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Abstract

Upcoming intensity mapping surveys will provide a powerful probe of astrophysics

and cosmology in the distant universe. However, in order to realize the potential of

this new technique, we must improve our understanding of the link between intensity

maps and physics on all scales. In this thesis, we develop a number of tools for

analyzing intensity maps. For most of this work, we illustrate our methods using the

example of a CO intensity map at redshift z ∼ 3, though our results are applicable

to many other lines.

We first present the formalism for computing intensity mapping power spectra,

and use it to study the detectability of the CO signal. We find that, though the

signal amplitude is highly uncertain, a well-designed experiment can detect CO under

most assumptions. We then describe a method of simulating intensity maps, and

use it to study the problem of foreground line contamination. By masking out the

brightest regions of a map, we find that the cosmological information contained in

surveys targeting Lyα and CO can be recovered, though astrophysical information

is lost. Unfortunately, due to instrumental constraints and high-intensity foreground
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ABSTRACT

contamination, this method is less effective for CII surveys. We also demonstrate that

the astrophysical information content of foreground lines can be recovered through

cross-correlations. By correlating pairs of CO frequency bands, we show that the 13CO

isotopologue line can allow unprecedented constraints on molecular gas properties

within distant galaxies.

Line emission in intensity maps is highly non-Gaussian, so power spectra alone

cannot fully constrain the properties of target populations. To resolve this, we intro-

duce the Voxel Intensity Distribution (VID), which gives the one-point probability

distribution of voxel intensities. We demonstrate that the VID provides substantial

constraining power beyond what is obtainable from the power spectrum, even in the

presence of foreground contamination. We then apply the VID to a hypothetical

measurement of the cosmic star formation rate density from a CO survey. We show

that, despite model uncertainties, such an observation could place competitive con-

straints on this crucial quantity while eliminating systematics which hamper existing

measurements.

Primary Reader: Marc Kamionkowski

Secondary Reader: Julian Krolik
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Chapter 1

Introduction

The past decade has seen an explosion of new data from the distant universe.

Observations of the cosmic microwave background (CMB) from space1,2 and from

the ground3,4,5,6 have provided exquisite images of the structure of the universe in its

infancy. Surveys of galaxies, clusters, and quasars7 have mapped the more nearby

universe in unprecedented detail. These observations have led to the dawning of what

has come to be known as the “age of precision cosmology”, and the formation of a

concordance model of cosmic history.

This consensus history takes the form of a model known as ΛCDM, denoting a

universe composed primarily of cold dark matter (CDM) and cosmological-constant

dark energy (denoted by Λ). Cosmic history in this model begins with a period of

inflation, during which space expanded extremely rapidly, leaving behind quantum

fluctuations which would become the seeds of large-scale structure in the universe8.
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CHAPTER 1. INTRODUCTION

The early universe consisted of hot plasma, with photons strongly coupled to free

electrons driving baryon-acoustic oscillations which left relics still visible today9. A

few hundred thousand years after the end of inflation (corresponding to redshift z ∼

1100), this plasma cooled to the point where electrons and protons combined to form

the first atoms, in a period called “recombination”. The CMB contains a snapshot

of conditions in the universe at this time, with the density fluctuations seeded by

inflation seen as hot and cold spots.

After recombination, the universe entered what is known as the dark ages, as small

overdensities drew in more baryons and dark matter, which eventually formed bound

halos, and the first stars and galaxies. Light from these earliest galaxies ionized the

intergalactic medium (IGM) once more, and the dark ages ended as the universe

became transparent. These galaxies continued to grow and merge, and to form new

stars. The cosmic star formation rate increased continually until a peak at roughly

redshift z ∼ 2, before beginning to decline to the rate we see at the present day.

Our knowledge of the cosmological and astrophysical processes which govern the

evolution of the universe has never been greater. However, the cosmic microwave

background (CMB) traces only to a two-dimensional surface at z ∼ 1100, while most

galaxy surveys are only sensitive out to z ∼ 1 or so. At such great distances, even

the deepest surveys can only detect the very brightest galaxies, which by definition

are likely unrepresentative of the broader population. This leaves a large gap in our

understanding of galaxy evolution and the growth of structure, as shown in Figure

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic view of the history of the universe. Red frames show the
periods observed by the CMB (left) and by galaxy surveys (right). The gap in between
includes some of the most important periods in cosmic history, including the birth of
the first galaxies during the dark ages, the epoch of reionization, and the growth of
galaxies into the forms we see today. Yellow lines show the time periods accessible
to intensity mapping surveys targeting the 21 cm line (top) as well as other lines
(bottom), including CO, [CII], Lyα, and many others (Original Image Credit: NAOJ).

1.1. The dark ages, reionization, and the peak of star formation are just some of the

interesting periods of cosmic history which are not well-sampled by current observa-

tions.

Recently, intensity mapping has arisen as a powerful probe of this unseen struc-

ture. Rather than attempting to study galaxies individually as in typical observations,

intensity mapping seeks to probe the intensity fluctuations of a spectral line on spa-

tial scales large compared to any individual source. Such a survey thus makes use

of the aggregate emission from all of the galaxies within a target volume, and can

make statistical measurements of the entire galaxy population. By studying a single

emission line and observing at different frequencies, it is possible to observe these

intensity fluctuations in three dimensions, as the observed frequency of a line maps

3
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one-to-one to the emission redshift. This allows the mapping of line emission across

cosmic history. Initial intensity mapping efforts focused on the 21 cm transition in

neutral hydrogen, but efforts have also begun recently to probe other lines as well, as

different lines are sensitive to different astrophysical processes.

The fluctuations observed in an intensity mapping survey depend on the luminos-

ity function and spatial distribution of the source galaxies. The luminosity function

depends on the detailed astrophysical conditions within the emitters, such as star

formation rates and metallicities. The spatial distribution indirectly traces the un-

derlying dark matter field, the properties of which in turn depend on cosmological

parameters. Intensity mapping can thus provide information about a wide variety of

cosmological and astrophysical topics. Typically, this information is extracted from

a map using its power spectrum, a powerful statistic which has proven valuable for

studying both galaxy distributions10 and the cosmic microwave background11. The

power spectrum P (k) of a map consisting of brightness temperature T as a function

of position x is defined by

⟨
T̃ (k)T̃ ∗(k′)

⟩
≡ (2π)3δD(k− k′)P (k) (1.1)

where δD is the Dirac delta function, the Fourier wavenumber k = |k|, and T̃ (k)

is the Fourier transform of T (x). The delta function enters because the universe is

isotropic and homogeneous on large scales, and thus the power spectrum must remain

4



CHAPTER 1. INTRODUCTION

unchanged under rotations or translations.

The most well-known line used for intensity mapping is the 21 cm spin-flip line

from neutral hydrogen (see for example Morales & Wyithe12 and references therein).

Experiments such as the Precision Array for Probing the Epoch of Reionization13

(PAPER), the Murchison Widefield Array14 (MWA), the LOw-Frequency ARray15

(LOFAR), the Hydrogen Epoch of Reionization Array16 (HERA) and the Square

Kilometer Array17 (SKA) seek to study the epoch of reionization. During this era,

large volumes of the IGM remained neutral, and thus can be probed by the 21 cm

line. These experiments could provide substantial insight into how ionized bubbles

grew and merged, and how they were sourced18. Other experiments like the Canadian

Hydrogen Intensity Mapping Experiment19 (CHIME) and the Hydrogen Intensity and

Real-time Analysis eXperiment20 (HIRAX) are attempting to study galaxies around

z ∼ 1. The 21 cm line at these redshifts comes entirely from within individual sources

rather than the IGM, and thus can be used to map the spatial distribution of galaxies

over large volumes.

There has been a surge of interest recently21 in conducting surveys in other lines

besides 21 cm as a probe of high-redshift astrophysics. The line which we will primar-

ily focus on for this work is the 115 GHz rotational transition of the carbon monoxide

(CO) molecule. CO is a powerful tracer of molecular gas, which is a critical part

of understanding the interstellar medium (ISM) of galaxies. Molecular gas provides

the fuel and composes the environment from which stars form across cosmic time.
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Its abundance is directly related to the rate at which stars form22,23, and its direct

measurement provides insight into the efficiency through which this process takes

place24.

The rotational transitions of carbon monoxide molecules have long been some of

the most potent tracers of the molecular gas phase of the interstellar medium. H2,

though a much more common molecule, is not easily excited in typical molecular cloud

conditions. Reasons for this include the fact that H2 lacks an electric dipole moment

and has a low mass. These properties raise the temperature required to excite the

molecule out of the range of all but the most extreme molecular clouds. CO, on the

other hand, is easily excited. Combined with millimeter emission wavelengths which

fall into a relatively transparent atmospheric window, this has led to a great deal of

study of CO and its dynamics25,26,27,28.

The CO intensity mapping signal was first modeled29 as a possible CMB fore-

ground, before being recognized as an interesting observable in its own right30,31,32.

The current experimental efforts in CO intensity mapping are primarily targeted at

2 ≲ z ≲ 3. This is a particularly interesting redshift range as it is near the peak of

the cosmic star formation rate, the so-called “Cosmic Noon”. The CO Power Spec-

trum Survey (COPSS), a high-resolution interferometric survey aiming to detect CO

fluctuations on relatively small scales, recently published the first tentative detection

of the CO signal at these redshifts33,34. A second experiment known as the CO Map-

ping Array Pathfinder (COMAP) is currently under construction35. COMAP is a

6
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single-dish experiment which aims for larger scales than COPSS.

Another line which has garnered significant experimental interest is the 158 µm

CII fine structure line. This line provides a dominant cooling mechanism of inter-

stellar gas36, and thus is a useful probe of both the ionized and neutral media in

star-forming galaxies27. This makes it an intriguing choice for intensity mapping

observations37,38. CII is the intended target of the Tomographic Intensity Mapping

Experiment39(TIME), which seeks to probe star-forming galaxies during the epoch

of reionization. Efforts are also underway to target the 1216 ÅLyman α (Lyα) line at

reionization40. At these redshifts, the UV Lyα line redshifts into the near-infrared,

where it will be observable by the Spectro-Photometer for the History of the Universe,

Epoch of Reionization, and Ices Explorer41 (SPHEREx).

Several other lines have been discussed in the literature as targets for intensity

mapping. Lines such as Hα and OII when combined with the lines above could ex-

pand our understanding of galaxy emission spectra42, and will also be accessible to

SPHEREx at z ∼ 1− 4. Though molecular hydrogen H2 is not a particularly useful

probe of the nearby universe, at z > 10 it constitutes a significant coolant of primor-

dial gas43, and could thus be an interesting future target for intensity mapping44.

Intensity mapping with He II recombination lines could be used to study Population

III stars, which form in the earliest galaxies45. These galaxies are quite small and

faint, which makes them hard to study using conventional methods.

In this dissertation, we will explore several topics relevant to extracting useful

7
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astrophysical and cosmological information from intensity mapping surveys. We will

focus on lines which are predominantly emitted from within discrete sources such as

galaxies, neglecting for now the more well-studied case of diffuse IGM 21 cm emission

at reionization. For most of our computations, we will consider intensity mapping of

the CO line at z ∼ 3, but our methods are readily generalizable to many other lines.

We will start in Chapter 2 with a discussion of the form of the intensity mapping

power spectrum, both in three-dimensional spatial coordinates and two-dimensional

angular coordinates.

In Chapter 3 we study the feasibility of an IM survey targeting CO at z ∼ 3. We

consider four models for cosmological CO emission from the literature and estimate

the strength of the CO signal predicted by each46. In doing so, we demonstrate

a simple one-parameter family of models which can account for a wide variety of

assumptions about CO emission. When we calculate the power spectra using these

models, we find that the difference in amplitude between the largest amplitude signal

and the smallest is roughly two orders of magnitude, which clearly illustrates the

lack of theoretical understanding of star formation physics at high redshifts. When

studying the prospects for an experiment to detect this signal, we explore the effect of

the instrumental parameters on the predicted signal-to-noise ratio and demonstrate

the importance of carefully considering the values of these parameters when designing

a survey. In particular, attempting to survey too large of an area of the sky or choosing

a spectrograph with insufficient resolution can significantly decrease the chance of

8
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detecting the CO signal.

In Chapter 4, we explore a means of creating simulated intensity maps using log-

normal density fields47. We find that by assuming a power spectrum and drawing a

realization of a corresponding density field we can simulate maps much more quickly

than usual N-body methods. In Chapter 5 we use these simulations to study the

problem of foreground line confusion in intensity mapping. In any intensity map,

there will be a contribution from lines besides the target emitted by galaxies along

the line of sight. For some cases, such as Lyα and CII, these foreground lines are

virtually certain to be significantly brighter than the signal. For others, such as CO,

the foreground lines are still fainter on average, but is possible to model them in such

a way that the total power spectrum is dominated by Poisson noise from foreground

sources. We show in this chapter that by blindly masking the brightest voxels, or

three-dimensional pixels, in a map, it is in some situations possible to recover the

shape of the signal power spectrum. Much of a map’s astrophysical information

is lost in this process, but cosmological information may be recoverable. For the

models and survey parameters we use here, this method is effective for CO and Lyα

experiments, but fails for CII.

Though foreground lines are a nuisance in many cases, they do carry useful in-

formation of their own about conditions where they are emitted. In Chapter 6, we

discuss how one such line, the 110 GHz transition of 13CO, can be used to dramati-

cally improve the knowledge obtained from a CO intensity map48. CO maps target

9
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the 12CO isotopologue, but always contain emission from the rarer 13CO species.

The 12CO emission will always dominate, but by cross-correlating pairs of frequency

channels in an intensity map one can obtain a measurement of the fainter 13CO emis-

sion. As we demonstrate, this allows one to study both the relative abundance of the

two species, which depends on nucleosynthesis processes, and the column density of

molecular clouds in which the CO molecules are contained.

Virtually all work on intensity mapping in the literature has focused on the power

spectrum as a means of extracting useful information from a map. In Chapter 7,

we introduce an alternative statistic which enables much more detailed study of lu-

minosity functions in intensity maps49. The Voxel Intensity Distribution, or VID,

is the probability distribution of voxel intensities, and is related to the luminosity

function by a technique called P (D) analysis. We show that, even in the presence

of line and continuum foregrounds, the VID allows a high-quality measurement of

the luminosity function. In Chapter 8, we demonstrate how this luminosity function

measurement can be used to constrain the cosmic star formation history (SFH)50, a

subject of significant astrophysical interest. Current measurements of the SFH rely

mostly on deep observations of bright galaxies, which are then extrapolated to esti-

mate the contribution from faint galaxies. We show that the VID of a CO intensity

map can place competitive constraints on the SFH while directly probing the faint

galaxies which are undetectable to conventional methods.

Throughout this work, we assume a fiducial ΛCDM cosmology with (Ωm,ΩΛ, h, σ8, ns) =

10



CHAPTER 1. INTRODUCTION

[0.27, 0.73, 0.7, 0.8, 0.96]. For the convenience of the reader, various supporting details

can be found in the Appendices.
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Chapter 2

Intensity Mapping Power Spectra

As with many cosmological observables, the primary statistic used when studying

an intensity map is the power spectrum. In this chapter, we will demonstrate how to

compute the power spectrum of a given population of galaxies. We will study first the

three-dimensional case in Section 2.1 followed by the two-dimensional case in Section

2.2.

2.1 3D Power Spectrum

Consider a survey which observes the brightness temperature T (x) in a line with

rest frequency νem at position x and redshift z. Assume that all of the observed

emission comes from galaxies which are small compared to the angular resolution,

and that the line width of any individual source is small compared to the frequency

12
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resolution. In this limit, we can assume a halo model51 and write the power spectrum

(Equation (1.1)) in the form

P (k, z) = T
2
(z)b

2
(z)Pm(k, z) + Pshot(z), (2.1)

where T (z) is the sky-averaged brightness temperature, b is the luminosity weighted

galaxy bias, Pm(k, z) is the linear power spectrum of the underlying dark matter

distribution, and Pshot(z) is the contribution from galaxy shot noise (see, for exam-

ple,30,46,52). We have assumed for now that the bias is scale-independent, though this

assumption may not be valid on very small53 or very large54 scales., though it should

be close to scale-independent on the scales observed most near-future experiments.

If we assume a ΛCDM cosmology, we can compute the dark matter power spec-

trum from a Boltzmann code such as CAMB55. To determine the other quantities

of interest, we assume a luminosity function Φ(L, z) for our source galaxies. The

intensity I(νobs) observed at frequency νobs can be determined from the cosmological

radiative transfer equation30

I(νobs) =
c

4π

∫ ∞

0

ϵ [νobs(1 + z′)]
dz′

H(z′)(1 + z′)4
, (2.2)

where H(z) is the Hubble parameter. The average proper volume emissivity ϵ(ν) in

13
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the target line is given by

ϵ(ν, z) = δ(ν − νem)(1 + z)3
∫ ∞

0

LΦ(L, z)dL. (2.3)

At redshift z = νem/νobs − 1 this yields an intensity

I(z) =
c

4πνemH(z)

∫ ∞

0

LΦ(L, z)dL. (2.4)

Converting this to a mean brightness temperature yields

T (z) =
c3(1 + z)2

8πν3emkBH(z)

∫ ∞

0

LΦ(L, z)dL, (2.5)

where kB is Boltzmann’s constant.

The shot noise amplitude Pshot gives the power that would be measured in the

absence of clustering. It is proportional to the mean square of galaxy luminosities.

Written in brightness temperature units, it takes the form

Pshot =

[
c3(1 + z)2

8πν3emkBH(z)

]2 ∫ ∞

0

L2Φ(L, z)dL. (2.6)

If we assume a functional form b(L) for the bias of a galaxy with luminosity L, we

14
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can write the luminosity-averaged bias as

b =

∫
Lb(L)Φ(L)dL∫
LΦ(L)dL

. (2.7)

We can then combine Equations (2.5–2.7) with Equation (2.1) to obtain the power

spectrum of our target line.

It is common practice40,35 to assume the luminosity of a galaxy is some function

L(M) of its mass, and to replace Φ(L) with a mass function dn/dM . In this type of

model, Equation (2.5) would become

T (z) =
c3(1 + z)2

8πν3emkBH(z)

∫ ∞

0

L(M)
dn

dM
dM, (2.8)

with Equations (2.6) and (2.7) modified similarly. One can also assume some scatter

around this mean L(M) relation in an effort to take into account the effects of galaxy

properties besides mass which can alter the luminosity distribution35.

2.2 Angular Power Spectrum

Though most IM experiments plan to analyze maps in terms of the three-dimensional

power spectrum, there are some situations in which it may be preferable to consider

the two-dimensional angular power spectrum instead. This is particularly useful when

comparing emission from sources at very different redshifts, where the same angular
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scale on the sky corresponds to very different spatial scales at the two redshifts.

The exact expression for converting a 3D power spectrum P (k) to a 2D spectrum

Cℓ is

Cℓ =
2

π

∫
k2P (k)

[∫
f(r)jℓ(kr)dr

]2
dk, (2.9)

where r is the comoving distance, jℓ is the spherical Bessel function of the first kind,

and f(r) is the selection function which determines the range of distances we are

sensitive to56. For our purposes, we will always assume that we are computing the

power spectrum of a single frequency band of an intensity map, and for simplicity we

will take f(r) to be a top hat with a width given by the frequency bandwidth of our

instrument.

Equation (2.9) is somewhat time consuming to evaluate exactly, so we will instead

compute angular spectra in two different limits and interpolate between them. In the

limit where the width δr of the selection function satisfies ℓδr/r ≫ 1, i.e. when

the width of the observed shell is large compared to the scale of fluctuations being

considered, we will use the well-known Limber approximation57,58. In this limit, we

can write

Cℓ ≈
∫
H(z)

c

f 2(z)

r2(z)
P [k = ℓ/r(z)] dz. (2.10)

In the opposite limit, where ℓδr/r ≪ 1, the spatial scales being probed are large

compared to the shell width, so we can approximate f(r) as a delta function. The
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angular power spectrum in this limit is then

Cℓ ≈
2

π

∫
k2P (k)j2ℓ [kr(z)] dk. (2.11)

Some attempts have been made to further simplify Equation (2.11) by assuming P (k)

is a power law59, but these approximations only work if the slope of the power law is

less than 2. Since the slopes of Pm(k) and thus P (k) are roughly 3 on our scales of

interest, this approximation is invalid in our case.

2.3 Summary

We have presented functional forms for computing 3D and 2D power spectra for

a given intensity map. In the upcoming chapters, we will compute these spectra

for various line emission models and demonstrate how they can be constrained by

different experiments. Note that the computations in this chapter neglect additional

power from correlations between galaxies in the same dark matter halo, i.e. the so-

called “one-halo term” commonly seen in halo models51. For all of the models we

will consider below, this term is subdominant to the clustering and shot-noise terms

in Equation (2.1). Because the models used to predict IM power spectra are quite

uncertain (See Chapter 3), it is not necessary to compute power spectra to the level

of accuracy which would necessitate including the one-halo term.
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Chapter 3

CO Intensity Mapping at

Moderate Redshifts

In this chapter we will consider the detectability of the CO intensity mapping

signal at our fiducial redshift of z ∼ 3, expanding on previous work by Pullen et

al.31 (denoted as P13 for the remainder of this chapter). Since this is the redshift

where the cosmic star formation rate is expected to be highest60, this is a good place

to attempt a first detection of this signal. Once the techniques for measuring and

analyzing this signal are demonstrated successfully at this moderate redshift, surveys

could be performed at redshifts corresponding to other periods, such as the epoch of

reionization30,61.

This chapter is primarily based on work published in Ref.46. In Section 3.1 below

we will summarize four models from the literature and use them to estimate the
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power spectrum of CO fluctuations. In order to do this, we parameterize the CO

luminosity of a halo as a linear function of its mass. In Section 3.2 we will estimate

the signal-to-noise ratios that would be obtained with an optimal survey under the

assumptions of these models. We also study how this signal-to-noise ratio varies with

various aspects of survey design and find that the detectability of the signal depends

strongly on survey parameters.

3.1 Modeling CO Emission

Our goal is to get a rough estimate of the range of possible CO power spectra.

To that end, we will assume a one-parameter model for the CO luminosity LCO of a

halo with mass M of the form

LCO

L⊙
= A

M

M⊙
. (3.1)

We then need a model of CO emission which can allow us to calculate the parameter

A. Below, we consider four such models, then compute angular CO power spectra.

3.1.1 Estimating A

The first and simplest model we consider is proposed by Visbal & Loeb62, hereafter

referred to as VL10. They estimate the star-formation rate for a halo of mass M by

assuming that a fraction f⋆ = 0.1 of the baryons in a halo form stars at a constant

rate over a time period ts ≈ 108 years, where fduty is the ratio of this time to the
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Hubble time at redshift zCO. This gives a star formation rate (SFR) S of

S =
f⋆
ts

Ωb

Ωm

M. (3.2)

With this relation, we can determine the CO luminosity of a halo if we have a

relationship between SFR and LCO. In this model, this relation is obtained by

measuring the ratio of CO luminosity to SFR from M82, which is observed to be

3.7× 103 L⊙/(M⊙/yr)
63. Combining these scaling relations allows us to set the value

of the parameter A from Equation (3.1). The value in this model is

AVL10 = 6.24× 10−7. (3.3)

This value can be used with Equations (2.5-2.7) to determine the average brightness

temperature. It can easily be seen from this equation that in this model, the amplitude

of both the clustering and shot noise components of the power spectrum will be

proportional to the square of the parameter A.

The second model we consider is Model A from P13. The CO luminosity function

is calculated similarly to the VL10 model, but instead of using the M82 normalization,

they use a set of empirical scaling relations described by Carilli64. They first relate

CO luminosity to FIR luminosity, then FIR luminosity to SFR, and then SFR to

halo mass in a similar manner to VL10. This gives a luminosity function which is
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still linear in mass, but with a different normalization

AP13A = 2× 10−6. (3.4)

Model B from P13 uses a slightly different method to calculate the CO brightness

temperature. Instead of trying to calculate a luminosity function, this model assumes

that the SFR follows the Schechter function65:

Φ(S)dS = ϕ⋆

(
S

S⋆

)
exp

(
− S

S⋆

)
dS

S⋆

, (3.5)

where ϕ⋆ is a characteristic density and S⋆ is a characteristic star formation rate.

