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Nutrient content and stoichiometry of pelagic
Sargassum reflects increasing nitrogen availability in
the Atlantic Basin
B. E. Lapointe 1✉, R. A. Brewton1, L. W. Herren 1, M. Wang 2, C. Hu 2, D. J. McGillicuddy Jr. 3,

S. Lindell 3, F. J. Hernandez 4 & P. L. Morton 5

The pelagic brown macroalgae Sargassum spp. have grown for centuries in oligotrophic

waters of the North Atlantic Ocean supported by natural nutrient sources, such as excretions

from associated fishes and invertebrates, upwelling, and N2 fixation. Using a unique historical

baseline, we show that since the 1980s the tissue %N of Sargassum spp. has increased by

35%, while %P has decreased by 44%, resulting in a 111% increase in the N:P ratio (13:1 to

28:1) and increased P limitation. The highest %N and δ15N values occurred in coastal waters

influenced by N-rich terrestrial runoff, while lower C:N and C:P ratios occurred in winter and

spring during peak river discharges. These findings suggest that increased N availability is

supporting blooms of Sargassum and turning a critical nursery habitat into harmful algal

blooms with catastrophic impacts on coastal ecosystems, economies, and human health.
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For over five centuries, the floating brown macroalgae of the
North Atlantic Ocean (NA) known as pelagic Sargassum has
stirred debate and mystery among seafarers and scientists

alike. This vegetation was first described by Christopher
Columbus and his sailors in 1492, which reminded them of
“salgazo,” small grapes in Portugal, and thus the name of the
central gyre of the NA became the Sargasso Sea1. The vegetation
is comprised of two holopelagic Sargassum species, S. natans and
S. fluitans, that reproduce solely by vegetative propagation2. Early
oceanographers and marine botanists thought this vegetation
grew primarily in the Sargasso Sea, which they estimated to
contain 7 to 10 million tons3,4 (Fig. 1). However, this presented a
paradox to modern oceanographers who considered the Sargasso
Sea a biological desert due to the very low nutrient concentrations
and biological productivity in its surface waters (Ryther’s
Paradox)1.

This paradox has since been explained by the seasonal trans-
port of nutrient enriched and productive Sargassum from the
Gulf of Mexico (GOM), Loop Current, and Gulf Stream to the
Sargasso Sea. Studies of the productivity and nutrition of pelagic
Sargassum showed that neritic plants in the southeastern GOM,
Loop Current, and western wall of the Gulf Stream along the
southeastern United States had twofold higher productivity and
lower carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios
compared to oceanic populations in the Sargasso Sea5,6. Major
advances in remote sensing of Sargassum using Medium Reso-
lution Imaging Spectrometer (MERIS) and Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite imagery revealed
extensive and frequent windrows of Sargassum (line-shaped
aggregations formed by wind forcing) in the western GOM in
2004 and 20057. High biomass strandings of Sargassum along
GOM coastlines since the 1980s have led to intensive beach
raking8 and an emergency shutdown of a nuclear power plant on
the west coast of Florida9, perhaps as a consequence of increasing
N inputs to the GOM from the Mississippi River and its dis-
tributary the Atchafalaya River, as well as other land-based
sources5,10. The extensive biomass of Sargassum in the western

GOM is proposed to be advected seasonally via the Loop Current
and Gulf Stream to the Sargasso Sea11. For the first time, physical
connectivity was established linking the abundant Sargassum
populations in the GOM to nutrient-poor populations in the
Sargasso Sea, helping to explain Ryther’s Paradox1.

Beginning in 2011, a new region of concentrated Sargassum
biomass developed in the Tropical Atlantic Ocean south of the
Sargasso Sea12,13, where it had not been previously observed3.
This new region may have been seeded by an extreme negative
phase of the North Atlantic Oscillation in 2009 to 2010 that
provided windage to transport Sargassum from the Sargasso Sea
to the east and ultimately into the North Equatorial Current and
central Tropical Atlantic Ocean14, although this is not evident
from satellite imagery. Long-term satellite data, numerical
particle-tracking models, and field measurements indicate that a
newly formed Great Atlantic Sargassum Belt (GASB) has recurred
annually since 2011 and extended up to 8850 km from the west
coast of Africa to the GOM, peaking in 201815. Over its broad
distribution, the GASB can be supported by N and P inputs from
a variety of sources including discharges from the Congo, Ama-
zon, and Mississippi rivers5,15–17, upwelling off the coast of
Africa15,16, vertical mixing5, equatorial upwelling18, atmospheric
deposition from Saharan dust, and biomass burning of vegetation
in central and south Africa16,19.

