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Abstract 

 

Phytoplankton are communities of diverse groups of prokaryotic and eukaryotic single-celled 
organisms responsible for nearly 50% of global primary production. The relative abundance of 
individual groups changes dynamically in response to environmental perturbations. Recent 
studies suggest that such changes are primarily driven by the distinct physiological responses 
employed by each group towards a particular perturbation. Although knowledge of some of 
these responses has come to light in recent years, many aspects of their metabolisms remain 
unknown. We attempt to address this gap by studying the metabolism of several phytoplankton 
groups using metabolomics. Firstly, we developed a method to enhance the analysis of 
untargeted metabolomics data. Secondly, we constructed two conceptual models describing 
how metabolism of the raphidophyte Heterosigma akashiwo responds to phosphorus and 
nitrogen stress. These conceptual models revealed several new stress response mechanisms 
not previously reported in other phytoplankton. Finally, we compared the metabolic changes of 
several distinct phytoplankton groups to uncover possible adaptation and acclimations that 
distinguish them. This analysis revealed several pathways and metabolites that represent the 
studied groups. The contributions of these pathways and metabolites towards physiology may 
support the ecological fitness of these organisms. 
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Chapter 1  

Introduction to the roles of phytoplankton in marine ecology   
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1.1 General Overview 

The global carbon cycle characterizes the movement of carbon within and between four 

reservoirs: terrestrial land, the deep earth, the atmosphere, and the ocean. Among all 

reservoirs, the ocean makes up the largest sink of carbon with approximately 40,000 Gt C 

stored within its depths [1]. In addition to storage, the ocean serves a key role in the uptake of 

atmospheric CO2, as studies show that nearly one half of the total carbon fixation takes place 

within the euphotic zone of the ocean [2]. Carbon storage at depth and its fixation in the 

surface ocean are connected through the activity of the biological pump [3]. The term, 

“biological pump,” describes how the biological driven sequestration of atmospheric carbon to 

the deep ocean. At its base, phytoplankton are responsible for the influx of atmospheric 

carbon. Phytoplankton make up one percent of the total plant biomass due to their high 

turnover and produce one half of the worlds oxygen. 

Beyond their role in the global carbon cycle, some phytoplankton also form blooms. 

Blooms occur when the level of phytoplankton biomass is uncharacteristically high for a given 

water body. Noxious phytoplankton blooms, otherwise known as harmful algal blooms (HABs), 

have increased in frequency over the past 40 years due to increased climate change and 

eutrophication [4]. These blooms can be benign or harmful, the latter of which impacts finishing 

and tourist economies and public health [5, 6]. Over recent years, harmful algal blooms have 

caused hundreds of millions of dollars in economic damages [7]. Part of the threat imposed by 

these harmful algal blooms is due to the release of neurotoxins like brevotoxins and saxitoxins, 

which have caused human mortality [7]. Other sources of economic harm stems from fish kills, 

due to the depletion of oxygen in aquatic ecosystems following a rapid influx of fixed carbon by 

the blooming phytoplankton [8]. Phytoplankton blooms are often studied in relation to the 

availability of dissolved nutrients like phosphorus or nitrogen, as studies suggest that these 

nutrients play a key role in bloom formation [4].  

In addition to their roles in bloom formation, nitrogen and phosphorus are two of the 

most widespread limiting nutrients to primary production across marine ecosystems [9-11]. 

Nitrogen can enter marine ecosystems via the activity of nitrogen-fixing bacteria, episodic 

upwelling from depth [12, 13] riverine input, while phosphorus arrives through riverine inputs, 
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atmospheric deposition, and episodic upwelling [9]. Both of these nutrients make up critical 

macromolecules required for life including amino acids, cofactors, energy intermediates, 

membrane lipids, and nucleic acids. The physiological need for these macromolecules has 

resulted in the development of ratios to describe a phytoplankton’s access to these elements 

[3]. On bulk scales, the canonical Redfield Ratio (C:N:P = 106:16:1) is considered as the ideal 

physiological quota of these elements. However, the physiological quotas of different species 

and groups vary greatly [14, 15]. These differences have been attributed to different 

physiological demands in macromolecular constructs, like ribosomes [16]. Such differences can 

impact physiology. Consider the case of ribosomes. A greater abundance of ribosomes would 

facilitate faster translations of mRNA into peptides; however it would come at the trade-off of a 

higher demand of nitrogen and phosphorus relative to carbon required for ribosome and 

peptide biosynthesis. The diversity of observed stoichiometric ratios suggests various distinct 

metabolic strategies are utilized by phytoplankton.  

The stoichiometric heterogeneity of phytoplankton is echoed by a great diversity of 

physiological processes that distinguish these organisms. For example, they can vary several 

orders of magnitude in size [17], employ distinct strategies to respond to their environment 

[18-20], and foster unique chemical strategies to interact with neighboring organisms [21, 22]. 