Integrating this function gives the cosmic SFR density, which can then be combined

with the same SFR-CO luminosity scaling relation used in model P13A to get an

estimate of the CO volume emissivity. This emissivity can then be entered into

Equation (2.2) to get the CO brightness temperature. Though the calculation of

TCO in this model is somewhat more involved than the one described in Equations

(2.2)-(2.5), we can get a reasonable estimate of the brightness temperature in model

P13B simply by adjusting the value of A. P13 state that TCO in model B is roughly

a factor of 4.8 higher than in model A at z ∼ 3, so the brightness temperature in

model P13B can be approximated by choosing

AP13B = 9.6× 10−6. (3.6)
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It should be noted that a full computation of the power spectrum using this model

should predict a ratio of shot noise to clustering power which is different than the

P13A and VL10 models. However, this effect will be small compared to the differences

in overall amplitudes between our models. We will therefore continue for now using

the approximation that the amount of power in this model on all scales depends only

on the value of A. This assumption will be relaxed in subsequent chapters.

The final model we look at here is proposed by Righi et al.29, which we will refer

to as R08. Instead of just assuming that some fraction of halos are forming stars at

any given time, the R08 model assumes that star forming episodes happen following

major merger events. They estimate that the mass M⋆ of stars formed when two

halos of mass M1 and M2 merge into a halo of mass M is

M⋆ = 4
Ωb

Ωm

f⋆
M1M2

M
. (3.7)

From there, one can calculate the merger rates for halos of a given mass and integrate

over all possible masses to determine the total star formation rate. The authors then

use the same M82 normalization from the VL10 model to calculate the CO luminosity.

As with model P13B, the full calculation of TCO in R08 is more complicated than what

we have shown here thus far, but we can obtain a good approximation of their result

by choosing the correct value for A. In this case the necessary value is approximately
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twice the one used for model P13A

AR08 = 4.0× 10−6. (3.8)

Note that we have again assumed that the shot noise to clustering ratio for this model

is the same as models P13 and VL10.

3.1.2 CO Power Spectra

With values for A in hand, we can compute power spectra for these models. The

mean brightness temperature, shot noise amplitude, and bias take the forms

T (z) = A
c3(1 + z)2

8πν3emkBH(z)
fduty(z)

∫ ∞

0

M
dn

dM
dM, (3.9)

Pshot = A2

[
c3(1 + z)2

8πν3emkBH(z)

]2
fduty(z)

∫ ∞

0

L2Φ(L, z)dL, (3.10)

and

b(z) =

∫∞
Mmin

M dn
dM
b(M, z)dM∫∞

Mmin
M dn

dM
dM

, (3.11)

where we have assumed that only halos with masses greater than Mmin emit CO. We

choose a fiducial value for Mmin of 109 M⊙. For the mass-dependent bias, b(M, z), we

use

b(M, z) = 1 +
ν(M, z)− 1

δc
, (3.12)
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where δc = 1.69, ν(M, z) = δc/σ(M, z), and σ(M, z) is the RMS density fluctuation

in a spherical region containing mass M 66,67.

It is clear that there is a large amount of theoretical uncertainty regarding the

amplitude of the expected CO signal. This justifies our decision to simplify our esti-

mation of TCO in models P13B and R08, since the differences between our approx-

imations and the full calculations will be considerably smaller than the differences

between the models. For the remainder of this paper we will consider only model

P13A at z = 3 unless stated otherwise. However, the reader should bear in mind the

broad range of theoretical possibilities when following the rest of our results.

For comparison to P13 we will consider intensity maps in terms of their angular

power spectra. Figure 3.1 shows the clustering (solid lines) and shot noise (dashed

lines) terms of the angular power spectrum for our fiducial model P13A for instru-

ments with different bandwidths. These power spectra are calculated at z = 3. As the

bandwidth increases, the amplitude of the signal falls off sharply. This makes it very

difficult to find this signal in WMAP or Planck data since those instruments had very

wide frequency bands. This is likely why the attempt in P13 to find the CO signal

in WMAP data was unsuccessful. Also note that at small bandwidths, the clustering

term approaches a maximum amplitude. This is due to the use of Equation (2.11)

at low ℓ’s. If only the Limber approximation was used, the clustering term would

continue to increase beyond the limit seen here. Figure 3.2 shows this effect for the

two narrowest bandwidths from Figure 3.1.
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Figure 3.1: Clustering term of the angular CO power spectrum at z0 = 3 for in-
struments with different frequency bandwidths. The solid lines show the contribution
from the clustering term and the dashed lines show the contributions from shot noise.
The clustering term loses its dependence on frequency bandwidth when the width of
the spatial shell being observed becomes smaller than the size of the features being
probed at a given ℓ value.
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Figure 3.2: Comparison of full power spectrum (solid) with Limber approximation
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this case because the width of the redshift shell being probed is small compared to
the spatial size of the brightness fluctuations.
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3.2 Dependence on Survey Design

We now introduce a sample instrument to measure the CO signal and estimate

the signal-to-noise ratio it would produce. We consider a spectrograph with a 1 GHz

total bandwidth targeted at z = 3. This bandwidth is split into 35 channels, giving a

spectral resolution R = 1000. We assume an observation time tobs = 1 yr and choose

the detector sensitivity s and beam size θfwhm to be 800 µK
√
s and 10 arcminutes

respectively. These values are comparable to those for experiments currently under

consideration68,31. For a survey covering a solid angle Ωs, the instrumental noise can

be modeled69 as a random field on the sky with a power spectrum

Cn
ℓ =

s2Ωs

tobsB2
ℓ

, (3.13)

where Bℓ is the beam profile, typically approximated as a Gaussian,

Bℓ = e−θ2fwhmℓ(ℓ+1)/(16 ln 2). (3.14)

The angular power spectrum can be measured in each channel of this spectrograph,

after which the signals can be stacked to increase the overall SNR. The SNR for such

an instrument with Nch channels is given by70

SNR2 = Nch

∑
ℓ

C2
ℓ

σ2
ℓ

. (3.15)
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where

σℓ =

√
8π

Ωs(2ℓ+ 1)
Cn

ℓ . (3.16)

Combining Equations (3.15) and (3.16) with Equation (3.13) yields

SNR2 =
Nch

8π

(
A

AP13

)4
t2obs
s4Ωs

∑
ℓ

(2ℓ+ 1)
(
CP13A

ℓ

)2
eθ

2
fwhmℓ(ℓ+1)/(8 ln 2), (3.17)

where CP13A
ℓ is the angular power spectrum in the P13A model.

This expression is only valid if one is testing against the null hypothesis, i.e. if one

is only interested in seeing if this signal exists at all. It is useful for a first detection

attempt, but when trying to obtain useful cosmological information from a signal it

is necessary to include an extra cosmic variance term in Equation (3.16) to account

for the limited number of modes available in the survey. The signal variance in this

case is given by

σℓ =

√
8π

Ωs(2ℓ+ 1)
(Cℓ + Cn

ℓ ) . (3.18)

Under the null hypothesis, Equation (3.17) clearly shows that a smaller, higher

resolution survey will always give a higher SNR. If cosmic variance is included, surveys

which are too small will yield smaller SNR’s because they include fewer modes. These

behaviors can clearly be seen in Figure 3.3, which shows how SNR depends on survey

area and beam size, and Figure 3.4, which shows how SNR depends on area for

our fiducial 10 arcmin beam. We choose our fiducial value of the survey area to
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be Ωs = 4 deg2 because this is the value which maximizes the SNR with cosmic

variance included. This is a much smaller area than what was chosen for a similar

spectrograph suggested in P13, but is comparable to the areas suggested by more

recent proposals35.

Given the wide variation in the signals predicted by the four models we discussed

above, we predict a wide range of possible SNR. Figure 3.5 shows the SNR as a

function of the parameter A, with the values for the four models discussed above

marked by dashed red lines. The curve for the null hypothesis is simply a power law

since SNR ∝ A2 when cosmic variance is neglected. Possible values of SNR range

from 3.2 (VL10) to 760 (P13B) under the null hypothesis and from 2.8 (VL10) to

37 (P13B) including cosmic variance. All of the models except the most pessimistic

have a good chance to detect the signal.

The predicted SNR is also sensitive to other theoretical parameters in the models

such as Mmin and t∗. These parameters are poorly constrained, so there is some ad-

ditional uncertainty beyond that shown in Figure 3.5. For example, as seen in Figure

1 of P13, if Mmin is increased to 1010 M⊙ then the average brightness temperature

falls off by a factor of ∼ 2. This would in turn decrease the null hypothesis SNR by

a factor of 4. Changing the value of t∗ would change fduty and have a similar effect

on the predicted SNR.

As shown in Figure 3.3 above, the parameters of an intensity mapping survey must

be carefully chosen to maximize the chance to detect the signal. Here we explore the
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Figure 3.3: SNR as a function of beam size and survey area for our hypothetical
spectrograph in the null hypothesis (top panel) and including cosmic variance (bottom
panel). A smaller, higher-resolution survey will always improve the chances of a simple
detection, but surveys which are too small lose cosmological information because they
include fewer modes.
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Figure 3.4: SNR as a function of survey area with a beam size of 10 arcmin with
and without cosmic variance. The same behaviors seen in Figure 3.3 are visible here
as well.
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Figure 3.5: Signal-to-noise ratio as a function of parameter A for our hypothetical
spectrograph with and without cosmic variance. Values for the four models discussed
above are marked.
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Figure 3.6: Signal-to-noise ratio as a function of central redshift for our hypothetical
spectrograph with and without the null hypothesis, with the value at z = 3 marked.
The total bandwidth of the spectrograph is held constant at 1 GHz while the central
frequency is varied.

dependence of SNR on some of the other survey parameters. The first possibility we

consider is altering the redshift targeted by the survey to see if z = 3 is actually the

best redshift to target. Figure 3.6 shows the SNR as a function of the central redshift

of the survey for our optimal spectrograph. It is clear that SNR can be increased by

targeting lower redshifts. However, when cosmic variance is included the changes are

relatively minor, so the target redshift can be altered somewhat without significantly

affecting the SNR.

Figure 3.7 shows the effect of varying the number of frequency channels in the

spectrographs. The total 1 GHz bandwidth is held constant, so if Nch is increased the

width of an individual channel is decreased. The shapes of the curves in Figure 3.7
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are due to several factors. For small values of Nch, increasing the number of channels

increases the amplitude of the clustering power spectrum as seen in Figure 3.1. As

Nch gets larger though, this effect lesses as the clustering power spectrum approaches

a constant value. In addition, the telescope sensitivity s is proportional to68 ∆ν−1/2,

so the amplitude of the noise power spectrum increases for spectrographs with smaller

channels, causing the decrease in SNR seen in the null hypothesis term and the slowed

increase seen in the cosmic variance term. Finally, for very small channels the shot

noise power spectrum overtakes the clustering spectrum causing the signal amplitude

to increase again, slowing the decrease in SNR in the null hypothesis term. It can

be seen from Figure 3.7 that a lower resolution spectrograph produces a higher null

hypothesis SNR. However, this increase is minor and with it comes a decrease in

cosmic variance SNR. Thus it may be preferable to use a spectrograph with Nch near

our chosen value. Note that we have assumed arbitrarily-narrow line widths. At some

point, an experiment with high enough frequency resolution will resolve the structure

of emission lines, smoothing out small-scale power along the line of sight.

Another obvious way to improve the SNR of a survey is simply to increase the total

observation time. How much SNR can be gained by observing for longer periods is less

obvious. Longer observing times decrease the amplitude of the noise power spectrum,

but eventually the Cℓ cosmic variance term in Equation (3.18) starts to dominate over

the Cn
ℓ term. At this point, it is more useful to survey a larger area of sky rather than

spend additional time on an already deeply studied patch. This effect is illustrated in
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Figure 3.7: Signal to noise as a function of number of spectrograph channels with
and without cosmic variance. The fiducial value Nch = 35 is marked. The SNR shown
here is obtained by stacking the signals from each of the Nch channels.

Figure 3.8, which shows the SNR as a function of survey area and observing time for

our two spectrographs, assuming the values calculated above are for a 1 year survey.

For longer observations, the maximum SNR is obtained by surveying a larger area of

the sky.

3.3 Summary

We have presented a study based on several models of CO emission with the goal of

designing an optimal survey aimed at detecting it. We briefly discussed four models

which estimated the intensity of CO emission using slightly different methods and

we found that the large theoretical uncertainties in the calculation lead to a broad
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Figure 3.8: Signal to noise as a function of survey time and area for the null
hypothesis (top panel) and including cosmic variance (bottom panel). The red line in
the bottom panel shows the optimal survey area for a given observing time assuming
a 10 arcminute beam.
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range of possible values. When calculating signal-to-noise ratios for a representative

of these models, model P13A, we found that the optimal survey to detect this signal

is one which deeply surveys a relatively small portion of the sky. We found that the

exact target redshift is not especially important, and that an instrument with a higher

spectral resolution can gain a slight increase in SNR. The instruments we describe

here are able to attain a reasonable SNR given model P13A, and they could provide a

much stronger detection considering either model R08 or P13B. Model VL10 is much

more pessimistic, but since it is the most simplistic of the models (relying only on

one galaxy for normalization), it appears less likely than the others.

It is important to note that all of our calculations in this chapter have taken

into account only instrumental noise and cosmic variance. We have not included any

estimates of the impact of foregrounds on the signal-to-noise ratios above. Since we

are looking at line emission, foregrounds with continuous spectra should be fairly

easy to remove68. However, it is possible for other lines besides the CO line we want

to study to be redshifted into the same frequency range. This line confusion could

be mitigated by cross-correlating the CO signal with another map of the same area,

either another intensity map in a different frequency or a more traditional map of

galaxies or quasars. We will discuss the effect of this line confusion in Chapter 5.

The results of this work suggest that it is feasible to design a survey to detect the

CO auto power spectrum if foregrounds are not a major concern. However, we have

shown that the parameters of such a survey should be considered carefully in order
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to maximize the chance of detection.
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Chapter 4

Simulating Intensity Maps

In this chapter we will describe a method for creating simulated intensity maps.

Past efforts68,35 to simulate intensity maps used galaxy distributions generated from

N-body dark matter simulations. However, N-body simulations are numerically in-

tensive, and it is therefore difficult to generate a large sample of simulated maps. We

will therefore employ an alternative method, in which we assume the matter power

spectrum and luminosity function of a galaxy distribution is known a priori. This

allows us to quickly simulate large volumes. We use matter power spectra generated

using CAMB55. These simulations will then be used in Chapter 5 to demonstrate

methods of foreground line cleaning, and in Chapter 7 to test computations of one-

point statistics of intensity maps.

This chapter and the next are primarily based on work published in Ref.47. We

first describe in Section 4.1 a method for simulating maps in which galaxy positions
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are uncorrelated. The power spectra of these maps will only contain Poisson noise,

so we will refer to these as “shot-noise” simulations. In Section 4.2 we will then show

how to add realistic galaxy clustering to these simulations. We will illustrate these

methods using a hypothetical CO survey, modeled using Model A of Pullen et al.31,

though simulations can be generated for many different lines.

4.1 Shot Noise Simulations

When simulating a map, we first define a grid of voxels, with the solid angle of each

voxel defined by the angular resolution of a hypothetical instrument, the voxel depth

by the spectral resolution, and the total area defined by the proposed survey area.

For our example simulations, we use a fiducial CO survey similar to that described in

Section 3.2 observing at 30 GHz (corresponding to CO at z = 3) covering 550 sq. deg.

with an angular resolution of 10 arcmin and δν/ν = 10−3. Since each voxel in this

simulated map is large compared to a galaxy, we can assume that the line emitters

are essentially point sources. The expected mean number of sources in a given voxel

is

⟨N⟩ (z) = nVpix = Vvox(z)

∫ ∞

0

Φ(L)dL = Vvoxfduty

∫
L(M)

dn

dM
dM, (4.1)

where n is the total halo number density and Vvox is the comoving volume of a single

voxel.

If clustering is neglected, galaxies will be Poisson distributed on the sky. Thus
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we can draw the number of sources in each voxel from a Poisson distribution with

mean ⟨N⟩. Assuming the line luminosities of individual sources are uncorrelated, we

can then randomly assign a luminosity to each source by drawing from a probability

distribution

P(L) =
1

n
Φ(L). (4.2)

If we model luminosities through some mass-luminosity relation L(M), we instead

draw a mass from the distribution

P(M) =
1

n

dn

dM
, (4.3)

then calculate the line luminosity from L(M) for each galaxy. Once we have lumi-

nosities for each galaxy in a voxel, we can compute a brightness temperature using

T =
XLT

Vvox

N∑
i=1

Li, (4.4)

where Li are the luminosities of the N galaxies contained within Vvox, and we have

defined

XLT ≡ c3(1 + z)2

8πkBν2H(z)
, (4.5)

with the goal of keeping our notation compact (Compare Equations (2.5) and (4.4)).

Once we have a finished map, we then need to compute its power spectrum. Since

we are simulating relatively small regions of the sky, we can perform this calculation
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in the flat sky approximation71. For simplicity, we assume the survey area is a square

located near the equator of whatever sky coordinates are in use.

Consider a map with Npix voxels at positions x = (xi, yi), where xi and yi run

from 1 to
√
Npix. The intensity at each voxel T (x) can be decomposed into Fourier

modes ak through the discrete Fourier transform,

ak =
1

Npix

∑
x

T (x)e2πix·k/Npix . (4.6)

The angular power spectrum of the map is then

Cℓ=2πk/
√
Ωs

= ΩsCk, (4.7)

where Ωs is the total solid angle of the survey and

Ck =
⟨
|ak|2

⟩
. (4.8)

The average in Equation (4.8) is taken over all k modes in the interval k−1/2 ≤ |k| <

k + 1/2. Note that in this calculation x and k are in units of voxels and (voxels)−1

respectively.

The left hand column of Figure 4.1 shows a map of CO emission in Model P13B at

z = 3 from Section 3.1 simulated using the above technique along with its power spec-

trum. The power spectrum has the expected scale-independent form of a shot-noise
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Figure 4.1: (Top left) Simulated shot-noise CO intensity map from z = 3 using
Model P13B from Section 3.1. (Bottom left) Power spectrum of simulated shot-noise
map (red points) overplotted with the predicted shot noise power spectrum. (Top
right) Simulated CO intensity map from z = 3 with clustering included. (Bottom
right) Power spectrum of simulated clustering map overplotted with the predicted
power spectrum including both clustering and shot noise components.

dominated sample. The solid line is the predicted shot noise amplitude calculated

using the method described in Chapter 2 for this model, included to show the con-

sistency between our model and our simulations. The scatter of the points around

this line is sample variance error due to the finite size of our simulation. There is no

instrumental noise included in the simulated map.
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4.2 Adding Clustering

The simulations above assumed that galaxies are randomly distributed on the sky,

but in reality the large scale structure of the universe imposes a clustering pattern on

the galaxy distribution. Since we have predictions for the angular power spectra of

large-scale clustering, we can generate galaxy density fluctuations by drawing random

fields with the desired statistics. This allows us to create galaxy populations without

simulating their entire history.

We want to simulate a galaxy density field δ(x) = [n(x) − n̄]/n̄ which includes

clustering. The δ map should have zero mean and its power spectrum should be

the halo power spectrum. In a pixel located at x, instead of drawing the number

of galaxies from a Poisson distribution with mean ⟨N⟩, we use ⟨N⟩ [δ(x) + 1]. We

draw luminosities in the same manner as before. This will give a map with a power

spectrum that contains both clustering and shot noise components. Note that we have

neglected here the luminosity-dependence of galaxy bias, where brighter galaxies are

expected to be more strongly clustered. See Chapter 7 for a more detailed discussion

of the effect of luminosity-dependent bias on our calculations.

It only remains then to generate a density field with the desired halo power spec-

trum. If the field is Gaussian, the process is fairly straightforward. In a full-sky

Gaussian random field, each spherical harmonic coefficient aℓm is drawn from a Gaus-

sian distribution with variance
√
Cℓ. In the flat sky approximation, we draw each

Fourier mode with magnitude in the range k − 1/2 ≤ |k| < k + 1/2 randomly from
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a Gaussian with variance
√
Ck. This map can then be converted back to spatial co-

ordinates using the inverse discrete Fourier transform. One important thing to note

is that the resulting map must be real, while the Fourier modes are complex. This

means that we must impose the condition that a−k = a∗k.

Unfortunately, at the redshifts we are considering, the galaxy distribution is highly

non-Gaussian. Attempting to impose a Gaussian-distributed δ(x) produces pixels

where ⟨N⟩ [δ(x) + 1] is negative, which is obviously unphysical. A better approxi-

mation for the galaxy distribution would be to use a log-normal distribution72. This

distribution has the important property that it is zero for negative densities and it

provides a reasonably good fit to the observed galaxy distribution. Our procedure

for generating a log-normal random field uses the fact that that a log-normal map

δLN(x) can be generated from a Gaussian map δG(x) with variance σ2
G using

δLN(x) = eδG(x)−σ2
G/2 − 1. (4.9)

There exists a convenient relation between the correlation functions ξ(r) of two maps

related in this way:

ξG(r) = ln [1 + ξLN(r)] . (4.10)

This allows us to generate log-normal random fields δLN(x) with the desired charac-

teristics.

We start with the galaxy power spectrum Cgal
ℓ and convert it to a flat-sky ap-
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proximation Cgal
k . From this, we can calculate the correlation function we want our

log-normal field to have using

ξLN(r) =
1

2π

∫ ∞

0

kCgal
k J0(kr)dk, (4.11)

where J0 is the Bessel Function of the first kind. We then calculate ξG using Equation

(4.10) and convert this to a new angular power spectrum. We can then draw a

Gaussian random field δG with this power spectrum using the procedure outlined

above, then convert it to a log-normal random field using Equation (4.9).

The result of this process is a map like the one shown in the top right panel of

Figure 4.1, with a power spectrum as shown in the bottom right panel. It is obvious

when comparing these plots to those in the left hand column that the second map is

much more strongly clustered and that the power spectrum contains a distinct scale-

dependent component. The blue curve in this plot shows the predicted CO power

spectrum from our example model. This predicted spectrum is in good agreement

with the simulated data, which again shows the consistency between our theoretical

models and our simulations.

4.3 Summary

We have demonstrated here a method for quickly creating simulations of intensity

mapping signals. The simulated maps give the intensity of a line in a given frequency
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bin as a function of position. Currently, we can only produce simulations of two-

dimensional volumes, but we can approximate true intensity maps by stacking a

number of these 2D simulations equal to the number of frequency channels in a

survey. This is only a rough approximation of a true survey, as it does not take into

account correlations between bins, but the approximation is good enough for us to

begin investigating a number if interesting aspects of intensity mapping surveys, such

as the problem of line foregrounds described in Chapter 5.
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Masking Line Foregrounds in

Intensity Maps

One major difficulty in intensity mapping surveys is the problem of foregrounds.

Every intensity mapping survey will have to deal with many types of foreground

emission. Foregrounds with continuum frequency spectra such as dust or synchrotron

are problematic, but the removal of these foregrounds is a well studied problem,

especially for 21 cm surveys73,74. Because continuum emission is spectrally smooth,

the contamination is mostly confined to Fourier modes with a small line-of-sight

component, and can be removed by simply subtracting these modes. Line foregrounds

are a more difficult problem. If a spectral line other than the target is redshifted into

the same observing band, it is not easy to tell the two lines apart. 21 cm surveys

are not expected to suffer from this issue since there are so few lines at such low
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frequencies75. However surveys in other lines will require a better understanding of

possible line foregrounds. In this chapter, we will discuss potential confusing lines in

surveys targeting CO, Lyα, and CII, and study a method for removing them.

