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Abstract 

Mechanosensitive hair cells of the inner ear and lateral line are specialized sensory cells 

that are required to evoke vital behaviors such as hearing, maintaining an upright posture and 

evading predators. To encode these sensory signals, hair cells use specialized ribbon synapses. 

Mitochondrial dysfunction has been implicated in hearing loss but the role of healthy 

mitochondria in hair cells or at ribbon synapses is unclear. I show that mitochondrial Ca2+ 

couples with presynaptic activity and plays distinct roles at hair cell synapses in mature and 

developing cells. I show that in mature hair cells, evoked-presynaptic-Ca2+ influx initiates 

mitochondrial-Ca2+ uptake; block of mitochondrial-Ca2+ uptake depresses presynaptic-Ca2+ 

activity and long-term block of mitochondrial-Ca2+ uptake can impact synapse integrity. I show 

that in developing hair cells, mitochondrial-Ca2+ uptake coincides with spontaneous presynaptic 

rises in Ca2+. Block of spontaneous presynaptic rises in Ca2+ or mitochondrial-Ca2+ uptake in 

developing hair cells enlarges presynaptic ribbon structure during synapse formation. Presynaptic 

ribbon size is composed primarily of the self-aggregating structural protein Ribeye. My work 

indicates that mitochondrial-Ca2+ may impact ribbon formation by modulating Ribeye-Ribeye 

protein interactions via the NAD(H) binding domain on Ribeye. Spontaneous mitochondrial-

Ca2+ loading lowers cellular NAD+/NADH and ultimately downregulates ribbon formation. 

Furthermore, I found that direct application of NAD+ or NADH can directly increase or 

decrease ribbon formation respectively. Our results propose that mitochondrial-Ca2+ is an 

important component of presynaptic function and formation. 

 

 



 iii 

Advisory committee: 

Dr. Katie S. Kindt (Thesis advisor) 

Dr. Paul A. Fuchs (Second reader) 

Dr. Marnie E. Halpern (Chair) 

Dr. Wei Li 

Dr. Chen-Ming Fan  



 iv 

Dedication 

I dedicate this thesis to my parents, Yuen Han and Tak Sing. 

 

A special thank you to Dr. Daniel Cummins, who shares his life with me, and provided plentiful 

encouragement and deoxygenated water to support this work.  

 

To every wonderful person who have influenced me and my work; know that I am grateful for 

your companionship and support. 

  



 v 

Acknowledgments 

I would like to extend a heartfelt thanks to past and current lab members for their suggestions, 

friendship, and influence. It cannot be said enough that Dr. Katie Kindt is everything I could 

hope to look for in a good mentor. Alisha Beirl is a wonderful friend and dependable source of 

amazing immunohistochemistry and dry humor. Former postbaccalaureate researcher Suna Li is 

a friend and an inspiration and provided helpful knowledge on zebrafish handling when I was 

learning the craft.  

Thank you to Dr. Doris Wu for her invaluable advice, especially in times of uncertainty. 

A special feeling of gratitude to my thesis committee, Drs. Paul Fuchs, Marnie Halpern, Wei Li, 

and Chen-Ming Fan for their support for both my academic endeavors and personal growth.  

Much thanks to the office of the Johns Hopkins Biology department, whose support is 

indispensable during my thesis work.  

My undergraduate research training from Dr. Yehoash Raphael and his laboratory staff, 

especially Dr. Don Swiderski and Lisa Beyer, shaped my interest which eventually cumulated in 

this thesis. 

  



 vi 

Table of Contents 

Abstract .......................................................................................................................................................... ii 

Dedication ................................................................................................................................................... iv 

Acknowledgments ....................................................................................................................................... v 

List of Tables .............................................................................................................................................. vi 

List of Figures ............................................................................................................................................. xi 

Abbreviations ............................................................................................................................................ xiii 

Chapter 1: Introduction ............................................................................................................................. 1 

Overview .................................................................................................................................................. 1 

Anatomy of the mammalian inner ear ................................................................................................. 4 

Hair cell ribbon synapse formation .................................................................................................... 25 

Ca2+ imaging using genetically-encoded Ca2+ indicators ................................................................. 28 

Mitochondrial Ca2+ uptake in hair cell physiology and pathology ................................................. 33 

Zebrafish posterior lateral line ............................................................................................................ 42 

Chapter 2: Synaptic mitochondria are critical for hair-cell synapse function and integrity ........... 48 

Abstract .................................................................................................................................................. 49 

Introduction ........................................................................................................................................... 50 

Results ..................................................................................................................................................... 52 

Mitochondria are located near presynaptic ribbons ............................................................................. 52 



 vii 

Mitochondrial-Ca2+ uptake at ribbons is MCU and CaV1.3 dependent ............................................ 55 

Mitochondrial-Ca2+ uptake occurs in cells with presynaptic-Ca2+ influx .......................................... 62 

Blocking mitochondrial-Ca2+ entry impairs presynaptic Ca2+ signals in mature hair cells ............. 65 

Evoked mitochondrial-Ca2+ uptake is important for mature synapse integrity and cell health .... 68 

MCU and CaV1.3 channel activities regulate subcellular Ca2+ homeostasis ..................................... 76 

Discussion .............................................................................................................................................. 80 

Role of evoked mitochondrial-Ca2+ uptake in mature hair cells ........................................................ 80 

Role of mitochondrial-Ca2+ in hair cell death and synapse integrity ................................................. 82 

Materials and Methods ......................................................................................................................... 83 

Zebrafish husbandry and genetics .......................................................................................................... 83 

Cloning and transgenic fish production ................................................................................................. 84 

Pharmacological treatment of larvae for immunohistochemistry ...................................................... 86 

In vivo imaging of evoked Ca2+ signals .................................................................................................... 86 

Electron microscopy ................................................................................................................................. 87 

Immunofluorescence staining and Airyscan imaging .......................................................................... 88 

Quantification and Statistical Analysis ............................................................................................... 89 

Analysis of Ca2+ signals, processing, and quantification ..................................................................... 89 

Image processing and quantification of synapse morphology ........................................................... 90 

Statistics ...................................................................................................................................................... 92 

Acknowledgements ................................................................................................................................... 93 



 viii 

Chapter 3: Spontaneous mitochondrial-Ca2+ uptake modulates ribbon synapse formation ......... 94 

Abstract .................................................................................................................................................. 95 

Introduction ........................................................................................................................................... 96 

Results ..................................................................................................................................................... 98 

Blocking mitochondrial-Ca2+ entry does not impair presynaptic-Ca2+ signals in immature hair 

cells .............................................................................................................................................................. 98 

Spontaneous presynaptic and mitochondrial-Ca2+ influx pair in developing hair cells ................ 102 

Spontaneous mitochondrial-Ca2+ uptake regulates ribbon formation ............................................ 108 

MCU and CaV1.3 channel activities regulate subcellular Ca2+ homeostasis ................................... 117 

Mitochondrial-Ca2+ levels regulate NAD(H) redox in developing hair cells ................................. 118 

NAD+ and NADH directly influence ribbon formation .................................................................. 122 

Discussion ............................................................................................................................................ 127 

Functional significance of ribbon size ................................................................................................. 127 

Ribeye and CtBP localization at synapses ........................................................................................... 129 

Role of spontaneous mitochondrial-Ca2+ uptake in developing hair cells ...................................... 131 

Materials and Methods ....................................................................................................................... 133 

Zebrafish husbandry and genetics ........................................................................................................ 133 

Cloning and transgenic fish production .............................................................................................. 133 

Pharmacological treatment of larvae for immunohistochemistry ................................................... 135 

In vivo imaging of baseline Ca2+ and NAD(H) redox ......................................................................... 135 



 ix 

In vivo imaging of evoked Ca2+ signals .................................................................................................. 136 

In vivo imaging of spontaneous Ca2+ signals ......................................................................................... 137 

Immunofluorescence staining and Airyscan imaging ........................................................................ 138 

Quantification and Statistical Analysis ............................................................................................. 139 

Analysis of Ca2+and NAD(H) signals, processing, and quantification ............................................ 139 

Image processing and quantification of synapse morphology ......................................................... 141 

Statistics .................................................................................................................................................... 143 

Acknowledgements ................................................................................................................................. 144 

Chapter 4: Conclusion ............................................................................................................................ 145 

Future directions ................................................................................................................................. 151 

Role of Ribeye NAD(H)-binding domain in presynaptic ribbon formation ................................. 151 

The role of mitochondrial-Ca2+ uptake in hair cells .......................................................................... 156 

Endoplasmic reticulum Ca2+ handling ................................................................................................. 161 

References ................................................................................................................................................ 172 

Appendix .............................................................................................................................................. 172 

Image analysis .......................................................................................................................................... 173 

Bibliography ......................................................................................................................................... 176 

Curriculum Vitae ................................................................................................................................. 239 



 x 

List of Tables 

Table 1.1. Estimated average ribbon number, size and synapse innervation in different organs 

and species .................................................................................................................................................. 18 

Table 2.1. Primers used to generate Tg(myo6b:mitoRGECO1)idc12Tg ..................................................... 85 

Table 3.1. Primers used to generate Tg(myo6b:Rex-YFP)idc13Tg ............................................................ 134 

 

  



 xi 

List of Figures 

Figure 1.1. Sensory hair cells that populate sensory epithelia of the auditory and vestibular organs 

utilize ribbon synapses. ............................................................................................................................... 5 

Figure 1.2 Hair cell and ribbon synapse structure and function ........................................................ 11 

Figure 1.3. Synaptic ribbon size variation between and within hair cells. ........................................ 19 

Figure 1.4 Transgenic biosensors expressed in zebrafish hair cells ................................................... 31 

Figure 1.5. Mitochondrial Ca2+ uptake influences mitochondrial respiration and NAD+/NADH 

redox homeostasis ..................................................................................................................................... 34 

Figure 1.6 Zebrafish lateral line afferent pathway for escape behavior ............................................ 44 

Figure 2.1. Mitochondrial-Ca2+ uptake initiates adjacent to ribbons. ................................................ 53 

Figure 2.2. The time course of mechanically-evoked mitochondrial-Ca2+ signals are longer-lasting 

than cytosolic-Ca2+ signals and is additive. ............................................................................................ 57 

Figure 2.3. Mitochondrial-Ca2+ uptake occurs in anterior lateral-line hair cells. ............................. 59 

Figure 2.4. Mitochondrial-Ca2+ uptake can impact presynaptic Ca2+ signals. .................................. 63 

Figure 2.5. Hair-cell bundle mechanotransduction Ca2+ signals and presynaptic Ca2+ signals 

during MCU and VDAC block. .............................................................................................................. 66 

Figure 2.6. Mitochondrial-Ca2+ is important for ribbon size and synapse integrity in mature hair 

cells. ............................................................................................................................................................. 70 

Figure 2.7. Ribbon and postsynapse size in mature ALL neuromasts. ............................................. 72 

Figure 2.8. MCU block does not impact postsynapse size in mature hair cells. .............................. 74 



 xii 

Figure 2.9. Cytosolic-Ca2+, mitochondrial-Ca2+ baseline measurements in mature hair cells. ....... 78 

Figure 3.1. Mitochondrial-Ca2+ uptake does not impact presynaptic Ca2+ signals in immature hair 

cells. ........................................................................................................................................................... 100 

Figure 3.2. Spontaneous presynaptic-Ca2+ influx is linked with Mitochondrial-Ca2+ uptake. ..... 104 

Figure 3.3. Spontaneous presynaptic and mitochondrial-Ca2+ signals are abolished by CaV1.3 

channel antagonist isradipine. ............................................................................................................... 106 

Figure 3.4. Mitochondrial-Ca2+ regulates ribbon formation. ............................................................ 110 

Figure 3.5. Ribbon and postsynapse size in immature ALL neuromasts. ...................................... 112 

Figure 3.6. MCU and CaV1.3 block do not impact postsynapse size. ............................................. 115 

Figure 3.7. Cytosolic-Ca2+, mitochondrial-Ca2+ and NAD+/NADH redox baseline 

measurements. ......................................................................................................................................... 120 

Figure 3.8. NAD+ and NADH directly influence ribbon formation. ............................................. 123 

Figure 3.9. NAD+ and NADH treatment do not impact postsynapse size. .................................. 125 

Figure 4.1.  Schematic model of mitochondrial-Ca2+ activity and function in developing and 

mature hair cells. ...................................................................................................................................... 146 

Figure 4.2. Contacts between mitochondria and ER cisternae. ....................................................... 163 

Figure 4.3. ER-localized Ca2+ indicator R-CEPIA1-er ...................................................................... 168 

Figure A1. Image analysis scheme for identification and measurement of Ribeye and MAGUK 

puncta. ....................................................................................................................................................... 174 

 

  



 xiii 

Abbreviations 

#- number (of) 

%- percent 

°C- degree Celsius 

ATP- adenosine 5´-triphosphate 

Ca2+- calcium 

DNA- deoxyribonucleic acid 

dpf- days post-fertilization 

hr- hour/hours 

Hz- Hertz 

IMM- inner mitochondrial membrane 

K+- potassium 

min- minute/minutes 

mito- mitochondrial 

mM- millimolar 

mRNA- messenger ribonucleic acid 

Na+- sodium 

NAD- nicotinamide adenine dinucleotide 

NM- neuromast 

nm- nanometer 

OMM- outer mitochondrial membrane 

P- postnatal day 

PCR- polymerase chain reaction 

Redox- reduction-oxidation 

RFP- red fluorescent protein 

ROI- region of interest 

ROS- reactive oxygen species 

s- second(s) 

TEM- transmission electron microscopy 

µM- micromolar 

µm- micrometer 

  



 1 

Chapter 1: Introduction 

Overview 

In the U.S., 40 million people suffer from hearing loss (Blackwell et al., 2014). 

Hearing loss can be a result of many factors including genetic predisposition, environmental 

factors such as noise-exposure, as well as aging (Blackwell et al., 2014). In the majority of 

these cases, hearing loss is sensorineural, resulting from a disruption of auditory sensory cells 

or afferent neurons. Emerging research indicates that noise-exposure and aging may result in 

synaptopathy, a type of sensorineural hearing loss where the synapses that connect auditory 

sensory cells and afferent neurons are damaged or lost (Furman et al., 2013; Kujawa and 

Liberman, 2009; Stamataki et al., 2006; Wan and Corfas, 2015). Acquired synaptopathy-

related hearing impairment may contribute to auditory pathologies such as tinnitus—ringing 

or buzzing heard without an external stimulus, and hyperacusis—abnormal sensitivity to 

moderate sounds (Knipper et al., 2013; Roberts et al., 2010). Therefore, the study of auditory 

sensory cell synaptic function, formation and maintenance is essential to understanding 

sensorineural hearing loss. 

The sensory cells of the inner ear are notable for their hair-like projections on their 

apical cell surface and are aptly named—hair cells. In mammals, hair cells detect sensory cues 

including sound, as well as gravity and acceleration. Hair cells use specialized synapses 

rapidly and efficiently to convert these sensory cues into electrical signals that are carried to 

the brain. Proper hair cell function is closely tied to local changes in intracellular Ca2+. In hair 

cells, both the detection and transmission of sensory cues trigger local changes in 
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intracellular Ca2+. The apical hair-like stereocilia projections, also called hair bundles, detect 

sensory stimuli. Deflection of hair bundles causes a cationic influx of ions, including Ca2+, 

into the hair bundles. This apical influx of cations depolarizes the membrane to trigger 

voltage-dependent presynaptic-Ca2+ influx that drives neurotransmitter release. If either 

apical mechanosensitive channels or presynaptic-Ca2+ channels are disrupted, sensory 

neurotransmission is lost. Loss of either of these Ca2+ signals results in sensorineural hearing 

loss in mice and humans (Michalski and Petit, 2015; Moser and Starr, 2016). Some examples 

include mutations in pcdh15 (Ahmed et al., 2001; Alagramam, 2001; Alagramam et al., 2001; 

Seiler et al., 2005) or cdh23 (Bolz et al., 2001; Palma et al., 2001; Söllner et al., 2004), which 

are required for apical influx of Ca2+ into hair bundles, and mutations in cav1.3 (Namkung et 

al., 2001; Platzer et al., 2000; Sidi, 2004), which disrupt presynaptic-Ca2+ influx.  

Within all cells, including hair cells, both intracellular Ca2+ and mitochondrial Ca2+ 

are tightly regulated. For example, in developing hair cells, spontaneous presynaptic Ca2+ 

activity in auditory and vestibular hair cells is an essential component of synapse and circuit 

formation (Holman et al., 2019; Tritsch et al., 2007; Johnson et al., 2013). In mature hair 

cells, excessive increase in intracellular Ca2+ can lead to mitochondrial-Ca2+ overload and 

ultimately cell death and hearing loss (Esterberg et al., 2013). Mitochondrial-Ca2+ overload is 

associated with excitotoxic insults such as excess noise and ototoxin exposure (Esterberg et 

al., 2013, 2014; Jensen-Smith et al., 2012; Patron et al., 2013; Qiu et al., 2013; Wang et al., 

2019). Further, after these insults, dying hair cells display signs of mitochondria distress, such 

as swollen cristae and generation of reactive oxygen species (ROS) (Esterberg et al., 2014, 

2016; Mangiardi et al., 2004; Olivari et al., 2008; Owens et al., 2007; Sha et al., 2001). In 

further support of the importance of mitochondria, several forms of hearing loss in humans 

are associated with mutations in mitochondrial genes (Ballana et al., 2006; Kameoka et al., 
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1998; van den Ouweland et al., 1992; Reardon et al., 1992; Scaglia et al., 2006; Verhoeven et 

al., 1999; Vialettes et al., 1997). Based on these studies, it is clear that mitochondria are 

critical for hair cell function and survival and for proper hearing. The importance of 

mitochondria in hair cells make the mitochondria a potential therapeutic target for hearing 

loss prevention. Despite the well-defined role of mitochondria in pathology, the inherent 

roles mitochondria and mitochondrial Ca2+ play in hair cell and hearing are less defined.  

In the following sections, I outline the state of knowledge on the function of 

mitochondria in hair cells and more broadly the role mitochondria play at synapses. I also 

outline the development and function of the sensory hair cell synapse. Overall, 

understanding the formation and integrity of these synapses is critical to the protection and 

restoration of these structures, contributing to the development of therapies that treat and 

prevent hearing loss. 
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Anatomy of the mammalian inner ear 

Animals have evolved specialized sensory organs to detect environmental sounds, as 

well as their own movement, and postural adjustments to gravity. Mammals achieve these 

behaviors using their inner ear, which contains a cochlea to detect sound, and a vestibular 

labyrinth to detect gravitational, linear and angular acceleration (Figure 1.1A). Amphibians 

and aquatic animals have an additional, related sensory organ—the lateral line—that is used 

to detect water flow and pressure. 
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Figure 1.1. Sensory hair cells that populate sensory epithelia of the auditory 

and vestibular organs utilize ribbon synapses.  
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A. The mammalian inner ear detects auditory and vestibular cues using specialized 

sensory epithelia. The fluid-filled compartments of the inner ear (black outline) are illustrated 

from a dorsal-view. Auditory signals are detected by the organ of Corti (yellow), while linear 

and angular acceleration and gravity are detected by 5 vestibular sensory epithelia (blue): 2 

maculae and 3 cristae within semicircular canals. Enlarged are representative drawings of 

cross sections through a crista (A’), macula (A’’) and organ of Corti (A’’’). The organ of Corti 

is made up of two population of hair cells that form a defined and repeating spiral pattern 

through the organ. Inner hair cells (light yellow) form a single row closer to the cell bodies 

of the afferent neurons (neural), while outer hair cells (dark yellow) form 3 rows adjacent to 

the inner hair cells. B, Zebrafish larvae lateral line distribution. Black dots along the body 

represent location of hair cells. B’, Each black dot in B is a cluster of hair cells (white) tightly 

packed within a structure called a neuromast. The neuromast hair cells are located just 

beneath the zebrafish skin. A, anterior; C, crista; D, dorsal; M, macula; ooC, organ of Corti 
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In mammals, hearing begins in the spiral-shaped cochlea. Sound, conducted through 

air, is converted into oscillations in fluid pressure along the spiral of the cochlea (Von 

Békésy and Wever, 1989). Subtle variations in the mechanical properties along the cochlea 

tune different segments to vibrate in response to different sound frequencies (Emadi et al., 

2004; Karavitaki and Mountain, 2007; Naidu and Mountain, 1998; Reichenbach and 

Hudspeth, 2014; Teudt and Richter, 2014). On the other hand, the sense of balance requires 

the vestibular labyrinth. In mammals, the labyrinth is a fluid-filled pouch that can be 

subdivided into 5 sensory epithelia: 3 semicircular canals and 2 maculae (Eatock and Songer, 

2011; Khan and Chang, 2013). Each canal is a loop that contains an ampulla, a bulbous sack 

which houses a flexible barrier called the cupula on top of a sensory organ, the crista 

ampullaris. Mammals have 3 canals aligned in near perpendicular directions to enable 

optimal rotational sensitivity in each corresponding plane (Cullen and Minor, 2002). 

Additionally, mammals have two maculae to detect linear acceleration—the utricle and 

saccule (Fritzsch and Beisel, 2004).  

Teleost fishes, including zebrafish, also have an inner ear. In zebrafish, the larval 

inner ear is structured similar to the mammalian inner ear, although no obvious auditory 

organ equivalent to the mammalian cochlea is present (Platt, 1993). Instead, auditory signals 

are detected by a macular epithelium (Ladich, 2014; Popper and Fay, 1993, 2011). Zebrafish 

larval ears contain an anterior and a posterior macula, upon which an otolithic structure is 

anchored to translate stimuli to the macular hair cells (Popper et al., 2005). Additionally, 3 

semicircular canals support the detection of rotational movements (Platt, 1993). Upon 

adulthood, the fish ear develops an additional macula, the lagena (Haddon and Lewis, 1996). 

The inner ear of the zebrafish larva is functional by 4 days post-fertilization (dpf) and is able 

to support behaviors such as acoustic startle and righting reflexes (Eaton and Farley, 1973; 
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Eaton et al., 1977a; Moorman et al., 1999; Riley and Moorman, 2000). In addition to an inner 

ear, teleosts, amphibians and certain aquatic animals also have a related sensory organ system 

called the lateral line. The lateral line system is present on or near the surface of the skin as a 

dispersed collection of flow-detecting epithelia called neuromasts (Coombs and 

Montgomery, 1999; McHenry et al., 2009; Montgomery et al., 2003).  

To detect auditory and vestibular cues, these sensory organs use sensory receptors 

called hair cells (Figure 1.1A’-A’’’). In the auditory organ of the mammalian cochlea, there 

are two types of hair cells, inner and outer hair cells. When sound travels within the cochlea, 

the vibration of is detected by inner hair cells (Figure 1.1 A’’’, Fuchs et al., 2003; Nouvian et 

al., 2006). To further enhance frequency specificity, the vibration is filtered and amplified in 

mammals by the uniquely electromotile outer hair cells (Liberman et al., 2002; Mellado 

Lagarde et al., 2008; Reichenbach and Hudspeth, 2014; Zheng et al., 2006). In the vestibular 

portion of the mammalian inner ear, rotation of the head is propagated to the fluid within 

the semicircular canals, which is detected by hair cells in the cristae (Figure 1.1A’). 

Additionally, linear acceleration from movement or gravity pulls the otoconia, a gelatinous 

matrix weighted with calcium carbonate crystals, which is detected by hair cells in the utricle 

and saccule (Figure 1.1A’’; Anniko et al., 1988; Jones et al., 1999, 2004; Riley and Moorman, 

2000; Salvinelli et al., 2004; Simmler et al., 2000; Sollner et al., 2004; Trune and Lim, 1983). 

In the larval zebrafish inner ear, the vestibular organs follow a similar activation paradigm—

the 3 cristae act as rotation sensors, while the maculae respond to linear acceleration and 

gravity. In the zebrafish inner ear, one of the maculae also acts to detect sound in the place 

of the mammalian organ of Corti (Platt, 1993). In adult zebrafish, an additional macula, the 

lagena, also aids in hearing (Popper and Fay, 2011). 
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The hair cells within these sensory organs are specialized epithelial cells with distinct 

apical and basal structures. These distinct structures impart unique functional domains 

within hair cells (Figure 1.2A). In the apical compartment of hair cells are mechanosensory 

bundles that function to transform mechanical stimuli into membrane depolarizations. 

Mechanosensory hair bundles are composed of actin-rich protrusions, called the stereocilia 

(Flock and Cheung, 1977; Wiederhold, 1976). Stereocilia contain mechano-electrical 

transduction (MET) channels, non-specific cation channels that pass both K+ and Ca2+ 

(reviewed in Cunningham and Müller, 2019). Deflection of the hair bundle mechanically 

opens the MET channels and initiates a depolarization of the hair cell membrane. In contrast 

to neuronal action potential, in which depolarization generates an all-or-none response, hair 

cell depolarizations are graded. Hair cells use graded depolarizations to encode stimulus 

intensity (Corey and Hudspeth, 1983; Torre et al., 1995).  

MET opening in the hair bundle instantly depolarizes the electrically compact hair 

cell, including the basal compartment (Figure 1.2A). The basal compartment contains a 

specialized synapse, known as a ribbon synapse (Figure 1.2B). The role of this synapse is to 

convert graded membrane potentials of the hair cell into action potentials in the innervating 

afferent neuron. At the hair cell synapse, membrane depolarization opens voltage-gated L-

type Ca2+ channels (CaV1.3) localized at the presynapse (Figure 1.2B-C; Brandt et al., 2003; 

Sidi, 2004). The resulting Ca2+ influx triggers synaptic vesicle fusion and release of the 

neurotransmitter glutamate into the synaptic cleft (Figure 1.2C; Obholzer et al., 2008; 

Pangršič et al., 2010; Ruel et al., 2008; Seal et al., 2008; Vincent et al., 2014). When released 

into the cleft, glutamate binds and opens AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid) receptors at the afferent postsynapse to allow an influx of cations into the 



 10 

postsynapse (Glowatzki and Fuchs, 2002; Sebe et al., 2017). At a sufficient intensity of cation 

influx, an action potential is generated and propagates down the neuronal fiber to the brain.  
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Figure 1.2 Hair cell and ribbon synapse structure and function  
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A, Deflection of the apical stereocilia bundle depolarizes the hair cell membrane to trigger 

synaptic activity at the presynapse. B, Hair cell presynapse structures include synaptic 

vesicles and ribbon body (orange), which is tethered by Bassoon protein (purple) to the 

presynapse membrane. C, At the presynaptic membrane, hair cell depolarization opens the 

voltage-gated Ca2+ channel CaV1.3. Nearby synaptic vesicles (white circle) containing 

neurotransmitter glutamate (pink circle) fuse in response to Ca2+ influx and release glutamate 

into the synaptic cleft. The released glutamate binds to and activates the ionotropic 

glutamate receptors AMPAR at the postsynapse of the afferent neuron. Aff, afferent neuron; 

AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; HC, hair cell; 

SV, synaptic vesicle. 
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The postsynaptic innervation patterns of hair cells differ between sensory organs. 

Auditory inner hair cells are innervated by a bouton-like postsynapse. Each auditory inner 

hair cell is innervated by many afferent neurons, and each afferent neuron forms a single 

contact or synapse (Liberman, 1982; Liberman et al., 1990). In contrast, auditory outer hair 

cells are innervated by relatively few afferent neurons, and each afferent neuron can form 

bouton-like synapses on many outer hair cells (Berglund and Ryugo, 1987; Liberman et al., 

1990). In the mammalian vestibular epithelia, hair cells are classified as “type I” and “type II” 

based on their morphology (Desai et al., 2005a, 2005b). Similar to auditory hair cells, 

mammalian type II vestibular hair cells are also innervated by bouton-like postsynapses, and 

similar to the outer hair cells, one afferent neuron can form many synapses on multiple hair 

cells (Eatock and Songer, 2011). In comparison, type I vestibular hair cells are innervated by 

an enveloping, or calyceal type of postsynapse (Lysakowski and Goldberg, 1997). The 

innervation pattern of the lateral line hair cells of aquatic and amphibian animals is most 

similar to type II vestibular hair cells, where afferent neurons form bouton-like postsynapses 

onto multiple hair cells (Dow et al., 2018; Nagiel et al., 2008, 2009).  

Hair cell ribbon synapse structure and function 

Classical neuronal presynapse activity is limited by the refractory period of the 

neuron as well as the supply of releasable neurotransmitter local to the presynapse. Because 

the onset, duration and intensity represent important aspects of the sensory information hair 

cells receive, the synapses in hair cells must rapidly and continuously transmit information to 

the innervating afferent neuron (Matthews and Fuchs, 2010). Hair cells accomplish these 

requirements by using specialized ribbon synapses. Ribbon synapses also are utilized in 

retinal bipolar and photoreceptor cells, in electroreceptors, and in pinealocytes (Fritzsch and 
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Wahnschaffe, 1983; Gleisner et al., 1973; Matsushima et al., 1983; Sjöstrand, 1958; Smith and 

Sjostrand, 1961; Vollrath et al., 1983). In hair cells, ribbon synapses respond to graded 

membrane depolarizations to quickly and continuously transmit sensory information without 

a refractory period and can encode signal duration as well as intensity (van Hateren, 1992; de 

Ruyter van Steveninck and Laughlin, 1996).  

To perform these tasks, hair cell synapses have adapted structures and molecules 

from the classical neuronal synapse to create a specialized ribbon synapse. Both neuronal 

and ribbon synapses concentrate neurotransmitter release machinery to form a presynaptic 

density. Hair cells additionally have a unique presynaptic structure called a “ribbon” (Figure 

1.2B). Ribbons are visible in electron microscopy as a characteristic electron-dense structure 

(for example: Figure 2.1C). The presence of this density distinguishes ribbon synapses from 

classical neuronal synapses (Smith and Sjostrand, 1961). In the hair cells, ribbons are thought 

to be important for the overall function of the synapse. For example, mutant mice lacking 

ribbons were found to have altered synaptic function and afferent neuron firing behavior 

(Becker et al., 2018; Jean et al., 2018; Maxeiner et al., 2016). Loss of ribbon densities in 

zebrafish was found to disrupt presynaptic active zone formation and alter synapse function 

(Lv et al., 2012; Sheets et al., 2011). Overall these works indicate that the ribbon is required 

for the fidelity of synaptic activity in hair cells. 

