticles via suprachoroidal injection. We hypothesized that injecting an 

exogenous DNA with PBAE polymer that is shown to be a safe and effective gene 

transfection vector into localized SC space would lead to a long-term expression in the retinal 

and choroidal layer.  

 

6.2 Methods 

Materials 

 

1,4-butanediol diacrylate (B4), 5-amino-1-pentanol (S5), and 1-(3-aminopropyl)-4-

methyl-piperazine (E7)  (Alfar Aesar, Ward Hill, MA) were purchased and used as received. 

EGFP-N1 pDNA (Elim Biopharmaceuticals, Hayward, CA) was obtained and used per 

manufacturer’s instructions.  

 

Polymer synthesis  
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Poly(beta-amino ester) (PBAE) polymer was synthesized by a two-step reaction. 

First, acrylate-terminated base polymer (B4S5) was first synthesized by Michael addition 

reaction of 1,4-butanediol diacrylate (B4) with 5-amino-1-pentanol (S5) at 1.05:1 

acrylate:amine monomer molar ratio in the dark under magnetic stirring for 24 h at 90°C 

(Figure 6.1). In the second step, the acrylate-terminated base polymer was end-capped 

through another Michael addition reaction in the presence of excess of primary amine-

containing small molecule 1-(3-aminopropyl)-4-methyl-piperazine (E7). For example, 625 

mg of polymer in 4 mL of THF was mixed with 4 mL of 0.5 M of end-capping amine 

solution in THF, and stirred at 500 rpm overnight at room temperature. The final polymer 

(B4S5E7, or 457) was ether purified and stored in DMSO at 100 mg/mL with desiccant at -

20°C until use.  

 

Nanoparticle formulation  

 

 pDNA-carrying nanoparticle was formulated by electrostatic binding of positively 

charged PBAE polymer and negatively charged pDNA (pEGFP or pVEGF). pVEGF 

construct was synthesized from pRho-VEGF and pEGFP-N1. VEGF fragment released from 

pRho-VEGF with BamHI was treated with Klowle I large fragment, and blunt end ligation 

was used to clone into EGFP-removed pEGFP-N1 vector. 457 PBAE polymer in DMSO at 

100 mg/mL and pDNA in water or 1X TE buffer at 1 mg/mL were both diluted with 25 mM 

sodium acetate pH 5 (NaAc) to 5.55 and 0.28 mg/mL, respectively. Then, polymer and 

pDNA solutions were mixed at 3 to 2 v/v ratio for 30 w/w ratio of polymer to DNA, and 

incubated for 10 min to allow particle complexation. To lyophilize the nanoparticles, final 
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nanoparticle solution was mixed with sucrose as a cryoprotectant to a final 3% sucrose 

solution and then aliquoted such that each aliquot has 17.4 μg of pDNA and 5 mg sucrose. 

Aliquoted nanoparticles were lyophilized and stored with desiccant at -20°C until use. 

Particle size and zeta potential before and after lyophilization was measured by dynamic light 

scattering using Zetasizer Nano ZS (Malvern Instruments). Freshly prepared nanoparticles 

were diluted with 25 mM NaAc pH 5.0 and 10 mM NaCl for particle size and zeta potential 

measurements, respectively. Lyophilized particles were reconstituted with water first to 100 

mg/mL sucrose, then diluted with 10% sucrose solution and 10 mM NaCl for particle size 

and zeta potential measurements, respectively. 

 

Nanoparticle injection  

 

 7-8-week old Brown Norway rats were anesthesized with ketamine. First, using a 

27G-needle, sclera was penetrated 2 mm from the limbus to make way to the suprachoroidal 

space. 33G Hamilton syringe with a blunt end was filled with 5 μL of nanoparticles that were 

reconstituted from lyophilized form with 45 μL of sterile water or 100 mM MgCl2 solution. 5 

μL of nanoparticle solution contained 1.74 μg of pDNA. Then, the Hamilton syringe was 

inserted into the path created by 27G needle using blunt dissection and advanced into the 

suprachoroidal space, where nanoparticle solution was injected. 10% sucrose solution was 

used as controls in the fellow eye in some experiments. Eyes were treated with antibiotic 

cream following the injection to prevent any infection. For multiple dosings, the injection 

procedure above was repeated three times at different locations in the eye with 4 days to 
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recover in between injections. The time points for ELISA on animals with multiple injections 

is the number of weeks after the last of the multiple injections. 

 

Sample preparation for RT-PCR and enzyme-linked immunosorbent assay (ELISA) 

 

 At specified time points, rats were euthanized, and retinas and choroids were 

dissected and removed from each eye. For RT-PCR, retinal and choroidal RNAs were 

extracted using TRIzol reagent (Invitrogen, Carlsbad, CA) and treated with DNase (Ambion, 

Austin, TX), according to the manufacturer’s instruction. cDNA was prepared using kit, 

which was then quantified with RT-PCR (StepOnePlus Real-time PCR system, Applied 

Biosystems) using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific). Primer 

sequences for EGFP and GAPDH for normalization are shown in Table 6.1. For ELISA, 

specimens were incubated with 0.1% Triton X-100 in PBS with protease inhibitors (Roche, 

Mannheim, Germany) for 2 hr on ice, sonicated for ~ 10 sec, and centrifuged. Using the 

supernatant, Bradford protein assay was used to first measure the total amount of protein, 

then EGFP ELISA kit (Abcam) was used to quantify the amount of EGFP protein expressed 

from the transfection, according to the manufacturer’s instruction. 

 

Sample preparation for ocular section and immunostaining 

 

 At specified time points, rats were euthanized, then eyes were removed, frozen in 

OCT, and cut into 10 μm frozen ocular sections. Frozen ocular sections were post-fixed in 

4% paraformaldehyde for 15 min for fluorescence imaging of EGFP expression directly. 
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Some frozen sections were incubated with FITC-labeled GSA-lectin for 2 hr at room 

temperature to visualize vasculature. Other sections were stained with rabbit polyclonal 

EGFP antibody and goat anti-rabbit secondary antibody conjugated with Alexa-594. 