Similar to the recent development of macroalgal blooms in the
Yellow Sea and the East China Sea20,21, the increasing golden
tides of Sargassum in the GOM and GASB could be ecological
indicators of large-scale, oceanic eutrophication15,22. Excessive
biomass strandings of Sargassum have had catastrophic con-
sequences on ecosystem and human health in coastal areas,
negatively impacting seagrasses23, coral reefs24,25, and a number
of suitable sea turtle nesting and hatching areas26. Sargassum
removal from Texas beaches during earlier, less severe inunda-
tions was estimated at $2.9 million per year27 and Florida’s
Miami-Dade County alone estimated recent removal expenses of
$45 million per year. The Caribbean-wide clean-up in 2018 cost
$120 million, which does not include decreased revenues from
lost tourism. Sargassum strandings also cause respiratory issues
from the decaying process and other human health concerns,
such as increased fecal bacteria. During large-scale strandings in
2018, more than 11,400 residents in Martinique and Guadeloupe
were diagnosed with acute exposure to toxic H2S gas produced by
decaying Sargassum28.

Increases in harmful algal blooms (HABs) in recent decades are
related to global increases in nutrient pollution29,30. Human
activities have greatly altered global C, N, and P cycles, and N
inputs are considered now high risk and above a safe planetary
boundary31. Based on scientific research, population growth and
land-use changes have increased N pollution and degradation of
estuaries and coastal waters since at least the 1950s30,32–34.
Despite decreases in N loading in some coastal watersheds, N:P
ratios remain elevated in many rivers compared to historic
values35. Although the relative importance of N vs. P limitation in
the open oceans has been debated36,37, previous analyses of tissue
C:N:P data suggest that both N and P potentially limit the growth
of pelagic Sargassum over its broad geographic range5,6. Here, the
objective was to better understand the effects of N and P supply
on Sargassum, where a unique baseline tissue C:N:P data set from
the 1980s5,6 are compared with more recent samples collected
since 2010 (Fig. 1).

Results
A total of 488 tissue samples of Sargassum spp. were collected
during various research projects and cruises in the NA basin
between 1983 and 2019. The baseline 1980s samples (41) included

Fig. 1 Sargassum collection locations. Locations in the North Atlantic
Ocean where Sargassum samples were collected during the 1980s baseline
study5 (blue), post-2010 collections (green), and during both time frames
(orange).
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seasonal sampling of S. fluitans (21 samples) and S. natans
(20 samples) at offshore Looe Key reef in the lower Florida Keys in
1983 and 1984 and a broader geographic sampling in 1986 and
1987 from neritic stations offshore the Florida Keys (Looe Key,
Dry Tortugas), Gulf Stream (Miami, FL; Charleston, SC; Cape
Fear, NC), and Belize, Central America (Glovers Reef, Belize City).
Oceanic stations included the northern, central, and southern
Sargasso Sea (Fig. 1)6. Seasonally these baseline samples consisted
of winter (2), spring (15), summer (20), and fall (4) collections.
Since 2010, additional samples (447 total) of S. fluitans (302) and
S. natans (145) were collected in a variety of locations in the wider
NA, including Looe Key, western Florida Bay, the Gulf Stream,
coastal waters along the east and west coasts of Florida, various
stations in the GOM, Belize, the Caribbean region, and in the
Amazon River plume (Fig. 1). The post-2010 samples also span-
ned winter (28) spring (97), summer (327), and fall (36).

Changes in Sargassum tissue chemistry. Tissue analysis of Sar-
gassum over broad areas of the NA revealed significant changes in N
and P contents since the 1980s, indicating widespread N enrichment
and increased P limitation. %N and %C increased concurrent with a
decrease in %P in Sargassum tissue from the 1980s to 2010s (Fig. 2a).
Elemental composition varied significantly between these two dec-
ades (MANOVA, Pillai’s lambda= 0.201, F= 3,470 39.4, P < 0.001;
Supplementary Table 1). Subsequent univariate analyses revealed
significant increases (23%) from the 1980s to the 2010s for %C
(ANOVA, F= 1 53.8, P < 0.001) and %N (35%; ANOVA, F= 1 5.01,
P= 0.026), while %P decreased significantly (−42%; ANOVA,
F= 1 31.4, P < 0.001) over the long-term study (Fig. 2a). The C:N:P
ratios also varied by decade (MANOVA, Pillai’s lambda= 0.236,
F= 3,470 48.4, P < 0.001; Supplementary Table 2). Notably, the biggest
change was the N:P ratio, which increased significantly (111%;
ANOVA, F= 1 93.4, P < 0.001). C:P ratios also increased similarly

(78%; ANOVA, F= 1 44.9, P < 0.001; Fig. 2a). Although the C:N
ratio decreased (−10%) from the 1980s to the 2010s, this change was
not significant (ANOVA, F= 1 < 0.001, P= 0.956; Supplementary
Table 2, and Fig. 2a). As such, the decadal patterns of increasing %C
and %N with decreasing %P observed in Sargassum are consistent
with observed changes in molar C:N:P ratios.