The main component of ribbons is the protein Ribeye. Ribeye was first identified 

from immunoprecipitation of ribbons from the bovine retina, and later from the mouse 

retina as well as the chicken basilar papilla (Schmitz et al., 2000; tom Dieck et al., 2005; 

Uthaiah and Hudspeth, 2010). Ribeye is a protein of around 120 kDa that is unique to 

vertebrates (Schmitz et al., 2000). Ribeye is a splice variant of the transcriptional co-repressor 
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Carboxyl-terminal binding protein 2 (CtBP2) (Schmitz et al., 2000). Ribeye protein is divided 

into 2 main domains, the A- and B-domain. The unique N-terminus of Ribeye is the A-

domain. The C-terminal terminus of Ribeye is the B-domain, which is nearly identical to full-

length CtBP2.  

Because the B-domain of Ribeye is essentially CtBP2, a considerable amount of 

information on this domain is inferred from studies on CtBP2. The B-domain and CtBP2 

both contains a nicotinamide adenine dinucleotide (NAD+, NADH or NAD(H)) binding site 

(Magupalli et al., 2008; Schmitz et al., 2000). Studies on CtBP2 have shown that NAD(H) 

binding leads to dimerization and possibly tetramerization of CtBP2 (Bellesis et al., 2018; 

Fjeld et al., 2003; Thio et al., 2004). Interestingly, cellular metabolism, reflected in the 

NAD+/NADH ratio, may be coupled to dimerization of CtBP2; this dimerization is 

important for the transcriptional corepressor function of CtBP2. In hair cells, no clear 

function is assigned to the B-domain of Ribeye. But in photoreceptors, the B-domain of 

Ribeye has been shown to interact with other presynaptic proteins (Alpadi et al., 2008; 

Dembla et al., 2014; Venkatesan et al., 2010; Wahl et al., 2016). However, these interacting 

partners identified in photoreceptors—Munc119, ArfGAP3, GCAP2, and Tulp2—are not 

known components of the hair cell ribbon synapse. Despite the divergent molecular 

composition of ribbon synapses in photoreceptors and hair cells, the B-domain in hair cells 

is poised to interact similarly with presynaptic proteins: in zebrafish hair cells, Ribeye B-

domain has been shown to localize preferentially within the ribbon near the presynaptic 

membrane (Sheets et al., 2014). The localization of Ribeye B domain near the presynapse 

suggests that presynaptic structures may attract the Ribeye B domain preferentially or 

alternatively, repel the A domain.  
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Recent work has confirmed that Ribeye protein is required to form electron-dense 

ribbons in hair cells. For example, Ribeye knockdown has been associated with the loss of 

presynaptic ribbon structure in mice and in zebrafish (Becker et al., 2018; Jean et al., 2018; 

Sheets et al., 2011; Wan et al., 2005). In zebrafish, morpholinos have been used to transiently 

knockdown Ribeye in zebrafish. This work found that the Ribeye knockdown led to a loss of 

ribbons and an overall disruption of synapse formation in hair cells (Sheets et al., 2011). A 

more recent study in zebrafish introduced a frameshift mutation in ribeye and observed less 

severe changes on ribbon synapse structure (Lv et al., 2016). In this frameshift mutant, 

ribbons no longer appear electron dense in TEM, were smaller, and associated with fewer 

synaptic vesicles. Interestingly, both studies found that Ribeye knockdown disrupted CaV1.3 

Ca2+ channels clustering at the synapse. In contrast to this work on Ribeye loss of function, 

complementary work in zebrafish also examined hair cells that exogenously overexpressed 

Ribeye. In this work, Ribeye overexpression produced enlarged ribbons (Sheets et al., 2011, 

2017). Overall, these studies show Ribeye protein is a critical component of ribbon synapses.  

Ribbons can occur in a variety of numbers and sizes depending on the sensory 

organ, stage of development, and species of the organism (Table 1; reviewed in Moser et al., 

2006). Studies indicate that differences in ribbon size within or between hair cell types can 

correlate with differences in ribbon synapse function. For example, in the mammalian 

vestibular system, the ribbons of type II dimorphic hair cells in the striola region are larger 

than those in the extrastriola region (Figure 1.3A-A’; Lysakowski and Goldberg, 1997). 

Functionally, afferent neurons that innervate hair cells with larger ribbons in the striola have 

lower rates of spontaneous activity compared to afferents that innervate the extrastriola 

(Eatock et al., 2008; Goldberg et al., 1984; Risner and Holt, 2006). Similarly, in the 

mammalian auditory system, inner hair cells utilize at least two populations of ribbon 
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synapses that can be distinguished based on ribbon size and the threshold sensitivity of the 

innervating afferent neuron (Figure 1.3B-B’; Liberman and Liberman, 2016; Liberman et al., 

2011; Song et al., 2016). It is believed that these functional differences may be important to 

increase the range of sensitivity for auditory hair cells (Ohn et al., 2016). In addition to work 

in mammals, in zebrafish lateral line hair cells, ribbon size was enlarged to directly 

demonstrate the effect of ribbon morphology on ribbon synapse function. In zebrafish, 

synapses with enlarged ribbons had afferent neurons with lower spontaneous activity (Sheets 

et al., 2017). Furthermore, the onset encoding, or the timing of the first afferent spike upon 

stimulation, was significantly delayed at synapses with larger ribbons. Together, these 

findings suggest that synaptic function is related to differences in ribbon size, albeit in 

perhaps unexpected ways. 
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Table 1.1. Estimated average ribbon number, size and synapse innervation 

in different organs and species 

Hair cell 
type  

Publication Species Age Subtype # ribbon 
per hair 
cell 

Average 
ribbon 
diameter 
(nm) 

Postsynapse  
shape 

Afferent 
neuron 
organization 

Post-
hearing 
IHC 

(Khimich et al., 
2005) 

mouse 3-8 
weeks 

- 9.8 ± 0.9 260 

Bouton 1 hair cell to 
1 neuron 

(Sonntag et al., 
2018) 

mouse P27-
P30 

apical 11.8 ± 1.1 - 

   midbasal 16.3 ± 7 - 
(Johnson et al., 
2008) 

gerbil P21-
P69 

apical 20.6 ± 0.6 114 ± 20 

   basal 22.4 ± 0.8 - 
(Hashimoto et al., 
1990) 

guinea 
pig 

adult apical 17 - 

   basal 26 - 
(Liberman et al., 
1990) 

cat adult abneural - 180 

   neural - 420 

Vestibular 

(Lenzi et al., 
1999) 

frog - saccular - 468 ± 65 

Bouton 
Many hair 
cells to 1 
neuron 

(Lenzi et al., 
2002) 

frog - saccular, 
inhibited  

- 401 ± 22 

   saccular, 
stimulated  

- 391 ± 15 

(Lysakowski and 
Goldberg, 1997) 

chinchilla adult type I 15-20 90 
Calyx 

Many hair 
cells to 1 
neuron 

   type II,  
central 

15-22 Similar to 
type I Bouton 

Many hair 
cells to 1 
neuron 

Lateral 
line 

(Sheets et al., 
2017; Suli et al., 
2016) 

zebrafish 5 dpf posterior 
lateral line 
neuromast 

2-4 288  
(.065 μm2, 
assume 
circular)  

Bouton 
Many hair 
cells to 1 
neuron 
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Figure 1.3. Synaptic ribbon size variation between and within hair cells. 
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A, Some vestibular epithelia are structurally segregated into distinct regions. For example, the 

mammalian utricle contains a striola and an enveloping extrastriolar region. A’ type II hair 

cells (blue) are found in the striolar and extrastriolar regions. Ribbon synapses of these type 

II hair cells in the striolar region are on average larger than those in the hair cells within the 

extrastriolar region. B, Synapses of cochlear hair cell may be described according to their 

location (neural or abneural) relative to neuronal somata ganglion within the center of the 

spiral shaped cochlea. B’, Auditory inner hair cell (yellow) synapses may also be sorted into 

two ribbon sizes; larger ribbons preferentially reside on the neural side of the cell.  
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Although Ribeye is an important determinant of ribbon size at ribbon synapses, it is 

not present at classic neuronal presynapses. Despite this difference, both hair cell and 

neuronal synapses share similar structural and functional requirements. At both synapses, 

during synaptic transmission, neurotransmitters are focally released at a specialized area of 

the membrane called the presynaptic “active zone”. The active zone contains an 

arrangement of synaptic vesicles and exocytotic machinery in close association with Ca2+ 

channels organized and maintained by specialized structural proteins. At both hair cell and 

classical neuronal synapses, synaptic vesicles are filled with neurotransmitters, then recruited 

to the synapse, and ultimately their contents are released by fusion of the vesicles with the 

cell membrane.  

In hair cells, synaptic vesicles are filled with the neurotransmitter glutamate much the 

same way as at classical synapses—through vesicular glutamate transporters. To fill vesicles 

with glutamate, hair cells utilize Vesicular glutamate transporter 3 (Vglut3), a molecule that is 

critical for hearing and balance in zebrafish, mouse and humans (Obholzer et al., 2008; Ruel 

et al., 2008; Seal et al., 2008). At classical neuronal synapses, vesicle fusion is mechanically 

driven by SNAP (soluble N-ethylmaleimide sensitive factor attachment protein) and SNARE 

(SNAP receptors) complexes (Fernández-Busnadiego et al., 2010). For example, at neuronal 

synapses, SNARE proteins such as Vesicle-associated membrane proteins (VAMP1 and 2), 

Syntaxin 1A and SNAP-25 are required for exocytosis (Chen and Scheller, 2001; Söllner et 

al., 1993). Biochemical and immunohistochemical approaches indicate that these key 

proteins are also present in hair cells (Safieddine and Wenthold, 1999; Uthaiah and 

Hudspeth, 2010). On the other hand, genetic studies indicate that these proteins are not 

required for hair cell synaptic function (Nouvian et al., 2011). Similarly, essential proteins 

required for neuronal synapses such as Synaptophysin 1 and 2 (Safieddine and Wenthold, 
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1999) and Complexins (Strenzke et al., 2009) also are not present in hair cells. Therefore, 

currently it is not clear whether SNARE proteins are required or what equivalent release 

machinery is required for exocytosis at hair cells synapses (Matthews and Fuchs, 2010; 

Safieddine et al., 2012). One clear exception is the hair-cell-specific Ca2+-sensor Otoferlin, 

discussed later in this section. 

Although SNARE proteins may not be required at hair cell synapses, other important 

structural components are shared between neuronal and ribbon synapses. Two examples are 

the large structural proteins Bassoon (400 kDa) and Piccolo/Aczonin (550 kDa). Bassoon 

and Piccolo are structurally related proteins with multiple domains for interacting with many 

presynaptic protein partners—including each other (reviewed in: Gundelfinger and Fejtova, 

2012; Gundelfinger et al., 2016; Torres and Inestrosa, 2018). At the neuronal presynapse, 

Bassoon and Piccolo colocalize (Dani et al., 2010). Both proteins interact with CtBP1, a 

protein which is in the same family as Ribeye (Ivanova et al., 2015). While Bassoon and 

Piccolo proteins share many homologous regions, some regions and therefore functions are 

protein specific (tom Dieck et al., 1998; Fenster et al., 2000; Gundelfinger et al., 2016; Wang 

et al., 1999). Bassoon and Piccolo contribute to synapse function by forming a scaffold that 

clusters presynaptic components near the presynaptic active zone in neurons (Cases-Langhoff 

et al., 1996; tom Dieck et al., 1998; Hagiwara et al., 2005; Ohtsuka et al., 2002; Takao-Rikitsu 

et al., 2004). Both proteins are involved in many aspects of neuronal synapse function, such 

as synaptic vesicle replenishment and vesicle localization near the active zone (Altrock et al., 

2003; Hallermann et al., 2010; Mendoza Schulz et al., 2014; Mukherjee et al., 2010; Parthier et 

al., 2018). These proteins also bridge the presynapse with the actin cytoskeleton (reviewed in: 

Ackermann et al., 2015; Gundelfinger et al., 2016), and are required for general synaptic 
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maintenance such as turnover of presynaptic components (Okerlund et al., 2017; Waites et al., 

2013).  

In hair cells, Bassoon also serves an important presynaptic structural role at ribbon 

synapses. Bassoon is a key scaffolding protein at the presynaptic ribbon and is located 

beneath the ribbon (Figure 1.2B). In inner hair cells, Bassoon is required to anchor the 

ribbon body to the active zone, and disruption of Bassoon results in floating ribbons (Buran 

et al., 2010; Frank et al., 2010; Jing et al., 2013; Khimich et al., 2005; Meyer et al., 2009). 

Ribbon synapses have a smaller (about 330 kDa), ribbon-specific splice isoform of Piccolo 

named Piccolino (Dick et al., 2001; Khimich et al., 2005; Michanski et al., 2019; Regus-Leidig 

et al., 2013). Unlike Bassoon, which is found beneath the ribbons, Piccolino is localized to 

the ribbon (Michanski et al., 2019). Currently, the function of Piccolino at hair cell ribbon 

synapses remains unexplored. However, a clue to Piccolino function may be found in recent 

studies on ribbon synapses in retinal photoreceptor cells, where Piccolino interacts with 

Ribeye through PXDLS-motifs (Figure 1.2B; Müller et al., 2019) 

Neurotransmitter released during hair cell synaptic activity is stored in synaptic 

vesicles associated with or near the ribbon. At neuronal presynapses, synaptic vesicles are 

docked or tethered to the plasma membrane by filaments in preparation for release. The 

number of filament-tethered vesicles decreases during synaptic activity, which suggests that 

the filaments are a component of synaptic vesicle turnover (Fernández-Busnadiego et al., 

2010). At ribbon presynapses, synaptic vesicles are similarly tethered by thin filaments to the 

plasma membrane, and also to the ribbon (Buran et al., 2010; Khimich et al., 2005; Lenzi et 

al., 1999; Smith and Sjostrand, 1961). Presynaptic-Ca2+ influx occurs near ribbons in hair 

cells to drive vesicle exocytosis, and it is likely that the membrane-docked vesicles fuse first 



 24 

at stimulus onset (Frank et al., 2009; Zenisek et al., 2003). A distinct “readily-releasable pool” 

(RRP) of vesicles at ribbon synapses can be defined by capacitance measurements. This RRP 

may be the functional equivalent of the membrane-docked vesicles (Krinner et al., 2017; 

Moser and Beutner, 2000; Pangršič et al., 2010; Parsons et al., 1994; Schnee et al., 2005; 

Spassova et al., 2004). In hair cells, the RRP requires anchored ribbons, which implies that 

the ribbon may play a role in in minimizing the delay between stimulation and onset of 

neurotransmitter release (Jing et al., 2013; Khimich et al., 2005). 

At both classical and ribbon synapses, synaptic vesicle release is triggered by 

presynaptic-Ca2+ influx. At hair cell ribbon synapses, this coupling is performed by the L-

type Ca2+ channel CaV1.3 (Figure 1.1B’; reviewed in: Pangršič et al., 2018). Similar to Vglut3, 

CaV1.3 is critical for hearing in zebrafish, mice and humans (Brandt et al., 2003; Namkung et 

al., 2001; Platzer et al., 2000; Sidi, 2004). In mouse and zebrafish, CaV1.3 is not required for 

ribbon synapse formation, but it is required for synapse stability (Nemzou N et al., 2006; 

Sheets et al., 2012). At neuronal synapses, the Ca2+ sensors Synaptotagmins I and II are 

required to couple Ca2+ influx to neurotransmitter release. These Ca2+ sensors are absent 

from the hair cell ribbon synapse (Pang and Südhof, 2010; Safieddine and Wenthold, 1999). 

Instead, hair cells appear exclusively to use Otoferlin to couple Ca2+ influx to 

neurotransmitter release (Roux et al., 2006; Vincent et al., 2014; Yasunaga et al., 1999). 

Similar to mutations in vglut3 and cav1.3, mutations in otof in zebrafish, mice and humans lead 

to deafness and loss of balance (Roux et al., 2006; reviewed in: Pangršič et al., 2012). 

 Currently many structural aspects required for hair cell ribbon synapse function are 

still not known. More insights on functions of identified or unidentified proteins, and 

presynapse organization may be gained from drawing parallels from presynaptic proteins of 

neuronal synapses and ribbon synapses in the retina.  
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Hair cell ribbon synapse formation 

In order for proper hair cell synapse function, ribbons must first form properly. 

Among hair cell types and species, ribbon synapse development is most thoroughly 

described in mammalian auditory inner hair cells (Fuchs et al., 2003; Nouvian et al., 2006). In 

mice, hearing onset occurs at postnatal day 12 (Mikaelian and Ruben, 1965). But prior to 

hearing onset, ribbon synapses are formed and refined in developing inner hair cells. While 

mouse auditory hair cells are developed in utero (Anniko, 1983), the majority of synapse 

formation and refinement occurs after birth (Roux et al., 2009; Sobkowicz et al., 1986). 

During synapse formation and until hearing onset, immature inner hair cells engage in 

spontaneous bursts of action potentials that drive auditory afferent neuron activity (Johnson 

et al., 2011; Marcotti et al., 2003; Tritsch and Bergles, 2010). In developing mouse hair cells, 

bursts of action potentials require presynaptic Cav1.3 channels (Brandt et al., 2003; Eckrich 

et al., 2018; Platzer et al., 2000). Therefore, even without auditory input, ribbon synapses 

develop in an environment with robust presynaptic activity.  

During this time, in mammalian hair cells, ribbon precursors are thought to develop 

extrasynaptically as electron-dense spheres already surrounded by a halo of vesicles 

(Sobkowicz et al., 1986). These extrasynaptic ribbon precursors are thought to migrate to the 

base of the hair cell and form larger structures where opposing post-synaptic structures are 

developing (Dow et al., 2015; Michanski et al., 2019; Safieddine et al., 2012; Sobkowicz et al., 

1982, 1986). In mice, as the synapse matures, presynaptic CaV1.3 channel distribution is 

refined in concert with the postsynaptic glutamate receptors to form mature synapses (Frank 

et al., 2010; Johnson et al., 2009; Wong et al., 2014).  
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The structural changes that occur during inner hair cell synaptic maturation are 

reflected in electrophysiological measurements (Johnson et al., 2009; Kros, 2007; Safieddine 

et al., 2012). For example, in auditory hair cells of postnatal rodents, the exocytotic 

machinery measured by membrane capacitance strengthens as the ribbon is anchored and 

ribbons synapse structure matures (reviewed in: Kros, 2007; Safieddine et al., 2012) (Johnson 

et al., 2009). Prior to these evoked measurements, spontaneous presynaptic-Ca2+ influx is 

already present in the rodent auditory hair cells in utero (Johnson et al., 2011; Marcotti et al., 

2003; Tritsch and Bergles, 2010). During the period of synapse refinement and CaV1.3 

clustering, total, whole-cell presynaptic-Ca2+ influx is decreased, followed by a gradual rise 

and greater efficiency in triggering exocytosis (reviewed in: Kros, 2007; Safieddine et al., 

2012). 

The formation of zebrafish ribbon synapses has not been studied at this level of 

detail. But interestingly, work in zebrafish suggests that CaV1.3 activity regulates ribbon size 

during a critical period of development–block of CaV1.3 activity leads to the formation of 

larger ribbons (Sheets et al., 2012). The impact of CaV1.3 activity on ribbon formation 

suggests a form of presynaptic-activity-dependent regulation of synapse maturation. 

However, it is not known how presynaptic-Ca2+ influx mechanistically influences ribbon 

formation, and how the sensitivity to presynaptic-Ca2+ influx is lost upon hair cell 

maturation. 

Ribbon formation is postulated to depend on self-assembly of Ribeye proteins via 

Ribeye-Ribeye interactions (Magupalli et al., 2008). In support of this idea, exogenous 

expression of Ribeye in non-hair cell culture was shown to be sufficient to form size-limited 

Ribeye puncta reminiscent of ribbons (Chen et al., 2018; Magupalli et al., 2008). Both in vivo 
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studies and cell culture work have explored how Ribeye domains interact with each other to 

achieve self-aggregation. For example, the unique N-terminal A-domain of Ribeye has been 

shown to be sufficient for Ribeye protein self-aggregation in vitro and in vivo (Chen et al., 

2018; Magupalli et al., 2008).  In contrast, the B-domain alone does not self-aggregate into 

multimeric puncta.  

Although the B-domain does not self-aggregate, it can interact with other B-domains 

and A-domains in a manner regulated by NAD(H) binding site within the B-domain. This 

effect of NAD+ and NADH on Ribeye is proposed to modulate preference for A-domain to 

B-domain interaction and reduce A-domain-driven Ribeye self-aggregation. For example, the 

presence of NAD+ or NADH has been shown to affect Ribeye self-aggregation in vitro 

(Magupalli et al., 2008). Further, in the context of ribbons in hair cells, the B-domain has 

been shown to concentrate at the interface between the ribbon and the presynaptic 

membrane (Sheets et al., 2014). This indicates that the Ribeye B-domain could aid in seeding 

Ribeye protein at the presynapse.  

Although the role of the B-domain of Ribeye remains unclear, the B-domain is 

essentially the well-studied transcriptional co-repressor CtBP2. In CtBP2, NAD(H) binding 

preferentially leads to dimerization and possibly tetramerization (Bellesis et al., 2018; Fjeld et 

al., 2003; Thio et al., 2004). This mechanism couples to the NAD+/NADH ratio, which 

serves as a reflection of cellular metabolic state, and enhances CtBP2 transcriptional 

corepressor function. Currently, whether Ribeye B domain at ribbons can detect 

NAD+/NADH ratio in order to regulate Ribeye self-aggregation has not yet been 

demonstrated in vivo. In more general terms, it is not known if NAD+ and NADH levels 

within hair cells relate to Ribeye-Ribeye interactions and ribbon formation in vivo.  
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Ca2+ imaging using genetically-encoded Ca2+ indicators 

Many important aspects of hair cell function and development are reflected by the 

location and duration of Ca2+ influx into the cell. These Ca2+ signals represent a valuable 

readout of both spontaneous activity and evoked presynapse activity. For example, prior to 

hearing onset, immature hair cells engage in spontaneous presynaptic-Ca2+ activity akin to 

action potentials that drive auditory afferent neuron activity (Johnson et al., 2011; Marcotti et 

al., 2003; Tritsch and Bergles, 2010). In mature hair cells, presynaptic-Ca2+ influx is an 

integral part of evoked synaptic activity that triggers synaptic vesicle exocytosis to release 

neurotransmitter (Roux et al., 2006; Vincent et al., 2014).  

A simple and effective way to visualize Ca2+ flux in the hair cell is with fluorescent 

Ca2+-sensitive dyes. Based on their Ca2+-binding affinity, they can be used to visualize Ca2+ in 

distinct subcellular domains within the hair cell. These dyes can be introduced into the hair 

cell by a pipette that breaches the cell membrane. Alternatively, if the dye is cell permeant, it 

can enter the hair cell directly. Using these methods, Ca2+ influx into hair bundles has been 

observed (Lumpkin and Hudspeth, 1995; Ricci and Fettiplace, 1998; Beurg et al., 2010). Such 

approaches have been used to determine the site of Ca2+ influx and the location of MET 

channels in hair bundles (Lumpkin and Hudspeth, 1995; Ricci and Fettiplace, 1998). Ca2+ 

dyes can also achieve sufficient resolution to visualize subcellular Ca2+ signals in other 

locations within inner hair cells. For example, in combination with a fluorescent peptide to 

mark the presynapse, Ca2+-sensitive dyes have been used to study the function of Ca2+ flux at 

the presynapse of auditory hair cells (Meyer et al., 2009; Neef et al., 2009, 2018). Ca2+-

sensitive dyes have also been used to study the interaction between postsynaptic efferent and 

presynaptic afferent Ca2+ domains (Moglie et al., 2018), and demonstrate the prevalence of 
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ER Ca2+-induced Ca2+ release (Kennedy and Meech, 2002). Overall, Ca2+-sensitive dyes have 

been successfully used for detailed study of subcellular Ca2+ flux at the single cell level. 

Another powerful way to measure Ca2+ signals is by using genetically-encoded Ca2+ 

indicators (GECIs). These indicators are modified fluorescent proteins that are fused to 

Ca2+-binding motifs. When Ca2+ levels increase, these modified fluorescent proteins increase 

in fluorescence intensity (Higashijima et al., 2003; Zhang et al., 2016). Because GECI are 

genetically encoded, they can be expressed in specific cells types. In addition, GECIs can be 

localized subcellularly to specifically measure Ca2+ domains. Subcellular Ca2+ domains can be 

detected by localizing GECIs to organelles within cells. In hair cells, GECIs have been used 

to reveal critical Ca2+-dependent events, such as MET and presynaptic function (Higashijima 

et al., 2003; Zhang et al., 2016).   

Ca2+ imaging using GECIs is a valuable way to complement powerful 

electrophysiological methods to study hair cell function. Numerous studied have shown that 

whole-cell electrophysiological recordings can yield nuanced measurement of ion channel 

function within hair cells and at the afferent postsynapse with high temporal resolution 

(reviewed in: Fuchs, 2005; Example: Goutman and Glowatzki, 2007). Unfortunately, using 

this approach, it is difficult to localize where these signals are occurring within the cell. In 

addition, it is not possible to isolate both MET and presynaptic-Ca2+ currents in the same 

cell (Figure 1.4A). Furthermore, in contrast to electrophysiology, it is more feasible to use 

Ca2+ image to make simultaneous measurements from multiple hair cells (Figure 1.4).  

Overall, Ca2+ imaging can enable powerful studies of discrete Ca2+ domains, as well 

as system-wide activity patterns among multiple cells. For example, previous work in 

zebrafish has shown that measurements using membrane-localized GECIs enable 
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simultaneous measurements of MET-channel- and CaV1.3-dependent Ca2+ influx within the 

same hair cell as well as among populations of hair cells (Zhang et al., 2018). GECIs have 

also been localized to different subcellular structures within cells by other alteration to 

protein localization. For example, in zebrafish hair cells, mitochondria- and ER-localized 

GECIs were used to show the temporal dynamic of Ca2+ influx into each organelle prior to 

ototoxin-induced hair cell death (Figure 1.4D MitoGCaMP3; Esterberg et al., 2014). Overall 

this work indicates that GECIs can be used to reveal coordinated Ca2+ activity of targeted 

cell types within an organ with subcellular resolution. This level of information is 

immensely useful for studying Ca2+ signals present at developing and mature hair cell 

synapses in the context of the whole hair cell.  
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Figure 1.4 Transgenic biosensors expressed in zebrafish hair cells 
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A, Illustration of a neuromast and the imaging planes used to study within lateral line hair 

cells from apex to base. Localization of membrane- (green), cytosol- (yellow), ribbon- 

(magenta), or mitochondria-localized (pink) fluorescent proteins are illustrated in their 

respective colors. B, Example live lateral line hair cells at 5 dpf expressing membrane 

localized GCaMP6s (GCaMP6sCAAX) highlight hair bundles. This localized indicator can 

be used to detect Ca2+ changes associated with mechanotransduction. C-F, Live neuromast 

hair cells imaged from midbody to base. Hair cells of 5 dpf larvae are expressing 

MitoRGECO1 (C, magenta), MitoGCaMP3 (D, green) and GCaMP6sCAAX (C, green) to 

measure mitochondrial- and presynaptic localized Ca2+. Ribeye a-tagRFP (D, magenta) can 

also be used detect ribbon location to measure Ca2+ influx relative to ribbon location. In 

addition, CytoRGECO1 (E) or Rex-YFP (F) can be used to show to show cytosolic Ca2+ and 

NAD+/NADH changes respectively. Scale bars = 5 µm in B-F. 
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Mitochondrial Ca2+ uptake in hair cell physiology and 

pathology 

It is clear that evoked and spontaneous synaptic activity coincides with Ca2+ influx 

into hair cells; but activity does not end when Ca2+ enters the cell. Ca2+ can be extruded, 

buffered or further sequestered within subcellular domains. One major subcellular domain 

that can sequester intracellular Ca2+ is the mitochondria. In many cell types, mitochondria 

have been shown to take up and store Ca2+ (Carafoli and Lehninger, 1971; Williams et al., 

2013). Within cells, mitochondrial-Ca2+ uptake can play a role in modulating bioenergetics, 

shaping intracellular Ca2+ changes, and triggering or preventing cell death (Glancy and 

Balaban, 2012; Orrenius et al., 2003). 

Mitochondria take up and sequester Ca2+ within 2 compartments, the intermembrane 

space and matrix. These compartments are segregated by 2 phospholipid bilayers: the outer 

mitochondrial membrane (OMM) which separates the cytosol from the intermembrane 

space and inner mitochondrial membrane (IMM), which defines the boundary between the 

intermembrane space and matrix. Mitochondria-specific channels in the outer and inner 

membranes directs the influx and efflux of mitochondrial Ca2+ (Figure 1.5). The outer 

mitochondrial membrane is permeable to Ca2+ mainly through the highly conserved, 30-35 

kDa Voltage-dependent anion channel (VDAC) (reviewed in: Colombini, 2012). As a porin, 

VDAC is permeable to ions and metabolites of up to 5 kDa (Shoshan-Barmatz et al., 2010). 