 

Fluorescein Angiography 

 

 At specified time points post injection with pVEGF-carrying nanoparticles, rats were 

anesthesized and pupils dilated with tropicamide drops. 10% sodium fluorescein (Akron, Inc) 

was injected intraperitoneally, and fundus images were taken using Micron III with 

appropriate filter set for fluorescence angiography.  

 

6.3 Results & Discussion 

 

Nanoparticle preparation and characterization 

 

 Poly(beta-amino ester) (PBAE) polymer has been widely used in formulating 

nanoparticles for gene delivery because it is biodegradable and is positively charged and 

titratable due to tertiary amines along the backbone and secondary amines at the end-caps.19 

Another important property of PBAE is its structural diversity. Because the polymer is 

synthesized through Michael addition reaction, any molecule with a nucleophile, such as 

primary amine, can be a potential monomer that is reacted with a diacrylate monomer. This 

can lead to a library of PBAE polymers, from which the most optimal PBAE polymer and 

nanoparticle formulation condition can be empirically determined through high-throughput in 
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vitro screening of cellular uptake, transfection and cytotoxicity in a target cell type.20 In this 

work, 457 PBAE nanoparticles formulated at a 30 w/w polymer:DNA mass ratio was used 

based on a previously reported result from a high-throughout transfection screening with 

RPE cells and human retinal endothelial cells (HREC).21 457 PBAE polymer used in these 

studies had a molecular weight of 8100 Da based on 1H NMR analysis. 

 Tzeng et al. had shown previously that PBAE nanoparticles can undergo 

lyophilization and long-term storage at -20oC without losing the transfection efficacy.22 From 

a clinical translation perspective, it is critical to be able to store PBAE nanoparticles frozen in 

the absence of water, as the polymer is hydrolytically cleavable and PBAE nanoparticles can 

become unstable. Comparison of the PBAE 457 / DNA nanoparticle physical properties 

before and after lyophilization showed that the nanoparticles aggregate post lyophilization 

potentially due to aggregation from the loss of positive surface charge (Figure 6.2). Since the 

nanoparticles are not injected into the systemic circulation but rather injected locally to 

prevent the need for extravasation to get to the target site, increase in size can be tolerated. 

 

Short-term mRNA and protein transfection level detected with RT-PCR, ELISA, and 

fluorescence microscopy images 

 

 EGFP transfection with PBAE nanoparticles in retina and choroid was assessed at 2 

and 4 weeks post-injection by three methods. First, qRT-PCR of isolated mRNA specimens 

showed transcription of pDNA in both retina and choroid (Figure 6.3A). Choroid 

consistently had significantly higher mRNA level of more than two-fold than retina at 2 and 

4 weeks (p<0.0001). There was a small non-significant increase of mRNA expression in 
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retina between 2 and 4 weeks, whereas choroidal mRNA decreased by a small yet significant 

level (p<0.05). 

 Figure 6.3B shows the level of EGFP protein expression from ELISA. In retina, we 

saw a gradual increase in EGFP expression from 1 week to 4 weeks. Choroidal EGFP 

expression kinetic was bimodal, with significant decrease from 1 to 2 weeks, followed by 

significant increase from 2 to 4 weeks. With the exception of the 1-week time point, retinal 

and choroidal levels of EGFP were not significantly different. As it could be difficult for 

nanoparticles to diffuse to retina across choroid, the EGFP detected in retina could partly be 

due to EGFP initially expressed in choroid diffusing into retina. This follows the observation 

from RT-PCR that there is more mRNA transcription occurring in choroid due to 

transfection. Fellow control eyes that were injected with 10% sucrose showed EGFP 

concentration below the detection level for both retina and choroid, yielding negative mass of 

EGFP (data not shown).  

 Results from ELISA are further corroborated with fluorescence microscopy images of 

immune-stained ocular sections and whole mounts (Figure 6.3C/D). Ocular sections show 

high signal from choroid and RPE at 1 week and 4 weeks, whereas signal from retina 

increases with progressing time points. The overall EGFP signal from both retina and choroid 

is highest at 4 weeks. Whole mount fluorescent images also show that at 4 weeks, EGFP 

signal is strong and similar between retina and choroid. Interesting, fluorescence is mostly 

focused near the injection site and becomes faint and punctate on the opposite side of the eye 

from the injection site. This necessitates further optimization with nanoparticle formulation 

to aid with the longitudinal spread within the suprachoroidal space. As Kim et al. has shown 
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previously, a potential solution may be to use an excipient molecule, such as hyaluronic acid, 

that behaves as a non-Newtonian fluid to provide greater pressure once injected.23 

  

Long-term EGFP expression level quantified with ELISA 

 

 Based on high transfection of pEGFP with PBAE nanoparticles at 4 weeks, we further 

investigated EGFP expression at longer time points (Figure 6.4). Surprisingly, similar level 

of EGFP concentration was measured across the time points and still detectable at 8 months, 

which was the last time point that was tested. No statistical difference was found in the 

amount of EGFP between retina and choroid at any long-term time points, similar to the 2- 

and 4-week results. Of note, considerable variability was measured even from a higher 

number of samples, potentially caused by a combination of different experiment batches, 

delicate injection procedure, and ELISA. However, the presence of expressed EGFP at 8 

months is noteworthy for non-viral vectors that typically yield only transient expression of 

transfected gene(s) without further modified technologies, such as mini-circle plasmids or 

CRISPR/Cas-9 system.24 One potential explanation for the long-term expression of 

exogenous plasmid DNA could be the successful transfection of non-dividing cells in retina. 

Sustained expression of protein or presence of expressed protein could be a significant 

benefit for clinical translation of non-viral gene delivery platforms.  

 

Enhanced EGFP expression level from multiple dosing 
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 Another limitation of non-viral vectors in gene delivery in comparison to viral 

counterparts is a lower magnitude of expression. In order to produce higher level of proteins, 

we evaluated two different approaches without altering the nanoparticle itself. One method 

was to include an excipient, such as MgCl2, which has been reported to improve transfection 

efficacy in some applications.25 The second approach was to inject nanoparticles multiple 

times. To minimize potential toxicity and side effects, we limited the dosing to three 

injections, with consecutive injections spaced out by 4 days. Figure 6.5 shows that the 

addition of MgCl2 only had marginal increase in EGFP production at 4 weeks post-injection 

compared to nanoparticle alone that was not statistically significant. However, triple injection 

significantly increased the level of EGFP protein in retina by approximately 5-fold in 

comparison to the single injection group. There was no side effect observed from multiple 

dosing of nanoparticles, such as inflammation or death from increased intraocular pressure. 