One method which can be used to remove these foreground lines is to cross corre-

late an intensity map with another map in a different frequency, or with some other

tracer of large-scale structure62,76. Though each map will have its own foreground

lines, they will come from different redshifts and thus be uncorrelated. The signals

from the two maps will be correlated, as they come from the same redshift, leaving

behind a cross spectrum which only depends on the two target populations. However,

this method has two issues: The first is simply that it requires a more complicated

(and costly) observation, since it requires observation of two signals. Secondly, it

is difficult to reconstruct the auto power spectrum of the target line from the cross

spectrum of the two maps (See work by Gong et al.77, hereafter G14) due to added

parameter degeneracies in the cross spectrum.

Another possible method for foreground separation is to examine the anisotropy

in the combined power spectrum, as foreground lines will behave differently from the

signal along the line of sight78,79. This is only possible at high signal-to-noise ratios

though, which may not be attainable for early-generation surveys. A third technique

would be to locate bright foreground emitters in galaxy surveys and mask the map

voxels which contain them39,37. This again requires a significant amount of data

beyond the survey itself.
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We therefore seek a foreground-cleaning method which will work without any ad-

ditional data and at modest signal-to-noise ratios. Though “foreground” lines could

technically come from lower or higher redshifts than the target line, only lower red-

shift lines are likely to pose a problem, as the signal from an intensity mapping survey

typically grows weaker with redshift. The fact that these lines come from lower red-

shifts offers a potential way to remove them. At lower redshifts, galaxy masses tend

to be larger, so we expect there to be more very bright sources of a foreground line

than a target line. This means that the brightest voxels in a survey will tend to

be foreground galaxies, and the foreground contamination can be at least partially

removed by masking out the brightest voxels in a survey. This technique tends to

bias the target power spectrum because some signal is masked along with the fore-

grounds68. However, as we will show below, much of the cosmological information in

the power spectrum is preserved after masking, even though most of the astrophysical

information is lost. G14 also explored this technique for Lyα, though they do not

appear to show any biasing of the signal power spectrum.

Using the simulation routines laid out in Chapter 4, we will demonstrate below

that voxel masking is an effective technique for removing foregrounds when the signal

is considerably brighter on average than the foregrounds, or when the voxel size of the

survey is small enough that individual foreground sources can be isolated effectively.

We find that CO intensity maps meet the first criterion, and Lyα intensity maps

presumably meet the second. CII maps on the other hand, likely will not meet either
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criterion, and therefore cannot be easily cleaned using simple voxel masking.

It is important to note that we found in Chapter 3 that the amplitude of a CO

intensity mapping power spectrum is extremely uncertain, and that different models

yield very different results. We have every reason to believe that the modeling of each

and every signal and foreground line we discuss here is similarly uncertain. Therefore

it should be noted that the details of the luminosity function modeling described in

this paper should be taken with a grain of salt and the exact amplitudes of the power

spectra discussed below could vary significantly from the values we use. Nevertheless,

our intention is to explore the effects of voxel masking on contaminated intensity

maps, and our general conclusions should hold for many different models.

This chapter is organized as follows. Section 5.1 describes how we model power

spectra for the three signal lines we consider and their foregrounds, and Section 5.2

shows simulated maps for these models. Section 5.3 explains our method of removing

foreground lines from these maps through voxel masking, and Section 5.4 shows the

results of this masking. These results and pertaining issues are then discussed in

Section 5.5, and we summarize in Section 5.6.

5.1 Signal and Foreground Models

Because our analysis here involves comparing intensity maps at different redshifts,

we will again define our maps in this chapter in angular coordinates and study them in
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terms of their angular power spectra Cℓ. Real intensity mapping surveys will survey

the sky in several frequency bands, which corresponds to several different redshift

slices. The intensities in these slices will be correlated due to the existence of line-of-

sight Fourier modes. However, we can obtain a reasonable approximation of a true

survey by treating each frequency band as an independent map, which can then be

stacked with the others to improve signal to noise (see Chapter 3). If we collapsed our

whole 3D volume down to 2D, then we would lose a large amount of the information

in our map. Discussing the angular power spectrum of individual slices, however,

only sacrifices the information present in the line-of-sight modes31. All of the maps

discussed in this chapter should be thought of as a single slice of a full 3D survey.

Since intensity mapping experiments are likely to have fairly narrow frequency

bands, it is reasonable to assume that the quantity T does not change significantly

over the width of a single band. This means that we can write the angular power

spectrum as

Cℓ(z) = T
2
(z)Cgal

ℓ (z) + Cshot(z), (5.1)

where we take z to be the central redshift of the band. The galaxy angular power

spectrum is calculated from Pgal using

Cℓ =
2

π

∫
k2Pgal(k)

[∫
f(r)jℓ(kr)dr

]2
dk, (5.2)

where r is the comoving distance, jℓ(kr) is the spherical Bessel function and f(r) is the
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selection function which is determined by the width of a single frequency band. This

integral is computationally difficult to evaluate, so we again compute it approximately

in low- and high-ℓ limits using the approximations from Section 2.2. The shot noise

spectrum Cshot is scale independent, so the Limber approximation (Equation 2.10)

can be used on all scales.

The values of T and Pshot for a given line depend sensitively on the exact shape of

the luminosity function of that line. This luminosity function in turn depends on the

conditions within the emitting galaxies which are highly uncertain, especially for high

redshift sources. We can attempt to predict L(M) or Φ(L) for different lines using

various empirical observations. However, we found in Chapter 3 that different models

assumed for CO emission yielded power spectra which spanned roughly two orders of

magnitude in amplitude. Therefore the models we summarize below should not be

interpreted as precise predictions of the power spectra for these lines. Rather, they

are intended as a means to gain understanding of how the shapes of the luminosity

functions of foreground lines can affect how strongly they contaminate a target line,

separately from the overall amplitude ambiguity.

5.1.1 CO

When modeling the emission of CO and its foreground lines, we assume that only

halos with masses above some cutoff massMmin (assumed here to be 109 M⊙) can emit

the line in question, and we assume that only a fraction fduty equal to the timescale
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of star formation over the age of the universe of halos are emitting the line at any

given time. For generality, we assume that the luminosity of a halo is a power law in

its mass

L

L⊙
= A

(
M

M⊙

)b

, (5.3)

where A and b are free parameters. This is a simple generalization of the model used

in Chapter 3, where we assumed that b = 1. We again calibrate this relationship using

a series of empirical scalings, starting with a relation between the line luminosity and

FIR luminosity of the form

LFIR

L⊙
= CFIR

(
L′
line

K km s−1 pc2

)XFIR

, (5.4)

where CFIR and XFIR are constants set through observations. In the above relation,

the line luminosity is given in units commonly used for spectral line observations.

The conversion to solar luminosities is given by64

Lline

L⊙
= 3× 10−11

( νem
1 GHz

)3 L′
line

K km s−1 pc2
. (5.5)

These relations, in combination with the star formation rate-FIR luminosity and

halo mass-star formation rate relations given by Pullen et al.31, we get the following
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expressions for A and b:

A = 3× 10−11

(
6.5× 10−8

CFIR

)1/XFIR ( νem
1 GHz

)3

, (5.6)

b =
5

3
X−1

FIR. (5.7)

For CO, we again use an observed80 CO-FIR relation with CFIR = 1.4 × 10−5 and

XFIR = 5/3. This gives the values A = 1.9 × 10−6 and b = 1 (Compare to Chapter

3).

When considering possible foreground lines, we consider only lines with lower rest

frame frequencies than our target lines. This is because, as shown in G14, projecting

two power spectra from different redshifts boosts the amplitude of the lower redshift

spectrum relative to the higher redshift one. Because we are working here with

angular power spectra instead of three dimensional power spectra, this projection

effect is included naturally in our calculations. For a CO survey targeted at z = 3,

we are therefore concerned with lines that have emission frequencies between the 115

GHz CO rest frame frequency and the 28.8 GHz observing frequency.

The CO(1-0) line is expected to be considerably brighter on average than any

other line in this range, i.e. TCO should be much greater than T for any foreground

line. If we assumed that L(M) were linear in M for all lines this would mean that

no foreground line could dominate over the CO signal. However, the addition of the

power law dependence on M means that the CO map could still be contaminated by
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Table 5.1: Various parameters for the target CO(1-0) line as well as several possible
foreground lines. Parameters include the emission frequency ν, the parameters of the
FIR correlation CFIR and XFIR, the L(M) parameters A and b, and the observable
parameters T and Cshot.

Line ν (GHz) CFIR XFIR A b T (µK) Cshot (µK2)
CO31 115 1.35×10−5 1.67 1.9×10−6 1 0.60 3.5×10−6

HCN81 88 794 1.0 1.7×10−15 1.67 0.097 6.3×10−5

CN82 113 1.6×104 0.89 6.9×10−18 1.87 0.034 6.3×10−6

CS83 49 2.1×104 1.0 1.1×10−17 1.67 0.0083 1.5×10−5

HCO+84 89 158 1.11 7.4×10−14 1.5 0.035 2.9×10−6

the brightest sources for a foreground line which has b > 1. The shot noise term in

particular is very sensitive to the value of b. For more general luminosity functions

than the one we use here, this would mean that a line is potentially a problem if it

falls off more slowly at high luminosities than the target line.

We consider foreground lines emitted by four molecules: HCN, HCO+, CN, and

CS. All of these molecules have higher critical densities than CO, and thus tend to

trace denser regions of galaxies. For each molecule, we use an empirical correlation

with FIR to estimate A and b. The results and sources for each line are given in Table

5.1, along with those of CO for reference. Note that for the CN and CS lines the FIR

relations used were measured for higher order transitions (3-2 and 7-6, respectively).

Thus we have made the assumption that the intensities of these lines are independent

of which transition is being considered. The situation in reality is likely not so simple,

but this approximation will suffice for our purposes.

Figure 5.1 power spectra for each of these lines compared with that of CO. Because

all of the foreground lines have b > bCO, they are all dominated by shot noise. A
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Figure 5.1: Power spectra for lines described in Table 5.1. The solid blue line is the
target CO power spectrum, and the dashed lines show the spectra for the foreground
lines. Note that all of the foregrounds are shot noise dominated. The shaded region
shows a rough estimate of the theoretical uncertainty in these power spectra.

possible qualitative reason for this is the fact that all of these lines tend to trace denser

gas than CO, and thus their luminosities may be more sensitive to the environments

in their host galaxies.

Of the lines we consider, the HCN power spectrum clearly dominates. Though

HCN is only ∼ 4% as bright as CO on average, it has a higher value of b, which

means that it produces a small number of bright sources which contribute a large

amount of shot noise. This is how a line with relatively small average intensity can

still be a problematic foreground. For the remainder of this paper, we will consider

only the HCN foreground line since in our modeling the other lines are subdominant

and should behave similarly under masking.

The shaded region in Figure 5.1 shows a very crude estimate of the theoretical
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uncertainty in the HCN power spectrum, roughly an order of magnitude. In Chapter

3, we found that the amplitude of the CO spectrum could also vary by roughly an

order of magnitude in either direction. For convenience we only show this shading

for HCN, but all of the other spectra are similarly uncertain, if not more. Given

the vast amount of uncertainty both in the modeling of these spectra as well as in

the empirical measurements used in our model, we do not attempt to make a more

accurate estimate of the error bars on these spectra.

5.1.2 Lyman α

For the Lyman α line we consider a hypothetical survey targeted at z = 7, and

we follow the modeling of G14 and references therein, which we summarize briefly

here. Since the Lyα line will be observed in the infrared rather than the radio, we use

intensity units here instead of brightness temperature. Recombination and collision

processes within galaxies give a Lyα luminosity

LLyα(M, z)

L⊙
= 5.1× 108fLyα(z)

[
1− f ion

esc (M)
] SFR(M, z)

M⊙ yr−1
, (5.8)

where fLyα = 3.34 × 10−3 × (1 + z)2.57 is the fraction of Lyα photons not absorbed

by dust, and f ion
esc = exp (−5.18× 10−3 ×M0.244) is the escape fraction of ionizing

photons. The star formation rate estimated from simulated galaxy populations85 is
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parameterized by

SFR(M, z = 7) = 1.6×10−26

(
M

M⊙

)2.59(
1 +

M

M1

)−0.62(
1 +

M

M2

)0.4(
1 +

M

M3

)−2.25

.

(5.9)

We take Mmin = 108 M⊙ and Mmax = 1013 M⊙. Note that for simplicity we neglect

Lyα emission from the IGM. The IGM contribution is small compared to the halo

emission, and it is not as easily simulated using our methods. We calculate the bias

for Lyα following G14.

For Lyα at z = 7, three foreground lines are considered: Hα coming from z ∼ 0.5,

OIII from z ∼ 0.9, and OII from z ∼ 1.6. For these lines, the luminosity function is

assumed to be a Schechter function

Φ(L)dL = ϕ∗

(
L

L∗

)α

exp

(
− L

L∗

)
dL

L∗
, (5.10)

where Φ(L) is the comoving number density of halos with luminosities between L and

L + dL, and ϕ∗, L∗, and α are parameters which can be determined from observa-

tions86. With the above relations, we can calculate angular power spectra for Lyα

and the three foreground lines. Following G14, we assume that the halo bias for these

lines is proportional to the halo mass. Figure 5.2 shows the calculated power spectra

for Lyα and the three foreground lines along with the total foreground spectrum.

Note that the foreground lines dominate entirely over the signal, and unlike CO, the

foregrounds have a significant clustering component.
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Figure 5.2: Theoretical power spectra for Lyα and its three foreground lines

5.1.3 CII

We base our simulations of CII intensity maps on the modeling done by Silva et

al.38, hereafter S15. We consider a possible survey targeted at z = 7. For the CII

luminosity we use model m2 from Table 1 of S15, where the luminosity is given by

log 10

(
LCII

L⊙

)
= log 10

(
ψ(M, z)

M⊙

)
+ 6.9647, (5.11)

where

ψ(M, z) =M0

(
M

Ma

)aCII
(
1 +

M

Mb

)bCII

. (5.12)

The parameters in the formula for ψ at z = 7 areM0 = 6.6×10−6 M⊙,Ma = 108 M⊙,

Mb = 1.6× 1011 M⊙, aCII = 2.25, and bCII = −2.3.

The primary foregrounds for a CII survey come from CO transitions. Since such
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Figure 5.3: Theoretical power spectra for CII and its four foreground CO lines.

a survey would observe at roughly 240 GHz, we need not worry about the CO(1-0)

line at 115 GHz or the CO(2-0) line at 230 GHz. The higher order transitions are

potentially problematic though. We estimate the intensities of the higher order CO

lines using our formulae above along with the line ratios observed for submillimeter

galaxies27. This table gives the ratio L′/L′
CO(1−0) for the transitions from CO(2-1)

to CO(5-4). Following S15, we consider the CO(6-5) line as well, and assume that it

has the same luminosity ratio as the CO(5-4) transition. We also calculate the bias

by assuming that the halo bias is proportional to the halo mass. Figure 5.3 shows

the calculated power spectra for these CO lines as well as the spectrum of the target

CII line. As with Lyα, the foreground lines are strongly clustered and considerably

brighter than the target line.
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5.2 Simulated Maps

With the simulation method from Chapter 4, we can now simulate maps for any

line for which we can define either a function L(M) or a luminosity function Φ(L).

Since we are working in angular space, it is also very easy to combine maps for

different lines. A map containing two lines is simply the sum of the maps for the

individual lines, as the signal and foreground emitters should be separated by large

enough distances as to be uncorrelated. Using Equation 5.1, we can obtain best fit

power spectra for these simulated maps through least-squares fitting assuming the

same Cgal
ℓ we used to generate the map with T and Cshot as free parameters.

If we simulate a map for CO at z = 3 and a foreground HCN line at z = 2,

we get power spectra like the ones shown in Figure 5.4. The best fit power spectra

are plotted as solid lines. As expected, the effect of foreground contamination is to

significantly increase the shot noise of the map. The amplitudes of the power spectra

in these simulations depend on exactly how many halos are drawn and exactly what

masses are assigned to them. This means that the result can vary somewhat from the

theoretical predictions. The HCN power spectrum is particularly sensitive to this,

since it depends so much on the highest mass halos. The shaded region in Figure 5.4

shows the 95% confidence range of the HCN power spectrum, calculated by comparing

the results of 500 simulated HCN maps.

Figure 5.5 shows simulated maps for CO at z = 3 and Lyα and CII at z = 7 along

with their foregrounds in order to illustrate the qualitative differences between them.

60



CHAPTER 5. MASKING LINE FOREGROUNDS

Figure 5.4: Power spectra of simulated maps of CO at z = 3 (blue), HCN at z = 2
(green), and the sum of the two (red). Solid curves are best fit power spectra allow-
ing ⟨T ⟩ and CS

ℓ to vary. As expected, the HCN foreground contributes a significant
amount of extra shot noise at high ℓ. The shaded region corresponds to the 95% confi-
dence interval for the simulated HCN maps. Variations from simulation to simulation
can cause the power spectrum amplitude to change significantly.
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Figure 5.5: Simulated maps of CO at z = 3, Lyα at z = 7, and CII at z = 7 (top
row, left to right) along with their foregrounds (bottom row). The CO simulations
cover 550 deg2 with 10 arcmin resolution, the Lyα simulations cover 1 deg2 with 0.1
arcmin resolution, and the CII simulations cover 100 deg2 with 3.2 arcmin resolution.

The CO simulations cover 550 deg2 with 10 arcmin resolution and ∆ν/νobs = 10−3

(based on our results from Chapter 3), the Lyα simulations cover 1 deg2 with 0.1

arcmin resolution and ∆ν/νobs = 1/40 (based on G14), and the CII simulations cover

100 deg2 with 3.2 arcmin resolution and ∆ν/νobs = 1.7× 10−3 (based on S15).

The HCN foreground map is considerably fainter on average than the CO map,

but though the brightest sources are difficult to see on this image the colorbar shows

that the HCN map extends to higher intensities than the CO map. The Lyα maps

cover a much smaller region of the sky than the others, so the clustering features in
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this image appear much larger. In addition, each voxel in the Lyα foreground map

covers a rather small volume of space, so most of the voxels in this map are dark.

Though the Lyα foregrounds are brighter than Lyα on average, most of the intensity

in this map comes from a small number of voxels. The foreground map for CII is

much brighter than the signal, and the voxels in the CII map are large enough that

there is strong emission in most voxels.

Though the models we use in this work are fairly simple, this simulation method is

straightforward to generalize to different, more complex models. Any power spectrum

and luminosity function can be input to get a simulated map. One important effect

that we have not taken into account here is the correlation between maps made at

different frequencies due to line-of-sight Fourier modes. Since the target lines we

consider here are widely separated from the foreground lines in frequency space this

effect should not be significant for the problems discussed here. However, it will

need to be taken into account when attempting to accurately simulate the three-

dimensional data taken by realistic intensity mapping experiments.

5.3 Voxel Masking

As noted above, the majority of the contamination in CO surveys comes from a

few bright foreground emitters which add a large amount of shot noise to a survey.

This means that the foreground effect could be mitigated if we simply mask out
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Figure 5.6: Number of sources per voxel which contribute brightness tempera-
ture greater than T . At low intensities, the target CO line dominates as expected.
However, at high intensities the HCN emitters begin to dominate because the HCN
luminosity function does not fall off as quickly as that of CO.

the brightest voxels in our survey. G14 noted that a similar argument holds for

other lines, though perhaps not to the same extent. Figure 5.6 shows the number of

sources/voxel in a CO survey which produce brightness temperatures above a given

value. At brightness temperatures above a few hundred K, there are more HCN

emitters than CO emitters. This is primarily due to the fact that bHCN > bCO, with

some additional contribution from the fact that there are more high mass halos at

z ∼ 2 than at z ∼ 3.

This means that if a given voxel has a very high intensity, it is likely that the extra

flux is coming from a foreground HCN emitter. Thus if we mask all voxels brighter

than a given value we will remove on average much more foreground emitters than

target emitters. In addition, the foreground sources we mask are exactly the bright
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sources which produce the worst contamination. Therefore we expect that we can

clean the foregrounds out of a map by masking out the brightest voxels.

The effects of voxel masking on the power spectra of these maps are difficult to

understand analytically. We can make a very rough estimate if we assume that we can

perfectly isolate and remove all sources which contribute an intensity greater than

some cutoff. The ratio of the average brightness temperature of a line before and

after applying this cutoff is

Tmasked

T unmasked

=

∫Mcut

Mmin
L(M) dn

dM
dM∫Mmax

Mmin
L(M) dn

dM
dM

, (5.13)

If we choose to remove ∼ 1% of the voxels from a map, Mcut is the mass of a halo

such that 1% of halos have M > Mcut. For CO, we have Mcut = 6.2 × 1010 M⊙ and

for HCN we have 9.5×1010 M⊙. The ratio of the shot noise before and after masking

is similar to Equation (5.13) with L(M) replaced with L2(M).

This analytical procedure predicts that the ratio of the masked to unmasked CO

intensity will be ∼ 0.7 and that of the masked to unmasked CO shot noise will

be ∼ 0.06. The ratio of masked to unmasked HCN shot noise is predicted to be

∼ 2 × 10−5. Therefore, although masking voxels causes the CO power spectrum to

decrease, we expect the HCN spectrum to decrease far more, leaving behind a signal

dominated power spectrum. However, the procedure described here neglects a few

key effects which would be present in a real map. If a map voxel contains a bright
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source, masking it will also remove all of the fainter sources present in the same voxel.

In addition, some voxels will be masked because they contain a large number of faint

sources rather than a single bright one. In order to fully account for these effects, we

need to rely on our simulated maps, as we do below.

In order to use this procedure one must have some means of determine how many

voxels should be masked. For CO, and any other hypothetical line where all of the

foregrounds are shot-noise dominated, the answer is simple. We only need to mask

until the masked power spectrum shows clustering behavior out to the desired angular

scale. Even if the CO foregrounds are faint enough that CO dominates entirely, this

masking will reveal the CO clustering behavior on scales which are normally obscured

by shot noise. For lines with clustered foregrounds, the answer is less clear. If we

have a reasonable estimate of the luminosity functions of the signal and foregrounds,

we can use a plot like Figure 5.6 to predict a cutoff intensity (this is the method used

in G14).

5.4 Masking Results

Here we show the results of applying the masking procedure described above to

CO, Lyα, and CII intensity maps.
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5.4.1 CO

Figure 5.7 shows the effect of voxel masking on the power spectra of three simu-

lated maps: one with just CO, one with HCN, and the sum of the two. The dots and

dashed curves show the power spectra and best fit curves for the three maps with

no masking. The foreground power spectrum entirely dominates on all scales. The

pluses and solid curves show the spectra of the maps after all voxels brighter than 6

µK are masked. This value corresponds to masking roughly 1% of the voxels in the

map with both signal and foregrounds. After masking, the foreground power spec-

trum has dropped dramatically, and the CO power spectrum has fallen by a much

smaller amount. But most importantly, the red total power spectrum is very similar

to the CO power spectrum. The power spectrum of the map with foregrounds is

nearly identical to that of a map without them. There remains some small amount of

shot noise contamination, but this could be removed by choosing a lower cutoff value

for masking. Thus it appears that foreground contamination in CO intensity maps

can indeed be mitigated by masking bright voxels.

It is worth mentioning that the amount by which the CO power spectrum drops

differs somewhat from the simple prediction made in Section 4. The clustering term

in our simulation decreases roughly 40% less than the simple calculation predicts,

and the drop in shot noise is ∼ 3 times less than predicted. As mentioned above, this

happens because the calculation in Section 5.3 does not take into account the fact

that there are multiple sources in each voxel, which will either be masked along with
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Figure 5.7: Power spectra and best fit curves for simulated maps of CO at redshift 3
(blue), HCN at redshift 2 (green), and the sum of the two (red). Dashed curves/dots
show the spectra before masking, solid curves/pluses show the results of masking all
voxels above 6 µK (∼ 1% of the voxels in the total map). After masking, the maps
with and without foregrounds have very similar power spectra.

a single bright source or add together to mimic a bright source. This discrepancy

makes it difficult to use Equation (5.13) to predict the unmasked spectrum from a

masked one.