VDAC is voltage-gated and is permeable to both anions and cations including Ca2+ 

(reviewed in: De Pinto et al., 2008; Gincel et al., 2001; Shoshan-Barmatz and Gincel, 2003).   
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Figure 1.5. Mitochondrial Ca2+ uptake influences mitochondrial respiration 

and NAD+/NADH redox homeostasis 
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Ca2+ enters and exits the mitochondria through mitochondria-specific channels. A, 

Mitochondria are composed of two phospholipid bilayers (black line): the outer 

mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). The 

intermembrane space resides between the OMM and the IMM, and the matrix is defined by 

the IMM. A’, Matrix Ca2+ levels may regulate mitochondrial respiration. Ca2+ (green arrow) 

passes the OMM from the cytosol (top) through the voltage-dependent anion channel 

(VDAC). Mitochondrial Ca2+ uniporter (MCU) complex and mitochondrial Na+-Ca2+ 

exchanger (NCLX) are embedded in the IMM and are the major pathways for Ca2+ influx 

into and efflux from the mitochondrial matrix (bottom). Glycolysis (pink arrows) in the 

cytosol feeds metabolic products into the tricarboxylic cycle (TCA, purple arrows), which 

drives the electron transport chain (ETC, black) to generate ATP. Glycolysis, TCA cycle and 

ETC processes reduce or oxidize nicotinamide adenine dinucleotide (NAD, orange arrows) 

between the oxidized form (NAD+) and the reduced form (NADH). While NAD(H) cannot 

permeate the IMM, its electrons can be shuttled indirectly through the IMM. Mitochondrial 

Ca2+ modulates ETC activity, as well as isocitrate dehydrogenase (IDH) and α-ketoglutarate 

dehydrogenase (αKGDH) activity in TCA. Mitochondrial Ca2+ also regulates the rate of 

electron exchange between the NAD(H) pool in the matrix and in the cytosol. 
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Ca2+ enters the inner mitochondrial membrane (IMM) mainly through the 

mitochondrial-Ca2+ uniporter (MCU) complex (Baughman et al., 2011; Chaudhuri et al., 

2013; De Stefani et al., 2011). The MCU complex is composed of the MCU channel, and 

associated proteins that modulate channel function, such as MICU1 and MICU2 (reviewed 

in Giorgi et al., 2018). The MCU complex is a highly Ca2+ selective channel (Baradaran et al., 

2018; Kirichok et al., 2004). However, channel opening is inhibited until cytoplasmic-Ca2+ 

reaches around 20 µM (Csordás et al., 2013; Kamer and Mootha, 2014), which is high when 

compared to the average cytosolic Ca2+ concentration of around 100-200 nM (Carafoli, 2003; 

Chaudhuri et al., 2013; Williams et al., 2013). However, if mitochondria and its associated 

MCU complex are near sources with the potential for large changes in intracellular Ca2+, 

such as near Ca2+ channels, these domains of high Ca2+ concentration can enable the fast, 

MCU-dependent uptake into the mitochondrial matrix (Csordás et al., 1999; Filadi and 

Pozzan, 2015; Pinton et al., 1998).  

High concentrations of Ca2+ have been observed at hair cell synapses. For example, 

live Ca2+ imaging of turtle hair cells has shown CaV1.3-dependent microdomain Ca2+ domains 

at the presynapse. In these microdomains, Ca2+ concentration is estimated to reach at least 

85 µM (Tucker and Fettiplace, 1995). Based on these concentrations, it is possible that 

MCU-dependent uptake could occur at ribbon synapses, but currently this has not been 

demonstrated. However, there is precedent in organellar uptake of presynaptic-Ca2+ in the 

hair cell. At mammalian hair cell presynapses, the ER is thought to help maintain a low level 

of cytosolic-Ca2+ by taking up excess Ca2+ at the presynapse (Kennedy, 2002; Tucker and 

Fettiplace, 1995). 
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Opposing mitochondrial-Ca2+ influx is its efflux. Ca2+ efflux is mainly sodium-

dependent (reviewed in: Sekler, 2015; Carafoli, 1974) and mediated by the mitochondrial 

Na+-Ca2+ exchanger (NCLX), an inner mitochondrial membrane protein (Luongo et al., 

2017; Palty et al., 2010). The exchanger exchanges a Ca2+ ion for 3 Na+ ions across the 

membrane for a net import of one positive charge into the mitochondrial matrix (Marinelli 

et al., 2014). In addition to NCLX, a proton-dependent Ca2+ efflux pathway has also been 

detected in the mitochondria (Pozzan et al., 1977). Although the protein for this pathway has 

not been identified, a candidate mechanism involves the Leucine zipper EF-hand-containing 

transmembrane protein 1 (Letm1) at the IMM (Jiang et al., 2009). Letm1 may directly 

participate as a H+-Ca2+ exchanger (Jiang et al., 2009), or indirectly modulate Ca2+ efflux 

through modulating mitochondrial-Na+ homeostasis (Austin et al., 2017).  

A major role of moderate mitochondrial-Ca2+ uptake under physiological conditions 

is to regulate ATP production. In the cytosol, glycolysis feeds pyruvate into the 

mitochondria to generate ATP through oxidative phosphorylation, which is modulated by 

Ca2+ at multiple points of the process (Figure 1.2; Rizzuto et al., 2012). Mitochondrial-Ca2+ 

modulates the conversion of pyruvate to acetyl-CoA (Denton et al., 1972, 1980; Marshall et 

al., 1984), isocitrate dehydrogenase (IDH) (Denton et al., 1978) and α-ketoglutarate 

dehydrogenase (αKGDH) (Lai and Cooper, 1986; Lawlis and Roche, 1981a; McCormack 

and Denton, 1979) in the tricarboxylic (TCA) cycle (reviewed in: Glancy and Balaban, 2012; 

Gunter and Sheu, 2009; Llorente-Folch et al., 2015). Downstream of the TCA cycle, in the 

electron transport chain (ETC), increased matrix Ca2+ concentration may also increase 

complex III function (Murphy et al., 1990). In general, mitochondrial-Ca2+ can increase ATP 

production by acting on mitochondrial metabolism. 
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In addition to ATP production, mitochondrial Ca2+ also regulates the cyclic 

reduction and oxidation of NAD(H), an integral part of mitochondrial metabolism. NADH 

levels in the cytosol and mitochondria has been shown to be less than 10 % of total 

NAD(H) content, indicating that the majority of NAD(H) is in the NAD+ state (Williamson 

et al., 1967). Enzymes of glycolysis and TCA cycle reduce NAD+ to NADH, while ETC 

oxidizes NADH back to NAD+ (Krebs, 1970; Wallace, 2012). In the mitochondria, TCA 

cycle enzymes IDH (Denton et al., 1978; Vaughan and Newsholme, 1969; Zammit and 

Newsholme, 1976) and αKGDH (Lawlis and Roche, 1981b, 1981a) both reduce NAD+ and 

are both regulated by mitochondrial Ca2+ (reviewed in: Glancy and Balaban, 2012). Ca2+ also 

modulates the connection between the discrete NAD+/NADH ratio in the cytosol and the 

mitochondria. While NAD(H) can pass the OMM through VDAC, it cannot permeate the 

IMM and can only be shuttled through by reducing an equivalent amount of NAD+ on one 

side of the IMM as NADH is oxidized on the other (Borst, 1962). The main mechanism for 

shuttling NADH into the IMM is through the malate-aspartate shuttle, the function of 

which is also positively regulated by mitochondrial Ca2+ (reviewed in: Satrústegui and Bak, 

2015).  

Because NAD(H) reduction-oxidation (redox) homeostasis is an important 

component of cell metabolism, it is tightly regulated, and changes in NAD(H) redox can 

trigger metabolic and physiological adaptations (Bogan and Brenner, 2008; Imai, 2009; Li 

and Sauve, 2015). For example, in mouse hippocampal neurons, presynaptic activity level has 

been found to correlate positively with the NAD+/NADH ratio (Ivanova et al., 2015). A 

change in the NAD+/NADH ratio is communicated to the nucleus through the presynaptic-

resident CtBP1 protein, which also functions as a transcriptional co-repressor (Ivanova et al., 
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2015). Currently it is not known if, similarly to CtBP1, Ribeye localization also is regulated 

by NAD(H) redox homeostasis in hair cells. 

Modest mitochondrial-Ca2+ uptake is a normal part of cell physiology. At neuronal 

presynapses, mitochondria may alter synaptic activity by anchoring to or simply passing by 

the presynapse structure (reviewed in: Devine and Kittler, 2018; Wan et al., 2012). 

Conversely, presynaptic-Ca2+ influx may be taken up by axonal mitochondria in transit, 

which slows the mitochondria (Chang et al., 2011). This purposeful localization may be 

beneficial to support a spatially variable metabolic demand and ATP production.  

In hair cells, mitochondrial-Ca2+ uptake has been shown in association with 

stereocilia bundle deflection, but its role is unclear in presynaptic Ca2+ activity. In auditory 

outer hair cells, mitochondria distinctly pack the space at the base of the hair bundle, near 

the site of mechanotransduction (Beurg et al., 2010; Fettiplace and Nam, 2019; Weaver and 

Schweitzer, 1994). There, mitochondrial-Ca2+ uptake, plasma membrane Ca2+ ATPase 

(PMCA) pump and Na+-Ca2+ exchanger (NCX) are thought to contribute to Ca2+ clearance 

from the hair bundle (Beurg et al., 2010; Boyer et al., 2001; Yamoah et al., 1998). In zebrafish 

hair cells, mitochondria also take up Ca2+ during hair cell activation (Pickett et al., 2018). 

Mitochondria also are distributed around the synaptic region of hair cells (Bullen et al., 

2015). However, the contribution of mitochondrial-Ca2+ uptake to presynaptic-Ca2+ 

clearance or activity is unclear (Frank et al., 2009; Kennedy, 2002).  

While modest mitochondrial-Ca2+ uptake occurs as a part of normal cell physiology, 

high levels of mitochondrial-Ca2+ uptake is cytotoxic (reviewed in: Orrenius et al., 2003; 

Szabo and Zoratti, 2014). In many instances, mitochondrial dysfunction and Ca2+ overload 

lead to cell death (Baumgartner et al., 2009; Giorgi et al., 2012; Kakkar and Singh, 2007; 

Peng and Jou, 2010). This has been shown in many cell types, including hair cells (Adam-
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Vizi and Starkov, 2010; Jensen-Smith et al., 2012; Luongo et al., 2017; Owens et al., 2007). 

Mitochondrial-Ca2+ overload increases ROS production in the cell and triggers the assembly 

of a permeability transition pore (mPTP) composed of mitochondrial proteins such as 

VDAC (reviewed in: Giorgi et al., 2012; Nicholls, 2005; Pinton et al., 2008; Stowe and 

Camara, 2009). While transitory opening of mPTP may assist in the maintenance of the 

IMM potential and mitochondrial-Ca2+ homeostasis, permanent opening of mPTP leads to 

pro-apoptotic mitochondrial proteins leaking into the cytosol (Crompton, 1999). High levels 

of ROS can aid in mPTP formation and trigger other apoptotic pathways such as c-Jun N-

terminal kinases (JNKs) signaling (Clerici et al., 1995; García-Berrocal et al., 2007; Shen and 

Liu, 2006; Tajeddine, 2016). Ultimately, mitochondrial-Ca2+ overload and mPTP opening 

triggers cell death. 

In mammalian models of acquired hearing loss, such as that induced by noise 

overexposure or ototoxic drugs, mitochondrial-Ca2+ overload reliably precedes hair cell 

death. Mitochondrial-Ca2+ overload has been studied after ototoxic antibiotic aminoglycoside 

exposure (Jackson et al., 2013; Poulikakos and Falagas, 2013). In zebrafish hair cells, robust 

mitochondrial ultrastructural changes and Ca2+ uptake have been shown immediately prior to 

aminoglycoside-induced cell death (Esterberg et al., 2014, 2016; Owens et al., 2007). 

Furthermore, blocking MCU reduced aminoglycoside-induced hair cell death (Esterberg et 

al., 2014). Higher hair cell metabolism also is correlated with vulnerability to aminoglycoside-

induced cell death (Jensen-Smith et al., 2012; Pickett et al., 2018). This may be due to 

mitochondrial-DNA damage from excessive ROS exposure acting synergistically with 

aminoglycoside-induced disruption of mitochondrial protein synthesis (Hamasaki and 

Rando, 1997; Hobbie et al., 2008; Huth et al., 2015; Xing et al., 2007; Zhao et al., 2004, 

2005).  



 41 

In the mammalian cochlea, pharmacological and genetic block of cytosolic- and 

mitochondrial-Ca2+ uptake can both protect hair cells from noise damage (Heinrich et al., 

1999; Shen et al., 2007; Wang et al., 2019). Similar to aminoglycoside exposure, ROS also are 

generated at higher levels in the cochlea during noise exposure (Ohinata et al., 2000; Yamane 

et al., 1995). The subsequent hair-cell death and the decrease in auditory-sensitivity threshold 

can both be partially rescued by application of antioxidants prior to or shortly after noise 

exposure (reviewed in: Oishi and Schacht, 2011). These studies implicate mitochondrial-Ca2+ 

uptake with concurrent ROS overproduction as a causal factor of noise-induced hair-cell 

death and hearing loss. Overall, mitochondrial-Ca2+ uptake is a part of, and may be required 

for hair-cell death, making it a potential therapeutic target for hearing-loss prevention. 

Recent studies have revealed that a more subtle form of noise-induced hearing deficit 

(Liberman and Dodds, 1984; Lindquist et al., 1954). This deficit is reflected in decreases in 

auditory-neural-response amplitude as decreases in the amplitude of wave I auditory brain 

stem (ABR) responses (Kujawa and Liberman, 2009). Correspondingly, rodents with noise 

exposure and reduced ABR wave I amplitude and humans post-mortem ears can show 

auditory inner hair cells with altered morphology and loss of synapses, as well as swelling of 

innervating afferent nerve terminal at surviving synapses (Kujawa and Liberman, 2009; 

Makary et al., 2011; Robertson, 1983; Spoendlin, 1971; Valero et al., 2017). These functional 

and morphological pathologies define a form of hearing loss known as “synaptopathy” 

(Kujawa and Liberman, 2009). In addition to loss of synapses in auditory hair cells, some 

studies show that, ribbon size distribution is expanded after noise exposure (Jensen et al., 

2015; Kujawa and Liberman, 2009; Liberman and Liberman, 2015; Song et al., 2016). 

Postsynaptically, the afferent postsynaptic boutons also are enlarged, likely as a result of Ca2+ 

overload and excitotoxicity (Puel et al., 1994; Pujol et al., 1985; Sebe et al., 2017). However, 
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it is not clear how ribbons in auditory hair cells dynamically restructure during or after 

acoustic overexposure. More work is needed to interpret the significance of changes in 

ribbon morphology, and whether these changes compensate for, or contribute to the 

functional deficits.   

 

Zebrafish posterior lateral line 

Studying hair cell function and mitochondrial Ca2+ in vivo is difficult in mammals. 

The sensory organs of the mammalian inner ear are difficult to access, as they are encased 

within the temporal bone of the skull. Therefore, live mammalian hair cells are studied in ex 

vivo organ explants (Lim et al., 2011; Nordemar, 1983; Russell and Richardson, 1987; 

Sobkowicz et al., 1975, 1982, 1993). Zebrafish larvae, on the other hand, are transparent, 

enabling in vivo imaging of cellular morphology and function. This feature has made 

zebrafish a valuable system to study hearing and balance and sensory hair cells.  

Overall, the form, function and development of hair cells are well conserved across 

vertebrates such as zebrafish and mammals (Nicolson, 2005, 2017; Raible and Kruse, 2000; 

Whitfield et al., 2002). Genetic studies have also demonstrated that many of the same 

molecules are required for hearing and hair cells in zebrafish and mammals (Nicolson, 2005, 

2017; Whitfield et al., 2002). Zebrafish are also amenable to other genetic manipulation 

through the creation of transgenic lines expressing bio-sensing fluorescent proteins (Kwan et 

al., 2007). These transgenic lines, combined with the optical transparency of zebrafish larvae, 

make zebrafish an ideal system for physiologically-intact imaging (Amsterdam et al., 1995). 

Intact imaging can used for in vivo observation of biomolecules, such as Ca2+, to examine the 
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functional properties of the mitochondria, endoplasmic reticulum, cytosol, and presynapse at 

rest, during activity and during perturbations.  

In transparent zebrafish, hair cells can be observed in vivo in the inner ear, as well as 

in an additional sensory organ called the lateral line. The lateral line system detects water 

movement associated with other shoaling or schooling members or predation (Coombs and 

Montgomery, 1999; McHenry et al., 2009; Montgomery et al., 2003). This sensory system is 

composed of small sensory epithelia, called neuromasts, embedded just beneath the skin of 

fish (reviewed in: Chitnis et al., 2012). Neuromasts of the posterior lateral line (PLL) are 

innervated by multiple afferent PLL neurons (Dow et al., 2018), which projects their axons 

to the hindbrain, where they extend along all rhombomeres (Metcalfe et al., 1985). The 

afferent PLL neurons notably innervate the ipsilateral of the two Mauthner neurons within 

in the fourth rhombomere of the hindbrain (Figure 1.6; Metcalfe et al., 1985, 1986). In 

teleosts, Mauthner neurons also receives other sensory input such as from hair cells in the 

anterior lateral line and ears, as well as inhibitory interneurons that were shown to be 

activated by auditory stimuli (Marti et al., 2008; Mirjany and Faber, 2011; Szabo et al., 2006, 

2007). The Mauthner cell makes synaptic connections with the contralateral motor neurons 

along the spinal cord (Eaton et al., 1977a, 1977b). Activation of the Mauthner neuron, 

triggered by abrupt sensory stimuli, is a component in the fast escape behavior (Eaton and 

Farley, 1975; Eaton et al., 2001; Nissanov et al., 1990). 
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Figure 1.6 Zebrafish lateral line afferent pathway for escape behavior 
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Posterior lateral line (PLL) neuromasts (NM, green) are innervated by multiple afferent PLL 

neurons. An example neuron is drawn in blue. The ganglion of the PLL neurons (PLLg) are 

located in the cranium posterior to the ear, and project their axons to the hindbrain to 

innervate the ipsilateral Mauthner neuron (pink). The Mauthner neurons also receives 

sensory input from hair cells in the ears through the cranial nerve VIII (VIII, light blue). The 

Mauthner cell project its axon to the contralateral spinal cord and make synaptic connections 

with the contralateral motor neurons (MN) along the spinal cord. Auditory stimuli were also 

shown to activate inhibitory interneurons (filled black) that innervate both ipsilateral and 

contralateral (gray outline) Mauthner cells.  

  



 46 

In the lateral line, each neuromast is made up of a cluster of hair cells. A gelatinous 

cupula encases the apical hair bundles of each neuromast, separating them from the external 

aquatic environment. Water movement deflects the cupula atop the neuromast, and this 

movement is transferred to the hair bundles within. Because the neuromast is superficially 

located and relatively exposed, they are particularly amenable to in vivo pharmacology, 

stimulation and visualization.  

Unlike mammals, zebrafish embryos do not develop in utero, which enables direct 

observation of hair cell development in vivo.  During development, the lateral line system is 

derived from migrating primordia. The primary PLL is derived from a primordium, primI, 

that migrates down the trunk of the fish and deposits a trail of posterior lateral line 

neuromasts along the body (reviewed in: Ghysen and Dambly-Chaudiere, 2007). The nascent 

PLL ganglion neurons concurrently form growth cones, which are towed by the migrating 

primI to innervate the deposited neuromast (Gilmour et al., 2004; Metcalfe, 1985). PrimI 

begins migration at around 1 dpf, depositing neuromasts and a trail of dormant neuromast 

progenitors until it reaches the end of the trunk by around 2 dpf (Kimmel et al., 1995). After 

proto-neuromasts are deposited, hair cells begin to form.  

Within developing neuromasts, hair cells form in pairs from mitosis of precursor 

cells residing in the neuromast. In each subsequent day post-fertilization, neuromasts add 2 

to 6 hair cells per day with declining frequency. Following mitosis, hair cells precursors 

quickly develop the structure to support mechanotransduction and synaptic function in 12 to 

18 hr (Dow et al., 2015). During this time window, each lateral line hair cell ultimately forms 

2-4 ribbon synapses (Sheets et al., 2017; Suli et al., 2016). In larvae between 2 to 3 dpf, all 

neuromast hair cells are newly differentiated, but by 5-6 dpf, the majority of hair cells are 

mature and the lateral line system is functional (Kindt et al., 2012; McHenry et al., 2009; 
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Metcalfe, 1985; Murakami et al., 2003; Santos et al., 2006). Overall, this rapid in vivo 

development makes zebrafish an amenable model for the study of ribbon synapse formation 

in hair cells. 

In the following chapters, I outline my work describing the relationship between 

mitochondrial Ca2+ and ribbon synapse function and development in zebrafish hair cells. In 

Chapter 2, I present work where I characterized evoked-mitochondrial-Ca2+ influx in the 

mature hair cells. Further, I discuss how mitochondrial-Ca2+ uptake in mature hair cells may 

affect ribbon synapse function and stability. In Chapter 3, I describe work where I 

characterized spontaneous presynaptic and mitochondrial-Ca2+ influx in developing hair 

cells. I outline mechanistically how this spontaneous activity is important for ribbon size 

determination. In Chapter 4, I discuss the main conclusions of my work, as well as future 

studies that could answer some outstanding questions. In particular, I relate the findings of 

my thesis work on the mitochondria to preliminary work on the endoplasmic reticulum. 

Overall this body of work seeks to outline the framework of current and future work on 

mitochondrial Ca2+ in hair cell synapse development and function.  
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Abstract 

 

The auditory and vestibular hair cell ribbon synapse is a specialized synapse that 

provides indefatigable release of neurotransmitter. Hair cell neurotransmission relies on 

voltage-gated influx of Ca2+ through presynaptic CaV1.3 channels. At the presynapse, 

increases in Ca2+ at presynaptic ribbons are critical for neurotransmission. Tight spatial 

regulation of presynaptic Ca2+ is thought to be important for ribbon-synapse function. 

Previous studies have shown that ER-Ca2+ stores can impact hair-cell neurotransmission, but 

whether mitochondrial-Ca2+ stores play a role at this synapse remains unclear. We show that 

in mature hair cells, presynaptic-Ca2+ influx is evoked through CaV1.3 channels to initiate 

mitochondrial-Ca2+ uptake adjacent to ribbons. Block of mitochondrial-Ca2+ uptake in 

mature cells depresses presynaptic activity and can impact synapse integrity. Our results 

present a mechanism where presynaptic- and mitochondrial-Ca2+ couple for proper 

presynaptic function.  
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Introduction 

 

Neurotransmission is an energy demanding process that relies heavily on 

mitochondria. In neurons, mitochondrial dysfunction has been implicated in synaptopathies 

that impact neurodevelopment, learning and memory, and can contribute to 

neurodegeneration (Flippo and Strack, 2017; Lepeta et al., 2016; Todorova and Blokland, 

2017). In hair cells, sensory neurotransmission relies on specialized ribbon synapses to 

facilitate rapid and sustained vesicle release that is particularly energy demanding (reviewed 

in: Johnson et al., 2019; Lagnado and Schmitz, 2015; Matthews and Fuchs, 2010; Safieddine 

et al., 2012). Although mitochondrial dysfunction has been implicated in hearing loss 

(Böttger and Schacht, 2013; Fischel-Ghodsian et al., 2004; Kokotas et al., 2007), the precise 

role mitochondria play in hair-cell neurotransmission remains unclear. 

Ribbon synapses are characterized by a unique presynaptic structure called a 

“ribbon” that tethers and stabilizes synaptic vesicles at the active zone (reviewed in: 

Matthews and Fuchs, 2010). In hair cells, neurotransmission at ribbon synapses requires the 

presynaptic-Ca2+ channel CaV1.3 (Brandt et al., 2003; Kollmar et al., 1997; Sidi, 2004). Hair-

cell depolarization opens CaV1.3 channels, resulting in a spatially restricted increase in Ca2+ at 

presynaptic ribbons that triggers vesicle fusion. Tight spatial regulation of presynaptic Ca2+ is 

important for ribbon-synapse function and requires efficient Ca2+ clearance through a 

combination of Ca2+ pumps, Ca2+ buffers and intracellular-Ca2+ stores (Carafoli, 2011; 

Mulkey and Malenka, 1992; Tucker and Fettiplace, 1995; Yamoah et al., 1998; Zenisek and 

Matthews, 2000). While ER-Ca2+ stores have been implicated in hair-cell neurotransmission, 
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whether mitochondrial-Ca2+ stores play a role in this process remains unclear (Castellano-

Muñoz and Ricci, 2014; Kennedy, 2002; Lioudyno et al., 2004; Tucker and Fettiplace, 1995). 

To study the impact of mitochondrial-Ca2+ on ribbon synapse function, we examined 

hair cells in the lateral-line system of larval zebrafish. Within the lateral-line, hair cells are 

arranged in clusters called neuromasts. This system is advantageous for our studies because it 

contains hair cells with easy access for in vivo pharmacology, mechanical stimulation and 

imaging cellular morphology and function. For example, previous work has shown that 

GECIs can be used in lateral line hair cells to measure both evoked presynaptic and 

mitochondria-Ca2+ signals (Pickett et al., 2018; Zhang et al., 2018). By 5-6 dpf (days post-

fertilization), the majority of hair cells and synapses are mature, and the system is functional 

(Kindt et al., 2012; McHenry et al., 2009; Metcalfe, 1985; Murakami et al., 2003; Santos et al., 

2006). Thus, these hair cells can be used to study evoked presynaptic- and mitochondrial-

Ca2+ uptake in hair cells.  

Using this sensory system, we find that evoked presynaptic-Ca2+ influx drives 

mitochondrial-Ca2+ uptake. In mature hair cells, mitochondrial-Ca2+ uptake initiates near the 

presynapse. Short-term, partial block of mitochondrial-Ca2+ uptake impairs sustained 

presynaptic function. Long-term block of mitochondrial-Ca2+ uptake lead to a loss of 

synapse integrity. Overall our results suggest that in hair cells presynaptic-Ca2+ influx and 

mitochondrial-Ca2+ uptake couple to impact synapse function and integrity.  
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Results 

Mitochondria are located near presynaptic ribbons  

In neurons, synaptic mitochondria have been shown to influence synapse size, 

plasticity and function (Flippo and Strack, 2017; Todorova and Blokland, 2017). Based on 

this work, we hypothesized that mitochondria may impact synapses in hair cells. Therefore, 

we examined the proximity of mitochondria relative to presynaptic ribbons in zebrafish 

lateral-line hair cells. We visualized mitochondria and ribbons using transmission electron 

microscopy (TEM) and in live hair cells using Airyscan confocal microscopy. 

Using TEM, we examined sections that clearly captured ribbons (Example, Figure 

2.1C). Near the majority of ribbons (81 %) we observed a mitochondrion in close proximity 

(< 1 µm) (Figure 2.1D, median ribbon-to-mitochondria distance = 174 nm, n = 17 out of 21 

ribbons). To obtain a more comprehensive understanding of the 3D morphology and 

location of mitochondria relative to ribbons in live cells, we used Airyscan confocal 

microscopy. To visualize these structures in living cells, we used transgenic zebrafish 

expressing MitoGCaMP3 (Esterberg et al., 2014) and Ribeye a-tagRFP (Sheets et al., 2014) in 

hair cells to visualize mitochondria and ribbons respectively. Using this approach, we 

observed tubular networks of mitochondria extending from apex to base of each hair cell 

(Figure 2.1A-B, E-E’, Figure 2.2A). At the base of the hair cell, we observed ribbons nestled 

between branches of mitochondria. Overall our TEM and Airyscan imaging suggests that in 

lateral-line hair cells, mitochondria are present near ribbons.   
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Figure 2.1. Mitochondrial-Ca2+ uptake initiates adjacent to ribbons.  
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A, Cartoon illustration of a lateral-line hair cell containing: an apical mechanosensory bundle 

(blue), mitochondria (green), presynaptic ribbons (magenta), CaV1.3 channels (orange) and 

postsynaptic densities (purple). B, Airyscan confocal image of 6 live hair cells (1 cell outlined 

in white) expressing MitoGCaMP3 (mitochondria) and Ribeye a-tagRFP (ribbons) in a 

developing neuromast at 2 dpf. Also see Figure 2.2. C, A representative TEM showing a 

mitochondrion (m) in close proximity to a ribbon (R) at 4 dpf. D, Quantification of 

mitochondrion to ribbon distance in TEM sections (n = 17 ribbons). E, Side-view of a hair 

cell (outlined in white) shows the spatio-temporal dynamics of evoked mitochondrial-Ca2+ 

signals during a 2-s stimulation at 6 dpf. The change in MitoGCaMP3 signal (∆F) from 

baseline is indicated by the heatmap and are overlaid onto the pre-stimulus grayscale image. 

E’-E’’, Circles 1-3 (1.3 µm diameter) denote regions used to generate the normalized (∆F/F0) 

temporal traces of mitochondrial-Ca2+ signals in E’’: adjacent to the presynapse (“1”), and 

midbody (“2” and “3”) in the same cell as E. F, Average evoked mitochondrial-Ca2+ 

response before (solid black) and after 30-min treatment with 10 µM Ru360 (dashed green), 

2 µM Ru360 (solid green), or 10 µM isradipine (gray) (3-5 dpf, n ≥ 9 cells per treatment). 

Error bars in D are min and max; in F the shaded area denotes SEM. Scale bar = 500 nm in 

C, 5 µm in B and 2 µm in E and E’. 
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Mitochondrial-Ca2+ uptake at ribbons is MCU and CaV1.3 dependent  

In zebrafish hair cells, robust rises in mitochondrial-Ca2+ have be reported during 

mechanical stimulation (Pickett et al., 2018). Due to the proximity of the mitochondria to 

the ribbon, we predicted that rises in mitochondrial-Ca2+ levels during mechanical 

stimulation could be related to presynapse-associated rises in Ca2+.  

