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Abstract

Automated methods for analyzing human activities from video or sensor data are crit-

ical for enabling new applications in human-robot interaction, surgical data modeling,

video summarization, and beyond. Despite decades of research in the fields of robotics

and computer vision, current approaches are inadequate for modeling complex activi-

ties outside of constrained environments or without using heavily instrumented sensor

suites. In this dissertation, I address the problem of fine-grained action segmentation

by developing solutions that generalize from domain-specific to general-purpose for

applications in surgical workflow, surveillance, and cooking.

A key technical challenge, which is central to this dissertation, is how to capture

complex temporal patterns from sensor data. For a given task, users may perform

the same action at different speeds or styles, and each user may carry out actions in a

different order. I present a series of temporal models that address these modes of vari-

ability. First, I define the notion of a convolutional action primitive, which captures

how low-level sensor signals change as a function of the action a user is performing.

Second, I generalize this idea to video with a Spatiotemporal Convolutional Neural
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Network, which captures relationships between objects in an image and how they

change temporally. Lastly, I discuss a hierarchical variant that applies to video or

sensor data, called a Temporal Convolutional Network (TCN), which models actions

at multiple temporal scales. In certain domains (e.g., surgical training), TCNs can

be used to successfully bridge the gap in performance between domain-specific and

general-purpose solutions.

A key scientific challenge concerns the evaluation of predicted action segmenta-

tions. In many applications, action labels may be ill-defined and if one asks two

different annotators when a given action starts and stops they may give answers

that are seconds apart. I argue that the standard action segmentation metrics are

insufficient for evaluating real-world segmentation performance and propose two al-

ternatives. Qualitatively, these metrics are better at capturing the efficacy of models

in the described applications.

I conclude with a case-study on surgical workflow analysis, which has the potential

to improve surgical education and operating room efficiency. Current work almost

exclusively relies on extensive instrumentation, which is difficult and costly to acquire.

I show that our spatiotemporal video models are capable of capturing important

surgical attributes (e.g., organs, tools) and achieve state-of-the-art performance on

two challenging datasets.

The models and methodology described have demonstrably improved the ability

to temporally segment complex human activities, in many cases without sophisticated
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Chapter 1

Introduction

The ability to model how humans interact with their environment is crucial for de-

veloping many next generation assistive technologies. This may require modeling

human motions, objects in their environment, and the interactions between them. In

a manufacturing context, the ability to detect when a human has completed a com-

plex assembly may enable collaborative robots to assist with mundane tasks like part

fetching [11]. During robotic surgery training, detecting when a trainee has completed

a suture throw, or when they accidentally drop a needle, may enable quantitative and

automatic skills assessment. In an age when humans are becoming more and more

comfortable interacting with smart environments, there is a growing need to develop

methods that enable sophisticated interactions between them.

In this thesis, we address the problem of fine-grained action segmentation in sit-
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uated environments from video or sensor data. In this context, situated refers to

a specific setting, such as a manufacturing setup or surgical training station, and

fine-grained refers to actions that are subtly different from one another. Two exam-

ple actions in a cooking task may be cutting a carrot and peeling a cucumber.

Our goal is to take a recording of a user performing a given activity and temporally

segment each of the constituent actions.

While there has been substantial body of work addressing action segmentation,

as we will describe in Chapter 2, many ongoing challenges have prevented its use

in real-world applications. Roboticists often develop domain-specific solutions that

offer compelling performance in well-calibrated, instrumented scenes, but which do

not generalize to new environments. Furthermore, features are often hand-crafted

specifically to model a small set of actions, and require additional work to model new

actions. Computer vision scientists often develop very general solutions that work in

a wide variety of domains, but whose performance is insufficient for use in practice.

Challenges arise due to variation in object appearance, subtle hand motions, and

failure to model the relationships between a human and objects in the scene and how

they change over time. In this thesis, we attempt to bridge the gap between accurate

but domain-specific solutions and inaccurate but general-purpose solutions. Through

our development of multi-modal spatiotemporal models and hierarchical time-series

models, we show that in some cases we do in fact close this performance gap.

While this thesis comes out of work modeling activities in several specific domains

2
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Figure 1.1: In this thesis we develop models that capture what objects are in an
image, their spatial relationships, and how these relationships change over time. The
top images highlight the relevant objects and the bottom is represents the relevant
relationships. We capture these properties via latent layers in a Convolutional Neu-
ral Network. These are annotated using images from the Georgia Tech Egocentric
Activities dataset [3].

– as described in Section 1.1 – the goal is to develop generalizable methods that are

effective in a wide range of applications. Throughout this thesis we describe results

on over a half-dozen datasets, which address applications in human-robot interaction,

video summarization, surveillance, surgical training, and surgical workflow analysis.

1.1 Motivating Applications

While the technical contributions in this thesis will be described in the context of

publicly available datasets, for example using the cooking videos in 50 Salads [12],

many of the ideas are a direct result of progress on several applications not typically
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Figure 1.2: Motivating applications: (left) a depth image recorded in an intensive
care unit (right) our robot being deployed at a small-batch manufacturer.

used by the action recognition community. My experiences working on these appli-

cations helped highlight many facets of activity recognition that are not common in

the literature, but which are important for bringing the technology out of the lab and

into the real-world.

In the following subsections I will briefly describe applications. We will discuss

two of these – surgical skill assessment and surgical workflow analysis – in more depth

later.

1.1.1 Automated Monitoring in Intensive Care Units

ICUs are chaotic places where hundreds of tasks are carried out by many different

people. Proper execution of these tasks, in a timely manner, is important for ensuring

quality of patient outcomes. The goal of our work [13, 14] was to prototype a sys-

tem that could automatically catalog various tasks performed by the bedside using
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Figure 1.3: Motivating applications: (left) an image from a suturing task for surgical
skill assessment (right) an image of a Cholecystectomy used for surgical workflow
analysis.

passive RGBD-based sensing. We proposed a set of computer vision and machine

learning techniques to develop a system that identified seven common actions such

as documenting, checking up on a patient, and performing a procedure. Our system

showed promising preliminary results for recognizing tasks from data we collected

at a Pediatric ICU Furthermore, we showed how this technology could be used to

improve understanding of the current care – by summarizing and visualizing task

completion – to improve overall quality. This system was a significant departure from

prior approaches for quality improvement, which typically required that nurses spend

excessive amounts of time manually entering data about each patient.

1.1.2 Surgical Skill Assessment

The goal of our work in [15, 16] was to advanced the state of the art in surgical

skill assessment through the development of action segmentation models. In recent

years there have been many calls for improving the quality and efficacy of training for
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robotic surgery [17, 18]. Current methods for skill evaluation in surgical training tasks

tend to be either too subjective or too time consuming, and our hypothesis is that

automated, quantitative methods may reduce common issues including inter-reviewer

variability and inter-personal bias. We used sensor data collected from daVinci sur-

gical robots, including video and robot kinematics (e.g. position and velocity of the

robot end effectors), to recognize the sequence of actions a surgeon took to perform

a robotic surgery training task. While our contributions are targeted at recognizing

the individual actions, these can in-turn be used to evaluate the skill of a user. We

use JIGSAWS [19], a surgical training dataset developed by earlier members of our

group, as a running example throughout the primary technical chapters of this thesis.

In a recent collaboration we evaluated our models on a more recent surgical training

dataset, MISTIC [16], however this is outside of the scope of this thesis.

1.1.3 Surgical Workflow Analysis

Most recently, we worked towards surgical phase analysis from videos of robotic and

laparoscopy procedures including cholecystectomies [20] and hysterectomies [21]. Au-

tomatic segmentation of laparoscopic recordings into sequences of clips is important

for analyzing workflow, improving surgical education, and providing surgeons with

automated feedback. Despite increasing interest in this problem, current work al-

most exclusively relies on extensive instrumentation, which is difficult and costly to

acquire, and is only evaluated on data collected from individual institutions. In this

6



CHAPTER 1. INTRODUCTION

work we found two methodological advances for video-based surgical phase segmenta-

tion at-large, and additionally, introduced a new multi-institution surgical phase seg-

mentation dataset. We employed video-based, sensor-based, and multi-modal models

on this data to achieve state-of-the-art performance on the TUM EndoVis dataset

which includes a small number of cholecystectomy procedures. We also applied this

work to datasets our group collected for hysterectomies, cataracts surgery, and to

the M2CAI 2016 Surgical Workflow Competition1. Lastly, we curated a dataset from

cholecystectomy videos that were performed around the world to assess the ability of

our models to generalize to a broader variety of surgical styles, equipment types, and

lighting conditions.

1.1.4 Collaborative Robotics

In [11] we addressed problems with using collaborative robots in Small Manufactur-

ing Entities (SMEs). This project highlighted the importance of modeling actions

as a function of changes in the workspace, including changes in object position or

state. Historically, SMEs have not incorporated robotic automation as readily as

large companies due to rapidly changing product lines, complex and dexterous tasks,

and the high cost of start-up. In this work we designed a platform, CoSTAR (Collab-

orative System for Task Automation and Recognition) that incorporated easy-to-use

robot instruction, object perception, and human action modeling. While the system

1M2CAI Surgical Workflow Competition camma.u-strasbg.fr/m2cai2016/
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for action recognition was relatively simple, it highlighted important challenges for

modeling human actions in complex environments.

1.2 Outline and Approaches

The primary focus of this work is on the development of generalizable models for

action segmentation that can be applied across many unique environments, including

those just described. In particular, we work towards bridging the gap between solu-

tions from the robotics community, whose results are promising but typically require

that an environment be instrumented with costly or invasive sensors (e.g. [22, 5]),

and solutions from the computer vision community, which typically only require a

camera but whose performance is more modest and likely unusable for the real-world

(e.g. [23, 24]). A detailed description of each chapter is included below. Before de-

scribing our work, in Chapter 2 we highlight the state of the art in robotics and

computer vision.

The first technical contributions appear in Chapter 3 where we develop a baseline

time-series model for action segmentation that achieves state-of-the-art performance

on two public datasets using domain-specific sensors. Our Skip Chain Conditional

Random Field is an efficient higher-order model that captures high-level temporal

dynamics, which we find outperforms Linear Chain CRFs, Hidden Markov Models,

Recurrent Neural Networks, and other time-series models. We introduce the vanilla

Skip Chain CRF, a latent variant, and a segmental variant. We combine these CRFs
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with our first notion of a temporal action primitive. These action primitives model

how sensor values change over time, and in contrast with many hand-crafted time-

series features (e.g.[4, 22, 25, 5, 12]), are learned directly from raw sensor data.

We then introduce a spatiotemporal model in Chapter 4 that, in tandem with the

time-series model, improves action segmentation performance when operating solely

on video. The spatial component of this model captures the relationships between

different objects within each image and the temporal component captures how these

relationships change across time. We investigate geometric relationships between

objects by exploiting the fact that in many applications we consider, the camera

is typically stationary. By contrast, the state-of-the-art approaches in video-based

action segmentation use holistic representations that ignore spatial structure. The

second contribution in this chapter is a method for training spatial CNNs that does

not require any training labels. We use sensor data that is synchronized with the video

to learn a video-based representation that can the be used for action segmentation

or other tasks. This is especially important in robotics applications where there is

a large amount of training data without ground truth labels but for which there is

auxiliary sensor data.

Finally in Chapter 5 we introduce a class of hierarchical, fully convolutional mod-

els, called Temporal Convolutional Networks (TCN), that unify ideas from our time-

series baseline and spatiotemporal representation to, in some cases, fully bridge the

gap between solutions using domain-specific sensing and general purpose cameras.
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Our TCNs capture low-, intermediate-, and high-level temporal (or spatiotempo-

ral) cues from raw sensor signals, using a hierarchy of temporal convolutional filters.

These learn low-level filters that are comparable to our earlier action primitives and

high-level filters that capture transitions between actions. Not only do TCNs achieve

superior performance, but in contrast to our other methods, in which inference was

performed offline in batch, we demonstrate online TCNs which can be used for real-

time applications. Lastly, we discuss parallels between work in the segmentation

and action detection literatures, and show that TCNs can achieve state-of-the-art

performance on both tasks.

Our models achieve state-of-the-art performance on most of these datasets and

in some cases close the gap between performance using domain-specific sensors and

general video-based solutions. Furthermore, in Chapter 6 we address additional ap-

plications of the models developed throughout to the domain of surgical workflow

analysis.

In Chapter 7, we address many of the practical implications and limitations of our

models for real-world tasks. We highlight interesting future directions for fine-grained

action modeling and describe potential pathways for enabling this work at scale.

1.3 Thesis Statement

We posit that temporal convolutional filters can capture complex time-series patterns

exhibited in sensor sequences, regardless of sensing modality, for use in fine-grained
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Chapter 3: Latent Convolutional Time-series Model

Chapter 4: Segmental Spatiotemporal CNN

Chapter 5: Encoder-Decoder Temporal Convolutional Network

Figure 1.4: The resulting models described in each of the core chapters of this thesis.

11



CHAPTER 1. INTRODUCTION

action segmentation problems. We believe that when these filters are defined to

operate over short intervals of time they will capture how sub-actions correlate with

local changes in sensor values and when defined to operate over longer intervals of

time they will capture properties including action duration and action transitions.

1.4 Contributions

The topics in this thesis can be categorized into video-based activity recognition,

surgical data modeling, and robotics and have been written about in a series of

five first-author conference papers (including one in-review), two workshop papers,

and a series of collaborations. A breakdown of the chapters of this thesis and the

corresponding papers in which they were described is as follows.

Chapter 3 is mostly based on

• Learning Convolutional Action Primitives for Fine-grained Action Recognition,

Colin Lea, René Vidal, Greg Hager, ICRA, 2016.

• An Improved Model for Segmentation and Recognition of Fine-grained Activities

with Application to Surgical Training, Colin Lea, Greg Hager, René Vidal,

WACV, 2015.

Chapter 4 is based on

• Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation, Colin

Lea, Austin Reiter, René Vidal, Greg Hager, ECCV, 2016.

12



CHAPTER 1. INTRODUCTION

• Sensor Substitution for Video-based Action Recognition, Christian Rupprecht*,

Colin Lea*, Federico Tombari, Nassir Navab, Greg Hager, IROS, 2016.2

Chapter 5 is based on

• Temporal Convolutional Networks for Action Segmentation and Detection, Colin

Lea, Michael D. Flynn, René Vidal, Austin Reiter, Greg Hager, arXiv, 2016.

(in-review)

• Temporal Convolutional Networks: A Unified Approach to Action Segmentation,

Colin Lea, René Vidal, Austin Reiter, Greg Hager, ECCV Workshop, 2016.

Chapter 6 uses the methods from the previous chapters and was written about in

• Surgical Phase Recognition: from Instrumented ORs to Hospitals Around the

World, Colin Lea, Joon Hyuck Choi, Austin Reiter, Greg Hager, MICCAI:

M2CAI Workshop, 2016. (Best workshop paper award)

The following collaborations and earlier work indirectly contributed to ideas in

this thesis:

• System Events: Readily Accessible Features for Surgical Phase Detection, Anand

Malpani, Colin Lea, Grace Chen, Greg Hager, IPCAI/IJCARS, 2016.

• A Framework for End-User Instruction of a Robot Assistant for Manufacturing,

Kelleher Guerin, Colin Lea, Chris Paxton, Greg Hager, ICRA, 2015.

2* denotes equal contribution
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• Transition State Clustering: Unsupervised Surgical Trajectory Segmentation For

Robot Learning, Sanjay Krishnan, Animesh Garg, Sachin Patil, Colin Lea,

Greg Hager, Pieter Abbeel, Ken Goldberg, ISRR, 2015.

• 3D Sensing Algorithms Towards Building an Intelligent Intensive Care Unit,

Colin Lea, James Fackler, Greg Hager, Russ Taylor and Suchi Saria, AMIA,

2013.
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Chapter 2

Background and Related Work

In this chapter we discuss prior work from robotics, computer vision, and time-series

modeling and introduce terminology which will be used throughout this thesis. It is

important to understand the background on all three areas in order to appreciate the

fundamental issues with current approaches to fine-grained action recognition.

2.1 Action Recognition Stratification

Within the activity recognition literature, terms including recognition, classification,

and segmentation are often abused so we define a set terms that will be used consis-

tently throughout this work.

Action Classification (trimmed): Given a video or sensor sequence that only con-

sists of one action, classify that action.
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Action Classification (untrimmed): Given a sequence of data that consists of one

dominant action and some background class, classify the dominant action.

Action Localization: Given a sequence of data that consists of one dominant action

and some background class, classify the dominant action and determine the starting

and ending time.

Action Detection: Given a sequence of data with many actions, detect all instances

of every action and the corresponding starting and stopping time for each. Typically

there are “background” segments between actions which are not detected.

Temporal Action Segmentation: Given a sequence of data with many actions,

densely label all time steps with an action class. This may include an explicit back-

ground class which must be detected.

Spatiotemporal Action Segmentation: Given a video sequence with many ac-

tions, densely label all pixels in each frame with the relevant action.

Action Recognition: This is an umbrella term for classification, segmentation, and

the other aforementioned tasks, in which the input is some data sequence and the

output is some information related to the presence, timings, or locations of actions.

Our primary focus is temporal action segmentation but in Chapter 5 we will draw

parallels between action segmentation and action detection, and show that our models

achieve state-of-the-art performance on both tasks.
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Figure 2.1: Images from [4] on modeling cooking activities (left) An example camera
image and annotations (right) The pipeline used to recognize actions.

2.2 Activity Recognition in Robotics

Work in the robotics literature has explored action recognition in a diverse set of

domains including manufacturing, robotic surgery, the home, and beyond. While

conceptually some of the ideas may transfer across domains, given the large diversity,

it difficult to assess the applicability of specific models between applications. As such,

we describe prior work in the context of the domain that each paper was applied to.

2.2.1 Cooking Activities

Ramirez-Amaro et al. [22] segmented fine-grained actions in two cooking tasks – mak-

ing pancakes and making a sandwich – in which the user’s hands and the objects rele-

vant to each task relevant could be detected reliably. They claimed that with accurate

perception it is possible to segment actions with reasonable performance using simple

predicate-based methods that do not require complicated temporal models. Their

model used semantic reasoning, via a decision tree, with predicates like hand moving
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and object in hand. While their claim may be true in highly instrumented environ-

ments, contrary to our approaches, their methods likely would not perform well in

most practical applications where objects cannot be reliably detected. Other papers

in their line of work introduced more nuanced ontologies, described deployment in

real-time settings, and described the application of their methods to other problem

domains [26, 27, 28, 25].

Lei et al. [4] classified a set of actions within a cake-making activity using a set

of hand-crafted features derived from object and hand trajectories. They used an

RGBD camera and an object detector trained on objects relevant for the given task.

Their features were used as input into a Hidden Markov Model to classify actions

such as chop, mix, and pour. While their approach performed well, the solution is

limited because they assume actions have already been segmented temporally. As we

show later, if there is known temporal segmentation then results tend to be much

higher than without.

Stein and McKenna [12] introduced the 50 Salads dataset for segmenting fine-

grained actions in the context of making a salad. They applied standard frame-

wise models, including Naive Bayes and Random Forests, with hand-crafted features

derived from the location and usage of a set of ten objects. While their dataset is very

good – we use it as a running dataset throughout our work – their performance is

insufficient for practical applications. Furthermore, their methods require modifying

kitchen tools with costly accelerometers for deployment. In this thesis, we start by
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building models using accelerometer or other sensor data, but then generalize to video-

only solutions. Stein and McKenna also look at the effect of using user-agnostic versus

user-specific recognition models [29]. Our latent variable models are user-agnostic but

are capable of modeling multiple stylistic variations of each action.

2.2.2 Surgical Activities

Work recognizing actions from surgical training tasks tends to use robot kinematic

data such as the gripper pose and velocity from a daVinci robot [30, 31, 15]. Much

of this work modeled surgical actions using variations on Hidden Markov Models [30,

31, 32] and Linear Chain Conditional Random Fields [33, 15]. These models classify

each action using a linear combination of the sensor signals at each individual frame

and the predicted action at the previous time interval. Varadarajan [31] modeled

actions using a Switching Linear Dynamic System (S-LDS). His solution splits the

signal into 15 frame partitions and fits an LDS to each. This is similar in spirit to our

action primitives, which we describe in Chapter 3, but our approach uses much longer

temporal windows and learns how the signals changes nonlinearly within each action.

Tao et al. [33] used a Markov Semi-Markov model, which predicts a small set of action

segments instead of individually predicting the action at each individual frame. We

use this segmental idea within the context of our baseline model in Chapter 3.

Krishnan et al. [34] introduced a non-parametric Bayesian approach for clustering

trajectories in surgical data using the JIGSAWS dataset. This model detects transi-
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Figure 2.2: Images from [5] and [6] on modeling manufacturing activities (left)
An example image of the user interacting with the robot (right) A schematic of the
time-series model.

tions between actions based on changes in the linear dynamics. In their experiments,

they showed that clusters tended to correspond to semantically meaningful partitions

of the data, which were similar to the true labeled actions.

Zia et al. [35] classified surgical skill using a different approach, where instead of

first recognizing actions, skill is computed directly from a set of features computed

on the video. Their features were based on Discrete Fourier and Cosine Transforms

applied to spatiotemporal interest points. They achieved high performance, however,

their approach required the participants to wear special colored gloves to make the

perception problem easier.

2.2.3 Human Robot Assembly Activities

Vo and Bobick [5] introduced the Sequential Interval Network (SIN) for action seg-

mental in applications of human-robot interaction. SIN requires a known task model,

as defined by a Context Free Grammar, to predict the start, stop, and type of each
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Figure 2.3: The Spatiotemporal RNN model proposed by Jain et al. [7] as applied
to activities of daily living.

action segment. They applied their model to a toy assembly dataset in which a user

alternates between grabbing parts of a toy airplane (e.g., wing, rudder) from a bin

and adding it to an assembly. They detected the user’s hand positions and the bin

locations and used them as features in their model. Their Sequential-Interval Net-

work (SIN) is similar to our segmental approach in Chapter 3, they rely on a fixed

grammar to detect actions. Hawkins et al. [6] applied this model to a human robotic

interaction task.

2.2.4 Daily Living Activities

Koppula and Saxena [36] proposed a Conditional Random Field model for activi-

ties of daily living that captures object-object and action-object relationships. This
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model generates many action segment hypotheses by sampling and evaluating possi-

ble graph structures that encode these relationships. They evaluated this model on

the Cornell Activity Dataset (CAD-120) which is composed of 120 RGB-D videos

with ten activities, including making cereal or taking medicine, each performed by

four users. Koppula et al. [37] extended this to the case of action prediction by sam-

pling future states using an Anticipatory Temporal Conditional Random Field. More

recently, Jain et al. [38] introduced a spatiotemporal Recurrent Neural Network with

Long Short Term Memory (LSTM), that better captures the aforementioned object

and action relationships over time than the CRF-based approach. This was applied

to multiple datasets including CAD-120. They also showed impressive results pre-

dicting human motion by sampling future states from their RNN model. Jain used a

simplifed version of this to autonomous driving to anticipate the actions of users [39].

Earlier work by De la Torre et al. [40] introduced the CMU Multimodal Activ-

ity Dataset (CMU-MMAC) which contains video and accelerometer data of people

making food in an instrumented kitchen. They applied baseline methods, including

Hidden Markov Models and Nearest Neighbors, to the sensor data and achieved a

modest 38.4% accuracy [41]. More recently, Carvajal et al. [42] introduced a Fisher

Vector-based approach using local temporal windows from video which improved re-

sults slightly to 40.9%.
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2.2.5 Manipulation Activities

There has been recent interest in understanding the fundamentals of manipulation

actions. These actions are categorized based on how a human interacts with an

object such that the state of the object changes as a function of the applied action.

For example, in a cutting task the transition from a whole cucumber to two halves

is modeled as a change from one object segment to two. Yang et al. [43, 44] defined

a set of object states and corresponding transitions to learn how objects change as a

consequence of an action. While this work provided interesting insights into action-

object relationships, it required a clean foreground-background separation. In the

same line of work, Yang et al. modeled the relationship between manipulation actions

and natural language [45], predicted how a user grasps an object [46], and learned

how to ground perception with semantics [47].

2.3 Activity Recognition in Computer Vision

New spatiotemporal feature representations [9, 48] and massive datasets like Activ-

ityNet [8] have catalyzed progress towards large-scale action recognition in recent

years. In the large-scale case, the goal is to classify diverse actions like skiing and

basketball, so it is often advantageous to capture contextual cues like the background

appearance. In contrast, despite active development on fine-grained action recogni-

tion (e.g. [49, 50, 51, 52, 53]) progress has been comparatively modest. Many of these
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Figure 2.4: Evaluation from [8] on the large-scale ActivityNet dataset. Note the
large diversity in the action types.

models do not capture the nuances necessary for recognizing fine-grained actions such

as subtle changes in object location.

Research from the early 2000s in the computer vision community focused on

small datasets, including KTH [54] and Weissman [55], with contrived activities like

walking in a field versus running in a field. These datasets are considered solved, as

the state-of-the-art accuracy in each is above 98%. Here, we describe holistic features,

which are the dominant style of feature representation, discuss large-scale classifica-

tion, which is the most common form of action recognition, and then describe progress

on fine-grained action recognition.

2.3.1 Holistic Approaches

Holistic approaches typically refer to Bag of Words like models that ignore the spatial

structure within an image or video clip. The use of spatio-temporal features with a

bag of words representation is standard for large-scale [9, 56, 57, 7, 58, 59] and fine-

grained [49, 50, 51, 57, 60] action analysis. The typical baseline represents a given
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clip using Improved Dense Trajectories (IDT) [9] with a histogram of dictionary

elements [49] or a Fisher Vector encoding [9]. Dense Trajectories concatenate HOG,

HOF, and MBH texture descriptors along optical flow trajectories to characterize

small spatio-temporal patches. Empirically they perform well on large-scale tasks, in

part because of their ability to capture background detail (e.g. sport arena versus

mountaintop). However, for fine-grained tasks the background is often constant so

it is more important to model objects and their relationships. These properties are

typically not captured by holistic approaches. Furthermore, the typical image patch

size for IDT (neighborhood=32px, cell size=2px) is too small to extract high-level

object information.

2.3.2 Convolutional Approaches

While recent work has extended CNN models to video [48, 7, 61, 62, 63, 64, 65], often

results are only superior when concatenated with IDT features [7, 63, 64]. These

models improve over holistic methods by encoding spatial and temporal relationships

within an image. Several papers (e.g. [48, 61, 65]) have proposed models to fuse

spatial and temporal techniques. While each achieve state of the art, their models

are only marginally better than IDT baselines. Our approach in Chapter 4 is similar

in that we propose spatiotemporal CNN, but our temporal filters are applied in 1D

and are much longer (e.g. 10 seconds).

Despite success in classification, large-scale approaches are inadequate for tasks
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Figure 2.5: Improved Dense Trajectories [9] (top) Example visualizations (bottom)
Pipeline for extracting features from video.

like action localization and detection which are more similar to our fine-grained task.

In the 2015 THUMOS large-scale action recognition challenge1 the top team fused

IDT and CNN approaches to achieve 70% mAP on classification. However, the top

method only achieves 18% (overlap ≥ 0.5) for localization. Heilbron et al. [8] found

similar results on ActivityNet with 11.9% (overlap ≥ 0.2). This suggests that fun-

damental methodological changes are necessary for identifying and localizing actions

regardless of fine-grained or large-scale.

Moving to fine-grained recognition, recent work has combined holistic methods

with human pose or object detection. On MPII Cooking Rohrbach et al. [49] combine

IDT with pose features to get a detection score of 34.5% compared to 29.5% without

pose features. Cheron et al. [52] show that if temporal segmentation on MPII is

known then CNN-based pose features achieve 71.4% mAP. While this performance is

1THUMOS Challenge: http://www.thumos.info/
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comparatively high, classification is a much easier problem than detection. Object-

centric methods (e.g. [50, 51, 53]), first detect the identity and location of objects in

an image. Ni et al. [53] achieve 54.3% mAP on MPII Cooking and 79% on the ICPR

2012 Kitchen Scene Context-based Gesture Recognition dataset. While performance

is state of the art, their method requires learning object models from a large number

of manual annotations. In our work we learn a latent object representation without

object annotations. Lastly, on Georgia Tech Egocentric Activities Li et al. [51] use

object, egocentric, and hand features to achieve 66.8% accuracy for segmentation

and classification versus an IDT baseline of 39.8%. Their features are similar to IDT

but they use a recent hand-detection method to find the most important locations in

each image. In contrast to our approach, their method does not appear to capture

the relationship between objects.

2.3.3 Time-series Models

Some of the models that we build upon are derived from those which originally came

from the machine learning and statistics literatures but are frequently used in com-

puter vision. In this section we briefly describe work on time-series models including

Hidden Markov Models, Conditional Random Fields, segmental models, and Recur-

rent Neural Networks.

Conditional Random Fields (CRFs) are a family of discriminate graphical models

that are used to predict a set of labels (e.g., actions) given data. In our work we
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consider the case where we have a stream of input data over time and we have a set

of labels, one per time-step. CRFs are designed to encode the relationships between

the data and labels across time. For an introduction to these models from a machine

learning perspective see [66] or from a computer vision perspective see [67]. CRFs

have become common for action segmentation and classification (e.g., [33, 68, 69])

and often capture multiple types of interactions between labels. For example, a

unary term may model the relationship between the data at the current time step

with the label at the current time step and a pairwise term may capture the likelihood

of transitioning between two actions at two sequential time steps.

One way of framing the problem of action segmentation is that we want to ex-

tract a small but variable number of actions from a longer sequence, so some work

has focused on the development of segmental models. The key idea in these models

is that instead of having a unary term defined for each individual frame, the unary

is defined across a variable-duration segment. The earliest work in this area dates

back to the 1980s by Ferguson [70], but much of the recent work is based on the more

recent Semi-Markov CRF by Sarawagi and Cohen [71] who approached the problem

of Named Entity Recognition problem in Natural Language Processing. Between

statistics, machine learning, and computer vision there have been hundreds of papers

on semi-Markov Models [72]. While most of this work has been in the speech pro-

cessing community, recently these models have been used for activity recognition in

the computer vision and sensing communities [57, 68, 73, 74, 33, 75, 69]. For exam-
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ple, Shi et al. [75] proposed a discriminative Semi-Markov model with a histogram

of cuboid and shape context features to recognize actions in the KTH and CMU

MoBo datasets. They also evaluate their model on a contrived activity dataset that

they generated which included actions such as “walking,” “bending,” and “drawing.”