5.4.2 Lyman α

To facilitate comparison between our results and those given in G14, we choose

to mask 3% of the voxels in our Lyα simulations. Figure 5.8 shows the effectiveness

of this masking. The dashed lines show the power spectra of the signal, foregrounds,

and total map before masking, and the solid lines show the spectra after masking. For

the sake of visibility, we have plotted only the total foreground spectra rather than
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Figure 5.8: Power spectra and best fit curves for simulated maps of Lyα at z = 7
(blue), the sum of the three foreground lines (green), and all four lines combined (red).
Dashed curves/dots show the spectra before masking, solid curves/pluses show the
results of masking all voxels above ∼ 100 Jy/sr (3% of the voxels in the total map).
As with CO, the masking removes a large amount of the foreground contamination.

those of the three individual lines. After masking, the foreground has dropped below

the signal and the map which includes both signal and foregrounds gives a spectrum

very similar to the map without foregrounds. Thus it appears that for the model and

telescope resolution simulated here it is possible to remove most of the foreground

contribution to the power spectrum.

5.4.3 CII

Figure 5.9 shows the power spectra of the CII simulations before and after masking

1% of the voxels. Note that unlike in our CO and Lyα simulations, the foreground

lines dominate over the signal even after masking. Though we have plotted the results
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Figure 5.9: Power spectra and best fit curves for simulated maps of CII at z =
7 (blue), the total CO foreground (green), and the total emission (red). Dashed
curves/dots show the spectra before masking, solid curves/pluses show the results
after masking all voxels brighter than ∼ 104 Jy/sr (1% of the voxels in the total
map). After masking, the foregrounds still dominate over the signal. The foregrounds
continue to dominate no matter what masking percentage is chosen.

of masking 1% of the voxels, the same basic result holds true no matter how many

voxels we mask. At this resolution, it is not possible to move the foreground power

spectrum below that of the signal no matter how many voxels are removed.

5.5 Discussion

The details of masking the simulated maps explain why the three lines we consider

behave somewhat differently under masking. For the CO map, the contamination

is shot noise from the few brightest galaxies, which is easily removed. However,

both Lyα and CII have foregrounds which include strong clustering components. In
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addition, for both of these lines the average intensity of the foregrounds is large

compared to that of the signal, as seen in G14 and S15. Despite this, the masking

works well for Lyα and poorly for CII. The reason for this has to do with the size of

the voxels used in each map. Lyα is a higher frequency line than CII or CO, so it is

easier to map with high angular resolution. This means that it is easier to isolate a

single bright foreground source without removing as much signal. Our results show

that if a CII survey is limited to arcminute scale voxels then foregrounds cannot be

easily cleaned through voxel masking, and we must resort to cross-correlations to

isolate the target line.

The drop in the amplitudes of the target spectra after masking is an unfortunate

side effect of voxel masking. Ideally, an intensity mapping survey would be able to

recover the dashed blue curve in Figure 5.7 rather than the solid blue curve. This is

because we cannot avoid masking some CO sources when removing HCN. As noted

by Visbal et al.68, some of the information in the power spectrum is lost in this

masking process, specifically that encapsulated in the amplitudes of the clustering

and shot noise terms. On a brighter note, since we are only masking a percent or so

of the voxels, the shape of the clustering term of the power spectrum does not change

significantly when masked. This means that masking allows us to recover the shape

of the galaxy power spectrum even on scales where the foregrounds dominate over

the signal.

This is a potentially useful measurement for a variety of cosmological purposes.
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For example, Brax et al.87 show that modified gravity models alter the shape of the

power spectrum which would be measured by a 21 cm survey. Similar changes could

be studied in the masked maps we describe here. However, all of the astrophysical

information which was contained in the amplitudes of the clustering and shot noise

components is lost in masking, so we cannot make statements about the luminosity

functions of the target galaxies. This means that, while these intensity mapping

surveys could still be useful with only this simple foreground cleaning, it may be

necessary to use other foreground cleaning methods to reach their full potential.

Nonetheless, the information lost in voxel masking could potentially be recovered

in a number of ways. Unfortunately, the estimate of the change in power given in

Equation (5.13) differs significantly from our simulations, so this cannot be used to

recover the unmasked power. As stated previously, cross-correlations, direct obser-

vations, and power spectrum anisotropies all provide potential unbiased means of

cleaning foregound lines. One could also make use of the one-point statistics of a

map to separate signal from foreground (see Chapter 7).

Note that care must be taken when fitting uncleaned intensity mapping power

spectra to determine cosmological or astrophysical parameters. For example, The

power spectrum of a CO intensity map can in principle be fit to determine the values

of various model parameters35, and the fitted parameters will depend on how much

shot noise is present in the map. However, the foreground line will add an uncertain

amount of extra shot noise to the spectrum, which will bias the results of any fit.
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We have not included the effects of instrumental noise in any of these calculations.

Though we leave for future work a full analysis of the behavior of noisy maps with

masked voxels, we can make some basic arguments to predict whether or not our

basic premise would hold in a map with noise. If a map has too much noise, then

the voxels which are masked will be bright due to random noise fluctuations in no

correlation with the brightness of the target or foreground galaxies in those voxels.

Therefore, if a simulation has too much noise this voxel masking technique is useless.

The survey parameters used in Chapter 3, which were chosen to provide a reasonable

chance of detecting CO at z = 3, give a noise per voxel σN = 1.7 µK. If we generate

noise maps with the value in each voxel drawn from a Gaussian with zero mean and

standard deviation of σN , we can estimate how many of the masked voxels will be

bright due to noise rather than signal. We find that adding noise to our simulated

CO+HCN map increases the number of voxels above our 6 µK cutoff by roughly

25%. These spurious bright voxels will reduce the effectiveness of the masking, but

it should still be possible to remove most of the bright sources from a map. If the

noise is significantly stronger, the masking will be ineffective. However, in this case

the signal to noise ratio for detecting the CO line at all becomes considerably smaller

as well.

In addition, we assumed the linear form for the underlying matter power spectrum

in our calculations. Though we account for some nonlinearity by using a lognormal

galaxy density field, a full treatment of the nonlinearities would add more power to
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our maps on small scales. However, this would likely not have a significant qual-

itative effect on our results. There may be some minor differences in the ratio of

signal/foreground power after masking, however the scales where nonlinearity be-

comes most significant are also scales where the power spectra tend to be shot noise

dominated, so we do not expect any dramatic effects from a nonlinear calculation.

5.6 Summary

We have presented an exploration of the effectiveness of bright voxel masking on

removing foreground lines from intensity maps. Using empirical luminosity function

models and simulated intensity maps we have illustrated how masking changes the

power spectra of maps for three cases: CO contaminated with HCN, Lyα contami-

nated with various atomic lines, and CII contaminated with higher order CO lines.

For the CO survey, the foreground line was faint enough on average that removing

the brightest voxels significantly dropped the amplitude of the foreground spectrum.

The high angular resolution possible in the Lyα survey meant that the foreground

contamination was limited to a few voxels which could be easily masked. The CII

survey, however, had both bright foregrounds and large voxels, so the masking was

found to be ineffective.

For all of the lines, masking bright voxels altered the amplitude of the recov-

ered power spectrum away from the desired uncontaminated value. This means that
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masking loses some of the information in the spectrum. However, in the two surveys

where masking was effective, the masked spectrum had a clustering component with

the same shape as the unmasked clustering spectrum. Therefore, though the astro-

physical content of the map is lost, the cosmological information contained in the

shape of the clustering spectrum can be recovered from a masked map. Thus, voxel

masking seems to be a useful technique for obtaining information from even a highly

contaminated CO or Lyα map. If we are to obtain the remainder of the information

in these surveys, it will be necessary to use some other foreground cleaning technique,

such as cross correlation, or to augment it with a P (D) analysis of the progressively

masked power spectra. If we are to fully unlock all of the benefits of intensity map-

ping surveys, it is imperative that we utilize these or other methods to isolate the

signal from the foregrounds.
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Chapter 6

Observing Molecular Gas with CO

Cross-Correlations

In Chapter 5, we discussed how bright foreground lines can contaminate intensity

maps, and described one possible method of removing them. Even faint foreground

lines, however, still contain information about their emitters. In this chapter, we

will discuss how to isolate and access this information. To illustrate this, we will use

the example of the first rotational transition of 13CO, an isotopologue of the 12CO

molecule we have been discussing so far. In particular, we will show how we can use

the 13CO line to study molecular gas properties at high redshift.

This chapter is primarily based on work published in Ref.48. In Section 6.1, we

will describe the usefulness of 13CO as a tracer of galaxy properties. In Section 6.2,

we will explain schematically how to use cross-correlations to access the 13CO line in
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a map dominated by the brighter 12CO isotopologue, with a more formal treatment

present in Section 6.3. We forecast the ability of a hypothetical CO intensity mapping

experiment to constrain molecular gas physics using this cross-spectrum in Section

6.4. A brief discussion of these results can be found in Section 6.5, along with a

summary in Section 6.6.

6.1 Molecular Gas and 13CO

Most available observations of molecular gas come from the Milky Way and other

nearby galaxies. However, recent years have seen an explosion of information about

the high redshift universe, from precise measurements of the cosmic microwave back-

ground2 to large galaxy surveys such as the Sloan Digital Sky Survey88. A consensus

picture of the cosmic star formation history has emerged, with star formation rates

gradually rising from the end of reionization to a peak around 2 ≲ z ≲ 3 before

beginning to decline89. Unfortunately, our understanding of molecular gas at these

redshifts is still quite limited; direct molecular emission has only been measured for

a small selection of sources at these redshifts, limited to the most luminous of far-

infrared and submillimeter galaxies90. A full picture of high-redshift molecular gas

and its relationship to star formation requires a more systematic approach.

Though it has seen quite a bit of study, there are drawbacks to using 12CO, the

most common CO isotopologue, alone as a molecular gas tracer. Since the rotational
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lines of 12CO are strong, they saturate at relatively low column densities compared to

other lines, becoming optically thick relatively soon after densities rise sufficiently to

support CO formation in the first place26. Thus it is a common practice to combine

observations of 12CO with those of other, fainter lines which can penetrate further

into molecular clouds. 13CO, a stable isotopologue of the usual 12CO molecule, is

commonly used to gain information about denser material in environments ranging

from protoplanetary disks91 to giant molecular clouds92. 13C has an abundance on

the order of a few percent of that of 12C93, and the relative abundances of the two CO

isotopologues is similar, up to corrections due to chemical fractionation and selective

photodissociation94. Combining measurements of 12CO and 13CO for a single system

facilitates the study of molecular gas across a wider density range95.

At cosmological distances, the 12CO emission lines can only be observed in very

bright sources, and 13CO observations are limited only to extreme systems such as the

strongly lensed Cloverleaf quasar96. The difficulty of detecting these lines severely

limits what can be learned from traditional galaxy surveys at these redshifts. Even

in these very bright sources, most radio surveys lack the resolution needed to probe

sub-galactic scales, preventing the study of gas distributions within any individual

galaxy. Intensity mapping, on the other hand, probes the entire galaxy population,

including the large numbers of faint sources inaccessible to traditional surveys. Below,

we will demonstrate how CO intensity maps can measure the detailed molecular gas

composition and distribution at high redshifts. These measurements will help unveil
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how star formation is fed in distant galaxies, systems that are all but invisible to

current techniques.

6.2 Leveraging Isotopologues

Any 12CO survey will also contain 13CO in an overlapping cosmological volume.

Though 13CO is too faint and only marginally separated in frequency in comparison to

12CO to ever be detected by itself, by cross-correlating the proper frequency bands in a

CO survey, we can measure the correlation between the intensities of these lines. Since

the lines come from the same population of galaxies, this cross-correlation depends on

the relative abundances of the two carbon species and the optical depths of the CO

lines. Thus by performing this cross-correlation, we can make statements about the

distribution of gas densities in our galaxy population, despite having no information

about any individual galaxy or molecular cloud. This measurement cannot easily be

made using any other method, yet it is available without any extra observation from

any CO intensity mapping survey.

Consider a CO intensity mapping survey similar to the planned COMAP exper-

iment described in Table 2 of Li et al.35 which would cover a frequency range from

30 to 34 GHz. This corresponds to z = 2.39 to 2.84 in 12CO and z = 2.24 to 2.67

in 13CO. Figure 6.1 shows a schematic view of what the contributions to a survey

from these two lines might look like. A given set of galaxies will emit both 12CO and
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Figure 6.1: A schematic view of the contributions from 12CO and 13CO to a hypo-
thetical intensity mapping survey. The top panel shows the total observed intensity
in each frequency bin assuming that the observed 13CO intensity from all galaxies is
10% of the 12CO intensity. The middle and bottom panels show the contribution to
the total signal from 12CO and 13CO emission respectively. The shaded regions in
these panels highlight emission that comes from the same slice of physical space.

13CO lines at a given position in physical space. The two lines are then redshifted

to different bands in frequency space as shown in the bottom two panels, then added

together to produce the observed signal in the top panel. For illustration purposes,

Figure 6.1 assumes that the observed 13CO intensity from all galaxies is 10% of the

12CO intensity.

Even with a somewhat generous 10% intensity ratio, the contribution from 13CO
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to the total intensity is small, and will therefore be virtually impossible to isolate

in any individual band. However, looking at the bottom two panels of Figure 6.1

demonstrates that the two lines trace the same structure, just shifted in frequency.

At z = 2.6, this shift in observed frequency is ∆ν12/13 = 1.4 GHz. The shaded bands

show the two peaks which appear at the same location in physical space. This means

that we should expect significant correlation between bands separated by ∆ν12/13.

By cross-correlating said bands we can compare the emission in both isotopologues

coming from the same set of sources.

What we will observe in this cross-correlation depends on the details of the molec-

ular gas properties in the surveyed volume. Obviously we expect the signal to depend

on the relative amounts of 12C and 13C, which depends on the nucleosynthesis history

up to the observed redshift. The observed signal will also depend on the density of

the emitting molecular clouds. Since 13C is significantly less abundant than 12C, we

expect the 12CO line to become optically thick well before the the 13CO line does. If

much of the CO molecules in a galaxy are found in very dense regions, this effect can

significantly alter the observed intensities.

It is relatively straightforward to qualitatively predict what the observed intensity

ratio I13/I12 between the lines will be in two extreme cases. We will ignore for now

small differences between the emission and absorption properties of the two molecules.

In the limit of very diffuse gas, where all of the 12CO emission is optically thin, the

only thing that matters is the relative abundance of the two species and we expect
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I13/I12 to approach the abundance ratio of the two isotopologues. In the opposite

limit, where the emission comes from a very dense region and both lines are saturated,

we expect I13/I12 to approach unity, since each photon will undergo a large enough

number of emission and absorption events to wash out any dependence on the relative

abundances. These results depend only on basic radiative transfer physics, and are

independent of how the gas is modeled.

In real galaxies, we expect there to be contributions from both optically thin

and optically thick regions. By cross-correlating frequency bands separated by the

frequency difference between the two isotopologues, we can constrain both the abun-

dance ratio of the two species and the amount of emission that comes from dense,

optically thick regions. Both of these properties depend on both the instantaneous

star formation rate and the cumulative star formation history at a given redshift.

Below, we will derive this intensity ratio as a function of these quantities in a more

quantitative fashion.

6.3 Formalism

In this section we will present a general formalism for predicting the cross power

spectrum of 12CO and 13CO emission in an intensity map. This method should be

applicable regardless of the exact model used to predict the molecular gas properties

of a galaxy distribution.
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6.3.1 12CO/13CO Intensity Ratios

We derive the intensity ratio of the two CO lines for a given molecular cloud

and its dependence on gas properties informed by Pineda et al.95. For the purpose

of this work, we assume that the different isotopologues of CO are uniformly mixed

throughout the medium, and consequently, both molecules will have identical exci-

tation environments at any given line of sight, including densities and temperatures.

Consider a generic emission line coming from a line of sight through molecular ma-

terial with total optical depth τr. If there is no background intensity and the line

profile is narrow compared to the frequency bandwidth of the observing instrument,

then the observed intensity in a given band will be

I =

∫ τr

0

j(τ)

κ(τ)
e−τdτ, (6.1)

where j(τ) is the emissivity and κ(τ) = nσ is the absorption coefficient for a molecule

with number density n and absorption cross section σ. Because our observations come

from only a fairly narrow redshift range, it is reasonable to assume that there is no

significant effect from any background sources. This also means that the probability

of seeing emission from two galaxies in the same frequency band along the same line

of sight is negligible.

The emissivity is36

j =
hν

4π
nuAul, (6.2)
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where Aul is the Einstein A coefficient for the transition, ν is the rest frame emission

frequency, and nu is the number density of molecules in the upper state. We can

rewrite this in terms of the total number density n as

j =
3h2ν2Aul

8πkBTex
ne−hν/kBTex , (6.3)

where Tex is the excitation temperature of the molecule and we have approximated the

partition function as Z ≈ 2kT/hν. This approximation is valid when kTex ≫ 2hν 95,

and thus should hold in typical molecular cloud conditions.

If we change the integration variable in Equation (6.1) to column density we have

I =
3h2ν2Aul

8πkTexσ
e−hν/kBTex

(
1− e−N l

rσ
)
, (6.4)

where N l
r is the total column density of molecules in the lower state, and we have

assumed that the cloud properties are constant along the line of sight. The fraction

of molecules in the lower state is given by

N l
r

Nr

=
1

Z
e−El/kTex . (6.5)

where El is the energy of the ground state and Nr is the total column density.

Now consider a population of CO molecules with isotope ratio R ≡ n13/n12, which
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in turn means that Nr13 = RNr12. The ratio of the line intensities is then

I13
I12

=

(
ν13
ν12

)2(
A13

A12

)(
σ12
σ13

)
e−h(ν13−ν12)/kBTex

[
1− exp

(
−Rσ13N l

r12

)
1− exp

(
−σ12N l

r12

) ]
, (6.6)

The cross sections σ12 and σ13 corrected for stimulated emission are given by

σ =
3c2Aul

8πν2
(
1− e−hν/kBTex

)
∆νFWHM, (6.7)

where ∆νFWHM is the frequency full width at half maximum of the line36.

The Einstein A coefficients for the two transitions are97 A
12CO
1−0 = 7.21× 10−8 s−1

and A
13CO
1−0 = 6.34× 10−8 s−1. We assume that the molecular material has a constant

excitation temperature Tex = 20 K, and that the width of the line is dominated by

a turbulent velocity distribution with a velocity FWHM of 10 km/s, similar to the

velocities of the largest local GMCs98, which translates to ∆νFWHM = 3.83 MHz for

the 12CO line and 3.67 MHz for the 13CO line. This yields cross sections σ12 =

3.67× 10−17 cm2 and σ13 = 3.55× 10−17 cm2, and

I13
I12

= 0.84
1− exp (−0.34Rσ13Nr12)

1− exp (−0.36σ12Nr12)
, (6.8)

where the factors of 0.34 and 0.36 in the exponentials come from the conversion

between N l
r and Nr.

If we expand this quantity in the limit of small optical depth, we find that I13/I12
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goes close R at zero order. In the opposite limit, where all of the emission is optically

thick, we find that I13/I12 approaches 0.84. Up to the differences in atomic-scale

physics between the two CO species, this agrees with the prediction from Section

2. Figure 6.2 shows the full behavior of this intensity ratio as a function of column

density for different isotope ratios. The two extremes can clearly be seen, along

with a transition region where the 12CO line is optically thick but the 13CO line

remains optically thin. Again, this result is independent of the detailed distribution

of molecular material. We note, however, the precise values of the intensity ratio will

be dependent on the excitation temperatures of the medium along the line of sight,

as well as the details of selective chemistry and photodissociation. For the purpose

of forecasting, however, we neglect these effects for simplicity.

6.3.2 Power spectra

Each galaxy contributes a brightness temperature Tb to the map, where the value

of Tb is drawn from a distribution dngal/dTb, which in turn depends on the galaxy

luminosity function and the parameters of the intensity mapping instrument. The

total number density of emitting sources is then ngal =
∫
dngal/dTbdTb.

In addition to the usual auto-spectrum of each line, we can compute a cross

power spectrum for pairs of frequency bands separated by ∆ν12/13, the difference in

observed frequencies of the 12CO and 13CO lines at a desired redshift. The first term

in Equation 2.1 comes from correlations between pairs of sources, each weighted by
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Figure 6.2: Intensity ratios between the two different CO lines as a function of 12CO
column density for different carbon isotope ratios. The black dashed line shows the
column density where the 12CO optical depth is unity, the colored dashed lines show
where the 13CO optical depth is unity for the four shown values of R.

the amount of intensity they produce. The shot noise term comes from the zero-

lag correlation function, and thus essentially gives the correlation of each source with

itself. For the case of 12CO crossed with 13CO, the two lines are each tracing the same

population of sources. To compute the large-scale clustering term of a cross spectrum,

we then simply need to weight one of each pair of sources by 12CO intensity and the

other by 13CO intensity. The cross spectrum is then

P12×13(k, z) = T b,12(z)T b,13(z)b12(z)b13(z)Pm(k, z) + P 12×13
shot . (6.9)

If we assume the 13CO intensity is a function Tb,13(Tb,12) of the 12CO intensity, as
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implied by Figure 2, the new shot-noise term is given by

P 12×13
shot =

∫ ∞

0

Tb,12Tb,13(Tb,12)
dngal

dTb,12
dTb,12. (6.10)

Since we are considering cross-correlations between different frequency bands of

an intensity map, it may be more intuitive to again project down to two-dimensional

power spectra, either within an individual band in the case of an auto-spectrum or

between two bands in the case of a cross spectrum. As shown in Chapter 2, the

angular power spectrum Cℓ at a given multipole ℓ is given by

Cℓ =
2

π

∫
k2P (k)

[∫
f1(r1)jℓ(kr1)dr1

] [∫
f2(r2)jℓ(kr2)dr2

]
dk, (6.11)

The selection functions f1 and f2 are now set by the shape of the two frequency chan-

nels being correlated. Equation (6.11) is somewhat troublesome to evaluate exactly,

so we will follow the approximations in Section 2.2 to simplify our computations.

For the purposes of this work, we will assume that the selection functions f1 and

f2 take the form of top-hat functions with widths set by the instrumental frequency

bandwidths. For a cross-correlation, these selection functions should be chosen so

that 12CO emitters at redshift z are included in f1 and 13CO emitters at redshift z

are included in f2, i.e. that f1 and f2 correspond to frequency bands separated by

∆ν12/13. From here on we will assume for simplicity that the redshift ranges of f1

and f2 overlap exactly. This may not be the case for a real experiment, but this will
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not alter our final results. Note also that f1 will contain 13CO emitters and f2 will

contain 12CO emitters from outside the target redshift range. This should not be an

issue, as the spatial separation between the 12CO emitters in the two bands is large

enough that they should be uncorrelated on the scales we care about. See Appendix

A for a quantitative proof of this result.

6.4 Forecast

In the previous section we outlined the basic physical process which controls the

emission of these two lines within a cloud and the final observables which will be

computed from an intensity map. What we need now to forecast constraints on these

observables is a model connecting the cloud-scale physics to the cosmological-scale

power spectra. Given the large astrophysical uncertainties at these high redshifts, we

will model this connection in a fairly simple manner. However, the advantage of the

formalism presented above is that it holds regardless of exactly how the molecular gas

is modeled. One could easily replace the calculations presented below with a more

sophisticated model if one were made available.

At the redshifts we are considering, virtually all CO emission comes from within

galaxies. Since our beam is large compared to an individual galaxy, we can model

each galaxy as a point source with a given L12 and L13. We can predict the ratio of

89



CHAPTER 6. CO CROSS-CORRELATIONS

these luminosities by slightly modifying Equation (6.8):

L13

L12

= 0.84
1− exp

(
−0.34Rσ13N r12

)
1− exp

(
−0.36σ12N r12

) , (6.12)

where N r12 is now the 12CO column density averaged over all lines of sight through the

galaxy. These luminosities can then be converted to brightness temperature following

Equation (4.4).

Equation (6.12) relates the luminosity of a galaxy in the two CO lines to the

properties of its molecular clouds. In order to compute power spectra from a pop-

ulation of such galaxies, we will use empirical results to compute a distribution of

12CO luminosities, as well as a relation between 12CO luminosity and molecular cloud

density. With these tools in hand, we can predict a distribution of 13CO luminosities

and forecast a power spectrum for an intensity mapping experiment.