Seasonal patterns were also observed in elemental composition of
Sargassum with higher %N and %P in the winter and spring
(Fig. 2b). Elemental composition varied significantly with season
(MANOVA, Pillai’s lambda= 0.147, F= 9,1416 8.13, P < 0.001;
Supplementary Table 1). Tissue %N (ANOVA, F= 3 17.1, P <
0.001) and %P (ANOVA, F= 3 16.7, P < 0.001) was significantly
higher during winter and spring than in summer and fall, but %C
was not seasonally variable (ANOVA, F= 3 2.58, P= 0.053).
Further, tissue C:N:P ratios also varied with season (MANOVA,
Pillai’s lambda= 0.115, F= 9,1416 6.25, P < 0.001; Supplementary
Table 2). Both the C:N (ANOVA, F= 3 13.4, P < 0.001) and C:P
(ANOVA, F= 3 12.5, P < 0.001) ratios were significantly lower in
the winter and spring compared to the summer and fall
(Supplementary Table 2). The N:P ratio was not seasonally variable
(ANOVA, F= 3 0.930, P= 0.427; Supplementary Table 2). These
seasonal patterns demonstrate higher %N and %P contents in the
winter and spring with no seasonal fluctuations in %C or N:P ratio
(Fig. 2b).

Significant interactions between season and decade were
observed in Sargassum tissue chemistry. For elemental composition,
this interaction was significant (MANOVA, Pillai’s lambda= 0.055,
F= 9,1416 2.95, P= 0.002; Supplementary Table 1, Supplementary
Fig. 1). For %C the interaction of season and decade was not
significant (ANOVA, F= 3 1.90, P= 0.129) but there were
significant interactions for %N (ANOVA, F= 3 3.00, P= 0.030)
and %P (ANOVA, F= 3 3.91, P= 0.009). For %N, all seasons
increased from the 1980s to 2010s, except for winter, which slightly

Fig. 2 Sargassum tissue nutrient contents. Tissue elemental composition and C:N:P stoichiometry (mean ± SE) of Sargassum natans and S. fluitans collected
throughout the NA in the 1980s and post-2010. a by decade with asterisks representing significant differences and b by Northern Hemisphere
meteorological season with different lowercase letters representing significant differences identified with Tukey HSD test; “n/s” denotes a non-significant
(P > 0.05) ANOVA result.
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decreased (Supplementary Fig. 1). Conversely, %P decreased
between decades for all seasons, except winter, which slightly
increased (Supplementary Fig. 1). These interactions suggest that
1980s winter had a different pattern than the other seasons, which
may be an artifact of the very small sample size (2) from just one
location (Looe Key) for 1980s winter.

Geographic patterns in Sargassum tissue chemistry. Overall, the
%N of Sargassum spp. increased 35% over the period of study,
while %P decreased by 44%, resulting in more than a doubling of
the N:P ratio from 13:1 to 28:1, well above the Redfield Ratio of
16:1. The highest %N, N:P ratios, and stable nitrogen isotope
values (δ15N) were in neritic waters heavily influenced by river
discharges and land-based runoff (Fig. 3, Supplementary Fig. 2,
and Supplementary Table 3). The overall range of %N was 0.15 to
3.05% with the highest mean %N observed in coastal waters of the
GOM (2.55% in summer offshore of Florida’s west coast, 2.28% in
winter offshore of Texas), Florida’s east coast (1.82% offshore of
Miami, 1.73% near Sebastian Inlet, 1.33% in western Florida Bay),
southeast United States (1.84% offshore Savannah, GA) and the
offshore Amazon plume (1.25%; Fig. 3a and Supplementary
Fig. 2a). The lowest %N was observed offshore of Key West, FL
(0.61%; Fig. 3a). Twenty of the post-2010 sampling events had %
N values greater than the mean %N from the 1980s (Fig. 3a). The
overall range for N:P ratios was 4.66 to 99.2 with the highest in
western Florida Bay, FL (89.4), followed by locations in the GOM
and Caribbean (Fig. 3b and Supplementary Fig. 2b). The lowest