Pirsiavash and Ramanan [57] introduced a similar model but in the form of a segmen-

tal regular grammar. They defined their segmental unary function using normalized

histograms using Dense Trajectories and other local video features. In many of the

recent segmental action segmentation solutions, segments are simply modeled using

histograms of holistic features. In our approach we use a segmental model in tandem

with learned temporal or spatiotemporal features.

Many of the aforementioned models were influenced by earlier work on Hidden

Markov Models, which date back to the 1970s and 1980s (e.g., [76, 77, 78]). The

vanilla HMM model is comprised of two terms: one that captures a set of hidden

states, which in our context may correspond to subactions, and one that captures

the transitions between subactions. Much of this progress came from the speech

processing community and was used for decades in Automated Speech Recognition

(ASR) systems, as described by the recent ARS overview by Yu and Deng et al. [79].

The thesis of Kevin Murphy [80] describes many HMM variants, and generalizes some

of the earlier models. Some examples include auto-regressive HMMs, which model

the probability of generating the data at a given time step using both the latent states

and the data at previous time steps; hierarchical HMMs, which models several layers
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of latent states (e.g., one layer represents sub-actions, one represents actions, and

one represents sequences of actions); and variable-duration HMMs, which employ a

semi-Markov assumption using a new term that captures the temporal duration of

each class. The thesis of Murphy influenced much of the other work on segmental

CRFs and HMMs which we describe later.

It is worth noting that much of the work on HMMs has been employed for action

classification. Separate HMMs are typically trained on each action class, meaning,

there may be one HMM trained on a “mixing action and another on “cutting. Each

state of an HMM may correspond to a subaction of the given class, thus, additional

processing needs to be performed to segment each of the actions across time. Note,

at the same time as many of these HMM models were being developed, there was

also work being done on Linear Dynamical Systems (LDS) (e.g., [81, 82, 83, 84]),

a continuous analog of HMMs. One advantage of an LDS is that their are more

theoretically sound metrics for comparing LDSs, and determining which class of LDS

best fits a segment of data, compared to HMMs [84].

Recently, there has been significant interest in Recurrent Neural Networks (RNNs),

specifically those using Long Short Term Memory (LSTM) (e.g. [65, 85, 86, 87]).

RNNs and Latent Linear Chain CRFs are conceptually similar, and in Chapter 3 we

compare them in more detail. Simply put, in RNNs, there is a temporal component

that captures transitions across learned latent states, whereas in CRFs, there is a

temporal component that captures transitions in high-level action labels. While the
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performance of RNNs with LSTM is often impressive, they are hard to interpret due

to their complex series of gating functions. In contrast to the models in this thesis,

we explicitly learn how latent states transition in a way that is easier to interpret and

visualize. Ours is more similar to those in speech recognition (e.g. [88, 89, 85]) which

learn phonemes using 1D convolutional filters.

2.4 Datasets

Historically, most action recognition datasets from the computer vision community

were developed for classifying individual actions using pre-trimmed clips. There have

been recent datasets for fine-grained detection and segmentation, however they often

contain too few users or an insufficient amount of data to learn complex models. MPII

Cooking [49] has a larger number of videos but some actions are rarely performed.

Specifically, seven actions are performed fewer than ten times each. Action segmen-

tation datasets from the robotics community are also limited in scope or amount of

data. For example, Ramirez-Amaro et al. [26] introduced the TUM Cooking dataset

which includes two cooking activities. The pancake activity is only performed by one

user and the sandwich activity has five users. There are many RGBD-based gesture

recognition datasets, which typically offer RGB, depth, and skeleton data, but are

defined for action classification instead of segmentation. See the recent survey by

Zhang et al. [90] for RGBD-based action recognition datasets.

In Chapters 3 and 4 we assess our models on 50 Salads and JIGSAWS datasets
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which both contain multi-modal data and many instances of each action. In Chap-

ters 5 and 6 we assess these models on several additional the computer vision, surgical

training, and surgical workflow communities. We discuss 50 Salads and JIGSAWS

in depth in the next subsection and briefly highlight some of the computer vision

datasets below.

2.4.1 University of Dundee 50 Salads

The University of Dundee 50 Salads [12] dataset consists of time-synchronized video,

depth, and accelerometer data. Twenty-five users each make a salad in two different

videos for a total of 50 trials. Each trial is 5-10 minutes long. As shown in Figure 4.1,

a static RGBD camera is mounted faced down pointed at the user preparing a salad.

The motion of each kitchen tool is captured via an accelerometer embedded in the

handle. This data can be used to indicate which tools are in use at any given time. In

total there are 10 accelerometers which are located on the plate, pepper dispenser,

bowl, oil bottle, large spoon, dressing glass, knife, peeler, small spoon

and chopping board.

This dataset contains four action label granularities. At the highest level there are

three action classes: cut and mix ingredients, prepare dressing, and serve salad.

There are 17 mid-level actions such as add vinegar, cut tomato, mix dressing,

peel cucumber, place cheese into bowl, and serve salad. The third granularity

splits each mid-level action into three sub-actions: start, core, and finish, for a
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total of 51 actions. Following the work of [12], we also evaluate using a second mid-

level granularity that consists of 10 actions that can reasonably be recognized using

the sensor-laden tools. Note that in [12] this was called “eval.” Here we use the term

“higher-level,” All label sets also include a background class used when no action is

occurring. Tables 2.1 and 2.2 show the actions for each granularity.

50 Salads (Highest-level)
background

cut and mix ingredients
prepare dressing

serve salad

50 Salads (Higher-level)
background
add dressing

add oil
add pepper

cut
mix dressing

mix ingredients
peel cucumber

place
serve salad onto plate

50 Salads (Mid-level)
background
add dressing

add oil
add pepper

add salt
add vinegar
cut cheese

cut cucumber
cut lettuce
cut tomato

mix dressing
mix ingredients
peel cucumber

place cheese in bowl
place cucumber in bowl

place lettuce in bowl
place tomato in bowl
serve salad onto plate

Table 2.1: Mid-, higher-, and highest-level action labels for the 50 Salads datasets

Figure 2.6 depicts the ground truth labels for all 50 sequences in 50 Salads. Note

that there is large variability in how each user makes a salad. Some action instances

are much longer in duration and the order of the actions varies substantially. Both

of these should be apparent in the visualization.
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Figure 2.6: Action labels for each sequence in 50 Salads using the higher-level gran-
ularity. Each row corresponds to one video in the dataset and each color corresponds
to a different action label. The colors range from blue to red as indicated in Table 2.1.
For visualization purposes, all videos are normalized to the same total duration. Note
the large variation in properties like action duration and the ordering of actions.
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50 Salads (Low-level)
add dressing(pre) add dressing(core) add dressing(post)

add oil(pre) add oil(core) add oil(post)
add pepper(pre) add pepper(core) add pepper(post)
add salt(pre) add salt(core) add salt(post)

add vinegar(pre) add vinegar(core) add vinegar(post)
cut cheese(pre) cut cheese(core) cut cheese(post)

cut cucumber(pre) cut cucumber(core) cut cucumber(post)
cut lettuce(pre) cut lettuce(core) cut lettuce(post)
cut tomato(pre) cut tomato(core) cut tomato(post)
mix dressing(pre) mix dressing(core) mix dressing(post)

mix ingredients(pre) mix ingredients(core) mix ingredients(post)
peel cucumber(pre) peel cucumber(core) peel cucumber(post)

place cheese in bowl(pre) place cheese in bowl(core) place cheese in bowl(post)
place cucumber in bowl(pre) place cucumber in bowl(core) place cucumber in bowl(post)
place lettuce in bowl(pre) place lettuce in bowl(core) place lettuce in bowl(post)
place tomato in bowl(pre) place tomato in bowl(core) place tomato in bowl(post)
serve salad onto plate(pre) serve salad onto plate(core) serve salad onto plate(post)

background

Table 2.2: Low-level action labels for the 50 Salads datasets

2.4.2 JIGSAWS

The JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [91] has three

common tasks for robotic surgery training – suturing, needle passing, and knot tying

– each of which are performed on bench top phantoms. Videos and robot kinematics

were collected from a daVinci surgical robot, and an example of the suturing task

is shown in Figure 3.1. These activities are each decomposed into about 10 unique

action labels such as insert needle into skin, tye a knot, transfer needle, and

drop needle at finish. The full list is found in Table 2.3. Each task has between

26 and 39 trials performed by up to 8 users. Videos are around two minutes long and

contain 15 to 20 actions per video.

Figure 2.7 depicts the ground truth action labels for each sequence. Note that
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JIGSAWS
Reach for needle

Position needle at insertion point
Push needle through tissue

Transfer needle between tools
Move needle to center
Pull thread with left

Orient needle
Tighten suture with right

Loosen suture
Drop suture at finish

Table 2.3: Action labels for suturing in the JIGSAWS dataset.

Figure 2.7: Action labels for each sequence in JIGSAWS. Each row corresponds to
one video in the dataset and each color corresponds to a different action label. Recall
that each user performs the suturing activity 5 times. The colors range from blue to
red as indicated in Table 2.3. For visualization purposes, all videos are normalized to
the same total duration. Note the large variation in properties like action duration
and the ordering of actions and that some actions are only performed by a small
number of users.
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there is large variation in the duration of each action, the ordering of actions, and the

number of actions per sequence. Later we will find that the actions for users D, G,

and H are the hardest to predict regardless of which model is used. It is clear from

the visualizations that there are larger discrepancies in the temporal action patterns

for these users.

While the JIGSAWS dataset contains 76 kinematics features from a da Vinci

robot, including both surgeon- and patient-side positions, rotations, and velocities,

we find that this is highly redundant. Furthermore, we want to ensure our models are

applicable to a wide range of surgical robots for which we might only have position

and velocity information. For all of our sensor experiments on JIGSAWS, we use the

patient-side robot positions, velocities, and end effector gripper angles for the left and

right tools.

2.4.3 Additional Datasets

Georgia Tech Egocentric Activities [23] has 28 videos across seven tasks and most

work has used a very fine-grained set of 61 actions such as pour mayonnaise on

bread with cheese. Many of the actions are only performed a few times, and there

is large variability between each of those times, which makes it hard for our models

to capture characteristics (e.g., object usage, motion patterns) that are indicative of

those actions. We use the smaller set of nine action classes used by Singh et al. [92]

which contains more instances per action. The environment and actions are fairly
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contrived. For example, the activity “making a hotdog”, consists of taking a piece

of white bread, putting a raw hot dog on it, and adding condiments. Note that the

CMU Kitchen dataset [93] is in the same domain and contains much more data. It has

video and sensor data for 18 users who make five recipes. Unfortunately, researchers

typically only use videos for seven users making “brownies” recipe [93, 92]. Thus it

is unclear how results on this little amount of data generalize to other scenarios.

The MERL Shopping dataset [24] was recently developed for action detection in

surveillance applications. It consists of 106 videos in which a shopper walks along a

(manufactured) grocery store aisle and manipulates objects on the shelves. There are

five actions plus a background class: reach to shelf, retract hand from shelf,

hand in shelf, inspect product, inspect shelf. In total there are 41 unique

shoppers. The data is captured from an overhead camera which is in the same position

with respect to the environment in all videos. Each action is typically only a few

seconds in duration.

There are two other datasets used by recent work which we will not describe

throughout the dissertation, but which are worth noting. These are the MPII Cooking

dataset and the Kitchen Scene Context based Gesture Recognition dataset (KSCGR).

In MPII Cooking, users follow a complex recipe, such as making a cake, and the

task is to classify or segment very fine-grained actions. In total there are 65 actions.

Unfortunately, some of these actions, like “smelling,” very rarely occur. Seven actions

are performed fewer than ten times. It is difficult to build a model that can effectively
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distinguish these from other actions given the large amount of variability between

each instance. In addition, actions are sparse, meaning there is significant use of a

background class in most videos. KSCGR was introduced at ICPR 2012 and contains

overhead videos of five users making five different recipes on a stove. It includes

eight actions such as mixing, baking, and cutting. It In contrast to other datasets,

multiple annotators labeled each video and the results were averaged. Therefore, it

is reasonable to assume the labels are of higher quality.
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Chapter 3

Conditional Random Field-based

Time-series Models

In this chapter we introduce a baseline Conditional Random Field-based time-series

model and corresponding temporal feature representation, that will be used to predict

a sequence of actions given sensor data such as robot kinematics or accelerometer

values.

3.1 Introduction

In many robotics applications it is common to instrument an environment with

domain-specific sensors such as accelerometers, encoders, or force sensors. When

used for activity analysis, these sensors are typically installed in a way that makes it
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easy to distinguish what action is happening at a given time directly from the sensor

data. This was emphasized by Ramirez-Amaro et al. [22] who showed that in a con-

strained environment – when the locations of salient objects can be easily estimated

– primitive actions like object in motion are very to easy detect. While we would

like to be able to recognize actions solely from video footage, video-based analysis is

more difficult because it may require identifying objects in an image and modeling the

relationships between these objects as a function of the actions taking place. There-

fore, we start by addressing the problem of action recognition using domain-specific

sensors and then in the next chapter extend this to video.

In this chapter, we focus on two domains: robotic surgery training and cooking.

For robotic surgery, we assume access to position and velocity-based sensors for each

of the robot end effectors from a daVinci surgical robot. For cooking, we assume that

all kitchen utensils are instrumented with accelerometers, as in 50 Salads. While it

may not be realistic to instrument an everyday kitchen with accelerometers, later in

this thesis we describe how we can leverage these sensor-based results to develop a

better video-based solution.

It is important to understand some of the underlying challenges in modeling ac-

tions from sensor data before starting to define a model. Figure 3.1 shows example

images from each domain and corresponding visualizations of the sensor signals where

the color indicates the signal value. While it is not very common to visualize sensor

data using 2D images, we find that it is very useful in identifying and visualizing
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Figure 3.1: Sample data from University of Dundee 50 Salads and the JHU-ISI
Gesture and Skill Assessment Working Set (JIGSAWS). The middle shows a cor-
responding action sequence where each color denotes an action label. The bottom
depicts sensor signals where each row is an accelerometer or robot pose value over
time.

action patterns.

We would like to capture two types of variability: local and global. In this context,

local variability refers to changes in the sensor data within a given action segment. In

Figure 3.2 (top) we see that the action “add dressing” is composed of three (unlabeled)

motion patterns “use glass container,” “use pepper shaker”, and “use oil bottle.” Our

model should be able to capture these temporal patterns, each of which may last on

the order of several seconds long. Furthermore, it is important to note that users

may perform this action in very different manners. One person may start the action
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Figure 3.2: Sample data from (top) University of Dundee 50 Salads and (bottom)
the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS). In 50 Salads
each row indicates the X, Y, or Z acceleration of a given object. In JIGSAWS the
rows indicate sensor values corresponding to the gripper states (is the tool opened or
closed), the positions of the left and right grippers, and their respective velocities.

using the glass container, whereas another user may start using the pepper shaker.

We refer to the different ways in which users perform the same action as the user’s

“style.” The same kinds of patterns can be seen in the JIGSAWS visualization in

Figure 3.2 (bottom). In this case there is a clear change in gripper state when the

user transfers the needle from one tool to the other.

Global variability refers to longer-range temporal patterns such as the ordering

of actions. For example, in the suturing example –absent of any mistakes – the user

should repeat the actions “position need,” “push needle through tissue,” “tighten

suture,” etc. four times in a row. Furthermore, certain actions, like “dropping the
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suture at the finish” may only occur at the end of a trial. In Chapter 2 we showed

example timelines for each of the datasets (e.g., Figure 2.7), which depicts many

variations on how a user may perform the same task.

Our goal is to develop an improved approach for action segmentation that is ag-

nostic to the specific sensors being used; the same methods should be applicable to

accelerometer or robot kinematics data. We start by improving upon recent Con-

ditional Random Field-based models (e.g., [33]), which have been effective on the

JIGSAWS dataset. These models typically have a data component that captures lo-

cal variability and a temporal component that captures global variability. We start by

identifying two important limitations of common temporal components when applied

to time series data. First, there is a large disconnect between the sampling rate of

the data (e.g., 30 frames per second) versus the rate at which users perform actions

(e.g., 1 action per 10 seconds). In linear chain models (e.g., Linear Chain CRFs), the

temporal component only has a small impact on performance due to this disconnect.

Second, we note that the duration of each action varies significantly, even within the

same action class. For example, the “mixing ingredients” action in 50 Salads may

last as short as 13 seconds or as long as a minute. In segmental models that incorpo-

rate a duration model (e.g., Semi-Markov CRFs), this again results in the temporal

component only having a small impact on performance. We overcome these limita-

tions by using a series of “skip chains,” which capture long-range transitions between

distant time-steps (instead of between sequential frames), and exploring a K-segment
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inference algorithm that bounds the maximum number of segment predictions given

the data component and skip chain temporal term (instead of bounding the duration

of each segment).

To capture local variability across sensor modalities we use a learned temporal

feature representation. These primitives capture how raw sensor signals, like robot

position or object acceleration, change over time. In contrast with many approaches

in robotics, which use hand-crafted features defined specifically for a given task, our

approach is applicable to any sensor input. For each action class, we learn a set of

temporal filters which are convolved with the input data. These are motivated by

recent work with Convolutional Neural Networks where hierarchies of convolutional

filters are learned for tasks like object classification (e.g., [94, 95]). One benefit of

learning these filters in a CRF-based framework is that their weights are relatively

interpretable. We find that the learned filters highlight common patterns found in

the data, such as picking up or setting down an object in 50 Salads.

We incorporate these ideas into a latent CRF-based approach inspired by Tao et

al. [33]. The latent aspect captures subactions and variations on how users perform

each action. From the example above, these may capture the fact that a user may

first use the glass container or the pepper shaker in the “add dressing” action. We

jointly learn the parameters of each component of our model using a max-margin

approach with a Latent Structural Support Vector Machine [96].

The final contribution of this chapter pertains to evaluation metrics. We find
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that the metrics typically used for action segmentation are insufficient at capturing

important issues for many robotics applications. Specifically, papers use frame-wise

metrics like accuracy or precision/recall (e.g., [50, 12, 97]). Each of these metrics

assumes that each frame is independent, which means that a method with many

spurious over-segmentation errors may still achieve high accuracy. Over-segmentation

errors in particular may preclude the user of a model in many applications, including

surgical skill evaluation, especially in cases there the predicted ordering of actions is

important. We propose the use of a segmental metric to address this limitation.

In summary, we describe four contributions in this chapter. First, we describe a

CRF that overcomes limitations with common temporal models. Second, we model

local variability within segments using a set of temporal convolutional filters. Third,

we propose a constrained approach for segmental inference in these models. Lastly,

we identify limitations in the current metrics for action segmentation and suggest

alternatives. At the time of original publication, our models achieved state-of-the-art

performance in both surgical and cooking domains.

As an aside, there has been a recent resurgence in the use of Recurrent Neural

Networks (RNNs) for time-series modeling. In the appendix of this chapter (Sec-

tion 3.8), we describe the differences between RNNs and CRFs and discuss how our

skip chains and action primitives may be used to improve performance of RNNs.
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3.2 Skip Chain Models

There has been a long history of developments in time-series models using linear chain

and segmental models. Some recent examples include n-th order CRFs [98], Semi-

Markov CRFs [71, 74, 75], and RNNs [99, 100, 101]. These models capture longer-

range dependencies than traditional linear chain models, however, the computational

complexity of their inference algorithms can become prohibitively expensive when

actions are long in duration. Furthermore we show later that their performance – as

measured by metrics such as accuracy – is not always superior to other linear chain

models. In this section, we introduce the notion of a skip chain, which is an alternate

method for capturing long-range temporal information which performs well and can

be computed efficiently.

We first introduce the model, inference, and learning for the Skip Chain CRF and

then generalize it to the latent variable case. Lastly, we introduce a segmental variant

and corresponding inference algorithm that tends to reduce the number of overseg-

mentation errors, which are common with traditional semi-Markov approaches.

3.2.1 Skip Chain CRF

Let Xt ∈ RF be a vector of F features (e.g. positions, velocities) at time t for

t ∈ {1, . . . , T} and yt ∈ {1, . . . , C} be the corresponding action (e.g. cutting, peeling)

with class count C. We model the conditional distribution of the sequence of labels
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y = {yt}Tt=1 given the sequence of features X = {Xt}Tt=1 using a CRF model with

Gibbs distribution P (y|X) ∝ exp(E(X, y)), where the scoring function

E(X, y) =
T∑
t=1

ϕ(X, y, t) + ψ(y, t) + π(y, t) (3.1)

gives the score of assigning labeling y to sequence X. Here, ϕ, ψ, and π denote

the unary (data) scores, pairwise skip scores, and temporal priors respectively, all of

which are described in detail in the following subsections. Each term will be a linear

function of a set of weights and a set of features. See Figure 3.3 for a depiction of

this model. d, as described later, is a parameter of the pairwise term that refers to

the skip length.

Frame-wise Unary Term

Many time series models, including HMMs and most time-series CRFs, use a frame-

wise action representation. This means that the unary score for each frame is a

function of the data solely at that frame, which is independent of the data at sur-

rounding frames. This score is usually a linear combination of weights W ∈ RC×F

and biases b ∈ RC and the data per time-step Xt. We index the row of weights for

the y-th class as Wy. As such, the unary term is typically defined as

ϕ(X, y, t) = WytXt + byt . (3.2)
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Figure 3.3: Skip Chain Conditional Random Field with a Skip Length parameter
d = 2.

Later this will be replaced by our action primitive model.

Pairwise Skip Chain Term

Linear chain models like HMMs and CRFs are effective at modeling sequential data

when the state (e.g. action) is changing with a high frequency. For example, in natural

language processing tasks, like part-of-speech tagging, each consecutive word may

correspond to a different label like noun versus verb. However, in our applications

there is a disconnect between the frequency of data (e.g. 30 frames per second) and

the frequency of actions (e.g. 0.2 actions per second). In this case, the Markov term

has a very high self-transition probability. In Figure 3.4 we display pairwise transition

matrices corresponding to three temporal models on JIGSAWS and 50 Salads. On the

left we show the Markov case, which corresponds to the probability of transitioning

between class a and class b at subsequent time steps (from t − 1 to t). On the

right we show the segmental case, described in Section 3.3, which corresponds to the

probability of transitioning between class a and class b between subsequent segments.
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Figure 3.4: Pairwise transition matrices on the (top) JIGSAWS and (bottom) 50
Salads datasets. For both datasets: (left) The probability of transitioning between
classes from t−1 and t. (center) The probability of transitioning between classes from
t− d and t. (right) The probability of transitioning between classes from segment to
segment. For JIGSAWS d = 100 (3.33 seconds) and 50 Salads d = 300 (10 seconds).
Red indicates high values and blue indicates low values. Notice that the matrices on
the left have very high values along the diagonal (self-transitions) and very low values
everywhere else.

In the center we show the probability of transitioning between actions using the skip

chains described in this section. Note in the Markov case there is a very high rate of

self-transitions, meaning between most consecutive frames the class label remains the

same. In the segmental case, there is an issue in 50 Salads where most actions lead to

the background class, and the background class may lead to any (non-background)

class.
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A pairwise skip chain term is a generalization of the Markov class transition term

commonly used in linear chain models. These skip chains capture class transitions

from time t− d to t for a fixed skip length d. Intuitively, the probability of an action

changing from class a to class b between these time steps is much higher than from

t− 1 to t, such that:

P (yt = b|yt−d = a) ≫ P (yt = b|yt−1 = a). (3.3)

Empirically, using a delay d has a substantial effect on accuracy and better captures

higher-order class transitions.

Note that in Natural Language Processing skip chains are used to capture rela-

tionships between related words within a sentence [102]. In our case, we are using

skips to capture relationships between actions across long periods of time.

We model skip connections using a pairwise transition matrix, U ∈ RC×C , indexed

by the current label yt and label yt−d, which is d steps prior. The score corresponding

to the pairwise transition model is

ψ(y, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Uyt−d,yt if t > d

0 otherwise

. (3.4)

We use a max-margin approach, as we describe later, in which Ua,b is a score indicating

whether class b should come d steps after class a. This term will be learned jointly
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with our other terms in our scoring function to maximize performance. Note that in

a probabilistic approach matrix U may be minus the log probabilities estimated for

transitioning from class a to class b over an interval of d frames.

Temporal Prior Term

In many fine-grained applications, there may be a subset of actions that always hap-

pen at the beginning or end of a sequence. Similarly, there may be some actions that

tend to happen earlier or later in the sequence. We use a temporal prior that captures

the likelihood of assigning a class to any given time step. We do this by splitting the

sequences into a set of intervals (e.g., the first 1
10

-th of the video, the second 1
10

-th,

. . . ) and capturing which action tends to occur in that interval.

Figure 3.5 shows the probability that each action occurs at each (normalized) time

step in the JIGSAWS and 50 Salads datasets. It is evident that certain actions tend

to happen more often at the beginning or end of the sequence, but that there are

oscillations between the other actions in the middle of a sequence.

It is important to note that the number of time-steps in a sequence, T , varies

substantially between videos. The duration of one video may be twice and long as

another. In order to model our temporal prior, we define To to be a canonical number

of time steps in any sequence. Then, for any intermediate time step t, we define a

canonical time step, τt ∈ {1, To}, which is normalized such that τt = ⌈To ∗ t
T
⌉, where

⌈·⌉ is the ceiling function.
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Figure 3.5: The probability of each time step being of each class in the (top)
JIGSAWS and (bottom) 50 Salads (higher-level) datasets. Colors go from blue (0%)
to green to red (100%).
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For every time step, we will add a score corresponding to the likelihood of a given

class happening at that time using weight matrix V ∈ RC×To . The prior score π is

given by

πs(y, t) = Vyt,τt . (3.5)

Note that this prior relies on knowing the total number of time steps in the sequence,

and thus is only applicable in offline settings.

Inference

In contrast to n-th order models, exact inference in an SC-CRF is very efficient. Notice

that only every d-th time step is connected in our scoring function, which implies we

have a set of d independent chains. The best labeling ŷ = arg maxy E(X, y) can be

computed separately per-chain and the resulting predictions can be interlaced. More

specifically, if yi:d:T refers to labels at intervals of d (e.g. i, d + i, 2d + i, . . . ) then

ŷi:d:T = arg maxy E(Xi:d:T , yi:d:T ).

For each individual skip chain we use the traditional Viterbi algorithm [103]. This

is the same algorithm typically used to compute the optimal labeling for HMMs and

Linear Chain CRFs. During inference, we compute score St,y for each class label y at

all times t. S is a table of size T ×C where T is the total time and C is the number

of classes. This is a dynamic programming problem where, in the forward pass, we
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Figure 3.6: Our Skip Chain CRF decomposes time-series data into a set of inde-
pendent chains. Inference can be performed independently on each chain.

compute

St,y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
maxy′ St−d,y′ +WyXt + Uy′,y + Vy,τt if t > d

WyXt + Vy,τt otherwise

. (3.6)

We output the best label sequence ŷ by backtracking through the score table. Pseudo-

code for the forward and backward passes is shown in Algorithm 1. The computa-

tional complexity is on the order of O(TC2) operations and O(TC) memory.

While performance using skip chains is superior to linear chains, as we show later,

they are prone to over-segmentation. Each pair of sequential time steps is independent

thus action predictions may fluctuate spuriously from frame t to t+1. We remedy this
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Algorithm 1 Viterbi algorithm on skip chains

procedure SkipChainViterbi(X, d, To, W , U , V , T , C)
Initialize S ∈ RT×C ▷ Score matrix
Initialize B ∈ {1, . . . , C}T×C ▷ Back trace matrix
Initialize P ∈ {1, . . . , C}T ▷ Output path

Forward Pass: Initialize scores for the first d frames
for t = 1 : d do

for c = 1 : C do
τt = floor( t

T
To)

St,c = WcXt + Vc,τt

Forward Pass: Compute subsequent scores with skip-chain pairwise term
for t = d+ 1 : T do

τt = floor( t
T
To)

for c = 1 : C do ▷ Loop over current class
sbest, bbest = −∞, -1 ▷ Init best score and index
for cprev = 1 : C do ▷ Loop over incoming class

sprev = St−d,cprev +WcXt + Ucprev ,c + Vc,τt ▷ Update score
if sprev > sbest then

sbest, bbest = sprev, cprev

(St,c, Bt,c) = (sbest, bbest) ▷ Update with best score and index

Backward Pass: Retrieve path by back tracing
for t = T : T − d+ 1 do

Pt = arg maxc St,c ▷ Get the best class for the last d steps

for t = T − d : 1 do
Pt = B[t+ d, Pt+d] ▷ Get the incoming class from back trace.

return P
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in two ways. First, we apply a median filter, with a width that is half the length of

an action primitive, to the output predictions. Second, in subsection 3.3, we develop

a more principled approach by generalizing inference in a Semi-Markov Conditional

Random Field to the skip chain model. We find that both solutions have a large

decrease in the number of spurious false-positives.

Learning

The parameters of a CRF are often learned using a probabilistic formulation, in

which weights are updated to maximize the conditional likelihood of the model [66].

These approaches use gradient descent where each update is based on the marginal

distribution of each training sample. In the early 2000s, there were several efforts

to learn the parameters of a graphical model using max-margin methods. These

solutions typically only required computing the most likely prediction – e.g., using

the Viterbi algorithm in a linear chain model – to compute the gradient. In our work

we use the Structural Support Vector Machine (SSVM) [104], which has been shown

to achieve superior performance compared to probabilistic approaches and to other

max-margin approaches [105, 106]. The SSVM is a generalization of the common

Support Vector Machine to structured-output problems. For a recent overview on

these models and methods see the monograph by Nowozin and Lampert [107].

In order to leverage the SSVM, we must frame the model as a linear function of a

set of weights and a set of features. Note that the scoring function we defined before
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can already be viewed as a linear function of weights θ = vec([W,U, V ]) ∈ RC·Fo and

a feature function Ψ : X × Y → RC·Fo , where Fo = F + C + To is the dimensionality

of all concatenated features and C is the number of classes

E(X, y) = θ⊤Ψ(X, y). (3.7)

The feature function takes data X and labels y as input and outputs a feature vector

which, in our case, is a function of the unweighted and vectorized scoring terms. Note

that the output is very sparse; there are only features in the indices corresponding to

the label yt for each time step. We use the notation
⨁C

c=1Wc = [W⊤
1 ,W

⊤
2 , . . . ,W

⊤
c ]⊤

to denote the concatenation of a set of vectors Wc from 1 to C. We use eF [c] to

denote the vector of length F with all zeros except for a one in the c-th index and

1[yt = c] denote a scalar which is 1 when yt is c and 0 otherwise. The function vec(·)

vectorizes a matrix. For the SC-CRF, our feature function is

Ψ(X, y) =
T∑
t=1

⎡⎢⎢⎢⎢⎢⎢⎣
⨁C

c=1Xt · 1[yt = c]

vec(eC [yt−d]eC [yt]
⊤1[t > d])

vec(eC [yt]eTo [τt]
⊤)

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.8)

To be clear, the first term is of length F ·C with zeros everywhere except when yt is

class c. The second (pairwise transition) term is a vectorized version of the C × C

one-hot matrix where index (yt−d, yt) is one and all other elements are zero. The
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temporal prior is a vectorized matrix of size C × To where the index closest in time

to (yt, τt) is one and the rest are zeros. By definition, Ψ is a large vector of size

FC +C2 +CTo, however, in practice, only entries indexed by t (e.g., yt, yt−d, and τt)

need to be evaluated.