Higher expression level carries the potential benefit of inducing stronger as well as longer 

biological effect from functional proteins.  

 

Neovascularization induced with pVEGF transfection  

 

 There are currently several rodent models of NVAMD and diabetic macular edema 

(DME), such as laser-induced CNV or transgenic mice models in which novel therapeutics 

can be evaluated.26 A gold standard animal model for evaluating ocular drugs is the rabbit 

model, but rabbit models for CNV and DME are limited. One emerging method, induction of 

leakage with a bolus VEGF injection, lacks the tunability often necessary, especially the 

kinetics of the duration of the effect. Ocular disease models based on nanoparticle-mediated 



182 
 

VEGF transfection and expression can have controllable VEGF expression level and 

duration, and hence be useful to test novel therapeutics. A preliminary functional study was 

conducted to test the level of neovascularization achieved after a single suprachoroidal 

injection of PBAE nanoparticles carrying pVEGF into a rat eye. As shown by angiography 

and GSA-lectin-stained whole mount as well as ocular section images in Figure 6.6A/B/C, 

eyes injected with nanoparticles formed extensive neovascularization network at 8 and 12 

weeks. Rats normally do not have much choroidal vasculature, hence GSA-lectin signal 

mostly translates to choroidal neovascularization as the effect of VEGF delivery. More 

quantitative assessment of the amount of VEGF expressed, area of neovascularization, and 

degree of fluid leakage would be necessary in future studies. There was no side effect 

associated with the injection in the animals. To our knowledge, this is the first reporting of 

inducing angiogenesis in rats using gene transfer technology with a non-viral vector. 

 

6.4 Conclusion 

 Suprachoroidal injection, a relatively unexplored route of ocular drug administration, 

of polymeric nanoparticles carrying plasmid DNA was investigated for clinical application in 

ocular diseases, such as NVAMD and DME. As a proof of concept, we successfully showed 

long-term expression of fluorescent protein up to 8 months in retina and choroid of Brown 

Norway rat eyes through RT-PCR, ELISA, and ocular section images. We also demonstrated 

triple dosing of nanoparticles can enhance the expression level of the encoded proteins five-

fold in the retina without causing adverse effect. Lastly, as a preliminary result to creating a 

NVAMD/DME animal model, we showed neovascularization in rat eye following the 

delivery of pVEGF with PBAE nanoparticles in SC space. 
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6.6 Figures & Tables 

 

 
 

 
Figure 6.1. Polymer synthesis. (A) 1,4-butanediol-diacrylate (B4) is reacted with 5-

amino-1-pentanol (S5) at 1.05:1 molar ratio in the first Michael addition reaction step, 

and (B) acrylate-terminated B4S5 base polymer was reacted with an excess of 1-(3-

aminopropyl)-4-methyl-piperazine (E7) molecule to yield B4S5E7 (457) PBAE 

polymer. 
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Figure 6.2. Nanoparticle characterization. (A) Hydrodynamic diameter and (B) zeta 

potential of 457 30 w/w nanoparticles pre- and post-lyophilization, measured by 

dynamic light scattering using Zetasizer Nano ZS. 
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Figure 6.3. Short-term EGFP expression following suprachoroidal injection of 

PBAE-pEGFP nanoparticle. (A) qRT-PCR of EGFP mRNA level in retina and 

choroid at 2 and 4 weeks post injection (n=4, mean ± SD, One-way ANOVA with 

Tukey post-hoc test), (B) ELISA of EGFP protein level in retina and choroid at 1, 2, 

and 4 weeks post injection (n=3 for 1 week, n=7 for 2 weeks, n=8 for 4 weeks, mean ± 

SEM), (C) ocular sections immunostained with EGFP antibody (a: suprachoroidal 

space, b: RPE/choroid, c: inner segment, scale bar = 25 μm), and (D) whole mount 

images showing EGFP fluorescence (scale bar = 50μm) 
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Figure 6.4. Long-term EGFP expression following suprachoroidal injection of 

PBAE-pEGFP nanoparticle. ELISA measurement of EGFP protein expression level 

at 2, 4, 6, and 8 months following suprachoroidal injection of PBAE-pEGFP 

nanoparticles (n ≥ 5, mean ± SEM). 
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Figure 6.5. Comparison of EGFP expression level following modifications to 

nanoparticle injection conditions. ELISA measurement of EGFP protein expression 

level at 4 weeks following (the last) suprachoroidal injection of PBAE-pEGFP 

nanoparticles (n = 10 for single injections, n ≥ 7 for triple injections, mean ± SEM, 

One-way ANOVA with Dunnett post-hoc test with comparison to single injection 

nanoparticle only control for retina and choroid). 
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Figure 6.6. Retinal neovascularization following suprachoroidal injection of 

PBAE-pVEGF nanoparticles. (A) Fundus (top) and fluorescent angiography  images 

visualizing IP-injected sodium fluorescein (bottom) at 4, 8, and 12 weeks post 

nanoparticle injection (white arrows: neovasculature, red arrows: leakage site), (B) 

fluorescent image of whole mount retinal (left) and choroidal (right) vasculature stained 

with GSA-lectin at 8 weeks post nanoparticle injection (scale bar = 100 μm), and (C) 

fluorescent image of ocular section stained with Hoescht and GSA-lectin (left) and 

GSA-lectin only (right) at 16 weeks post nanoparticle injection (scale bar = 100 μm). 

4 weeks 8 weeks 12 weeks A 

B 

C 
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     Table 6.1. Primer sequence used for qRT-PCR. 