N:P ratios were observed in the eastern Caribbean at St. Thomas
(20.9) and Barbados (13.0; Fig. 3b). Twenty-six of the post-2010
sampling events had N:P ratios greater than the mean N:P from
the 1980s (Fig. 3b). δ15N values were variable with an overall
range of −5.58 to +8.99‰, indicating multiple sources of N were
available to Sargassum (Supplementary Fig. 2c). High values
(>+5‰) occurred along the urbanized Texas coast that is also
affected by the Mississippi River plume (Supplementary Fig. 2c).
The lowest δ15N values occurred at Saba (−1.83‰) in the Lee-
ward Islands of the northeastern Caribbean (Fig. 3c). δ15N values
of Sargassum collected in the Gulf Stream were also generally low
(<−1‰), except offshore of Savannah, GA (+2.5‰; Fig. 3c).

Discussion
In a series of shipboard experiments during the 1980s, Sargassum
productivity and growth was enhanced by enrichment with both
nitrate5 (NO3

−) and soluble reactive phosphorus38 (SRP), which
resulted in higher tissue levels of N and P. In oligotrophic surface
waters of the NA, dissolved inorganic N (DIN) and SRP con-
centrations are higher within Sargassum windrows compared to
adjacent waters5,39. This localized enrichment has allowed Sar-
gassum to exploit ammonium-rich excretions from associated
fishes and invertebrates6, recycled nutrients from microbial
mineralization of particulate organic matter40 (POM) and dis-
solved organic N forms such as urea and amino acids41 through
its long evolutionary history. While several forms of dissolved

Fig. 3 Post-2010 Sargassum tissue nutrient contents by location. Post-2010 Sargassum tissue nutrient contents by location (mean ± SE), as well as
Northern Hemisphere meteorological season for Gulf of Mexico (GOM) samples, indicating where %N and N:P ratios were greater than the 1980s baseline
mean for the entire dataset (black dotted lines). a For %N, values have significantly increased from the 1980s (decadal mean= 0.89%) to post-2010
(decadal mean= 1.21%); %N values >1.5 (red dashed line) are considered non-limiting to macroalgal growth43. b N:P ratios have significantly (111%;
ANOVA, F= 1 93.4, P < 0.001) increased from the 1980s (decadal mean= 13.2) to post-2010 (decadal mean= 27.8, blue dashed line). c Enriched δ15N
values (>+3‰, orange dotted line) are indicative of urbanized wastewater discharges, while more depleted values are indicative of N2 fixation,
atmospheric deposition, and upwelling.
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nitrogen are available to Sargassum, ammonium (NH4
+) uptake

is most efficient42.
More recently, the significant increase in tissue N (+35%) and

upward shifts in N:P ratios (+111%) since the 1980s suggests that
Sargassum is now exploiting the global trend in N enrichment. In
the 1980s %N of Sargassum averaged 0.89% compared to higher,
non-limiting values for macroalgae (>1.5%43) observed recently
in the GOM, peninsular Florida, and the Amazon Plume (Fig. 3).
Because of anthropogenic emissions of oxides of N (NOx), the
NOx deposition rate is about fivefold greater than that of pre-
industrial times largely due to energy production and biomass
burning44. Production of synthetic fertilizer N has increased
ninefold, while that of P has increased threefold since the 1980s30

contributing to a global increase in N:P ratios. Notably, 85% of all
synthetic N fertilizers have been created since 198545, which was
shortly after the baseline Sargassum sampling began at Looe Key
in 1983. The quantity of global N fixation for fertilizer production
and P flowing into the oceans was estimated at 121 and 9.5
million tons/yr, respectively46, yielding an anthropogenic N:P
molar ratio of 28:1, identical to the mean N:P molar ratio of 28:1
measured in Sargassum since 2010.

A strong connection of Sargassum areal cover to land-based
runoff is evidenced by the highest tissue %N values occurring in
areas influenced by reduced salinity from river discharges and
terrestrial runoff (Figs. 3a and 4a). Statistical analysis of the
Sargassum cover in different salinity ranges from 2011 to
2019 shows that the bulk of Sargassum biomass occurs at oceanic
salinities of ~36 (Fig. 4b). However, when Sargassum cover (or
biomass) is normalized by water area in each salinity band (blue
bars in Fig. 4b), the distribution is rather flat across the salinity
range of 32 to 36 with 32.4 to 33.5 containing slightly higher

abundance of Sargassum than 33.5 to 35, indicative of riverine
influence. For waters with salinity <31, Sargassum abundance is
lower, possibility due to the lower growth rate at low-salinity
waters47. The Mississippi River48,49 and South Florida’s Ever-
glades and coastal urban belt50,51 have experienced trends of
increasing N flux and increasing N:P ratios35. For the GOM, the
combined annual mean streamflow for the Mississippi and
Atchafalaya rivers represents about 80% of the freshwater dis-
charge to the GOM and accounts for 90% of total N load and 87%
of the total P load discharged annually to the GOM52. Increasing
nitrogen (mostly NO3