These differences are mirrored genotypically. The organisms making up phytoplankton 

communities originate from highly diverse lineages spanning millions of years of evolution [23] 

and produce distinct gene expression profiles [24-26]. Additionally, studies have noted various 

cases of distinct genomic rearrangements between phytoplankton. Some interesting examples 

include the enrichment in non-coding DNA within the cyanobacteria Trichodesmium 

erythraeum [27] or the dynamic chromosomal rearrangement of dinoflagellate Prorocentrum 

micans [28].  

Phenotypic and genotypic differences have been posited to support the observed 

coexistence of these organisms [19]. Understanding phytoplankton coexistence is a 

longstanding question in ecology, and has been termed as the ‘paradox of plankton’ [29]. This 

paradox stems from the apparent violation of the principle of competitive exclusion, which 

states that organisms competing for similar resources should not coexist. Instead, a winner-
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take-all scenario should lead to a homogenous community. As photosynthesizers, 

phytoplankton are competing among one another for similar resources, yet coexist in diverse 

communities throughout the world. Many explanations for this have emerged over time, 

including life history differences and species oscillations. However, in recent years many 

examples of research have highlighted how different groups of phytoplankton employ distinct 

metabolic responses to a common stimuli [30, 31]. Such studies have posited that niche 

partitioning, or the utilization of diverse non-overlapping resources, employed through these 

metabolic changes may be establishing coexistence.  

The synthesis above highlights several of the contemporary research areas involving 

phytoplankton. Among these, several outstanding questions remain, such as what are the 

bottom-up and top-down controls on bloom formation, how will the efficiency of the biological 

pump change under future scenarios, how is coexistence established, and how will rates of 

photosynthesis change when faced with the increasing threats of climate change. In order to 

better understand these questions, we must be able to predict how phytoplankton 

communities will respond to environmental perturbations. Determining the factors causing 

phytoplankton communities to change will help policy makers and scientists forecast both the 

role of the ocean as a sink of carbon under future climactic scenarios and potential dangers to 

coastal businesses and communities from blooms.  

Predicting changes in phytoplankton community structure following a perturbation 

requires an improved understanding of the unique physiological differences among 

phytoplankton. Such physiological differences are mediated by response in metabolism. 

Gauging the diversity of metabolisms among phytoplankton is challenging due to the 

morphological and ecological complexity of these organisms. For example, the term 

phytoplankton describes a diverse set of cohabiting single-celled organisms comprising both 

eukaryotes and prokaryotes [17]. Additionally, acquiring knowledge on metabolism is further 

inhibited by the paucity of reference genomes and the biases of existing medical databases 

towards model organisms that affect human health [17, 23, 32]. Recently, the advent of field-

based metagenomic and metatranscriptomic techniques have greatly improved our capacity to 

define and classify these responses. Metatranscriptomics measurements seek to profile the 
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composite mRNA of a given field sample. Recent advances in reference sequencing databases 

specific to phytoplankton have enabled the mapping of field-collected reads to a wide variety of 

reference organisms [23]. Gene-based methods, however, remain limited in their capacity to 

serve as indicators of ongoing metabolic activity [33]. This is partly due to limited reference 

genomic material, as a total of 9 reference genomes exist for eukaryotic phytoplankton, in 

contrast to the myriad of phytoplankton without representation [32]. Additionally, gene-based 

methods can only report relative abundances that can be biased by the overall size of the 

sample. 

Orthogonal approaches, such as metabolomics, or the study of all the compounds within 

a cell, organism, or tissue, reveal finger prints of biochemical processes [34]. Hence these 

studies may uncover the biological mechanisms driving responses to environmental 

perturbations. The use of metabolomics to understand phytoplankton has burgeoned over the 

past years. For example, these techniques have been used to study how stress induces changes 

in metabolism of diatoms and coccolithophores [35-37], to determine the allocation of luxury 

nitrogen within diatoms [38], and how particulate and dissolved organic matter changes by 

depth [39, 40] and under a diel cycle [41]. Additionally, these approaches can help reconstruct 

pathways lacking complete gene annotations [42]. Thus, metabolomics is a promising approach 

to understand metabolic dynamics within organisms lacking reference genetic material. 

Several challenges have limited the widespread dissemination of metabolomic 

approaches to study marine phytoplankton communities. For one, unlike genetic techniques, 

metabolomic measurements lack taxonomic specificity, making assignments of the biological 

sources of signals challenging. Without this information, uncovering the mechanisms driving 

the in situ dynamics of metabolites remain difficult, with simultaneous limits on our ability to 

understand phytoplankton ecology. Secondly, the availability of computational resources lags 

behind the analytical advances of these approaches, making analysis of this data challenging 

and time consuming. I attempt to address these challenges with the work of this PhD. Each 

section that follows introduces the problem addressed within each chapter of the thesis. 