 
 
 

 Forward primer (5’  3’) Reverse primer (5’  3’) 

EGFP CTACCCCGACCACATGAAGC TGCTCAGGTAGTGGTTGTCG 

GAPDH GTCTACTGGCGTCTTCACCA GTGGCAGTGATGGCATGG 
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Chapter 7 

 

Long-term efficacy against aberrant ocular neovascularization by 

sustained release of an anti-angiogenic peptide from intravitreal 

poly(lactic-co-glycolic acid) (PLGA) microparticles 

 

7.1 Introduction 

6Vasculature has an important function to provide nutrients and oxygen to the 

surrounding tissue. The formation of new vessels from pre-existing vasculature, or 

angiogenesis, through a precise balance between pro- and anti-angiogenic factors plays an 

important role at sites of damaged vasculature, such as in wound repair.1 On the other hand, 

an imbalance of these factors can lead to aberrant neovascularization and vascular leakage, 

which are often the pathologic trigger of a number of diseases, including neovascular age-

related macular degeneration (NVAMD) and macular edema (ME) in the eye. In NVAMD 

and diabetic macular edema (DME), which are the leading causes of vision loss in patients 

over 60 years of age2 and in working-age population3, respectively, vascular endothelial 

growth factor (VEGF) has a significant role in inducing neovascularization and fluid 

leakage4; hence, anti-angiogenesis has been widely investigated as the approach for 

therapeutic intervention.  

FDA-approved therapeutics currently used in clinic with anti-VEGF mechanism 

                                                        
This chapter was completed based on research in collaboration with Shmueli RB, Silva RL, Mirando AC, 

Pandey NB, Popel AS, Campochiaro PA, and Green JJ.  
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includes ranibizumab (Lucentis®) and aflibercept (Eylea). While these are a recombinant 

protein fragment or fusion protein, there are also a number of endogenous protein fragments, 

such as angiostatin and endostatin that have anti-angiogenic function.5,6 Moreover, a 

computational strategy to find the domains from serpin and collagen IV protein fragments 

that are critical for their anti-angiogenic activity has led to the development of short 

biomimetic, non-canonical peptides.7 Different variants of serpin- , somatotropin- , 

thrombospondin- , CXC chemokines- , and collagen IV-derived peptides have been shown to 

efficiently block neovascularization to inhibit tumor growth and metastasis.7-11 More 

recently, AXT107, a collagen IV-derived 20-mer peptide has been studied more extensively 

for its anti-angiogenic activity in NVAMD in vivo model.11 The peptide not only suppressed 

retinal neovascularization (NV) in three mouse models for NVAMD and ischemic 

retinopathy, but also showed prolonged significant reduction in VEGF-induced vascular 

leakage compared to aflibercept up to 2 months in rabbit eyes.  

Despite the functional efficacy of these therapeutics, they still have sub-optimal 

pharmacokinetics, which can necessitate frequent intravitreal injections and lead to poor 

patient compliance as well as potential safety risks.12 With the goal of providing long-term 

release and therapeutic effect of the drug from a single injection and reducing the number of 

injections required for continued therapy, our group has previously encapsulated one of the 

serpin-derived peptides (SP6001) in a biodegradable polymeric microparticle system.13 A 

single dosing of microparticles loaded with the peptide demonstrated long-term efficacy up 

to 14 weeks a mouse choroidal NV (CNV) model.  

 In this chapter of the thesis, we developed and investigated a long-term release 

system for AXT107, the aforementioned collagen IV-derived peptide, with biodegradable 
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polymeric microparticles. Poly(lactic-co-glycolic acid) (PLGA) polymer, which has been 

approved by the FDA for certain drug delivery systems and is a generally regarded as safe 

(GRAS) material, was used to formulate slowly degrading microparticles using a double 

emulsion fabrication method. We also tested two PLGA polymers with different 

hydrophobicity to explore differential release kinetics of the encapsulated peptide. Moreover, 

we followed a previously described method to elongate and increase the aspect ratio of these 

microparticles in order to reduce potential immune detection and ensure enhanced 

biocompatibility.14,15 Herein, we report an optimized safe, biodegradable polymeric 

microparticle (MP) delivery system that encapsulates and protects the biomimetic peptide 

from degradation, allows sustained release through polymer hydrolysis, and demonstrates 

prolonged anti-angiogenic effect in vivo in murine NVAMD models. 

 

7.2 Methods 

Materials 

 

 Poly(D,L-lactic-co-glycolic acid) (PLGA) of lactide:glycolide (65:35) Mw 40k–75k 

and lactide:glycolide (85:15) Mw 190k-240k], dimethylsulfoxide (DMSO), and 

dichloromethane (DCM) were purchased from Sigma Aldrich (St. Louis, MO). Poly(vinyl 

alcohol) (PVA) Mw 25,000 was purchased from Polysciences (Warrington, PA). Peptide 

(AXT107) was custom synthesized from New England Peptide (Gardner, MA). 

 

PLGA microparticle formation 
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  PLGA microparticles (MP) with AXT107 encapsulated were formed using the double 

emulsion method. Briefly, 100 – 200 mg of PLGA polymer with one of the two 

lactide:glycolide ratios was dissolved in DCM at 20 mg/mL, and the peptide was dissolved in 

DMSO at 20 mg/mL. The peptide solution (DMSO) was added into the polymer solution 

(DCM) at a v/v ratio of 1:20, which was determined by the desired theoretical peptide 

loading of 5% by mass of the total polymer. For blank microparticles without peptide 

encapsulation, pure DMSO was mixed with the polymer solution at 1:20 v/v ratio. After 

vortexing, the peptide/PLGA mixture was sonicated at an amplitude setting of ‘30A’ for 20 

sec with a tip sonicator (Misonix) for the first emulsion. This phase was then poured into 50 

mL of water-phase 1% PVA solution, and immediately homogenized at 3.8 krpm for 1 min 

(Ika T25 digital Ultra-Turrax). The emulsion was transferred to 100 mL of 0.5% PVA 

solution and stirred for 4 h to allow solvent removal. The resulting microparticles were 

washed three times by centrifuging at 4 krpm for 5 min, removing the supernatant, adding 40 

mL of fresh ddH2O, and resuspending the pellet by vortexing. Following the last wash, the 

supernatant was removed and approximately 5 mL of ddH2O was added to resuspend 

microparticles for lyophilization. All microparticles were stored in -20oC after lyophilization 

until use. 