−) along with other nutrients are a cause of
hypoxia in a large dead zone along the Louisiana-Texas coast53,54,
where the highest Sargassum tissue %N values (Fig. 3a) were
observed in waters that tend to have lower salinity (Fig. 4a). In
addition, the N:P ratio of the Mississippi River and northern
GOM increased from 9 to 15 and 16 to 24, respectively, between
1960s and the 1980s54, indicating that this stoichiometric shift
began prior to the current study. A 30-year study between 1984
and 2014 at Looe Key reef showed over a twofold increase in
seawater DIN and the DIN:SRP ratio, and threefold increase in
tissue N:P ratio in a variety of reef macroalgae50. Some of the
Sargassum collections in the present study were made in blue
water offshore of Looe Key reef and paralleled this pattern of
tissue N enrichment and an increased N:P ratio from 11.2 in the
1980s to 24.2 since 2010.

The Amazon River is the largest river in the world and
accounts for 20% of the world’s total river discharges. Data from
the 13 Carbon in the Amazon River Experiment (CAMREX)
cruise surveys of the Amazon River between 1982 and 1991 show
strong, statistically significant correlations between NO3

- flux and
discharge and between SRP flux and discharge (Fig. 5a). The

Fig. 4 Spatial distribution of Sargassum in relation to salinity and aerosol trajectories. a Sargassum distribution (red empty squares) overlaid on salinity
derived from the Soil Moisture Ocean Salinity (SMOS) satellite mission, both for July 2018. The blue line marks the longitude of 38˚W that the Amazon
River plume hardly reaches. b Distribution of Sargassum as a function of salinity (purple) for 2011 to 2019, where statistics are calculated from 108 monthly
mean maps over the cumulative Sargassum footprint. Here, the raw data (purple) shows Sargassum areal coverage in each salinity increment, relative to the
total coverage (i.e., all purple bars sum to 1.0). The Sargassum coverage in each salinity increment is divided by the water area in the same salinity
increment, resulting in the “salinity normalized” distribution (blue). The Sargassum distribution data were obtained on National Centers for Environmental
Information (NCEI) Accession 019027214. c Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) air mass back trajectories (10-day)
from 3°N, 34.6°W at 500m (red), 1000m (blue), and 1500m (green), shown with the active fires in Africa and South America observed during Apr 2020
to Mar 2021 (from firms.modaps.eosdis.nasa.gov/download85).
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monthly data at the Obidos station of the Amazon River from the
Hydrology and Geochemistry of the Amazon basin (HYBAM)
observatory also show a positive, statistically significant (P=
0.049) correlation between NO3

− flux and discharge (Fig. 5b).
There have been recent increases in NO3

− fluxes at the Obidos
station (Fig. 5b), especially between 2014 and 2016, with lower
fluxes between 2016 and 2018 (Fig. 5c). Although a direct annual
correspondence between NO3

− flux and Sargassum amount is not
apparent, the general trend of increased NO3

− and SRP after
2014 suggests that river discharge may have supported Sargassum
growth around the plume in subsequent years, especially 2015,
2017, and 2018. The HYBAM Obidos results are consistent with
the limited field measurements of NO3

− and SRP in the offshore

river plume (salinity 16 to 34) in 2010 and 201815,55, especially
when compared with the lower historical nutrient values in the
1960s56 and early 2000s57. Such increases in nutrient fluxes could
be partially due to Amazonian deforestation (+25% since
2010)15, which has been shown to alter the hydrochemical bal-
ance of streams and soil chemistry. In addition, extreme flooding
events in the Amazon basin in this time frame58 combined with
increased fertilizer use (+67% since 2010)15 could also contribute.
Although the Amazon River plume hardly reaches waters east of
38°W and therefore its contributions to Sargassum blooms in the
eastern Tropical Atlantic can be neglected, its nutrient flux may
have fueled recent blooms since 2014 in the central West Atlantic
(Fig. 5c). The importance of the Amazon River nutrient flux to

Fig. 5 Nutrient flux from the Amazon River and long-term Sargassum trend. a Nitrate (NO3
−) and soluble reactive phosphorus (SRP) flux from all

stations of the 13 CAMREX cruises83 (1982 to 1991) are highly correlated with river discharge. These stations are within a 2000 km reach of the Brazilian
Amazon River mainstream. Solid lines mark the power law regression lines. b NO3