The optimization problem associated with training an SSVM is given by the fol-

lowing objective where X(i) and y(i) are sample sequences from our training set from

i = 1 to N :

1

2
∥θ∥2 +

C

N

N∑
i=1

max
ŷ∈Y

∆(ŷ, y(i)) + θ⊤
(
Ψ(X(i), ŷ) − Ψ(X(i), y(i))

)
. (3.9)

In this equation, the ∥θ∥ term is a regularizer, Y is the set of all possible labelings

for all time-steps and ∆(ŷ, y(i)) is a loss function that compares arbitrary labeling ŷ

with the ground truth labeling y(i) for the ith sequence. We use the Hamming loss

∆(ŷ, y(i)) =
T∑
t=1

|ŷt − y
(i)
t |, (3.10)

which is the sum of the incorrect entries across time steps. The goal is to maximize

the margin between the score for the predicted labeling and the ground truth labeling.

For certain loss functions, like Hamming, the maximal ŷ can be computed efficiently

using loss-augmented inference. For more details see [107].

We optimize the parameters of our model using Stochastic Gradient Descent

(SGD) where the step size is computed dynamically with Adagrad [108]. Adagrad is
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Figure 3.7: Latent Skip Chain Conditional Random Field with a Skip Length pa-
rameter d = 2.

a recent method, often used in the deep learning literature, which differs from tra-

ditional SGD approaches in two ways. First, it defines a separate step size for each

parameter in the model as opposed to one parameter per gradient update. Second, it

updates each step based on the local history of gradients as opposed to using a con-

stant cooling rate. Notice that, technically speaking, we are computing a subgradient

since the objective function is not differentiable, however, it is still typically referred

to as SGD.

3.2.2 Latent Skip Chain CRF

In this subsection, we describe a latent variant of the Skip Chain CRF, as depicted

in Figure 3.7. Each latent variable can capture stylistic variations on how an action

is performed or capture different sub-actions within a larger action. We define these

latent states such that each class has its own unique set of latent states.

Let the tuple zt = (yt, ht) be a pairing of a class yt and discrete latent state
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ht ∈ {1, . . . , H} for time t and number of latent states per class H. While each class

could be associated with a different number of latent states, we assume that the value

of H is the same for all classes. Let h = {ht}Tt=1 denote the sequence of all latent

states irrespective of the class labels. Our new scoring function is

E(X, y) = max
h

T∑
t=1

ϕ(X, (y, h), t) + ψ((y, h), t) + π((y, h), t). (3.11)

Our new terms are a function of both class yt and that class’s hidden state ht with

parameters W ∈ R(C·H)×F , U ∈ R(C·H)×(C·H), and V ∈ R(C·H)×To :

Frame-wise Unary: ϕ(X, z, t) = WztXt (3.12)

Skip Chain Pairwise: ψ(z, t) = Uzt−d,zt1[t > d] (3.13)

Temporal Prior: π(z, τt) = Vzt,τt . (3.14)

Note that Wzt refers to Wyt·H+ht ; there is a block of H consecutive indices correspond-

ing to each class. This holds true for W , U , and V .

Latent states are defined per-class, so inference is almost identical to that of the

SC-CRF. The sequence z is decoded using the Viterbi algorithm from Algorithm 1

and then the sequence of labels y is obtained directly from z. Note that while this

does increase the number of parameters by a factor of H, the values of C and H

are low enough (e.g. C = 10, H = 3) that the computational complexity is still

manageable on any modern computer. The product of all classes and latent states is
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Z = C ·H.

We use the Latent Structural Support Vector Machine with the Concave Convex

Procedure (CCCP) [96], using the approach described in Nowozin and Lampert [107]

(Algorithm 16), to learn the parameters of the latent skip chain model. CCCP al-

ternates between updating the hidden states ht at each time step and updating the

weights using gradient descent. Again, we use Stochastic Gradient Descent with

Adagrad. Our new feature function is defined as

Ψ(X, z) =
T∑
t=1

⎡⎢⎢⎢⎢⎢⎢⎣
⨁C

c=1

(⨁H
h=1Xt · 1[zt = (c, h)]

)
vec(eZ [zt−d]eZ [zt]

⊤)1[t > d]

vec(eZ [zt]eTo [τt]
⊤)

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.15)

where all of the terms are now operating over z rather than y. The length of Ψ, and

correspondingly the number of parameters in θ, is Z · (F + Z + To).

It is important to initialize our weights before solving the LSSVM, as highlighted

by Pirsiavash and Ramanan [57] and Tang et al. [69]. The learning process only

updates hidden states that are in use, so if we do not initialize properly then we

may learn “dead” states which are never activated.1 We initialize the latent unary

terms in our model using a KMeans-based procedure similar to Tang et al.for their

discriminative hidden semi-Markov model. Procedurally, we first divide all action

1For reference see lines 11 and 13 in the CCCP routine in Nowozin and Lampert [107] (Algorithm
16). If a given latent state (ẑn in their notation) is never selected in the max operator then its weights
will never be updated.
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instances of a given class into H subsegments corresponding to the H latent variables

per class. Each subsegment used for KMeans must be the same duration, so we

resample each segment to have the same duration Tk. These subsegments, now of size

F × Tk, are flattened into vectors of length F · Tk, and input into KMeans. We apply

KMeans and set the weights for each latent state of the given class, Wz, to be one

of the means.2 This procedure is applied independently for each class. Qualitatively,

we find that this results in fewer “dead” states which are never activated. Note that

a potentially better alternative would be to initialize using the approach of Lobel et

al. [109] which computes clusters using KMeans and then trains a multi-class SVM

for each cluster. For all other scoring terms we initialize parameters using random

orthonormal matrices, for example as described in [110].

3.2.3 Latent Convolutional CRF

In the previous section we assumed that each unary term was simply a function of

the data at each individual frame. However, we know that the values of the input

features (e.g., accelerometers) vary substantially within each action instance. For

example, as a user chops a knife the corresponding accelerometer will oscillate as the

use moves their hand up and down. In this section we describe a unary term that

captures how sensor values change over the course of a long temporal window. Our

2Note that these means are not intended to correspond to the exact coefficients of the classifiers.
The goal is to initialize weights such that after learning two states do not have weights that are
effectively the same.
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approach contrasts with hand-crafted approaches (e.g. [4, 22, 25, 5, 12]) which tend to

employ application-specific features, like object-specific region detectors from RGBD

video [5], and often do not generalize across domains or even environmental setups.

We introduce a type of action primitive that uses convolutional filters to model how

the input sensor signals change over the course of each action. We show experiments

using one filter per class and a variant using latent action primitives. Figure 3.8

highlights the difference between frame-wise unary weights, our action primitives,

and our latent action primitives.

Convolutional Action Primitives

In the first approach, each action class y ∈ Y is represented by a single convolutional

filter where the row in each filter corresponds to the features at each time step within

an action. Ideally, the length of each filter should match the length of a predicted

segment, however, this is problematic because the duration of each action varies

substantially.3

We denote the collection of filters W = {W c}Cc=1 ∈ RC×d×F , where the filter

for the c-th class is W c ∈ Rd×F . Each filter has a corresponding bias such that

b = {bc}Cc=1 with bc ∈ R. First, let us define the convolution operator W ∗X which

3We could choose to have filters of many different lengths. However, we define all filters to be of
the same length in efforts to reduce the number of hyper-parameters.
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has entries

(W ∗X)c,t =
F∑

j=1

d∑
t=1

W c
t,jXj,t−t+1. (3.16)

We want both the input and output lengths be of size T so we zero pad X such that

Xj,t = 0 ∀t ≤ 0, 1 ≤ j ≤ F . As a result the output of W ∗ X is a matrix of size

T × C.

The score for this component of our model is given using the convolution operator

is

ϕ(X, y, t) = (W ∗X)yt,t + byt . (3.17)

We jointly learn these filters with the Skip Chain CRF and name this model

the Convolutional Skip Chain CRF (CSC-CRF). Note that the features are now a

function of time steps t − d to t, so we use the notation Xt−d:t to indicate the data

over the last d time steps. The feature function Ψ is

Ψ(X, y, t) =
T∑
t=1

⎡⎢⎢⎢⎢⎢⎢⎣
⨁C

c=1 vec(Xt−d+1:t) · 1[yt = c]

vec(eC [yt−d]eC [yt]
⊤)1[t > d]

vec(eC [yt]eTo [τt]
⊤)

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.18)
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Figure 3.8: Action primitives for the class cutting in the 50 Salads dataset. Each
row corresponds to weights for the X, Y, or Z axis of an accelerometer over time.
Red is high, green is neutral, and blue is low. (left) traditional weight vector applied
to a single frame (middle) our convolutional action primitives (right) and our latent
action primitives.

Latent Convolutional Action Primitives

In practice, the duration of each action instance may differ substantially between

users. For example, in a cutting action, one person may pause between picking up

a knife and cutting a vegetable. In addition, users may perform actions in different

styles or orderings. Thus, it may be advantageous to learn a separate filter for each

part of an action, such as the start, middle, and end. We use latent variables to learn

a set of subactions for each action class. Recall that these subactions are learned in

an unsupervised manner based on the higher-level action labels. They are initialized

by splitting actions into different partitions but may take on other latent meanings.

Recall, zt = (yt, ht) is the latent state and corresponding class at time t. We

define a new set of filters W = {W (c,h)}C,H
c=1,h=1 corresponding to all latent states h

and classes c, which results in Z = C ·H filters. Again, we assume that each action
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has the same number of subactions H. The score for any hidden state is:

ϕ(X, z, t) = (W ∗X)zt,t + bzt . (3.19)

We learn the action primitives jointly with the Latent SC-CRF to form the Latent

Convolutional Skip Chain CRF (LC-SC-CRF). Using the same notation as before, the

feature function Ψ is

Ψ(X, z, t) =
T∑
t=1

⎡⎢⎢⎢⎢⎢⎢⎣
⨁H

h=1

(⨁C
c=1 vec(Xt−d+1:t) · 1[zt = (c, h)]

)
vec(eZ [zt−d]eZ [zt]

⊤)1[t > d]

vec(eZ [zt]eTo [τt]
⊤)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.20)

. This model is learned in the same way as the Latent CRF previously described

using the following scoring function, which maximizes over the best scoring filters ht

E(X, y) = max
h

T∑
t=1

θ⊤Ψ(X, (y, h), t), (3.21)

In Section 5.4 we compare the frame-wise, action primitive, and latent action

primitive models. These are referred to as SC-CRF, LC-SC-CRF (H = 1), and

LC-SC-CRF (H > 1) respectively. See Figure 3.9 for the final depictions of each

convolutional model.
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Convolutional Skip Chain CRF

Latent Convolutional Skip Chain CRF (LC-SC-CRF)

Segmental LC-SC-CRF

Figure 3.9: Convolutional variants of each model.

68



CHAPTER 3. CRF-BASED TIME-SERIES MODELS

Figure 3.10: Segmental Latent Skip Chain Conditional Random Field with a Skip
Length parameter d = 2.

3.3 Segmental Inference

As previously mentioned, each chain in our model is inferred independently which can

result in spurious fluctuations between action labels across a short sequence of time

steps. This will become apparent when we visualize our results later. In this section,

we describe a segmental formulation of our model, as depicted in Figure 3.10, and a

corresponding inference algorithm, which reduces these oversegmentation issues. For

the sake of simplicity, we describe the segmental inference procedure for the model

without latent variables (Equation 3.8) and then mention how to generalize it to the

latent case (Equations 3.15 and 3.20).

There exist many segmental models in the literature, such as those proposed by

Sarawagi and Cohen [71] for Semi-Markov CRFs, by Shi et al. [75] for discrimina-

tive semi-Markov models and by Pirsiavash and Ramanan [57] for Segmental Regular

Grammars. One limitation of many of these models is that their computational com-
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plexity is much higher than their frame-wise alternatives. In this section we propose

an inference algorithm that is one to three orders of magnitude faster than the current

inference technique using the datasets we evaluate on. Note that Titsias et al. [111]

introduced the K-Segment HMM around the same time as we published [112]. Their

model uses a similar idea as ours and thus has the same computational complexity.

One difference is that they assume there are exactly K segments, whereas we allow

for a variable number segments up to an upper bound.

We start with notation equivalent to Sarawagi and Cohen [71]. Let tuple Pj =

(yj, tj, lj) be the jth action segment, where yj is the action label, tj is the start time,

and lj is the segment duration. There is a variable number of segments, M , so that

the sequence of action segments is given by P = {P1, . . . , PM} for 0 < M ≤ T . In the

same way that sequence y = {yt}Tt=1 denotes the per-frame labels, y = {yj}Mj=1 notes

the per-segment labels. Given segment labels, start times and segment durations, one

can compute frame labels as

yt = yj for tj ≤ t < tj + lj. (3.22)

Note that the start of segment j coincides with the end of the previous segment, i.e.

tj = tj−1 + lj−1, and the durations sum to the total time
∑M

i=1 li = T . We also assume

that the duration is bounded by a minimum segment length lmin and a maximum

length lmax. We infer segments P that maximize the total score E(X,P ) for the data
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using a segment function f(·) where

E(X,P ) =
M∑
j=1

f(X,yj−1,yj, tj, lj). (3.23)

The segment function will be slightly different depending on which of our previously

described scoring functions is used. Here we will describe the linear chain case with

a temporal prior and without latent states. The segment function is the sum of the

per-frame unary, pairwise, and temporal prior scores

f(X,yj−1,yj, tj, lj) =

tj+lj−1∑
t=tj

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Wyt

Xt + Uyt−1,yt + Vyt,τt if t− 1 > 0

Wyt
Xt + Vyt,τt otherwise.

(3.24)

Recall that yt was defined in Equation 3.22. Note in the original Semi-Markov CRF

formulation [71] there was an additional segmental pairwise term. In our model, this

is modeled using the sum of the pairwise terms within a segment. As such, our energy

is the same as in Equation 3.1 (with d = 1). The difference comes from the constraints

that we add during inference.
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Segmental Inference

The traditional semi-Markov inference method [71] solves the following discrete opti-

mization problem

max
P∈P

E(X,P ) s.t. tj = tj−1 + lj−1 ∀j and lmin ≤ lj ≤ lmax ∀j and
∑M

i=j lj = T,

(3.25)

where P is the set of all segmentations and l indicates the duration of a segment. The

constraints in this problem prevent usage of the traditional Viterbi algorithm. The

optimal labeling is typically found using an extension of the Viterbi algorithm to the

semi-Markov case, which we refer to as Segmental Viterbi [71, 75, 57]. The algorithm

recursively computes the score St,c for the best labeling whose last segment ends at

time t and is assigned class c:

St,c = max
l∈{1...L}
c′∈Y\c

⎧⎪⎪⎪⎨⎪⎪⎪⎩
St−l,c′ + f(X, c′, c, t− l, l) if t− l > 0

f(X, c′, c, 1, t) otherwise.

(3.26)

As with the Viterbi algorithm, the optimal labels are recovered by backtracking

through the matrix S using the predicted segment durations.

This approach is inherently frame-wise: for each frame, compute scores for all

possible segment durations, current labels, and previous labels up to frame t. This

results in an algorithm of complexity O(T 2C2), in the naive case, because the dura-
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tion of each segment ranges from 1 to T . If the segment duration is bounded then

complexity is reduced to O(TC2(lmax − lmin)) [71, 75, 57]. The Segmental Viterbi

algorithm with duration constraints lmin and lmax is shown in Algorithm 2.

To further accelerate the computation of the optimal labels, we introduce an

alternative approach in which we constrain the number of segments, M , by an upper

bound, K, such that 0 < M ≤ K. If K = T , this is of the same complexity as

Segmental Viterbi. We will no longer need duration variables lj, which are redundant

given all times tj, so we simplify the segment notation to be P̂j = (yj, tj). Now,

instead of adding constraints on the durations of each segment, we only require that

the start of the jth segment comes after segment j − 1. We solve the problem

max
M∈{1,...,K}

P̂∈P̂M

E(S, P̂ ) s.t. tj−1 < tj ∀j ∈ {1, . . . ,M}. (3.27)

where P̂M is the set of all segmentations with M segments. Our approach has two

advantages: it substantially decreases computation time and it prevents gross over-

segmentation because there can never be more than K segments. While this does

introduce a new parameter which may need to be tuned, in practice we set K to be

the maximum number of segments in the training set.

In our model the score for each segment is the sum of scores over each frame, so the

total score for the segmentation containing k segments can be recursively computed

using the scores for a segmentation containing (k− 1) segments. Specifically, we first
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Algorithm 2 Segmental Viterbi [71] (with duration constraints)

procedure SegmentalViterbi(X, lmin, lmax, To, W , U , T , C)
Initialize S ∈ RT×C ▷ Score matrix
Initialize I ∈ RT×C ▷ Integral score matrix
Initialize B ∈ {1, . . . , C}T×C ▷ Back trace matrix
Initialize D ∈ ZT×C ▷ Duration matrix
Initialize P ∈ {1, . . . , C}T ▷ Output path

Forward Pass: Compute integral image for efficient score updates
for c = 1 : C do

It,c = (WcXt + Vc,0)
⊤

for t = 1 : lmax do
τt = floor(tTo

T
)

for c = 1 : C do
It,c = It−1,c + (WcXt + Vc,τt)

⊤

▷ For efficient segment scores
Forward Pass: Compute scores for the first segment
for t = 1 : lmax do

(St,·, Dt,·) =(It,·, t)

Forward Pass: Compute scores for the subsequent segments
for t = lmin + 1 : T do ▷ Compute score for segment ending at every time

τt = floor(tTo

T
)

for c = 1 : C do ▷ Current class
(sbest, bbest, dbest ) = ( −∞,−1,−1 ) ▷ Init best score, class index, &

duration
for cprev ∈ Y\c do ▷ Class of previous segment

for d = lmin : lmax do ▷ Maximize over segment durations
sprev = St−d,cprev + Ucprev ,c + It,c − It−d,c ▷ New segment score
if sprev > sbest then

sbest, bbest, dbest = sprev, cprev, d

St,c, Bt,c, Dt,c = sbest, bbest, dbest ▷ Keep best score, index, duration

Backward Pass: Retrieve the best segments by back tracing
c = arg maxc St,c ▷ Get the best class for the last segment
d = Dt,c ▷ Best segment duration
PT−d+1:T = c ▷ Set all steps within a segment to class c
t = T − d
while t > 1 do

c = Bt+d,c ▷ Get the incoming class
d = Dt,c

Pt−d+1:t = c
t = t− d

return P
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compute the best segmentation assuming M = 1 segments, then compute the best

segmentation for M = 2 segments, up to M = K segments. Let S̄k
t,c be the score for

the best labeling with k segments ending in class c at time t. The scores for the first

segment are given by

S̄1
t,c =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S̄k
t−1,c + Uc,c +WcXt + Vc,τt if t > 1

WcXt + Vc,τt otherwise

(3.28)

and the score for each subsequent sequence is

S̄k
t,c = max

{
max
c′∈Y\c

(S̄k−1
t−1,c′ + Uc′,c), S̄k

t−1,c + Uc,c

}
+WcXt + Vc,τt . (3.29)

Note that the second segment must come after the first segment, which implies that

you cannot be in the second segment in the first frame. Thus, S̄k
t,c = −∞ ∀t ∈

{1, . . . , k − 1}. The recursion in the latter equation contains two cases: (1) if tran-

sitioning into a new segment (c′ ̸= c), use the best incoming score from the previous

segment k − 1 at t− 1 and (2) if staying in the same segment (c′ = c), use the score

from the current segment at t−1. Our forward pass, in which we compute each score

S̄k
t,c, is shown in Algorithm 3. The optimal labeling is found by backtracking through

S̄.

If L = lmax − lmin, the complexity of our algorithm, O(KTC2), is L
K

times more

efficient than Segmental Viterbi assuming K < L. In most practical applications, K
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Algorithm 3 K-Segment Viterbi (ours)

procedure KSegmentViterbi(X, Kmax, W )
Initialize S ∈ RKmax×T×C ▷ Score tensor
Initialize B ∈ {1, . . . , C}Kmax×T×C ▷ Back trace tensor
Initialize D ∈ ZKmax×T×C ▷ Duration tensor
Initialize P ∈ {1, . . . , C}T ▷ Output path

Forward Pass: Compute scores for the first segment
for t = 1 : T do

τt = floor(tTo

T
)

S1
t,· = S1

t−1,· + (WXt + V·,τt)
⊤

D1,t,· = t

Forward Pass: Compute scores for the (m− 1) subsequent segments
for m = 2 : Kmax do

for t = m : T do ▷ Transition to new segment at t
τt = floor(tTo

T
)

for c = 1 : C do ▷ Current class
(sbest, bbest, dbest) = (Sm,t−1,c, Bm,t−1,c, Dm,t−1,c + 1 ) ▷ Same segment
for cprev ∈ Y\c do ▷ Previous class

if cprev ̸= c then
sprev = Sm−1

t−1,cprev + Ucprev ,c ▷ Transition to new segment
else

sprev = Sm
t−1,cprev + Ucprev ,c ▷ Stay in the same segment

if sprev > sbest then
(sbest, bbest, dbest)=(sprev, cprev, 1)

Sm
t,c = sbest + (WcXt + Vc,τt)

⊤ ▷ Keep best score, update with new
time step

(Bt,c, Dt,c)=(bbest, dbest) ▷ Keep best index and duration

Backward Pass: Retrieve the best segments by back tracing
msegs = arg maxm maxc Sm,T,c ▷ Find optimal segment count
c = arg maxc Smsegs,T,c ▷ Get the best class for the last segment
d = Dmsegs,T,c ▷ Best segment duration
PT−d+1:T = c ▷ Set all steps within a segment to class c
t = T − d
m = msegs

while m > 1 do
c = Bt+d,c ▷ Get incoming class
m = m− 1
d = Dm,t,c

Pt−d+1:t = c
t = t− d

return P 76
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is much smaller than L. In the evaluated datasets there is a speedup of one to three

orders of magnitude. Note, however, our method requires K times more memory than

Segmental Viterbi. Ours has space complexity O(KTC), whereas Segmental Viterbi

has complexity of O(TC). Typically K ≪ T so the increase in memory is easily

manageable on any modern computer. In all cases, we set K based on the maximum

number of segments in the training split.

The described algorithm was defined for the non-latent version of our model.

There are multiple ways of incorporating latent variables into our algorithm. One

way is to follow the approach of Andrew [113] for Markov Semi-Markov Model CRFs,

which has intra-segment and inter-segment pairwise terms. The parameters of their

intra-segment term would correspond to the parameters of our latent pairwise skip-

chain term.

3.4 Baselines

In the results section of this chapter we will compare against prior work on JIGSAWS

and 50 Salads, and we will add two additional baselines for each dataset. The first

is a standard Support Vector Machine (SVM) and the second is a Dynamic Time

Warping approach.

The SVM is like our SC-CRF but only consists of a unary term, such that the
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feature function is

Ψ(X, y, t) =
T∑
t=1

( C⨁
c=1

Xt · 1[yt = c]
)
. (3.30)

The class label for each frame is predicted independently. For these results, we use

the standard SVM implementation in Scikit-Learn [114].

Dynamic Time Warping and its variants are typically used to align two time series

sequences but have also been used to successfully perform action segmentation (e.g.,

[115, 116, 117, 118, 119]). A common formulation is as follows. For any two sequences

indexed by i and j and with sequence lengths T (i) and T (j), we compute an optimal set

of correspondences, r = {rt}T
(i)

t=1 , such that the data X
(i)
t corresponds to the data X

(j)
rt .

Figure 3.11 depicts two 1D signals and their correspondences. In order to compute

r, we minimize the error between each time step in X(i) and the corresponding time

step in X(j) given a set of constraints

T (i)∑
t=1

X(i)
t −X(j)

rt

 s.t. rt ≤ rt+1 & r1 = 1, rT (i) = T (j). (3.31)

The first constraint ensures monotonicity (rt ≤ rt+1), meaning one cannot go back-

wards in time, and the second constraint ensures that the start and finish time of the
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Figure 3.11: Depiction of sample sequences X(i) and X(j) with correspondences c.
Modified from [10].

sequences are the same. The scalar DTW distance is given by

DTW (X(i), X(j), r) =
1

T (i)

T (i)∑
t=1

X(i)
t −X(j)

rt

 . (3.32)

In practice, one can compute the DTW distance using dynamic programming [120].

We use the nearest-neighbors algorithm with the DTW distance to find the best

matching sequence from our training set.4 We then propagate the labels from the

best sequence to the new test sequences such that Y
(i)
t = Y

(j)
rt for all t.

DTW is a very effective model on some datasets. In particular, if the order of

actions is the same between different sequences, then it may accurately capture how

the input sensor signals evolve within and between actions. If the order of actions

4In a slight abuse of terminology, we refer to both the metric and the nearest neighbors segmen-
tation model as DTW.
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varies substantially between sequences, or if the order in a test sequence has never

been seen before, then DTW will likely not perform well.

Depending on the training set size, this method may be slower than our proposed

solutions. In the naive case, finding the correspondences has computational complex-

ity O(T 2) for each training sequence. Thus, if there are N training examples, the

complexity with nearest neighbors is O(NT 2). Using the efficient lower bound by

Keogh and Ratanamahatana [121], it is possible to compute the DTW score with-

out the correspondences in O(T ). Thus the DTW-NN algorithm is of complexity

O(NT +T 2). It may be possible to compute the correspondences more efficiently us-

ing pruning [122]. For comparison, our linear chain CRFs are on the order of O(TC2),

where typically C2 is much less than T and is independent of the number of training

examples.

3.5 Evaluation

In this section we describe our evaluation metrics, datasets, and results.

3.5.1 Metrics

We assess our models using three primary metrics and also compare against prior

work using frame-wise precision and recall. In Chapter 5 we will discuss metrics in

more depth when we compare action segmentation and action detection.
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Figure 3.12: Our metrics measure two types of errors. First is over-segmentation,
which is when there are multiple predicted action segments contained within one true
segment. The second evaluates the sequential ordering of actions and allows for small
temporal offsets. The offsets are sometimes caused by inter-reviewer variability and
should not negatively impact performance.

The first metric, frame-wise accuracy, is commonly used in robotics and computer

vision (e.g., [3, 50, 92]), and gives a sense of the overall correctness of our predictions.

The score is Macc(y, ŷ) =
∑T

t=1 1[yt = ŷt] where y = {y∗t }Tt=1 is the sequence of ground

truth labels and ŷ = {ŷt}Tt=1 is the sequence of predictions.

In many applications, like surgical workflow, there is large uncertainty as to when

one action stops and another starts due to inter-annotator variability. Similarly in

surgical skill evaluation the precise temporal segmentation may not be as important

as computing the correct ordering in which actions take place. As such, the second

metric measures how well the model predicts the sequential order of action segments,

independent of temporal shifts, which we evaluate using a segmental edit score. An

example temporal shift is depicted in Figure 3.12 (right). This encodes the order of

the actions but does not include the start or stop time of any segment. To compute

this score we use notation for segmental inference. Let P = {yj}Mj=1 be the set of
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labels for each of the M segments in a ground truth sequence and P̂ = {ŷj}M̂j=1 be

the set of labels in the predicted sequence. For example, if y = {aabbbccccc} then

P = {abc}. Our segmental edit score is defined using a normalized edit distance,

Medit(P, P̂ ), with insertions, deletions, and replacements. We compute this using the

Levenshtein distance, L(·), as described by Navarro [123], where i and j are indexes

within the given true and predicted sequences.

L(P, P̂ , i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(i, j) if min(i, j) = 0,

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(P, P̂ , i− 1, j) + 1

L(P, P̂ , i, j − 1) + 1

L(P ′, P̂ , i− 1, j − 1) + 1[Pi ̸= P̂j]

otherwise.

(3.33)

The score is normalized by taking the maximum length of each sequence such that

Medit(P, P̂ ) = (1 − L(P,P̂ ,M,M̂)

max(M,M̂)
) · 100 where | · | denotes the length of a sequence. A

score of 100 is best and 0 is worst.

Our third metric measures how much overlap there is between ground truth and

predicted segments. This penalizes oversegmentation errors as depicted in Figure 3.12

(left). This metric computes the intersection over union of the longest contiguous

predicted segment for a given ground truth segment. Our score is similar to the
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Jaccard Index [124] except it penalizes spurious segments. It is given by

Moverlap(P, P̂ ) =
100

M

M∑
i=1

max
j

|Pi ∩ P̂j|
|Pi ∪ P̂j|

, (3.34)

where |Pi∩ P̂ ′
j| denotes the number of frames in segments Pi and P̂i that intersect and

where |Pi ∪ P̂ ′
j| denotes the number of frames in these segments that overlap. This

score lies in [0, 100] where a higher value is better.

3.5.2 Datasets

In this chapter, we evaluate on 50 Salads and JIGSAWS. For 50 Salads we only use

accelerometer data. Due to symmetries in the tools we use the unsigned acceleration

for each axis (XYZ) as opposed to the signed values. This results in signals with

non-negative values where 0 means an object is not accelerating and everything else

means that it is accelerating. We evaluate using 5-fold cross validation where we train

on 20 users (40 videos) and test on 5 users (10 videos). We set the skip length and

filter length to d = 200 frames which was determined via cross validation on one of

the splits. Recall that 50 Salads has multiple granularities of action labels. Unless

otherwise stated, results are on the “eval” graularity, but additional granularities are

included in Table 3.7.