6.4.1 12CO Luminosity Function

The literature contains a wide variety of methods for modeling CO luminosity

functions at high redshift, ranging from simple scaling arguments62,31 to sophisticated

semianalytic calculations99,100. We are more interested here in the relation between

12CO and 13CO rather than the exact behavior of the 12CO line, so we will err on the
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side of simplicity. We assume that the 12CO luminosity function takes the form

dn

dL12

= ϕ∗

(
L12

L∗

)α

exp

(
−L12

L∗
− Lmin

L12

)
, (6.13)

which is simply a Schechter function with an exponential cutoff added to the low-

luminosity end. This choice has the advantage that a wide variety of CO emission

models can be expected to produce luminosity functions with similar shapes.

We choose values for the free parameters (ϕ∗, α, L∗, Lmin) by comparing to the

results of Li et al.35. This model uses a simulated relationship between halo mass

and SFR101, then uses scaling relationships between SFR and far infrared luminosity

and between FIR luminosity and CO luminosity to get L12 as a function of halo

mass. Finally, they add lognormal scatter around this relation to obtain a luminosity

function. If we fit our Schechter function to these results, we get best fit parameters

ϕ∗ = 2.8× 10−10 (Mpc/h)−3 L−1
⊙ , α = −1.87, and L∗ = 2.1× 106 L⊙. The Li et al.

model assumes a hard cutoff in 12CO luminosity for halos smaller than 1010 M⊙. We

set the location of our low-luminosity cutoff at Lmin = 500 L⊙, which is the luminosity

in their model which corresponds to 1010 M⊙.

In order to compute power spectra, we also need a prediction for the luminosity-

weighted bias b. In principle, the luminosity weighting means that the bias should

take into account the full luminosity function model. However, in the interest of

keeping things simple, we will follow literature models77 in assuming for the purpose
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of the bias calculation that luminosity is proportional to halo mass. The bias is then

given by Equation (3.11). We again use the Tinker et al.102 mass function dn/dM

along with the corresponding mass-dependent bias b(M)103. When calculating the

cross spectrum between 12CO and 13CO we will use the same bias factor for both

lines. One could just as easily assume a more sophisticated weighting in Equation

(3.11) and adjust it slightly to take into account a relation between L12 and L13. Since

the two lines trace the same population of galaxies, this would cause at most an order

unity change in the final amplitudes of our power spectra, and likely much smaller.

Using the Li et al. L(M) relation to weight the bias, for example, only increases b12

by ∼ 5%. This is a very small effect, especially since the astrophysical uncertainties

in the rest of the model are so very large.

6.4.2 Relating Luminosity to Column Density

In order to determine the distribution of 13CO intensities, we would like to rewrite

the ratio L13/L12 from Equation (6.12) in terms of the 12CO luminosity L12. Doing

so requires a relationship between average column density N r12 and L12, which we

will derive here using a similar set of scaling relations to those used to get the Li et

al. model described above.

We start with the assumption that the average ratio ZCO of 12CO and H2 column

densities is roughly 10−4, following Bolatto et al26 based on the observations of Sofia

et al.104. We can then convert to a mean surface star formation rate density ΣSFR
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using the Schmidt-Kennicutt law

ΣSFR

M⊙ kpc−2 yr−1
= 2.5× 10−4

(
ΣH2

M⊙ pc2

)1.4

= 4.8× 10−32

(
NH2

cm−2

)1.4

, (6.14)

where we have assumed that the mass of the gas is dominated by H2.

The star formation rate is then simply

SFR = πr2galΣSFR, (6.15)

where we assume a representative galaxy radius rgal = 30 kpc for all galaxies. We

relate star formation rate to L12 using Model A of Pullen et al.31, which uses the

relation between SFR and far infrared luminosity from Kennicutt105 and the relation

between FIR luminosity and CO luminosity from Wang et al.80 to obtain

L12

L⊙
= 3.2× 104

(
SFR

M⊙ yr−1

)3/5

. (6.16)

Combining all of this together yields

N12

cm−2
= XL

(
L12

L⊙

)1.2

, (6.17)
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Table 6.1: Survey parameters used for Fisher analysis.

Parameter Pathfinder Full Future
Frequency range (GHz) 30-34 30-34 30-34
Patch Area Ωs (deg

2) 2.5 6.25 30
Beam Size θFWHM (arcmin) 6 3 2

Observing time/Patch tobs (hr) 1500 2250 2250× 5
Number of patches Npatch 4 4 4
Sensitivity s (µK s1/2) 1026 783 585

Channel width ∆ν (MHz) 40 10 10
Number of channels Nch 100 400 400

where XL ≡ 3.5× 1010. The luminosity ratio of our two CO lines is then

L13

L12

= 0.84
1− exp

[
−0.34Rσ13XL (L12/L⊙)

1.2]
1− exp

[
−0.36σ12XL (L12/L⊙)

1.2] , (6.18)

These luminosities then can be converted to intensities using Equation (4.4).

6.4.3 Experimental Parameters

When forecasting the constraining power of the measurements discussed here, we

will consider three different surveys: the COMAP “Pathfinder” and “Full” surveys

described by Li et al.35 and a hypothetical “Future” survey which has improved

sensitivity, resolution, and additional observing time. The parameters we use for these

three instruments are given in Table 6.1. Construction on the “Pathfinder” survey is

currently underway, the “Full” experiment is planned as a next step. The “Future”

experiment assumes a modest increase in sensitivity and angular resolution, and either

additional observing time or an array of several dishes observing simultaneously.
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6.4.4 Fisher analysis

Combining the results from previous sections assuming the frequency bandwidth

of the “Full” or “Future” experiments yields the four power spectra shown in Figure

6.3. We assume a fiducial CO isotopologue ratio R = 1/70, which is representative

of the many local and extragalactic measurements94,106,107.

The blue and orange dashed curves show the auto-spectra for the 12CO and 13CO

lines respectively. Neither of these are observable on their own, as correlating any

given band with itself will simply give the sum of the two, which is shown in green.

This total auto-spectrum is essentially just the 12CO spectrum, with a correction of

order a few percent from the 13CO emitters. The red curve shows the cross spectrum

between two bands separated by ∆ν12/13. Note that the quantity plotted on the y-axis

of Figure 6.3 is Cℓ rather than the commonly seen ℓ(ℓ+1)Cℓ/(2π). The error σℓ at a

given multipole is given by Equation (3.18). The shaded region in Figure 6.3 shows

the error on the cross-spectrum assuming the parameters of the “Full” experiment

with multipoles binned in sets of 10.

We stated previously that the cross-spectrum of these two CO lines is interesting

because it depends on both the relative abundances of the two carbon species and the

distribution of molecular gas densities at a given redshift. The abundance information

can be trivially parameterized using the isotopologue ratio R, which depends on the

nucleosynthesis history. We parameterize the gas density distribution by defining the
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Figure 6.3: Angular power spectra for different combinations of the two CO lines.
Dashed lines show auto-spectra of 12CO (blue) and 13CO (orange), which are not
independently observable. Solid lines show the two observable spectra, the auto-
spectrum of a single frequency band (green) and the cross-spectrum of two bands
separated by ∆ν12/13 (red). The red shaded region shows the instrumental error on
the cross-spectrum assuming the parameters of the “Full” experiment and multipoles
binned in sets of 10.
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quantity

fs ≡
∫∞
Tτ
Tb,12dngal/dTb,12dTb,12∫∞

0
Tb,12dngal/dTb,12dTb,12

, (6.19)

which is the fraction of the measured 12CO emission coming from optically thick lines

of sight. In order to constrain fs, we treat the quantity XL in Equation (6.17) as a

free parameter. The 12CO line becomes optically thick when N12σ12 = 1, or when

N12 = 6 × 1016 cm−2. From a given value of XL we can compute an intensity Tτ

from Equations (6.17) and (4.4) which corresponds to this column density, then use

Equation (6.19) to compute a value of fs. Our fiducial value for XL corresponds to a

saturated fraction fs = 0.36.

No relevant constraints on these quantities currently exist at these redshifts. The

parameters R and fs as we have defined them here are values averaged over all of

the molecular gas in a given redshift slice. Since only an intensity mapping survey

can access the vast majority of the galaxy population, these quantities cannot be

realistically constrained by existing data. This also means that even weak constraints

from an intensity map hold great scientific value.

We estimate constraints on R and fs using the Fisher matrix formalism108,109,110.

This assumes that the likelihood distribution of the parameter values is a multivariate

Gaussian centered on the fiducial values. The Fisher matrix Fµν for a model with

parameters pµ is given by

Fµν =
∑
ℓ

1

σ2
ℓ

∂Cℓ

∂pµ

∂Cℓ

∂pν
, (6.20)
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where Cℓ is the power spectrum we are analyzing. For simplicity, we use the power

spectrum computed at the central redshift z = 2.6 of our survey for all frequency bins

and stack the contribution from each. The Fisher matrix computed from Equation

(6.20) can then be inverted to obtain the covariance matrix of the model parameters.

Figure 6.4 shows the results of our Fisher analysis for our three experiments.

Dark colors show 1-σ constraints, light colors show 2-σ constraints. The “Pathfinder”

survey only yields a signal-to-noise ratio of ∼ 1 for the cross-spectrum, so it effectively

provides an upper limit on the cross-correlation signal. The “Full” survey does better,

however the constraints on the two parameters are quite degenerate, leading to order

unity 1-σ fractional errors on both parameters. Despite this degeneracy, the volume

of parameter space is still dramatically reduced compared to the complete lack of

constraints currently available. Fractional errors on our two parameters fall to ∼ 30%

for the “Future” experiment.

For these constraints, we have assumed that the 12CO luminosity function is known

exactly. This may seem like a poor assumption, since the cross-spectrum depends

equally on the properties of both lines. However, the auto-spectrum, which is es-

sentially the 12CO spectrum, will be measured as well. The auto-spectrum has an

amplitude roughly 10 times greater than the cross-spectrum, so the remaining uncer-

tainty in the cross-spectrum from 12CO emission should be very small compared to

that from 13CO emission, especially if things like the one-point PDF of the map (see

Chapter 7) are used to further constrain dn/dL12. For more detail, see Appendix B.

98



CHAPTER 6. CO CROSS-CORRELATIONS

Figure 6.4: Forecasted 1- and 2-sigma constraints (dark and light respectively) on
isotopologue ratio R and saturated fraction fs for the “Pathfinder” (yellow), “Full”
(red), and “Future” (blue) experiments.

6.5 Discussion

Using intensity mapping, we have demonstrated that it is possible to constrain

both carbon isotopologue ratios and molecular gas density distributions at cosmolog-

ical distances. These measurements cannot be made using any other method, as even

the deepest targeted survey would only be able to study a handful of the brightest

CO emitters35. Intensity mapping surveys will allow measurement of these quantities

from the entire galaxy population. Using the cross-correlation techniques discussed

here also allows significant improvement beyond what is possible using intensity map-

ping of only a single spectral line, allowing for a much more in-depth probe of the

molecular gas which feeds star formation.
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As seen in Figure 6.4, constraints on the parameters R and fs are quite degener-

ate for all three of our surveys. This degeneracy arises because, as shown in Figure

6.3, most of the signal-to-noise comes from the clustering component of the signal,

which depends only on the mean intensities of the two lines. Using the mean intensity

alone cannot distinguish between a higher 13CO abundance or more saturated 12CO

emission. This degeneracy can be broken somewhat by a measurement of the shot

noise. Indeed, a large part of why the “Future” survey results in a weaker degen-

eracy is because it has much more constraining power in the shot-noise component

of the spectrum. It may thus be possible to reproduce some of the extra constrain-

ing power of the “Future” experiment by combining the “Full” experiment with an

interferometric intensity mapping experiment. Interferometers such as the one used

in the COPSS34 survey are sensitive to considerably smaller scales than single-dish

COMAP-like experiments. This makes them well suited to studying the shot-noise

dominated regime.

One could also potentially further improve these constraints by combining an

intensity map with traditional galaxy survey data. Even if only the brightest end of

the luminosity function were constrained through these surveys, that could still help

to break this degeneracy. An in-depth study of quasar lines could accomplish the

same purpose. Neither of these measurements can hope to do as well as our intensity

mapping forecasts on its own, but they could provide valuable complements. If the

degeneracy between R and fs were completely broken, the fractional uncertainties on
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these quantities in our forecast for the “Full” survey would drop from order unity to a

few percent. It is probably overly optimistic to assume perfect degeneracy breaking,

but the potential for dramatic improvement is clear.

For the above forecasts, we constrained the properties of the CO emission aver-

aged over the entire survey volume. However, for a sufficiently sensitive survey, one

could break the volume down into multiple redshift bins and constrain the redshift

variation of these quantities. One could then compare to other redshift-dependent

measurements, such as the star-formation history89. We used a “Future” survey tar-

geting the same redshift range as the planned COMAP “Pathfinder”, but there is no

reason why such a futuristic experiment could not be extended to a broader redshift

range. In addition, some have proposed conducting CO intensity mapping surveys

at z ∼ 6 − 10 as a probe of reionization physics30. At these redshifts, we begin to

run into the limits of what is known about molecular gas, the formation of carbon

and consequently CO, and the formation of the earliest generations of stars where

metallicity is limited. With sufficient sensitivity, one could apply the cross-correlation

methods applied here to understanding this mysterious era in cosmic history.

It is important to note here that the forecasts given in this work are based on

deliberately simplified modeling. We have neglected a number of effects here which

deserve more consideration in future work. For example, our model assigns a 13CO

luminosity to a given galaxy based entirely on its average 12CO column density, which

in turn is determined solely by its 12CO luminosity. In reality, a galaxy will contain

101



CHAPTER 6. CO CROSS-CORRELATIONS

a large number of heterogeneous molecular clouds with different densities, leading

to a more complicated relation between the two CO lines. In the short term, this

could perhaps be taken into account by simply assuming a scatter in the luminosity

relations35. The basic framework we have outlined here can be straightforwardly

generalized to more sophisticated models as we gain a better understanding of the

environments in these distant galaxies.

The interpretation of this type of measurement may also be complicated by the

fact that the metallicity of high-redshift systems could deviate significantly from solar.

It is well-established that the molecular gas to CO ratio increases in lower-metallicity

systems26. This fact must be taken into account when attempting to constrain global

molecular gas properties from these observations, and will add additional uncertainty.

In addition, low metallicity may alter the correlation between molecular gas and star

formation. In such systems, star formation can proceed in regions which remain

dominated by atomic gas. These regions will produce much less CO emission than

would be expected from star formation at solar metallicity111,112.

We have also neglected the effects of various foregrounds in this analysis. How-

ever, we do not expect this to have a substantial impact on the results in this case.

There are two types of foregrounds which affect intensity mapping surveys. The first

are those with continuum spectra, such as Milky Way dust and synchrotron emission.

These foregrounds have been extensively studied for the case of 21 cm reionization

experiments12, which have a considerably higher foreground-to-signal ratio than CO

102



CHAPTER 6. CO CROSS-CORRELATIONS

experiments. Since these foregrounds have little spectral structure, they only con-

tribute substantially to Fourier modes which fall close to the line-of-sight, and can

thus be cleaned simply by subtracting these modes from an analysis33. The second

type of foreground are spectral lines from other redshifts which fall into our target fre-

quency bands. As mentioned previously, 13CO can be thought of as a line foreground

to 12CO, though not an important one. A sufficiently bright line can in principle

contaminate the CO auto-spectrum (see Chapter 5), but unless there exists a pair of

foreground lines separated by exactly ∆ν12/13 there should be no contamination to

the cross-spectrum we looked at here.

As mentioned previously, intensity mapping surveys are planned in many other

lines besides CO, such as [CII], Lyα, and the 21 cm HI line. The broad strokes of

the work we have presented here could easily be applied to cross-correlation between

CO and these other lines. Such cross-correlations would require additional planning

compared to our CO isotope correlation, since both lines would not appear in the same

survey. However, if experiments were planned well to target the same volumes, one

could potentially learn about high-redshift galaxies in even greater detail, allowing

us to study the complex ecology of gas dynamics and star formation across the entire

history of the universe.
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6.6 Summary

We have demonstrated here a method whereby we can dramatically improve our

understanding of molecular gas at high redshifts by combining information from 13CO

in intensity maps with the usual 12CO. This is a direct extension of similar techniques

used when studying local molecular clouds. By cross-correlating properly chosen slices

of a CO intensity map it is possible to determine the total amount of 13CO emission

and how it varies with 12CO emission. We showed how the cross-spectrum of these

two lines can be used to constrain not only the abundance ratio of these two species

but also the density distribution of molecular gas in the mapped galaxy population,

quantities which are extremely difficult if not impossible to measure with any other

method. This technique will allow us to gain deep insights into the processes that

feed star formation throughout cosmic history. By branching out to more detailed

models, additional spectral lines, and broader redshift ranges we can study the com-

plex ecology of star formation and galaxy evolution at a level of detail unimaginable

with traditional methods. We have likely only scratched the surface of what intensity

mapping can teach us about the distant universe.
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One-Point Statistics of Intensity

Maps

Up to this point, we have considered intensity maps entirely in terms of their

power spectra. However, as described in Chapter 4, the brightness fluctuations in

these maps are highly non-Gaussian. For non-Gaussian fields, the power spectrum, a

two-point statistic, leaves out a significant amount of information about the higher-

order moments of an intensity distribution. This limits the ability to constrain line

luminosity functions with power spectra alone. In the CMB, non-Gaussianities are

typically probed using higher-point statistics such as the bispectrum and trispec-

trum113. Unfortunately, these statistics are rather difficult to work with, both from

a theoretical and observational perspective. We propose in this chapter instead to

study the one-point statistics of intensity maps using a quantity we will refer to as
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the voxel intensity distribution, or VID. This VID statistic is the probability distri-

bution function of observed intensities in individual voxels. It can be predicted in a

straightforward manner from a model luminosity function, and it can be estimated

from a map simply by making a histogram of the observed intensity values.

Our VID method is an extension of a technique known as probability of deflec-

tion, or P (D) analysis, which is a general method for predicting observed intensities

from confusion-limited populations. P (D) analysis was originally developed for ra-

dio astronomy114, but has since been applied to observations ranging from gamma

rays115,116 to X-rays117 to the optical118 to the submillimeter119,120. Since intensity

maps provide deliberately confused observations of galaxy populations, they are good

candidates for P (D) analysis. Here, we study this method in detail with the goal of

creating a procedure that can be readily applied to many different intensity-mapping

surveys targeting different lines. We will again demonstrate this method using a

hypothetical CO intensity mapping survey.

This chapter is primarily based on work published in Ref.49. Section 7.1 contains

a discussion of the power spectrum and its limitations along with the presentation of

our VID formalism. Section 7.2 describes the CO emission model we will use in this

chapter, which we apply in Section 7.3 to demonstrate the constraining power of the

VID. Section 7.4 investigates how contamination from continuum emission, interloper

lines, and gravitational lensing effects our constraints. We discuss our results in detail

in Section 7.5 and conclude in Section 7.6.
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7.1 P (D) Formalism

The power spectrum is a useful statistic when studying cosmological density fields,

but it suffers from one key limitation. All of the information about a random field

is contained within its power spectrum if and only if the field is perfectly Gaussian.

However, we expect the small-scale fluctuations in an intensity map to be highly

non-Gaussian, as the measured intensity is the product of highly nonlinear processes

within the galaxy population. Thus, the power spectrum alone misses out on much

of the information content of a map.

This can be easily seen by looking at Equations (2.5) and (2.6). The power

spectrum depends only on the first two moments of the luminosity function Φ(L). No

higher moments can be measured from this statistic. As with CMB measurements,

higher moments may be measurable using higher order n-point statistics such as

the bispectrum, but these are computationally difficult121. One could also obtain

additional information through cross-correlations of different lines (see Chapter 6),

but while this allows the study of different properties of the galaxy distribution, it

adds little information about the initial target line. A much more straightforward

method would be to consider instead the one-point statistics of an intensity map

through the VID statistic, which we will now derive. Our derivation is based on

the P (D) computation presented by Lee et al.115, modified somewhat to include the

effects of large-scale clustering.

Consider a volume of space at redshift z containing a population of point sources
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emitting a line with rest frequency νem and luminosity function Φ(L). If we divide

our space into voxels with volume Vvox, then the observed intensity in a given voxel

is given by Equation 4.4. We neglect beam effects here, i.e. a source contributes all

of its intensity to the voxel it is contained within, and there is no smoothing effect

spreading the intensity over multiple voxels.

If we consider only voxels that contain exactly one emitter, the probability1 P1(T )

of observing intensity T is given by

P1(T ) =
Vvox
nXLT

Φ (TVvox/XLT ) , (7.1)

(compare with Equation 4.4) where

n =

∫ ∞

0

Φ(L)dL, (7.2)

is the average comoving number density of sources. The probability of observing T

in a voxel with two sources is then

P2(T ) =

∫ ∫
P1(T

′)P1(T
′′)δD(T − T ′ − T ′′)dT ′dT ′′, (7.3)

1For clarity, we will use the symbol P when referring to power spectra and P when referring to
probability distributions.
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where δD is the Dirac delta function. This simplifies to the convolution

P2(T ) =

∫
P1(T

′)P1(T − T ′)dT ′ = (P1 ∗ P1)(T ). (7.4)

From this it is clear that the probability of observing T in a voxel with N sources is

simply

PN(T ) = (PN−1 ∗ P1)(T ). (7.5)

An empty voxel obviously will always give zero intensity, so P0(T ) = δD(T ).

With Equations (7.1) and (7.5) we can recursively compute these probability dis-

tributions for voxels containing any arbitrary number of sources. The full VID is then

given by

P(T ) =
∞∑

N=0

PN(T )P(N), (7.6)

where P(N) is the probability of observing a voxel that contains N sources. It is

possible115 to replace the series of convolutions used to calculate PN(T ) with prod-

ucts in Fourier space. However, as luminosity functions often span many orders of

magnitude, it may be computationally easier to compute PN(T ) using convolutions.

If the sources are unclustered, then P(N) is the Poisson distribution PPoiss(N,N)

with mean N = nVvox. Equation (7.6) can then be simplified further, as shown by

Lee et al.115. However, intensity maps typically cover large enough volumes that

large-scale clustering will cause their number count distribution to differ significantly
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from Poisson. We must therefore modify our computation to take this clustering into

account. One method for P (D) analysis of clustered sources is given by Equation

(21) of Barcons122 (see also Takeuchi & Ishii123). However, this method requires

knowing all of the higher N-point statistics of the intensity distribution, which makes

computing the VID intractable.

We instead make use of the fact that the galaxy number-count distribution is

known to be approximately lognormal72. Using this fact, we can follow the same

procedure we used in Chapter 4 and assume that for each voxel there is an expectation

value µ for the number of galaxies contained within it which depends on the value

of the lognormal cosmic density field at that point. The observed number of galaxies

within that voxel will then be a Poisson draw from a distribution with mean µ. We

can then write P(N) as

P(N) =

∫ ∞

0

PLN(µ)PPoiss(N,µ)dµ, (7.7)

where PLN is lognormal probability of finding a voxel with expectation value µ.

The lognormal probability PLN is computed assuming that the galaxy density

field has density contrast in δLN(x⃗) = [µ(x⃗)−N ]/N in a voxel located at x⃗. We can

write δLN in terms of a Gaussian random variable δG as

1 + δLN = exp

(
δG − σ2

G

2

)
, (7.8)
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where σ2
G is the variance of the Gaussian random field. We can then write124 PLN as

PLN(µ) =
1

µ
√

2πσ2
G

exp

{
− 1

2σ2
G

[
ln
( µ
N̄

)
+
σ2
G

2

]2}
. (7.9)

The quantity σG sets the overall “strength” of the clustering, i.e. fields with a

larger σG have comparatively more voxels containing very many or very few sources,

and comparatively fewer “mid-range” voxels. We can compute it from the power

spectrum PG(k) of δG using

σ2
G =

∫
PG(k)

⏐⏐⏐W (k⃗)
⏐⏐⏐2 d3k⃗

(2π)3
, (7.10)

where W (k⃗) is the Fourier transform of the voxel window function. The spectrum

PG(k) can be calculated using the fact that the real-space correlation functions ξ(r)

of δLN and δG are related by72

ξG = ln [1 + ξLN(r)] , (7.11)

and the power spectra and correlation functions are related in the usual way. We

thus only need to assume a power spectrum for our lognormal field to compute σG.