− flux at Obidos from the HYBAM database100 is also correlated with
discharge, and the correlation is higher if data are binned to different discharge groups. c NO3

− flux at Obidos from the same HYBAM dataset shows
apparent increases in recent years. The recent mean monthly Sargassum areal coverages obtained from Wang et al. (2019) in the Central West Atlantic
(CWA, 0oN to 22oN, 63oW to 38oW) are also shown as reference. All months before 2011 show Sargassum coverages. The shaded gray bars indicate when
quality controlled HYBAM nutrient flux measurements are available, but data in some months are too low (<0.1 mg/L) to be visible due to the scale.
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Sargassum growth was also apparent in S. natans collected in
plume waters (~10°N, 45.5°W; salinity ~33.8) in late August 2019
that averaged 2.4%N, a very high value that was exceeded only by
S. fluitans collected in the Mississippi River plume off the Texas
and west Florida coasts. Interestingly, while the overall effect of
species was not significant (see Supplement), at this location S.
fluitans was much less enriched in %N (mean= 0.66%) than S.
natans. Considering that the Amazon Basin dominates P flux to
the NA59 and that land-based P exports can reach the open
ocean60 the productivity of Sargassum could be enhanced in this
region of the western Tropical Atlantic by increased P availability.
This is supported by the lowest N:P ratios observed in 2015 in
Barbados in the present study (Fig. 3b), which is directly influ-
enced by the Amazon River plume.

Seasonal changes in C:N:P contents of Sargassum closely
matched patterns in nutrient flux from the Mississippi and
Amazon rivers, further suggesting these river discharges support
seasonal growth patterns. These river discharges increase from
winter through spring and peak in early summer15,35,49 and could
support the lower C:N and C:P ratios in Sargassum during this
period; in contrast, the higher C:N and C:P ratios in summer and
fall indicate nutrient limitation resulting from reduced river
discharges5,6. These data suggest seasonal nutrient control of
bloom formation by seasonal river discharges, particularly in the
GOM, where Sargassum cover expands in the spring and peaks in
summer months (Supplementary Fig. 3)5,15,61. Its air bladders
allow Sargassum to float and form dense mats which are advected
by ocean currents thus allowing episodic access to buoyant, lower
salinity, nutrient-enriched river plumes, which can extend for
thousands of kilometers from shore15 (Fig. 4a). Similar to the
temperate kelps, Laminaria longicruris62 (synonym Saccharina
latissimi) and Macrocystis pyrifera63, the floating tropical Sar-
gassum spp. appear to be responders rather than anticipators
among macroalgae64 by sequestering seasonally available N and P
to support annual growth patterns. A seasonal NO3

− related
growth strategy occurs in the temperate kelp L. longicruris, which
assimilates and stores NO3

− in winter months when its available
to support maximum growth rates in the spring and into July,
after which tissue N and growth rate decline62.

The wide range of δ15N values in Sargassum tissue from −2 to
+8‰ reinforces previous suggestions that a variety of N sources
support growth of Sargassum over its broad geographic
range5,15,65. The δ15N values of wet atmospheric deposition
across the United States are relatively low, ranging from −11 to
+3.5‰ with a median value of −3.1‰ (n= 883)66 and are
within the low end of the range of δ15N in Sargassum. Similarly,
in Bermuda, rainwater NH4

+ δ15N values ranged from −12.5 to
+0.7‰67. Synthetic fertilizer N, which has increased ninefold
since the 1980s, has δ15N values ranging from −2 to +2‰68 and
is the mid-range for most Sargassum values in this study. More
enriched values of +2.5 to +4.8‰ are indicative of upwelled
NO3

− in the upper 200 m of the NA69,70. Higher values (+3 to
+20‰) are indicative of urban wastewater from terrestrial runoff
where fractionation associated with volatilization of NH4

+ and
denitrification of NO3

− occur71. This enrichment of Sargassum
tissue is evident in the highest δ15N values ranging between +3 to
+8‰ along urbanized coastal waters in Texas and Florida,
illustrating the effect of anthropogenic nitrogen enrichment. The
mean δ15N value of POM in the Mississippi River is ~+7‰72 and
δ15N enrichment of Sargassum by +2‰ has been reported for
neritic compared to oceanic regions in the GOM65, as well as
macroalgal blooms on coral reefs downstream of sewage outfalls
in South Florida (+6 to +8‰)51. In the Amazon River flood-
plain, δ15N of phytoplankton and macrophytes range from +4.7
to +5.5‰ respectively73, indicating that the plume could con-
tribute to δ15N enrichment of Sargassum. These findings suggest

that episodic N enrichment in highly populated tourist areas of
the Caribbean could help sustain Sargassum growth and bloom
continuation.