On JIGSAWS, we evaluate on the suturing task using Leave One User Out as

described in [91]. In each split we train on seven users and test on the left out
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Model Name Abbreviation Relevant Equation
Skip Chain CRF SC-CRF 3.8
Latent Skip Chain CRF LSC-CRF 3.15
Convolutional Skip Chain CRF CSC-CRF 3.18
Latent Convolutional Skip Chain CRF LC-SC-CRF 3.20

Table 3.1: We assess performance using four variations on our model.

user. We use a skip length and action primitive duration of d = 100 frames unless

otherwise stated. We use a subset of the robot kinematics for the left and right

(slave-side) end effector from a da Vinci surgical robot. Specifically, the inputs are

tool positions, velocities, and normalized gripper angles. We lightly preprocess the

data by subtracting the mean (per sequence) and dividing by the per-feature standard

deviation.

3.5.3 Experiments

We performed experiments to asses the impact of skip chains, segmental inference,

and convolutional filters using four variations on our model, as denoted in Table 3.1.

Unless otherwise mentioned, inference is performed using Viterbi (with Skips) and

is post-processed using a median filter with width equal to half of the convolutional

filter length (or skip length if no filters are used).

In all experiments except the skip length analysis (shown in Figure 3.13) we sub-

sampled the data temporally by 10x for 50 Salads and 5x for JIGSAWS. This level

of subsampling had a minimal effect (≈ 0.1%) on accuracy. All parameters indicated

are with respect to the original duration of each sequence.
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Figure 3.13: Skip Chain length experiments (left) 50 Salads (right) JIGSAWS. The
prior is not used in these experiments.

Some experiments were performed using different parameters or test setups so it is

important to compare the relative performance within an experiment. Furthermore,

there is a small amount of variation in performance on different runs of an experi-

ment with the same model and same hyper-parameters. This is due to the random

initialization of some of the weights. On 50 Salads, the standard deviation across 10

trials for the SC-CRF was 0.267%.

At the end, we show graphs of the per-trial performance using our best methods.

These graphs highlight that certain users tend to achieve much better or worse per-

formance than others. These graphs can also be used to highlight the complimentary

information computed from our metrics.

Skip Chains: Figure 3.13 shows the accuracy on 50 Salads and JIGSAWS using the

SC-CRF (Equation 3.1) with the per-frame unary term and skip chain pairwise with
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50 Salads
Models Accuracy Overlap Edit
Linear Chain CRF (w/o prior) 71.2 36.9 46.2
Linear Chain CRF (w/ prior) 73.8 43.5 52.4

JIGSAWS
Models Accuracy Overlap Edit
Linear Chain CRF (w/o prior) 73.4 50.0 68.1
Linear Chain CRF (w/ prior) 78.7 57.8 74.7

Table 3.2: Results with and without temporal priors using a Linear Chain CRF,
which is the special case of a SC-CRF with d = 1.

varying skip lengths. Results are shown for length ranging from d = 0 to d = 500

for 50 Salads and d = 200 for JIGSAWS. Note that the length of a typical action is

longer for 50 Salads.

A value of d = 0 implies there was no pairwise term and d = 1 is the special

case of a linear chain CRF. Going from the linear chain to a skip chain increased

accuracy by about 5% on 50 Salads and 3% on JIGSAWS. Using skip chains, there

was a wide range of lengths that gave similar performance. Once the length gets too

big performance starts to drop. For example d = 500 achieved 71% on JIGSAWS.

Temporal Prior: Table 3.2 shows the impact of using a temporal prior with a

linear chain CRF. Given the limited amount of training data, we set the number of

time steps To = 30 to prevent overfitting. Overlap and edit increase by 5-8% on both

datasets. On 50 Salads there was a small improvement in accuracy and on JIGSAWS

the increase in performance was larger. As such, the temporal prior is used in all

remaining experiments.
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50 Salads
Models Accuracy Overlap Edit
SC-CRF 77.45 59.4 51.9
LSC-CRF (H = 2) 79.2 62.3 54.3
LSC-CRF (H = 3) 78.8 60.1 52.6
LSC-CRF (H = 4) 79.2 62.4 52.9

JIGSAWS
Models Accuracy Overlap Edit
SC-CRF 79.3 86.0 71.3
LSC-CRF (H = 2) 82.1 87.4 75.2
LSC-CRF (H = 3) 81.4 87.5 74.9
LSC-CRF (H = 4) 82.5 88.3 72.7

Table 3.3: Results on 50 Salads and JIGSAWS using a Latent Skip Chain CRF.
H = h defines the number of latent variables. Note that the special case of the LSC-
CRF with H = 1 is simply the SC-CRF. The prior and filtering are both used in all
trials.

Latent states: We looked at the effect of using a latent skip chain CRF (Equa-

tion 3.11) with varying numbers of latent states, H, per class. These results are

shown in Table 3.3. Adding latent states results in about a 2% improvement for 50

Salads and 3% improvement for JIGSAWS.

Filtering: Table 3.4 shows performance of the SC-CRF without filtering, with a

median filter (width = d/2), Segmental Viterbi, and with our segmental inference

algorithm. We evaluated Segmental Viterbi with and without segment length con-

straints. The minimum and maximum segment lengths were based on the true min

and max durations from the training sets. In contrast to our original hypothesis, seg-

mental inference only had a minor effect on performance. By some metrics, including

accuracy, performance actually dropped slightly but on others performance improved.
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50 Salads
CSC-CRF inference Accuracy Overlap Edit
Viterbi (w/ skips) 78.8 38.8 49.8
Segmental Viterbi (min/max) 77.8 39.7 33.2
K-Segment Viterbi (ours) 78.3 38.6 48.6
Viterbi (w/ skips) + median filter 79.3 38.7 53.4

JIGSAWS
CSC-CRF inference Accuracy Overlap Edit
Viterbi (w/ skips) 80.7 69.4 60.3
Segmental Viterbi (min/max) 78.2 65.4 63.1
K-Segment Viterbi (ours) 78.6 66.4 66.3
Viterbi (w/ skips) + median filter 81.3 70.4 80.4

Table 3.4: Results on 50 Salads and JIGSAWS using the CSC-CRF using Viterbi
inference with and without median filtering and segmental inference using Segmental
Viterbi (with duration constraints), and our K-Segment algorithm. For both datasets
d = 100.

Under most metrics, the median filter with a large window (w = d/2) achieved the

best performance. Notice that edit scores on 50 Salads were relatively low across all

inference methods. This is largely due to the background class, which often occurs

before or after some other actions. The median filter is more efficient and performs

better in aggregate so we used this kind of filtering for the rest of the experiments.

Action Primitives: Table 3.5 shows performance of the LC-SC-CRF using action

primitives for several numbers of latent states per class. Note that CSC-CRF is the

special case of the LC-SC-CRF without latent states (H = 1). The length of each

action primitive is the same for all cases, which is the same as the skip length d. On

both datasets accuracy does improve by 1-3% with the use of latent filters, however,

performance quickly plateaus as the number of filters per class increases. We did not
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50 Salads
Models Accuracy Overlap Edit
SC-CRF 77.5 39.4 49.8
CSC-CRF 81.0 43.4 55.2
LC-SC-CRF (H = 2) 80.9 43.6 54.5
LC-SC-CRF (H = 3) 81.3 44.2 55.5
LC-SC-CRF (H = 4) 81.1 44.5 55.0

JIGSAWS
Models Accuracy Overlap Edit
SC-CRF 79.3 86.0 71.3
CSC-CRF 81.3 70.4 80.4
LC-SC-CRF (H = 2 ) 82.3 72.2 81.8
LC-SC-CRF (H = 3 ) 82.2 72.0 81.1
LC-SC-CRF (H = 4 ) 81.9 71.9 79.7

Table 3.5: Results on 50 Salads and JIGSAWS. H = h defines the number of latent
variables. When H = 1 this is the special case of the CSC-CRF without latent
variables. Inference is performed using Viterbi (w/ skips) with a median filter to
smooth out predictions. For JIGSAWS d = 100 and for 50 Salads d = 200.

find any improvement above H = 4 on either dataset.

Granularities: Table 3.7 shows 50 Salads results for each action granularity. We

are unaware of any prior results using these granularities. Our model performed very

well on high-level actions, which is not very surprising given there are only four action

classes. Performance on mid-level actions was lower. In this setup there are 18 classes,

such as cutting cucumber and cutting cheese, some of which are indistinguishable

using the accelerometer data. Superior performance on this granularity likely requires

the aid of computer vision models to recognize each ingredient. Performance on low-

level actions was worse, however, given there are 52 action classes we do substantially

better than chance (random accuracy = 1.9%). This granularity includes very fine-
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50 Salads
Models Accuracy Overlap Edit
DTW 65.4 30.3 62.0
SVM 69.1 33.9 17.3
RNN-LSTM [125] 73.3 - 54.5
LC-SC-CRF (H = 3) 81.3 44.2 55.5

JIGSAWS
Models Accuracy Overlap Edit
SVM 67.7 55.0 36.4
MsM-CRF [33] 67.8 - -
KSVD-SHMM [30] 73.5 - -
GMM-HMM [31] 74.0 - -
DTW 75.7 60.9 85.9
SD-SDL [126] 78.6 - 83.3
LSTM [16] 80.5 - 75.3
LC-SC-CRF (H = 2) 82.3 72.2 81.8
Bidir LSTM [16] 83.3 - 81.1

Table 3.6: Comparisons with prior work.

grained actions such as start cutting cucumber and stop cutting cucumber.

Error analysis: Figure 3.14 shows the accuracy and edit scores for each trial in 50

Salads and JIGSAWS, where each dot represents one trial. Note that the pair of edit

and accuracy scores for each column represents the same trial. All trials are sorted

in ascending order according to their edit scores. These scores were computed using

the LC-SC-CRF (H = 3, d = 100 for JIGSAWS and d = 200 for 50 Salads).

There are several things to take away from these graphs. First, there is little

correlation between the accuracy and edit score. We computed a Pearson correlation

for the two metrics [127] which has a range of −1 to +1. On 50 Salads the ρ value is

0.37 and on JIGSAWS it is 0.73; both of which are weak correlations. Visually, it is
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Low-level actions Accuracy Overlap Edit
SC-CRF 44.04 27.69 26.0
CSC-CRF 44.76 32.17 29.45
LC-SC-CRF (H = 3) 46.28 34.3 31.71
Mid-level actions Accuracy Overlap Edit
SC-CRF 51.47 32.98 20.62
CSC-CRF 52.36 34.4 26.33
LC-SC-CRF (H = 3) 55.05 38.42 29.02
Highest-level actions Accuracy Overlap Edit
SC-CRF 92.85 60.86 57.9
CSC-CRF 93.26 59.59 64.27
LC-SC-CRF (H = 3) 94.06 64.64 63.24

Table 3.7: Evaluation on the 50 Salads dataset using the low-level, mid-level, or
highest-level actions described in the text.

Labels Duration # Segs Speedup
50 Salads (Low) 2289 65 35x
50 Salads (Mid) 3100 25 124x
50 Salads (Higher) 3100 24 129x
50 Salads (Highest) 11423 6 1902x
JIGSAWS 1107 37 30x

Table 3.8: Speedup Analysis of our segmental inference algorithm compared to
Segmental Viterbi.

clear that an increase in edit score does not necessarily correlate with an increase in

accuracy. For example, trial 8 on 50 Salads has an accuracy/edit of about 69%/41%,

trial 9 has 88%/43%, and trial 10 has 73%/44%. The correlation on JIGSAWS is a

little bit higher, but there are still large oscillations in accuracy for marginal changes

in edit.

There are five trials in JIGSAWS for which we achieve 100% edit. This is perfect

for applications in which we only care about the ordering of actions. It is interesting,
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however, to see the accuracy of these five predictions only reaches about 90%. In this

case, all of the errors come from temporal shifts in the boundaries between actions.

Informally we have found that our models achieve much worse performance with

certain users. For example, in JIGSAWS user “G” makes several errors, which re-

sults in a very different sequencing of actions than any of the other users. As such,

the accuracy and edit scores for this user are much lower. The first three trials in

Figure 3.14 (right) correspond to this user.

On both datasets the accuracy saturates around 90%. Due to limitations in the

annotations for both datasets we do not know whether we can expect higher per-

formance. Ideally, we could compare this number to the inter-annotator variability,

however, the datasets we collected only have one set of labels5. By comparing multiple

label sets we could estimate the best potential performance.

As a reference point, in surgical skill applications inter-annotator agreement when

deciding on whether a user is a novice or an expert is relatively low (e.g., 75% evalu-

ating on surgical training tasks in [128]). In our case, there is likely large variation

in when each action starts and stops. On the M2CAI2016 surgical workflow dataset

in Chapter 6 we take these temporal shifts into account by adding a buffer around

each action transition.

Speedup: Table 3.8 shows the speedup of our K-segment inference algorithm com-

pared to Segmental Viterbi on all 50 Salads and JIGSAWS label sets. One practical

5In each dataset there were multiple people verifying the labels, but only one set of “true” labels.
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Figure 3.14: Accuracy and edit scores for (left) 50 Salads (right) JIGSAWS. Trials
are sorted by edit scores in ascending order. Results are from evaluation with the
LC-SC-CRF with d=100 (JIGSAWS) and d=200 (50 Salads) with 3 latent states per
class. “p” in the title of each refers to the Pearson ρ correlation.

implication is that our algorithm scales readily to full-length videos. On 50 Salads,

Segmental Viterbi took 2 hours to compute highest-level predictions for all trials

compared to a mere 4 seconds using ours.

Other experiments: Throughout this research we assessed several methods for

independently segmenting actions and then classifying them. In our experience there

is no single temporal segmentation method that works well on all kinds of time series

data. One method may work well on 50 Salads but poorly on JIGSAWS. Furthermore,

by performing these tasks independently it is common to grossly over- or under-

segment the data. It is harder to predict the correct action sequence in both of these

cases.
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Figure 3.15: Examples from 50 Salads and JIGSAWS. The top images show sensor
signals over time where red is high, green is neutral, and blue is low. On 50 Salads gray
denotes zero-acceleration. Subsequent rows depict the ground truth and predicted
labels for several models (H = 1). Each color corresponds to a different action class.

3.6 Visualization

Figure 3.15 shows example sensor data and predictions for each dataset. The top

depicts sensor signals throughout a sequence. Red is high, green is neutral, and

blue is low. On 50 Salads gray corresponds to zero acceleration. Consecutive plots

show ground truth and predicted action sequences for several versions of our model.

Each color indicates a unique action. The model without filtering clearly contains

many incorrect frames. With the LC-SC-CRF segment boundaries tend to be better

aligned with the ground truth and there are fewer over-segmentation issues than with

the SC-CRF.

There are many instances in 50 Salads where the signals do not appear to be

aligned exactly with the accelerometer values. While it looks like there is a synchro-

nization issue, this actually shows a limitation in using accelerometer features for
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Figure 3.16: Example action primitives learned on 50 Salads and JIGSAWS. Each
row in an image depicts the weights for that corresponding sensor over time. In 50
Salads there are X, Y, and Z values for each object.

action recognition. In many cases, an action starts when the user first moves her or

his hand to the cooking utensil, as opposed to starting when the utensil has phys-

ically moved. This happens in actions like peeling and cutting. If we extracted

information from the video it is possible that we would pick these events up earlier.

On both datasets our action primitives provide an interpretable way for learning

how signals transition throughout an action. Figure 3.16 highlights some example

action primitives. In 50 Salads each object has signals for the X, Y, and Z components

of each accelerometer. Typically there is one dominant object that corresponds to

each action class. For example in cutting the knife is dominant and in peeling the

peeler is dominant. Notice that other objects sometimes vary in shades of blue and

green. These may be used for portions of the task (e.g. the start) or only used in

some instances of an action.

95



CHAPTER 3. CRF-BASED TIME-SERIES MODELS

In JIGSAW it is common for an action to contain a change in gripper state. For

example when reaching for the needle the user starts with the gripper open (red)

and then closes it on the needle (green). Other actions are often characterized by

transitions in tool positions. See the gradients in the “Position (right)” features in

position needle and push through tissue.

Some action primitives are more interpretable than others. The clarity appears

to be a function of the sensor type. In 50 Salads, when a user changes utensils there

is a clear delineation between the object being in-use versus not in-use. In JIGSAWS

the action primitives are more blurred which is due to the continuous positions and

velocities in the robot kinematics data.

3.7 Conclusion

In this chapter we described a model for sensor-based action segmentation that out-

performs several baselines and competing methods on JIGSAWS and 50 Salads. The

first key component, the skip chain pairwise term, exploited the disconnect between

the sensor sample rate and the rate of actions to better capture transitions between

action labels. The second key component, latent action primitives, captured tem-

poral correlations between sensor signals as a function of each action class. These

are relatively efficient computationally and produced visually interpretable convolu-

tional filters. Our third technical contribution was an efficient constrained segmental

inference algorithm. While it did not perform as well as simpler filtering methods,
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it is worth further exploration. Future work should explore the use of these three

mechanisms in RNN-based models.

Our models and learning methods from this chapter were implemented from

scratch in Python using Numba, an LLVM-based Just In Time compiler. The code,

including scripts for evaluating on JIGSAWS and 50 Salads, is available online6.

In the next chapter we will introduce a video-based feature representation that

will be used in tandem with the segmental and LC-SC-CRF models.

3.8 Appendix: Connections to RNNs

There has been significant recent interest in Recurrent Neural Networks (RNNs) for

time series analysis. There are many variants on RNNs, but the vanilla model has a

similar structure to a latent linear chain CRF, as shown in Figure 3.17. Note that

there are two typical depictions of an RNN: the first is as a simple feed forward

neural network with a recurrent edge and the second is an unrolled graph as shown

here. Both are mathematically equivalent. We leave out recent work using memory

networks like Long Short Term Memory (LSTM) [129, 130] and Gated Recurrent

Units (GRUs) [131]. For a recent introduction to RNNs see [99].

6Code: https://github.com/colincsl/LCTM/
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Figure 3.17: (Left) Latent Linear Chain Conditional Random Field and (right) An
unrolled vanilla Recurrent Neural Network.

RNN Formulation

A (vanilla) RNN is defined using input data vectors Xt ∈ RF , hidden state vectors

ht ∈ RH , and predicted probabilities yt ∈ RC for all times t from 1 to T where F

is the number of input features, H is the number of (shared) hidden states, and C

is the number of classes. There are weight matrices Wx ∈ RH×F , Wh ∈ RH×H , and

Wy ∈ RC×H and corresponding bias vectors bh ∈ RH , and by ∈ RC which are shared

across time. The hidden state is

ht = tanh(WxXt +Whht−1 + bh) (3.35)

and the class probability is estimated using the softmax function

yt = p(yt|x1, . . . , xt) = softmax(Wyht + by), (3.36)
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where a softmax is defined as

softmax(xc) =
exp(xc)∑C

c′=1 exp(xc′)
(3.37)

for arbitrary vector x ∈ RC [110].

The value of yt is only a function of the hidden state at the time step but the value

of ht depends on the data at t and the hidden states from previous time steps. Note

that this formulation is causal, meaning that the prediction at t is only a function of

the data from 1 to t. We discuss Bi-direction RNNs in Chapter 5.

Connections between Latent Chain CRFs and RNNs

Latent terms: In both cases, the prediction at each time step is a function of the

hidden nodes at that time. In our CRF, we defined a set of class-specific hidden

states where only one is active for any given time step. RNNs assume that there are

a set of class-agnostic hidden states and for any time step the prediction is a linear

combination of the values for all hidden states.

Inference: All labels in a chain CRF are predicted jointly by applying the Viterbi

algorithm on the whole sequence. RNNs are typically computed in a feed forward

manner, and thus the label at each time step is simply a function of the hidden states

at that time step.

Skip Chains: For computational reasons, we only used one skip duration. Adding

more edges quickly becomes intractable using exact inference and is computationally
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equivalent to an nth-order CRF [71]. Inference in an RNN is performed per-frame

and thus adding multiple edges has a negligible effect on the cost of inference. In

fact, the recent Clockwork RNN model uses multiple skip-like edges [100].

Training: RNNs are typically trained using Stochastic Gradient Descent (SGD)

with a categorical cross-entropy loss function. Back Propagation Through Time

(BPTT) [132] is used to unroll the network and compute the gradients for each pa-

rameter. CRFs can be trained using probabilistic or max-margin approaches. In the

discriminative case we use SGD with the Structural SVM loss function. The gradients

are computed using loss-augmented inference. It would be interesting to explore the

use of the SSVM loss with an RNN.

Action Primitives: Given that our action primitives are linear functions of filters

and a window of input data, it is reasonable to replace the typical data term in an

RNN with our action primitive term. This would result in one (shared) hidden state

per primitive.

We leave RNN variants of our skip-chain and action primitive terms as future

work.
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Chapter 4

Spatiotemporal Models and Sensor

Substitution

State-of-the-art video-based action segmentation models typically fail to achieve a

level of performance near that of domain-specific sensors. In this chapter we introduce

video-only and multi-modal spatiotemporal models that work towards minimizing this

performance gap.

4.1 Introduction

Domain-specific sensors are often critically important in robotics applications. For

example, pressure sensors are important for manipulation tasks, tool tracking sup-

ports visual servoing, and accelerometers support SLAM approaches. However, there
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are many applications where the ideal sensing is too impractical or too costly to de-

ploy in real-world settings. For instance, in the next-generation kitchen1 it might be

beneficial to attach motion sensors to all tools to support monitoring or control, but

retrofitting every kitchen at scale is impractical due to a combination of cost, data

acquisition and synchronization overhead, and physical constraints in instrumenta-

tion. A practical alternative would be to mount a video camera to observe the scene,

but current methods for video tracking and action recognition generally achieve worse

performance than their counterparts using domain-specific sensing (e.g.,[33, 112]).

State-of-the-art approaches for fine-grained action segmentation, as described in

Section 2, use bag of words models with hand-crafted features such as Improved Dense

Trajectories [9]. These features only capture very low level texture patterns and do

not capture spatial relationships between objects. In this chapter, we develop video-

only and multi-modal Spatiotemporal Convolutional Neural Networks (ST-CNN).

Our models factorize video into a spatial component that hierarchically captures tex-

ture patterns in different regions of an image and a temporal component that captures

how the patterns change over time. The temporal component extends the temporal

action primitives from Chapter 3 to video-based spatiotemporal primitives. Our ap-

proach achieves significantly higher performance than a Dense Trajectory baseline

and a VGG-based [95] spatial CNN baseline. Performance using our video approach

– but does not outperform – the sensor-based results and is closer than the state of

1http://www.conceptkitchen2025.com/
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Figure 4.1: Our model captures object relationships and how these relationships
change temporally. (top) Latent hand and tomato regions are highlighted in different
colors on images from the 50 Salads dataset. (bottom) We evaluate on multiple label
granularities that model fine-grained or coarse-grained actions.

the art for video.

For concreteness, throughout this chapter we refer to the sub-sequence depicted

in Figure 4.1: A user places a tomato onto a cutting board, cuts it with a knife, and

places it into a salad bowl. This is part of a much longer salad preparation sequence.

The spatial component should capture the location of the tomato with respect to the

cutting board and bowl, and the temporal component should capture the tomato’s

transition from being on the cutting board at the start of an action to being in the

bowl at the end.

Many situated tasks, including surveillance and surgical training assessment, em-

ploy a fixed camera to monitor human actions. We leverage this fixed-camera as-

sumption to investigate the ability of our model to capture geometric relationships

between objects. This is encoded in the spatial component of our model, in which

we use a simplified variation of the VGG [95] CNN architecture. This model can be

viewed as having two parts. In the first half of the network a hierarchy of convolu-
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tional filters are applied to capture local texture patterns within different regions of a

given image. For example, these filters may encode a tomato or bowl texture. In the

second half of the spatial network a set of fully connected layers capture correlations

between the texture patterns and their spatial locations. We visualize the ability of

our network to successfully capture this information later in the chapter.

For some applications, fine-tuning a CNN that was originally trained on a large

image classification dataset (e.g., ImageNet) can yield high performance on a new

task (e.g., [54]). Unfortunately, we show in the results section that this is not true for

action segmentation in situated environments. In our first set of results we train a

network solely using a given dataset and show that it achieves superior performance

than a model trained on ImageNet. We note that this might not be practical for many

applications where is it too costly to hand-label copious amounts of training data.

As such, we describe a notion of sensor substitution; instead of training a spatial

CNN with manually-annotated action labels we train it using sensor values such as

robot kinematics or accelerometer values. A classifier is then learned on top of this

network to predict which action is occurring. We show that not only can we use this

to predict actions, but the network can generate virtual sensor signals with sufficient

performance, which enables us to substitute video for sensors in tasks beyond action

segmentation. Our sensor substitution model achieves very high performance when

training and evaluating on the same surgical training task (e.g., Suturing) and good

performance when evaluated on other surgical training tasks (e.g., Knot Tying). We
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highlight the ability of our model to capture this sensor information and to generate

virtual sensor signals through multiple visualization techniques.

We combine our spatial networks with a variation of our convolutional action

primitives that captures how object relationships change over the course of an action.

These temporal primitives are learned using the latent features output by the spatial

CNN as input. These filters are on the order of 10 seconds long and explicitly cap-

ture mid-range motion patterns. The primary difference between our previous action

primitives and the new ones, is that we now take linear combinations of shared filters

that are common between all actions as opposed to the maximum over class-specific

filters. The probability of an action at any given time is estimated using 1D convolu-

tions over the spatial activations. On both datasets we achieve notably higher results

than our baseline video models.

In summary our contributions are: (1) We develop a Spatiotemporal CNN which

captures information about object relationships and how relationships change over

time, (2) we exploit sensor data during training time to learn better video-based

models that can predict domain-specific sensor signals, (3) when combined with the

segmental and LC-SC-CRF models from Chapter 3, as depicted in Figure 4.1, we sub-

stantially outperform recent methods for fine-grained recognition on two challenging

datasets.
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Figure 4.2: Our model contains three components. The spatial, temporal, and
segmental units capture object relationships, how those relationships change, and
how actions transition from one to another, respectively.

4.2 Spatial Component

In this section, we introduce a CNN topology inspired by VGG [95] that uses hi-

erarchical convolutional filters to capture object texture and spatial location. We

introduce the network architecture, as depicted in Figure 4.3, and highlight differ-

ences between our approach and other CNNs. Later we describe our notion of sensor

substitution. The input into our spatial CNN is a set of color and motion images for

each frame. The output is a feature representation at every frame that describes the

content of the scene. For a recent introduction to CNNs see [110].
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Figure 4.3: The spatial component is a CNN modeled specifically to capture latent
object relationships.

4.2.1 CNN Input

For each time t there is an image pair It = {Ict , Imt }, where Ict is a color image and

Imt is a motion image. The motion image captures when an object has moved into

or out of a region and is computed by taking the difference between frames across a

short time interval. Let δ(·) be our image difference function such that

δ(Ic, t, d) =
1

3

∑
i∈{r,g,b}

Ic,it − 1

3

∑
i∈{r,g,b}

Ic,rt−d (4.1)

where d is a temporal offset and i corresponds to the RGB color channels. This is

effectively computing a gray scale image for each time step and taking the difference.2

Unless otherwise specified we set Imt = [δ(Ic, t, 2d), δ(Ic, t, d), δ(Ic, t,−d), δ(Ic, t,−2d)]

which is a set of difference images for two steps forward and two steps backward. For

2We investigated several variation on this, including defining a separate difference image for each
of the RGB channels, but ultimately found that the change in performance was negligible and that
separating the channels required more GPU memory. We also compared against a version using the
absolute value of the differences. In preliminary experiments we found that the version in the text,
which can have both positive and negative values, achieved superior performance.
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(a) (b) (c) (d) (e)

Figure 4.4: The input into the spatial CNN is an RGB image Ict (a) and a set of
difference images Imt (b - e). Red indicates a high positive difference, blue indicates
a high negative difference, and green indicates no difference.

50 Salads this offset is d = 0.5 second. The areas with high difference values tend to

be relevant to the ongoing action, so this function can be viewed as a simple type of

attention mechanism. An example image set from 50 Salads is shown in Figure 4.4.

Note that in our first paper using this network [112] we used Motion History

Images [133] as a motion image. When properly tuned these work well, but our simple

image differencing variant works better on a larger variety of datasets. Other work

(e.g. [62]) has shown success using optical flow as a motion image. In preliminary

experiments, we found that optical flow did not sufficiently capturing small hand

motions and was too noisy due to video compression.

4.2.2 Spatial CNN

Our spatial model is a variation on the VGG CNN, as shown in Figure 4.3, and

can be described using a set of L spatial units. Each spatial unit is composed of a

convolutional layer with Fl filters of size 3 × 3, a Rectified Linear Unit (ReLU), and

3 × 3 max pooling. If the resolution of our input is N0 × N0, the output resolution
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after one spatial unit is N1 ×N1 where N1 = N0

3
. For each of the Rl = N2

l regions in

the l-th layer, there is a set of activation vectors rl = {rli}
Rl
i=1, where rli ∈ RFl , that

encode the texture in that region on the image. These regions, and corresponding

feature vectors, are depicted by the colored blocks in Figure 4.3.

The output of the L-th spatial unit, rL, is fed into a fully connected layer which

has Ffc states that capture relationships between regions and their corresponding

latent object representations. For example, a state may produce a high score for

tomato in the region with the cutting board and knife in the region next to it. The

state h ∈ RFfc is a function of weights W (0) ∈ RFfc×FL·RL and biases b(0) ∈ RFfc :3

h = ReLU(W (0)rL + b(0)). (4.2)

As with other CNNs, we use the Rectified Linear Unit non-linearity ReLU(x) =

max(0, x).

The above spatial component, when applied to frame t, produces state vector

ht. We train the spatial component with auxiliary labels zt ∈ {0, 1}C , where C is

the number of classes, denoting the ground truth action label for each time step.

We predict the probability, ẑt ∈ [0, 1]C , of each action class at that frame using the

3For notational clarity we denote all weight matrices as W (·) and bias vectors b(·) to reduce the
number of variables.
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softmax function:

ẑt = softmax(W (1)ht + b(1)), (4.3)

where W (1) ∈ RC×Ffc and b(1) ∈ RC . The softmax function is defined as

softmax(xc) =
exp(xc)∑C

c′=1 exp(xc′)
(4.4)

for arbitrary vector x ∈ RC [110]. This function outputs a vector corresponding to

the per-class probabilities under the categorical distribution.

Note, ẑt is computed solely for the purpose of training the spatial component. The

input to the temporal component, described later, is ht.