 To make elongated, ellipsoidal PLGA MP, the method previously described by 

Meyer et al. was used.15 First, lyophilized PLGA MP was suspended in 0.5% PVA / 0.1% 

glycerol solution by trituration. 5 mL of particle solution was then cast onto a rectangular 

petri dish (5 x 7 cm, VWR International, Radnor, PA) and dried overnight. The dried film 

was mounted on to the automated stretching machine and placed inside a 60oC oven to raise 

the temperature above the glass transition temperature of PLGA polymer. After the film was 
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stretched 2.5-fold in length, it was cooled, re-dissolved in ddH2O, washed three times as 

described above, and lyophilized for storage in -20oC.  

 

Microparticle characterization 

 

 Scanning electron microscopy (SEM) images were used to characterize PLGA 

microparticles. A piece of carbon tape (Electron Microscopy Sciences, Hatfield, PA) was 

adhered on aluminum mounts. Then, lyophilized spherical and ellipsoidal PLGA MPs were 

placed on the tape using disposable plastic spatula. The samples were sputtered with 5 nm 

thick of gold/palladium, and imaged using LEO/Zeiss Field Emission SEM at the Johns 

Hopkins University School of Medicine Microscope Facility. ImageJ was used to analyze the 

size distribution and aspect ratio of PLGA MPs from SEM images. To visualize PLGA MPs 

that had been injected in the eye, the visible MP clump from dissected eye was removed and 

placed on the aluminum mount with carbon tape. Then, the entire aluminum mount was put 

into the lyophilizer overnight, and the samples were sputter-coated for imaging. 

 To quantify the amount of peptide loading in PLGA MP, either the BCA assay 

(Micro BCA Protein Assay Kit, Thermo Scientific) or gel electrophoresis (Bio-Rad Mini-

PROTEAN system) followed by silver stain analysis (SilverQuest™, Invitrogen) was used. 

For the first method, pre-weighed lyophilized microparticles and peptide standards at 100, 

50, 25, 12.5, 6.25, 3.125, and 1.5625 μg/mL dissolved in 5% DMSO / 95% 1X PBS solution 

were loaded to the BCA assay and analyzed as instructed by the manufacturer. Using a 

different approach, pre-weighed masses of both peptide-loaded and blank MPs were first 

dissolved with DMSO to 2 mg/mL, and then equal volume of sample buffer (24% glycerol in 
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1X PBS) was added to yield 1 mg/mL of dissolved MP solution. Two-fold dilution series of 

the MPs were prepared using 1:1 v/v of DMSO:sample buffer solution. Peptide standards of 

a known amount, including 0, 62.5, 125, 250, and 500 ng, as well as protein standard were 

also prepared at 1:1 v/v of DMSO to sample buffer. All samples were loaded into a 12-well 

10-20% Mini-PROTEAN tris-tricine gel (Bio-Rad), along with 10X tris/tricine/SDS running 

buffer (Bio-Rad) diluted to 1X with ddH2O. Gel electrophoresis was run at 110 mV for 45 

min or until the 2.5 kDa band of the protein standard was down to the lower half of the gel. 

The gel was silver-stained using the protocol provided by the manufacturer. Digital 

photograph of the silver-stained gel was analyzed with ImageJ to quantify band intensity. 

Peptide loading values were calculated with the following equations: 

 

Loading efficiency (LE) % =  
𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑙𝑜𝑎𝑑𝑒𝑑 𝑝𝑒𝑝𝑡𝑖𝑑𝑒

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑒𝑝𝑡𝑖𝑑𝑒
 ×  100 

Loading capacity (LC) % =  
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑙𝑜𝑎𝑑𝑒𝑑 𝑝𝑒𝑝𝑡𝑖𝑑𝑒

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟
 ×  100 

 

Peptide release from PLGA MP 

 

 To determine release kinetics of encapsulated AXT107, PLGA MP was incubated in 

1X PBS with 0.03% sodium azide at 20 mg/mL on a shaker at 37oC. Every week for the first 

week and every month thereafter, samples were briefly vortexed and centrifuged at 4 krpm 

for 5 mins to collect the supernatant. Fresh 1X PBS with 0.03% sodium azide solution was 

added to the samples and placed on a shaker at 37oC for the next time point. The collected 

supernatant was stored at -80oC until analyzed by the BCA assay for peptide concentration. 
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The same peptide standards as above were used for the calibration curve, and hence the 

sample was brought to 5% DMSO prior to BCA analysis.  

 

Inhibition and regression of choroidal neovascularization (CNV) in vivo 

 

 The experimental timeline for each in vivo study and animal model is outlined in 

Figure 7.1. Laser-induced CNV is a widely used mouse model to study a drug’s effect on the 

inhibition and regression of CNV.16 For an inhibition study, 1 μL of AXT107-loaded PLGA 

MP (spherical and ellipsoidal), blank PLGA MP, or 1X PBS as a control was first injected 

intravitreally in the eyes of 5 – 6 week old female C57BL/6 mice using the Harvard Pump 

Microinjection System (Harvard Apparatus, Holliston, MA) and pulled glass micropipettes as 

described previously.17 Based on the peptide loading capacity, the required concentration of 

PLGA MP was determined in order to deliver 1 μg/μL of peptide. For blank PLGA MP, the 

equivalent MP concentration as the peptide-loaded MP group was injected. CNV was 

induced by laser photocoagulation in the treated eyes at various time points, but at 14 days 

prior to the final end-time point for measuring MP efficacy over time on NV area inhibition. 

NV area was measured by perfusing the mice with 1 mL of 50 mg/mL fluorescein-labeled 

dextran (2 x 106 Da, Sigma-Aldrich) in 1X PBS and imaging choroidal flat mounts using 

fluorescent microscopy. Image-Pro Plus software (Media Cybernetics, Silver Spring, MD) 

was used for image analysis to quantify NV area. For regression, CNV was first induced in 

C57BL/6 mice 14 days prior to the final end-time point for measuring NV area. Then, at day 

7, a subset of mice was sacrificed to record the baseline area of NV, while other mice 

received a 1 μL intravitreal injection of AXT107-loaded PLGA MP, blank PLGA MP, or 1X 
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PBS as a control. At day 14, all eyes were harvested and NV area measured as described 

above. 