Here, we assume that this spectrum is given by PLN(k) = b̄2Pm(k) calculated using

Equations (2.1) and (2.7). Note that since the bias b̄ used here is luminosity weighted,

this is slightly different from the power spectrum typically used for galaxy surveys.
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In a realistic experiment, many of the fluctuations observed in a map will be

caused by instrumental noise. The measured intensity in a given voxel will then

be the sum of the signal and noise contributions. The noise will have its own VID

PNoise(T ) which is determined by the instrumental properties. For example, in the

case of simple Gaussian noise the noise VID is

PNoise(T ) =
1√
2πσ2

N

exp

(
− T 2

2σ2
N

)
, (7.12)

where the variance σN is set by the survey sensitivity. By the same arguments used

in Equation (7.4), the VID for the sum of signal and noise is

PTotal(T ) = (PSignal ∗ PNoise) (T ). (7.13)

Contributions from other sources of contamination, such as line or continuum fore-

ground emission, can be added to the VID in a similar fashion.

To summarize the above formalism, the steps to compute a VID for a given model

are as follows:

• Assume a luminosity function Φ(L), a voxel shape, and a cosmological model.

• Compute the probability PN(T ) of observing T in a voxel containing N sources

from Φ(L) using Equation (7.5).

• Determine the mean number N of galaxies/voxel using the assumed Φ(L) and
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voxel dimensions.

• Compute a power spectrum for the lognormal galaxy field from the assumed

cosmological model.

• Calculate σG from this power spectrum using Equations (7.10) and (7.11).

• Use Equation (7.7) to compute the probability P(N) of observing a voxel with

N galaxies using the calculated N and σG.

• Sum PN(T )P(N) over all values of N as in Equation (7.6).

• Convolve the resulting VID with VIDs computed for instrumental noise and

any foreground contamination.

Note that this method as presented here makes a subtle approximation about the

halo bias. By including the bias in our chosen PLN(k) spectrum, we take into account

the fact that galaxies are more strongly clustered than the underlying dark matter.

However, putting it into the model in this manner effectively assigns each galaxy the

average bias value, when in reality the brightest galaxies should be more strongly

clustered. The model therefore underestimates the number of very bright voxels.

Fortunately, we expect the effect of this to be small, especially given the immense

uncertainties that currently exist in the modeling of Φ(L) for most intensity mapping

lines. For more discussion of this effect, see Appendix C.
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7.2 Fiducial CO Model

The formalism described above can be readily applied to a wide variety of different

lines and models. In order to demonstrate its effectiveness, we will now without loss

of generality apply the VID to a model of a CO intensity map. Literature models

for CO emission span a wide range of signal amplitudes (see Chapter 3), but most

share several essential features. Luminosity functions tend to have a roughly power-

law shape for moderate luminosities. Reduced star formation efficiency in high-mass

halos introduces a cutoff in Φ(L) at high luminosities, and the difficulty of forming

galaxies in very low-mass halos creates a cutoff at low luminosities. To capture this

behavior in the simplest possible form we again model the CO luminosity function as

a slightly modified Schechter function65,

Φ(L)

(Mpc/h)−3 L⊙
= ϕ∗

(
L

L∗

)α

exp

(
− L

L∗
− Lmin

L

)
, (7.14)

where pi ≡ (ϕ∗, α, L∗, Lmin) are free parameters. The quantity Lmin here serves the

purpose of the hard minimum mass or luminosity seen in most literature models, but

replaced with an exponential cutoff both for added realism and to prevent numerical

issues which can arise around hard cutoffs.

We choose values for our four parameters by fitting this Schechter model to the

luminosity function plotted in Figure 8 of Li et al.35, in a similar fashion to the

procedure in Chapter 6. This luminosity function is calculated from a suite of N-
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body simulations using the relation between halo mass and star formation rate101.

Star formation rates are then connected to CO luminosity through a series of empirical

scaling relations105,27. The best fit Schechter function has parameters ϕ∗ = 2.8 ×

10−10, α = −1.87, and L∗ = 2.1 × 106 L⊙. The Schechter function fits the Li et al.

results reasonably well, though it does produce a steeper high-luminosity cutoff. Since

essentially nothing is known currently about CO emission from very faint galaxies,

we somewhat arbitrarily choose Lmin = 5000 Lsun.

As for the bias, If we assume the linear relation between halo mass and CO

luminosity as inChapter 3, this Lmin corresponds to a halo mass of 2.5 × 109 solar

masses. This is comparable to literature values that usually place the CO luminosity

cutoff around 109 − 1010 M⊙. When computing the mean bias b, we use this same

linear mass-luminosity relation along with the Tinker form of the mass function and

b(M)102,103.

7.3 Constraining Power

We will now forecast the constraining power of a COMAP-like experiment for our

CO emission model. The parameters of the full COMAP experiment can be found in

Table 6.1. The planned survey would target the 115 GHz CO(1-0) line in 400 bands

between z = 2.4 and z = 2.8, giving each band a width δν = 10 MHz. The planned

instrument has an angular resolution of 3 arcminutes with a total survey area of 6.25
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deg2. Based on these parameters, we assume a model voxel which is a 3′×3′ square in

the plane of the sky with a comoving depth set by the 10 MHz frequency bandwidth.

Our choice to set the voxel angular scale at scale of the beam FWHM matches the

optimization performed by Vernstrom et al.125, who found that larger voxels than

this increasingly smooth out small-scale structure while smaller voxels induce excess

correlations between voxels due to beam effects. The COMAP survey aims for a

noise/voxel of 5.8 µK, so we adopt a Gaussian noise VID with σN = 5.8 µK.

Note that, given the large uncertainty on the amplitude of the CO signal, the

constraints presented here are model dependent, with brighter-on-average models

yielding better constraints, and vice versa. However, because our model captures the

essential shape, if not necessarily the amplitude, of the CO luminosity function, the

qualitative behaviors presented below should hold for a wide variety of CO models.

Figure 7.1 shows the VIDs for our fiducial model both with and without noise.

The dashed curve shows P1(T ), which is a simple rescaling of our fiducial Schechter

function. The amplitude of the VID is reduced from that of P1(T ) because the ex-

pected number of galaxies per voxel is only ∼ 0.3 in this setup, leading to a significant

number of voxels that contain zero galaxies. This creates a delta function in P(T )

at T = 0 (not shown). This suppression is less for brighter intensities though be-

cause some of the difference is made up by voxels that contain several sources. These

multiple-source voxels cause the VID to deviate a modest amount from the Schechter

power law in the middle of the distribution. The effect of the instrumental noise is
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Figure 7.1: VIDs for our fiducial model and experiment with (orange) and without
(blue) instrumental noise. Also plotted is the probability distribution P1(T ) for voxels
that are known to contain exactly one source (dashed orange). This distribution is
simply a rescaling of our Schechter luminosity function.

to remap all of the faint voxels into a Gaussian distribution, with the signal VID

dominating the bright end of the distribution. These calculated VIDs agree well with

simulated VIDs prepared using the method from Chapter 4, as shown in detail in

Appendix D.

In order to study the constraining power of our example CO model, we will again

make use of the Fisher matrix, which for a VID parameterized by pµ takes the form

Fµν =
∑
i

1

σ2
i

∂Bi

∂pµ

∂Bi

∂pν
, (7.15)
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where

Bi = Nvox

∫ Tmax,i

Tmin,i

P(T )dT (7.16)

is the number of voxels in an intensity bin with edges [Tmin,i, Tmax,i] for a survey

containing Nvox voxels. The expected variance σ2
i on Bi is assumed to be equal to

Bi, i.e. we assume the bins obey Poisson statistics. This should be a reasonable

assumption for bins that contain many voxels, which are the bins that will contribute

most of the signal-to-noise. For simplicity, we neglect the evolution of the VID across

the redshift range of the survey.

We compute the Fisher matrix using five parameters: the four parameters of

our model luminosity function and σG. Adding σG as a free parameter takes into

account our uncertainty on both the average bias and the clustering behavior of the

target galaxies. Since our goal is to measure the luminosity function, we will report

constraints on the four Schechter parameters marginalized over σG. The result of this

analysis for our fiducial model and experiment are shown in Figure 7.2. The smaller

orange ellipses show the constraints obtained for an ideal measurement with zero

instrumental noise, with the only errors due to sample variance. For an instrument

with infinite sensitivity, these errors could be further reduced by observing a larger

area of the sky. The larger blue ellipses show the effect of the Gaussian COMAP-like

instrumental noise. Adding noise obviously makes the constraints somewhat worse,

but there is still a substantial amount of constraining power. The constraint on the

low-luminosity cutoff Lmin is hardest hit, as the cutoff occurs well below the intensity
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Figure 7.2: Fisher constraints on the four parameters of our fiducial CO luminosity
function both with (blue) and without (orange) Gaussian instrumental noise. Dark
ellipses show 1-σ errors, light ellipses show 2-σ errors.

where noise begins to dominate.

Using equation (7.14), we can convert these constraints on the model parame-

ters into constraints on Φ(L). The resulting 95% confidence region for the case with

COMAP Full instrumental noise are shown in blue in Figure 7.3. We can compare

these uncertainties to those forecasted using the COMAP power spectrum35. If we

apply the same fractional uncertainties plotted in Figure 8 of Li et al.35 to our fiducial

Φ(L), we get the 95% confidence region plotted in grey. Because the VID statistic is

much better suited to measuring the luminosity function, it leads to substantially bet-

ter constraints than the power spectrum despite using the same instrumental setup.

It should be noted that these constraints only hold if the real luminosity function has

119



CHAPTER 7. ONE-POINT STATISTICS

Figure 7.3: 95% confidence regions around our fiducial Φ(L) obtained from the
above VID constraints including COMAP instrumental noise (blue) and from the
COMAP power spectrum analysis35 (gray).

exactly the form given in equation (7.14). For this reason, computing uncertainties

on Φ(L) in this manner likely underestimates the true error, especially at the faint

end where the VID is noise dominated.

7.4 Foreground Effects

The results shown above assume that the measured fluctuations in an intensity

map are caused only by the source galaxies and instrumental noise. However, as when

studying the power spectrum, there are a number of effects that can alter the observed

intensity fluctuations and reduce the constraining power of a given experiment. Be-

low we provide examples of how three of these effects, continuum foregrounds, line
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foregrounds, and gravitational lensing, can affect the constraints obtained from the

VID.

7.4.1 Continuum Foregrounds

One of the most substantial difficulties facing any intensity mapping experiment is

the presence of bright continuum foreground emission. This problem is most evident

in 21 cm experiments, where foreground contamination can be ∼ 5 orders of magni-

tude brighter than the signal12. Other lines face the same problems to a somewhat

lesser degree. For example, a COMAP like survey would observe at roughly 30 GHz,

an area in frequency space familiar to CMB observers for containing large amounts

of galactic synchrotron and free-free emission126, as well as contamination from radio

point sources33. Indeed, the CMB itself creates a substantial amount of “foreground”

contamination at these frequencies.

Despite the overall strength of continuum foregrounds compared to the signal, they

can be cleaned out of a map by taking advantage of their smooth frequency spectra.

The intensity mapping signal will have a significant amount of structure in frequency

space, as it maps the distribution of galaxies along the line of sight. Foregrounds such

as synchrotron emission, however, are expected to be quite spectrally smooth. This

means that continuum contamination is confined to Fourier modes oriented near the

plane of the sky, and it can be effectively removed by subtracting out these modes,

as was demonstrated by the COPSS experiment33.
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The effects of this mode subtraction are straightforward to model in power spec-

trum space, as the only effect is to reduce the number of available Fourier modes.

Unfortunately, there is no clear way within our formalism to exactly replicate the

effects of subtracting out only line-of-sight modes. Studying this procedure accu-

rately may require the use of simulated maps. As an approximation to the correct

foreground cleaning procedure, we consider a case where all of the k = 0 modes are

removed from a map, both along the line of sight and in the plane of the sky. This

will not exactly duplicate the true effect of continuum foregrounds, but it provides a

rough estimate of the significance of the effect. For simplicity, we will also consider a

spatially uniform foreground

Consider then a map made up of three contributions: the usual CO signal, Gaus-

sian, zero-mean instrumental noise, and a spatially and spectrally smooth foreground

with intensity TCF . The observed intensity in any given voxel will then be

Tobs = TCO +∆TCO +∆TNoise + TCF , (7.17)

where we have divided the CO signal into mean and fluctuation parts. Subtracting

out the k = 0 modes means that we can only observe

∆Tobs = Tobs − T = ∆TCO +∆TNoise, (7.18)

where T = TCO + TCF . The probability of observing a voxel with fluctuation ∆T is
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then

P∆(∆T ) = P(∆T + T ), (7.19)

where P(T ) is the original signal+noise VID.

When computing the Fisher matrix for this new model, the number of voxels in a

fluctuation-space bin is

Bi = Nvox

∫ ∆Tmax,i

∆Tmin,i

P∆(∆T )d∆T. (7.20)

Using Equation (7.19) we can rewrite this as

Bi = Nvox

∫ ∆Tmax,i+T

∆Tmin,i+T

P (T )dT. (7.21)

We have now introduced a sixth unknown parameter T into our calculation. In the

presence of our simple foreground, it is no longer known a priori which absolute

intensity T corresponds to a given fluctuation ∆T . In other words, we can only

measure the VID up to an additive constant in every voxel. Fortunately, we can

easily add this extra parameter to our Fisher analysis to determine how it affects our

constraints.

Figure 7.4 shows the effect of this added uncertainty, with the signal+COMAP

noise constraints from Section 5 shown in blue and the new continuum-subtracted

constraints shown in purple. The continuum-subtracted constraints are marginalized
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Figure 7.4: Fisher constraints for a CO map where all k = 0 modes have been
subtracted to remove continuum (purple) compared with the signal+noise constraints
from Figure 7.2.

over the unknown mean intensity T in addition to σG. The foreground subtraction

procedure worsens the constraints slightly, but the effect is not dramatic. The effect of

this subtraction on the Φ(L) constraints shown in Figure 7.3 are given in Appendix E.

Simply subtracting out the mean of the map, therefore, does not lead to a substantial

loss of constraining power. Note that a true spatially-varying foreground may leave

some residual contamination which will affect these constraints. This effect will be

highly model-dependent, so we leave it for future work.
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7.4.2 Line Foregrounds

As discussed in Chapter 5, intensity maps can also suffer from interloper emission

from other spectral lines emitted by galaxy populations at different redshifts. 21 cm

surveys are not expected to see significant line contamination, as there are few other

bright lines at such low frequencies75. Surveys aiming for other lines, however, could

see interloper lines bright enough to rival or dominate over the target lines77,38. In

such cases, the ability to study the original target line can be significantly degraded.

The literature contains several proposed means of recovering the power spectrum

of a target line from a foreground-contaminated map. If one has access to other data

in the target volume, either traditional data like a galaxy map or an intensity map of

a different line, it is possible to cross-correlate the two data sets together to isolate

emission from a single redshift68. It may also be possible to use anisotropies in the

power spectrum to separate signal from foreground78,79. One could also seek simply

to mask out voxels where the foreground contribution is brightest, either blindly as

we demonstrated in Chapter 5 or by using galaxy surveys to locate bright foreground

emitters39.

We can divide line contamination into two broad categories based on how it affects

the power spectrum. The most obviously problematic lines are those for which the

mean foreground intensity T F is greater than TCO. We will refer to these lines as

“clustering foregrounds”, as the foreground dominates over the signal in the clustering

component of the power spectrum. Examples of clustering foregrounds are Hα, OIII,
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and OII in Lyα surveys77 and higher-order CO rotational lines in CII surveys38.

It is also possible for foreground lines that are substantially fainter than the signal

on average to produce a small population of very bright sources that contribute a

disproportionate amount of shot noise to a map, leading us to refer to them as “shot-

noise foregrounds”. The model considered in Chapter 5 for HCN contamination in

CO surveys is an example of such a foreground.

Here we seek to understand how contamination from foreground lines affects the

VID statistic. For the sake of simplicity, we will continue using our fiducial CO signal

model and invoke hypothetical foregrounds to test their effects. We leave for future

work a detailed exploration of signal and foreground models for surveys targeting CII,

Lyα, and other lines. We choose the luminosity functions of our fiducial foreground

lines to best demonstrate the behavior of the two types of foregrounds described

above.

The first line, which we will name FG1, we choose to be a shot-noise foreground

with TFG1 = 0.1TCO and Pshot,FG1 = 2Pshot,CO. This roughly duplicates the behavior

of the HCN model in Chapter 5, and is something of a worst-case scenario for a CO

intensity mapping survey. The second line, which we will name FG2, we choose to

be a clustering foreground with TFG2 = 5TCO and Pshot,FG2 = 25Pshot,CO. Though

no lines of this type are expected to appear in CO surveys, this is the type of line

expected to cause issues in high-redshift CII and Lyα surveys. We assign both FG1

and FG2 an emission frequency of 88 GHz, which is the rest frequency of HCN(1-0).
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Table 7.1: Luminosity function parameters for fiducial CO model and hypothetical
foreground lines

Line ϕ∗ L∗ (L⊙) α Lmin (L⊙)
CO(1-0) 2.8× 10−10 2.1× 106 −1.87 5000
FG1 4.1× 10−18 6.5× 108 −2.26 500
FG2 5.1× 10−10 3.4× 106 −1.6 5000

We then choose values for the four Schechter parameters of each line to reproduce

the desired power spectra. The chosen parameter values can be found in Table 7.1.

Figure 7.5 shows the luminosity functions, VIDs, and power spectra of the fiducial

CO signal compared with those of the FG1 and FG2 models. Power spectra are

computed using matter power spectra from CAMB55. The different behaviors of the

two types of foregrounds can be clearly seen. The high-luminosity tail of FG1 leads

to a shot-noise dominated power spectrum, which is strong enough to compete with

the signal despite the overall weakness of the FG1 line. The FG2 luminosity function

is very similar to that of the CO signal, but contains somewhat more bright sources.

Since these sources are also closer to the observer, this leads to a VID that dominates

over that of CO at most observed intensities, and a power spectrum that dominates

on all scales. Note that the power spectra plotted here are unprojected, which means

that the foreground spectra would be amplified even more relative to the signal in a

true measurement.

It should be noted that the parameters in Table 7.1 do not uniquely determine

the power spectra shown in the right-hand panel of Figure 7.5. Because we have

four free luminosity function parameters from which to determine the two terms of
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Figure 7.5: Luminosity functions (left), VIDs (center), and power spectra (right)
for the fiducial CO signal (blue), shot noise foreground FG1 (green), and clustering
foreground FG2 (red). Dashed red curves show the effect of masking FG2 emitters
brighter than L∗,FG2/10.

the power spectrum, we could choose an infinite number of different parameters and

generate the exact same power spectra. The particular four parameters shown here

have thus been chosen somewhat arbitrarily. As we are only using these fictional lines

for a proof of concept, the exact parameter choices are not particularly important.

However, this does serve to again illustrate the limitations of power spectra, as the

same measured spectrum could be the result of many different luminosity functions.

Figure 7.6 shows the effect of including the shot noise foreground model in our

Fisher analysis. We allow the parameters of the foreground model to vary along

with those of the CO signal and marginalize over the foreground luminosity function

parameters as well as the σG values for both lines. The result is that the constraining

power diminishes, but not prohibitively. With the exception of the low-luminosity

cutoffs, which mostly affect the noise-dominated portion of the VID, the signal and
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Figure 7.6: Fisher constraints on the CO signal parameters marginalized over the
parameters of the shot-noise foreground FG1 (green), compared with the original CO
constraints (blue).

foreground parameters are only weakly degenerate, and the constraints are fairly

good. This is a marked improvement over what is seen in power spectrum space,

where the shot noise components of the signal and foreground spectra are exactly

degenerate. The constraints on Φ(L) with this foreground component included are

given in Appendix E.

Figure 7.7 demonstrates that, as one might expect, the effect of the clustering

foreground FG2 is much more dramatic. Marginalizing over the foreground param-

eters and the two σG values leaves significantly worse constraints on the CO model.

In this case, all of the parameters except α have fractional uncertainties greater than

unity. This is caused by the fact that the combined VID cannot easily distinguish the
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two similar luminosity functions, leading to significant degeneracies. Because these

constraints are so poor, we can do little more than set upper limits on the target

luminosity function.

However, we can improve this result significantly if we have access to an exter-

nal data set which we can use to isolate and mask voxels which are dominated by

bright foreground emitters44,38. This effectively cuts off the foreground luminosity

function at some Lmask, as shown by the dashed curve in the left panel of Figure 7.5.

While one could attempt to directly detect line emission in individual foreground

sources, it is often easier to locate bright foreground emitters using some proxy ob-

servable which is correlated with line luminosity. For example, Silva et al.38 find that

foreground emission in a CII survey can be effectively reduced by masking sources

with bright K-band magnitudes. Alternatitively, in Chapter 5 we demonstrated that,

when measuring the power spectrum, it can also be helpful to simply mask out the

brightest voxels in a map (with no need for external data) regardless of whether they

are dominated by signal or foreground emission. In a one-point analysis however,

this merely removes information about both luminosity functions without adding any

extra means of distinguishing between them.

To study the effects of targeted foreground masking, we will assume that all voxels

containing a source with FG2 luminosity greater than Lmask = L∗,FG2/10 are masked

out of the map. This corresponds to a few percent of the total number of voxels.

The effects of this masking on the luminosity function, VID, and power spectrum are
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Figure 7.7: Fisher constraints on the CO signal parameters marginalized over the
parameters of the clustering foreground FG2 (light red), compared with the original
CO constraints (blue). Constraints with FG2 emitters brighter than L∗,FG2 masked
out are shown in red.

shown by the dashed red curves in Figure 7.5. Though this amount of masking still

leaves a significant FG2 power spectrum, we can see from the dark red ellipses in

Figure 7.7 that the constraints from the VID have been substantially improved. The

resulting luminosity function constraints can be seen in Appendix E.

The exact value of the masking luminosity in a real survey will depend on which

observables are used to find foreground emitters. Our choice of L∗,FG2/10 is somewhat

arbitrary given that the CO line is not expected to suffer from issues with clustering

foregrounds. However, the results given here should be taken as fairly pessimistic, as

the mask we have used is insufficient to reduce the FG2 power spectrum below that

of CO.
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Finally, note that the difference between “foreground” and “signal” in this context

is simply a matter of experimental goals. The approach described here models each

line in the same way, with the same number of parameters. If one desired to measure

the luminosity function of the foreground line, one would only have to marginalize

over the parameters of the original target line. The full Fisher constraints on the

luminosity functions of our CO and FG2 models can be found in Appendix F.

7.4.3 Gravitational Lensing

In addition to emission from other astrophysical sources, structure between the

observer and the emitters can affect the VID through gravitational lensing. Lensed

galaxies have their positions on the sky altered slightly, their shapes distorted, and

their intensities magnified. Since the voxels in an intensity map are large compared

to any single galaxy, only the latter effect is important to consider when computing

the VID. Lensing magnification, both weak and strong, will change the apparent

luminosity function of the source population127,128,129, which in turn will alter the

VID in ways that could systematically affect luminosity function constraints. Lensing

effects are expected to increase substantially with redshift, so in addition to our usual

z ∼ 3 CO model we will consider a case where we use the same luminosity function

but take the emission redshift out to z = 7.

To estimate the effect of lensing on the VID, we need to compute the probability

Pmag(m) of a given galaxy to have a magnification between m and m + dm. The
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observed luminosity after magnification is L′ = mL. Pmag(m) contains contributions

from both the large-scale matter distribution as well as compact, virialised halos. To

estimate the former, we adopt the method of Das & Ostriker130. First, we divide the

intervening mass distribution up to the target redshift z into N uncorrelated, thin

mass sheets. Each sheet i spans a comoving radius between ri and ri + 1 and has

central redshift zi. For each sheet, we consider fluctuations in the projected surface

mass density Σi, where we have defined the surface density contrast

x(θ, zi) ≡
Σ(θ, zi)− Σ(zi)

Σ(zi)
, (7.22)

as a function of the sky position θ. In the Limber approximation57,58, the two-

dimensional power spectrum P2(ℓ, zi) for x(θ, zi) is given by

P2(ℓ, zi) =
1

ℓ(ri+1 − ri)2

∫ ℓ/ri

ℓ/ri+1

PNL(k, zi)dk, (7.23)

where ℓ is the magnitude of the two-dimensional Fourier wavenumber and PNL(k, zi) is

the nonlinear three-dimensional matter power spectrum evaluated using Halofit131.