Together, these pieces bridge the gap in our ability to apply metabolomics techniques to study 

the in situ ecology of phytoplankton. Although the work presented herein does not include in 
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situ measurements, the results may serve as a foundation towards the understanding of such 

data. 

 

1.2 Automating untargeted data analysis facilitates downstream analysis 

The first contribution described by this work was the development of an algorithm 

designed to facilitate the analysis of metabolomics data. The application of metabolomics to 

study phytoplankton communities has grown over the past few years, yet still remains 

underdeveloped relative to other ‘omics techniques. Despite this, many discoveries relevant to 

phytoplankton ecology have emerged from this method, including the recognition of molecular 

adaptive responses to stress or the clarification of mechanisms driving cell-cell interactions [43-

45]. Often times, advances in mass spectrometry fostered these discoveries, specifically 

improvements in instrument sensitivity, accuracy, and data collection capacity [46]. Parallel 

advances in computational tools historically followed to fulfill the potential of analytical 

improvements [47].   

 The analysis of metabolomics data requires many steps. Prior to any statistical method, 

raw data from untargeted metabolomics experiments must be processed to generate a 

spreadsheet of viable observations. Processing extracts chemical signals from electrical noise 

and corrects for retention time drift across samples. The performance of processing algorithms 

depends on the selection of algorithmic parameters that capture the structure of the data, such 

as matrix effects and differences in analytical platforms  [48]. No universal set of parameters 

exists for all datasets and parameters must always be optimized prior to analysis to avoid noise 

inflation within the feature table [49].  

 Tuning parameters manually is prohibitively time consuming due to the high number of 

possible numerical combinations. To address this challenge, I designed a novel parameter 

optimization algorithm, AutoTuner. I describe the implementation and validation of AutoTuner 

along with a detailed comparison between it and other existing methods during the second 

chapter of this thesis. Compared to previous methods, AutoTuner was over one thousand times 

faster and more reliable across a variety of measures in its function. This method facilitated the 

analysis of datasets used within later chapters.  
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1.3 Identifying the metabolic differences between well studied and less-studied 

phytoplankton reveals the importance of broadening our knowledge of phytoplankton 

metabolism 

The second contribution of this thesis describes an analysis characterizing how the 

metabolic response caused by acute shortages of nitrogen (N) and phosphorus (P) varied 

between well studied phytoplankton like diatoms and coccolithophores and a relatively less-

studied phytoplankton, the raphidophyte H. akashiwo. H. akashiwo populations are distributed 

ubiquitously within subtropical environments [8, 50], and can cause harmful algal blooms which 

have caused significant economic losses [51]. Both N- and P-stress are known to be important 

drivers of H. akashiwo blooms [52, 53].  

The unique biological make up of phytoplankton groups contributes towards their ability 

to respond to scarce nutrients and form blooms. These responses are driven by changes in 

metabolism that lead to differences in physiology. These strategies vary from reallocation of 

intracellular nutrients [35, 45, 54], reduction of nutrient quotas needed for growth [55, 56], or 

increased production of dissolved inorganic nutrient transporters [24, 25, 45]. Their 

composition can have significant impacts on fitness of the organism, or the extent to which an 

organism is adapted to survive in a particular environment.  To date, the metabolic changes 

associated with nutrient availability have been identified in only a few well-studied 

phytoplankton (e.g., diatoms [57-59], coccolithophores [37, 60, 61]), leaving significant gaps in 

our understanding of nutrient responses in other bloom-forming groups like raphidophytes. 

To overcome this gap, I evaluated whether metabolism data from well-studied 

phytoplankton described the physiological response to nutrient stress of H. akashiwo. We 

examined N- and P-stress metabolism using a combination of metabolomics and 

transcriptomics data for this organism. The findings include the detection of several novel 

nutrient stress response pathways and processes inherent to H. akashiwo and distinct from 

other organisms that hint at unique ecological strategies in this organism. Additionally, I show 

that common nutrient stress biomarkers also serve as indicators of stress within H. akashiwo. 

Together, these results provide a mechanistic understanding of H. akashiwo stress response 
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and suggest that a broader understanding of phytoplankton metabolism is necessary to 

understand how phytoplankton communities will adapt to a changing ocean.  