Natural N and P sources, such as upwelling and N2 fixation,
could further support Sargassum growth and would be especially
important in offshore and oceanic locations of the GASB13.
Upwelling occurs at the shelf break in the southeastern United
States74,75. and in the eastern equatorial Atlantic76 and could
supply NO3

− to Sargassum. N2 fixation by the cyanobacterial
epiphyte Dichothrix fucicola occurs in Sargassum windrows and
can provide from 2 to 32% of the N needs77,78, which would
result in δ15N values close to 0‰. N2 fixation plays a prominent
role in N-nutrient cycling in the Amazon and Congo river
plumes57,79. N2 fixation by diatom diazotroph associations
(DDAs) and Trichodesmium support 11% of total primary pro-
duction in the mesohaline section of the Amazon River plume
(salinity ~32 to 33)57. During a study in which the plume
extended into the Caribbean Sea, diazotrophy by DDAs supplied
~25% of water column N demand80. In the eastern equatorial
Atlantic (Gulf of Guinea), N2 fixation rates were 2 to 7 times
higher when upwelling occurred as compared to non-upwelling
conditions, as a result of low NO3:SRP ratios in upwelled waters
that leave excess SRP that stimulates N2 fixation76. Considering
the high N:P ratio of Sargassum that now occurs in the NA basin,
such excess SRP in the upwelled water could stimulate growth of
Sargassum in the eastern Tropical Atlantic.

Atmospheric deposition (dry and wet) of lithogenic and
anthropogenic-sourced aerosols can supply the central Atlantic
with major and trace nutrients that could further support Sargas-
sum growth. Aerosol back trajectories (examples shown in Fig. 4c)
show that winds over the central Atlantic change seasonally but are
predominantly from northern Africa, where Saharan dust origi-
nates, and central and southern Africa, where biomass burning
generates anthropogenic-type aerosols19,81. The largest atmo-
spheric supply of nutrients, like Fe and P, comes from seasonal
Saharan dust plumes, but the low solubility of these elements in
mineral dust limits their bioavailability82–84. In contrast, biomass
burning in central and southern Africa (as shown as active fires in
Fig. 4c 85–87) can deliver nutrients like N, P, and Fe to the central
Atlantic. Like wind patterns, biomass burning also varies seasonally
with the Northern (Southern) Hemisphere burn season occurring
in November to March (May to October)88. While nutrient con-
centrations in aerosols produced during biomass burning might be
lower than in Saharan dust, the nutrient solubilities are higher,
potentially providing a source of more bioavailable nutrients to the
Atlantic surface ocean83,89–91. Fluxes of aerosols from both dust
and biomass burning appear to have increased over the past 150
years, according to models of past, present, and future changes to
the atmospheric deposition in the North and Central Atlantic92.
While the fluxes of dissolved P to the NA have likely increased
since 1850, which would alleviate P limitation, the fluxes of dis-
solved Fe have increased faster resulting in higher dissolved Fe/
dissolved P ratios91,92, which could enhance N2 fixation and bal-
ance increased inputs of bioavailable P. Future atmospheric inputs
are difficult to predict as aerosol production and processing rely
heavily on economic and human factors, including restrictions on
biomass burning, fossil fuel consumption, and industrial pollution.
Nonetheless, seasonal inputs of natural and anthropogenic-driven
aerosol nutrients could at least partially alleviate P and/or Fe
limitation, resulting in increased Sargassum growth and abundance
across the central Atlantic Ocean.

Almost 50 years ago, scientists recognized that nutrient addi-
tion through use of fertilizers can destabilize food webs, leading to
loss of biodiversity and ecosystem function through the so called
paradox of enrichment93,94. During that time, global river dis-
charges showed a trend of decreasing N:P due to human activities
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and P was considered the primary limiting nutrient in surface
waters95. Concurrently, the precept that N, rather than P, was
driving marine eutrophication was introduced to the scientific
community33. Since then, N, Fe, and silica have been widely
considered to be the most important nutrients that limit phyto-
plankton growth in the oceans, although mounting evidence is
supporting an emerging paradigm in oceanography that P plays a
primary role in the Atlantic basin96–98. Recent reviews now show
that N:P ratios of rivers are increasing, despite attempts to
mitigate application of N fertilizers35. The empirical data pre-
sented here for Sargassum supports not only a primary role for P
limitation of productivity, but also suggests that the role of P as a
limiting nutrient is being strengthened by the relatively large
increases in anthropogenic N supply from terrestrial runoff,
atmospheric inputs, and possibly other natural sources such as N2

fixation96. The increased P limitation in Sargassum could be
compensated for by its relatively high capacity for alkaline
phosphatase activity, which allows it to sequester SRP from dis-
solved organic P compounds, a physiological characteristic of
adaptive value to growth in oligotrophic waters5. Considering the
negative effects that the GASB is having on the coastal commu-
nities of Africa, the Caribbean, GOM, and South Florida, more
research is urgently needed to better inform societal decision-
making regarding mitigation and adaptation of the various ter-
restrial, oceanic, and atmospheric drivers of the Sargassum
blooms.