To test this prediction, we used a fluid-jet to mechanically stimulate hair cells and 

evoke presynaptic activity. During stimulation, we used MitoGCaMP3 to monitor 

mitochondrial-Ca2+ in lateral-line hair cells. As previously reported, we observed robust 

mitochondrial-Ca2+ uptake during stimulation (Figure 2.1E-F, Figure 2.3A-A’’’). We 

examined the subcellular distribution of MitoGCaMP3 signals over time and observed an 

increase in MitoGCaMP3 (∆F) signals that initiated near ribbons (Figure 2.1E, ∆F). During 

the latter part of the stimulus, and even after the stimulus terminated, the MitoGCaMP3 

signals propagated apically, away from the ribbons (Example, Figure 2.1E’-E’’, regions 1-3, 

∆F/F0). We characterized the time-course of MitoGCaMP3 signals with regards to onset 

kinetics and return to baseline. During a 2-s stimulus, we detected a significant rise in 

MitoGCaMP3 signals 0.6 s after stimulus onset (Figure 2.2B, ∆F/F0). Interestingly, after the 

stimulus terminated, MitoGCaMP3 levels took approximately 5 min to return to baseline 

(Figure 2.2C-C’, ∆F/F0). Despite this long time-course of recovery to baseline, we were still 

able to evoke additional rises in MitoGCaMP3 signal 10 s after stimulation (Figure 2.2D, 

∆F/F0). As previously reported, the kinetics of MitoGCaMP3 signals in hair-cell 

mitochondria were quite different from signals observed using cytosolic GCaMP3 

(CytoGCaMP3) in hair cells (Pickett et al., 2018). Compared to MitoGCaMP3 signals, 

CytoGCaMP3 signals had faster onset kinetics and a faster return to baseline (Figure 2.2B-C, 
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time to rise: 0.06 s, post-stimulus return-to-baseline: 12 s). These differences in kinetics 

indicate that mitochondrial-Ca2+ loading operates over slower timescales compared to the 

cytosolic compartment. It also confirms that hair-cell stimulation can initiate long lasting 

increases in mitochondrial-Ca2+.  
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Figure 2.2. The time course of mechanically-evoked mitochondrial-Ca2+ 

signals are longer-lasting than cytosolic-Ca2+ signals and is additive. 
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A, Airyscan confocal image of a live neuromast expressing MitoGCaMP3 (mitochondria) 

and Ribeye a-tagRFP (ribbons) at 6 dpf. Insets show the base of 4 individual hair cells from 

the neuromast in A (dashed white boxes). B, Average cytosolic-Ca2+ (blue) and 

mitochondrial-Ca2+ (green) ∆F/F GCaMP3 signals during the onset of a 2-s stimulus. 

Mitochondrial-Ca2+ signals rise with a delay compared to cytosolic-Ca2+ signals, 3-6 dpf, n ≥ 

18 cells. C-C’, Average cytosolic-Ca2+ and mitochondrial-Ca2+ ∆F/F GCaMP3 signals during 

and after a 2-s stimulation shows that cytosolic-Ca2+ signals return to baseline shortly after 

stimulation (C), while mitochondrial-Ca2+ remains elevated up to 5 min after stimulation (C-

C’), 3-6 dpf, n ≥ 7 cells. D, A series of 3, evoked 2-s stimuli initiated at: t = 0-2, 12-14 and 

24-26 s. A rise in MitoGCaMP3 can be detected during each stimulus, prior to 

MitoGCaMP3 signals returning to baseline. E, 10 µM of the VDAC inhibitor TRO 19622 

partially blocks evoked MitoGCaMP3 signals, 5 dpf, n = 15 cells. F, A dose response curve 

indicates that Ru360 blocks evoked MitoGCaMP3 signals with an IC50 value of 1.37 µM at 5 

dpf, n ≥ 9 cells per dose. Error in panel B-C’, E and F represent SEM. Scale bar = 5 µm in 

A and 2 µm in inset.  
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Figure 2.3. Mitochondrial-Ca2+ uptake occurs in anterior lateral-line hair 

cells. 
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A, A live Image of an anterior-lateral line (ALL) neuromast viewed top-down, expressing the 

mitochondrial-Ca2+ sensor MitoGCaMP3 at 5 dpf. A’ shows the spatio-temporal dynamics 

of evoked mitochondrial-Ca2+ signals during a 2-s stimulation. The MitoGCaMP3 signals 

during the stimulation (∆F) are indicated by the heatmap overlaid onto the baseline grayscale 

image. A’’, Temporal traces of evoked mitochondrial-Ca2+ signals were generated from 3 

regions denoted by 3 circles in A. Scale bar = 5 µm in A. 
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To verify that MitoGCaMP3 signals reflect Ca2+ entry into mitochondria, we applied 

Ru360, an antagonist of the mitochondrial-Ca2+ uniporter (MCU). The MCU is the main 

pathway for rapid Ca2+ entry into the mitochondrial matrix (Matlib et al., 1998). We found 

that stimulus-evoked MitoGCaMP3 signals were blocked in a dose-dependent manner after a 

30-min treatment with Ru360 (Figure 2.1F, Figure 2.2F; IC50 = 1.37 µM). We confirmed 

these results by applying TRO 19622, an antagonist of the voltage-dependent anion channel 

(VDAC). VDAC enables transport of ions including Ca2+ across the outer mitochondrial 

membrane (Figure 1.5; Schein et al., 1976; Shoshan-Barmatz and Gincel, 2003). We observed 

that similar to the MCU antagonist Ru360, a 30-min treatment with the VDAC antagonist 

TRO 19622 also impaired stimulus-evoked MitoGCaMP3 signals (10 µM TRO 19622, 

Figure 2.2E). Due to the initiation of mitochondrial-Ca2+ near ribbons, we examined 

whether CaV1.3-dependent presynaptic-Ca2+ influx was the main source of Ca2+ entering the 

mitochondria. To examine CaV1.3 channel contribution to mitochondrial-Ca2+ uptake, we 

applied isradipine, a CaV1.3 channel antagonist. Similar to blocking the MCU and VDAC, 

blocking CaV1.3 channels eliminated all stimulus-evoked MitoGCaMP3 signals at the base of 

the cell (Figure 2.1F).  

Previous work in zebrafish-hair cells demonstrated that isradipine specifically blocks 

CaV1.3 channels without impairing mechanotransduction (Zhang et al., 2018). For our 

current study we confirmed that Ru360 and TRO 19622 specifically impaired synaptic 

mitochondrial-Ca2+ uptake without altering mechanotransduction. We measured apical, 

mechanically-evoked Ca2+ signals in hair bundles before and after a 30-min treatment with 10 

µM Ru360 or TRO 19622. Neither compound blocked mechanotransduction evoked Ca2+ 

influx (Figure 2.5A-B’). Overall, our MitoGCaMP3 functional imaging indicates that in hair 
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cells, evoked mitochondrial-Ca2+ uptake initiates near ribbons and this uptake is dependent 

on MCU, VDAC and CaV1.3 channel function.  

 

Mitochondrial-Ca2+ uptake occurs in cells with presynaptic-Ca2+ influx 

 Interestingly, we observed that mitochondrial-Ca2+ uptake was only present in ~40 

% of cells (Examples, Figure 2.4A’ and Figure 2.3A-A’’’; n = 10 neuromasts, 146 cells). This 

observation is consistent with previous work demonstrating that only ~30 % of hair cells 

within each neuromast cluster have presynaptic Ca2+ signals and are synaptically active 

(Zhang et al., 2018). Because presynaptic-Ca2+ signals initiate near mitochondria, it is 

probable that mitochondrial-Ca2+ uptake occurs only in hair cells with synaptic activity. 

To test whether evoked mitochondrial-Ca2+ uptake occurred exclusively in cells with 

presynaptic-Ca2+ influx, we performed two-color functional imaging. We used a double 

transgenic approach that utilized a membrane-localized GCaMP6s (GCaMP6sCAAX; green) 

to measure presynaptic Ca2+ signals at the base of hair cells (Jiang et al., 2017; Sheets et al., 

2017), and we concurrently used MitoRGECO1 (red) to examine mitochondrial-Ca2+ signals 

(Figure 2.4A-B’). Our two-color imaging approach revealed a strong correlation between the 

magnitude of the GCaMP6sCAAX and MitoRGECO1 signals (Figure 2.4B, R2 = 0.77, p < 

0.0001; n = 136 cells). We found that in presynaptically active hair cells the median 

MitoRGECO1 signals were 100 % larger than presynaptically silent hair cells (Figure 2.4B’). 

Together these results suggest that robust mitochondrial-Ca2+ uptake occurs specifically in 

hair cells with evoked presynaptic-Ca2+ influx. 
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Figure 2.4. Mitochondrial-Ca2+ uptake can impact presynaptic Ca2+ signals.  
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A, A live Image of a neuromast viewed top-down, expressing the presynaptic-Ca2+ sensor 

GCaMP6sCAAX (green) and mitochondrial-Ca2+ sensor MitoRGECO1 (magenta) at 5 dpf. 

A’-A’’, GCaMP6sCAAX (A’) and MitoRGECO1 (A’’) signals (∆F) from baseline during a 2-

s stimulation are indicated by the heatmaps and occur in the same cells (white outline). B, 

Scatter plot with linear regression of peak presynaptic- and mitochondrial-Ca2+ response for 

individual cells at 4-5 dpf, n = 136 cells. Gray background in graph denotes presynaptic-Ca2+ 

signals below 0.25, a threshold used as a cutoff for presynaptic activity (below inactive, 

above active). B’, Plot of mitochondrial-Ca2+ responses segregated based on the activity 

threshold in B. C-D’, Presynaptic-Ca2+ response (example in Figure 2.5C-C’) averaged per 

cell before (blue) and after a 30-min treatment with 10 µM Ru360 (light green) or 2 µM 

Ru360 (dark green), n ≥ 10 cells per treatment. C and D show averaged traces while C’ and 

D’ show before-and-after dot plots of the peak response per cell. E-F, Representative images 

of mature neuromasts (5 dpf) immunostained with CaV1.3 (white, Ca2+ channels) and 

MAGUK (green, postsynapses) after a 1-hr incubation in 0.1 % DMSO (E) or 2 µM Ru360 

(F). G-H, Scatter plots show percentage of postsynapses that pair with CaV1.3-channel 

clusters (CaV1.3 + MAGUK) and orphan postsynapses (MAGUK only) (G). The integrated 

intensity of CaV1.3-channel immunolabel at presynapses is lower in control compared to 

treatment group (H), n ≥ 7 neuromasts per treatment. Whiskers on plots in B’ represent min 

and max; the shaded area in plots C and D and the error bars in C’, D’ and G-H denotes 

SEM. Mann-Whitney U test was used in B’; Wilcoxon matched-pairs signed-rank test was 

used in C’ and D’. Welch’s unequal variance t-test was used in G-H. *p < 0.05, ***p < 0.001, 

****p < 0.0001. Scale bar = 5 µm in A and E.  
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Blocking mitochondrial-Ca2+ entry impairs presynaptic Ca2+ signals in 

mature hair cells 

 Although we observed mitochondrial-Ca2+ uptake specifically in hair cells with active 

Ca2+ channels, the impact of mitochondrial-Ca2+ uptake on the function of hair-cell synapses 

was unclear. Based on previous studies in neurons and bipolar-cell ribbon synapses (Billups 

and Forsythe, 2002; Chouhan et al., 2010; Kwon et al., 2016; Levy et al., 2003; Zenisek and 

Matthews, 2000), we reasoned that mitochondria may be important to remove excess Ca2+  

or to provide ATP for hair-cell neurotransmission.  

To determine if mitochondrial-Ca2+ uptake impacted presynaptic function, we 

assayed evoked presynaptic-Ca2+ signals by monitoring GCaMP6sCAAX signals adjacent to 

ribbons as described previously (Sheets et al., 2017; Zhang et al., 2018). We examined 

GCaMP6sCAAX signals in mature hair cells at 5-6 dpf when neuromast organs are largely 

mature (Kindt et al., 2012; McHenry et al., 2009; Metcalfe, 1985; Murakami et al., 2003; 

Santos et al., 2006). Using this approach, we assayed presynaptic GCaMP6sCAAX signals 

before and after a 30-min application of the MCU antagonist Ru360 (Figure 2.4C-D’). We 

found that during short, 200-ms stimuli, GCaMP6sCAAX signals at ribbons were reduced 

after complete MCU block (10 µM Ru360, Figure 2.4C-C’). Reduction of GCaMP6sCAAX 

signals were further exacerbated during sustained 10-s stimuli, even when the MCU was only 

partially blocked (2 µM Ru360, Figure 2.4D-D’). A similar reduction in GCaMP6sCAAX 

signals were observed after a 30-min application of the VDAC inhibitor TRO 19622 (Figure 

2.5D-E’, 10 µM TRO 19622). These results suggest that in mature hair cells, evoked 

mitochondrial-Ca2+ uptake is critical for presynaptic-Ca2+ influx, especially during sustained 

stimulation.  
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Figure 2.5. Hair-cell bundle mechanotransduction Ca2+ signals and 

presynaptic Ca2+ signals during MCU and VDAC block. 
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A, Illustration of a neuromast and the imaging planes used to study the 

mechanotransduction in hair-bundles and the presynaptic-Ca2+ influx at ribbons. 

Localization of the membrane-localized Ca2+ sensor GCaMP6sCAAX shown in green. Inset 

in A shows an example top-down view of GCaMP6sCAAX bundle plane (6sCAAX) at 5 

dpf. B-B’, Bundle-Ca2+ signals before (blue) and after a 30-min treatment with 10 µM Ru360 

(green) or 10 µM TRO 19622 (magenta), n ≥ 39 bundles per treatment. Average traces are 

shown in B while dot plots of the peak response per bundle are shown in B’. C, Double-

transgenic hair cells expressing GCaMP6sCAAX (at presynaptic membranes) and Ribeye a-

tagRFP (labels ribbons) at 5 dpf. Example cells in presynaptic imaging plane are boxed in 

white and duplicated in right insets. C’, Example cells show evoked presynaptic-Ca2+ signals 

at ribbons during a 0.2-s stimulation. Circles 1-5 (1.3 µm diameter) in insets in C denote 

regions at ribbons used to generate the temporal traces of presynaptic-Ca2+ signals at each 

ribbon in C’. Similarly-colored traces of presynaptic-Ca2+ signals originate from different 

presynapses of the same cell. D-E’, Presynaptic-Ca2+ signals averaged per cell before (blue) 

and after a 30-min 10 µM TRO 19622 (magenta), n ≥ 9 cells per treatment. D and E show 

averaged traces while D’ and E’ show before-and-after treatment dot plots of the peak 

response per cell. Error in panel B-B’, D-E’ represent SEM. A Wilcoxon matched-pairs 

signed-rank test was used in B’, D’ and E’. *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar = 5 

µm in A and C and 2 µm in C inset.  
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Evoked mitochondrial-Ca2+ uptake is important for mature synapse 

integrity and cell health  

MCU block could impair presynaptic-Ca2+ influx through several mechanisms. It 

could impair the biophysical properties of CaV1.3 channels, for example, through Ca2+-

dependent inactivation (Platzer et al., 2000; Schnee and Ricci, 2003). MCU block could also 

impact CaV1.3-channel localization. In addition, mitochondrial-Ca2+ has been implicated in 

synapse dysfunction and cell death (Esterberg et al., 2014; Vos et al., 2010; Wang et al., 

2019), and MCU block could be pathological. To distinguish between these possibilities, we 

assessed whether synaptic components or hair-cell numbers were altered after MCU block 

with Ru360.  

To quantify ribbon-synapse morphology after MCU block, we immunostained 

mature-hair cells (5 dpf) with CaV1.3, Ribeye b and MAGUK antibodies to label CaV1.3 

channels, presynaptic ribbons and postsynaptic densities (MAGUK) respectively. We first 

applied 2 µM Ru360 for 1 hr, a concentration that partially reduces evoked mitochondrial-

Ca2+ uptake (See Figure 2.1F) yet is effective at reducing sustained presynaptic-Ca2+ influx 

(See Figure 2.4D-D’). At this dose, Ru360 had no impact on hair cell or synapse number 

(Figure 2.6E). We also observed no morphological change in ribbon or postsynapse size 

(Figure 2.6F, Figure 2.7C, Figure 2.8). After the 1-hr 2 µM Ru360 treatment, CaV1.3 clusters 

were still present at synapses, but the channels were at a significantly higher density 

compared to controls (Figure 2.4E-H). These findings indicate that in mature hair cells, 

partial MCU block may impair presynaptic function by increasing CaV1.3 channel density.  

We also tested a higher dose of Ru360 (10 µM) that completely blocks evoked 

mitochondrial-Ca2+ uptake (See Figure 2.1F). Interestingly, a 30-min or 1-hr 10 µM Ru360 
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treatment had a progressive impact on synapse and cellular integrity. After a 30-min 

treatment with 10 µM Ru360 we did not observe significantly fewer complete synapses per 

hair cell or fewer hair cells compared to controls (Figure 2.6E; hair cells per neuromast, 

control: 16.3, 30-min 10 µM Ru360: 15.5; p = 0.5). But after the 30-min treatment, ribbons 

were significantly larger (Figure 2.6F). The effects of MCU block became more pathological 

after a 1-hr, 10 µM Ru360 treatment. After 1-hr, there were both fewer hair cells per 

neuromast (Hair cells per neuromast, control: 18.1, 1-hr 10 µM Ru360: 12.0; p > 0.0001) and 

fewer synapses per hair cell (Figure 2.6E). Similar to 30-min treatments with Ru360, after 1 

hr, ribbons were also significantly larger (Figure 2.6F). Neither 30-min nor 1-hr 10 µM 

Ru360 treatment altered postsynapse size (Figure 2.8). Overall, our results indicate that in 

mature hair cells, partial block of mitochondrial-Ca2+ uptake may impair presynaptic function 

by altering CaV1.3 channel clustering, without seemingly altering other gross pre- or post-

synaptic morphology. Complete block of mitochondrial-Ca2+ uptake is pathological; it 

impairs presynaptic function, alters presynaptic morphology, and results in a loss of synapses 

and hair-cells.   
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Figure 2.6. Mitochondrial-Ca2+ is important for ribbon size and synapse 

integrity in mature hair cells.  
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A-D, Representative images of mature neuromasts (5 dpf) immunostained with Ribeye b 

(magenta, ribbons) and MAGUK (green, postsynapses) after a 1-hr 0.1 % DMSO (A), a 1-hr 

2 µM Ru360 (B), a 30-min 10 µM Ru360 (C), or a 1-hr 10 µM Ru360 (D) treatment. Insets 

show 3 example synapses (white squares). E-F, Scatter plots show synapse counts (E), and 

ribbon area (F) in controls and in treatment groups. Ribbon areas, synapse numbers, and 

hair-cell counts are unaffected after a 1-hr 2 µM Ru360 treatment. Ribbon areas are larger 

without significant loss of synapses or hair cells after a 30-min treatment with 10 µM Ru360 

(F). After a 1-hr 10 µM Ru360 treatment there is an increase in ribbon area and a decrease in 

synapse (E) and hair-cell counts. N ≥ 9 neuromasts per treatment. Error bars in E-F 

represent SEM. An unpaired t-test was used in E and a Welch’s unequal variance t-test was 

used in F. ****p < 0.0001. Scale bar = 5 µm in A, and 2 µm in inset. 
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Figure 2.7. Ribbon and postsynapse size in mature ALL neuromasts. 
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A-B, Scatter plots show that ribbon areas (A) and postsynaptic density areas (B) within the 

same fish are similar between mature anterior lateral-line (ALL) and posterior lateral-line 

(PLL) neuromasts. C, Scatter plots show ribbon areas in controls and after a 1-hr treatment 

with 2 µM Ru360 are similar in mature hair cells within the ALL. Ribbon sizes of untreated 

anterior lateral-line hair cells are from the same dataset in A and C, n ≥ 10 neuromasts per 

treatment; error bars represent SEM; and a Welch’s unequal variance t-test was used for 

comparisons.  
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Figure 2.8. MCU block does not impact postsynapse size in mature hair 

cells.  
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A, Quantification of postsynapse size assayed by MAGUK immunolabel in mature 

neuromasts indicate the treatments with 2 µM Ru360 and 10 µM Ru360 do not significantly 

alter postsynapse size compared to controls, n ≥ 9 neuromasts per treatment at 5 dpf. Error 

bars represent SEM. A Welch’s unequal variance t-test was used for comparisons. 
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MCU and CaV1.3 channel activities regulate subcellular Ca2+ homeostasis 

Overall our results indicate that blocking the loading of Ca2+ into mitochondria 

impairs presynaptic-Ca2+ influx, leading to a loss of synapse integrity, and can be cytotoxic. 

But how do the presynaptic- and mitochondrial-Ca2+ signals interact to affect synapse 

function and cell health? One possibility is that mitochondrial-Ca2+ uptake disrupts 

presynaptic-Ca2+ influx, synapse structure and cell health by perturbing cytosolic-Ca2+ levels.  

To examine resting cytosolic-Ca2+ levels in hair cells, we examined the fluorescence 

signal change of the cytosolic-Ca2+ indicator RGECO1 (CytoRGECO1) before and after a 

30-min pharmacological manipulation of CaV1.3 or MCU channels (Figure 3.7A-C). We 

observed that treatment with the CaV1.3 channel antagonist isradipine decreased resting 

CytoRGECO1 fluorescence (Figure 2.9A). However, treatment with MCU blocker Ru360 

did not significantly shift resting CytoRGECO1 fluorescence levels (Figure 2.9A). These 

data suggest that, unlike CaV1.3 channel function, MCU function and associated 

mitochondrial-Ca2+ uptake does not play a critical role in buffering steady state cytosolic-

Ca2+ levels.  

Alternatively, it is possible that rather than impacting cytosolic-Ca2+ levels, both 

CaV1.3 and MCU activity are required to load and maintain Ca2+ levels within the 

mitochondria. In this scenario, mitochondrial-Ca2+ levels could be a signal that regulates 

ribbon size. To test this possibility, we used MitoGCaMP3 to examine resting 

mitochondrial-Ca2+ levels before and after modulating CaV1.3 or MCU channel function 

(Figure 2.9B). We observed that blocking CaV1.3 channels with isradipine or the MCU with 

Ru360 decreased resting MitoGCaMP3 fluorescence. Our resting MitoGCaMP3 

measurements indicate that the effects of CaV1.3 channel and MCU activity converge to 
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regulate mitochondrial-Ca2+ levels. When either of these channels are blocked, the resting 

levels of mitochondrial-Ca2+ decrease. Therefore, change in mitochondrial-Ca2+ levels may 

be the determining factor in disrupting presynaptic-Ca2+ influx, synapse structure and cell 

health. 
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Figure 2.9. Cytosolic-Ca2+, mitochondrial-Ca2+ baseline measurements in 

mature hair cells.  
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A, RGECO1 measuring baseline cytosolic-Ca2+ before and after a 30-min mock treatment 

(0.1 % DMSO), or after a 10 µM isradipine, or 10 µM Ru360 treatment. Isradipine decreased 

cytosolic-Ca2+ over the treatment period, but Ru360 did not alter cytosolic-Ca2+. B, 

MitoGCaMP3 measuring baseline mitochondrial-Ca2+ before and after a 30-min mock 

treatment (0.1 % DMSO) or after a 10 µM isradipine, or 10 µM Ru360 treatment. Both 

isradipine and Ru360 decreased mitochondrial-Ca2+ over the treatment period. All plots are 

box-and-whiskers plot that show median, min and max. N ≥ 9 neuromasts per treatment. 

All measurements were made in mature hair cells at 5-6 dpf. A one-way Brown-Forsythe 

ANOVA with Dunnett’s T3 post hoc was used to calculate the difference in A-B, **p < 

0.01, ****p < 0.0001.  
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Discussion 

In this study, we determined in a physiological setting how mitochondrial-Ca2+ 

influences hair-cell presynapse function. In mature hair cells, evoked CaV1.3-channel-Ca2+ 

influx drives Ca2+ into mitochondria. Evoked mitochondrial-Ca2+ uptake is important to 

sustain presynaptic Ca2+ responses and maintain synapse integrity. Our study reveals an 

intriguing mechanism that couples presynaptic activity with mitochondrial-Ca2+ to regulate 

the presynaptic function and stability of a synapse. 

Role of evoked mitochondrial-Ca2+ uptake in mature hair cells  

Sensory hair cells are metabolically demanding cells—both apical 

mechanotransduction and basal neurotransmission are energy demanding processes (Shin et 

al., 2007; Spinelli et al., 2012). Therefore, it is likely that hair-cell mitochondria play 

important roles in both of these functional domains. In mammalian auditory hair cells, 

mitochondrial-Ca2+ uptake has been observed to buffer Ca2+ beneath mechanosensory hair 

bundles (Beurg et al., 2010; Fettiplace and Nam, 2019). Blocking this uptake prolonged 

evoked Ca2+ rises in hair bundles. This work suggested that apical mitochondria, along with 

the plasma membrane Ca2+-ATPase (PMCA) contribute to cytosolic-Ca2+ clearance to 

maintain optimal mechanotransduction (Beurg et al., 2010). Although the focus of our 

present study was on the synapse, we also found that blocking mitochondrial-Ca2+ uptake 

using Ru360 (MCU antagonist) or TRO 19622 (VDAC antagonist) increased 

mechanosensitive Ca2+ responses in zebrafish lateral-line hair bundles (Figure 2.5A-B’). In 

the future it will be extremely interesting to explore the role apical mitochondria play in 

mechanotransduction. 
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In the presynaptic region of hair cells, the link between mitochondrial-Ca2+ uptake 

and neurotransmission are less clear. Studies of synapses in various neuronal subtypes have 

demonstrated that mitochondria play multiple roles to maintain neurotransmission including 

ATP production, Ca2+ buffering and signaling, and neurotransmitter synthesis (reviewed in 

Kann and Kovács, 2007; Vos et al., 2010). Study of synaptic mitochondria at ribbon 

synapses in retinal-bipolar cells found that evoked mitochondrial-Ca2+ uptake was sporadic 

and did not significantly contribute to the time course of presynaptic-Ca2+ responses or Ca2+ 

clearance (Zenisek and Matthews, 2000). This work concluded that mitochondria may 

contribute indirectly to Ca2+ clearance from the synaptic terminal by providing ATP to fuel 

the PMCA. In our current study on basal, synaptic mitochondria we found that in mature 

zebrafish-hair cells, mitochondrial-Ca2+ uptake was critical for presynaptic-Ca2+ influx. Even 

partial block of evoked mitochondrial-Ca2+ uptake was sufficient to impair presynaptic-Ca2+ 

influx, especially during sustained stimuli (Figure 2.4C-D’, Figure 2.5D-E’). Interestingly, our 

work suggests that mitochondrial-Ca2+ uptake may not buffer cytosolic-Ca2+ as MCU block 

did not alter cytosolic-Ca2+ levels (Figure 2.9).  

Instead our work indicates that mitochondrial-Ca2+ may be important to maintain 

CaV1.3-channel density (Figure 2.4E-H). We found that after partial MCU block, loss of 

sustained presynaptic-Ca2+ responses coincided with an increase in CaV1.3-channel density at 

the presynapse (Figure 2.4C-H). This result is difficult to interpret as the majority of studies 

on CaV1.3 channels in hair cells focus on activity changes after a decrease or loss of CaV1.3-

channel clustering. For example, in Ribeye-depleted zebrafish hair cells CaV1.3 channels 

failed to cluster (Lv et al., 2016). In addition, when ribbons were enlarged in zebrafish-hair 

cells, CaV1.3-channel density was reduced (Sheets et al., 2017). In these studies, after a loss or 

reduction of CaV1.3-channel clustering, presynaptic Ca2+ signals were increased. Therefore, it 



 82 

is possible that an increase in CaV1.3-channel density could incur the opposite effect and 

decrease presynaptic Ca2+ responses. An increase in CaV1.3-channel density could enhance 

Ca2+-dependent inactivation among tightly clustered CaV1.3 channels. In hair cells, CaV1.3 

channels exhibit reduced Ca2+ dependent inactivation (Koschak et al., 2001; Platzer et al., 

2000; Song et al., 2003; Xu and Lipscombe, 2001). This reduction is thought to be important 

to transmit sustained sensory stimulation (Kollmar et al., 1997). Alternatively, an increase in 

CaV1.3-channel density could be a compensatory strategy to boost presynaptic activity after 

MCU block and impaired presynaptic-Ca2+ influx. If channel density is not responsible for 

impaired presynaptic function, mitochondrial-Ca2+ uptake could be critical to produce energy 

for other cellular tasks to maintain neurotransmission. Additional work is necessary to fully 

understand how evoked mitochondrial-Ca2+ uptake functions to sustain presynaptic-Ca2+ 

influx in mature zebrafish hair cells.  

Role of mitochondrial-Ca2+ in hair cell death and synapse integrity 

In addition to impacting presynaptic function, our work found that in mature hair 

cells, complete MCU block can be pathological (Figure 2.6E). This pathology has parallels in 

recent work on noise-induced hearing. This work demonstrated measurable changes in 

ribbon morphology and synapse number following noise insult (Jensen et al., 2015; Kujawa 

and Liberman, 2009; Liberman and Liberman, 2015). For example, in auditory inner hair 

cells within the high frequency region of the mouse cochlea, ribbons were enlarged 

immediately after noise, followed later by synapse loss (Liberman and Liberman, 2015). This 

pathology is reminiscent of our 1-hr pharmacological treatments that completely block the 

MCU in mature zebrafish-hair cells (Figure 3E-F). After this treatment, we observed a 

reduction in the number of hair cells and synapses, and an increase in ribbon size. Overall, 
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these studies and our own data in mature hair cells support the association between 

mitochondrial-Ca2+ and the MCU with pathological processes associated with noise-

exposure. 