 

Vascular leakage from retinal neovascularization in rhoVEGF transgenic mice 

 

 At postnatal day 20 (P20), hemizygous rhoVEGF transgenic mice received a 1μL 

intravitreal injection of AXT107-loaded PLGA MP (spherical only), blank PLGA MP, or 1X 

PBS control. At P21, vascular leakage was visualized by immunostaining of albumin. 

Briefly, mice were perfused with PBS, and retinas were dissected, flat-mounted, and fixed in 

10% formalin for 4 h. After washing in PBS, retinas were incubated with normal donkey 

serum for 40 min at room temperature, followed by an overnight incubation in rabbit anti-

mouse albumin (Abcam) in 1% Triton solution and in Cy3-labeled donkey anti-rabbit 

secondary antibody (Jackson Laboratories, Inc) for 50 min at room temperature. Flat mounts 

are also stained with GSA-lectin to visualize neovascularization. 

 

Retinal detachment from tet/opsin/VEGF double transgenic mice as a model for macular 

edema 

 

 Tet/opsin/VEGF transgenic mice were intravitreally injected with 1μL intravitreal 

injection of AXT107-loaded PLGA MP (spherical only) or blank PLGA MP. At day 11 and 

57 post injection, mice were given drinking water containing doxycycline at 2 mg/mL to 

induce VEGF expression and retinal detachment. Three days after the initiation of 
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doxycycline, eyes were observed by spectral domain ocular coherence tomography (OCT) 

using Bioptigen Envisu R2200 to evaluate the retinal detachment.  

 

PLGA MP injection in the rabbit eye 

 

 Dutch belted rabbits were anesthetized with ketamine and xylazine and received 

intravitreal injection (inferior) of 100 μL of blank PLGA MP in 1X PBS at approximately 

100 mg/mL particle concentration.  At day 7, fundus (Micron III Retinal Imaging 

Microscope, Phoenix Research Laboratories, Inc) images were taken to observe MP 

deposition and eyes were harvested to cut 10-μm ocular sections, stain with hematoxylin and 

eosin-Y, and observe potential inflammatory response. 

 

In vitro depot formation test with PLGA MP in rabbit vitreous humor 

 

 Rabbit vitreous was obtained from Biochemed Services (Winchester, VA), stored in 

4oC, and used within 3 days of receipt. 100 mg/mL of spherical PLGA MP was prepared in 

water with 5% PEG 300 as well as 0.25% mannitol. 2.5 mg/mL of naked AXT107 peptide 

(stock concentration at 100 mg/mL in DMSO) was mixed in to the MP solution. 20 μL of this 

final solution was injected slowly into 300 μL of rabbit vitreous in a 1.5 mL eppendorf tube 

using a 28G insulin syringe. The injection was recorded using a cell phone camera. Then, the 

vitreous with injected MP was incubated in a rotator at 37oC for various time points, at which 

digital pictures of the tubes were taken. 
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7.3 Results & Discussion 

AXT107 peptide as an anti-angiogenic therapeutic 

 

Efficacy and biological mechanism of the biomimetic anti-angiogenic peptide, 

AXT107, in NVAMD and ME have been previously shown in a number of in vivo pre-

clinical models through a collaborative effort with the laboratories of Dr. Popel and Dr. 

Campochiaro. In the laser-induced CNV mouse model, which is the same model that was 

used to predict efficacy of the currently used therapy aflibercept, an intravitreal injection of 

AXT107 was able to suppress and regress CNV.12 The peptide also showed the ability to 

reduce vascular leakage from subretinal NV in rhoVEGF mice and prevent exudative retinal 

detachment in Tet/opsin/VEGF double transgenic mice. Additionally, in VEGF-induced 

leakage model in rabbits, AXT107 injected in the vitreous was able to significantly reduce 

the leakage long-term for at least 60 days, whereas aflibercept lost its efficacy between 30 

and 60 days. 

Translating a therapeutic to the clinic often carries more requirements than the 

functional efficacy. These factors include, but not limited to, the toxicity, pharmacokinetics, 

and side effects of the therapy or its administration route, which may affect overall patient 

compliance. Hence, in this chapter, polymeric microparticles were formulated with PLGA 

polymer to improve the delivery of AXT107, addressing these important criteria. PLGA MP 

releases the encapsulated drug slowly over time through polymer degradation, which allows 

for enhanced patient compliance due to prolonged effect from a single injection and prevents 

the potential of further vision loss from repeated dosing.4,13 The release kinetics from PLGA 

MP can be tuned by using commercially available PLGA polymers of different lactide to 
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glycolide ratios, such as 65:35, 75:25, and 85:15. Greater proportion of lactide than glycolide 

leads to a more hydrophobic PLGA polymer that degrades more slowly and releases the drug 

more slowly. Therefore, PLGA MP can be optimized to provide a drug release profile in 

consideration of the biology of the target disease as well as the physical accessibility of the 

site of disease. 

 

Spherical PLGA MP characterization and AXT107 release kinetics 

 

PLGA MPs were formulated using a standard double emulsion technique with two 

different PLGA polymers (L to G ratio of 65:35 and 85:15). 65:35 and 85:15 PLGA MPs are 

termed LMP and HMP, respectively, in this chapter. Figure 7.2A/B shows SEM images of 

LMP and HMP with 0 or 5% initial peptide loading. Loading efficiency was determined to be 

approximately 20%, yielding final loading of 1% by mass. The shape and surface topography 

of the microparticles are not affected from the peptide encapsulation. The size as the number-

average diameter of these microparticles analyzed using ImageJ was approximately 5 μm and 

showed no statistically significant difference between the microparticles of different PLGA 

polymers (Figure 7.2C). The error bar shows the standard deviation of particles within a 

batch.  