We visualize this network in several different ways later, but in efforts to instill an

intuition for what this model tends to capture, we include an example visualization

here. Figure 4.5 shows example CNN activations after each spatial unit. The top row

shows the sum of all filter activations after the l-th layer and the bottom row shows

the color corresponding to the best scoring filter at each pixel location. Notice the

relevant objects in the image and the regions corresponding to the action all have

high activations and different best-scoring filters. This implies that the learned filters

are similar to mid-level object detectors. We expand on this in Section 4.6.
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Figure 4.5: The user is moving cucumber slices from the cutting board to the salad
bowl. The top-right images show the sum of all feature activations after each spatial
unit from the scene CNN. Notice that the cutting board and bowl regions have the
highest (yellow) activations whereas the unimportant regions have low (black and
red) activations. In the bottom images, colored boxes correspond to the filter index
with the highest activation in that region. Different objects tend to be activated with
different filters.

4.2.2.1 Relationships to other CNNs

Our CNN is inspired by deep networks for image classification such as VGG and

AlexNet but differs in ways that are important for fine-grained action recognition. In

particular, these differences are due to the fact that we assume the camera in each

dataset is fixed – which enables us to study the network’s ability to capture geometric

relationships between objects – and that we want to capture subtle differences between

actions as opposed to classifying diverse scenes or objects.

Similar to VGG, we employ a sequence of spatial units with common parameters
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like filter size. However, in contrast to VGG, which uses two consecutive convolution

layers in each spatial unit, we found that the second convolutional layer had negligi-

ble impact on performance. Normalization layers, like in AlexNet, did not improve

performance either. Overall our network is shallower, has fewer spatial regions, and

contains only one intermediate fully connected layer between the convolutional fil-

ters and the output. In addition, excessive data-augmentation, including large image

rotations and translations, introduced unwanted spatial and rotational invariances,

which had a negative impact on our performance. We did find that a small amount of

augmentation improved performance in many cases. We randomly rotate each image

by up to ±5% and translate each image in the X and Y direction by up to 16 pixels

(15% of the image size).

We performed cross validation – training on all except one split and testing on the

held out split – using one to seven spatial units and grid sizes from 1×1 to 9×9. We

found three spatial units with a 3×3 grid achieved the best results. By contrast, deep

networks for image classification tend to use at least four spatial units and have larger

grid counts. For example, VGG uses a 7×7 grid and AlexNet uses a 12×12 grid. They

use larger sizes because there is a lot more geometric (and textural) variation in the

datasets they are applied to. A low spatial resolution naturally induces more spatial

invariance. This invariance is a function of the pooling operation; lower resolution

implies that information is pooled over a larger portion of the image. We use a low

spatial resolution to prevent overfitting on our relatively small datasets. More training
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data may be necessary to capture all object configurations if the grid resolution is

larger.

One important benefit to our smaller network is that it can be trained in much

less time, because there are many fewer layers and filter counts, and it takes less

memory. Storing all of the activations for one image using VGG requires 96 Mb of

memory whereas our network only requires 4 Mb.

4.2.2.2 Implementation details

We learn parameters W = {W 0,W 1}, b = {b0, b1}, and the convolutional filters

with the categorical cross entropy loss function, which is commonly used in image

classification networks such as AlexNet and VGG. A cross entropy loss for each frame

t is defined as

Lt = −
∑
c∈Y

p(c) log q(c) (4.5)

for probability distributions p and q [110]. p refers to the true distribution, as given

by the ground truth labels, and q refers to the probabilities estimated by our network.

Given the true label for a training sample, p(c) = 1 for the correct class and p(c) = 0

for all others. q(c) is given by the estimated probabilities ẑt from our CNN, which are

the output of a softmax function, and thus correspond to values from the categorical

distribution. Only one class in the summation has a non-zero value, so the loss
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simplifies to

Lt = − log(ẑt,yt). (4.6)

The total loss is give by the sum of Lt for all time steps in all training videos.

Note, it is also common to use the notation L = −xc + log
∑C

c′=1 exp(xc′) for

arbitrary vector x ∈ RC and true class c. This, however, assumes that x is the

(unnormalized) score (e.g., W (1)ht + b(1) in our network).

We minimize this loss with back propagation using Stochastic Gradient Descent

with ADAM step updates [134]. Dropout regularization is used on the intermediate

fully connected layers. Parameters such as grid size, number of filters, and non-

linearity functions are determined from cross validation using one of the splits from

each dataset described later. Interestingly, we found that these hyper parameters

tend to be very similar between all of our datasets. As such, for all datasets we use

F = {64, 96, 128} filters in the three corresponding spatial units and Ffc = 128 fully

connected states. We used Keras [135], a library of deep learning tools, to implement

our model.

Note that training of this model is much faster than when training deeper models

such as VGG or ResNet [136]. A single cross validation fold trained for 15 epochs on

JIGSAWS takes about 15 minutes on a Nvidia GTX Titan X, compared to over an

hour to train VGG for the same number of iterations.
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Figure 4.6: Our model learns a video-based representation of domain-specific sen-
sors. (top) Orange circles correspond to accelerometers placed on objects in 50 Salads.
(bottom) Blue circles correspond to end effector positions from a da Vinci robot in
JIGSAWS. We train on video and sensor data but test on only video by predicting
the sensor data from it using this method.

4.2.3 Sensor Substitution

In this section we describe sensor substitution, which improves on our spatial CNN in

two important ways. First, we show that we can predict sensor data from video with

reasonable performance, and second, we show that we can use the regressed “virtual”

sensor signals in tandem with our action model from Chapter 3 to achieve high action

segmentation performance. One of the primary benefits from this method is that it

does not require hand-labeled annotations to learn a spatial CNN. Figure 4.6 depicts
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our approach, in which we train with both sensing modalities but evaluate solely

using video.

While our methods may apply to a broad range of sensor types (e.g., force sen-

sors, pressure sensors), in this chapter we use two specific types: position data and

accelerometer data. For the first type, we regress position measurements by learn-

ing a continuous model for the 3D position of two robot end effectors on a da Vinci

surgical robot. For the second type, we regress accelerometer signals for each of the

ten kitchen tools in the 50 Salads dataset with the goal of identifying when specific

objects in a scene are in motion. Note that there is a semantic difference between an

acceleration of zero and an acceleration greater than zero, so in our evaluation we as-

sess the ability to detect if each object is in motion or is not in motion. Note that

while the accelerometers capture acceleration – and do not directly capture velocity

– we use these interchangeably. It is rare for an object to have non-zero velocity

and zero acceleration. This is apparent looking at Figure 4.7, which displays the

magnitude of each accelerometer for two trials in the dataset.

There has been related work regressing positions for task such as human pose

estimation [137, 138, 139], where CNNs are used to regress 2D or 3D body joint

positions given a region of interest an image around a human. In general object

detection, recent methods like Faster R-CNN [140] and YOLO [141] use regression

CNNs to detect multiple objects in an image.4 However, we are not aware of any

4We are abusing terminology when we differentiate classification CNNs and regression CNNs –
all CNNs are technically performing regression. The purpose is to differentiate cases in which the
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Figure 4.7: Each image visualizes the magnitude of each accelerometer for a trial
in 50 Salads.

work that regresses sensor data from video using CNNs.

Model

As with our previous spatial model, the CNN is defined using a sequence of convo-

lutions, ReLUs, and pooling. We use the same architecture as shown in Figure 4.3

except we modify the final output equation using ẑst ∈ RFs , where Fs is the number

of sensor signals. The output is given by

ẑst = W (1)ht + b(1). (4.7)

This is similar to Equation 4.3 except W (1) ∈ RC×FS and b(1) ∈ RC . The true sensor

signals are given by zst for each time t. By contrast, in the previous setup we were

predicting the probability of a frame belonging to each class, whereas in this setup

we are predicting a real-valued output for each component of the sensor signal.

final output is discrete versus continuous. This is common in the literature.
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Instead of using the cross entropy loss, which is computed using the probabilities

of a discrete set of outputs, we use the mean squared error loss:

Ls
t = ∥zst − ẑst ∥

2
2 (4.8)

for each time step t. We performed experiments using Tukey’s biweight loss as used

by Belagiannis et al. [137], who claim the biweight loss is better at regression tasks

because it is less susceptible to outliers in hand-labeled training data. However,

in preliminary experiments we found that using an L2 training objective achieved

superior performance. This may be because our sensor measurements do not suffer

from the same types of noise as the hand-labeled position data in [137].

We normalize the sensor data to be zero mean with unit standard deviation during

training time and apply the inverse for evaluation. We train the network with a batch

size of 64 samples and again use Stochastic Gradient Descent with Adam step updates.

4.3 Temporal Component

The models described so far only capture information from a given frame and its

corresponding difference images. In most situations, it is unreasonable to expect our

model can accurately identify an action based on an image at a single time point.

We introduce a temporal component that explicitly captures how the scene changes

over the course of an action. We learn a set of temporal convolutional filters that
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Figure 4.8: The temporal model captures how latent object relationships change
over time.

capture properties such as the scene configuration at the beginning or end of an action

and different ways users perform the same action. These are similar to the action

primitives in the previous chapter, except that we now take a linear combination of

shared temporal filters instead of maximizing over a set of class-specific filters. The

temporal component is depicted in Figure 4.8.

For a video with duration T , let H = {ht}Tt=1 ∈ RT×Ffc be the matrix of inter-

mediate fully connected features from the spatial CNN, where ht ∈ RFfc , and yt ∈
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{1, ..., C} be an action label at time t. We learn Fe temporal filters W (2) = {W (2,i)
1 }Fe

i=1

with biases b(2) = {b(2)i }Fe
i=1. Each filter is of duration d such that the i-th filter is

W (2,i) ∈ Rd×Ffc and corresponding bias is the scalar b
(2)
i ∈ R for i ∈ {1, . . . , Fe}. The

activation matrix A ∈ RT×Fe is given by the convolution of the spatial features H

and the temporal filters using a ReLU non-linearity:

A = ReLU(W (2) ∗H + b(2)). (4.9)

Probability vector ŷt ∈ [0, 1]C is a function of weight vectors W (3) ∈ RC×Fe and

biases b(3) ∈ RC with the softmax function:

ŷt = softmax(W (3)At + b(3)). (4.10)

We choose filter lengths spanning on the order of 10 seconds of video. This is much

larger than in related work (e.g. [48, 65]). Qualitatively, we found these filters capture

states, transitions between states, and attributes like action duration. In the next

chapter we introduce a deep temporal model using similar temporal convolutional

filters.

Ideally, the spatial and temporal components of our CNN should be trained jointly,

but this requires an exorbitant amount of GPU memory. The activations alone for

each image of the spatial network takes approximately 2 Mb. A breakdown of the

amount of memory and number of parameters per layer from the spatial and temporal

120



CHAPTER 4. SPATIOTEMPORAL MODELS AND SENSOR SUBSTITUTION

components are shown in Table 4.1. One minute of footage at full frame rate (30

Hz) is over 3.3 Gb. The maximum length video for 50 Salads, which is 9 minutes

and 11 seconds, would be 17 Gb just to store the spatial activations for each layer.

Ultimately, we train the spatial network and then the temporal network. We follow

the same learning procedure as with the spatial CNN component where we use the

categorical cross entropy loss using ground truth labels y. We optimize this function

using SGD with ADAM step updates. In our experiments we use Fe = 64 temporal

filters unless otherwise stated. Below I describe alternative approaches of training

that could be done, albeit which may take much more time computationally and

would be much less memory efficient.

One way to train the model, which would be more memory efficient than the naive

approach, would be to break each video into overlapping sections that are each the

length of the temporal filters (e.g., 10 seconds). Using this approach, storing the

spatial and temporal activations for this subset of a video would take 306.1 Mb of

space, as shown in Table 4.1. If we used a batch size of 32, which is relatively small

compared to typical spatial networks, this would require 9.8 Gb of GPU memory. A

batch size of 64, which is more common, would be 19.6 Gb. For reference, we used a

Nvidia GTX Titan X for most experiments, which has 12 Gb of GPU memory. Note

that some of this memory also needs to be allocated for other applications, such as

running the graphics for the monitor.

While in theory we could use this approach – especially if we subsampled the
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Spatial CNN Res (per side) Input channels Memory (bytes) # Params
input 108 6 69984 0
conv1 108 64 746496 3456
relu1 108 64 0 0
pool1 36 64 82944 0
conv2 36 96 124416 55296
relu2 36 96 0 0
pool2 12 96 13824 0
conv3 12 128 18432 110592
relu3 12 128 0 0
pool3 4 128 2048 0
FC 1 128 128 16384
output 1 10 10 1280
Spatial total 1.00 Mb 187008

Temporal CNN
Input 300 (10 sec/30 Hz) 128 (from above) 0
Conv 38400 64 2457600 2457600
FC 1 10 640 640
Temporal total 2.34 Mb 2458860

ST-CNN total 306.12 Mb 2645248

Batch size 64 19.59 Gb

Table 4.1: Memory and parameter layout of our spatial CNN model. Res. is the
resolution (width & height). The 6 input channels refer to RGB and 3 difference
images. Memory refers to storage space for the activations for that layer, which
must be stored in order to perform backpropagation. # Params refers the number of
parameters for all of the weights in that layer. The temporal CNN assumes data is
processed at full frame rate (30 Hz) with temporal filters that are 10 seconds long.
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images spatially or temporally – it results in a substantial increase in the amount of

data that needs to be read into memory. In our current approach, we store as many

raw images into RAM (non-GPU memory) as possible and then during training load

these batches on the GPU. In this proposed approach we would have to load a video

into RAM, temporally oversample that video to create our batches of length d, and

then during training send these batches to the GPU. This results in much more

redundancy because we oversample the video to create each batch and creates a large

bottleneck on input-output. As a reference point, reading from a hard drive is on the

order of a magnitude slower than from RAM. In this approach we would have to read

much more often from RAM.

A third way of training the model would be to alternatively optimize the spatial

and temporal networks. First, one would train the spatial network for a small number

of iterations (e.g., 5 epochs), then train the temporal network for a small number of

iterations, and iterate back and forth until convergence. We could use the same

pipeline that we currently have to train the spatial network, and modify it slightly to

incorporate the activations from the temporal component. We leave this approach to

future work.

Temporal Filters versus Action Primitives: The action primitives from Chap-

ter 3 and the temporal filters defined in this chapter are conceptually similar, but

have a few notable differences. First, in the LC-SC-CRF we used a set of per-class

action primitives whereas now we use a set of filters that are shared amongst all
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classes. Shared filters may be more appropriate because certain actions (e.g., cut

tomato versus cut cucumber) may contain the same subactions. Computationally it

is more efficient to share filters, especially if there is a large number of action classes.

Second, the score for a given time step in the LC-SC-CRF was computed by maximiz-

ing over the scores of each primitive (of a given class) whereas scores using the new

architecture are computed by taking linear combinations of all filters. Thus, now we

blend together different filters. For example, a given score may be a linear function

of consecutive subactions such as picking up the knife and cutting the tomato. The

last major difference is that previously we learned the primitives using the Latent

Structural SVM loss function whereas now we are using the cross entropy loss. The

latter is more common within the CNN literature; it is unclear whether there is any

performance benefit from using either function.

4.4 Baselines

We compare against two spatial baselines on both datasets using Improved Dense

Trajectories and a pre-trained VGG network.

Hand-crafted Features: The Improved Dense Trajectory (IDT) baseline is com-

parable to Rohrbach et al. [49] on the MPII dataset. IDT features are computed as

follows with the publicly available code from the authors5. Using dense optical flow,

extract all tracklets from a video, where each tracklet consists of a continuous tra-

5https://lear.inrialpes.fr/people/wang/improved_trajectories
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jectory over 15 consecutive frames (0.5 seconds). Some of these tracklets are filtered

out in order to account for camera motion using a homography-based approach with

SURF features. Spatial and spatiotemporal texture features such as Histogram of Ori-

ented Gradients (HOG), Histogram of Optical Flow (HOF), and Motion Boundary

Histograms (MBH) are extracted at the beginning, middle, and end of each tracklet

along with its corresponding x and y position within each frame. These features are

used in a Bag of Words (BoW) model using KMeans or Fisher Vector encodings.

The output for each frame is either a histogram computed from the learned KMeans

model or a Fisher Vector. Typically the BoW dictionary is very large (e.g. k = 1000)

so the dimensionality of the feature vector is also large. We extract IDT, create a

KMeans dictionary (k = 2000), and aggregate the dictionary elements into a locally

normalized histogram with a sliding window of 30 frames. We only use one feature

type, HOG, because it outperformed all other feature types or their combination in

preliminary experiments. This may be due to the large dimensionality of IDT and

relatively low number of samples from our training sets. Note that it took 18 hours

to compute IDT features on 50 Salads compared to on the order of 10 minutes for our

spatial CNN features using a Nvidia GTX Titan X graphics card. It is trivial to de-

crease the CNN time by sub-sampling, whereas due to the optical flow computations

it becomes more difficult for IDT.

Deep Spatial Features: We also compare against a CNN baseline using the VGG

network [95] which has been trained on ImageNet. We use the activations from FC6,
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the first of VGG’s three fully connected layers, as the features at each frame. We

performed preliminary experiments using other layers of activations and found FC6

outperformed others. We also experimented fine-tuning the last few layers of the

pre-trained VGG network. We do not show a the fine-tuned results; performance was

notably lower than our spatial CNN.

For our spatial-only results, we classify the action using the IDT or VGG features

at each time step with a linear Support Vector Machine.

Temporal Classifier: The temporal information captured by the ST-CNN is rela-

tively local; it only captures 5-10 seconds worth of information. We compare perfor-

mance using our CNNs as input into our previous models. In particular, we compare

performance using just the Spatial CNN, just the ST-CNN, ST-CNN with K-Segment

inference, and the Spatial CNN with the LC-SC-CRF model. We denote the models

using segmental inference as S-CNN+Seg or ST-CNN+Seg.

When using the Spatial CNN with the LC-SC-CRF model, the input is the set of

log probabilities of the output of the Spatial CNN, log(ẑt), for each time step. All

additional parameters, such as the pairwise transitions, are learned using the SSVM.

We use H = 3 latent states in the LC-SC-CRF. As in Chapter 3, for JIGSAWS we

set d = 100 and for 50 Salads we set d = 200.
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Spatial & Handcrafted Models Edit Accuracy
VGG 7.6 38.3
IDT 16.8 54.3
S-CNN 25.5 68.0
Spatiotemporal Models Edit Accuracy
S-CNN + Seg 47.8 70.3
ST-CNN 52.8 71.3
ST-CNN + Seg 53.7 71.6

Table 4.1: 50 Salads results using our video-based models on the higher-level action
granularity. As expected, these results are lower than the sensor-based results in
Chapter 3.

4.5 Experiments

4.5.1 Video-only Results

We evaluated several variations of our spatial and spatiotemporal models on 50 Sal-

ads and JIGSAWS using segmental edit distance and frame-wise accuracy. We also

assessed action classification performance – the case where we know the temporal

boundaries – using segment-wise accuracy.

Tables 4.1 and 4.2 show segmentation results using IDT, VGG, and our mod-

els. S-CNN, ST-CNN, and ST-CNN + Seg refer to the spatial, spatiotemporal, and

segmental components of our model. These 50 Salads results are on the “higher”

granularity. Our full model has 17% better accuracy on 50 Salads and 23% better

accuracy on JIGSAWS compared to the IDT baseline. Figures 4.9 and 4.10 shows

example predictions using each component of our model.
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Figure 4.9: The top plot for each video depicts the ground truth action at each
time step for a video in 50 Salads. Subsequent rows show predictions using the Spa-
tial CNN, Spatiotemporal CNN, and Spatiotemporal CNN with segmental inference.
Each color corresponds to a different class label.
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Figure 4.10: The top plot for each video depicts the ground truth action at each
time step for a video in JIGSAWS. Subsequent rows show predictions using the Spa-
tial CNN, Spatiotemporal CNN, and Spatiotemporal CNN with segmental inference.
Each color corresponds to a different class label.
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Spatial & Handcrafted Models Edit Accuracy
VGG 24.3 45.9
IDT 8.5 53.9
S-CNN 37.7 74.0
Spatiotemporal Models Edit Accuracy
[33] STIPS+CRF - 71.8
S-CNN + Seg 53.3 74.3
ST-CNN 62.0 77.3
ST-CNN + Seg 64.4 77.3
LC-SC-CRF 72.7 72.6

Table 4.2: JIGSAWS results using our video-based models. As expected, these
results are lower than the sensor-based results in Chapter 3.

In the first experiments, we highlight how effective the baseline models are at

capturing actions using either one frame or the bag of words features computed in

a local window around that frame. While our results are still insufficient for many

practical applications the accuracy of our spatial model is at least 14% better than

IDT and 28% better than VGG on both datasets. One large reason for this is in the

large number of parameters each model contains, which results in extreme overfitting.

For VGG, the final classifier has approximately 138 million parameters and for IDT

it has on the order of 1 million. Our model only has on the order of 300 thousand

parameters. Furthermore, in our case the dimensionality of IDT right before classi-

fication stage is 96,000 features, which is much larger than the 128 features in our

spatial CNN. Aside from overfitting, IDT suffers from the fact that its bag of words

representation does not encode spatial relationships between features. In both of our

datasets spatial information is very important. While VGG does encode spatial infor-
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mation, it was pre-trained using data augmentation techniques such as image flipping

which introduce unwanted spatial invariance. We tried training VGG from scratch

but found that it grossly over fit due to the lack of training data.

Note that the edit score is very low for all spatial models. This is not surpris-

ing because each model only uses local temporal information which results in many

oscillations in predictions, as shown in Figures 4.9 and 4.10.

The spatiotemporal model (ST-CNN) outperforms the spatial model (S-CNN) on

both datasets. Aside from modeling temporal evolution, ST-CNNs also smooth out

the predictions. The effect on edit score is substantial and likely due to the large

temporal filters. By visualizing these features we see they tend to capture different

phases of an action like the start or finish.

Segmental Model: Adding segmental inference provides a notable improvement on

JIGSAWS results but only a modest improvement on 50 Salads. By visualizing the

results we see that the segmental model can be helpful and harmful. For example,

when the predictions oscillate (like in Figure 4.10) the segmental model provides a

large improvement. However, sometimes the model smooths over actions, like the

background class, when they are short in duration. We find the model we present in

Chapter 5 has fewer of these errors.

Temporal Filters versus Action Primitives: Table 4.3 compares the temporal

component from this chapter with the temporal action primitives from the previous

chapter. Note that the latter does not use a temporal prior or pairwise skip chain term.
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50 Salads Sensor Accuracy Video Accuracy
Action Primitives 71.95±6.39 70.66±10.76
Temporal CNN 78.67±5.99 70.44±11.12
JIGSAWS Sensor Accuracy Video Accuracy
Action Primitives 73.02±9.40 76.60±8.74
Temporal CNN 76.69±9.66 77.08±8.91

Table 4.3: Comparison of the Action Primitives from Chapter 3 and the tempo-
ral CNN filters described here. The sensor results are obtained using the kinemat-
ics/accelerometer data from Chapter 3 and the video results are obtained use the
spatial CNN activations from this chapter. The action primitives model was learned
using the LC-SC-CRF without the temporal skip chains or temporal prior.

Labels Classes Edit Accuracy Accuracy (pre-segmented)
Low 52 29.30 44.13 39.67
Mid 18 48.94 58.06 63.49
Higher 10 66.44 72.71 86.63
Highest 4 83.20 92.43 95.14

Table 4.4: 50 Salads results using all four action granularities with the ST-CNN. The
last column (pre-segmented) implies that we took the known start and stop time and
took the segment-wise accuracy given the maximum scoring class in that segment.

In both cases we used approximately 30 filters per model (3 per class). Recall that

the action primitives were defined per-class and our new temporal filters are shared

between classes. The hyper-parameters for both models (e.g., filter duration) were

the same; the filter duration was a function of the mean action duration computed

over the training data. We performed two experiments: one using the spatial CNN

features as input and the other using the sensor data used in Chapter 3. Accuracy

using both methods was similar on the video data but there was a large improvement

when using the sensor data. Specifically, the temporal CNN filters achieved 7% better

performance on 50 Salads and 3% better performance on JIGSAWS.
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Action Granularity: Table 4.4 shows performance on all four action granularities

from 50 Salads using our full model. The duration of each temporal filter is defined as

the mean duration of all action segments. Columns 3 and 4 show scores for segmental

and frame-wise metrics on the action segmentation task and the last shows action

classification accuracies which assume temporal segmentation is known. While per-

formance decreases when assessing finer granularities, this decrease is not very severe.

For example, the difference in accuracy between the mid level (18 classes) versus the

low level (52 classes) is only 18%. Some errors at the finer levels are likely due to tem-

poral shifts in the predictions. Given the high accuracy at the courser levels, future

work should look at modeling finer granularities by modeling actions hierarchically.

For the classification results, the (known) start and end times are fed into the

segmental model to predict each class. Our classification accuracy on JIGSAWS is

90.47%. This is notably higher than the state of the art [142] which achieves 81.17%

using a video-based linear dynamical system model and also better than their hybrid

approach using video and kinematics which achieves 86.56%. These surgical actions

can be recognized well using position and velocity information [1], thus our ability to

capture object relationships may be less important on this dataset.

4.5.2 Sensor Substitution Results

In this section we evaluate the performance of the regressed sensor values and the

action segmentation using these values on 50 Salads and JIGSAWS. Note, in our
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original sensor substitution publication [143] we used a spatial CNN that was similar

in spirit but had a slightly different topology than what we described in this chapter.

The biggest difference is the input in that paper only used a color image, which had

a negative affect on the 50 Salads dataset. The JIGSAWS results are comparable

with both models, and thus for convenience these results are taken directly from that

paper.

4.5.2.1 Kinematics Results

We performed two types of experiments for JIGSAWS. First, we trained and tested

our models using the appropriate task (e.g. Suturing, Needle Passing, or Knot Tying).

Second, we trained on each one of the tasks and test on the other two tasks to assess

our ability to generalize across tasks. For example, we trained on suturing and tested

on knot tying.

Kinematics Prediction: Table 4.5 shows the root mean squared error for all com-

binations of training and testing sets. Figure 4.11 shows the predicted positions and

ground truth plots of the x, y and z coordinates of each gripper for a Suturing trial.

The prediction – while noisier – follows the ground truth closely except when it spikes,

for example when the tool goes out of view of the camera.

The velocities, shown in Figure 4.12, tend to follow the same patterns as the true

sensor values, but predicted values tend to underestimate the signal. Perhaps if we

used another type of motion image, such as optical flow, we would improve velocity
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train test left x left y left z right x right y right z

SU SU 0.43 0.33 0.54 0.85 0.88 0.77
KT SU 0.62 0.78 0.86 1.37 1.12 1.22
NP SU 1.00 1.28 1.30 2.64 2.13 1.76
SU KT 0.74 0.74 1.34 1.13 1.00 1.20
KT KT 0.44 0.39 0.59 0.52 0.34 0.67
NP KT 0.87 1.25 1.22 1.21 1.21 0.94
SU NP 1.98 0.95 1.22 2.19 0.87 1.22
KT NP 2.06 1.18 1.28 2.04 0.77 2.12
NP NP 0.80 0.50 0.95 0.90 0.65 0.92

Table 4.5: Root mean squared error of the predicted kinematics in centimeters.
Performance of each task is averaged over cross validation splits and repeated for
each of the tasks.

performance.

Figure 4.13 shows the gripper state prediction for each tool and Figure 4.14 shows

the corresponding ROC curves for is open and is closed. Visually, the gripper rep-

resents a small part of each image, so it is not surprising that the results are much

noisier than the position or velocities. Despite this noise the predictions follow the

general pattern as the ground truth. The average AUC score for both tools was

0.8026.
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Figure 4.11: The six plots show ground truth (black) and prediction (blue) of x, y
and z position of the right and left gripper (in centimeters). The network was trained
and tested on the Suturing task.
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Figure 4.12: The six plots show ground truth (black) and prediction (blue) of x,
y and z velocity of the right and left gripper (in centimeters/sec). The network was
trained and tested on the Suturing task.
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Figure 4.13: These two plots show ground truth (black) and prediction (blue) of
the gripper angle for each tool. The network was trained and tested on the Suturing
task.
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Figure 4.14: An ROC curve for each of the two grippers being open or closed. A
gripper is considered open if the true value is above a set threshold τ .

When training the CNN on one task (e.g., suturing) and evaluating on a second

(e.g., knot tying) the predicted positions followed the correct general pattern, but

it appeared to be transformed and scaled in 3D space. Figure 4.15 shows example

position predictions. The scaling is likely due to the fact that the camera is situated at

a different position with respect to the tools in each task. Given this transformation

between tasks, we did not expect to predict the true positions, but did expect to

predict the general spatial patterns. While this scaling and rigid transform may be

problematic for some applications, it may not be problematic for action segmentation;

it may be sufficient to rely on the relative positions within a task.
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Figure 4.15: Predictions (orange) of a network trained on suturing tested on a
sequence of the knot tying task. Ground truth (in meters) is shown in blue. We see
that there is a shift in the global coordinate system between the two tasks but still
the relative motion is predicted accurately.

Action Segmentation: We used the predicted gripper positions as input into our

LC-SC-CRF from Chapter 3 to assess our action segmentation performance. Table 4.6

shows results of our model trained and tested on all nine combination of the three

JIGSAWS tasks as well as those using the ground truth positions as input. We also

show the results of Tao et al. [33] and our suturing results from the ST-CNN with

segmental inference.
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Test Task GT SU KT NP ST-CNN+Seg [33]
Suturing 76.14 76.64 65.84 61.20 77.30 71.75
Knot Tying 74.27 70.37 76.35 67.82 - 66.94
Needle Passing 62.37 51.34 54.21 60.46 - 60.39

Table 4.6: Action recognition results on JIGSAWS. Columns refer to models trained
on ground truth kinematics (GT) or predicted from a CNN trained on each task (SU,
KT, or NP). The ST-CNN+Seg results are from Table 4.2.

Our model outperformed Tao et al. [33] on all three tasks. On Suturing and

Knot Tying ours performed notably better and for Needle Passing ours achieved

comparable results. Needle Passing is visually very different from the other two tasks

which makes it more challenging to learn the appropriate information. This also

explains why training on Needle Passing gives slightly higher error in Table 4.5 than

when training on the other tasks. For suturing and knot tying our model achieved

slightly higher accuracy using the predicted kinematics than when using the ground

truth signals from the robot. It is possible that the CNN is learning a better basis

for the position data, however, the difference in accuracy is not substantial enough

to validate this hypothesis.

4.5.2.2 Accelerometer Results

The accelerometer predictions originally reported in [143] were much lower than the

ones we report here. The key difference is that here we use both the color and

difference images as input whereas that paper only used color images.
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Figure 4.16: ROC curve for each tool in the 50 Salads dataset.