In further support of this idea, recent work in mice has investigated the role of the 

MCU in noise-related hearing loss (Wang et al., 2019). This work demonstrated that 

pharmacological block or a loss of function mutation in MCU protected against synapse loss 

in auditory inner hair cells after noise exposure. Although this result is counter to our 

observed results where complete MCU block reduces synapse number (Figure 2.6E), it 

highlights an association between mitochondrial-Ca2+, noise exposure and synapse integrity. 

It is possible that these differences can be explained by transitory versus chronic alterations 

in mitochondrial-Ca2+ homeostasis. These differences may be resolved by studying hair cells 

in a zebrafish MCU knock out. In the future it will be interesting to examine both 

mitochondrial-Ca2+ uptake and ribbon morphology during noise exposure and aging where 

synapses may be damaged.  

 

 

Materials and Methods 

 

Zebrafish husbandry and genetics 

Adult Danio rerio (zebrafish) were maintained under standard conditions. Larvae 5 to 

7 days post-fertilization (dpf) were maintained in E3 embryo medium (in mM: 5 NaCl, 0.17 

KCl, 0.33 CaCl2 and 0.33 MgSO4, buffered in HEPES pH 7.2) at 28°C. All husbandry and 
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experiments were approved by the NIH Animal Care and Use program under protocol 

#1362-13. Transgenic zebrafish lines used in this study include: Tg(myo6b:GCaMP6s-

CAAX)idc1 (Jiang et al., 2017), Tg(myo6b:GCaMP3)w78Tg (Esterberg et al., 2013), 

Tg(myo6b:mitoGCaMP3)w119Tg (Esterberg et al., 2014), and Tg(myo6b:ribeye a-tagRFP)idc11Tg (Sheets, 

2017). Experiments were performed using Tübingen or TL wildtype strains. 

Cloning and transgenic fish production 

To create transgenic fish, plasmid construction was based on the tol2/Gateway 

zebrafish kit developed by the lab of Chi-Bin Chien at the University of Utah (Kwan et al., 

2007). These methods were used to create Tg(myo6b:mitoRGECO1)idc12Tg transgenic line. 

mitoRGECO1 was cloned into the middle entry vector pDONR221 using the primers listed 

in Table 2.1. For mitochondrial matrix targeting, the sequence of cytochrome C oxidase 

subunit VIII (Rizzuto et al., 1989) was added to the N-terminus of RGECO1. Vectors p3E-

polyA and pDestTol2CG2 were recombined with p5E myosinVIb (myo6b) and our engineered 

plasmids to create myo6b:mitoRGECO1. To generate transgenic fish, DNA clones (25-50 

ng/µl) were injected along with tol2 transposase mRNA (25-50 ng/µl) into zebrafish 

embryos at the single-cell stage.  
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Table 2.1. Primers used to generate Tg(myo6b:mitoRGECO1)idc12Tg 

Designation Source or 
reference 

Identifiers Additional information 

RGECO1 FWD1  This paper PCR primers [ATGTCCGTCCTGACGCC
GCTGCTGCTGCGGGGCT
TGACAGGCTCGGCCCGG
CGGCTCCCAGTGCCGCG
CGCCAAGATCCATTCGT
TGGGGGATCCA]-
GTCGACTCTTCACGTCG
TAAGTG; Made by IDT. 

RGECO1 REV1 This paper PCR primers CTACTTCGCTGTCATCAT
TTGTACAAACTC; Made by 
IDT. 

RGECO1 attB 
FWD2 

This paper PCR primers GGGGACAAGTTTGTACA
AAAAAGCAGGCTGCCAC
CATGTCCGTCCTGACGC
CGC; Made by IDT. 

RGECO1 attB 
REV2 

This paper PCR primers GGGGACCACTTTGTACA
AGAAAGCTGGGTGCTAC
TTCGCTGTCATCATTTGT
ACAAACTC; Made by IDT. 
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Pharmacological treatment of larvae for immunohistochemistry 

For pharmacological studies, zebrafish larvae were exposed to compounds diluted in 

E3 with 0.1 % DMSO (Isradipine (Sigma-Aldrich, St. Louis, MO), Ru360 (Millipore, 

Burlington, MA), TRO 19622 (Cayman Chemical, Ann Arbor, MI)) for 30 min or 1 hr at the 

concentrations indicated. E3 with 0.1 % DMSO were used as control solutions. Dosages of 

isradipine, Ru360, and TRO 19622 did not confer excessive hair-cell death or synapse loss 

unless stated. After exposure to the compounds, larvae were quickly sedated on ice and 

transferred to fixative. 

In vivo imaging of evoked Ca2+ signals 

To measure evoked Ca2+ signals in hair cells, larvae were paralyzed with α-

bungarotoxin and immersed in neuronal buffer solution (in mM: 140 NaCl, 2 KCl, 2 CaCl2, 1 

MgCl2 and 10 HEPES, pH 7.3). Larvae were imaged using a Bruker Swept-field confocal 

microscope, with a Nikon CFI Fluor 60x 1.0 NA water immersion objective. A 488 nm laser 

was used to excite MitoGCaMP3 and a dual bandpass 488/561 nm filter set, and a Rolera 

EM-C2 CCD camera (QImaging) was used to detect signals. To stimulate lateral-line hair 

cells, a fluid-jet was used as previously described to deliver a saturating stimulus (Lukasz and 

Kindt, 2018). 

To measure presynaptic GCaMP6sCAAX signals at ribbons, images were acquired 

with 1 x 1 binning using a 35 µm slit at 50 Hz in a single plane containing presynaptic 

ribbons (Figure 2.5C-C’). Ribbons were marked in live hair cells using the Tg(myo6b:ribeye a-

tagRFP)idc11Tg transgenic line (Figure 2.5C). Ribbons were located relative to GCaMP6s signals 

by acquiring a 2-color Z-stack of 5 planes every 1 µm at the base of the hair cells. To 
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correlate presynaptic GCaMP6sCAAX signals with MitoRGECO1 signals in hair cells, 2-

color imaging was performed. Images were acquired in a single plane with 2 x 2 binning at 

10 Hz with a 70 µM slit. MitoGCaMP3 signals were acquired at 10 Hz in Z-stacks of 5 

planes 1 µm apart with 2 x 2 binning and a 70 µM slit. High speed imaging along the Z-axis 

was accomplished by using a piezoelectric motor (PICMA P-882.11-888.11 series, Physik 

Instrumente GmbH, Karlsruhe, Germany) attached to the objective to allow rapid imaging 

at a 50 Hz frame rate yielding a 10 Hz volume rate. Due to the slow mitochondrial-Ca2+ 

return to baseline after stimulation (~5 min), we waited a minimum of 5 min before 

initiating a new evoked GCaMP6sCAAX or MitoGCaMP3 acquisition. To examine 

mechanotransduction, GCaMP6sCAAX signals were measured in apical hair bundles (Figure 

2.5A-B’). Apical GCaMP6sCAAX signals were acquired in a single plane at 1 x 1 binning 

with a 35 µM slit at 20 Hz. For pharmacological treatment, acquisitions were made prior to 

drug treatment and after a 30-min incubation in the pharmacological agent. Any neuromasts 

with cell death after pharmacological treatment were excluded from our analyses.  

Electron microscopy  

Larvae were prepared for electron microscopy as described previously (Sheets, 2017). 

Transverse serial sections (~60 nm thin sections) were used to section through neuromasts. 

Samples were imaged on a JEOL JEM-2100 electron microscope (JEOL Inc., Tokyo, Japan). 

The distance from the edge of a ribbon density to the edge of the nearest mitochondrion 

was measured (n = 17 ribbons). A subset of measurements was taken from more than one 

ribbon within a hair cell. At 81 % of ribbons, a mitochondrion could be clearly identified 

within 1 µm of a ribbon (17 out of 21 ribbons). All distances and perimeters were measured 

in FIJI (Schindelin et al., 2012). 
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Immunofluorescence staining and Airyscan imaging 

Whole larvae were fixed with 4 % paraformaldehyde in PBS at 4°C for 3.5-4 hr as 

previously described (Zhang et al., 2018). Fixative was washed out with 0.01 % Tween in 

PBS (PBST) in 4 washes, 5 min each. Larvae were then washed for 5 min with H2O. The 

H2O was thoroughly removed and replaced with ice-cold acetone and placed at -20°C for 5 

min for 5 dpf larvae, followed by a 5-min H2O wash. The larvae were then washed for 4 x 5 

min in PBST, then incubated in block overnight at 4°C in blocking solution (2 % goat 

serum, 1 % bovine serum albumin, 2 % fish skin gelatin in PBST). Primary and secondary 

antibodies were diluted in blocking solution. Primary antibodies and their respective 

dilutions are: Ribbon label: Mouse anti-Ribeye b IgG2a, 1:10,000 (Sheets et al., 2011); PSD 

label: Mouse anti-pan-MAGUK IgG1, 1:500 (MABN72, MilliporeSigma, Burlington, MA); 

Hair-cell label: Rabbit anti-Myosin VIIa, 1:1000 (#25-6790, Proteus BioSciences Inc., 

Ramona, CA); CaV1.3 channel label: Rabbit anti-CaV1.3a, 1:500 (Sheets et al., 2012). Larvae 

were incubated in primary antibody solution for 2 hr at room temperature. After 4 x 5 min 

washes in PBST to remove the primary antibodies, diluted secondary antibodies were added 

and samples were incubated for 2 hr at room temperature. Secondary antibodies and their 

respective dilution are as follows: goat anti-mouse IgG2a, Alexa Fluor 488, 1:1000; goat anti-

rabbit IgG (H+L) Alexa Fluor 546, 1:1000; goat anti-mouse IgG1 Alexa Fluor 647, 1:1000 

(Thermo Fisher Scientific, Waltham, MA). Secondary antibodies were washed out with 

PBST for 3 x 5 min, followed by a 5-min wash with H2O. Larvae were mounted on glass 

slides with Prolong Gold Antifade Reagent (Invitrogen, Carlsbad, CA) using No. 1.5 

coverslips.  
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Prior to Airyscan imaging, live samples were immobilized in 2 % low-melt agarose in 

tricaine (0.03 %) in cover-glass bottomed dishes. Live and fixed samples were imaged on an 

inverted Zeiss LSM 780 laser-scanning confocal microscope with an Airyscan attachment 

(Carl Zeiss AG, Oberkochen, Germany) using an 63x 1.4 NA oil objective lens. The median 

(± median absolute deviation) lateral and axial resolution of the system was measured at 198 

± 7.5 nm and 913 ± 50 nm (full-width at half-maximum), respectively. The acquisition 

parameters were adjusted using the control sample such that pixels for each channel reach at 

least 1/10 of the dynamic range. The Airyscan Z-stacks were processed with Zeiss Zen 

Black software v2.1 using 3D filter setting of 7.0. Experiments were imaged with the same 

acquisition settings to maintain consistency between comparisons. 

Quantification and Statistical Analysis 

Analysis of Ca2+ signals, processing, and quantification  

To quantify changes in baseline Ca2+ and NAD(H) homeostasis, images were 

processed in FIJI. For our measurements we quantified the fluorescence in the basal-most 8 

µm (4 planes) to avoid overlap between cells. The basal planes were max Z-projected, and a 

24.0 µm (RGECO1) or 26.8 µm (MitoGCaMP3) circular region of interest (ROI) was drawn 

over the neuromast to make intensity measurements. To correct for photobleaching, a set of 

mock-treated control neuromasts were imaged during every trial. These mock treatments 

were used to normalize the post-treatment intensity values. 

To quantify the magnitude of evoked changes in Ca2+, images were processed in 

FIJI. Images in each time series were aligned using Stackreg (Thevenaz et al., 1998). For 
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evoked MitoRGECO1, MitoGCaMP3, CytoGCaMP3 and two-color GCaMP6sCAAX and 

MitoRGECO1 signals, Z-stacks were max z-projected, and a 5 µm diameter circular ROI 

was drawn over each hair cell to make intensity measurements. For ribbon-localized 

measurements, GCaMP6sCAAX signals were measured within 1.34 µm round ROIs at 

individual ribbons, and intensity change at multiple ribbons per cell were averaged. For 

measurements of mechanotransduction, GCaMP6sCAAX signals were measured within 1.34 

µm round ROIs at individual hair bundles, and intensity change in multiple bundles per 

neuromast were averaged.  

To plot evoked changes in Ca2+, we subtracted the baseline (F0, signal during the pre-

stimulus period) was subtracted from each timepoint acquired. Then each timepoint was 

divided by F0 to generate the relative change in fluorescent signal from baseline or ∆F/F0. 

Quantification of evoked Ca2+ signals were made on max ∆F/F0 measurements. Cells with 

presynaptic Ca2+ activity are defined by max DF/F0 of > 0.05 for MitoRGECO1 and 

MitoGCaMP3, and max DF/F0 > 0.25 for GCaMP6sCAAX for a 2-s stimulation. The 

method to obtain and overlay the spatial signal distribution of evoked signals as heat maps 

has been previously described (Lukasz and Kindt, 2018). We first computed the baseline 

image (F0 or reference image) by averaging the images over the pre-stimulus period. Then the 

F0 was subtracted from each image acquired, to represent the relative change in fluorescent 

signal from baseline or ∆F. The ∆F signal images during the stimulus period were binned, 

scaled and encoded by color maps with red indicating an increase in signal intensity. 

Image processing and quantification of synapse morphology 
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To quantify synapse morphology and pairing, images were first processed in ImageJ 

(NIH), and then synapses were paired using Python (Python Software Foundation) in the 

Spyder Scientific Environment (MIT). In ImageJ, each Airyscan Z-stack was background 

subtracted using rolling-ball subtraction. Z-stacks containing the MAGUK channel were 

further bandpass filtered to remove details smaller than 6 px and larger than 20 px. A 

duplicate of the Z-stack was normalized for intensity. This duplicated Z-stack was used to 

identify individual ribbon and MAGUK using the Simple 3D Segmentation of ImageJ 3D 

Suite (Ollion et al., 2013). Local intensity maxima, identified with 3D Fast Filter, and 3D 

watershed were used to separate close-by structures. The centroid for each identified ribbon 

and MAGUK was obtained using 3D Manager and were used to identify complete synapses. 

The max Z-projection of the segmented Z-stack was used to generate a list of 2D objects as 

individual ROIs corresponding to each punctum. This step also included a minimum size 

filter, Ribeye: 0.08 µm2, MAGUK 0.04 µm2. For quantification of extrasynaptic Ribeye b 

puncta, the minimum size filter was not applied. The 2D puncta ROI were applied over the 

max Z-projection of the original Z-stack which has only been processed with background 

subtraction. This step measures the intensity of the antibody label. Centroid and intensity 

information were exported as a CSV spreadsheet (macro is available on 

https://github.com/wonghc/ImageJ-ribbon-synapse-quantification). 

In Python, the 3D centroid coordinates for each ribbon punctum was measured 

against the coordinates of every post-synaptic MAGUK punctum to find the MAGUK 

punctum within a threshold distance. This threshold was calculated by taking the 2D area of 

the Ribeye and MAGUK punctum measured in the max Z-projection to calculate an 

approximate radius by dividing by π and taking the square root. The two radii were then 

summed to get the threshold. Puncta that were not paired were excluded from later statistical 
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analyses of synaptic ribbon and postsynaptic MAGUK puncta. Hair cell and synapse count 

were confirmed manually. Hair cell counts were performed with myosin VIIa antibody label 

in treatments where synapse or cell numbers were reduced. 

Statistics  

Statistical analyses and data plots were performed with Prism 8 (Graphpad, San 

Diego, CA). Values of data with error bars on graphs and in text are expressed as mean ± 

SEM unless indicated otherwise. All experiments were performed on a minimum of 2 

animals, 6 neuromasts (posterior lateral-line neuromasts L1-L4 or anterior lateral-line 

neuromasts O1 and O2 (Figure 2.3 and 2.7)), on 2 independent days. For 3 and 5 dpf larvae 

each neuromast represents analysis from 8-12 hair cells; 24-36 synapses and 14-18 hair cells; 

42-54 synapses respectively. All replicates are biological. Based on the variance and effect 

sizes reported previously and measured in this study, these numbers were adequate to 

provide statistical power to avoid both Type I and Type II error (Sheets et al., 2012; Zhang 

et al., 2018). No animals or samples were excluded from our analyses unless control 

experiments failed–in these cases all samples were excluded. No randomization or blinding 

was used for our animal studies. Where appropriate, data was confirmed for normality using 

a D’Agostino-Pearson normality test and for equal variances using a F test to compare 

variances. Statistical significance between two conditions was determined by either an 

unpaired t -test, an unpaired Welch’s unequal variance t-test, a Mann843 Whitney U test or a 

Wilcoxon matched-pairs signed-rank test as appropriate. For comparison of multiple 

conditions, a Brown-Forsythe with Dunnett’s T3 post hoc or a Brown-Forsythe and Welch 

ANOVA with Holm-Sidak’s post hoc were used as appropriate. To calculate the IC50 for 

Ru360 block of evoked MitoGCaMP3 signals a dose response curve was plotted using 0, 0.5, 
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2, 5 and 10 µM Ru360. A non-linear fit with four parameters and a variable slope was 

performed to calculate an IC50 of 1.37 µM. 
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Abstract 

 

Sensory hair cells in the ear utilize specialized ribbon synapses. These synapses are 

defined by electron-dense presynaptic structures called ribbons, composed primarily of the 

structural protein Ribeye. Previous work has shown that influx of Ca2+ through voltage-gated 

CaV1.3 channels is critical for hair-cell synapse function and can impede ribbon formation. 

We show that in developing hair cells, there are spontaneous rises in presynaptic-Ca2+ that 

are reliant on CaV1.3 channels. These spontaneous rises in presynaptic-Ca2+ coincide with 

mitochondrial-Ca2+ uptake. Spontaneous mitochondrial-Ca2+ loading lowers cellular 

NAD+/NADH redox and downregulates ribbon formation. Direct application of NAD+ or 

NADH increase or decrease ribbon formation respectively, possibly acting through the 

NAD(H)-binding domain on Ribeye. Our results present a mechanism where presynaptic- 

and mitochondrial-Ca2+ couple for proper presynaptic formation.  
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Introduction 

In the inner ear and retina, sensory neurotransmission relies on specialized ribbon 

synapses. These specialized synapses have a unique presynaptic density called “ribbons”, that 

facilitate rapid and sustained vesicle release (reviewed in: Matthews and Fuchs, 2010). The 

size and morphology of ribbons varies between species and sensory epithelia (Schmitz, 2009) 

and these variations are thought to reflect the specific encoding requirements of a given 

sensory cell (Matthews and Fuchs, 2010). Currently the fundamental mechanism that 

regulates ribbon size is not known. 

Sensory hair cells in auditory, vestibular and lateral-line systems use ribbon synapses 

to encode information sensory stimuli. In hair cells, one known way to regulate ribbon size is 

through its main structural component Ribeye (Schmitz et al., 2000). Perhaps unsurprisingly, 

previous work has shown that overexpression or depletion of Ribeye in hair cells can 

increase or decrease ribbon size respectively (Becker et al., 2018; Jean et al., 2018; Lv et al., 

2016; Sheets, 2017; Sheets et al., 2011). Ribeye is a splice variant of the transcriptional co-

repressor Carboxyl-terminal binding protein 2 (CtBP2) – a splice variant that is unique to 

vertebrate evolution (Schmitz et al., 2000). Ribeye contains a unique A-domain and a B-

domain that is nearly identical to full-length CtBP2. The B-domain contains a nicotinamide 

adenine dinucleotide (NAD+, NADH or NAD(H)) binding site (Magupalli et al., 2008; 

Schmitz et al., 2000). NAD(H) redox is linked to mitochondrial metabolism (Srivastava, 

2016). Because CtBP2 is able to bind and detect NAD+ and NADH levels, it is thought to 

function as a metabolic biosensor (Stankiewicz et al., 2014). For example, previous work has 

demonstrated that changes in NAD(H) redox can impact CtBP oligomerization and its 

transcriptional activity (Fjeld et al., 2003; Thio et al., 2004). Interestingly, in vitro work has 
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shown that both NAD+ and NADH can also promote interactions between Ribeye domains 

(Magupalli et al., 2008). Whether NAD+ or NADH can impact Ribeye interactions and 

ribbon formation has not been confirmed in vivo. 

In hair cells, studies have shown that presynaptic Ca2+ may also impact ribbon 

formation. Neurotransmission at hair-cell ribbon synapses requires the presynaptic-Ca2+ 

channel CaV1.3 (Brandt et al., 2003; Kollmar et al., 1997; Sidi, 2004). Hair-cell depolarization 

opens CaV1.3 channels, resulting in a spatially restricted increase of Ca2+ at presynaptic 

ribbons that triggers vesicle fusion. In vivo work in zebrafish hair cells found that increasing 

or decreasing Ca2+ influx through CaV1.3 channels during development led to the formation 

of smaller or larger ribbons respectively (Sheets et al., 2012).  

Studies in mammals have also shown that presynaptic Ca2+ and CaV1.3 channels also 

play an important role during inner-ear development. In mammals, prior to hearing onset, 

auditory hair cells fire spontaneous Ca2+ action potentials (Eckrich et al., 2018; Marcotti et 

al., 2003; Tritsch et al., 2007, 2010). In mammalian hair cells, these Ca2+ action potentials are 

CaV1.3-dependent and are thought to be important for synapse and circuit formation. In 

support of this idea, in mouse knockouts of CaV1.3, auditory outer hair cells have reduced 

afferent innervation and synapse number (Ceriani et al., 2019). Mechanistically, how CaV1.3-

channel activity regulates ribbon size and innervation is not known. 

In neurons, work has shown that presynaptic activity and mitochondrial-Ca2+ can 

couple together to influence cellular bioenergetics, including NAD(H) redox homeostasis 

(reviewed in: Kann and Kovács, 2007; Llorente-Folch et al., 2015). Based on these studies, 

we hypothesized that Ca2+ influx through CaV1.3 channels may regulate mitochondrial-Ca2+, 

which in turn could regulate NAD(H) redox. Changes to cellular bioenergetics and NAD(H) 

redox could function to control Ribeye interactions and ribbon formation.  



 98 

To study the impact of mitochondrial-Ca2+ and NAD(H) redox on ribbon synapse 

formation, we examined hair cells in the lateral-line system of larval zebrafish. This system is 

advantageous because it contains hair cells with easy access for in vivo pharmacology, and 

imaging cellular morphology and function. Within the lateral-line, hair cells are arranged in 

clusters called neuromasts. The hair cells and ribbon synapses in each cluster form rapidly 

between 2 to 3 days post-fertilization (dpf) (Kindt et al., 2012; McHenry et al., 2009; 

Metcalfe, 1985; Murakami et al., 2003; Santos et al., 2006). Thus, this system can be used to 

study mitochondrial-Ca2+ and NAD(H) redox in developing hair cells.  

Using this sensory system, we find that in developing hair cells spontaneous rises in 

presynaptic Ca2+ drive mitochondrial-Ca2+ uptake. Blocking these spontaneous changes in 

Ca2+ leads to the formation of larger ribbons. Using a redox biosensor, we demonstrate that 

specifically in developing hair cells, decreasing mitochondrial-Ca2+ levels increases the 

NAD+/NADH redox ratio. Furthermore, we show that application of NAD+ or NADH can 

promote the formation of larger or smaller ribbons respectively. Overall, our results suggest 

that in hair cells presynaptic-Ca2+ influx and mitochondrial-Ca2+ uptake couple in hair cells to 

impact ribbon formation. 

Results 

Blocking mitochondrial-Ca2+ entry does not impair presynaptic-Ca2+ 

signals in immature hair cells  

In previous work, we found that MCU block impaired evoked-presynaptic-Ca2+ 

influx. But it was not clear whether mitochondrial-Ca2+ uptake also impacts presynapse 

function of immature hair-cell synapses. We reasoned that mitochondria may be similarly 
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important to remove excess Ca2+ or provide ATP for hair-cell neurotransmission in the 

immature hair cell.  

To determine if mitochondrial-Ca2+ uptake impacted presynaptic function, we 

assayed evoked presynaptic-Ca2+ signals by monitoring GCaMP6sCAAX signals adjacent to 

ribbons as described previously (Figure 2.4C-D’, 2.5C-E’; Sheets et al., 2017; Zhang et al., 

2018). We examined GCaMP6sCAAX signals in immature hair cells at 3 dpf when 

neuromast organs and hair cells are developing (Kindt et al., 2012; McHenry et al., 2009; 

Metcalfe, 1985; Murakami et al., 2003; Santos et al., 2006). Using this approach, we assayed 

presynaptic GCaMP6sCAAX signals before and after a 30-min application of the MCU 

antagonist Ru360 (Figure 2.4C-D’). We found that for both short 200-ms stimuli and 

sustained 10-s stimuli, GCaMP6sCAAX signals at ribbons were unaffected by partial or 

complete MCU block (Figure 3.1C-D’). These results suggest that, unlike in mature hair cells, 

evoked mitochondrial-Ca2+ uptake is dispensable for presynaptic-Ca2+ influx in immature 

hair cells. 
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Figure 3.1. Mitochondrial-Ca2+ uptake does not impact presynaptic Ca2+ 

signals in immature hair cells. 
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A, Double-transgenic hair cells expressing GCaMP6sCAAX (at presynaptic 

membranes) and Ribeye a-tagRFP (labels ribbons) at 3 dpf. Example cells in presynaptic 

imaging plane are boxed in white and duplicated in right insets. C’, Example cells show 

evoked presynaptic-Ca2+ signals at ribbons during a 0.2-s stimulation. Circles 1-4 (1.3 µm 

diameter) in insets in A denote regions at ribbons used to generate the temporal traces of 

presynaptic-Ca2+ signals at each ribbon in B. Similarly-colored traces of presynaptic-Ca2+ 

signals originate from different presynapses of the same cell. C-D’, Presynaptic-Ca2+ 

response averaged per cell before (blue) and after a 30-min treatment with 10 µM Ru360 

(light green) or 2 µM Ru360 (dark green), n ≥ 13 cells per treatment. C and D show averaged 

traces while C’ and D’ show before-and-after dot plots of the peak response per cell.   
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Spontaneous presynaptic and mitochondrial-Ca2+ influx pair in developing 

hair cells 

Numerous studies have demonstrated that mammalian hair cells have spontaneous 

presynaptic-Ca2+ influx during development (Eckrich et al., 2018; Holman et al., 2019; 

Marcotti et al., 2003; Tritsch et al., 2007, 2010). Therefore, we predicted that similar to 

mammals, spontaneous presynaptic-Ca2+ uptake may be a feature of development. 

Furthermore, we predicted that spontaneous mitochondrial-Ca2+ uptake may correlate with 

instances of spontaneous presynaptic-Ca2+ influx.  

First, we tested whether spontaneous presynaptic-Ca2+ signals were a feature of 

developing hair cells. In zebrafish neuromasts, hair cells are rapidly added between 2-3 dpf, 

but by 5-6 dpf relatively fewer cells are added and the hair cells and the organs are largely 

mature (Kindt et al., 2012; McHenry et al., 2009; Metcalfe, 1985; Murakami et al., 2003; 

Santos et al., 2006). Therefore, we examined the magnitude and frequency of spontaneous, 

presynaptic GCaMP6sCAAX signals in developing (3 dpf) and mature (5 dpf) hair cells. We 

found that in developing hair cells, spontaneous GCaMP6sCAAX signals occurred with 

larger magnitudes and more frequency compared to those in mature hair cells (Figure 3.2B-

C). Our spontaneous GCaMP6sCAAX imaging demonstrates that similar to mammals, 

spontaneous presynaptic Ca2+ activity is a feature of developing zebrafish hair cells. 

Next, we tested whether spontaneous mitochondrial-Ca2+ uptake and presynaptic-

Ca2+ influx was correlated. For this analysis we concurrently imaged GCaMP6sCAAX and 

MitoRGECO1 signals in the same cells for 15 mins to measure presynaptic- and 

mitochondrial-Ca2+ responses respectively. We found that spontaneous presynaptic-Ca2+ 

influx was often associated with spontaneous mitochondrial-Ca2+ uptake (Example, Figure 
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3.2A-A’’’). Overall, we observed a high correlation between the rise and fall of these two 

signals within individual cells (Figure 3.2A’’-A’’’). Both of these signals and their correlation 

were abolished by application of the CaV1.3-channel antagonist isradipine (Figure 3.3). 

Together these experiments indicate that spontaneous presynaptic- and mitochondrial-Ca2+ 

signals are correlated. 
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Figure 3.2. Spontaneous presynaptic-Ca2+ influx is linked with 

Mitochondrial-Ca2+ uptake. 
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A-A’, A live Image of a neuromast viewed top-down, expressing the presynaptic-Ca2+ sensor 

GCaMP6sCAAX (A) and mitochondrial-Ca2+ sensor MitoRGECO1 (A’) at 3 dpf. Example 

GCaMP6sCAAX (A’) and MitoRGECO1 (A’) signals during two 25-s windows within a 

900-s acquisition are indicated by the ∆F heatmaps and occur in the same cells. A’’, A 

heatmap of Pearson correlation coefficients comparing GCaMP6sCAAX and MitoRGECO1 

signals from the cells in A-A’. A’’’, Example GCaMP6sCAAX (green) MitoRGECO1 

(magenta) traces during the 900-s acquisition from the 5 cells numbered in A, also see Video 

2. B, Scatter plot showing the average magnitude of GCaMP6sCAAX signals in developing 

and mature hair cells, n = 6 neuromasts per age. C, Scatter plot showing frequency of 

GCaMP6sCAAX events in developing and mature hair cells, n = 6 neuromasts. Error bars in 

B-C represent SEM. A Mann-Whitney U test was used in B and C. ****p < 0.0001. Scale bar 

= 5 µm in A’. 
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Figure 3.3. Spontaneous presynaptic and mitochondrial-Ca2+ signals are 

abolished by CaV1.3 channel antagonist isradipine. 
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A, A live Image of a neuromast viewed top-down, expressing the presynaptic-Ca2+ sensor 

GCaMP6sCAAX (green) and mitochondrial-Ca2+ sensor MitoRGECO1 (magenta) at 6 dpf. 