Methods
Sample collection. Sargassum samples in the 1980s were collected mostly from
University-National Oceanographic Laboratory System research vessels, including
the R/V Columbus Iselin (Loop Current, Gulf Stream, Sargasso Sea), R/V Calanus
(Belize), RV Cape Hatteras (Sargasso Sea, Gulf Stream, Belize), and R/V Weath-
erbird (Sargasso Sea); for blue waters offshore Looe Key in the lower Florida Keys,
Sargassum was collected from a small boat (20′ Mako). Since 2010, Sargassum has
been collected from the R/V Point Sur (GOM) and the R/V Thomas G. Thompson
(Amazon plume). Other samples were collected by volunteers on private vessels
and the M/V Ocearch (Gulfstream). Windrows of Sargassum spp., which result
from Langmuir circulation that aligns Sargassum parallel with the wind direction,
were frequently encountered at various locations during the research cruises. For
all sampling events, Sargassum spp. were collected from small boats either by divers
or with a dip net and sorted into the species and morphotypes, S. natans I and S.
fluitans III per Parr (1939)4. After collection, the plants were placed in clean plastic
bags in a cooler. Upon return to the lab or research vessel, the samples were
separated into replicate (n= 2 to 3/species for each location and sampling) com-
posite samples (6 to 10 thalli/species), rinsed briefly (3 to 5 s) in deionized water,
cleaned of macroscopic epizoa and epiphytes, dried in a laboratory oven at 65 to 70
°C for 48 h, and powdered with a mortar and pestle5.

For both the 1980s and 2010s tissue analysis, total C and N were determined on
a Carlo-Erba CHN Combustion Analyzer, while total P was determined by
persulfate digestion followed by analysis for SRP using either a Bausch and Lomb
Spectronic 88 or an Alpkem 300 series autoanalyzer. The resulting tissue %C, %N,
and %P data were used to calculate molar C:N:P ratios. Additional analysis of 2010
tissue (427) δ15N was conducted on a Thermo Delta V IRMS coupled to a Carlo
Erba NA1500 CHN-Combustion Analyzer via a Thermo Conflo III Interface.

Statistical analysis. The relationship between S. fluitans and S. natans elemental
composition (%C, %N, %P) and molar ratios (C:N:P) with species, decade, and
season were analyzed using multivariate and subsequent univariate general linear
models (MANOVA and ANOVA) in Minitab 19 Statistical Software. All variables
were non-normal therefore log transformation was attempted prior to analyses and
model fit was assessed through examination of residuals. While log transformation
improved the normality, shape, and residual distribution of %N, %P, C:N, N:P, and
C:P, %C was not improved and thus the raw values for this parameter were used in
analyses. Significant univariate factors and interactions were assessed with Tukey’s
pairwise comparisons. To better understand nitrogen sources supporting Sargas-
sum bloom growth and development, %N, N:P ratios, and δ15N of post-2010
samples were compared by location with ANOVA using similar methods as above
in Minitab 19 Statistical Software. Statistical significance was considered at P < 0.05
for all analyses.

Satellite-measured distributions of Sargassum and salinity and field-
measured river nutrient concentrations. Pelagic Sargassum distributions cover-
ing the GOM and central Atlantic Ocean were derived from MODIS measurements

and the data were acquired from NCEI Accession 0190272(15). Surface salinity
distributions were obtained from SMOS Earth Explorer mission and the data were
accessed on https://www.catds.fr/Products/Available-products-from-CPDC).
Amazon River discharge and water chemistry data, including NO3

−, and PO4
3−

concentrations, measured at the Obidos station during 2003 to 2018 were down-
loaded from HYBAM database (http://www.ore-hybam.org/index.php/eng/Data).
Similar parameters were also from 1981 to 1991 collected during cruises for the
CAMREX99 were also analyzed.

Data availability
All data used in this study are available in the main text or the supplemental materials.
The raw data that support the findings of this study are available from the corresponding
author upon reasonable request. All Sargassum-relevant imagery data products are
available through the Sargassum Watch System (SaWS, https://optics.marine.usf.edu/
projects/saws.html).
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