The rms fluctuation σ2
2 smoothed over an angular scale θ0 is then

σ2
2(θ0, zi) =

1

2π

∫
ℓP2(ℓ, zi)e

−ℓ2θ20dℓ. (7.24)

The following parametric non-Gaussian PDF Px(x) for the density fluctuation x
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has been found130 found to be a good fit to numerical simulations:

Px(x) =
N

x
exp

[
−(ln(x) + ω2/2)2(1 + A/x)

2ω2

]
. (7.25)

This is essentially a one-parameter family, as the three parameters N , A, and ω2 are

fixed by σ2
2 through the requirements that ⟨x⟩=1, ⟨x2⟩−⟨x⟩2 = σ2

2, and that the PDF

is normalized to unity.

In the weak lensing regime, the convergence κ receives a contribution

κi(θ) =
Σ(θ, zi)− Σ(zi)

Σc(zi)
, (7.26)

from each mass sheet. We have introduced the critical surface density

Σc(zi) =
c2

4πG

Ds

Dl(zi) [Ds −Dl(zi)]
, (7.27)

where G is Newton’s gravitational constant, Ds is the comoving radial distance to

the target redshift, and Dl is that to the lens-plane redshift zi. An overdense patch

therefore contributes κ > 0 and an underdense patch contributes κi < 0.

A distribution for the cumulative convergence κ =
∑

i κi can be estimated nu-

merically by randomly drawing x for each mass sheet according to the corresponding

PDF Px(x). This gives the convergence PDF Pκ(κ). Using the weak-lensing relation
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m = (1− κ)−2, we can then compute the source-plane magnification PDF

Pmag(m) =
(1− κ)5

2
Pκ(1−m−1/2), (7.28)

which accounts for the non-Gaussian statistics of weak (de-)magnification fairly well.

However, this method underestimates the effect of strong magnification from viri-

alised lenses. In particular, the large-m tail132 is expected to decay roughly as m−3.

This can be remedied by manually adding a power law tail to Equation (7.28),

Pmag(m) → Pmag(m)+Θ(m−1) exp

[
1

4(m− 1)4

]
(1− κ0)

3

2
Pκ(κ0)

(
m

m0

)−3

, (7.29)

where a typical matching point is µ0 = (1 − κ0)
−2 ∼ 3 and Θ is the Heaviside

function. The resultant semi-analytic model is found to agree reasonably well with

ray tracing of N-body simulations. Figure 7.8 shows magnification PDFs both with

and without strong lensing for a given draw from Px with source redshift z = 7.

The two PDFs are similar in the low-magnification regime, but differ substantially at

higher magnifications.

The effect of magnification is to alter the apparent luminosity distribution P(L) =

Φ(L)/n of the source galaxies, replacing it with

P ′(L) =

∫
Pmag(m)

m
P
(
L

m

)
dm, (7.30)
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Figure 7.8: Magnification PDFs drawn both with (yellow) and without (red) the
power-law strong-lensing tail.

as galaxies appear brighter or fainter due to lensing. If we compute the VID from

P ′(L), we see that the distribution is altered somewhat, as shown in Figure 7.9. We

have plotted both the VIDs for the full Pmag as well as the weak-lensing-only Pmag

at both z = 3 and z = 7. Note that in order to better understand the size of the

effect, we have plotted these VIDs as bin counts rather than P(T ). If we divide

the difference between the lensed and unlensed bin counts by the square root of the

unlensed counts, we can get an idea of how strong the lensing effect is relative to the

Poisson error in a given bin. The effect is visible at both redshifts, and as expected

it increases as redshift increases. The primary impact is to make the cutoffs at both

ends less sharp. This will thus likely not be a hugely significant effect for near-

future experiments, as the low-luminosity cutoff is below the noise limit and there are
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Figure 7.9: Top row: Number of voxels in bins of width ∆ log T = 0.012 dex at
redshift z = 3 (left column) and z = 7 (right column) for our unlensed fiducial CO
model (blue), a weakly lensed model (red), and a full weak+strong lensed model
(yellow). Bottom row: Difference between the lensed and unlensed voxel counts
divided by the Poisson errors used in our Fisher analysis.

relatively few voxels above the high-luminosity cutoff. However, future experiments

with sufficient sensitivity and area may need to take into account magnification effects

when attempting to constrain luminosity functions, especially when targeting high

redshifts.

In the above lensing computations, we neglected the fact that lensing also alters

the volume subtended by a given solid angle129. Voxels with greater magnifications

also subtend a smaller volume at the same solid angle, so they will, on average, contain

fewer galaxies. When computing the source luminosity function in Equation (7.30),

this effect should average out over the full survey volume, as the total magnification

must average to unity on large scales. However, there is an additional effect when

moving from P ′(L) to the VID. This magnification/volume correlation means that
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a magnified voxel will contain fewer-than-average sources with higher-than-average

apparently luminosities, introducing a correlation between PN(T ) and P(N) in Equa-

tion (7.6). This will likely tend on average to reduce the strength of the lensing effect

on the VID, further weakening the significance of lensing as a confounding factor in

our analysis. The results presented above are therefore a conservative estimate of the

effect of lensing on the VID.

7.5 Discussion

The constraining power of the VID statistic is clear from the above results. These

constraints cannot be obtained using the power spectrum alone, as the power spec-

trum only measures the quantities Pshot and T
2
b
2
. This means that the power spec-

trum can only constrain at most two of the four model parameters of our luminosity

function model, resulting in significant degeneracies. The only way to obtain useful

results for a model with more than two parameters is then to apply priors. However,

as shown in Figure 2, the VID allows us to constrain our four-parameter Schechter

model to order ∼ 10% even without prior data. Even the low-end exponential cutoff

Lmin, which falls well below our noise limit, can be constrained by the VID measure-

ment.

This effect can be clearly seen in Figure 7.3, where the VID produces much better

constraints on Φ(L) than power spectrum methods. The constraints are improved
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significantly despite the fact that both forecasts use the same experimental setup

and very similar luminosity functions. As mentioned above, however, the constraints

plotted in Figure 7.3 likely somewhat underestimate the luminosity function errors,

as both the VID and power spectrum constraints assume that the CO emitters have

a luminosity function exactly described by a single model. More realistic constraints

could be obtained, for example, by using a spline model119,120, or by using the values

of Φ(L) in different luminosity bins as the model parameters.

Though the VID provides considerably more information about the luminosity

function, the power spectrum likewise contains information that is not present in the

VID. Just as the power spectrum contains only integrals over the luminosity function,

the VID contains only integrals over the galaxy power spectrum. The VID thus leaves

out almost all of the information about the spatial distribution of galaxies. This is

intuitively obvious, since a one-point statistic by definition does not take into account

voxel locations. Because of this, the VID will not be nearly as effective as the power

spectrum when attempting to measure, for example, baryon acoustic oscillations. The

VID and the power spectrum are highly complementary statistics, and using both to

study a map will yield substantially more information than using only one or the

other.

There are some subtleties involved when attempting to directly combine these two

statistics, however. Though they contain different information, there is a substantial

amount of covariance between the VID and the power spectrum of a map. For ex-
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ample, observing a region of space with a greater-than-average number of very bright

sources will obviously yield more very bright voxels, but will also yield an excess

amount of shot noise power. Since shot noise is scale-independent, the net effect of

this will be to create covariance between the size of the brightest voxel bins and the

amplitude of the power spectrum on all scales. Accurately treating covariances like

this will like require detailed numerical simulations, so we leave a full study of this

issue for future work.

As expected, the various forms of foreground contamination we studied do add

extra uncertainty to our forecasts. However, the VID retains significant constraining

power even in the face of this contamination. Our model of a continuum-subtracted

map, though simplified, suggests that the process of cleaning foregrounds like Galactic

dust and synchrotron will not destroy our ability to constrain the luminosity function

from the VID. This is due to the fact that the continuum foreground in our model

merely adds a constant to every voxel, and this additive shift is not degenerate with

any of our Schechter parameters. The real situation, with foregrounds that vary in

amplitude along different lines of sight, will be somewhat more complicated, but we

do not expect the end result to be radically different than that plotted in Figure 7.4.

The VID statistic also performs fairly well in the presence of line foregrounds. In

the case of a shot-noise foreground like our FG1, the parameters L∗, α, and ϕ∗ are well

constrained even without any attempts to clean out the interloper line. Degeneracies

with FG1 weaken our ability to constrain Lmin, but overall our constraints remain
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reasonably strong. FG1 is something of a worst-case-scenario contaminant for a CO

map, so it is encouraging that this method remains viable. The unmasked clustering

foreground is less optimistic looking, though we are still able to obtain useful con-

straints on the power-law slope of the luminosity function. However, surveys that

suffer from this type of foreground, such as those targeting CII and Lyα, already plan

to use some type of masking routine to clean out interloper lines. When we apply a

mask to our FG2 luminosity function, out VID formalism produces strong constraints

on all of the signal parameters except for Lmin. These results would improve even

further with more aggressive masking or the application of other foreground-cleaning

methods.

Foreground lines illustrate another key advantage of the VID over the power spec-

trum. Since a shot-noise dominated spectrum is purely scale independent, Pshot for

the signal line is exactly degenerate with Pshot of the foreground. This means that,

even in the best case scenario, the power spectrum in the presence of a foreground

line can only reliably measure the quantity T
2
b
2
for the signal line. The interloper

removes one of the only two quantities the power spectrum can access. As stated

before however, the VID can still put strong constraints on most signal parameters

even in the presence of foregrounds.

As for gravitational lensing, which can be thought of as contamination from fore-

ground mass, the effect is very weak for our fiducial z ∼ 3 model and only slightly

stronger when we take our emission out to z ∼ 7. As shown in Figure 7.9, the biggest
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effects are on the two exponential tails of the VID. On the faint end, we see an excess

due to weak lensing along underdense lines of sight. Bins in this region are shifted by

several sigma, but this effect will be negligible in a real observation because these bins

will be strongly noise dominated. As for the bright end, there is an excess, mostly

caused by strongly lensed sources. This could yield underestimates of the bright end

slope of the luminosity function, but there are few enough voxels in this part of the

distribution that the effect will likely not be large, at least for early surveys. How-

ever, as surveys become more sensitive and target larger volumes, this effect will only

become more important. It is important to note though that gravitational lensing is

somewhat different than the other types of contamination in that the observed lumi-

nosity function can in principle be deconvolved after the fact. This could potentially

reduce the importance of lensing effects compared to other systematics. One may

also eventually be able to treat this lensing effect as a signal in its own right, and use

it to trace the distribution of dark matter between the observer and the emitters.

The formalism we have designed here is applicable to many different intensity-

mapping surveys. Specifically, it can be applied as is to any survey where all of the

emitting sources are small compared to the voxel size. For most target lines, all of the

emission comes from within galaxies, and most intensity maps will have resolutions

much larger than any galaxy, so this assumption holds. However, this is not the case

for measurements of the 21 cm line at the epoch of reionization, as this emission comes

from large volumes of diffuse intergalactic gas. Lyα surveys may have a similar IGM
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component as well40, though the intensity of this component is a subject of debate.

For diffuse emission, the concept of a luminosity function is not well defined, and our

formalism breaks down. The one-point statistics of such lines must be treated in a

very different manner133,134.

Our results here provide an excellent proof-of-concept of the VID method. How-

ever, there are a number of effects that require deeper study in future work. One such

effect is due to the clustering of the source galaxies. We have treated the different

bins of the voxel histogram as entirely independent, which may not be the case in

a real, clustered map. If a map contains a large overdensity, for example, we would

expect to see an excess of voxels in several bright bins. The opposite is true for a

large underdensity.

Similarly, we have neglected the detailed effects of beam smoothing. Our choice

to set voxel size equal to the beam FWHM may not be optimal for every survey, so

depending on the exact beam characteristics it may be necessary to use larger voxels

in order to minimize systematic errors. Larger voxels will smooth out more details of

the galaxy distribution, leading to weaker constraints. For example, increasing our

voxel size from 3′ to 6′ increases the 1-σ error on ϕ∗ from Figure 7.2 by a factor of

roughly 1.5. Even after choosing the optimal voxel size, there may still be excess

voxel-to-voxel correlations due to beam effects that need to be taken into account.

Many other instrumental systematics, such as ground contamination and pointing

errors may also degrade our constraints.
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One way to test these and other effects in greater detail would be to make use of

maps simulated from large N-body codes. Many components of our VID calculation,

such as the halo bias and the galaxy number count distribution could be easily studied

based on such simulations. It would also be substantially easier to test clustering,

beam smoothing, and line-of-sight mode subtraction in a simulated map than in our

analytic work. We used the simulations from Chapter 4 in Appendix D to test the

numerical stability of our VID calculations, but these simulations do not include

many of the effects described here. Though there are many aspects of realistic galaxy

distribution which will be still be difficult to capture, full-scale numerical simulations

will be an important tool as we prepare to apply this formalism to real data.

7.6 Summary

We have presented in this chapter a powerful new method for measuring line lu-

minosity functions from intensity maps using the probability distribution of voxel

intensities. This voxel intensity distribution can be calculated using P (D) analysis

techniques and measured from a map by making a histogram of voxel intensities.

Because intensity maps are extremely non-Gaussian, this one-point statistic contains

a substantial amount of information that cannot be obtained from usual power spec-

trum analyses.

We tested our formalism on a four-parameter model of CO emission observed by an
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experiment similar to the planned COMAP survey. We found that the VID statistic

was able to constrain these four parameters with an average error of order ∼ 10%,

despite not including any prior information. Incorporating various forms of foreground

contamination such as continuum emission, interloper lines, and gravitational lensing

weakens these constraints by varying degrees. However, the VID statistic still provides

useful information despite these contaminants, even in very pessimistic cases where

the power spectrum would be completely swamped by foregrounds. Our results here

serve as an excellent proof of the VID concept. Though more work is necessary to fine

tune the various subtleties of this method, this work suggests that the VID will make

a powerful addition to the intensity mapping toolbox as more and more experiments

come online in the coming years.
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Constraining the Cosmic

Star-Formation History with CO

Intensity Maps

In this chapter, we will demonstrate how the VID method we created in Chapter 7

can be used to constrain astrophysically interesting quantities, specifically the cosmic

star formation history. Our current measurements of star formation as a function

of redshift indicate that the star formation rate (SFR) increased with time up to a

maximum at around z ∼ 2− 3 before declining until the present day89. However, as

with all high-redshift measurements, our knowledge of star formation in the distant

universe comes from a relatively small population of high-redshift galaxies. Here we

discuss how CO intensity mapping can be used to improve our understanding of how
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the star formation rate density (SFRD) evolved with redshift.

Our P(D)-based VID statistic is ideally suited to this type of measurement. One

could make use of the CO power spectrum, but both TCO and Pshot in Equation

2.1 depend only on integrals over the CO luminosity function, which limits their

ability to constrain its shape. On top of that, TCO is degenerate with the galaxy

bias and the matter growth function, and Pshot may be degenerate with shot noise

contributions from foreground lines such as HCN(1-0) (see Chapter 5). As the CO

luminosity and star formation rate (SFR) of a galaxy may be related nonlinearly,

these integral constraints are suboptimal for constraining SFRD. The VID provides

a full measurement of the CO luminosity function, which would allow us to make

much better SFR estimates. We will show that future CO surveys could provide

competitive constraints on SFRD at high redshift, while directly observing the large

numbers of faint sources which are invisible to current measurements.

This chapter is primarily based on work published in Ref.50. We describe the

model we use to relate CO luminosity and SFR in Section 8.1, and forecast constraints

on the cosmic SFRD in Section 8.2. We discuss these results in Section 8.3, and

summarize in Section 8.4.
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8.1 CO-to-SFR Model

In Chapters 6 and 7, we modeled CO emission as a Schechter function. Here we

need a means of connecting CO luminosity to star formation physics, so we will return

to the type of model we used in Chapter 5, where the CO luminosity L of a halo is

related to its mass M by a power law with amplitude A and index b. We again set

ACO = 2 × 10−6 and bCO = 131, and assume that only a fraction fduty = tage/10
8 yr

of halos with masses greater than Mmin = 109 M⊙ emit CO at any given time, where

tage is the age of the universe. The number density of halos with a given mass is

then determined by a mass function dn/dM 102. If n̄ is the mean number density of

halos with masses greater than Mmin calculated by integrating this mass function,

then we can write P1(M) = (1/n̄)dn/dM . We can then convert this to P1(L) using

our mass-luminosity relation, and from there to a brightness temperature following

Equation 7.1. The resulting PDF can then be used to compute the VID using the

method described in Chapter 7

It should be noted that the proof-of-concept model considered here is simplified in

several respects for ease of computation. For example, the duty cycle fduty we use here

is independent of halo mass, and we have a hard cutoff on SFR below Mmin. A more

physical treatment would be to use a duty cycle that varies smoothly with mass and

goes to zero at low masses135. In addition, a realistic CO luminosity function likely

has a “knee” at a fainter luminosity than our model predicts136, meaning that our

calculation may over-predict the number counts of the brightest sources. It may be
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preferable to use a luminosity function model with more than two parameters which

can accurately capture this “knee”, such as a Schechter function.

A real CO map will include contributions from instrumental noise as well as fore-

ground emission. For this chapter we ignore the effects of continuum foregrounds such

as dust and synchrotron emission, but we do consider foregrounds with line spectra as

well as instrumental noise. Specifically, we consider contamination from the 88 GHz

HCN(1-0) line, which we model in the same way as CO, with AHCN = 1.7 × 10−15

and bHCN = 5/3. We assume the instrumental noise has a Gaussian PDF with zero

mean and variance σN . These contaminants can be added to the VID by convolving

P (T ) for the original map with that of the contaminant.

We again base our model survey on the “Full” CO mapping experiment described

in Table 6.1. This experiment surveys 6.25 square degrees between z = 2.4 and 2.8,

with σN = 5.8 µK. For simplicity, we assume that neither the signal nor the fore-

grounds evolve significantly across the observed frequency range. We use information

from all of the frequency channels to study the CO properties averaged over the full

survey volume.

Figure 8.1 shows the predicted VIDs for the CO signal and the two contaminants.

Below T ∼ 1 µK, unphysical “ringing” effects come into the VID due to the hard

cutoff at Mmin. Since this regime would be noise dominated in a realistic experiment,

the effect on the CO constraints should be small. As expected, the behavior we see

here is similar to the CO line with shot-noise foreground seen in Section 7.4. Noise
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Figure 8.1: Predicted VIDs for intensity maps of CO, CO with HCN, and CO with
instrumental noise (solid curves: the full VID; dashed curves: the contaminant alone).

dominates the VID at small T , and the foreground HCN dominates at large T .

We can use the above VID to obtain constraints on A and b, and we can then

compute constraints on other astrophysically interesting quantities. The focus of this

chapter is on star formation, so we need a model relating CO luminosity to SFR. Our

mass-luminosity parameters ACO and bCO in Chapter 5 were originally derived from

a set of empirical scaling relations31,30.

LFIR

L⊙
= CFIR

(
L′
CO

K km s−1 pc2

)XFIR

, (8.1)

where CFIR andXFIR are constants and LCO/L⊙ = 4.6×10−5(L′
CO/K km s−1 pc2)80,27.

The FIR luminosity of a galaxy can then be related to its SFR through the Kennicutt

relation

SFR

M⊙/yr
= CSFR

LFIR

L⊙
, (8.2)
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for some constant CSFR
105 (Note that in the notation of Li et al.35, α = XFIR, β =

log(CFIR), and δMF = 1010CSFR). The values for the above constants used in Chapter

5 are CFIR = 1.35× 10−5, XFIR = 5/3, and CSFR = 1.5× 10−10. The weakest part of

this process is the relation between SFR and halo mass31; here we assume they are

related by a power law and use the above relations to write it in terms of A and b:

SFR(M) = 9.8× 10−18

(
ACO

2× 10−6

)
M5bCO/3. (8.3)

We can then integrate this over the mass function to obtain the mean SFRD ψ in our

survey, which turns out to be 0.12 M⊙/yr/Mpc3 for our fiducial model.

The VID can also be used to predict constraints on other astrophysically inter-

esting quantities, such as the mean CO intensity TCO. This quantity is an important

measure of the quantity of molecular gas at high redshift, and is important for un-

derstanding the power spectrum of an intensity map. The mean volume emissivity of

CO emitters in this model is

jCO = ACO

∫ ∞

Mmin

M bCO
dn

dM
dM. (8.4)

We can use the procedure outlined in Section 2.1 to convert this to TCO.
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8.2 SFRD Constraints

In order to determine the constraining power of such an experiment, we perform

a Fisher analysis on our calculated P (T ) curves. We compute a Fisher matrix (see

Equation 7.15) over the parameters Xi = (ACO, bCO, AHCN , bHCN). We again

assume Poisson errors on the number of voxels in a given bin.

We invert the Fisher matrix to obtain the covariance matrix, and marginalize over

the foreground parameters to plot confidence regions for our CO parameters. Figure

8.2 shows the 95% confidence ellipses for a map containing just CO, as well as for

maps contaminated by HCN and instrumental noise. With no foreground lines, the

parameters ACO and bCO are fairly degenerate, since to linear order increasing one or

the other simply makes every halo brighter. Even with both foregrounds and noise

included, the uncertainties are around the ∼ 20% level in ACO and the ∼ 1% level

in bCO, so relying on one-point statistics, these intensity maps can provide excellent

constraints on the CO luminosity function. For comparison, note that in Chapter 3

we estimated an uncertainty on ACO of roughly an order of magnitude.

Constraints on our original parameters Xi are straightforward to convert to con-

straints on other parameters Yi. We simply need to multiply the Fisher matrix cal-

culated in Equation (7.15) on both sides by the Jacobian matrix Jij = ∂Xi/∂Yj. If

Yi = (TCO, ψ), we get the confidence regions plotted in Figure 8.3. The uncertainty

on SFRD with noise and foregrounds included is on the order of ∼ 10%. It should be

noted that this is an optimistic calculation. When converting our Fisher matrix to
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Figure 8.2: Predicted 95% confidence regions for CO mass-luminosity parameters
ACO and bCO for four cases: only CO with no noise or foregrounds (light blue), CO
with foreground HCN (green), CO with instrumental noise (red) and CO with both
noise and foreground (blue).

SFRD and TCO, we assumed that the scaling relations used to connect LCO to SFR

are well constrained. In practice, the uncertainties in these relations will reduce the

constraining power of such a measurement. More galaxy observations will be required

to reach the constraints shown here. However, it is clear from these calculations that

the potential of a CO intensity mapping experiment to constrain SFRD is quite high.

Up until now we have been considering a survey centered at z = 2.6. It is in-

teresting to consider how the SFRD constraint varies with redshift, especially as the

reliability of other methods diminishes with redshift. Figures 4 and 5 illustrate this

redshift dependence. For this calculation, we hold all of the instrumental parameters

constant except the central observing frequency. Figure 8.4 shows the fractional un-

certainty in SFRD as a function of redshift. Figure 8.5 places the result with noise

and foregrounds in context with results from the far ultraviolet (FUV) observations
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Figure 8.3: Predicted 95% confidence regions for mean CO brightness temperature
TCO and SFRD for the same four cases shown in Figure 5.3.

described by Madau & Dickinson89 (Hereafter M&D) and gamma-ray burst (GRB)

observations described by Kistler et al.137. For Figure 8.5, we use a somewhat differ-

ent form for ψ(z) than we have used thus far. Our modeling, which is quite simplistic

and only intended to serve as a proof-of-concept, gives a form for ψ(z) (dotted black

line) which differs from the M&D fit (solid black line). To facilitate comparison with

the data (grey points), the blue curves in Figure 8.5 show the 1-σ uncertainty on

SFRD calculated assuming the M&D form for ψ(z).