B, Representative GCaMP6sCAAX (green) and MitoRGECO1 (magenta) traces during a 

900-s continuous image acquisition in the absence of stimuli and 10 µM isradipine. C, There 

is no correlation between GCaMP6sCAAX and MitoRGECO1 signals within each cell in the 

presence of isradipine. 
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Spontaneous mitochondrial-Ca2+ uptake regulates ribbon formation 

Although mitochondrial-Ca2+ uptake did not affect presynaptic-Ca2+ influx in 

immature hair cells, spontaneous mitochondrial-Ca2+ uptake may play a role at developing 

ribbons. Previous work in zebrafish demonstrated that CaV1.3 channel activity plays a role in 

regulating ribbon size specifically during development (Sheets et al., 2012). This work found 

that a transient, 1-hr pharmacological block of CaV1.3 channels increased ribbon size, while 

CaV1.3 channel agonists decreased ribbon size (Figure 3.4E; Sheets et al., 2012). 

Interestingly, this Ca2+-dependent regulation of ribbon size is most impactful in the 

developing hair cells. This developmental time window coincides with the strongest and 

most frequent bouts of spontaneous presynaptic- and mitochondrial-Ca2+ activity in the 

immature hair cells (Figure 3.2). Therefore, spontaneous presynaptic- and mitochondrial-

Ca2+ activities could function together to control ribbon size in developing hair cells. 

To characterize the role of spontaneous mitochondrial-Ca2+ uptake on ribbon size, 

we applied the MCU antagonist Ru360 to developing hair cells (3 dpf). After this treatment, 

we quantified ribbon synapse morphology by immunostaining hair cells to label presynaptic 

ribbons and postsynaptic densities. After a 1-hr application of 2 µM Ru360 to block the 

MCU, we observed a significant increase in ribbon size in developing hair cells (Figure 3.4A-

B, E, Figure 3.5C). In contrast, this same treatment did not impact ribbon size in mature hair 

cells (Figure 2.6F, Figure 2.7C). We also applied a higher concentration of Ru360 (10 µM) to 

developing hair cells for 1 hr. In developing hair cells, after a 1-hr 10 µM Ru360 treatment, 

we also observed a significant increase in ribbon size (Figure 3.4A, C, E). Unlike in mature 

hair cells (Figure 2.6), in developing hair cells, these concentrations of the MCU antagonist 

did not alter the number of hair cells nor the number of synapses per hair cell (Figure 3.4D; 
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Hair cells per neuromast, control: 9.0, 1-hr 10 µM Ru360: 8.8, p = 0.3). All morphological 

changes were restricted to the ribbons, as MCU block did not alter the size of the 

postsynapse (Figure 3.6). 
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Figure 3.4. Mitochondrial-Ca2+ regulates ribbon formation.  
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A-C, Representative images of immature neuromasts (3 dpf) immunostained with Ribeye b 

(magenta, ribbons) and MAGUK (green, postsynapses) after a 1-hr 0.1 % DMSO (A), 2 µM 

Ru360 (B) or 10 µM Ru360 (C) treatment. Insets show 3 representative synapses (white 

squares) for each treatment. D-E, Scatter plot show quantification of synapse number (D), 

and ribbon area (E) in controls and in treatment groups. F, Side-view of 2 hair cells (white 

outline) shows synaptic ribbon (3 magenta asterisks in each cell) and extrasynaptic Ribeye b 

aggregates after a 1-hr 0.1 % DMSO or 10 µM Ru360 treatment. G, Quantification of 

extrasynaptic Ribeye puncta. N ≥ 12 neuromasts per treatment. Error bars in D-E and G 

represent SEM. An unpaired t-test was used in D and a Welch’s unequal variance t-test was 

used in D-E and G, *p < 0.05, **p < 0.01, ****p<0.0001. Scale bar = 5 µm in A, 2 µm in 

insets and F.  
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Figure 3.5. Ribbon and postsynapse size in immature ALL neuromasts. 
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A-B, Scatter plots show that ribbon areas (A) and postsynaptic density areas (B) within the 

same fish are similar between immature anterior lateral-line (ALL) and posterior lateral-line 

(PLL) neuromasts. C, Scatter plots show ribbon areas in controls and after a 1-hr treatment 

with 2 µM Ru360 are larger in immature hair cells within the ALL. Ribbon sizes of untreated 

anterior lateral-line hair cells are from the same dataset in A and C, n ≥ 10 neuromasts per 

treatment; error bars represent SEM; and a Welch’s unequal variance t-test was used for 

comparisons. *p < 0.05. 
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In addition to larger ribbons, at higher concentrations of Ru360 (10 µM), we also 

observed an increase in cytosolic, non-synaptic Ribeye aggregates (Figure 3.4F, G). Previous 

work in zebrafish reported both larger ribbons and cytosolic aggregates of Ribeye in 

CaV1.3a-deficient hair cells (Sheets et al., 2011). These parallel phenotypes indicate that 

spontaneous presynaptic-Ca2+ influx and mitochondrial-Ca2+ uptake may couple to shape 

ribbon size. Our results suggest that during development, spontaneous Ca2+ entry through 

both CaV1.3 and MCU channels continuously regulate ribbon formation; blocking the Ca2+ 

channels increases Ribeye aggregation and ribbon size.  
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Figure 3.6. MCU and CaV1.3 block do not impact postsynapse size.  
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A, Quantification of postsynapse size assayed by MAGUK immunolabel in mature 

neuromasts indicate the treatments with 10 µM isradipine, 2 µM Ru360 and 10 µM Ru360 do 

not significantly alter postsynapse size compared to controls, n ≥ 9 neuromasts per 

treatment. Error bars represent SEM. A Welch’s unequal variance t-test was used for 

comparisons. 
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MCU and CaV1.3 channel activities regulate subcellular Ca2+ homeostasis 

Our results indicate that spontaneous-Ca2+ influx through CaV1.3 channels and 

subsequent loading of Ca2+ into mitochondria regulates ribbon size in developing hair cells. 

But how do these two Ca2+ signals converge to regulate ribbon size? It is possible that 

mitochondria could buffer Ca2+ during spontaneous presynaptic activity and function to 

decrease resting levels of cytosolic Ca2+; cytosolic-Ca2+ levels could be a signal that regulates 

ribbon size. To examine resting cytosolic-Ca2+ levels in hair cells, we examined the 

fluorescence signal change of the cytosolic-Ca2+ indicator RGECO1 (CytoRGECO1) before 

and after a 30-min pharmacological manipulation of CaV1.3 or MCU channels (Figure 3.7A-

C). 

We observed that treatment with the CaV1.3 channel antagonist isradipine and 

agonist Bay K8644 decreased and increased resting CytoRGECO1 fluorescence respectively 

(Figure 3.7A). However, treatment with MCU blocker Ru360 did not significantly shift 

resting CytoRGECO1 fluorescence levels (Figure 3.7A). These data suggest that, unlike 

CaV1.3 channel function, MCU function and associated mitochondrial-Ca2+ uptake does not 

play a critical role in buffering steady state cytosolic-Ca2+ levels in developing hair cells.  

Alternatively, it is possible that rather than impacting cytosolic-Ca2+ levels, both 

CaV1.3 and MCU activity are required to load and maintain Ca2+ levels within the 

mitochondria. In this scenario, mitochondrial-Ca2+ levels could be a signal that regulates 

ribbon size. To test this possibility, we used MitoGCaMP3 to examine resting 

mitochondrial-Ca2+ levels before and after modulating CaV1.3 or MCU channel function 

(Figure 3.7B). We observed that blocking CaV1.3 channels with isradipine or the MCU with 

Ru360 decreased resting MitoGCaMP3 fluorescence. Conversely, CaV1.3 channel agonist 
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Bay K8644 increased resting MitoGCaMP3 fluorescence. These results were consistent in 

mature hair cells as well (Figure 2.9B). Our resting MitoGCaMP3 measurements indicate that 

the effects of CaV1.3 channel and MCU activity converge to regulate mitochondrial-Ca2+ 

levels. When either of these channels are blocked, the resting levels of mitochondrial-Ca2+ 

decrease. Therefore, if presynaptic-Ca2+ influx and mitochondrial-Ca2+ regulate ribbon size 

through a similar mechanism, they may act through mitochondrial- rather than cytosolic-

Ca2+ homeostasis. 

Mitochondrial-Ca2+ levels regulate NAD(H) redox in developing hair cells  

If mitochondrial-Ca2+ levels signal to regulate ribbon size, how is this signal 

transmitted from the mitochondria to the ribbon? An ideal candidate is via NAD(H) 

homeostasis. Ribeye protein, the main component of ribbons contains a putative NAD(H) 

binding site. Because mitochondria regulate NAD(H) redox homeostasis (Jensen-Smith et 

al., 2012), we reasoned that there may be a relationship between mitochondrial-Ca2+ levels, 

NAD(H) redox, and ribbon size. 

To examine NAD(H) redox, we created a stable transgenic line expressing Rex-YFP, 

a fluorescent NAD+/NADH ratio biosensor in hair cells. We verified the function of the 

Rex-YFP biosensor in our in vivo system by exogenously applying NAD+ or NADH for 30 

min. We found that incubation with 100 µM NAD+ increased while 5 mM NADH decreased 

Rex-YFP fluorescence; these intensity changes are consistent with an increase and decrease 

in the NAD+/NADH ratio respectively (Figure 3.7C). Next, we examined if CaV1.3 and 

MCU channel activities impact the NAD+/NADH ratio. We found that 30-min treatments 

with either a CaV1.3 or MCU channel antagonist increased the NAD+/NADH ratio 

(increased Rex-YFP fluorescence) in developing hair cells (Figure 3.7C). Interestingly, similar 
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30-min treatments did not alter Rex-YFP fluorescence in mature hair cells (Figure 3.7D). 

Together, our baseline MitoGCaMP3 and Rex-YFP measurements indicate that during 

development, CaV1.3 and MCU channel activities normally function to increase 

mitochondrial-Ca2+ and decrease the NAD+/NADH ratio. Overall, this work provides 

strong evidence that links NAD(H) redox and mitochondrial-Ca2+ with ribbon formation.  
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Figure 3.7. Cytosolic-Ca2+, mitochondrial-Ca2+ and NAD+/NADH redox 

baseline measurements.  

  



 121 

A, RGECO1 baseline measurements before and after a 30-min mock treatment (0.1 % 

DMSO) or after a 30-min 10 µM Bay K8644 (BayK), 10 µM isradipine, or 10 µM Ru360 

treatment in immature hair cells. B, MitoGCaMP3 baseline measurements before and after a 

30-min mock treatment (0.1 % DMSO) or after a 10 µM BayK, 10 µM isradipine, or 10 µM 

Ru360 treatment in immature hair cells. C-D, Rex-YFP baseline measurements before and 

after 30-min mock treatment (0.1 % DMSO) or after a 30 min 100 µM NAD+, 5 mM 

NADH, 10 µM isradipine, or 10 µM Ru360 treatment, in immature (C) and mature (D) hair 

cells. All plots are box-and-whiskers plot that show median, min and max. N ≥ 9 neuromasts 

per treatment. A one-way Brown-Forsythe ANOVA with Dunnett’s T3 post hoc was used 

to calculate the difference in A-B, and a one-way Brown-Forsythe and Welch ANOVA with 

Holm-Sidak’s post hoc was used in C-D, *p < 0.05, ***p < 0.001, ****p < 0.0001. 

Horizontal lines in B-D indicate that both conditions had similar p values compared to mock 

treatment.  

 

  



 122 

NAD+ and NADH directly influence ribbon formation 

Our Rex-YFP measurements suggest that in developing hair cells, CaV1.3 and MCU 

Ca2+ activities normally function to decrease the NAD+/NADH ratio; furthermore, these 

activities may function to restrict ribbon size. Conversely, blocking these activities increases 

the NAD+/NADH ratio and may increase ribbon size. If the NAD+/NADH ratio is an 

intermediate step between CaV1.3 and MCU channel activities and ribbon formation, we 

predicted that more NAD+ or NADH would increase or decrease ribbon size respectively. 

To test this prediction, we treated developing hair cells with exogenous NAD+ or NADH.  

After a 1-hr treatment with 100 µM NAD+, we found that the ribbons in developing 

hair cells were significantly larger compared to controls (Figure 3.8A-B, E). In contrast, after 

a 1-hr treatment with 5 mM NADH, ribbons were significantly smaller compared to controls 

(Figure 3.8A, C, E). Neither exogenous NAD+ nor NADH were able to alter ribbon size in 

mature hair cells (Figure 3.8F-H, J). These concentrations of NAD+ and NADH altered 

neither the number of synapses per hair cell nor postsynapse size in developing or mature 

hair cells (Figure 3.8D, I, Figure 3.9). These results suggest that in developing hair cells, 

NAD+ promotes while NADH inhibits Ribeye-Ribeye interactions or Ribeye localization to 

the ribbon. Overall these results support the idea that during development, the levels of 

NAD+ and NADH can directly regulate ribbon size in vivo.  
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Figure 3.8. NAD+ and NADH directly influence ribbon formation.  
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Representative images of immature (A-C, 3 dpf) and mature (G-H, 5 dpf) neuromasts 

immunostained with Ribeye b (magenta, ribbons) and MAGUK (green, postsynapses) after a 

0.1 % Tris-HCl (A, F), 100 µM NAD+ (B, G) or 5 mM NADH treatment (C, H). Insets 

show 3 example synapses (white squares). D-E and I-J, Scatter plots show synapse count (D, 

I) and ribbon area (E, J) in controls and treatments groups. N ≥ 10 neuromasts per 

treatment. Error bars in B-C represent SEM. An unpaired t-test was used for comparisons in 

D and I and a Welch’s unequal variance t-test was used for comparisons in E and J, **p < 

0.01. Scale bar = 5 µm in A and F, 2 µm in insets. 
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Figure 3.9. NAD+ and NADH treatment do not impact postsynapse size.  
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Quantification of postsynapse size assayed by MAGUK immunolabel in mature (A) and 

immature (B) neuromasts indicate the treatment with 100 µM NAD+ and 5 mM NADH do 

not significantly alter postsynapse size compared to controls, n ≥ 9 neuromasts per 

treatment. Error bars represent SEM. A Welch’s unequal variance t-test was used for 

comparisons. 
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Discussion 

In this study, we determined in a physiological setting how mitochondrial-Ca2+ 

influences presynapse function and formation in developing hair cells. In developing hair 

cells mitochondrial-Ca2+ uptake is not critical for evoked presynapse activity. Instead, in 

developing hair cells, spontaneous CaV1.3 channel Ca2+ influx drives Ca2+ into mitochondria. 

These spontaneous Ca2+ activities regulate presynaptic ribbon size. Elevated mitochondrial-

Ca2+ levels rapidly lower the NAD+/NADH ratio and downregulate ribbon formation. 

Furthermore, during development, NAD+ and NADH can directly increase and decrease 

ribbon formation respectively. Our study reveals an intriguing mechanism that couples 

presynaptic activity with mitochondrial-Ca2+ to regulate the formation of a presynaptic 

structure. 

Functional significance of ribbon size  

Our work outlines how during development, spontaneous presynaptic activity 

controls the size of ribbons. When either presynaptic-Ca2+ influx or mitochondrial-Ca2+ 

uptake was perturbed, ribbons were significantly larger (Figure 3.4A-C, E; Sheets et al., 

2012). But why regulate ribbon size?  

Previous work has reported variations in ribbon size and shape among hair-cell types 

and species (Moser et al., 2006). In many instances ribbon size is correlated with functional 

properties of the synapse. For example, in the mammalian vestibular system, the ribbons of 

type II dimorphic hair cells in the striolar region are larger than those in the extrastriolar 

region (Lysakowski and Goldberg, 1997). Functionally, afferents that innervate hair cells 

with larger ribbons in the striolar region have lower rates of spontaneous activity compared 
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to afferents that innervate hair cells in the extrastriolar region (Eatock et al., 2008; Goldberg 

et al., 1984; Risner and Holt, 2006). Similarly, in the mammalian auditory system, ribbon size 

is correlated with differences in afferent activity. Inner hair cells are populated by ribbons 

with a range of sizes, each of which is innervated by a unique afferent fiber. Compared to 

larger ribbons, smaller ribbons within inner hair cells are innervated by afferent fibers with 

higher thresholds of activation and lower rates of spontaneous activity (Furman et al., 2013; 

Kalluri and Monges-Hernandez, 2017; Liberman and Liberman, 2015; Liberman et al., 2011, 

1990; Merchan-Perez and Liberman, 1996; Song et al., 2016; Yin et al., 2014). Interestingly, 

in mice, differences in ribbon size can be distinguished just after the onset of hearing 

(Liberman and Liberman, 2016). This timing suggests that similar to our data (Figure 3.2, 

3.4), activity during development may help determine ribbon size.  

Previous work in the zebrafish-lateral line has also examined how ribbon size 

impacts synapse function (Sheets, 2017). This work overexpressed Ribeye in zebrafish hair 

cells to dramatically enlarge ribbons. Functionally, compared to controls, hair cells with 

enlarged ribbons were associated with afferent neurons with lower spontaneous activity 

(Sheets et al., 2017). Furthermore, the onset encoding, or the timing of the first afferent 

spike upon stimulation, was significantly delayed in hair cells with enlarged ribbons. 

Together, both studies in zebrafish and mammals indicate that ribbon size can impact the 

functional properties of the synapse. Based on these studies, we predict that the alterations 

to ribbon size we observed in our current study would impact functional properties of the 

synapse in a similar manner. For example, pharmacological treatments that enlarge ribbons 

(Figure 3.4: MCU channel block; Figure 3.8: exogenous NAD+) would also lower 

spontaneous spiking in afferents and delay onset encoding.  
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Ribeye and CtBP localization at synapses 

In this study, we found that NAD(H) redox state had a dramatic effect on ribbon 

formation. NAD+ promotes while NADH reduces ribbon size (Figure 3.8). The main 

component of ribbons is Ribeye. Ribeye has two domains, a unique A-domain and a B-

domain that contains an NAD(H) binding domain (Schmitz et al., 2000). In vitro work on 

isolated A- and B-domains has shown that both NAD+ and NADH can affect interactions 

between A- and B-domains as well as B-domain interactions (Magupalli et al., 2008). In the 

context of ribbons, the B-domain has been shown to concentrate at the interface between 

the ribbon and the membrane opposing the postsynapse (Sheets et al., 2014). Therefore, 

promoting B-domain homodimerization may act to seed larger ribbons at the presynapse. In 

this scenario, NAD+ and NADH could increase and decrease B-domain homodimerization 

to impact ribbon size. We also observed an increase in cytosolic Ribeye aggregates after 

MCU block (Figure 3.4F-G). Therefore, it is alternatively possible that NAD+ and NADH 

could impact interactions between A- and B-domains more broadly. NAD(H) redox could 

alter Ribeye interactions and alter the overall accumulation or separation of Ribeye within 

aggregates or at the presynapse. 

Work in zebrafish has characterized lateral-line hair cells largely depleted of full-

length Ribeye (Lv et al., 2016). When viewed using TEM, ribbons in Ribeye-depleted hair 

cells are strikingly transparent, suggesting that full-length Ribeye is required for the 

characteristic electron-dense structure of ribbons. Although these ribbons are smaller 

compared to controls, they are still able to tether vesicles near the active zone. Ribeye-

depleted hair cells could be used to test whether mitochondrial-Ca2+ and NAD(H) redox 

regulate ribbons size by impacting Ribeye interactions. If full-length Ribeye and its NAD(H) 
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binding domain are the site of regulation, we predict that Ribeye-depleted hair cells will be 

unaffected by perturbations in mitochondrial-Ca2+ and NAD(H). 

Regardless of the exact mechanism, the effect of presynaptic activity, mitochondrial-

Ca2+ and related changes in NAD(H) redox homeostasis may extend beyond the sensory 

ribbon synapse. Ribeye is a splice variant of the transcriptional co-repressor CtBP2 (Schmitz 

et al., 2000). While the A-domain is unique to Ribeye, the B-domain is nearly identical to 

CtBP2 minus the nuclear localization sequence (NLS) (Hübler et al., 2012). In vertebrates, 

the CtBP family also includes CtBP1 (Chinnadurai, 2007). CtBP proteins are expressed in 

both hair cells and the nervous system, and there is evidence that both CtBP1 and CtBP2 

may act as scaffolds at neuronal synapses (Hübler et al., 2012; tom Dieck et al., 2005). 

Interestingly, in cultured neurons, it has been shown that synaptic activity is associated with 

both an increase in CtBP1 localization at the presynapse as well as a decrease in the 

NAD+/NADH ratio (Ivanova et al., 2015). In our in vivo study, we also found that the 

NAD+/NADH ratio was lower in developing hair cells with presynaptic activity (Figure 

3.7C). But in contrast to in vitro work on CtBP1 in cultured neurons, we found that Ribeye 

localization to the presynapse and ribbon size were reduced when the NAD+/NADH ratio 

was lowered (Figure 3.8A-C). It is unclear why presynaptic activity regulates Ribeye 

localization differently from that of CtBP1. Ribeye and CtBP1 behavior may differ due to 

the divergent function of their N-terminal domains. Synaptic localization may also be 

influenced by external factors, such as the cell type in which the synapse operates, whether 

the study is performed in vitro or in vivo, as well as the maturity of the synapse. Overall, both 

studies demonstrate that the presynaptic localization of CtBP family members CtBP1 and 

Ribeye can be influenced by synaptic activity and NAD(H) redox state.  
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Role of spontaneous mitochondrial-Ca2+ uptake in developing hair cells 

In addition to a role in synapse function, mitochondria have been studied in the 

context of cellular metabolism and cell death (Devine and Kittler, 2018; Tait and Green, 

2013; Vakifahmetoglu-Norberg et al., 2017). Our work suggests that mitochondria may play 

distinct roles in these processes in developing and mature hair cells. We found that 

mitochondria spontaneously take up Ca2+ at the presynapse during hair-cell development 

(Figure 3.2B-C). Blocking presynaptic- and mitochondrial-Ca2+ activities rapidly decreased 

the NAD+/NADH ratio and altered ribbon size in developing hair cells (Figure 3.4, 3.7, 3.8). 

However, in mature hair cells, blocking these activities was pathological and did not 

influence NAD(H) redox (Figure 3.7C). 

Some insight into these differences can be inferred from cardiac myocytes where the 

relationship between mitochondrial-Ca2+ and NAD(H) redox has been extensively studied. 

Similar to our results in developing hair cells, in cardiac myocytes, mitochondrial-Ca2+ drives 

cellular metabolism, which reduces NAD+ to NADH (Bertero and Maack, 2018). In cardiac 

myocytes NADH is oxidized to NAD+ when the MCU is blocked. These results are 

consistent with the changes in NAD(H) redox we observed in developing, but not mature 

hair cells. Instead, after complete MCU block in mature hair cells, we observed a loss of hair 

cells and synapses, and an increase in ribbon size (Figure 2.6). This outcome may be more 

similar to what occurs in heart failure or after extended MCU block—in cardiac myocytes, 

the production of oxidized NAD+ quickly leads to energetic deficits, oxidative stress and 

ultimately the generation of reactive oxygen species (ROS) (Bertero and Maack, 2018). This 

is consistent with work in many cell types where mitochondrial-Ca2+ loading is associated 

with pathological processes such as ROS production, cell death and synapse loss (Cai and 
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Tammineni, 2016; Court and Coleman, 2012; DiMauro and Schon, 2008; Esterberg et al., 

2013, 2014; Sheng and Cai, 2012). Therefore, in mature hair cells, it is possible that after 

MCU block, changes in NAD(H) redox quickly become pathological. Recent work has 

suggested that younger hair cells may be more resilient to ototoxins, perhaps because they 

have not yet accumulated an excess of mitochondria oxidation (Pickett et al., 2018). This 

could explain why complete MCU block alters NAD(H) redox without any observable 

pathological consequence in developing hair cells. In the future it will be exciting to use 

zebrafish to explore how mitochondrial-Ca2+ influx is impacted by pathological treatments 

such as age, noise and ototoxins. 

Although studies have demonstrated that there are spontaneous presynaptic-Ca2+ 

signals in developing mammalian hair cells (Marcotti et al., 2003; Tritsch et al., 2010), these 

Ca2+ signals have not been reported in zebrafish hair cells. Currently, no studies have 

investigated what happens downstream of spontaneous presynaptic-Ca2+ signals in hair cells. 

Our work highlights the mitochondria as a downstream signaling organelle that can couples 

presynaptic activity to ribbon formation. In the future, zebrafish will be a useful model to 

further explore the origin and role of these Ca2+ signals. 
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Materials and Methods 

Zebrafish husbandry and genetics 

Zebrafish husbandry and genetics 

Adult Danio rerio (zebrafish) were maintained under standard conditions. Larvae 2 to 

6 days post-fertilization (dpf) were maintained in E3 embryo medium (in mM: 5 NaCl, 0.17 

KCl, 0.33 CaCl2 and 0.33 MgSO4, buffered in HEPES pH 7.2) at 28°C. All husbandry and 

experiments were approved by the NIH Animal Care and Use program under protocol 

#1362-13. Transgenic zebrafish lines used in this study include: Tg(myo6b:GCaMP6s-

CAAX)idc1 (Jiang et al., 2017), Tg(myo6b:RGECO1)vo10Tg (Maeda et al., 2014), 

Tg(myo6b:mitoGCaMP3)w119Tg (Esterberg et al., 2014), and Tg(myo6b:ribeye a-tagRFP)idc11Tg (Sheets, 

2017). Experiments were performed using Tübingen or TL wildtype strains. 

Cloning and transgenic fish production 

To create transgenic fish, plasmid construction was based on the tol2/Gateway 

zebrafish kit developed by the lab of Chi-Bin Chien at the University of Utah (Kwan et al., 

2007). Tg(myo6b:mitoRGECO1)idc12Tg was created as described in chapter 2 (see Materials and 

Methods, “Cloning and transgenic fish production”). The same method was used to create 

Tg(myo6b:Rex-YFP)idc13Tg  transgenic line. Rex-YFP was cloned into the middle entry vector 

pDONR221 using the primers listed in Table 3.1. Vectors p3E-polyA and pDestTol2CG2 

were recombined with p5E-myosinVIb (myo6b) and our engineered plasmids to create 

myo6b:REX-YFP. To generate transgenic fish, DNA clones (25-50 ng/µl) were injected along 

with tol2 transposase mRNA (25-50 ng/µl) into zebrafish embryos at the single-cell stage.   
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Table 3.1. Primers used to generate Tg(myo6b:Rex-YFP)idc13Tg   

Designation Source or 
reference 

Identifiers Additional information 

Rex-YFP attB 
FWD 

This paper PCR primers GGGGACAAGTTTGTACA
AAAAAGCAGGCTCCGCC
ACCATGAAGGTCCCCGA
AGCG; Made by Integrated 
DNA Technologies (IDT). 

Rex-YFP attB 
REV 

This paper PCR primers GGGGACCACTTTGTACA
AGAAAGCTGGGTGTCAC
CCCATCATCTCTTCCCG 
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Pharmacological treatment of larvae for immunohistochemistry 

For pharmacological studies, zebrafish larvae were exposed to compounds diluted in 

E3 with 0.1 % DMSO (Isradipine, Bay K8644, NAD+ (Sigma-Aldrich, St. Louis, MO), 

Ru360 (Millipore, Burlington, MA), TRO 19622 (Cayman Chemical, Ann Arbor, MI)) or 

Tris-HCl (NADH (Cayman Chemical, Ann Arbor, MI)) for 30 min or 1 hr at the 

concentrations indicated. E3 with 0.1 % DMSO or Tris-HCl were used as control solutions. 

In solution at pH 7.0-7.3, NADH oxidizes into NAD+ by exposure to dissolved oxygen. To 

mitigate this, NADH was dissolved immediately before use and was exchanged with a 

freshly dissolved NADH solution every half hour. Dosages of isradipine, Ru360, Bay K8644, 

TRO 19622, NAD+ and NADH did not confer excessive hair-cell death or synapse loss 

unless stated. After exposure to the compounds, larvae were quickly sedated on ice and 

transferred to fixative. 

 

In vivo imaging of baseline Ca2+ and NAD(H) redox 

To prepare larvae for imaging, larvae were immobilized as previously described 

(Kindt et al, 2012). Briefly, larvae were anesthetized with tricaine (0.03 %) in E3 and pinned 

to a chamber lined with Sylgard 184 Silicone Elastomer (Dow Corning, Midland, MI). Larvae 

were injected with 125 µM α-bungarotoxin (Tocris, Bristol, UK) into the pericardial cavity to 

induce paralysis. Tricaine was rinsed off the larvae and replaced with fresh E3.  

For baseline measurements of Rex-YFP and CytoRGECO1 fluorescence, larvae 

were imaged using an upright Nikon ECLIPSE Ni-E motorized microscope (Nikon Inc., 

Tokyo, Japan) in widefield mode with a Nikon 60x 1.0 NA water-immersion objective, an 
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480/30 nm excitation and 535/40 nm emission filter set or 520/35 nm excitation and 

593/40 emission filter set, and an ORCA-D2 camera (Hamamatsu Photonics K.K., 

Hamamatsu City, Japan). Acquisitions were taken at 5 Hz, in 15 plane Z-stacks every 2 µm. 