Tool motion prediction: We predict real-valued accelerometer values, however,

the results are very noisy. To simplify the problem we assess performance based on

whether the tool is predicted as in motion or not in motion. Recall that the label

in motion implies that there is non-zero acceleration for a given sensor. While this

is not as nuanced as evaluating on the real-valued signals, it is still informative for

our task, as we show in the action segmentation results.

Figure 4.16 shows an ROC curve for each of the 10 tools: pepper dispenser,

bowl, oil bottle, large spoon, dressing glass, knife, peeler, small spoon,
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plate and chopping board. Figure 4.17 shows the AUC for each of the tools inde-

pendently. On average the AUC across tools was 0.8313.

Figure 4.17: AUC score for each tool in the 50 Salads dataset.

Figure 4.18 shows an example set of accelerometer predictions. Each set row

corresponds to the magnitude of true or predicted accelerometer for each tool. There

appears to be a large amount of noise, however, our method tends to pick up on the

dominant pattern for each tool.
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Figure 4.18: True and virtual accelerometer values for a video in the test set of 50
Salads. Dark blue indicates no motion and lighter blue and green indicates positive ac-
celeration. Each row corresponds to a different tool in the order: pepper dispenser,
bowl, oil bottle, large spoon, dressing glass, knife, peeler, small spoon,
plate and chopping board

Action Segmentation: The goal of this thesis is to improve methods for action

segmentation, so in the following experiments we show the impact of using a spatial

CNN trained using sensor data versus trained solely using action labels. We use

the LC-SC-CRF – with filter duration and skip length equal to the mean action

segment duration – with four feature types. First, we use the in motion versus not

in motion indicators from the real accelerometer data. Second, we use the virtual
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50 Salads Features Accuracy
True Sensors 76.15
Virtual Sensors 70.74
FC from Sensor-trained CNN 70.13
FC from Action-trained CNN 73.50

Table 4.7: Action segmentation results on 50 Salads. True sensors refers to using in
motion or not in motion indicators from the true accelerometer data, virtual sensors
refers to the indicators output from the CNN network trained on sensor data, and FC
from X refers to using the intermediate fully connected layers from the CNNs trained
on sensor data or action labels.

sensors output from the Spatial CNN trained to regress sensor values. Next, we use

the intermediate fully connected layer (ht) from the sensor-trained CNN. Finally, we

use the intermediate fully connected layer (ht) from the spatial CNN trained using

only action labels.

Results for all four methods are shown in Table 4.7. While performance using the

virtual sensors is not as high as the ground truth, it is close to the performance of

the CNN trained using action labels. This implies that we can train a CNN network

on a large dataset without action labels, and achieve almost as good accuracy as if

we had trained it with these labels.

4.6 Visualization

We visualized our CNNs in three ways corresponding to the video-only CNN, the con-

tinuous sensor-trained CNN, and the discrete sensor-trained CNN. We also visualized

the IDT approach.
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Method 1 (Video-only): We visualized the internal activations of the video-only

method by analyzing which filters in each spatial unit have the highest activations.

The hypothesis is that the filters with the highest score contribute most to the scores

in the next layer. For each unit we show two images: a score image and a filter-index

image. The former shows the activation, for each pixel (or region), with the highest

value. The latter indicates which convolutional filter gave this score and is colored

based on the index of the best scoring filter. Note that each filter corresponds to a

different color and that the colored indices in each layer are independent of the colors

in other layers. In the score images, the colors range from black (low) to red (neutral)

to yellow (high). Thus, objects that are most relevant should be colored yellow.

Figures 4.19 and 4.20 show example activation images. The first corresponds to

images taken from a video in 50 Salads. By studying these images and the corre-

sponding videos we can discern the objects and relationships that the CNN captured.

An obvious example is as follows. In the first time step, the salad bowl is empty

and it receives highest activations from the red and green filters. Over time, as the

user adds ingredients to the bowl, other filters (e.g. yellow, orange, teal) have higher

activations. This is most clear in the images for Unit 1 and Unit 2.

There are two dominant trends in the JIGSAWS visualizations. First, the activa-

tions are highly correlated with the location of the robot end effectors. This is evident

in all three time steps and in each of the spatial units. This implies that position

of the end effector is a useful property to capture for recognizing actions. Second,
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Figure 4.19: Visualization of method 1 for a sequence of images on 50 Salads. The
left columns correspond to the input image and corresponding motion image for the
given time step. Each subsequent column corresponds to a score- and index- image
as described in the text. The colors range from black (low) to red (neutral) to yellow
(high)
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Figure 4.20: Visualization of method 1 for a sequence of images on JIGSAWS. The
left columns correspond to the input image and corresponding motion image for the
given time step. Each subsequent column corresponds to a score- and index- image
as described in the text. The colors range from black (low) to red (neutral) to yellow
(high)

148



CHAPTER 4. SPATIOTEMPORAL MODELS AND SENSOR SUBSTITUTION

whenever a tool tightens the suture thread, the center of the image is highlighted in

yellow. This is evident in the first and third image.

Method 2 (Video+Continuous Sensors): For continuous data we adapted the method

by Bolei et al. [144] to understand which parts of an image are most important for

the given prediction. We generate an auxiliary image for each of the N2
0 regions in

the image which we index as Ikt for k ∈ {1, . . . , N2
0}. For each region, we occlude

that partition of the image and compute a spatial CNN prediction ẑkt . We compute

a difference image D ∈ RN0×N0 which measures the change between the un-occluded

prediction ẑt and each occluded prediction ẑkt :

Dk = ||f(I∗t,k) − f(It)|| = ||ẑt∗k − ẑt||. (4.11)

This matrix measures the importance that each region has on the final prediction. If

the occlusion creates a large change in prediction, it implies that the original infor-

mation at this location as significant.

Bolei et al. occluded each region by adding random noise. Because our camera

is static, we found that occluding the image using the median image from the given

video was more informative. To be specific, the pixels in occluded region of image Ikt

are replaced by the median value, for each pixel location, from the whole video.

We used this technique to visualize the sensor values corresponding to the left and

right grippers in JIGSAWS. Figure 4.21 (top) shows the input image, (middle) shows
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Figure 4.21: Heatmaps for occluding the input image (top) with a sliding gray patch
(10× 10 pixels) and measuring the change in the prediction of left (middle) and right
(bottom) gripper.

150



CHAPTER 4. SPATIOTEMPORAL MODELS AND SENSOR SUBSTITUTION

Figure 4.22: Spatiotemporal features are extracted for each of the green tracklets.
Note that very few tracklets are detected when there are only very small motions (e.g.
left) whereas many tracklets are detected when there are large motions (e.g. right)

the change map corresponding to the left gripper and (bottom) shows the change

map corresponding to the right gripper.

Dense Trajectories: Many actions in 50 Salads, like cutting, require capturing small

hand motions. We visualized IDT using the public software from Wang et al. [9] and

found it does not detect many tracklets for these actions. Some examples are shown

in Figure 4.22. In contrast, when the user performs actions like placing ingredients

in the bowl, IDT generates thousands of tracklets. Even though the IDT histograms

are normalized, we find the variation in the number of tracklets is still problematic.

4.7 Conclusion

In this chapter, we extended the ideas from Chapter 3 to the video domain via two

primary contributions. First, we factorized video into a spatial component and a

temporal component which captures the state of the scene in each image and how

this state changes over time. We showed promising quantitative results, which show

our model substantially outperforms state-of-the-art action recognition methods, and

151



CHAPTER 4. SPATIOTEMPORAL MODELS AND SENSOR SUBSTITUTION

showed compelling qualitative results, which highlights that our model is capable of

capturing important spatiotemporal patterns.

Our second contribution, sensor-substitution, showed that we can regress position-

and acceleration-based sensors with reasonable performance with a variation on our

spatial CNN. Using this approach, we showed that we can learn a spatial representa-

tion from video without requiring hand-labeled annotations, and furthermore, that we

can predict virtual sensors with sufficient performance for some applications outside

of action segmentation.

While the performance of our video-based models has not yet reached that of

the sensor-based alternatives, we have have make substantial progress relative to our

baselines. In the next chapter we will introduce our final model which, in some cases,

closes this gap.
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Chapter 5

Unified Models for Action

Segmentation and Detection

The theme of this chapter is unification. Thus far our models have been comprised

of two parts: low-level features (e.g., action primitives) and high-level temporal clas-

sifiers (e.g., CRFs). In this chapter we introduce a single hierarchical model that

is capable of capturing both components. In addition, we explore the connections

between action segmentation and action detection, two areas within computer vision,

and show that they are really the same problem. We highlight limitations in the met-

rics commonly used for each task and introduce a new metric that overcomes these

limitations.
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5.1.1 Current Limitations

Before continuing, it is worth addressing some of the fundamental limitations with

our previous models. Despite achieving large performance gains compared to prior

work, certain issues preclude us from using them in some of the applications we care

about, including human-robot interaction and some use cases in surgical workflow

analysis.

First, our models must be run “offline,” meaning we can only predict actions after

we have seen the whole video. Many robotics applications require “online” evaluation

such that the action is predicted as it happens. For example, in a manufacturing

application a robot should be able to interact with the user in real-time.

Second, our models employ a Markov assumption. This is often appropriate for

segmentation datasets, like JIGSAWS, where each action is followed by another. How-

ever, in detection datasets like MERL Shopping almost all actions have a background

segment between them. Background segments may occur when the user pauses to

contemplate their next action. This has a large impact on the distribution of pairwise

transitions in a chain CRF; with high probability all actions lead to the background

class and the background class leads to all other actions. This may be why detection

papers tend not to use Markov models.

Third, our models cannot capture some long-range temporal patterns. For the

LC-SC-CRF, we assumed that each time step (or segment), conditioned on the pre-
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vious action label, was independent of the data at all previous time steps. Action

primitives do capture the past d frames, however, the duration was limited to around

10 seconds. To illustrate this issue, consider the 50 Salads dataset. When a user cuts

a tomato, the tomato is often occluded by their hands and the knife. If we detected

the tomato texture near the hand texture several seconds earlier, and the user is

occluding something with the knife, we should be able to infer that they are cutting

the tomato. These complex patterns are not captured by our previous models.

Finally, we found that temporal convolutional filters from Chapter 4 significantly

outperformed the action primitives from Chapter 3 using sensor data, but we did not

propose a good way of incorporating them into the LC-SC-CRF.

In this chapter we introduce a model that addresses all of these issues.

5.1.2 Contributions

We introduce a class of time-series models, which we call Temporal Convolutional

Networks (TCNs), that capture long-range patterns using a hierarchy of temporal

convolutional filters. We present two types of TCNs: First, our Encoder-Decoder

TCN (ED-TCN) only uses a hierarchy of temporal convolutions, pooling, and up-

sampling but can efficiently capture long-range temporal patterns. The ED-TCN has

a relatively small number of layers (e.g., 3 in the encoder) but each layer contains

a set of long convolutional filters. Second, a Dilated TCN uses dilated convolutions

instead of pooling and upsampling and adds skip connections between layers. This
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is an adaptation of the recent WaveNet [145] model, which shares similarities to our

ED-TCN but was developed for speech processing tasks. The Dilated TCN has more

layers, but each uses dilated filters that only operate on a small number of time

steps. Empirically, we find both TCNs are capable of capturing features of segmental

models, such as action durations and pairwise transitions between segments, as well

as long-range temporal patterns similar to recurrent models. These models tend to

outperform our previous methods, as well as a Bidirectional LSTM (Bi-LSTM) [146]

baseline that is competitive with our previous approaches. One advantage of TCNs

over Bi-LSTM is that they are over a magnitude faster to train. The ED-TCN in

particular produces many fewer over-segmentation errors than other models.

Note that these models can be viewed as coming out of three different areas. First,

they can be viewed as a hierarchical extension to the action primitives discussed

throughout this thesis. Second, they overlap with recent ideas in Semantic Segmen-

tation (e.g., [147, 148]). The Encoder-Decoder TCN is most similar to SegNet [147]

whereas the Dilated TCN is most similar to the Multi-Scale Context model [148].

Lastly, TCNs are also related to Time-Delay Neural Networks (TDNNs), which were

introduced by Waibel et al. [149] in the early 1990s. Note, TDNNs apply a hierarchy

of temporal convolutions across the input but do not use pooling, skip connections,

newer activations (e.g., Rectified Linear Units), or other features of our TCNs.

In this thesis we have focused on action segmentation, however, there are other

papers that approach the problem of action detection (e.g., [24, 53, 150, 151]). Despite
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effectively being the same problem, the temporal methods in segmentation papers

tends to differ from detection papers, as do the metrics by which they are evaluated.

The difference is as follows. Action segmentation methods predict what action is

occurring at every frame in a video and detection methods output a sparse set action

segments, where a segment is defined by a start time, end time, and class label.

Note, however, that it is possible to convert between a given segmentation and set of

detections by simply adding or removing null/background segments.

In this chapter, we evaluate on datasets designed for both tasks and propose a seg-

mental F1 score, which we qualitatively find is more applicable to real-world concerns

for both segmentation and detection than common metrics. We evaluate on MERL

Shopping which was designed for action detection, Georgia Tech Egocentric Activities

which was designed for action segmentation, as well as 50 Salads and JIGSAWS.

5.2 Related Work

For context, we include a brief overview of recent work on action detection, beyond

what was described in Chapter 2, and draw connections between TCNs and models

in other research areas.

Action Detection: Many fine-grained detection papers use sliding window-based

detection methods on spatial or spatiotemporal features. Rohrbach et al. [49] used

Dense Trajectories [9] and human pose features on the MPII Cooking dataset. At
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each frame they evaluated a sliding SVM for many candidate segment lengths and

performed non-maximal suppression to find a small set of action predictions. Ni

et al. [150] used an object-centric feature representation, which iteratively parses

object locations and spatial configurations, and applied it to the MPII Cooking and

ICPR 2012 Kitchen datasets. Their approach used Dense Trajectory features as

input into a sliding-window detection method with segment intervals of 30, 60, and

90 frames. Singh et al. [24] improved upon this by feeding per-frame CNN features

into an LSTM model and applying a method analogous to non-maximal suppression

to the LSTM output. We use Singh’s proposed dataset, MERL Shopping, and show

our approach outperforms their LSTM-based detection model. Recently, Richard et

al. [151] introduced a segmental approach that incorporates a language model, which

captures pairwise transitions between segments, and a duration model, which ensures

that segments are of an appropriate length. In the experiments we show that our

model is capable of capturing both of these components.

Action Segmentation: Segmentation papers tend to use temporal models that cap-

ture high-level patterns, for example RNNs or Conditional Random Fields (CRFs).

The line of work by Fathi et al. [3, 50, 23] used a segmental model that captured

object states at the start and end of each action (e.g., the appearance of bread before

and after spreading jam). They applied their work to the Georgia Tech Egocentric

Activities (GTEA) dataset, which we use in our experiments. Singh et al. [152] used

an ensemble of CNNs to extract egocentric-specific features on the GTEA dataset but
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did not use a high-level temporal model. Recall in Chapter 4 we introduced a spa-

tiotemporal CNN with a constrained segmental model which we applied to 50 Salads.

This model reduced the number of action over-segmentation errors by constraining

the maximum number of candidate segments. We show our TCNs produce even fewer

over-segmentation errors.

Other related models: There are parallels between TCNs and recent work on

semantic segmentation, which uses Fully Convolutional CNNs to compute a per-pixel

object labeling of a given image. The Encoder-Decoder TCN is most similar to

SegNet [147] whereas the Dilated TCN is most similar to the Multi-Scale Context

model [148]. TCNs are also related to Time-Delay Neural Networks (TDNNs), which

were introduced by Waibel et al. [149] in the early 1990s. TDNNs apply a hierarchy

of temporal convolutions across the input but do not use pooling, skip connections,

newer activations (e.g., Rectified Linear Units), or other features of our TCNs.

5.3 Temporal Convolutional Networks

In this section we define two TCNs, each of which have the following properties: (1)

computations are performed layer-wise, meaning every time-step is updated simulta-

neously, instead of updating sequentially per-frame, (2) convolutions are computed

across time, and (3) predictions at each frame are a function of a fixed-length period of

time, which is referred to as the receptive field. Our ED-TCN uses an encoder-decoder
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architecture with temporal convolutions and the Dilated TCN, which is adapted from

the WaveNet model, uses a deep series of dilated convolutions.

The input to a TCN will be a set of video features, such as those output from a

spatial or spatiotemporal CNN, for each frame of a given video. Let Xt ∈ RF0 be the

input feature vector of length F0 for time step t for 1 ≤ t ≤ T . Note that the number

of time steps T may vary for each video sequence. The action label for each frame

is given by vector Yt ∈ {0, 1}C , where C is the number of classes, such that the true

class is 1 and all others are 0.

5.3.1 Encoder-Decoder TCN

Our encoder-decoder framework is depicted in Figure 5.1. The encoder consists of L

layers denotes by E(l) ∈ RFl×Tl where Fl is the number of convolutional filters in a

the l-th layer and Tl is the number of corresponding time steps. Each layer consists

of temporal convolutions, a non-linear activation function, and max pooling across

time.

We define the collection of filters in each layer as W = {W (i)}Fl
i=1 forW (i) ∈ Rd×Fl−1

with a corresponding bias vector b ∈ RFl . Given the signal from the previous layer,

E(l−1), we compute activations E(l) with

E(l) = max pooling(f(W ∗ E(l−1) + b)), (5.1)
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Figure 5.1: Our Encoder-Decoder Temporal Convolutional Network (ED-TCN) hi-
erarchically models actions using temporal convolutions, pooling, and upsampling.
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where f(·) is the activation function and ∗ is the convolution operator as defined in

Equation 3.16.1

We compare activation functions in Section 5.4.4 and find normalized Rectified

Linear Units perform best on the evaluated datasets. After each activation function,

we max pool with width 2 across time such that Tl = 1
2
Tl−1. Pooling enables us to

efficiently compute activations over long temporal windows.

Our decoder is similar to the encoder, except that upsampling is used instead

of pooling and the order of the operations is now upsample, convolve, and apply

the activation function. Upsampling is performed by simply repeating each entry

twice. The convolutional filters in the decoder distribute the activations from the

condensed layers in the middle to the action predictions at the top. Experimentally,

these convolutions provide a large improvement in performance and appear to capture

pairwise transitions between actions. Each decoder layer is denoted by D(l) ∈ RFl×Tl

for l ∈ {L, . . . , 1}. Note that these are indexed in reverse order compared to the

encoder, so the filter count in the first encoder layer is the same as in the last decoder

layer.

Vector Ŷt ∈ [0, 1]C corresponds to the estimated probability of frame t being one

of the C action classes. This is defined using weight matrix U ∈ RC×F1 and bias

1Note that W ∗E(l−1) is of size Fl×T and b is of length Fl. The addition operator here broadcasts
each element of b across each row of the convolution output. Mathematically this is equivalent to
W ∗ E(l−1) + b1Tl

where 1⊤
Tl

is a vector of length Fl and ·⊤ is the transpose operator.
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c ∈ RC with a softmax function, such that

Ŷt = Softmax(UD
(1)
t + c). (5.2)

Furthermore, let ŷt = arg maxc Ŷt,c be the index corresponding to the most probable

class.

We explored other mechanisms, such as skip connections between layers, different

patterns of convolutions, and other normalization schemes, however, the proposed

model outperformed these alternatives and is arguably simpler. Implementation de-

tails are described in Section 5.3.3.

Receptive Field: The prediction at each frame is a function of a fixed-length period

of time, which is given by the r(d, L) = d(2L − 1) + 1 for L layers and duration d.

5.3.2 Dilated TCN

We adapt the WaveNet [145] model, which was designed for speech synthesis, to the

task of action segmentation. In their work, the predicted output, ŷt, denoted which

audio sample should come next given the audio from frames 1 to t. In our case ŷt is

the current action given the video features up to t.

As shown in Figure 5.2, we define a series of blocks, each of which contains a

sequence of L convolutional layers. The activations in the l-th layer and j-th block

are given by S(j,l) ∈ RFw×T . Note that each layer has the same number of filters Fw.
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Figure 5.2: The Dilated TCN model uses a deep stack of dilated convolutions to
capture long-range temporal patterns.
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This enables us to combine activations from different layers later. Each layer consists

a set of dilated convolutions with rate parameter s, a non-linear activation f(·), and

a residual connection than combines the layer’s input and the convolution signal. A

dilated convolution is defined using convolution operator ∗s such that

W (i) ∗s E(l−1) =
d∑

t′=1

Fw∑
j=1

W
(i)
t′,jE

(l−1)
j,t−s∗t′+1. (5.3)

Residuals connections were popularized by He et al. [136] and are defined as follows.

For arbitrary input x and activation function f(·), the output of residual connection

is simply x + f(x). For image classification, this proves important for training deep

networks with hundreds of layers [136], potentially because of its effect on the gradi-

ents computed during learning. This may also be useful in WaveNet due to the high

sampling rate of audio data. In our preliminary experiments on video data, residual

connections did not have a large impact on performance; however, we do use them to

stay consistent with WaveNet.

The dilated convolutions in WaveNet are only applied over two time steps, t

and t − s, so we simplify the dilated convolution equations below. The filters are

parameterized by W = {W (1),W (2)} with W (i) ∈ RFw×Fw and bias vector b ∈ RFw .

As depicted in Figure 5.2, the input into each block S(j,1) is the output from the

165



CHAPTER 5. TEMPORAL CONVOLUTIONAL NETWORKS

previous block S(j−1,L), except for the first block which is defined as the input data:

S(j,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S(j−1,L) if j > 1

X otherwise

. (5.4)

Let Ŝ
(j,l)
t be the result of the dilated convolution at time t and S

(j,l)
t be the result

after adding the residual connection such that

Ŝ
(j,l)
t = f(W (1)S

(j,l−1)
t−sl

+W (2)S
(j,l−1)
t + b) (5.5)

S
(j,l)
t = S

(j,l−1)
t + V Ŝ

(j,l)
t + e. (5.6)

Let V ∈ RFw×Fw and e ∈ RFw be a set of weights and biases for the residual. Note

that parameters {W, b, V, e} are separate for each layer; we do not indicate this in

Equation 5.5 for notational clarity. The input to the network is either sensor or video

data.

The dilation rate increases for consecutive layers within a block such that sl =

2l. This enables us to increase the receptive field by a substantial amount without

drastically increasing the number of parameters.

The output of each block is summed using a set of skip connections with Z(0) ∈
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RFw×T such that

Z
(0)
t = ReLU(

B∑
j=1

S
(j,L)
t ). (5.7)

There is a set of latent states Z
(1)
t = ReLU(VrZ

(0)
t +er) for weight matrix Vr ∈ RFw×Fw

and bias er. The predictions for each time t are given by

Ŷt = Softmax(UZ
(1)
t + c) (5.8)

for weight matrix U ∈ RC×Fw and bias c ∈ RC .

Receptive Field: The filters in each Dilated TCN layer are smaller than in ED-

TCN, so in order to get an equal-sized receptive field it needs more layers or blocks.

The expression for its receptive field is r(B,L) = B ∗ 2L for number of blocks B and

number of layers per block L.

5.3.3 Implementation Details

Parameters of both TCNs are learned using the categorical cross entropy loss with

Stochastic Gradient Descent and ADAM [134] step updates. For ED-TCN, each of

the L layers has Fl = 96+32∗ l filters. For the Dilated TCN we find that performance

does not depend heavily on the number of filters for each convolutional layer, so we

set Fw = 128. We perform ablative analysis with various number of layers and filter

durations in the experiments. All models were implemented using Keras [135] and
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TensorFlow [153].

We use dropout on full convolutional filters as proposed by Tompson et al. [154].

The way traditional dropout [155] works is as follows. For every training iteration,

set a random percentage of the weights in a layer to zero. This is commonly just used

in the fully connected layers of a CNN. When the traditional method is applied to

convolutional weights, some of the weights for a given filter are set to zero but others

retain their original value. This results in noisy-looking filters because only some of

the weights are updated in each iteration. In the approach by Tompson et al., instead

of dropping out some of the weights in a filter, either all of the weights are set to zero

or none of them are. This results in some percentage of full filters being zero for a

given training iteration. We use this approach on our temporal convolutional filters

and find it improves performance and produces smoother looking weights.

5.3.4 Causal versus Acausal

We perform causal and acausal experiments. Causal means that the prediction at

time t is only a function of data from times 1 to t, which is important for applications

in robotics. Acausal means that the predictions may be a function of data at any

time step in the sequence. For the causal case in ED-TCN, for at each time step t

and filter length d, we convolve from t− d to t. In the acausal case we convolve from

t− d
2

to t+ d
2
.

For the acausal Dilated TCN, we modify Eqn 5.5 such that each layer now operates
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over one previous step, the current step, and one future step:

Ŝ
(j,l)
t = f(W (1)S

(j,l−1)
t−sl

+W (2)S
(j,l−1)
t +W (3)S

(j,l−1)
t+sl

+ b) (5.9)

where now W = {W (1),W (2),W (3)}.

5.4 Evaluation

First we define our metrics. Then we perform synthetic experiments that highlight

the ability of our TCNs to capture high-level temporal patterns. Finally we per-

form quantitative experiments on three challenging datasets and ablative analysis to

measure the impact of hyper-parameters such as filter duration.

5.4.1 Metrics

Table 5.1 includes a list of recent fine-grained segmentation and detection datasets

used by the computer vision community. Many of the datasets are evaluated on using

different metrics in different papers or using different action granularities and label

sets. For example, there have been at least three label sets on the Georgia Tech

Egocentric Activities dataset consisting of 11, 62, or 72 action classes per set. Four

research groups have used 50 Salads and each either added or completely replaced

the original metrics.

In this chapter we evaluate using metrics from the segmentation and detection
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Dataset Problem Metrics w/ papers
CMU Kitchen Seg Fr Acc [97, 41], Macro Acc [97]
ICPR Kitchen Seg F-score [53, 150] Fr+Seg Acc [92]

50 Salads Seg
Fr Acc [112, 1], Fr P/R [12, 1], Seg
Edit [112, 1], IoU mAP [151], Macro
Acc [97]

GTEA Seg Fr Acc [3, 23, 50, 5, 92] Seg Acc [92]
MPII Det Midpoint mAP+PR [49, 151, 53, 150, 97]
ADL Seg Acc[92, 97]
MERL Shopping Det Midpoint mAP[156]

Table 5.1: Fine-grained action segmentation and detection datasets. Metrics ab-
breviations: Fr=Framewise, Acc=Accuracy, Seg=Segmental, P/R=Precision/Recall,
mAP=Mean Average Precision.

communities and introduce a segmental F1 score, which can be applied in a meaningful

way to either task. The appendix in Section 5.6 includes more detailed descriptions

and equations for these metrics.

Segmentation metrics: Action segmentation papers tend use to frame-wise metrics,

such as accuracy, precision, and recall [12, 157]. One drawback of many frame-

wise approaches is that there may be large qualitative differences between several

models that all achieve similar accuracy. As we described in Chapter 3, a model may

achieve high accuracy but produce numerous over-segmentation errors. Nonetheless,

for completeness we evaluate all methods using frame-wise accuracy. We visualize

this issue in our results.

Detection metrics: Action detection papers tend to use segment-wise metrics such

as mean Average Precision with midpoint hit criterion (mAP@mid) [49, 24] or mAP

with a intersection over union (IoU) overlap criterion (mAP@k) [151]. mAP@k is
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computed my comparing the overlap score for each segment with respect to the ground

truth action of the same class. If an IoU score is above a threshold of k percent it

is considered a true positive, otherwise it is a false positive. Average precision is

computed for each class and the results are averaged. mAP@mid is similar except

the criterion for a true positive is whether or not the midpoint (mean time) is within

the start and stop time of the corresponding correct action.

mAP is a useful metric for information retrieval tasks like video search, however for

many fine-grained action detection applications, such as robotics or video surveillance,

we find that results are not indicative of real-world performance. The key issue is

that mAP is very sensitive to a confidence score assigned to each segment prediction.

These confidences are often simply the mean or maximum class score within the

frames corresponding to a predicted segment. By computing these confidences in

subtly different ways you obtain wildly different results. On MERL Shopping, the

mAP@mid scores for Singh et al. [24] jump from 50.9 using the mean prediction score

over an interval to 69.8 using the maximum score over that same interval.

F1@k: We propose a segmental F1 score which is applicable to both segmenta-

tion and detection tasks and has the following properties: (1) it penalizes over-

segmentation errors, (2) it does not penalize for minor temporal shifts between the

predictions and ground truth, which may have been caused by annotator variability,

and (3) scores are dependent on the number actions and not on the duration of each

action instance. This metric is similar to mAP with IoU thresholds except that it does
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not require a confidence for each prediction. Qualitatively, we find these numbers are

better at indicating the caliber of a given segmentation.

We compute whether or not each predicted action segment is a true or false positive

by comparing its IoU with respect to the corresponding ground truth using threshold

k. As with mAP detection scores, if there is more than one correct detection within

the span of a single true action then only one is marked as a true positive and all

others are false positives. We compute precision and recall for true positives, false

positives, and false negatives summed over all classes and compute F1 = 2 prec∗recall
prec+recall

.

We attempted to obtain action predictions from the original authors on all datasets

to compare across multiple metrics. We received them for 50 Salads and MERL

Shopping.

5.4.2 Synthetic Experiments

We claim TCNs are capable of capturing complex temporal patterns, such as action

compositions, action durations, and long-range temporal dependencies. We show

these abilities with two synthetic experiments. For each, we generate toy features X

and corresponding labels Y for 50 training sequences and 10 test sequences of length

T = 150. The duration of each action of a given class is fixed and action segments

are sampled randomly. An example for the composition experiment is shown in

Figure 5.3. Both TCNs are acausal and have a receptive field of length 16.

Action Compositions: By definition, an activity is composed of a sequence of
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Figure 5.3: Synthetic Experiment #1: (top) True action labels for a given sequence
(bottom) The 3 dimensional features for that sequence. White is −1 and gray is +1.
Subactions A1, A2, and A3 (dark blue, light blue and green) all have the same feature
values, which differ from B (orange) and C (red).

actions. Typically there is a dependency between consecutive actions (e.g., action B

likely comes after A). CRFs capture this using a pairwise transition model over class

labels and RNNs capture it using LSTM across latent states. We show that TCNs

can capture action compositions, despite not explicitly conditioning the activations

at time t on previous time steps within that layer.

In this experiment, we generated sequences using a Markov model with three high-

level actions A, B, and C with subactions A1, A2, and A3, as shown in Figure 5.3. A

always consists of subactions A1 (dark blue), A2 (light blue), then A3 (green), after

which it is transitions to B or C. For simplicity, Xt ∈ R3 corresponds to the high-level

action Yt such that the true class is +1 and others are −1.