 As expected, PLGA MPs made with PLGA polymers of varying hydrophobicity 

showed differential rates of peptide release (Figure 7.3). The general trend between all MPs 

tested was an initial burst release, followed by a nearly zero-order kinetics with detectable 

release still occurring at 4 months. HMP resulted in a lower amount of burst release and 

slower rate afterwards than LMP, most likely due to the slower degradation of the PLGA 
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polymer and less effective diffusion of the hydrophobic peptide out from the particle. The 

continuous release of AXT107 for at least 4 months is an advantage of using such a 

polymeric delivery system, as it can lead to long-term efficacy from a single treatment. 

 

Efficacy in the laser-induced choroidal neovascularization mouse model 

 

 In this animal model, CNV is induced from the rupture of Bruch’s membrane by laser 

photocoagulation at the 9, 12, and 3 o’clock positions of the posterior pole.18 A drug can be 

injected before or after the laser photocoagulation to study either inhibition or regression of 

induced CNV. Both AXT107-loaded LMP and HMP were tested to investigate the long-term 

inhibition and short-term regression of CNV. LMP demonstrated release of the peptide and 

inhibition of CNV in vivo over 8 weeks, and peptide-loaded HMP showed release and 

inhibition of CNV area at 12 weeks compared to empty particles and at 16 weeks compared 

to its no injection control (Figure 7.4A/B). LMP and HMP both demonstrated significant 

regression of CNV 1 week post injection and 2 weeks post laser photocoagulation (Figure 

7.4 C/D). These results demonstrate that AXT107 released from the initial burst from the 

particles can immediately have anti-angiogenic activity. Long-term inhibition of CNV by 

AXT107-loaded HMP demonstrates one of the advantages of using a drug delivery system 

and could translate to a reduced needed frequency of injections in patients. Follow-up in vivo 

experiments in different animal models were conducted with HMP. 

 

Efficacy in reducing vascular leakage in rhoVEGF transgenic mouse model 
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 In rhoVEGF transgenic mouse model, mice start to have rhodopsin promotor-driven 

overexpression of VEGF in photoreceptors at postnatal day 7 (P7), which leads to areas of 

subretinal NV and vascular leakage by P21.19 At P14, microparticles were administered in 

order to study the effect of reducing vascular leakage. As shown in Figure 7.5A/B, AXT107-

loaded HMP resulted in significant reduction in total area of vascular leakage compared to no 

treatment group. The greater level of subretinal NV that causes such vascular leakage in the 

untreated compared to AXT107-loaded HMP-treated group is shown by GSA-lectin staining 

of flat mounts (Figure 7.5C). This study further confirms the fast-acting, early effect of the 

peptide-loaded HMP, which can be explained by the design of the delivery system to have an  

initial burst release of peptide to have a therapeutic effect on current disease. 

 

Efficacy in preventing retinal detachment in tet/opsin/VEGF double transgenic mouse model 

 

 While rhoVEGF transgenic mice will express VEGF without any initiator, production 

of high level of VEGF in photoreceptors can be temporally controlled in tet/opsin/VEGF 

double transgenic mice. Treatment with doxycycline in drinking water will drive transient 

increased expression of VEGF that results in severe vascular leakage and exudative retinal 

detachment within 4 to 5 days.20 Three-grade observation of retinal detachment (none, 

partial, or total) using optical coherence topography (OCT) was used as the functional read-

out to treatment with AXT107-loaded HMP versus empty HMP. As shown in Figure 7.6, at 

an early time point of 2 weeks post HMP injection and 5 days post doxycycline treatment, 

the empty HMP group showed total retinal detachment in all 9 eyes, whereas the peptide-

loaded HMP group prevented retinal detachment completely in 6 out of 7 eyes and partially 
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in the remaining 1 eye. The two-month time point in this aggressive leakage model showed a 

20% / 80% divide between total / partial retinal detachment in peptide-loaded HMP, in 

comparison to a 57% / 43% total / partial detachment in empty HMP group.  

 

Intravitreal injection of AXT107-encapsulated HMP in rabbit eye 

 

 To further investigate the PLGA HMP formulations, the delivery system was injected 

in Dutch belted rabbits. A 200-fold higher concentration of empty HMP as the concentration 

used in mouse models was introduced into the rabbit vitreous to investigate the tolerability of 

higher doses. As shown in Figure 7.7A, a high concentration of empty HMPs caused an 

immune response, evidenced by the infiltration of macrophages and neutrophils in H&E 

sections. Moreover, fundus images of the eye showed potential dispersion of the 

microparticles in the vitreous following intravitreal injection (Figure 7.7B), indicating the 

specific treatment could potentially cause interference with vision by not remaining as a local 

depot. 

 

Efficacy of ellipsoidal PLGA HMP in the laser-induced choroidal neovascularization model 

 

 Previous literature has reported the effect of anisotropic particle shape in evading 

immune response and prolonging bioavailability in the systemic circulation.14,21 In particular, 

Champion et al. has previously shown that when particles with higher aspect ratio and 

greater radius of curvature come into contact with macrophages on the surface with greater 

radius of curvature, there is a decreased rate of phagocytosis of the particles.14 We 
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formulated ellipsoidal PLGA HMP by physically stretching spherical PLGA HMP at above 

the glass transition temperature of PLGA polymer, with the hypothesis that the resulting 

anisotropic microparticles will prevent immune response in rabbit eyes. SEM images of the 

ellipsoidal PLGA HMP was used to measure an average aspect ratio of 4 ± 1 (Figure 7.8A). 

Interestingly, the release of AXT107 peptide from ellipsoidal PLGA HMP occurred faster 

than both spherical LMP and HMP (Figure 7.8B), potentially due to the increased surface 

area that is prone to polymer degradation and release. When injected into mice with laser-

induced CNV, ellipsoidal AXT107-loaded PLGA HMP showed significant inhibition of 

CNV area at 8, 12, and 16 weeks (Figure 7.8C). Improved efficacy at earlier time points 

compared to spherical PLGA HMP could be explained by the faster release of the peptide 

from ellipsoidal PLGA HMP. The results also indicate that the amount of peptide released at 

longer time points is still sufficient to have anti-angiogenic activity with ellipsoidal HMP for 

at least 4 months, and supports the evaluation of this system with larger animals in future 

studies. 