For baseline measurements of MitoGCaMP3, larvae were imaged using a Bruker Swept-field 

confocal microscope (Bruker Inc., Billerica, MA), with a Nikon CFI Fluor 60x 1.0 NA 

water-immersion objective. A Rolera EM-C2 CCD camera (QImaging, Surrey, Canada) was 

used to detect signals. Acquisitions were taken using a 70 µm slit at a frame rate of 10 Hz, in 

26 plane Z-stacks every 1 µm. MitoGCaMP3 baseline intensity varied dramatically in 

controls between timepoints. To offset this variability, we acquired and averaged the 

intensity of 4 Z-stacks per time point. For all baseline measurements transgenic larvae were 

first imaged in E3 with 0.1 % DMSO or 0.1 % Tris-HCl as appropriate. Then larvae were 

exposed to pharmacological agents for 30 min and a second acquisition was taken. Any 

neuromasts with cell death after pharmacological or mock treatment were excluded from our 

analyses. 

In vivo imaging of evoked Ca2+ signals 

To measure evoked Ca2+ signals in hair cells, larvae were immobilized in a similar 

manner as described for baseline measurements. After α-bungarotoxin paralysis, larvae were 

immersed in neuronal buffer solution (in mM: 140 NaCl, 2 KCl, 2 CaCl2, 1 MgCl2 and 10 

HEPES, pH 7.3). Evoked Ca2+ measurements were acquired using the Bruker Swept-field 

confocal system described above. To stimulate lateral-line hair cells, a fluid-jet was used as 

previously described to deliver a saturating stimulus (Lukasz and Kindt, 2018). 

To measure presynaptic GCaMP6sCAAX signals at ribbons, images were acquired 

with 1 x 1 binning using a 35 µm slit at 50 Hz in a single plane containing presynaptic 
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ribbons (Figure 2.5C-C’). Ribbons were marked in live hair cells using the Tg(myo6b:ribeye a-

tagRFP)idc11Tg transgenic line (Figure 2.5C). Ribbons were located relative to GCaMP6s signals 

by acquiring a 2-color Z-stack of 5 planes every 1 µm at the base of the hair cells. To 

correlate presynaptic GCaMP6sCAAX signals with MitoRGECO1 signals in hair cells, 2-

color imaging was performed. Images were acquired in a single plane with 2 x 2 binning at 

10 Hz with a 70 µM slit. MitoGCaMP3 signals were acquired at 10 Hz in Z-stacks of 5 

planes 1 µm apart with 2 x 2 binning and a 70 µM slit. High speed imaging along the Z-axis 

was accomplished by using a piezoelectric motor (PICMA P-882.11-888.11 series, Physik 

Instrumente GmbH, Karlsruhe, Germany) attached to the objective to allow rapid imaging 

at a 50 Hz frame rate yielding a 10 Hz volume rate. Due to the slow mitochondrial-Ca2+ 

return to baseline after stimulation (~5 min), we waited a minimum of 5 min before 

initiating a new evoked GCaMP6sCAAX or MitoGCaMP3 acquisition. To examine 

mechanotransduction, GCaMP6sCAAX signals were measured in apical hair bundles (Figure 

2.5A-B’). Apical GCaMP6sCAAX signals were acquired in a single plane at 1 x 1 binning 

with a 35 µM slit at 20 Hz. For pharmacological treatment, acquisitions were made prior to 

drug treatment and after a 30-min incubation in the pharmacological agent. Any neuromasts 

with cell death after pharmacological treatment were excluded from our analyses.  

In vivo imaging of spontaneous Ca2+ signals 

To measure spontaneous Ca2+ signals in hair cells, larvae were prepared in a similar 

manner as described for evoked Ca2+ measurements. Spontaneous Ca2+ measurements were 

acquired using the Bruker Swept-field confocal system described above. To measure 

spontaneous presynaptic GCaMP6sCAAX signals, images were acquired with 2 x 2 binning 

with a 70 µm slit at 0.33 Hz in a single plane for 900 s. For acquisition of two-color 
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spontaneous presynaptic GCaMP6sCAAX and MitoRGECO1 signals images were acquired 

with 2 x 2 binning with a 70 µm slit at 0.2 Hz in a single plane for 900 s.  

Immunofluorescence staining and Airyscan imaging 

Whole larvae were fixed with 4 % paraformaldehyde in PBS at 4°C for 3.5-4 hr as 

previously described (Zhang et al., 2018). Fixative was washed out with 0.01 % Tween in 

PBS (PBST) in 4 washes, 5 min each. Larvae were then washed for 5 min with H2O. The 

H2O was thoroughly removed and replaced with ice-cold acetone and placed at -20°C for 3 

min for 3 dpf and 5 min for 5 dpf larvae, followed by a 5-min H2O wash. The larvae were 

then washed for 4 x 5 min in PBST, then incubated in block overnight at 4°C in blocking 

solution (2 % goat serum, 1 % bovine serum albumin, 2 % fish skin gelatin in PBST). 

Primary and secondary antibodies were diluted in blocking solution. Primary antibodies and 

their respective dilutions are: Ribbon label: Mouse anti-Ribeye b IgG2a, 1:10,000 (Sheets et 

al., 2011); PSD label: Mouse anti-pan-MAGUK IgG1, 1:500 (MABN72, MilliporeSigma, 

Burlington, MA); Hair-cell label: Rabbit anti-Myosin VIIa, 1:1000 (#25-6790, Proteus 

BioSciences Inc., Ramona, CA); CaV1.3 channel label: Rabbit anti-CaV1.3a, 1:500 (Sheets et 

al., 2012). Larvae were incubated in primary antibody solution for 2 hr at room temperature. 

After 4 x 5 min washes in PBST to remove the primary antibodies, diluted secondary 

antibodies were added and samples were incubated for 2 hr at room temperature. Secondary 

antibodies and their respective dilution are as follows: goat anti-mouse IgG2a, Alexa Fluor 

488, 1:1000; goat anti-rabbit IgG (H+L) Alexa Fluor 546, 1:1000; goat anti-mouse IgG1 

Alexa Fluor 647, 1:1000 (Thermo Fisher Scientific, Waltham, MA). Secondary antibodies 

were washed out with PBST for 3 x 5 min, followed by a 5-min wash with H2O. Larvae were 
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mounted on glass slides with Prolong Gold Antifade Reagent (Invitrogen, Carlsbad, CA) 

using No. 1.5 coverslips.  

Prior to Airyscan imaging, live samples were immobilized in 2 % low-melt agarose in 

tricaine (0.03 %) in cover-glass bottomed dishes. Live and fixed samples were imaged on an 

inverted Zeiss LSM 780 laser-scanning confocal microscope with an Airyscan attachment 

(Carl Zeiss AG, Oberkochen, Germany) using an 63x 1.4 NA oil objective lens. The median 

(± median absolute deviation) lateral and axial resolution of the system was measured at 198 

± 7.5 nm and 913 ± 50 nm (full-width at half-maximum), respectively. The acquisition 

parameters were adjusted using the control sample such that pixels for each channel reach at 

least 1/10 of the dynamic range. The Airyscan Z-stacks were processed with Zeiss Zen 

Black software v2.1 using 3D filter setting of 7.0. Experiments were imaged with the same 

acquisition settings to maintain consistency between comparisons.  

 

Quantification and Statistical Analysis 

 

Analysis of Ca2+and NAD(H) signals, processing, and quantification  

To quantify changes in baseline Ca2+ and NAD(H) homeostasis, images were 

processed in FIJI. For our measurements we quantified the fluorescence in the basal-most 8 

µm (4 planes) to avoid overlap between cells. The basal planes were max Z-projected, and a 

24.0 µm (Rex-YFP and RGECO1) or 26.8 µm (MitoGCaMP3) circular region of interest 

(ROI) was drawn over the neuromast to make intensity measurements. To correct for 
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photobleaching, a set of mock-treated control neuromasts were imaged during every trial. 

These mock treatments were used to normalize the post-treatment intensity values. 

To quantify the magnitude of evoked changes in Ca2+, images were processed in 

FIJI. Images in each time series were aligned using Stackreg (Thevenaz et al., 1998). For 

evoked MitoRGECO1, MitoGCaMP3, CytoGCaMP3 and two-color GCaMP6sCAAX and 

MitoRGECO1 signals, Z-stacks were max z-projected, and a 5 µm diameter circular ROI 

was drawn over each hair cell to make intensity measurements. For ribbon-localized 

measurements, GCaMP6sCAAX signals were measured within 1.34 µm round ROIs at 

individual ribbons, and intensity change at multiple ribbons per cell were averaged. For 

measurements of mechanotransduction, GCaMP6sCAAX signals were measured within 1.34 

µm round ROIs at individual hair bundles, and intensity change in multiple bundles per 

neuromast were averaged.  

To plot evoked changes in Ca2+, we subtracted the baseline (F0, signal during the pre-

stimulus period) was subtracted from each timepoint acquired. Then each timepoint was 

divided by F0 to generate the relative change in fluorescent signal from baseline or ∆F/F0. 

Quantification of evoked Ca2+ signals were made on max ∆F/F0 measurements. Cells with 

presynaptic Ca2+ activity are defined by max DF/F0 of > 0.05 for MitoRGECO1 and 

MitoGCaMP3, and max DF/F0 > 0.25 for GCaMP6sCAAX for a 2-s stimulation. The 

method to obtain and overlay the spatial signal distribution of evoked signals as heat maps 

has been previously described (Lukasz and Kindt, 2018). We first computed the baseline 

image (F0 or reference image) by averaging the images over the pre-stimulus period. Then 

the F0 was subtracted from each image acquired, to represent the relative change in 

fluorescent signal from baseline or ∆F. The ∆F signal images during the stimulus period 
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were binned, scaled and encoded by color maps with red indicating an increase in signal 

intensity. 

To quantify the average magnitude and frequency of spontaneous Ca2+ changes in 

GCaMP6sCAAX signals, images were processed in Matlab R2014b (Mathworks, Natick, 

MA) and ImageJ (NIH, Bethesda, MD). First, images in each time series were aligned in 

ImageJ using Stackreg (Thevenaz et al., 1998). To measure the average magnitude during the 

900 s GCaMP6sCAAX image acquisition, a 5 µm diameter circular ROI was drawn over 

each hair cell and a raw intensity value was obtained from each time point. Then, in Matlab, 

the raw traces were bleach corrected. Next, the corrected intensity values were normalized as 

∆F/F0. For spontaneous Ca2+ signals F0 is defined as the bottom 15th percentile of 

fluorescence values (Babola et al., 2018). Then, values of ∆F/F0 of less than 10 % were 

removed. These values were considered to be noise and our threshold value for a true signal. 

A 10 % threshold was determined by imaging spontaneous GCaMP6CAAX signals in the 

presence of isradipine where no signals were observed (Figure 3.3). The averaged magnitude 

of spontaneous activity per cell was obtained by dividing the integral/sum of 

GCaMP6sCAAX signals (∆F/F0 > 10 %) during the whole recording period by 300 (300 

frames in 900 s). The frequency of GCaMP6sCAAX signals was defined as the average 

number of peaks per second during the whole recording period. 

Image processing and quantification of synapse morphology 

To quantify synapse morphology and pairing, images were first processed in ImageJ, 

and then synapses were paired using Python (Python Software Foundation, Wilmington, 

DE) in the Spyder Scientific Environment (MIT, Cambridge, MA). In ImageJ, each Airyscan 

Z-stack was background subtracted using rolling-ball subtraction. Z-stacks containing the 
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MAGUK channel were further bandpass filtered to remove details smaller than 6 px and 

larger than 20 px. A duplicate of each Z-stack was normalized for intensity. This duplicated 

Z-stack was used to identify individual ribbon and MAGUK using the Simple 3D 

Segmentation of ImageJ 3D Suite (Ollion et al., 2013). Local intensity maxima, identified 

with 3D Fast Filter, and 3D watershed were used to separate close-by structures. The 

centroids for each identified ribbon and MAGUK puncta were obtained using 3D Manager 

and these coordinates were used to identify complete synapses. The max Z-projection of the 

segmented Z-stack was used to generate a list of 2D objects as individual ROIs 

corresponding to each punctum. This step also included a minimum size filter: Ribeye: 0.08 

µm2, MAGUK: 0.04 µm2. For quantification of extrasynaptic Ribeye b puncta, the minimum 

size filter was not applied. The 2D puncta ROI were applied over the max Z-projection of 

the original Z-stack processed only with background subtraction. This step measures the 

intensity of the antibody label. Centroid and intensity information were exported as a CSV 

spreadsheet (macro is available on https://github.com/wonghc/ImageJ-ribbon-synapse-

quantification). 

In Python, the 3D centroid coordinates for each ribbon punctum were measured 

against the coordinates of every post-synaptic MAGUK punctum to find the MAGUK 

punctum within a threshold distance. This threshold was calculated by taking the 2D area of 

the Ribeye and MAGUK punctum measured in the max Z-projection to calculate an 

approximate radius by dividing by π and taking the square root. The two radii were then 

summed to get the threshold. Puncta that were not paired were excluded from later statistical 

analyses of synaptic ribbon and postsynaptic MAGUK puncta. To quantify the amount of 

CaV1.3 immunolabel at ribbons, 2D ROIs generated from the Ribeye label to generate 

ribbon areas were applied to a max Z-projection of the CaV1.3 immunolabel. The integrated 
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intensity of CaV1.3 immunolabel was measured within each ROI. The number of hair cells, 

synapses per cell, and CaV1.3 clusters per PSD were counted manually. Hair-cell counts were 

assayed with Myosin VIIa antibody label in treatments when synapse or cell numbers were 

reduced. Due to slight variability between clutches and immunostains we only compared 

experimental data taken from the same clutch, immunostain and imaging session. 

Statistics  

Statistical analyses and data plots were performed with Prism 8 (Graphpad, San 

Diego, CA). Values of data with error bars on graphs and in text are expressed as mean ± 

SEM unless indicated otherwise. All experiments were performed on a minimum of 2 

animals, 6 neuromasts (posterior lateral-line neuromasts L1-L4 or anterior lateral-line 

neuromasts O1 and O2 (Figure 3.5)), on 2 independent days. For 3 and 5 dpf larvae each 

neuromast represents analysis from 8-12 hair cells; 24-36 synapses and 14-18 hair cells; 42-54 

synapses respectively. All replicates are biological. Based on the variance and effect sizes 

reported previously and measured in this study, these numbers were adequate to provide 

statistical power to avoid both Type I and Type II error (Sheets et al., 2012; Zhang et al., 

2018). No animals or samples were excluded from our analyses unless control experiments 

failed–in these cases all samples were excluded. No randomization or blinding was used for 

our animal studies. Where appropriate, data was confirmed for normality using a 

D’Agostino-Pearson normality test and for equal variances using a F test to compare 

variances. Statistical significance between two conditions was determined by either an 

unpaired t -test, an unpaired Welch’s unequal variance t-test, a Mann-Whitney U test or a 

Wilcoxon matched-pairs signed-rank test as appropriate. For comparison of multiple 

conditions, a Brown-Forsythe with Dunnett’s T3 post hoc or a Brown-Forsythe and Welch 
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ANOVA with Holm-Sidak’s post hoc were used as appropriate. To calculate the IC50 for 

Ru360 block of evoked MitoGCaMP3 signals a dose response curve was plotted using 0, 0.5, 

2, 5 and 10 µM Ru360. A non-linear fit with four parameters and a variable slope was 

performed to calculate an IC50 of 1.37 µM. 
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Chapter 4: Conclusion 

Sensory hair cells are critical for communication, the enjoyment of music, and proper 

balance. The hair cell ribbon synapse is an essential component of hair cell function. It is 

required for the release of neurotransmitter in order to relay auditory and vestibular signals 

to the innervating neuron and ultimately the brain. Despite decades of studies, how hair cell 

ribbon synapses form and how these synapses function is still uncertain. In this thesis, I 

determined in a physiological setting how mitochondrial-Ca2+ influences hair-cell presynapse 

function and presynapse formation (Figure 4.1).  
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Figure 4.1.  Schematic model of mitochondrial-Ca2+ activity and function in 

developing and mature hair cells.  
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A, Summary of how in ribbon size is impacted when mitochondrial Ca2+ uniporter (MCU, 

blue) is blocked in the developing hair cell. In the developing hair cell spontaneous 

presynaptic-Ca2+ influx is correlated with and mitochondrial-Ca2+ uptake. Blocking 

mitochondrial-Ca2+ uptake also modulates NAD(H) redox, which increases ribbon 

formation. B, Summary of synaptopathic changes when MCU is blocked in the mature hair 

cell. Stimulus-evoked mitochondrial-Ca2+ uptake is dependent on presynaptic-Ca2+ influx. 

Blocking mitochondrial-Ca2+ uptake can adversely affect synaptic function by decreasing the 

presynaptic-Ca2+ influx which triggers synaptic vesicle exocytosis. Blocking mitochondrial-

Ca2+ uptake also adversely affect the maintenance of presynapse structures, where synapse 

numbers decrease. 
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At neuronal presynapses, studies have shown that mitochondrial-Ca2+ uptake can 

modulate evoked presynaptic Ca2+ signals and therefore neurotransmission (Devine and 

Kittler, 2018). In hair cells, the relationship between mitochondrial-Ca2+ uptake and 

presynapse function in hair cells was unclear. Using in vivo Ca2+ imaging, I examined the 

spatio-temporal characteristics of evoked presynaptic- and mitochondrial-Ca2+ signals. Using 

this approach, I observed robust mitochondrial -Ca2+ influx occurring concurrently with 

evoked presynaptic-Ca2+ influx. Furthermore, mitochondria located near to the presynapse 

had the most rapid and intense Ca2+ uptake. Using pharmacological approaches, I 

demonstrated that evoked mitochondrial-Ca2+ uptake at the presynapse is CaV1.3-channel 

dependent. Interestingly, I found that evoked mitochondrial-Ca2+ uptake is important to 

sustain evoked presynaptic Ca2+ responses. Overall these results have revealed 

mitochondrial-Ca2+ uptake as a new way to regulate presynaptic activity in hair cells. 

Identifying new ways to regulate presynaptic-Ca2+ influx is critical for understanding hair cell 

synaptic transmission, and ultimately hearing and balance. In addition to regulating 

presynapse function, my work also indicates that mitochondrial-Ca2+ levels may be 

important for maintenance of synaptic architecture. I found that after prolonged block of 

mitochondrial-Ca2+ uptake, there was a loss of synapse integrity. Therefore, it is possible that 

mitochondrial-Ca2+ also may play a role in pathological processes that lead to synapse and 

hearing loss. In general, these findings represent an example of mitochondria acting on non-

neuronal synapse function and maintenance.  

 Although mitochondrial-Ca2+ uptake has been implicated in synapse function in 

neurons, less is known about the role that mitochondrial Ca2+ plays in synapse development. 

There studies indicate that in developing mouse auditory and vestibular hair cells, 

spontaneous CaV1.3-dependent Ca2+ influx may play an important role in synapse and circuit 
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formation (Beutner and Moser, 2001; Glowatzki and Fuchs, 2002; Holman et al., 2019; Kros 

et al., 1998; Marcotti et al., 2003; Sendin et al., 2014; Tritsch and Bergles, 2010; Tritsch et al., 

2007, 2010). My work revealed that in developing zebrafish hair cells, there is also 

spontaneous CaV1.3-dependent Ca2+ influx at the presynapse. Further, my work 

demonstrates that these spontaneous presynaptic signals coincide with spontaneous 

mitochondrial-Ca2+ uptake. Intriguingly, blocking either spontaneous presynaptic-Ca2+ influx 

or mitochondrial-Ca2+ uptake impacts ribbon formation (Sheets et al., 2012). Block of either 

of these activities leads to the formation of larger ribbons. Overall this result indicates that 

mitochondrial-Ca2+ can regulate presynapse formation in developing hair cells. In contrast to 

zebrafish neuromast, mammalian inner ear is structurally and functionally more complex, 

containing several mitochondria-rich, highly energetic cell-types. Results from this work 

highlight that hair cell mitochondria may be themselves an important contributor to inner 

ear development. Differences in mitochondrial distribution among cells with ribbon 

synapses, such as between hair cells and retinal photoreceptors and bipolar cells, may reveal 

further mechanistic insights in ribbon synapse development.  

My work also illuminated a downstream process that connects spontaneous 

presynaptic- or mitochondrial-Ca2+ influx with ribbon formation. This process involved the 

mitochondrial metabolic intermediate, NAD(H). NAD(H) is relevant to ribbons because the 

main ribbon component, Ribeye protein, contains a NAD(H) binding domain. My work 

showed that spontaneous presynaptic- and mitochondrial-Ca2+ influx lower the 

NAD+/NADH ratio to restrict ribbon assembly. Overall, this work outlines an intriguing 

mechanism that couples spontaneous presynaptic activity with mitochondrial-Ca2+ to 

regulate the formation of a presynaptic structure. This mechanism is fundamentally 

meaningful because the involvement of NAD+/NADH ratio homeostasis suggests that 
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during development, spontaneous presynaptic activity in hair cells can drive metabolic 

changes (Bogan and Brenner, 2008; Imai, 2009; Li and Sauve, 2015). These metabolic 

changes can then impact presynapse formation. This mechanism outlines a novel mechanism 

that describes on a fundamental level how the assembly of presynaptic ribbons is regulated 

in vivo. The same mechanism may underly the change in ribbon size after noise-damage 

(Jensen et al., 2015; Kujawa and Liberman, 2009; Liberman and Liberman, 2015; Song et al., 

2016), and may be utilized to better understand, prevent and restore the damaged ribbon 

structure. Proper formation of ribbon synapses also will play an important role in the 

development of hearing- or balance-restoration therapy based on hair cell regeneration. 

Better understanding of the structure and formation of the ribbon synapse will contribute to 

the complete maturation and mechanotransduction function of these newly regenerated hair 

cells.   
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Future directions 

Overall, this thesis has made significant progress towards understanding the role that 

mitochondria play at hair cell synapses. This progress prompts new questions. For example, 

why does mitochondrial Ca2+ and cellular metabolism impact ribbon size in developing but 

not mature hair cells? Additionally, why does block of mitochondrial Ca2+ influx impact 

presynaptic function in mature but not developing hair cells? Along these lines, why does 

mitochondrial-Ca2+ depletion lead to synapse loss and cell death specifically in mature hair 

cells? These questions highlight just some of the unknowns that must be addressed to 

understand how the presynapse is affected by mitochondrial Ca2+. 

Role of Ribeye NAD(H)-binding domain in presynaptic ribbon formation 

In this thesis, I describe how mitochondrial-Ca2+ uptake, driven by CaV1.3-

dependent Ca2+ influx, helps maintain a low NAD+/NADH ratio to modulate ribbon size 

during synapse development. I further show that increasing the NAD+/NADH ratio 

promotes Ribeye self-aggregation and increases ribbon size. Similarly, NAD+ or NADH can 

directly increase or decrease ribbon size. My work concludes that the NAD+ and NADH 

ratio acts on Ribeye through its NAD(H) binding domain to regulate Ribeye-Ribeye protein 

interactions.  

Currently, my work has not conclusively demonstrated that NAD+ and NADH 

require the Ribeye NAD(H)-binding domain to determine ribbon size. This would require 

direct manipulation of the NAD(H)-binding domain to assess its importance on ribbon size 

determination in vivo. One way to achieve this manipulation is to generate transgenic 

zebrafish that express in hair cells an exogenous GFP-tagged Ribeye with a mutated 
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NAD(H)-binding domain. This transgenic line could be used to visualize the localization of 

this mutant form of Ribeye and infer the function of NAD(H)-binding domains. It is 

possible that Ribeye protein lacking an NAD(H)-binding domain would not localize to the 

presynapse. In addition, this line could be used in conjunction with NAD+ or NADH 

treatment for a comparison between wildtype and mutant Ribeye. The GFP-tagged mutant 

Ribeye may be unable to respond to NAD+ and NADH treatment. In addition to removal of 

the NAD(H)-binding domain from Ribeye, a transgenic approach also could be used to 

over-express just the Ribeye NAD(H)-binding domain in hair cells. An excess of Ribeye 

NAD(H)-binding domain could interfere with or outcompete endogenous Ribeye proteins at 

the presynapse. Excess Ribeye NAD(H)-binding domain may reduce the amount of 

endogenous Ribeye protein that localizes to the presynapse, leading to the formation of 

smaller ribbons.  

Alternatively, future research could use genetic manipulations to alter the 

endogenous NAD(H)-binding domain of Ribeye. Based on my studies, I predict that, in hair 

cells expressing Ribeye that lacks a NAD(H)-binding domain, ribbons may not be sensitive 

to alterations in mitochondrial Ca2+ or the NAD+/NADH ratio, or even fail to anchor to the 

presynapse during development. Unfortunately, there are two major obstacles for this type 

of analysis. First, there are two isoforms of ribeye in zebrafish, ribeye a and ribeye b; the 

NAD(H)-binding domain must be successfully altered in both isoforms. Previously work has 

successfully lesioned both isoforms of ribeye in zebrafish to knockout Ribeye (Lv et al., 2016). 

In ribeye a; ribeye b double knockouts, smaller ribbon-like presynaptic structures still remain. 

The remaining structure suggests that knockdown is not complete and there may be 

compensation or splicing around the lesion sites. Second, ribeye must be disrupted while 

preserving ctbp2. Ribeye can be separated into a unique A-domain, and a B-domain which is 
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essentially the transcriptional co-repressor CtBP2. It is the shared B-domain that contains 

the Ribeye NAD(H)-binding domain. A major hurdle limiting the genetic modification the 

B-domain of Ribeye is that such modification also disrupts CtBP2 expression. In mammals, 

CtBP2 protein is an important developmental protein at the organismal level (Hildebrand 

and Soriano, 2002). To overcome this challenge, it is possible that Ribeye could be 

genetically altered using a cell-specific or acute knockdown. For example, ribeye could be 

modified in zebrafish hair cells using cell-specific CRISPR-Cas9 gene editing (Ablain et al., 

2015). Cell-specific ribeye knockout could silence Ribeye/CtBP2 in hair cells, while preserving 

CtBP2 expression in the rest of the organism. In summary, Ribeye protein lacking a 

NAD(H) binding domain could be used to study the importance of this domain on synapse 

assembly and function. Together, manipulating the endogenous Ribeye locus could help 

determine if the NAD+/NADH redox ratio specifically regulates Ribeye interactions, and 

the contribution of the NAD(H)-binding domain.  

It is likely that Ribeye-Ribeye interactions and the NAD(H)-binding domain are 

important for ribbon formation. With regards to ribbon formation, it is also important to 

understand how mitochondrial-Ca2+ and the NAD+/NADH ratio fit into the series of events 

that define ribbon formation. Currently the series of events that underlies ribbon formation 

is unclear. While the sequence of ribbon formation was very well studied in mammals, it is 

studied as “snapshots in time” and lacks information about the dynamic movement of 

ribbon proteins. Previous TEM and immunohistochemical studies using mouse hair cells to 

study ribbon synapse maturation suggests that small ribbon precursors may fuse to form the 

mature ribbons (Michanski et al., 2019). Ultimately, the ribbons become anchored to the 

presynaptic membrane. NAD(H)-binding domain may play a role in anchoring Ribeye to the 

presynapse, based on its localization at the interface of the ribbon and the presynaptic active 
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zone (Sheets et al., 2014). Additional studies suggest that there may also be a second mode 

of ribbon synapse maturation where free Ribeye is recruited directly from the cytosol to the 

ribbon. In support of cytosolic recruitment of Ribeye, previous in vivo work has shown that 

Ribeye proteins can move within and between adjacent ribbons (Chen et al., 2018; Graydon 

et al., 2017). In general, it is important first to understand the sequence of events that define 

ribbon formation. Second, the sequence of ribbon formation can serve as a foundation to 

understand how changes in the NAD+/NADH ratio affect ribbon size. NAD(H) may 

regulate ribbon size either by controlling Ribeye anchoring to the presynapse or by regulating 

the number of extrasynaptic Ribeye puncta that merge with ribbons. One way to test the 

effect of NAD(H) on Ribeye dynamics in developing hair cells is to use transgenic zebrafish 

expressing exogenous Ribeye fused to fluorescent proteins. Hair cells expressing 

fluorescently-labeled Ribeye can be used to record movies of ribbon formation in vivo. With 

sufficient resolution, extrasynaptic Ribeye puncta may be visualized as they migrate from the 

hair cell midbody towards the base. Ribeye also may be recruited directly from the cytosol to 

the ribbon, which would become larger without noticeable contribution of extrasynaptic 

ribbon precursors. Once the sequence of ribbon formation is established in the zebrafish 

hair cell in vivo, ribbon formation may be imaged live while presynaptic- or mitochondrial-

Ca2+, or NAD+/NADH is perturbed. In summary, imaging Ribeye dynamics in vivo could 

better show ribbon formation and the contribution of NAD(H)-binding domains to Ribeye 

localization. 

In addition to Ribeye-Ribeye interactions, NAD(H) redox homeostasis may also 

impact Ribeye interactions with other presynaptic proteins. To date, only a handful of 

proteins have been identified in the hair cell ribbon presynapse. One of the most critical 

presynaptic components is CaV1.3, which requires Ribeye directly for localization to the 
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presynapse in the zebrafish hair cell (Sheets et al., 2011). Bassoon is a presynaptic protein 

that likely also could directly interact with Ribeye. Bassoon is required to anchor the ribbon 

to the presynapse (Buran et al., 2010; Frank et al., 2010; Jing et al., 2013; Khimich et al., 

2005; Meyer et al., 2009). In hippocampal neurons, Bassoon interacts with CtBP1, which is 

homologous to the Ribeye-B domain (Ivanova et al., 2015). It is possible that NAD(H) 

redox homeostasis may impact Ribeye interactions with Bassoon or CaV1.3 channels to 

influence ribbon formation.  