The feature vectors corresponding to subactions A1 − A3 are all the same, thus

a simple frame-based classifier would not be able to differentiate them. The TCNs,

given their long receptive fields, segment the actions perfectly. This suggests that our

TCNs are capable of capturing action compositions. Recall each action class had a
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Shift s=0 s=5 s=10 s=15 s=20
ED-TCN 100 97.9 89.5 74.1 57.1
Dilated TCN 100 92.7 87.0 69.6 61.5
Bi-LSTM 100 72.3 60.2 54.7 38.5

Table 5.2: Synthetic experiment #2: F1@10 when shifting the input features in
time with respect to the true labels. Column shows performance when shifting the
data s frames from the corresponding labels. Each TCN receptive field is 16 frames.

different segment duration, and we correctly labeled all frames, which suggests TCNs

can capture duration properties for each class.

Long-range temporal dependencies: For many actions it is important to consider

information from seconds or even minutes in the past. For example, in the cooking

scenario, when a user cuts a tomato, they tend to occlude the tomato with their hands,

which makes it difficult to identify which object is being cut. It would be advantageous

to recognize that the tomato is on the cutting board before the user starts the cutting

action. In this experiment, we show TCNs are capable of learning these long-range

temporal patterns by adding a phase delay to the features. Specifically, for both

training and test features we define X̂ as X̂t = Xt−s for all t. Thus, there is a delay

of s frames between the labels and the corresponding features.

Results using F1@10 are shown in 5.2. For comparison we show the TCNs as well

as Bi-LSTM. As expected, with no delay (s = 0) all models achieve perfect prediction.

For short delays (s = 5), TCNs correctly detect all actions except the first and last

of a sequence. As the delay increases, ED-TCN and Dilated TCN perform very well

up to about half the length of the receptive field. The results for Bi-LSTM degrade
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at a much faster rate.

5.4.3 Datasets

Here we recap the MERL shopping and GTEA datasets, as introduced in Chapter 2.

50 Salads and JIGSAWS are used as described in Chapters 3 and 4. For the video

results in 50 Salads and JIGSAWS we use the spatial CNN features from Chapter 4

as input into our TCNs.

MERL Shopping [24]: is an action detection dataset consisting of 106 surveillance-

style videos in which users interact with items on store shelves. The camera view-

point is fixed and only one user is present in each video. There are five actions plus

a background class: reach to shelf, retract hand from shelf, hand in shelf,

inspect product, inspect shelf. Actions are typically a few seconds long.

We use the features from Singh et al. [24] as input. Singh’s model consists of four

VGG-style spatial CNNs: one for RGB, one for optical flow, and ones for cropped

versions of RGB and optical flow. We stack the four feature-types for each frame and

use Principal Components Analysis with 50 components to reduce the dimensionality.

The train, validation, and test splits are the same as described in [24]. Data is sampled

at 2.5 frames/second.

Georgia Tech Egocentric Activities (GTEA) [3]: contains 28 videos of 7 kitchen

activities such as making a sandwich and making coffee. The four subjects performed

each activity once. The camera is mounted on the user’s head and is pointing towards
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their hands. On average there are about 19 (non-background) actions per video and

videos are around a minute long. We use the 11 action classes defined in [23] and

evaluate using leave one user out. Cross-validation is performed over users 1-3 as

done by [152]. We use a sampling rate of 3 frames per second.

We were unable to obtain state-of-the-art features from [152], so we trained spatial

CNNs from scratch using the spatial CNN described in Chapter 4. Results using

this CNN are similar, but slightly lower, than EgoNet [152], which we also compare

against. We use these CNN features as input in all of the temporal models.

5.4.4 Experimental Results

To make the baselines more competitive, we apply Bidirectional LSTM (Bi-LSTM) [146]

to 50 Salads and GTEA. We use 64 latent states per LSTM direction with the same

loss and learning methods as previously described. The input to this model is the

same as for the TCNs. Note that MERL Shopping already has this baseline.

50 Salads: Results on both action granularities are included in Table 5.3. All meth-

ods are evaluated in acausal mode. ED-TCN outperforms all other models on both

granularities and on all metrics. We also compare against Richard et al. [151] who

evaluated on the mid-level and reported using IoU mAP detection metrics. Their

approach achieved 37.9 mAP@10 and 22.9 mAP@50. The ED-TCN achieves 64.9

mAP@10 and 42.3 mAP@50 and Dilated TCN achieves 53.3 mAP@10 and 29.2

mAP@50.
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50 Salads (eval) F1@{10, 25, 50} Edit Acc
Spatial CNN [112] 35.0, 30.5, 22.7 25.5 68.0
Dilated TCN 55.8, 52.3, 44.3 46.9 71.1
ST-CNN [112] 61.7, 57.3, 47.2 52.8 71.3
Bi-LSTM 72.2, 68.4, 57.8 67.7 70.9
ED-TCN 76.5, 73.8, 64.5 72.2 73.4
50 Salads (mid) F1@{10, 25, 50} Edit Acc
Spatial CNN [112] 32.3, 27.1, 18.9 24.8 54.9
IDT+LM [151] 44.4, 38.9, 27.8 45.8 48.7
Dilated TCN 52.2, 47.6, 37.4 43.1 59.3
ST-CNN [112] 55.9, 49.6, 37.1 45.9 59.4
Bi-LSTM 62.6, 58.3, 47.0 55.6 55.7
ED-TCN 68.0, 63.9, 52.6 59.8 64.7

Table 5.3: Video-based action segmentation results 50 Salads. F1@k is our seg-
mental F1 score, Edit is the Segmental edit score from [1], and Acc is frame-wise
accuracy.

MERL (acausal) F1@{10, 25, 50} mAP Acc
MSN Det [24] 46.4, 42.6, 25.6 81.9 64.6
MSN Seg [24] 80.0, 78.3, 65.4 69.8 76.3
Dilated TCN 79.9, 78.0, 67.5 75.6 76.4
ED-TCN 86.7, 85.1, 72.9 74.4 79.0
MERL (causal) F1@{10, 25, 50} mAP Acc
MSN Det [24] - 77.6 -
Dilated TCN 72.7, 70.6, 56.5 72.2 73.0
ED-TCN 82.1, 79.8, 64.0 64.2 74.1

Table 5.4: MERL Shopping results. Action segmentation results on the MERL
Shopping dataset. Causal only uses features from previous time steps and acausal
uses previous and future time steps. mAP refers to mean Average Precision with
midpoint hit criterion.

GTEA F1@{10,25,50} Acc
EgoNet+TDD [152] - 64.4
Spatial CNN [112] 41.8, 36.0, 25.1 54.1
ST-CNN [112] 58.7, 54.4, 41.9 60.6
Dilated TCN 58.8, 52.2, 42.2 58.3
Bi-LSTM 66.5, 59.0, 43.6 55.5
ED-TCN 72.2, 69.3, 56.0 64.0

Table 5.5: Action segmentation results on the Georgia Tech Egocentric Activities
dataset. F1@k is our segmental F1 score and Acc is frame-wise accuracy.
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JIGSAWS
Sensor-based Edit Acc
LSTM [16] 75.3 80.5
Dilated TCN 75.6 79.2
LC-SC-CRF [1] 76.8 83.4
Bi-LSTM[16] 81.1 83.3
SD-SDL[126] 83.3 78.6
ED-TCN 85.2 82.5
Vision-based Edit Acc
MsM-CRF [33] - 71.7
IDT [112] 8.5 53.9
VGG [112] 24.3 45.9
Spatial CNN 37.7 74.0
Dilated TCN 66.7 77.7
LC-SC-CRF 72.7 72.6
ST-CNN 74.7 81.0
ED-TCN 86.0 81.6

Table 5.6: Video and sensor results on JIGSAWS. All video models except MsM-
CRF, IDT, and VGG use the same spatial CNN features as input.

Notice that ED-TCN, Dilated TCN, and ST-CNN all achieve similar frame-wise

accuracy but very different F1@k and edit scores. ED-TCN tends to produce many

fewer over-segmentations than competing methods. Figure 5.6 shows mid-level pre-

dictions for these models. Accuracy and F1 for each prediction is included for com-

parison.

Many errors on this dataset are due to the extreme similarity between actions

and subtle differences in object appearance. For example, our models confuse actions

using the vinegar and olive oil bottles, which have a similar appearance. Similarly,

we confuse some cutting actions (e.g., cut cucumber versus cut tomato) and placing

actions (e.g., place cheese versus place lettuce).
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MERL Shopping: We compare against use two sets of predictions from Singh et

al. [24], as shown in Table 5.4. The first, as reported in their paper, are a sparse set

of action detections which are referred to as MSN Det. The second, obtained from

the authors, are a set of dense (per-frame) action segmentations. The detections use

activations from the dense segmentations with a non-maximal suppression detection

algorithm to output a sparse set of segments. Their causal version uses LSTM on the

dense activations and their acausal version uses Bidirectional LSTM.

While Singh’s detections achieve very high midpoint mAP, the same predictions

perform very poorly on the other metrics. As visualized in Figure 5.6 (right), the

actions are very short and sparse. This is advantageous when optimizing for midpoint

mAP, because performance only depends on the midpoint of a given action, however,

it it not effective if you require the start and stop time of an activity. Interesting,

this method does worst in F1 even for low overlaps.

As expected the acausal TCNs perform much better than the causal variants. This

verifies that using future information is important for achieving best performance. In

the causal and acausal results the Dilated TCN outperforms ED-TCN in midpoint

mAP, however, the F1 scores are better for ED-TCN. This suggests the confidences

for the Dilated TCN are more reliable than ED-TCN.

Georgia Tech Egocentric Activities: Performance of the ED-TCN is on par with

the ensemble approach of Singh et al. [152], which combines EgoNet features with

TDD [158]. Recall that Singh’s approach does not incorporate a temporal model,
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so we expect that combining their features with our ED-TCN would improve perfor-

mance. Unlike EgoNet and TDD, our approach uses simpler spatial CNN features

which can be computed in real-time.

JIGSAWS: Video-based performance of ED-TCN is comparable in accuracy and

slightly better than the sensor-based results. This is a significant jump from previous

models, where sensor-based results far outperformed video results. Most surgical

training tasks are not performed using robots or with complex sensing so this result

is of important practical value.

Within the sensor-based results, the ED-TCN achieves similar accuracy compared

to the LC-SC-CRF and Bi-LSTM models and outperforms all others in edit score.

Note that three models – ED-TCN, LC-SC-CRF, and Bi-LSTM – each achieve prac-

tically the same accuracy, but impose very different assumptions on the data. This

implies that 83% may be an upper limit on performance.

Figure 5.4 shows example predictions using ED-TCN on the video from JIGSAWS.

These predictions were randomly sampled from the test sets to prevent cherry-picking

good results. Note that the gold-colored actions in the 4th and 5th sequences from

the top are rare and only appear in the trials from two users.

5.4.4.1 Ablative Experiments

Ablative experiments were performed on 50 Salads (mid-level). Note that these were

done with different hyper-parameters – as defined below – and thus may not match
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Figure 5.4: Timelines from ED-TCN on JIGSAWS (video).
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Figure 5.5: Example images from each dataset. (left) 50 Salads (center) MERL
Shopping (right) GTEA.

Activation Sigm. ReLU Tanh GPC NReLU
ED-TCN 37.3 40.4 48.1 52.7 58.4
Dilated TCN 42.5 43.1 41.0 40.5 40.7

Table 5.7: Comparison of different activation functions used in each TCN. Results
are computed on 50 Salads (mid-level) with F1@25.

previous results.

Activation functions: We assess performance using the activation functions shown

in Table 5.7. The Gated PixelCNN (GPC) activation [159], f(x) = tanh(x) ⊙

sigmoid(x), was used for WaveNet and also achieves high performance on our tasks.

We define the Normalized ReLU

f(x) =
ReLU(x)

max(ReLU(x)) + ϵ
, (5.10)

for vector x and ϵ = 1e-5 where the max is computed per-frame. Normalized ReLU

outperforms all others with ED-TCN, whereas for Dilated TCN all functions are

similar.

Receptive fields: We compare performance with varying receptive field hyperpa-
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50 Salads (mid-level)

MERL Shopping

Figure 5.6: Action predictions for one sequence using the mid-level action set of
50 Salads (top) and on MERL Shopping (bottom). These timelines are “typical.”
Performance is near the average performance across each dataset. In each timeline
“Acc” refers to the per-frame accuracy and F@25 refers to the F@k metric with an
overlap of 25%.
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Figure 5.7: Receptive field experiments (ED-TCN): varying layer count L and filter
durations d (right) Dilated TCN: varying layer count L and number of blocks B.
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Figure 5.8: Receptive field experiments (Dilated TCN): varying layer count L and
number of blocks B.
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rameters. Line in Figure 5.7 show F1@25 for L from 1 to 5 and filter sizes d from 1 to

40 on ED-TCN. Lines in Figure 5.8 correspond to block count B with layer count L

from 1 to 6 for a Dilated TCN. Note, our GPU ran out of memory on ED-TCN after

(L = 4,d = 25) and Dilated TCN after (B = 4,L = 5). The ED-TCN performs best

with a receptive field of 44 frames (L = 2,d = 15) which corresponds to 52 seconds.

The Dilated TCN performs best at 128 frames (B = 4,L = 5) and achieves similar

performance at 96 frames (B = 3,L = 5).

Training time: It takes much less time to train a TCN than a Bi-LSTM. While

the exact timings vary with the number of TCN layers and filter lengths, for one

split of 50 Salads – using a Nvidia Titan X for 200 epochs – it takes about a minute

to train the ED-TCN whereas and 30 minutes to train the Bi-LSTM. This speedup

comes from the fact that activations within each TCN layer are all independent, and

thus they can be performed in batch on a GPU. Activations in intermediate RNN

layers depend on previous activations within that layer, so operations must be applied

sequentially.

5.5 Conclusion

We introduced Temporal Convolutional Networks, which use a hierarchy of convo-

lutions to capture long-range temporal patterns. We showed on synthetic data that

TCNs are capable of capturing complex patterns such as compositions, action du-
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rations, and are robust to time-delays. Our models outperformed strong baselines,

including Bidirectional LSTM, and achieved state of the art performance on challeng-

ing datasets. We believe TCNs are a formidable alternative to RNNs and are worth

further exploration.

Overall, in our experiments the Encoder-Decoder TCN outperformed all other

models, including state-of-the-art approaches for most datasets and our adaptation

of the recent WaveNet model. The most important difference between these models

is that ED-TCN uses fewer layers but has longer convolutional filters whereas the

Dilated TCN has more layers but with shorter filters. The long filters in ED-TCN

have a strong positive affect on F1 performance, in particular because they prevent

over-segmentation issues. The Dilated TCN performs well on metrics like accuracy,

but is less robust to over-segmentation.

5.6 Appendix: Metrics

For all metrics let yt be the predicted label at time t and y∗t be the corresponding

true label.

Frame-wise Metrics: As the name implies, frame-wise metrics are evaluated inde-

pendently for each frame and do not explicitly account for a segment’s start or stop

time. The two common frame-wise accuracy metrics are micro and macro. Micro
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accuracy is simply the percentage of correctly predicted frames in a sequence.

Amicro(y, y
∗) =

1

N

N∑
i=1

δ(yi, y
∗
i ) (5.11)

where δ is 1 if yi and y∗i are the same label and 0 otherwise.

Macro accuracy is the average accuracy per-class. This is computed by first

computing the percentage of correct frames for each given class, and then computing

the average of those accuracies:

Amacro(y, y
∗) =

1

C

C∑
c=1

1

N

N∑
i=1

δ(yi, y
∗
i )δ(yi, c) (5.12)

Frame-wise precision and recall are typically evaluated as macro metrics. For

convenience we define true positives (TP ), false positives (FP ), true negatives (TN)

and false negatives (FN). Precision refers to the percentage of correct predictions for

class c compared to the total number of times a c was predicted:

Pr =
TP

TP + FP
(5.13)

Recall is the percentage of correct predictions for class c compared to the number of

correct true predictions or false negatives:

Re =
TP

TP + FN
(5.14)
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In other domains, like image classification, it is common to plot ROC curves, which

show the trade off between precision and recall. However, this is not common for

action segmentation.

The ICPR Kitchen dataset evaluates using an F1 Score which is the harmonic

mean of the precision and recall for each class

F1 =
2 · Pr · Pr
Pr +Re

. (5.15)

The frame-wise F1 score for each non-background class is then averaged.

Segmental Metrics: A segmental edit score measures how well the model predicts

the ordering of action segments independent of temporal shifts. As described in

Chapter 3, this segmental edit score is defined using a normalized edit distance,

se(G
′, P ′), with insertions, deletions, and replacements whereG′ and P ′ are the ground

truth and predicted segment classes. The score is normalized by taking the maximum

length of G′ and P ′.

Note that this metric is similar to Word Error Rate (WER) in natural language

processing [160]. In the common NLP definition, the metric is often normalized by

the length of the predicted sequence, and thus it is not guaranteed that the error will

be bounded by 100%.

Our modified Jaccard overlap score measures overlap between ground truth and

predicted segments and penalizes over-segmentation errors. This score is a function
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of the longest contiguous predicted segment for a given ground truth segment. Let G

be the ground truth labeling indexed by Gi for the ith segment from 1 to N and let

Pi be the predicted labeling. The score is:

so(G,P ) =
100

N

N∑
i=1

max
j

|Gi ∩ Pj|
|Gi ∪ Pj|

(5.16)

It is similar to the Jaccard Index except ours penalizes over-segmentation errors.

Classification Accuracy: This metric assumes that we know the start time and

duration of each action but not the action label. For prediction G, we compute the

most likely action within the given segment interval and compute the segment-wise

micro accuracy. This is often be treated as an upper bound on the accuracy expected

without known segmentation.

Action Detection Metrics

Both detection metrics we discuss are used in tandem with mean Average Precision

(mAP). Average Precision (AP) is defined as

AP =

∫ 1

r=0

Pr(r)dr ≈
N∑

n=1

Pr(n)(Re(n) −Re(n− 1)) (5.17)

where Pr(n) and Re(n) are the precision and recall for the n-th prediction and N is

the number of predicted segments. Precision and recall are computed as previously

mentioned where Pr(n) and Re(n) are a function of all samples from 1 to N . mAP
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is computed by averaging the AP for each non-background class.

For mAP, the order in which we rank segments is important. Thus, it is advan-

tageous to process segments that we are most confident about before segments that

we are less confident about. As such, we assume that for each segment we have a

confidence, ci ∈ R, for the i-th segment. Segments are ordered from highest to lowest

before computing the mAP.

Midpoint Hit Criterion: Midpoint Hit Criterion is the most common metric for

action detection, as made popular through the MPII Cooking dataset [49]. The basic

premise is simple: if the midpoint of a predicted segment lies between the start and

end of the true segment, then it may be considered a true positive, otherwise it is a

false positive. Furthermore, only one detection – the one with the highest confidence

– may be considered a true positive. If there are multiple predictions of class c within

a given (true) segment, then all predictions after the first are false positives. This

penalizes over-segmentation issues. Midpoint hit criterion is used in tandem with

mean average precision (mAP).

Intersection Over Union Thresholding: Intersection Over Union (IoU) thresh-

olding is similar to the midpoint hit criterion, except that for each predicted segment

you compute an overlap score instead of a “hit” or “miss”. The first segment that has

an overlap score above a specified threshold, τ ∈ [0, 1], is considered a true positive,
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and all others are considered false positives. The IoU score is:

IoU(G,P ) =
|Gi ∩ Pj|
|Gi ∪ Pj|

(5.18)

for true segment G and predicted segment P . The mean average precision is then

computed the same was as before. Typically results are shown for multiple thresholds

(e.g., τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}).
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Chapter 6

Surgical Phase Recognition: From

Instrumented ORs to Hospitals

Worldwide

Using the models previously described, we advance on recent work for video-based

surgical phase recognition from intraoperative laparoscopic video. The goal is to seg-

ment sequence of phases, such as dissection, cutting, and hemostasis, from videos

of live surgical procedures. Current methods for workflow analysis require extensive

instrumentation on the tools, human annotations, or camera rigging within an op-

erating room. We focus on video and multi-modal analysis using the methods we

developed throughout this thesis. We perform comparative analysis of our models
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on the TUM EndoVis dataset, which was collected from procedures in a single hos-

pital, the M2CAI 2016 dataset which was collected from two university hospitals,

and introduce EndoTube, our new dataset containing Cholecystectomy videos from

over a dozen hospitals around the world. We show that despite high performance in

constrained settings (e.g, EndoVis), current approaches are insufficient at capturing

the extreme amounts of variability in more diverse environments.

Note, much of this work preceded development of our TCNs. We focus on our

spatiotemporal models and include some updated TCN results at the end.

6.1 Introduction

Walk into an operating room for laparoscopic surgery and you will see a plethora

of devices that can be instrumented and used for automatic workflow recognition.

When available, these can be used to recognize surgical events, which may improve

operating room efficiency [161], reduce information overload for surgeons [162], or

retrospectively analyze surgical workflow [115]. However, most operating rooms do

not have these devices or do not have a way of recording the data. In this work we

address surgical phase recognition from laparoscopic video which is easy to collect

in most ORs. In particular, we focus on offline (acausal) solutions for large-scale

workflow analysis that can be performed across multiple institutions.

Recognizing surgical workflow from video is difficult due to large variability be-

tween patients, surgeons, and hospital environments. Patients exhibit substantial
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variation in appearance due to differences in anatomy such as varying levels of fatty

tissue. Surgeons tend to have their own style and may perform surgical phases in dif-

ferent temporal orders. Equipment, such as the endoscope and instruments, may be

unique across hospitals, and can result in varying lighting conditions, video quality,

and tool appearance. To model these elements of variability, we decompose surgical

phase segmentation into two tasks: (1) learn a low-level spatiotemporal model that

captures how the scene changes within short time intervals and (2) learn a high-level

classifier that captures phase ordering.

Low-level: Individual surgical phases may be ambiguous but are often defined by the

configurations of objects (e.g. tools, organs), their spatial relationships, and their

motions throughout a sequence. We compare multiple CNN architectures including

our spatial and spatiotemporal CNNs and AlexNet-like architectures as evaluated

by [2]. We find that the spatiotemporal CNN offers large performance gains compared

to the others. Recall that this model factorizes video into a spatial component that

captures objects in a scene and a local temporal component that captures how these

objects change over a short period of time (e.g. 60 seconds). For example, during

the clipping phase the ST-CNN may capture the applicator tool motion as it applies

a clip to the artery. One advantage, compared to the spatial-only models is that it

explicitly encodes temporal information within the CNN.

High-level: We compare performance of the spatial and spatiotemporal CNN in tan-

dem with the temporal classifiers we developed earlier to investigate the importance
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of high-level temporal information, such as sequential phases ordering. Interestingly

on small datasets such as EndoVis, the simple Dynamic Time Warping baseline

from Chapter 3 outperforms all other models, however, on larger datasets, includ-

ing M2CAI2016 and EndoTube, our classifiers perform better.

The topic of video-based surgical phase recognition from intraoperative laparo-

scopic video across many institutions has not been studied in the literature but is

important for many applications such as retrospective skills assessment [163], work-

flow analysis [115], and surgical training [164]. Recent datasets, like EndoVis [165]

and Cholec80 [2], have been collected from individual hospitals and do not capture

the amount of variability seen across institutions. Factors like tool appearance and

recording equipment may vary significantly between hospitals and cause video-based

models to fail. We introduce a new dataset, EndoTube, which consists of 25 chole-

cystectomy videos from nine countries and over a dozen hospitals. These videos were

carefully curated from procedures uploaded publicly by clinicians. In order to com-

pare with current work, we use the same labels as EndoVis as shown in Figure 6.1.

While performance on this dataset is significantly lower than EndoVis, we highlight

the challenges of surgical data captured “in the wild” where there are many more types

of variability. We also show results on the recent M2CAI 2016 challenge dataset.

Our primary contributions are: (1) exploring the use of spatial and spatiotemporal

CNNs for representing surgical phases, (2) comparing several classifiers for capturing

high level temporal information, and (3) performing analysis on EndoTube, our new
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Figure 6.1: Example images and sequence labeling from the EndoVis dataset.
Phases: (1) Place trocars (2) Prepare Calots triangle (3) Clip/cut cystic artery
and duct (4) Dissect Gallbladder (5) Retrieve Gallbladder (6) Hemostasis (7a/7b)
Drainage/closure/finish.

multi-institutional Cholecystetomy dataset.

6.2 Prior Work

Despite being a nascent area, there has been substantial recent interest in automated

surgical workflow analysis due to publicly available data, promising initial results,

and new methods from the computer vision community that may be more capable of

modeling complex surgical video.

Recent work by Twinanda et al. [2] proposed a CNN-based approach to surgical

phase recognition with a Hierarchical Hidden Markov Model. They achieved reason-

able performance on the (public) EndoVis and (private) Cholec80 datasets, however,

their best results on EndoVis required pre-training on a much larger surgical dataset.

Whereas their CNN only captures spatial information per-image, our CNN explicitly
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captures spatiotemporal information. Dergachyova et al. [166] showed high perfor-

mance on EndoVis when combining video and tool data with a Hidden Semi-Markov

Model approach, but achieved relatively low accuracy with their video-only variant

compared to [2]. Their approach used hand-crafted image features like color his-

tograms, Histogram of Oriented Gradients (HOG), and Local Binary Patterns (LBP).

In both [2] and [166], performance using tool information is relatively low compared

to video. Our bets model achieves superior performance using video, tools, and when

these modalities are combined.

Lalys et al. [167] explored video-based phase recognition for pituitary surgery using

microscope images. Their model does not use any temporal model which often results

in gratuitous over-segmentation, and thus may not be applicable to applications like

surgical summarization which require large coherent segments. Also related is the

work by Padoy et al. [168] who instrumented an operating room with ceiling-mounted

cameras and captured human motions to recognize surgical phases. They modeled the

procedure as a Workflow Hidden Markov Model and used 3D motion flow features.

Earlier work showed that using auxiliary data like tool usage can be effective for

workflow analysis [115, 169, 21], however, this requires recording and synchronizing

tool data for each surgery which, at scale, is costly and cumbersome. In addition, it

is difficult to collect this kind of data from multiple institutions. Padoy et al. [115]

recognized surgical phases using hand-labeled tool usage information where they com-

pared performance using an Annotated Hidden Markov Model and Dynamic Time
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Warping. Stauder et al. [169] used a Random Forest-based approach to recognizing

surgical phases from RFID tags attached to surgical instruments. Related work by

Franke et al. [161] worked towards high-level planning of OR logistics modeled the

time-remaining in a surgery by using generalized Surgical Process Models.

Much of the aforementioned work was applied to Cholecystectomies from individ-

ual institutions. Another key difference in our work is that we investigate how well

current CNN-based models generalize to new hospitals from around the world with

very different equipment and working conditions. While the surgical phases tend to

be in a similar order between procedures within the same hospital, we find that there

is larger variance when comparing against procedures at other hospitals. We also have

work looking at generalizing more complicated procedures, which we do not describe

here [21], but in this case all trials were all collected at the same hospital. There has

also been work on identifying surgical phases for Cataracts surgery [170].

6.3 Methods

Our model is comprised of two components: first, we learn a spatiotemporal feature

representation using a Convolutional Neural Network that encodes contextual infor-

mation like tools, organs, and fluids, and models how they change over time. Second,

we build a classifier that takes the spatiotemporal features as input and classifies

surgical phases. These models were all described earlier in this thesis. We briefly

summarize them here.
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Spatial Component

Temporal Component

Figure 6.2: The Spatiotemporal CNN is factorized into spatial and temporal com-
ponents. (top) The spatial component consists of spatial units that model the content
in each region of an image. (bottom) The temporal component uses the spatial acti-
vations, ht, as input and convolves a set of learned temporal filters. The output is a
set of activations, st, that encode spatiotemporal information.

6.3.1 Spatiotemporal Video Representation

Let It be an RGB image for time t from 1 to T , Zt ∈ {0, 1}z be vector of z auxiliary

signals, and yt ∈ {1, . . . , C} be a phase label. The auxiliary signals can be tool usage

information or phase labels as we describe later and the C phase labels are listed in

Section 6.4. Given input image It, we compute spatiotemporal activations st ∈ Rp

which is a vector of p latent states.

Spatial Component: The spatial component takes image It and outputs an inter-

mediate spatial representation ht ∈ Rf . This model is composed of a set of spatial
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Figure 6.3: The full models with the Spatiotemporal CNNs and classifiers. (left)
Linear Model (middle) Segmental Model (right) Time-invariant Model.

units and fully connected layers as shown in Figure 6.2 (top). The spatial units use

convolutional filters to hierarchically model the content in each region of an image.

Each of our three spatial units consists of a 3 × 3 convolutional layer, ReLU activa-

tion, and 3 × 3 max pooling. Each colored block in our depiction of a spatial unit

corresponds to an activation vector in that region of the image.

The fully connected layer (FC) consists of latent states, each of which captures

correlations between each region and the corresponding activations in that region.

For example, a state may capture the tool being in the top right of the image and the

gall bladder being in the middle. Let there be f states in each fully connected layer

ht ∈ Rf which correspond to different scene configurations.

The spatial component is trained using auxiliary data Zt, weight vector W (1) and

bias b(1) such that

Ẑt = gsp(W
(1)ht + b(1)) (6.1)

where Ẑt is the predicted auxiliary signal. Early on in this work we performed ex-
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periments using tool information or image attribute information as input Z. These

experiments were similar to what we did in Chapter 4 where we trained our model

with sensor data. Results were promising but not as good as using the true surgical

phase labels. In this chapter we will assume Zt is the surgical phase label for a given

time step. As such, gsp(·) is defined as the softmax function.

Temporal Component: Given the scene activations ht the temporal component

computes a set of temporal activations st. We learn temporal convolutional filters

that capture how the spatial information changes over time.

Each of the l filters, W
(2)
l ∈ Rd×f , is convolved along time with the input, where

d is the duration of a filter, b
(2)
l is the bias for each filter:

slt = ReLU(
t+d−1∑
t′=t

W
⊤(2)
l,t′ ht′ + b

(2)
l ) (6.2)

The temporal units are trained using phase labels Yt ∈ {0, 1}c, where the index of

the true class is 1 and all other classes are 0, using the softmax function with output

weights and biases W (3) and b(3):

Ŷt = softmax(W (3)st + b(3)) (6.3)

Predictions Ŷt correspond to the predicted classes. Note that the input to each

classifier is the spatiotemporal activations st for all time steps.