 

Depot formation of spherical PLGA HMP with AXT107 as an excipient 

 

 To further facilitate depot formation, we introduced additional molecules to the 

microparticle formulation. Our previous study with the naked AXT107 peptide showed that 

the peptide forms a self-assembled gel when injected into the vitreous on its own. Based on 

this feature, we mixed free AXT107 peptide with AXT107-loaded PLGA HMP, with the 

hypothesis that the self-assembly of AXT107 will cause depot formation of the HMP within 

the AXT107 gel. We evaluated the injection of HMP with naked AXT107 peptide into rabbit 
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vitreous in vitro, and observed the formation of a gel-like depot that was still visible after a 

24 h incubation on a rotator to imitate free animal movement (Figure 7.9). On the other 

hand, HMP alone in rabbit vitreous over time resulted in a cloudy solution, indicating free 

dispersion of the microparticles that may block the visual axis in vivo. Mixing AXT107 

peptide with the microparticles can provide an additional benefit of providing increased free 

peptide and corresponding therapeutic activity at shorter time periods as well.  

 

7.4 Conclusion 

PLGA microparticles were formulated to encapsulate a biomimetic, anti-angiogenic 

peptide, AXT107, as a local delivery vehicle to the intraocular vitreous space. Peptide-loaded 

microparticles composed of PLGA polymer with 85:15 lactide to glycolide ratio showed 

long-term zero-order release kinetics, which translated to short and long-term therapeutic 

effects in various NVAMD animal models. In a laser-induced CNV mouse model, AXT107-

loaded PLGA microparticles successfully inhibited NV for at least 16 weeks, while also 

regressing pre-formed NV. In VEGF-inducible rhoVEGF and tet/opsin/VEGF models, 

microparticles were able to significantly reduce vascular leakage as well as prevent retinal 

detachment. In order to further ensure safety in larger animal models including rabbits, the 

delivery system was further optimized using two approaches. The aspect ratio of 

microparticles was increased to evade immune response, and AXT107 peptide was added as 

an excipient to promote microparticle depot formation following injection. In summary, this 

therapy shows promise for the long-term treatment of NVAMD. 
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7.6 Figures & Tables 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1. Schematic diagram of animal models and protocols. PLGA microparticles are 

formed with AXT107 peptide encapsulated to be treated to three different mouse models of 

NVAMD / ME. Laser-induced CNV can be used to test inhibition and regression of CNV, 

rhoVEGF transgenic mice for vascular leakage resulting from subretinal NV, and 

tet/opsin/VEGF double transgenic mice for vascular leakage and exudate retinal detachment. 
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Figure 7.2. PLGA microparticle characterization. SEM images of empty and 1% AXT107-

loaded PLGA microparticles formed with (A) 65:35 and (B) 85:15 PLGA polymers (scale bar 

= 10 μm). SEM images were analyzed by ImageJ to determine (C) number-averaged diameter 

of the microparticles (mean ± SD, n > 200, One-way ANOVA with Tukey post-hoc test α = 

0.05). 
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Figure 7.3. AXT107 peptide release from PLGA microparticles in vitro. Peptide release 

from PLGA LMP and HMP is determined by incubating microparticles in 1X PBS at 37oC 

over time. Released peptide amount is detected and measured using micro BCA assay (n = 3, 

mean ± SD). 
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Figure 7.4. Efficacy in laser-induced choroidal neovascularization mouse model. Activity 

of AXT107 released from PLGA LMP and HMP in (A-B) inhibition and (C-D) regression of 

choroidal neovascularization area following laser photocoagulation. Neovascularization area 

is visualized by perfusing the animal with fluorescein-labeled dextran, and analyzed using 

Image-Pro Plus software (n > 7 for regression study, mean ± SEM, One-way ANOVA with 

Dunnett post-hoc test for regression to compare against baseline control, α = 0.05). 
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Figure 7.5. Efficacy in rhoVEGF transgenic mouse model. (A) Activity of AXT107 

released from PLGA HMP in reducing the area of vascular leakage from subretinal 

neovascularization (mean ± SEM, One-way ANOVA with Dunnett post-hoc test to compare 

against empty HMP control). Representative image of flat mounts stained with (B) albumin 

to calculate the area of vascular leakage and (C) GSA lectin to visualize neovascularization 

(scale bar = 100 μm) 
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Figure 7.6. Efficacy in tet/opsin/VEGF transgenic mouse model. (A) Activity of AXT107 

released from PLGA HMP in preventing exudative retinal detachment from vascular leakage 

following doxycycline-mediated VEGF overexpression. The degree of retinal detachment is 

evaluated in three grades: total, partial, and none.  
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Figure 7.7. Intravitreal injection of PLGA HMP in Dutch belted rabbits. Safety 

investigated in rabbit eye following intravitreal injection of a high concentration PLGA HMP. 

(A) Potential immune response indicated by macrophage and neutrophil infiltration (red arrow) 

into rabbit vitreous shown in H&E-stained ocular section (scale bar = 10 μm), and (B) Potential 

vision occlusion resulting from microparticle dispersion (red arrow) in vitreous shown through 

fundus image. (C) Representative SEM image of PLGA HMP harvested from rabbit eyes after 

injection showed similar morphology as pre-injection PLGA HMP. 
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Figure 7.8. Characterization and efficacy of ellipsoidal PLGA HMP. (A) SEM image of 

stretched PLGA HMP (scale bar = 10 μm, n > 200), (B) Release kinetics of encapsulated 

AXT107 from ellipsoidal PLGA HMP (n = 3, mean ± SD), and (C) Its long-term effect in 

inhibiting choroidal neovascularization area induced by laser photocoagulation in mice (n > 6, 

mean ± SEM, One-way ANOVA with Tukey post-hoc test α = 0.05). 
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Figure 7.9. Characterization of depot formation of PLGA HMP with the addition of 

free AXT107. (A) Digital photograph of PLGA HMP or PLGA HMP and AXT107 injected 

into a tube of rabbit vitreous in vitro and rotated over 24 hrs, showing a dense persistent 

depot of PLGA HMP plus AXT107, and (B) SEM image of PLGA HMP plus AXT107 

harvested from the rabbit eye following intravitreal injection. 
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