As mentioned above, there is theoretical uncertainty regarding the relations in

Equations (8.1) and (8.2). The magenta curves in Figures 8.4 and 8.5 show the

effect of taking it into account. The dashed magenta curves in both figures assume

a 10% uncertainty on CFIR and CSFR. Current results27 tend to give a constraint

on XFIR which is roughly an order of magnitude better than the constraint on CFIR,

similar to how in Figure 2 we obtain a much better fractional constraint on bCO than
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Figure 8.4: Predicted fractional 1-σ uncertainties on SFRD for different target
redshifts. The cyan, green, red, and blue curves show the same four cases as Figures
2 and 3. The dashed magenta curve shows the effect of adding a pessimistic 10%
uncertainty on CFIR and CSFR and 1% uncertainty on XFIR. The solid magenta curve
shows the effect of reducing these model uncertainties to a more optimistic 1% and
0.1% respectively. The dotted cyan and red curves show the effect of adding an
exponential cutoff and scatter to the power law L(M) model.

ACO. These curves therefore assume a 1% uncertainty on XFIR. These constraints

are somewhat better than current values, but they are likely pessimistic compared

to what will be available once intensity mapping data are available. If there are

resolved CO emitters in the same volume, one could calibrate the CO-SFR relation

and dramatically reduce this uncertainty. The solid magenta curve in Figure 8.4

shows a more optimistic scenario where the errors on CFIR and CSFR are 1% and that

on XFIR is 0.1%.

In order to test the model dependence of our results, we consider two aspects of

more sophisticated CO emission models which have been neglected thus far in our

deliberately simplified analysis. First, the true CO luminosity function likely cuts off
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Figure 8.5: Comparison between our predicted SFRD constraints and existing FUV
data from89 (grey points) and GRB data from137 (orange points). The dash-dotted
black line shows our simplistic fiducial ψ(z) model, and the solid black curve shows
the89 fit to the data. The blue curves show the ±1σ uncertainty from CO intensity
mapping calculated assuming the fitted ψ(z), including foregrounds and noise, but
excluding modeling uncertainty. The dashed magenta curves show the effect of adding
the pessimistic 10% model uncertainty from the dashed magenta curve in Figure 4.
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significantly earlier than the halo mass function136. In other words, the CO L(M)

relation has a turnover at some halo mass. We take this into account by adding an

exponential cutoff to our L(M) at a halo mass of M∗ = 2× 1012 solar masses, a value

consistent with other calculations35. Secondly, semianalytic models99,138 show that

the CO luminosity of a galaxy depends on many parameters besides its mass. Again

following Li et al.35, we add lognormal scatter with σ = 0.3 dex to our L(M) model to

account for this, preserving some dependence on mass while allowing for fluctuations

of other galaxy properties.

The dotted curves in Figure 8.4 show the effects of these changes for the cases with

and without instrumental noise. We can see that increasing the model complexity

and suppressing the bright end of the VID has relatively little effect at lower redshifts

but noticeably worsens the constraints on SFR at high redshift, up to roughly a factor

of 5 worse at z = 7. However, even at these high redshifts the overall uncertainty

would still be dominated by the error on the CO-SFR conversion seen in the magenta

curves.

8.3 Discussion

From the above results we can get a good sense of the potential of this technique

for constraining SFRD. In an ideal world with no foregrounds, noise, or modeling

uncertainty, this 6.25 deg2 survey could constrain SFRD to ∼ 1% at z ∼ 3. This
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scenario is obviously unrealistic, but we could reduce the modeling uncertainty with

more observations and reduce the noise with more sensitive instruments. It may be

possible to reduce the foreground contamination as well. The masking procedure

described in Chapter 5 will have little effect on the one-point statistics since it would

simply involve ignoring all pixels greater than some Tmax. However, as described in

Chapter 7 it may be possible to reduce the foreground levels by using other data from

the same area of the sky.

Counterintuitively, the constraint on SFRD in Figure 8.4 seems to improve with

redshift when foregrounds and noise are neglected. This is because at higher redshifts,

the same survey parameters correspond to a larger volume of space, which will include

more sources. In our simple model, ACO and bCO do not evolve with redshift, so the

only effect of moving to more distant sources comes from the evolution of the mass

function. Eventually there will be few enough sources aboveMmin that the constraint

will worsen, but for our redshift range the volume increase outweighs this effect. When

noise is included, the volume effect dominates at low redshift, but the amplitude of

the noise relative to TCO takes over at z ∼ 5 or so. With foregrounds, the relative

amplitude of CO and HCN decreases with redshift, starting to dominate over volume

effects at around z ∼ 6. The model uncertainties as we have considered them here are

nearly redshift independent, so the constraint with these included depends weakly on

redshift.

As seen in the dotted curves in Figure 8.4, our constraints do not change drasti-
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cally when we consider a more sophisticated model. The model used for the dotted

curves contains significant scatter around the mean L(M) relation and adds a sharp

cutoff to the luminosity of high mass halos, yet the change in fractional uncertainty on

SFR is only order unity. Though even this more intricate model is still relatively sim-

plistic, our qualitative conclusions should still hold. We leave a detailed quantitative

prediction for future work.

Currently there is substantial disagreement between high redshift SFRD’s mea-

sured using different methods, as illustrated by the roughly order-of-magnitude dis-

agreement between the FUV and GRB data plotted in Figure 8.5. This discrepancy

can possibly be explained if the FUV analysis underpredicts the quantity of low-

luminosity galaxies137. Since intensity mapping is far more sensitive to the fainter

population than other methods it could provide a powerful means to resolve this

discrepancy.

An effect we have not taken into account here is contamination from continuum

foregrounds. Though in principle these should be easy to clean out, it is unclear

what form the residual contamination would take and how it would alter our results.

Another effect worth considering is the dependence of these results on the voxel

size. As discussed in Chapter 7, larger beams will wash out additional information

about the signal, but may also reduce covariance between nearby voxels due to beam

smoothing.

It may also be possible to constrain other quantities related to star formation with
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these intensity maps besides global SFRD. For example, because the convolutions in

the VID computation depend on the full range of possible luminosities, the VID at

all intensities depends on the chosen value of Mmin. Thus, even though the faintest

pixels will be noise-dominated, it could be possible to determine Mmin from our VID,

in an analogous way to the determination of Lmin in Chapter 7. Another common

unknown for high-redshift galaxies is what is the relative contribution to the overall

intensity of high-mass vs. low-mass galaxies. This question is difficult to answer

with galaxy surveys, but it should be more tractable with intensity mapping. The

methods described in this chapter should be readily applicable to these and many

other problems of high-redshift star formation.

From Figure 5, it is clear that CO intensity mapping has great potential for

constraining the high-redshift SFRD. Though we are currently limited by modeling

uncertainty, this should improve with better models and more observations. The

potential bound shown by the blue curves, though idealized, is remarkably strong

despite using only a small survey area. In addition, the results shown above do not

include any additional constraints from the two-point statistics of a map. Though

there will likely be substantial covariance between the VID and power spectrum, the

power spectrum does contain spatial information which may help refine this type of

measurement. Combining intensity mapping with existing multiwavelength galaxy

surveys should further improve the constraints. More work is necessary before CO

intensity mapping can be used to accurately determine SFRs, but these results clearly
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demonstrate the value of this effort.

8.4 Summary

We have demonstrated the usefulness of our VID statistic by using it to forecast

the ability of a CO intensity mapping survey to constrain the cosmic star formation

history. Our constraints on SFRD are limited by model uncertainty to a fractional

uncertainty of 50% between redshifts 2 and 7. However, if this model uncertainty

could be reduced, our constraints improve to roughly 5-10%, which is highly com-

petitive with current measurements. Because intensity maps directly measure the

emission from very faint galaxies, even the pessimistic constraints can be used to

resolve important conflicts in current measurements which cannot resolve the faint

population.
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Conclusions

Intensity mapping offers a powerful tool to study physics in the distant universe,

on scales ranging from individual molecular clouds to the large-scale structure. In

this thesis, we have studied several aspects of intensity mapping surveys, and created

useful tools for extracting information from them. We have also highlighted the many

ways in which intensity maps allow science above and beyond what is possible using

conventional observations.

In Chapter 2, we described how to compute the power spectrum of an intensity

map. We performed this computation in two ways, one using three-dimensional spa-

tial coordinates, and another using two-dimensional angular coordinates. The three-

dimensional form captures the full behavior of the map along the line of sight, while

the two-dimensional form uses coordinates which adapt more readily to the frame

of observation, and is easier to apply to measurements at different redshifts. In the
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future, it may prove valuable to use a third formalism which combines the advantages

of both of these by decomposing the full three-dimensional intensity fluctuations into

basis functions in spherical coordinates139. Such a procedure would be computation-

ally intensive, but would most accurately capture the behavior of observed maps.

In Chapter 3, we used two-dimensional power spectra to study the prospects for

conducting a CO intensity mapping survey at z ∼ 3. Using a single-parameter ap-

proximation of four literature models, we found that there is little agreement between

different models on the amplitude of the CO signal. The brightest and faintest models

produced spectra which differed by roughly two orders of magnitude. We also found,

however, that all but the faintest models predicted detectable signal-to-noise ratios

in a hypothetical survey. While this result is encouraging, it is also important to note

that the high SNR we obtained is highly dependent on survey design, so upcoming

experiments must plan their observing strategies carefully to ensure detection of the

CO signal.

Because existing N-body methods of simulating intensity maps are slow and un-

wieldy when dealing with large volumes, we created in Chapter 4 a method for quickly

simulating maps with known galaxy power spectra. By drawing lognormal random

fields which approximate the true galaxy number distribution and assigning luminosi-

ties from a model mass or luminosity function we can create two-dimensional slices

of intensity maps for a wide range of line models. Though these simulations have

proved themselves quite useful, in the future we will look to expand them to three
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dimensions. This extension will be necessary to study important problems such as

continuum foreground contamination.

We applied these simulations in Chapter 5 to the issue of foreground line emission.

By adding together simulations of signals and foregrounds for surveys targeting CO,

Lyα, and CII we were able to study the effects of voxel masking on combined power

spectra. Because bright voxels tend to be dominated by foreground emission, we

were able to show that masking them out can in some cases allow the measurement

of a “clean” signal power spectrum. Unfortunately, this masking also changes the

amplitude of the signal spectrum, removing in the process most of the astrophysical

information content. The shape of the spectrum is preserved however, which could

allow the recovery of useful cosmological information. We found that this method

worked successfully for our models of CO and Lyα, but failed for CII owing to a

very high foreground-to-signal ratio and a low angular resolution. Compared to other

foreground cleaning methods, this has the advantage of requiring neither high signal-

to-noise ratio nor external data, but it would be useful to consider how voxel masking

could be combined with other techniques to maximize the amount of recovered signal.

In Chapter 6 we expanded our discussion of foreground lines to include faint lines

which nevertheless provide valuable probes of astrophysics. We focused on the 13CO

(1-0) line in surveys targeting the usual 12CO transition. In the local universe 13CO

observations compliment 12CO measurements by allowing the measurement of the

density of molecular gas clouds, which provide the nurseries for forming stars. We
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find that by cross-correlating pairs of frequency bands, it is possible to access the

13CO transition at high redshift in an intensity map. Furthermore, we showed that

by doing so it is possible to measure the global properties of molecular gas in the

distant universe, offering a potential new window into star formation and galaxy

formation at high redshift. In the future, we intend to expand this type of analysis

to other pairs of lines, which could dramatically improve our understanding of the

conditions within these galaxies.

Though power-spectrum methods have proven their worth as a tool to study inten-

sity maps, they are incapable of determining the full details of an emitting population.

This stems from the fact that any non-Gaussian map, like the ones we study here,

contains information which is not accessible in the power spectrum. In Chapter 7,

we applied P (D) analysis to intensity mapping to create a new statistic, the VID,

which allows for deeper study of the luminosity function of a target population. We

showed that, even when contaminated by continuum emission, line foregrounds, and

gravitational lensing, the VID allows considerably stronger constraints on line lumi-

nosity functions than the power spectrum. Though there is more work needed before

the VID is fully ready to be applied to real data, most notably on the problems of

realistic continuum foregrounds and covariance with the power spectrum, it is clear

that it represents a powerful new tool for studying intensity maps.

Using the VID, we demonstrated in Chapter 8 that a CO intensity map could

be used to make a competitive measurement of the star formation rate at high red-
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shift, a quantity of significant interest when studying galaxy formation and evolution.

Because intensity maps directly observe emission from faint populations invisible to

traditional measurements, they suffer from very different systematic effects and can

therefore resolve important tensions in existing data.

The work presented in this thesis represents a significant step in the maturation

of intensity mapping as a field. As the first data begin to become available, the

ideas presented here will be crucial as we attempt to realize the potential of this new

observable.
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Spurious 12CO Auto Power in

Cross-Spectrum

When we take the cross-spectrum between two chosen bands, our goal is to get at

the correlation between 12CO and 13CO emission from galaxies at a single redshift.

However, the cross-spectrum also contains power from pairs of 12CO emitters and pairs

of 13CO emitters at different redshifts. For example, cross-correlating bands centered

at 32 and 30.6 GHz would correlate emission from 12CO and 13CO at z = 2.6. It will

also correlate 12CO emission from z = 2.6 and 2.8 and 13CO emission from z = 2.4

and 2.6. If the spatial separation between these pairs of redshifts is large compared

to the scale set by a given multipole, then this spurious correlation should be small.

Here we demonstrate this fact quantitatively.

The 3D auto spectrum PCO(k, z) of a CO line is given by Equation (2.1). If we
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wish to compute the angular cross-spectrum between two different redshift bands we

simply apply Equation (2.9) with the 12CO 3D spectrum and selection functions f1

and f2 centered on our two chosen bins. As stated in Section 2.2, we can evaluate

this expression in two limits. If our bands have a comoving spatial width δr which

satisfies ℓδr/r ≫ 1 (i.e. if we consider fluctuations on length scales small compared to

the width of the redshift slice), we can use the well-known Limber approximation57,58

C12×12,s
ℓ ≈

∫
H(z)

c

f1(z)f2(z)

r2(z)
PCO [k = ℓ/r(z), z] dz. (A.1)

In this limit, it is clear that if f1 and f2 do not overlap for any value of z, this integral

vanishes and we will see no spurious correlation in our cross-spectrum. This agrees

with our previous intuition, as the Limber approximation is valid for large ℓ’s where

we expected our signal to be small.

In the opposite limit, where ℓδr/r ≪ 1, we can replace both selection functions

with Dirac delta functions centered at the two redshifts z1 and z2. Evaluating Equa-

tion (2.9) in this limit gives

C12×12,s
ℓ ≈ 2

π

∫
k2PCO(k)jℓ [kr(z1)] jℓ [kr(z2)] dk. (A.2)

Since the extra 12CO correlation vanishes in the Limber approximation, we can take

this narrow-band approximation as an upper limit on the amount of spurious power.

If we evaluate this integral numerically at ℓ = 100, we find a value for C12×12,s
ℓ which
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is approximately 1% of the cross-spectrum C12×13. The ratio falls to ∼ a few parts

in 105 at ℓ = 500. The largest scales accessible to the instruments we consider here

are around ℓ ∼ 100, so we can safely ignore this extra power in our analysis. Since

the 13CO line is so much fainter than the 12CO line, spurious 13CO correlation will

be even less significant.

It should be noted that this argument would not hold if we were to consider an ex-

periment with a substantially larger survey area. At ℓ = 10, contamination from this

extra 12CO in the narrow-band approximation rises to ∼ 60% of the cross-spectrum.

This is still an overestimate, but it would still likely need to be taken into account

if performing this analysis on very large scales. It may also needed to be taken into

account for measurements at higher redshifts, such as those which would target the

Epoch of Reionization30. As the target redshift increases, the comoving separation

of the two 12CO populations in the two bands decreases, leading to additional corre-

lation on smaller scales. This is particularly significant because these band pairs in

a survey at z = 7 will cover populations of 12CO emitters separated by nearly the

baryon acoustic oscillation scale, which will significantly boost the correlation.
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Marginalizing over 12CO in

Cross-Power

For the molecular gas constraints shown in Figure 6.4, we assumed that the 12CO

luminosity function was known exactly. Here we will relax that assumption and show

that the effects on our final constraints is small. Unfortunately, we cannot simply

perform a full Fisher analysis combining all four 12CO parameters from Equation

(6.13) with the molecular gas parameters R and fs. Even if we use both the auto-

and cross-spectra, the only degrees of freedom we can use are the amplitudes of the

clustering and shot noise components of each spectrum. This leaves us with four

degrees of freedom and six parameters, ensuring that several parameter constraints

will be perfectly degenerate.

This issue arises due to the fact that the power spectrum only contains all of
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the information about a map if that map is purely Gaussian140. Since a galaxy’s

CO luminosity is determined by a variety of nonlinear astrophysical processes, the

intensity distribution in an intensity map will be very non-Gaussian. In order to

fully constrain the luminosity functions which give rise to these non-Gaussian maps,

we need some prior information from another source. One promising source of extra

information is the one-point pixel intensity distribution. We show in Chapter 7 that

this statistic could be used with an experiment similar to the COMAP “Full” survey

to constrain the 12CO luminosity function to within ∼ 10− 20%.

Consider then a Fisher matrix computed from both power spectra over all six

parameters. We can add to this a prior matrix assuming uncorrelated 10% errors on

the four 12CO parameters. The new Fisher matrix will then be invertible, allowing

us to forecast parameter constraints. If we perform this analysis, the fractional 1-σ

error on R increases to ∼35% from the ∼30% value quoted above. As stated above,

this increase is small because the 12CO emission is substantially brighter that the

13CO emission. Uncertainties on R and fs will therefore always be dominated by

uncertainty in the 13CO measurements.
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Effects of Luminosity-Dependent

Bias on P (D) Computations

As mentioned in Section 7.1, though our P(D) formalism takes into account the

average halo bias when computing P(N), we do not correctly include the full lu-

minosity dependence of the bias. Here we will describe an approximate method for

computing the full biased VID and attempt to get an idea of how important the effect

is. Since our fiducial model is not derived from any sort of mass-luminosity relation,

for the purposes of this discussion we will look at the probability distribution P(M) of

total halo mass contained within a voxel rather than total intensity. We will assume

that halo masses are drawn from the Tinker mass function102 and we will use the

corresponding b(M)103.

In our normal formalism, we would compute σG using the average bias b, which
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when calculating P(M) would be

b =

∫
b(M)dn/dMdM∫
dn/dMdM

. (C.1)

Now, instead of computing one average bias for all galaxies, assume instead that we

split our population in half around some mass value Medge. We can then compute

two average biases, two σG’s, and two mass PDFs Pi(M) for the low- and high-mass

populations. By the same logic used in Equation (7.4), the full P(M) will be the

convolution of those of the two subsets. We can then divide our mass range into

smaller and smaller subsets to more accurately model a full continuous b(M).

Figure C.1 shows the fractional change in P(M) from a single average bias bin

to many narrow bins. If the bins are too wide, there are significant discontinuities

at the bin edges, but as the bins become smaller we can see that these edge effects

become small. At the low mass end, the effect of this bias is of order ∼ 10%, however

these low-mass voxels would likely fall into the noise-dominated regime of a full VID

calculation. This effect is small enough (≲ 5% outside the noise-dominated region)

that we do not expect a full Fisher analysis including the effects of bias to produce

significantly different constraints. However, this does imply that leaving this effect

out of the analysis of future measurements could lead to non-negligible systematic

errors. It is therefore important for future models to accurately take into account the

luminosity-dependent bias.
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Figure C.1: Fractional change in P(M) when including mass-dependent bias in
wider bins (blue) ad narrower bins (red).
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Comparison between numerical

and analytic VIDs

We demonstrated in Chapter 4 a method for simulating 2D slices of intensity maps

with given power spectra. Our VID formalism is based in part on these simulations,

and the two methods are based on the same set of assumptions. Both assume galax-

ies have randomly assigned luminosities drawn from a luminosity function and are

distributed on the sky according to a lognormal random field. If we estimate a VID

from a simulation prepared using our routine, we can then verify that the calculations

presented here produce reliable results.

We generate 400 slices of a CO intensity map with galaxy luminosities drawn from

our fiducial Φ(L) with voxel sizes set by the COMAP parameters. We then bin the

resulting map in bins of width ∆ log T = 0.12 dex, and compare to the bin values
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Figure D.1: Number of voxels in intensity bins Bi simulated using the method from
Chapter 4 (red points) compared with the predicted values from our fiducial CO VID
(blue). Error bars on the simulated bins are Poisson.

predicted by our fiducial VID. Figure D.1 shows the results. The plotted error bars

on the simulated bins are the Poisson errors we use when computing Fisher matrices.

This result clearly shows that our simulations and VID calculations are in good agree-

ment, and that our numerical computations do not introduce a significant amount of

error into our final VIDs. The simulations still use the same set of approximations we

used when deriving the VIDs though (see discussions in Chapter 7), so it would be

useful in the future to test our formalism against more in-depth N-body simulations

which would take into account, for example, the full mass-dependent halo bias.
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Luminosity function constraints

including foreground effects

Just as we did in Figure 7.3, we can use our Fisher matrix constraints on the

fiducial luminosity function parameters under various forms of contamination to es-

timate uncertainties on the luminosity function Φ(L). The results of this procedure

are shown in Figure E.1. The region shown in blue give the same constraints shown

previously for the case including only signal and instrumental noise. The purple re-

gion shows the effect of subtracting out the mean of the map to remove continuum

foregrounds. As described previously, the constraints worsen somewhat but on the

whole do not change substantially.

The green region shows the constraints with the shot-noise FG1 line added. The

constraints get notably worse when this contamination is added, but the VID remains
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Figure E.1: 95% confidence regions around our fiducial luminosity function for cases
with only instrumental noise (blue), noise plus mean subtraction (purple), noise plus
shot-noise foreground FG1 (green), and noise plus masked clustering foreground FG2
(red).

reasonably constrained above a few times 104 L⊙ despite the fact that no attempt

has been made to clean out the interloper line. The errors reach a minimum at

around L ∼ 105 L⊙. This is roughly the luminosity where the difference between the

signal and FG1 luminosity functions is greatest. It is also just above the point where

the instrumental noise falls off, so the signal-to-noise is maximized. Errors with a

masked clustering foreground FG2 are shown in red. However, once we mask out the

brightest foreground sources, we see that we get significant constraining power over

nearly the entire luminosity range, with the best constraints coming at high L where

the foreground is masked out.
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Appendix F

Full VID constraints on CO with

clustering foreground

Figure F.1 shows the full 8-parameter Fisher matrix constraints on the parameters

of our fiducial CO model and those of the clustering foreground FG2. Light red

ellipses show the constraints with the unmasked foreground, dark ellipses show those

with the masking from Figure 7.5 applied. The parameter constraints change in

some counter-intuitive ways when the masking is applied, due to the substantial

degeneracies between the signal and foreground parameters in the unmasked case. For

example, the constraints in the [L∗, L∗,2] parameter space rotate by nearly 90 degrees

when masked. This occurs because the masking removes nearly all of the information

about the foreground cutoff, while simultaneously leaving the signal cutoff free of

contamination.
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APPENDIX F. FULL FG2 CONSTRAINTS

Figure F.1: Full Fisher matrix constraints for a model including the CO signal,
the COMAP instrumental noise, and clustering foreground FG2 both masked (dark)
and unmasked (light). Parameters with subscript “2” denote parameters of the FG2
luminosity function.
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[120] Glenn, J., Conley, A., Béthermin, M., et al. 2010, MNRAS, 409, 109

[121] Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A17

[122] Barcons, X. 1992, ApJ, 396, 460

[123] Takeuchi, T. T., & Ishii, T. T. 2004, ApJ, 604, 40

[124] Kayo, I., Taruya, A., & Suto, Y. 2001, ApJ, 561, 22

[125] Vernstrom, T., Scott, D., Wall, J. V., et al. 2014, MNRAS, 440, 2791

[126] Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016, A&A, 594, A10
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