Implementation Details: Our network is trained using the cross entropy loss func-
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tion with ADAM [134]. The three spatial units have [32, 64, 96] filters in the convo-

lutional layers, the first fully connected layer has f = 128 states, duration of each

temporal filter is d = 60 seconds, and the output is C = 7 classes. Each input image

is 108 × 108 × 3.

When using multiple data sources, like phase labels and tool information, auxiliary

signals are concatenated per time step with the intermediate spatial features ht such

that we jointly learn temporal filters across all input data. These inputs may be of

different magnitudes, especially across modalities, so we normalize the features using

the standard deviation over the training set.

6.3.2 Surgical Phase Classifier

Our goal is to predict the best phase labeling ŷ = {ŷt}Tt=1 given spatiotemporal ac-

tivations s = {st}Tt=1. We compare several classifiers: a frame-wise linear model, our

segmental model as used in Chapter 4, and the Dynamic Time Warping baseline from

Chapter 3

1) Linear Model (LM): The output of our ST-CNN, Ŷt, is a set of probabilities cor-

responding to which phase is active at that time. This model simply takes the most

likely phase given the current window of data: ŷt = arg maxc Ŷ
c
t .

2) Semi-Markov Model (SMM): We jointly infer the start time, end time, and phase
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label for each of the M segments in a sequence using a constrained segmental model.

Let K be an upper bound on the number of possible segments in a sequence (e.g. 9

for EndoVis) as defined earlier.

3) Time-invariant Model (DTW): DTW captures both the local changes in spa-

tiotemporal activations within each segment as well higher-level temporal ordering

of phases. Here we use superscript (i) to indicate each trial. For test sequence s(i) we

compute the DTW distance [120] to all training sequences s(j):

DTW (s(i), s(j)) = min
c

T∑
t=1

∥s(i)t − s(j)ct ∥1 (6.4)

where c = {ct}Tt=1 are the correspondences between activations in each sequence.

Prediction ŷ(i) is computed by propagating the labels from sequence j that has the

smallest DTW distance such that ŷ
(i)
t = y

(j)
ct for all times t. This approach was inspired

by Padoy et al. [115] which achieved high performance on surgical phase recognition

from tool usage data on other datasets.

6.4 Datasets

EndoVis Dataset: The EndoVis surgical phase recognition dataset [165], from the

Technical University of Munich (TUM), consists of video, tool usage, and surgical

phase labels for seven laparoscopic cholecystectomy procedures. The procedures were
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performed by a small set of surgeons at the same hospital and have similar workflow.

Figure 6.1 shows an example of each phase. In six of seven procedures the phase

order is: Place Trocars, Prep, Clip/Cut, Dissect, Retrieval, Hemostasis, Retrieval,

Hemostasis, Drainage/finish. In one of the videos, there is only one instance each

of Retrieval and Hemostasis. This dataset also contains tool usage data that was

collected by manually labeling whether each instrument was in use at any given time.

Tools include: liver retractor, fan retractor, alligator forceps, PE forceps, irrigation

rod, suction rod, scissors, retrieval bag, plastic clips applicator, metal clips applicator.

We evaluate on EndoVis using Leave One Video Out cross validation.

M2CAI 2016 Dataset: There are 27 laparoscopic cholecystectomy procedure videos

in the training set and 15 in the test set which were each collected from two univer-

sity hospitals. We do not have access to the labels in the ground truth set, so we

show results computed by performing cross validation on the training set. We cre-

ated 5 splits, each with about 22 training videos and 5 test videos. Videos were

chosen randomly for each split, with the constraint that the same video may only

appear in one split. The labels are slightly different than on Endovis. These are

Trocar Placement,Preparation,Calot Triangle Dissection,Clipping Cutting,Gallbladder

Dissection,Gallbladder Packaging,Cleaning Coagulation, and Gallbladder Retraction.

EndoTube Dataset: We introduce a new dataset, EndoTube, to address the ability

of our models to generalize to real-world surgical environments. We curated videos

from Youtube that contain full cholecystectomy procedures and labeled them using
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the same surgical phases as EndoVis. All videos include each phase from Preparing

Calots Triangle through Gall Bladder Retrieval, but may not include insert tools or

finish. This dataset contains 25 procedures which were performed at 19 hospitals in

9 countries. Some videos are as short as 4 minutes and jump in time between each

of the major phases, while others last up to 27 minutes and show the whole surgery.

The average video length is 11.4 minutes. We sifted through dozens of videos and

selected ones in which none of the core phases are skipped and the edits did not

substantially detract from the video. Some videos are intended for surgical training

and have extraneous segments such as powerpoint slides at the beginning. We label

these portions as null and remove these frames after prediction but before computing

accuracy metrics.

Data was manually labeled using the phase definitions from EndoVis by one engi-

neer experienced in the surgical domain. The labels were verified by a second engineer

who was very familiar with the EndoVis dataset. We perform 5-fold cross-validation

such that we train on 20 instances and test on 5.

Metrics: We evaluate using accuracy and segmental boundary distance. On the

M2CAI 2016 dataset we include Jaccard overlap scores, which were used for the

competition.

Twinanda et al. [2] proposed the boundary distance metric which measures the

percentage of the temporal boundaries that are correctly predicted within a certain

interval. The motivation is that temporal phase boundaries are often ambiguous and
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thus the precise start or end time is not of critical importance. Practically, for each

segment, we compute the distance of each true starting time and the closest predicted

starting time, and determine if their difference is within a specified threshold. We

show results for distance thresholds of τ = {30, 60, 90, 120}.

6.5 Results and Discussion

In our first set of experiments, shown in Table 6.1, we compare results using various

spatial CNN models on the EndoVis dataset. We include our spatial CNN and spa-

tiotemporal CNN as well as the spatial models used by Twinwanda et al. [2]. They

(1) fine-tuned an ImageNet-pretrained AlexNet model on EndoVis, (2) fine-tuned

that pre-trained AlexNet on a large private dataset of 80 surgical videos (labeled

PhaseNet), and (3) augmented the architecture to incorporate tool label information

(labeled EndoNet). While our spatial CNN does not outperform the models of theirs

which were trained on outside datasets, the ST-CNN does. The jump in performance

of our spatial and spatiotemporal CNNs is especially noteworthy. Training a ST-CNN

using their outside dataset may improve results even further. We also performed pre-

liminary experiments fine-tuning a VGG network trained on ImageNet. Results were

about 7% worse than our spatial CNN, it took longer to compute the activations for

each image, and the VGG model required much more memory. Note that our network

contains fewer layers and many less parameters so it is much faster to train and test

compared to all of these other models.
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Model AlexNet [2] PhaseNet [2] EndoNet [2] Spatial CNN ST-CNN
Accuracy 56.9 62.6 65.9 57.6 69.0

Table 6.1: Performance of different CNN architectures on EndoVis.

EndoVis
Data source(s) LM SMM DTW [166] [2]
Video 69.0 77.8 84.6 68.1 79.7*
Tools 56.4 78.3 91.2 78.9 73.0
Video + Tools 73.3 80.4 91.0 88.9 -

EndoTube
Data source LM SMM DTW
Video 56.3 60.1 62.4

Table 6.2: Results from (top) EndoVis and (bottom) EndoTube. *Note: [2] achieves
86.0% on EndoVis when their CNN is pre-trained on a larger surgical dataset and
with tool information.

Table 6.2 shows our accuracy results on EndoVis and EndoTube datasets. Each

row was trained using either video, tool information, or both. Recall, when using

video, the auxiliary term Z in the spatial component is the set of phase labels at each

time step. For the multi-modal results we concatenated the video and tool features

before feeding them into the temporal CNN component.

We achieve state-of-the-art results when only using tool data, when combining

tool and video data, and when only using video (assuming no pre-training). Our

high tool-only results are consistent with the findings of Padoy et al. [115] on another

Cholecystectomy dataset. Twinanda et al. [2] perform better than our results when

they train on an unpublished surgical dataset, however, when training on EndoVis

our video-based results are better. We see that the Spatiotemporal CNN performs

favorably compared to a spatial CNN or using the hand-crafted features by Dergachy-
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ova et al. [166]. Twinanda et al. [2] achieve 56.9% accuracy using AlexNet, 62.6%

using a spatial CNN trained on EndoVis, and 65.9% when training on both image

and tools. For comparison, our ST-CNN, without a high level temporal model (LM),

achieves 69.01%. Furthermore, we see that the DTW-based model achieves notably

higher accuracy than the linear or semi-Markov models. DTW captures how the

spatiotemporal activations change within each phase which appears to have a large

impact on accuracy.

Performance on EndoTube (62.4%) is far lower than EndoVis, but is commensu-

rate with the large increase of variability. We analyzed the results from individual

videos and found, on average, the best sequence in each split achieves 90.7% accuracy

and worst sequence achieves 33.8%. We achieve worst performance when the video

quality is low (e.g. abnormally high contrast) and when the surgical tools look sub-

stantially different than normal. Three of the worst sequences have atypical clipping

phases. One surgeon uses thread instead of clips, another uses a unique style of clips,

and the third does not use any clips. Despite poor accuracy, we think it is impor-

tant to include these videos because they address real-world concerns with large-scale

workflow analysis.

Table 6.3 shows the percentage of EndoVis phases that are within τ seconds from

the true phase starting times. We see that most of the time the predictions are

correct within a reasonable tolerance. These videos are on average 41 minutes, so if a

prediction is correct within 120 seconds, the phase shift accounts for less than 5% of
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Figure 6.4: Example predictions from the EndoTube and EndoVis datasets. The
top of each plot depicts the sequence of true phases and the bottom depicts the
predicted labels using Dynamic Time Warping. Each color corresponds to a unique
surgical phase.

the video. When combining video and tool-use, all boundaries are correctly predicted

within 3 minutes.

Features ≤ 30 ≤ 60 ≤ 90 ≤ 120 ≤ 150 ≤ 180
Video 66.2 76.1 82.5 88.8 93.6 93.6
Tools 90.4 90.4 92.0 93.6 93.6 95.2
Video+Tools 85.2 90.4 92.0 95.2 98.4 100.0

Table 6.3: The percentage of predicted label boundaries within the specified distance
(in seconds) to the true boundaries on EndoVis using the DTW model.

Figure 6.4 shows predictions from EndoVis and EndoTube. Qualitatively, we

see that many errors in accuracy can be attributed to small temporal shifts. On

EndoTube, some predictions (e.g. rows 3 & 5) perform very well whereas others (e.g.

rows 1 & 4) perform poorly.

6.5.1 M2CAI 2016

For M2CAI 2016, we evaluated on the new competition dataset and provided more

comparative results on EndoVis. We added results using the Latent Convolutional
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M2CAI 2016 Dataset
Phases TP Prep CTD Clip GD GP CC GR Average
LM 62.7 18.7 46.2 26.9 40.6 13.5 20.4 34.3 32.9±16.4
DTW 65.6 27.3 56.0 35.2 46.1 13.5 21.9 35.8 37.7±17.4
LC-SC-CRF 70.3 21.5 60.0 34.7 59.1 16.6 39.0 44.2 43.2±19.0
ST-CNN 74.8 26.1 56.1 36.8 52.8 31.2 37.1 53.4 46.0±16.0
ED-TCN 83.0 54.7 75.3 50.6 51.6 30.1 56.7 70.9 59.1±16.7

Table 6.4: Jaccard scores for each phase in the M2CAI dataset. Phases: TP=Trocar
Placement, Prep=Preparation, CTD=Calot Triangle Dissection,Clip=Clipping Cut-
ting, GD=Gallbladder Dissection, GP=Gallbladder Packaging,CC=Cleaning Coagu-
lation, GR=Gallbladder Retraction

Skip Chain CRF (LC-SC-CRF) from Chapter 3 and our Encoder-Decoder Tempo-

ral Convolutional Network (ED-TCN). The results shown here were all performed

in offline (acausal) mode. Note there are a couple of discrepancies with the results

from before. Namely, the ST-CNN results did not use segmental inference and DTW

was normalized differently. Previously, for the DTW method, we resampled all se-

quences to be of the same canonical length – which actually achieved slightly better

performance – whereas in these experiments we do not resample.

Table 6.4 shows the Jaccard scores for each phase in the M2CAI dataset, Table 6.5

shows Jaccard scores for EndoVis using the spatial video features and using the sensor

data. Table 6.6 shows the average accuracies for M2CAI along with the standard

deviation for each.

On the M2CAI dataset the ED-TCN outperforms all other models. While both

the CRF and ST-CNN encode the relationship between the current action and the

inferred previous action, we find that the hierarchy of convolutional filters in the TCN

is better able to capture temporal information. This is consistent with our findings
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EndoVis dataset: Video-only Jaccard Scores
Model Clip DG DC Hemo PT Prep RG Average
LM 35.2 37.1 34.7 32.5 26.2 43.9 41.4 35.9 ± 05.8
DTW 59.6 63.7 88.9 66.1 82.5 77.5 79.8 74.0 ± 10.9
LC-SC-CRF 53.5 49.9 76.9 45.6 73.0 73.5 70.2 63.2 ± 13.0
ST-CNN 53.6 50.3 78.6 38.4 60.4 74.2 71.9 61.1 ± 14.6
ED-TCN 51.1 50.2 79.6 46.5 72.8 71.9 67.1 62.8 ± 13.2

EndoVis dataset: Sensor-only Jaccard Scores
Model Clip DG DC Hemo PT Prep RG Average
LM 56.2 34.6 00.0 76.4 47.7 02.4 67.4 40.7 ± 30.1
DTW 56.4 68.9 86.9 72.2 99.3 88.2 83.9 79.4 ± 14.3
LC-SC-CRF 40.1 69.1 80.3 80.7 88.9 64.4 76.9 71.5 ± 16.0
ST-CNN 68.1 42.4 79.7 83.1 78.4 33.3 70.8 65.1 ± 19.5
ED-TCN 68.8 64.8 91.9 90.4 95.5 81.2 77.3 81.4 ± 11.8

Table 6.5: Jaccard scores for each phase in the EndoVis dataset. Phases:
CC=Clipping Cutting, DG=Dissection Gallbladder, DC=Drainage And Clos-
ing, Hemo=Hemostasis, PT=Placement Trocars, Prep=Preparation,RG=Retrieving
Gallbladder

Frame-wise Accuracy Results
Model M2CAI EndoVis Video EndoVis Sensors
LM 55.8±10.1 56.0±6.0 59.4±12.4
DTW 55.3±17.9 83.1±3.9 85.4± 9.2
LC-SC-CRF 69.4±09.7 76.5±7.0 79.2± 9.4
ST-CNN 67.1±14.3 75.8±9.3 72.3±12.9
ED-TCN (acausal) 74.5±11.9 76.0±7.0 85.7±13.8

Table 6.6: Averaged frame-wise accuracy on the video-based M2CAI dataset and
using video or sensor data on EndoVis.
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in Chapter 5.

It is important to note that results vary significantly using slightly different hyper

parameters. For example, accuracy on the sensor-based DTW results vary between

mid-80s and low 90s using different sampling schemes. If we resample all time-steps so

that sequences are of the same canonical length, as done in the earlier set of results,

we achieve higher sensor results but lower video results. Even sampling every 10

frames versus every 20 frames has a noticeable, albeit smaller, impact. This makes

us hesitant to trust the usefulness of results on this dataset.

Figure 6.5 compares the ground truth phases with our predictions for two of our

cross validation splits on the M2CAI data. Notice that many of our errors come from

small temporal offsets. For example, the bottom-most example in each set looks very

good, but each gets less than 90% accuracy.

While our methods outperform the baselines, there is still significant work that

needs to be done to achieve the level of performance necessary for using this in hospital

settings. In the near-term, we plan to focus on better understanding where are errors

are coming from. For example, we would like to better understand why, on occasion,

the classifier detects phases out of order. It is unclear if this is due to an abnormality

in the video, for example an organ whose appearance varies substantially from the

norm, or if it is in a limitation of our model. Identifying these error modes will be

crucial for furthering this line of work.
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Figure 6.5: Results from two of the M2CAI cross validation splits. The top of
each plot is the sequence of ground truth phases and the bottom is our predicted
phases using TCN. The x-axis indicates time, which is normalized for visualization
purposes. The text on the left indicates the frame-wise accuracy for each split. Each
of the M2CAI phases corresponds to one color, from dark blue to dark red, in the
order Trocar Placement, Preparation, Calot Triangle Dissection, Clipping Cutting,
Gallbladder Dissection, Gallbladder Packaging, Cleaning Coagulation, and Gallbladder
Retraction.
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6.6 Conclusion

In summary, we make three important observations about surgical workflow analysis.

First, despite high performance on single-institution datasets like EndoVis, current

models are insufficient for handling the variability on multi-institution datasets like

EndoTube. This is a result of an insufficient quantity of data and limitations with

the model. Perhaps, new data augmentation techniques could improve performance

on these videos. Second, explicitly capturing local temporal information, such as

with Spatiotemporal CNN, can improve performance compared to traditional spatial

CNNs. Lastly, on small datasets like EndoVis, simple DTW-based models, which

jointly capture how our spatiotemporal activations change across time both locally

and globally, are beneficial. However, when there is more data or variation between

videos, as in the M2CAI 2016 dataset, then our TCNs achieve best results.
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Conclusions and Future Work

The overarching goal of this thesis was to work towards bridging the gap in action

segmentation performance between approaches that rely on domain-specific sensing to

solutions that operate solely using video. Through the introduction of temporal and

spatiotemporal models we were able to improve sensor- and video-based performance

across several datasets and metrics.

In Chapter 3 we introduced a strong baseline model for sensor-based performance,

the Latent Convolutional Skip Chain CRF, which improved upon the state of the art

in two important ways. First, we showed that skip-chains are a simple, efficient and ef-

fective mechanism for capturing the pairwise temporal relationships between actions.

Skip chains compensate for the disconnect between the action rate – how frequently

actions transition – and the frame rate – how frequently the data is sampled. We
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showed empirically that this model outperforms more complicated segmental models

and described why it does so. Second, we introduced the notion of a convolutional

action primitive which captures how the input sensor signal changes as a function of

the given action. The learned primitives are capable of capturing complex patterns,

as we visualized, and were relatively interpretable. We showed that these action prim-

itives can be learned jointly with the skip chain parameters using a Latent Structural

SVM.

In Chapter 4 we extended these convolutional filters to video with the introduction

of a spatiotemporal CNN, which factorizes the input into a component that captures

the spatial relationships between objects and a component that captures how these

relationships change over time. This approach outperformed common video baselines

from the large-scale action classification literature on our tasks by a wide margin. In

addition, we showed that while pre-trained CNNs work well for many other vision

applications, they are not very effective in situated tasks like ours. We introduced

an approach called sensor substitution for training spatial CNNs solely using sensor

data. This approach can be used for pre-training CNNs on large unlabeled datasets

or for regressing sensor signals directly from video.

One shortcoming of the previous models is that they all consisted of two com-

ponents: a set of low-level action primitives and a high-level classifier that captured

long-range temporal patterns. In Chapter 5 we introduced a hierarchical variation of

our convolutional model capable of capturing both low- and high-level patterns. We
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also showed that can capture complex dependencies such as action compositions and

time-delays. We were able to obtain video-based action segmentation results that

were comparable to those operating on domain-specific sensors using TCNs with our

spatial CNN features. This has important implications for tasks like surgical skill

assessment, because our models can now be used with non-robotic surgical training

setups.

Finally, in Chapter 6, we made advances to the area of surgical workflow analysis

through the application of the described models and through the creation of a dataset

consisting of surgical videos in-the-wild. We showed that despite achieving state-of-

the-art performance on constrained datasets, there are still technical hurdles towards

applying these models in the real world. While our temporal models appear to capture

many of the high-level temporal patterns well, the low-level video features do not

model the large variability in equipment and lighting conditions across hospitals.

Aside from the technical innovations, one of the most important contributions

comes from our investigation of appropriate metrics for action segmentation. Ulti-

mately we found that the metrics used most commonly in the literature may not

correlate with expected real-world performance. In Chapter 3 we described how a

model may achieve high accuracy but have many over-segmentation errors. These

errors may be detrimental for real-time applications in robotics or when trying to

compare the order of actions like in surgical skill evaluation. In this case, we found

that Segmental Edit scores, which penalize over-segmentation errors, are an effective
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way of evaluating goal-driven activities. In Chapter 6 we went one more step with

the introduction of a Segmental F1 score which is broadly applicable to both action

segmentation and detection tasks. This metric also penalizes for over-segmentation

issues but is more relevant for surveillance-style tasks, where each action is relatively

independent and thus the global action ordering is not very important. We hope that

other researchers continue to use both of these metrics.

Limitations and Future Work

Despite our advances to the area of action segmentation, there are still limitations

which should be addressed by future work.

Level of Supervision: Ultimately, the temporal models we developed required

labeled training data for every frame in each dataset. These annotations unfortunately

can be very time consuming to obtain. One of the reasons why large datasets like

ActivityNet do not have as many action segmentation labels – as opposed to action

classification labels – is because they are costly to label.

One solution to this is to look towards recent work on semi-supervised methods in

the machine learning literature. The most popular example is Connectionist Temporal

Classification (CTC) [171], which is used with RNNs. CTC is a loss function that

takes a sparse sequence of labels (e.g. an ordered list of actions), computes the

probability that each frame belongs to one of the ordered actions, and outputs a

219



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

per-class loss for that sequence. It may be much more economical to label the action

ordering than it is to label the action at each frame. This approach is especially

relevant for tasks, like surgical skill evaluation, where we are only interested in the

order in which actions occurred and not necessarily a per-frame labeling of the actions.

Fixed action vocabulary: Throughout this thesis we assumed a fixed set of action

classes – including, in some cases, a background class. While this is a reasonable

assumption for goal-driven activities, there are many use cases where this assumption

is not valid. For example, let’s say we want to take a cooking video and generate

a recipe based on the actions performed by the user. There may be actions that

we have never seen before – for example, if a person is making creme brulee, they

must use a torch to crystallize the sugar on the top of the dessert. If we have never

seen the torch action then our current approach would incorrectly label the segment

corresponding to torch as another class in our vocabulary.

In this setting, it would be advantageous to identify when a new or unseen action

is occurring and to label it as such. One way of going about this is to assign a

confidence to every segment. While deep networks do typically output a score for

every prediction, they are often unreliable. We looked at an example test output

using the ED-TCN on 50 Salads and found that on average, when the classifier chose

the wrong prediction, the confidence for those wrong predictions was 90.3%.

Single-action: Our models assume that each frame is labeled with only one action

class. This assumption is invalid in cases where there are multiple users in a video
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and they are performing different actions. If we want to detect multiple actions then

a simple way of overcoming this limitation is to replace the softmax function in our

ST-CNN or ED-TCN with a sigmoid, which then predicts the probability of every

action being on or off, as opposed to only predicting the action that is most likely.

A better approach would be to identify the different users in the scene and then

individually predict the action of each user. This, however, requires that you correctly

identify the users.

Multi-Modal Representations: Most of our models operated using either video

or sensor data. These sensing modalities tend to be complimentary; there are some

actions which are much easier to detect from sensors and some that are much easier

to detect from video. For example, the video is able to capture a user starting to pick

up an action, but the sensors (e.g., accelerometers) will not pick up any motion from

that object until the user has touched it. Thus, it may be advantageous to encode

the temporal patterns independently and then merge them. One way of combining

these using an ED-TCN is to learn one encoder for each modality, concatenate the

features, and learn a single decoder.

Interactive Evaluation: The work described in this thesis was developed entirely

using well-developed datasets. In some regards this makes it easier to develop new

algorithms, however, it often makes it more difficult to fully understand limitations of

each model. In other collaborations of mine, including work on collaborative robots

for manufacturing, as described in Chapter 1, we were required to perform tasks
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in real-time. When evaluating your software – whether a robot platform or action

segmentation algorithm – it quickly becomes apparent what the limitations are. It

is easier to test for failure modes. In a canned dataset you cannot try out new test

cases to find precisely where the algorithm is going wrong.

One solution to this is to define an action segmentation task that can be done

easily in the lab, create a small dataset using data collected on this task, train a

model, and then perform the task again using a real-time version of our software.

During this interactive evaluation it is possible to visualize the predictions and internal

representations as you complete the task. For example in a cooking task, using

visualizations similar to those shown with the ST-CNN, you can verify that certain

tools, like the peeler, are receiving high activations.
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semi-markov models on real world smart home datasets,” Journal of Ambient

Intelligence and Smart Environments, vol. 2, no. 3, pp. 311–325, 2010.

[74] S. Lee, H. X. Le, H. Q. Ngo, H. I. Kim, M. Han, Y.-K. Lee et al., “Semi-markov

conditional random fields for accelerometer-based activity recognition,” Applied

Intelligence, vol. 35, no. 2, pp. 226–241, 2011.

[75] Q. Shi, L. Cheng, L. Wang, and A. Smola, “Human action segmentation and

recognition using discriminative semi-markov models,” International Journal of

Computer Vision (IJCV), vol. 93, no. 1, pp. 22–32, 2011.

[76] J. Ferguson, “Hidden markov models for speech,” IDA, Princeton, NJ, 1980.

235

http://books.nips.cc/papers/files/nips17/NIPS2004_0427.pdf
http://books.nips.cc/papers/files/nips17/NIPS2004_0427.pdf
http://www.sciencedirect.com/science/article/pii/S0004370209001416
http://www.sciencedirect.com/science/article/pii/S0004370209001416


BIBLIOGRAPHY

[77] L. R. Rabiner, “A tutorial on hidden markov models and selected applications

in speech recognition,” in PROCEEDINGS OF THE IEEE, 1989, pp. 257–286.

[78] B.-H. Juang and L. Rabiner, “Mixture autoregressive hidden markov models

for speech signals,” IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. 33, no. 6, pp. 1404–1413, 1985.

[79] D. Yu and L. Deng, Automatic Speech Recognition: A Deep Learning Approach.

Springer Publishing Company, Incorporated, 2014.

[80] K. Murphy, “Dynamic Bayesian Networks: Representation, Inference and

Learning,” Ph.D. dissertation, UC Berkeley, Computer Science Division, 2002.

[81] R. Vidal, A. Chiuso, and S. Soatto, “Application of hybrid system identification

in computer vision,” in Proceedings of the European Control Conference, 2007,

pp. 27–34.

[82] A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto, “Recognition of human gaits,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, vol. 2, December 2001, pp. 52–57.

[83] R. Chaudhry, A. Ravich, G. Hager, and R. Vidal, “Histograms of oriented

optical flow and binet-cauchy kernels on nonlinear dynamical systems for the

recognition of human actions,” in in In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR, 2009.

236



BIBLIOGRAPHY

[84] S. V. N. Vishwanathan, A. J. Smola, and R. Vidal, “Binet-cauchy kernels

on dynamical systems and its application to the analysis of dynamic scenes,”

International Journal of Computer Vision, vol. 73, no. 1, pp. 95–119, 2007.

[Online]. Available: http://dx.doi.org/10.1007/s11263-006-9352-0

[85] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,

J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel,

L. Fan, C. Fougner, A. Y. Hannun, B. Jun, T. Han, P. LeGresley,

X. Li, L. Lin, S. Narang, A. Y. Ng, S. Ozair, R. Prenger, S. Qian,

J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, C. Wang, Y. Wang,

Z. Wang, B. Xiao, Y. Xie, D. Yogatama, J. Zhan, and Z. Zhu, “Deep

speech 2 : End-to-end speech recognition in english and mandarin,”

in International Conference on Machine Learning (ICML), 2016. [Online].

Available: http://jmlr.org/proceedings/papers/v48/amodei16.html

[86] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural

image caption generator,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

[87] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,

K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for

visual recognition and description,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015.

237

http://dx.doi.org/10.1007/s11263-006-9352-0
http://jmlr.org/proceedings/papers/v48/amodei16.html


BIBLIOGRAPHY

[88] A. Y. Hannun, C. Case, J. Casper, B. C. Catanzaro, G. Diamos, E. Elsen,

R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep speech:

Scaling up end-to-end speech recognition,” CoRR, vol. abs/1412.5567, 2014.

[Online]. Available: http://arxiv.org/abs/1412.5567

[89] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional neural

network structures and optimization techniques for speech recognition,”

in INTERSPEECH International Speech Communication Association, 2013.

[Online]. Available: http://www.isca-speech.org/archive/interspeech 2013/

i13 3366.html

[90] J. Zhang, W. Li, P. O. Ogunbona, P. Wang, and C. Tang, “Rgb-d-based action

recognition datasets: A survey,” CoRR, vol. abs/1601.05511, 2016. [Online].

Available: http://arxiv.org/abs/1601.05511

[91] Y. Gao, S. S. Vedula, C. E. Reiley, N. Ahmidi, B. Varadarajan, H. C. Lin,

L. Tao, L. Zappella, B. Bejar, D. D. Yuh, C. C. G. Chen, R. Vidal, S. Khu-

danpur, and G. D. Hager, “The jhu-isi gesture and skill assessment dataset

(jigsaws): A surgical activity working set for human motion modeling,” in Med-

ical Image Computing and Computer-Assisted Intervention M2CAI - MICCAI

Workshop, 2014.

[92] S. Singh, C. Arora, and C. V. Jawahar, “First person action recognition using

238

http://arxiv.org/abs/1412.5567
http://www.isca-speech.org/archive/interspeech_2013/i13_3366.html
http://www.isca-speech.org/archive/interspeech_2013/i13_3366.html
http://arxiv.org/abs/1601.05511


BIBLIOGRAPHY

deep learned descriptors,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[93] E. H. S. Taralova, F. De la Torre, and M. Hebert, “Temporal segmentation

and activity classification from first-person sensing,” in IEEE Workshop on

Egocentric Vision, in conjunction with CVPR 2009, June 2009.

[94] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information Pro-

cessing Systems (NIPS), F. Pereira, C. Burges, L. Bottou, and K. Weinberger,

Eds., 2012.

[95] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” in International Conference Learning Representations

(ICLR), 2015.

[96] C.-N. Yu and T. Joachims, “Learning structural svms with latent variables,” in

International Conference on Machine Learning (ICML), 2009.

[97] H. Kuehne, J. Gall, and T. Serre, “An end-to-end generative framework for

video segmentation and recognition,” in IEEE Winter Conference on Applica-

tions of Computer Vision (WACV), Lake Placid, Mar 2016.

[98] N. V. Cuong, N. Ye, W. S. Lee, and H. L. Chieu, “Conditional random

field with high-order dependencies for sequence labeling and segmentation,” J.

239



BIBLIOGRAPHY

Mach. Learn. Res., vol. 15, no. 1, pp. 981–1009, Jan. 2014. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2627435.2638567

[99] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks, ser.

Studies in Computational Intelligence. Springer, 2012, vol. 385. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-24797-2
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