My work indicates that mitochondrial-Ca2+ impacts CaV1.3 channel clustering in 

mature hair cells (Figure 2.4E-H). While NAD(H) redox did not appear to change when 

mitochondrial-Ca2+ uptake is blocked (Figure 3.7D), it is possible that local changes in 

NAD(H) redox below indicator detection threshold can directly impact CaV1.3 channel 

clustering. Immunostaining of CaV1.3 channel after NAD+ is applied may show a similar 

change in channel clustering as blocking mitochondrial-Ca2+ uptake. Similarly, the 

localization of Bassoon at ribbon synapses after blocking mitochondrial Ca2+ could be 

assessed with immunostaining.  

In addition to Bassoon and CaV1.3, Piccolino was shown to localize to ribbons in 

zebrafish hair cells and interact with Ribeye in the retinal ribbon. Initial work indicates that 

Piccolino localization may not be affected by the loss of Ribeye NAD(H) binding 

(Michanski et al., 2019; Müller et al., 2019). However, other work on retinal ribbons indicates 

that Piccolino may interact with Ribeye through a PXDLS-motif (Müller et al., 2019). In 

support of this idea, in vitro work on the Ribeye homolog CtBP1 shows that mutation of 

NAD(H)-binding domain did not affect PXDLS-dependent protein interaction (Madison et 

al., 2013). Overall, these genetic, immunohistological, and imaging approaches highlight how 
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the zebrafish hair cell may be used to study ribbon formation in detail. These approaches 

may be used to investigate how NAD(H) redox homeostasis modulates the composition of 

the ribbon presynapse through the Ribeye NAD(H)-binding domain.  

The role of mitochondrial-Ca2+ uptake in hair cells 

Ca2+ is tightly regulated within cells, and several mechanisms are in place to isolate 

Ca2+ signaling domains. For example, Ca2+ that enters the cell does not remain free in the 

cytosol but instead is quickly bound by cytosolic buffers. Organelles also can regulate Ca2+ 

signaling—my work and others have shown that mitochondria act as a Ca2+ buffer for Ca2+ 

clearance at the hair cell stereocilia bundle, and to promote presynaptic-Ca2+ influx at the 

base of the hair cell (Beurg et al., 2010; Boyer et al., 2001; Pickett et al., 2018; Yamoah et al., 

1998).  

In my thesis work, I characterized mitochondrial-Ca2+ stores at the hair cell 

presynapse and linked this store to ribbon synapse formation and function. My work reveals 

a new function for mitochondrial-Ca2+ uptake in synapse formation, synaptic activity and cell 

health. It is interesting that mitochondrial-Ca2+ plays many important roles and that these 

roles change during hair cell maturation. In immature hair cells, blocking mitochondrial-Ca2+ 

uptake increases ribbon size during synapse development, and can lead to the formation of 

extrasynaptic Ribeye-containing puncta. In contrast, blocking mitochondrial-Ca2+ uptake in 

mature hair cells reduces presynaptic-Ca2+ influx and leads to synapse and hair cell loss.  

It is unclear how, in mature hair cells, presynaptic-Ca2+ influx is reduced by blocking 

mitochondrial-Ca2+ uptake. I have shown that loss of mitochondrial Ca2+ storage does not 

decrease presynaptic-Ca2+ influx by reducing the Ca2+ concentration gradient across the cell 
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membrane. My work and others have shown that blocking mitochondrial-Ca2+ uptake has no 

effect on cytosolic-Ca2+ levels or presynaptic-Ca2+ clearance at ribbon synapses (Figure 2.9A, 

Figure 3.7A; Frank et al., 2009). However, I found that blocking mitochondrial-Ca2+ uptake 

increased CaV1.3 clustering at the presynapse. An increase in CaV1.3 channel clustering may 

reduce presynaptic-Ca2+ influx through Ca2+-dependent inactivation (Platzer et al., 2000; 

Schnee and Ricci, 2003). Alternatively, it could be a compensatory strategy to recover 

presynaptic-Ca2+ influx activity after MCU block impaired presynaptic-Ca2+ influx through 

another mechanism. Changes in CaV1.3 Ca2+-dependent inactivation kinetics as a result of 

MCU block may be assessed using patch clamp electrophysiology. For example, exogenous 

Ca2+ buffers may be supplied to the cytosol to compensate for the loss of the mitochondrial-

Ca2+ store (Haack and Rosenberg, 1994). This approach could help illuminate to what extent 

CaV1.3 channel density couples with presynaptic-Ca2+ influx. Alternatively, mitochondrial-

Ca2+ uptake may be itself an important component of presynaptic-Ca2+ activity. 

Alternatively, presynaptic-Ca2+ uptake may be modulated in a non-cell autonomous 

manner. My work used pharmacology to block MCU-dependent Ca2+ uptake activity in the 

hair cell mitochondria. However, because the compounds are not cell specific, 

mitochondrial-Ca2+ activity in supporting cells and afferent neurons also may be blocked 

during the treatment. Supporting cells are glia-like cells that intimately surround and isolate 

hair cells from one another (Balak et al., 1990; Monzack and Cunningham, 2013; Williams 

and Holder, 2000). These cells are also thought to be critical for hair cell function and health 

(Hernández et al., 2006, 2007; Ma et al., 2008; Williams and Holder, 2000). To confirm that 

mitochondrial-Ca2+ uptake in hair cells has cell-autonomous effects on ribbon synapses, the 

MCU could be genetically disrupted in a cell-specific manner. A cell-specific genetic 

disruption of MCU could allow the study of long-term loss of mitochondrial-Ca2+ uptake. 
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Alternatively, to achieve cell-specificity, a dominant negative approach could be used to 

abolish MCU channel function. Previously published work identified a dominant negative 

form of the human MCU subunit in the conserved Ca2+ ion selectivity filter domain 

WDXXEP (Baradaran et al., 2018; De Stefani et al., 2011).  A transgenic zebrafish line could 

be created, expressing this dominant negative form of the MCU specifically in hair cells. 

These approaches could help illuminate with greater certainty that the contribution of 

mitochondrial-Ca2+ uptake is in hair cells.  

In addition to a role in hair cell function, Ca2+ stores are also implicated in hair cell 

pathology. While investigating the effect of blocking mitochondrial-Ca2+ uptake on hair cell 

synapse, I observed that pharmacologically blocking the MCU leads to synapse and hair cell 

loss in mature hair cells. However, this treatment was not cytotoxic to immature hair cells. 

Mitochondrial-Ca2+ overload is intimately tied to cell death and synapse loss (Baumgartner et 

al., 2009; Giorgi et al., 2012; Kakkar and Singh, 2007; Peng and Jou, 2010). Recent work in 

mice has demonstrated that pharmacological block or a loss of function mutation in MCU 

protected against synapse loss in auditory inner hair cells after noise exposure (Wang et al., 

2019). However, mitochondrial-Ca2+ uptake is intimately tied to ROS generation (Adam-Vizi 

and Starkov, 2010; Jensen-Smith et al., 2012; Owens et al., 2007). A proposed reason for age-

dependent sensitivity to cytotoxic conditions is that hair cells incur cumulative ROS damage 

through mitochondrial-Ca2+ uptake (Pickett et al., 2018). Therefore, it is not surprising that 

blocking mitochondrial-Ca2+ uptake is not beneficial in the present work, but instead causes 

hair cell and synapse loss in an age-dependent manner (Figure 2.6E, 3.4D).  

To test if blocking mitochondrial-Ca2+ uptake is associated with ROS production in 

mature hair cells, a fluorescent oxidation reporter dye such as cellROX, or the 
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mitochondrial-targeted equivalent mitoSOX could be used (Esterberg et al., 2016). These 

oxidation reporters may be applied in conjunction with pharmacological block of MCU or 

VDAC to determine if ROS production occurs after blocking mitochondrial-Ca2+ uptake. If 

blocking mitochondrial-Ca2+ uptake is cytotoxic through the same mechanism as 

mitochondrial-Ca2+ overload, mitoSOX would show an increase in ROS production. It 

would be interesting to see if blocking mitochondrial-Ca2+ uptake also increases cellROX 

report of cytosolic ROS. Results from this type of study can provide evidence whether 

MCU-block induces hair cell death via ROS production.  

Alternatively, the cytotoxic effects associated with blocking mitochondrial-Ca2+ 

uptake in mature hair cells could reflect cellular stress due to a reduction in ATP production. 

At pyramidal cortical neuron presynapses, LKB1 protein loss-of-function reduces 

mitochondrial-Ca2+ uptake (Kwon et al., 2016). Paradoxically, while LKB1 has tumor 

suppressing functions, loss of LKB1 function leads to hypersensitivity to apoptosis induced 

by energy stress (Shaw et al., 2004). LKB1 can detect changes in the AMP/ATP ratio to 

activate AMP-activated protein kinase (AMPK) when ATP levels are low (Hawley et al., 

2003; Shaw et al., 2004; Woods et al., 2003). It would be interesting to determine if ATP 

depletion and AMPK activation are involved in the cytotoxic effects associated with 

blocking mitochondrial-Ca2+ uptake in mature hair cells. This could be examined by using an 

activator of AMPK (Stefanelli et al., 1998). If AMPK is involved in mature hair cells, an 

activator of AMPK could rescue Ru360-associated cytotoxicity. Overall this approach could 

help determine if mitochondrial-Ca2+ levels are required to respond to energy stress and 

promote cellular health of mature hair cells. 
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While blocking MCU is cytotoxic to mature hair cells, this is not so in developing 

hair cells. This result suggests that mitochondrial-Ca2+ may play different roles in the 

developing and mature hair cell. This could be because developing hair cells use different 

cellular metabolism pathways compared to mature hair cells. Proliferating cells and tumors 

have been shown to metabolize glucose preferentially by fermentation rather than oxidative 

phosphorylation preferred by differentiated cells (Warburg, 1956). For example, in 

proliferating thymocytes, the ATP produced from glycolysis can exceed that from oxidative 

phosphorylation in mitochondria (Guppy et al., 1993; Pfeiffer et al., 2001). While glycolysis 

produces fewer ATP per glucose molecule than oxidative phosphorylation, glycolysis may 

overall produce more ATP because the process also generates metabolites that serve as 

building blocks for cell components needed in cell proliferation (Bauer et al., 2004; 

DeBerardinis et al., 2008). Therefore, it is possible that developing hair cells also 

predominantly utilize glycolysis to produce ATP and generate cellular structures needed for 

maturation. Under this assumption, blocking MCU in developing hair cell may impose less 

energy stress than in mature cells. In contrast, as mature cells rely on oxidative 

phosphorylation for ATP production, blocking MCU may lead to energy stress and 

cytotoxicity.  

A shift from glycolysis to oxidative phosphorylation in energy generation could be 

tested in developing and mature hair cells by disrupting oxidative phosphorylation, for 

example by acute oxygen deprivation (Manchenkov et al., 2015). Oxidative phosphorylation 

also may be disrupted by inhibiting the mitochondrial pyruvate carrier (Wiemer et al., 1995). 

Alternatively, mitochondrial uncouplers could be used to dissipate the proton gradient that 

drives ATP synthesis at the IMM (Zhang et al., 2008). If mature hair cells have a greater 

reliance on oxidative phosphorylation compared to developing hair cells, disrupting 
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oxidative phosphorylation using any of these approaches could lead to higher energy stress, 

ROS production and cell death. In summary, understanding the changing function of 

mitochondria will inform our understanding of the transition from developing to mature hair 

cells. It could help to understand why mature hair cells are more vulnerable to insults and 

how the maturation process may be replicated in regeneration.  

Endoplasmic reticulum Ca2+ handling 

My work and others have shown that mitochondria act as a Ca2+ store at the hair cell 

(Beurg et al., 2010; Boyer et al., 2001; Pickett et al., 2018; Yamoah et al., 1998). In addition to 

the mitochondria, the endoplasmic reticulum (ER) is another effective Ca2+ store. In 

vertebrate cells, the ER resting Ca2+ level can range from 100 µM to 1 mM in various cell 

types (de la Fuente et al., 2013; Mogami et al., 1998; Solovyova et al., 2002; Vandecaetsbeek 

et al., 2011; Verkhratsky, 2005; Verkhratsky and Petersen, 2002). Ca2+ enters into the ER 

through the sarco-ER Ca2+ ATPase (SERCA) (Vandecaetsbeek et al., 2011). Two related 

channels, the inositol-1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) act as 

intracellular Ca2+-release channels to release Ca2+ from the ER (Lanner, 2012; Lanner et al., 

2010; Mikoshiba, 2015). 

In many cell types, the ER forms contacts with mitochondria that allows for 

exchange of Ca2+ between the two organelles (Giacomello and Pellegrini, 2016; Liu and Zhu, 

2017; Qi et al., 2015; Wu et al., 2018). Electron and fluorescence micrographs of labeled ER-

mitochondrial contacts placed the distance between mitochondria and both smooth and 

rough ER at contact sites to be around 10 to 30 nm (Cieri et al., 2018; Csordás et al., 1999, 

2006; Rizzuto et al., 1998). Contacts between mitochondria and tubular ER structures have 

also been shown in auditory and vestibular hair cells of gerbils (Cunningham et al., 2000; 
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Spicer et al., 1999). 3D reconstruction of ER and mitochondria in neuronal axons using 

focused ion beam-scanning electron microscopy (FIB-SIM) also showed multiple contacts of 

variable length between these two organelles (Krols et al., 2016). In liver cells, studies found 

that the length of contact sites and the distance between the two organelles are altered by 

metabolism (Sood et al., 2014) and apoptosis (Csordás et al., 2006).  

In my thesis work, TEM images used to measure the distance between mitochondria 

and ribbons also showed occasional contacts between mitochondria and ER (examples: 

Figure 4.2). These contacts could be measured to show the average membrane-to-membrane 

distance between mitochondria and ER. In zebrafish, hair cell mitochondrial-ER contacts 

may be further imaged live and in 3D using transgenic fish expressing Förster Resonance 

Energy Transfer (FRET) sensors or split-GFP proteins on the cytosolic faces of ER and 

mitochondria (Cieri et al., 2018; Kindt et al., 2012). Using this method, spatio-temporal 

changes in these contact sites may be measured in the hair cells during development, 

mechanotransduction or ototoxin-exposure. This is important because, in hair cells, ER may 

participate in the mitochondrial functions demonstrated in my work through such contact 

sites.  

 

  



 163 

Figure 4.2. Contacts between mitochondria and ER cisternae. 
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Example TEM showing hair cell mitochondria (orange) in contact with ER cisternae (arrow) 

near presynaptic ribbon (R). A, To the left of the ribbon body, a mitochondrion is contacted 

by a cistern that runs parallel to the OMM. B, The mitochondrion on top of the ribbon body 

is contacted by a cistern. 
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Molecular composition of these contact points has been studied by isolating 

membrane fragments with ER characteristics that strongly associate with the OMM (Lewis 

and Tata, 1973; Pickett et al., 1980; Shore and Tata, 1977; Wanson et al., 1975). These 

fragments are often referred to as mitochondria-associated membranes (MAM) (Vance, 

2014). MAMs are enriched in ER-resident proteins, including IP3R and RyR Ca2+ channels 

(reviewed in: Rossi et al., 2019). It has been proposed that these MAMs that compose the 

ER-mitochondrial contacts are important for shuttling Ca2+ between organelles. For 

example, upon stimulation by IP3, ER Ca2+ is preferentially released to the cytosol near 

mitochondria, leading to mitochondrial-Ca2+ uptake (Rizzuto et al., 1993, 1998). The 

transitory increase in Ca2+ at ER-mitochondrial contact sites drives Ca2+ diffusion through 

VDAC across the OMM and MCU across the IMM (Baughman et al., 2011; De Stefani et al., 

2011; Rapizzi et al., 2002). My work demonstrated that mitochondria take up Ca2+ 

spontaneously during development as well as during evoked hair cell synaptic activity in 

immature and mature hair cells. Based on work in other cell types, it is possible that ER is 

also involved in this regulation of hair cell synapse function and ribbon formation.  

My work showed that, in mature hair cells, mitochondrial-Ca2+ uptake enhances 

presynaptic-Ca2+ uptake. Similarly, ER-Ca2+ stores have been shown to play a role 

downstream of hair cell presynaptic-Ca2+ influx. In mammalian hair cells, ER is thought to 

take up Ca2+ during presynaptic-Ca2+ influx to help maintain a lower basal level of cytosolic-

Ca2+ (Kennedy, 2002; Tucker and Fettiplace, 1995). ER also has been shown to have Ca2+-

induced Ca2+ release to augment presynaptic-Ca2+ influx in hair cells (Castellano-Muñoz and 

Ricci, 2014; Castellano-Muñoz et al., 2016; Lioudyno et al., 2004). The role of Ca2+-induced 

Ca2+ release from ER in evoked presynaptic-Ca2+ could be tested by pharmacologically 

blocking ER-Ca2+ release. By measuring evoked presynaptic-Ca2+ influx as outlined in my 
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thesis (Figure 2.4C-D’ and 3.1C-D’), the role of ER Ca2+-induced Ca2+ release could be 

assessed by treatment with IP3R inhibitor 2-aminoethoxydiphenyl borate (Maruyama et al., 

1997), or a high dose (around 200 µM) of ryanodine, to blocks RyR (Buck et al., 1992). If ER 

Ca2+-induced Ca2+ release is required to support presynaptic-Ca2+ influx, blocking ER-Ca2+ 

efflux would decrease presynaptic-Ca2+ signals.  

Alternatively, ER may act as a Ca2+ buffer to maintain the basal level of cytosolic-

Ca2+. In mammalian hair cells, the ER is thought to take up Ca2+ during presynaptic-Ca2+ 

influx to help maintain a lower basal level of cytosolic-Ca2+ (Kennedy, 2002; Tucker and 

Fettiplace, 1995). Using similar approaches applied in my thesis work (Figure 2.9A, 3.7A), 

cytosolic-Ca2+ levels could be measured before and after blocking ER-Ca2+ influx. If the ER 

maintain a low basal level of cytosolic-Ca2+, I predict that treatment with SERCA inhibitor 

thapsigargin to block ER-Ca2+ uptake would increase cytosolic-Ca2+ (Luo et al., 2000; 

Thastrup et al., 1990). This result would suggest that ER is an important Ca2+ buffer.  

In addition to ER and mitochondria acting as distinct Ca2+ stores, it is likely that the 

two organelles can coordinate during synaptic activity. If blocking ER-Ca2+ release decreases 

presynaptic-Ca2+ influx, it is possible that both mitochondrial- and ER-Ca2+ stores work 

together in the same pathway. Additionally, mitochondrial-Ca2+ uptake could be downstream 

of ER-Ca2+ release, as was shown in aminoglycoside-induced hair cell death in zebrafish 

(Esterberg et al., 2014). To test if mitochondrial-Ca2+ uptake is downstream of ER-Ca2+ 

release during presynaptic activity, evoked mitochondrial-Ca2+ signals could be measured 

while ER-Ca2+ release is manipulated. If mitochondrial-Ca2+ uptake is downstream of ER-

Ca2+-release, blocking or enhancing ER-Ca2+ efflux would respectively decrease or increase 

evoked mitochondrial-Ca2+ signals.  
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The role of the ER during presynaptic-Ca2+ influx or mitochondrial-Ca2+ uptake in 

hair cells could be addressed further by using ER-localized Ca2+ indicators. An ER-localized 

Ca2+ indicator could be used to verify the effects of pharmacological treatments such as the 

SERCA, IP3R and RyR inhibitors discussed above (Buck et al., 1992; Luo et al., 2000; 

Maruyama et al., 1997; Thastrup et al., 1990). ER-Ca2+ flux also may be examined during 

evoked-presynapse function, as well as during spontaneous-Ca2+ uptake that we described in 

the developing hair cells (Figure 3.2A-A’’’). In addition, the ER-localized Ca2+ indicator could 

be used in conjunction with mitochondrial- or presynaptic-localized Ca2+ indicators to 

perform two-color imaging during evoked and spontaneous presynaptic-Ca2+ activity.  

Compared to other Ca2+ domains in the cell, it is challenging to measure the time 

course of ER Ca2+ because ER-Ca2+ levels are comparatively very high. ER-Ca2+ 

concentration has been shown to be at least 1000-fold that of cytosolic-Ca2+ level (Burdakov 

et al., 2005). In order to detect changes in Ca2+ levels in the high resting Ca2+ levels in the 

ER, genetically-encoded Ca2+ indicators have been engineered with much lower affinities for 

Ca2+ to ensure that the indicators do not become saturated by Ca2+ within the ER (Suzuki et 

al., 2014). Preliminarily, in collaboration with Raible lab, we have expressed R-CEPIA, a low 

affinity ER- Ca2+ indicator in zebrafish hair cells. I was able to observe in zebrafish hair cells 

clear changes in R-CEPIA intensity during and after evoked presynaptic-Ca2+ influx (Figure 

4.3 C-D’). Additionally, increases in R-CEPIA intensity was abolished with isradipine, which 

indicated that the Ca2+ increase detected by the indicator was CaV1.3-dependent. Future 

work using R-CEPIA in neuromast hair cells will help establish whether there is a 

relationship between presynaptic, ER and mitochondrial-Ca2+ influx. 
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Figure 4.3. ER-localized Ca2+ indicator R-CEPIA1-er 
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A, Airyscan confocal image of 8 live hair cells expressing R-CEPIA1-er in a neuromast at 4 

dpf. B, For comparison, Airyscan confocal image of a live neuromast in side-view expressing 

ERmkate2 (magenta) MitoGCaMP3 (green). C, Average membrane-Ca2+ signal rise and ER-

Ca2+ signal ∆F/F in a 5-s stimulation shows that synaptic activity is associated with decrease 

in ER-Ca2+ signal, 5 dpf, n = 9 cells. D-D’, In a 10-s stimulation, 10 µM of the CaV1.3 

inhibitor isradipine blocks evoked R-CEPIA1-er signals, 5 dpf, n = 12 cells. R-CEPIA1 

signal decrease in C and during pre-treatment in D’ are both preceded by 4 to 6-s of 

inactivity, the signal of which is abolished by isradipine (D’). 
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Part of my thesis work provides evidence that in mature hair cells, mitochondrial 

Ca2+ is important to maintain synapses and hair cell health. My work showed that complete 

MCU block disrupts synapse maintenance and is cytotoxic (Chapter 2, Figure 2.6E). It is 

possible that ER-Ca2+ handling also contributes to the observed hair cell vulnerability and 

synapse loss. In hair cells, it has been shown that Ca2+ flows from ER to mitochondria 

immediately prior to cell death (Esterberg et al., 2014). Similarly, in other cell-types, 

increased Ca2+ release from ER into the mitochondria sensitizes cells to cell death 

(Nakamura et al., 2000; Pinton et al., 2001). Disruption of the connection between ER and 

mitochondria is also associated with cell death (Liu and Zhu, 2017), as is a higher number of 

ER-mitochondria contacts (Csordás et al., 2006). The role ER-Ca2+ stores play in hair cell 

death or synapse loss could be studied using pharmacological block of ER-Ca2+ uptake or 

release. After pharmacologically inhibiting SERCA, IP3R, or RyR, hair cell and ribbon 

synapse number can be assessed by immunostaining. If blocking ER-Ca2+ influx or release is 

cytotoxic in a manner similar to blocking MCU, then ribbon synapse and hair cell number 

would decrease at a sufficient dose. Future research may reveal whether ER-Ca2+ stores 

contribute to hair cell health and synapse maintenance. 

In summary, the research described in my thesis has revealed previously 

unappreciated roles for the mitochondria in immature and mature hair cells. My work has 

extended our understanding of CaV1.3 channel activity-dependence during ribbon 

development. I identified NAD(H) redox as a potential mechanism regulating ribbon size 

during development. In mature hair cells, my research has identified new roles for the 

mitochondria in cell health and in synapse function and maintenance. Overall, my work has 

contributed to the understanding of hair cell synapse structure, function and formation in 

relation to mitochondrial function. Better understanding of mitochondria in hair cell 
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development and function may also provide insight in how to protect, and or rescue auditory 

or vestibular hair cell from injury. 
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References 

Appendix  

A component of this thesis project was to the quantify Ribeye puncta size and pair 

the puncta with postsynaptic density in order to measure only the synapse-associated 

structures. The Airyscan attachment of the LSM 780 confocal microscope offered increased 

resolution and therefore details that eluded previously published analysis using simple 

intensity threshold (Sheets et al., 2012). Because of the increased resolution, closely 

associated puncta may be resolved, but were not recognized as multiple objects by the 

analysis. The increase resolution made it challenging to automatically segment Ribeye puncta 

in a manner similar to manual quantification. I developed a custom image analysis method to 

properly identify individual Ribeye punctum that were paired with an opposing postsynaptic 

density.  
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Image analysis 

Using the ImageJ 3D Suite, Simple 3D Segmentation was used to isolate and identify 

pre- and postsynapses (Figure A1). The location of local maximum intensity was generated 

to segment the puncta. A separate Z stack of single pixel points was generated using the 3D 

Fast Filters with the provided input (estimated x, y radius of Ribeye puncta: 8 px, MAGUK: 

8 px; estimated z radius: 4). A final segmented Z-stack was generated using 3D Watershed, 

which took the Z stack containing the segmented puncta generated by Simple 3D 

Segmentation, and the local maxima Z stack generated by 3D Fast Filters. In this step, a 

seeds threshold was applied to the local maxima Z stack to disregard maxima generated from 

background noise. Dim puncta that were not captured by the local maxima detection step 

were eliminated during 3D watershed step; as such the cuts generated by watershed were 

applied to the simple segmentation Z stack by transforming the watershed-processed Z stack 

into edges and then subtracting the edges from the simple segmentation Z-stack. The 

centroid for every punctum was obtained using 3D Manager to get their x, y,z coordinates, 

and exported as a spreadsheet. The Z coordinate was matched to the associated area 

information later. The extra dimension helped better to identify complete synapses. The max 

Z-projection of the segmented Z stack was used to generate a list of 2D objects as individual 

regions of interests (ROIs) corresponding to each punctum. This step also included a 

minimum size filter, Ribeye: 0.08 µm2, MAGUK 0.04 µm2. The 2D puncta ROI were applied 

over the max Z projection of the original Z-stack which has only been processed with 

background subtraction. This step measures the intensity of the antibody label. Coordinate 

and intensity information were exported as a CSV spreadsheet. 
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Figure A1. Image analysis scheme for identification and measurement of 

Ribeye and MAGUK puncta. 
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To properly segment the labeled puncta, confocal image Z-stack of Ribeye and MAGUK are 

duplicated and altered to produce a 3D, filled shape of the puncta using 3D Fast Filter and 

3D Watershed. Some steps to back-fill puncta that were lost in 3D Fast Filter were omitted 

for brevity. The 3D filled shape is then Z projected to generate a 2D shape image, which can 

be used as a mask to create regions of interests (ROIs) representing each Ribeye or 

MAGUK punctum. The ROIs are applied to the maximum Z-projection of the original Z-

stack in order to measure the area, intensity, and coordinate of each punctum. The 

coordinate of Ribeye and MAGUK coordinates may be used to filter for synaptic structure. 

This image analysis method aims to reduce two “failed segmentation” scenarios: 1) two 

puncta that do not touch across the Z-stack but is misidentified as one punctum after Z-

projection and 2) dumbbell-shaped object that is misidentified as two puncta.  
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Mid-Atlantic Regional Zebrafish meeting, Dec 2018 (poster) 

“Linking Mitochondrial Calcium uptake, metabolism, and sensory synapse formation”  
Neurobiology Seminar Series, Oct 2018 (oral presentation) 

“Mitochondrial Ca2+ and NAD(H) Regulate Hair-cell Synapse Formation” 
Graduate Student Symposium, Apr 2018 (poster) 
Association for Research in Otolaryngology MidWinter Meeting, Feb 2018 (oral presentation) 

“Hair-cell Ribbon Synapse Formation is Controlled by Calcium Levels in Synaptic Mitochondria and NAD(H) Redox 
Homeostasis”  
Mid-Atlantic Regional Zebrafish meeting, Sep 2017 (poster) 

“Regulation of  Hair-cell Ribbon Synapse Size by Mitochondrial Ca2+ Uptake” 
Eastern Auditory Retreat, Jun 2017 (poster)  
Mid-Atlantic Regional Zebrafish meeting, Mar 2017 (poster) 

“Regulation of  Hair-cell Ribbon Synapse Size by Ribeye NAD-binding” 
Graduate Student Symposium, Apr 2017 (poster) 
Association for Research in Otolaryngology MidWinter Meeting, Feb 2017 (poster) 
Mid-Atlantic Regional Zebrafish meeting, Dec 2016 (oral presentation) 

“Regulation of  Synaptic Ribbon Formation by Intracellular Calcium Stores”  
Association for Research in Otolaryngology MidWinter Meeting, Feb 2016 (poster) 
Association for Research in Otolaryngology MidWinter Meeting, Feb 2015 (poster) 

“Utilizing FimE an HbiF Recombinases to Tightly Control a Bi-directional and Inheritable Switch” 
International Genetically Engineered Machine competition 2012 (oral presentation) 

“Comparing neurotrophin effects on auditory neurofiber regrowth in deafened guinea pig ear”  
Association for Research in Otolaryngology MidWinter Meeting, Feb 2012. (poster) 

“DNA directed cell immobilization using outer membrane protein containing zinc finger domain” International Genetically 
Engineered Machine competition 2011 (oral presentation) 

“Role of  germin-like protein on Arabidopsis thaliana in regulating root epidermis development.” Undergraduate Poster 
Symposium, 2009 and 2010. (posters) 

Other writing experience 
Independently researched and wrote grant proposal as fulfilment of  graduate school curriculum requirement: “Uncoupling 
Nodal and actin-dependent cardiac left-right patterning” 

Professional activities 
Steering committee member of  Neurobiology Interest Group 2018-present 

Member of  the NIDCD Green Team 2016-present 
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Poster judge for the NIH Postbac Poster Day 2017, 2019 

Member of  the NIH Fellows Committee 2016-2018 

 

 

Community engagement 
Letters to a Pre-scientist program participant 2018-present 

NIH Take Your Child to Work Day volunteer 2017- 2019 