 

1.4 Metabolic differences between phytoplankton reveal group-specific acclimatory and 

adaptive aspects of their metabolisms  

The third contribution of this thesis evaluates the similarity in metabolomic profiles 

between four distinct phytoplankton. Concurrently, it evaluates their unique responses to 

nitrogen (N) and phosphorus (P) stress. N and P availability is predicted to decrease in the 

future due to climate change, causing a reduction in phytoplankton global primary production 

[9, 10, 62]. However, these studies often regard phytoplankton as a monolithic unit, and do not 

take into account the distinct metabolic capacities of these organisms. Phytoplankton 

communities are made up of a myriad of phylogenetically distinct organisms [23]. Recent 

studies show that genotypically, these organisms are highly dissimilar and respond to nutrients 

differently from one another [23-25]. Such observations suggest that each phytoplankton group 

has acquired unique adaptations to their environments and applies distinct acclimations to 

overcome challenges from external disturbances [63]. Adaptations characterize distinguishing 

physiological properties of phytoplankton acquired through the course of evolution, while 

acclimations describe ephemeral responses to temporal changes in the environment. Without 

an understanding of the various adaptive and acclimatory strategies defining distinct groups of 

phytoplankton, scientists cannot begin to understand the extent to which primary production 

will be impacted due to climatic changes.  

The physiological consequences of adaptations and acclimations manifest themselves 

through changes in metabolism. Hence, the unique aspects of metabolism distinguishing these 

organisms are likely to represent defining characteristics of each. In this study, we explored the 

metabolism of different phytoplankton species within and between phyla and how each species 

responds to N- and P-stress. To accomplish this aim, we cultured four organisms from 3 phyla, 

representing globally important phytoplankton groups under replete, phosphorus-stress, and 

nitrogen-stress growth conditions and performed metabolomics on their cells. We uncovered 

several distinct metabolic processes that may be group-specific adaptations by comparing 
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individual groups. Additionally, we demonstrate acclimations by showing how each organism 

responds to stress. These observations provide a foundation towards understanding the 

metabolic drivers distinguishing the physiology of phytoplankton and how individual groups 

respond to stress. 

 

1.5 Coalescence of work 

Each of the presented chapters builds upon the previous work to allow us to reach the 

goal of obtaining a greater understanding of how metabolism impacts in situ phytoplankton 

communities. The order in which they were presented represents the experimental sequence 

that lead to each discovery. The discoveries here reduce both the technical uncertainties 

associated with untargeted metabolomics measurements by introducing new methods for the 

data analysis and by ensuring the fidelity and robustness of biological signals. In addition, they 

provide a scaffold to interpret how metabolism serves phytoplankton communities within a 

local and global context. Together, they reveal an unmet need for further experiments gauging 

how phytoplankton respond to nutrient stress. The combination of these works establishes a 

foundation that may then be expanded towards the application of these methods in the field 

and serve as a bridge between cellular biochemistry and ecology.  
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Chapter 2  

AutoTuner: High fidelity, robust, and rapid parameter selection for metabolomics data 
processing 
 
Published as: McLean, C., Kujawinski, E.B., 2020, AutoTuner: High fidelity, robust, and rapid 
parameter selection for metabolomics data processing. Analytical Chemistry 92, 8, 5724-5732.   
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2.1 Introduction 

Metabolomics is the study of all the compounds present within a cell, organism, or 

tissue. Such investigations provide a holistic snapshot of the activity within a biological matrix, 

and have led to a myriad of discoveries ranging from the elucidation of novel biochemical 

pathways, to the recognition of molecular adaptive responses to stress, to the clarification of 

mechanisms driving cell-cell interactions [43-45]. Advances in mass spectrometry fostered 

these discoveries, specifically improvements in instrument sensitivity, accuracy, and data 

collection capacity [43, 46, 64]. Parallel advances in computational tools have historically 

followed to fulfill the potential of analytical improvements [47].  

 Prior to data analysis, raw data from untargeted metabolomics experiments must be 

processed to generate a features table. Features are defined as peaks with unique mass to 

charge (m/z) and retention time values, with relative abundances determined by their height or 

area. Processing is critical to extract chemical signals from electrical noise and to correct for 

retention time drift across samples [65]. A variety of untargeted data processing methods exist 

[66-69], including two commonly used tools: MZmine2 [70] and XCMS [71]. Although these 

tools reliably extract true features from complex data, their performance depends on the 

selection of algorithmic parameters that capture the structure of the data, such as matrix 

effects and differences in analytical platforms [48, 72, 73]. No universal set of parameters exists 

for all datasets, hence parameter optimization must occur prior to analysis to avoid noise 

inflation within the feature table [49, 74, 75].  

 Tuning parameters manually is prohibitively time consuming due to the high number of 

possible numerical combinations. To overcome this challenge, several methods exist to identify 

optimal dataset-specific parameters [76-78]. These methods each use distinct optimization 

functions based on maximizing or minimizing a numerical value. Each approach iteratively runs 

XCMS peak-picking and retention time correction algorithms until they identify a set of 

parameters that optimizes a desired criterion. For example, isotopologue parameter 

optimization (IPO), the most commonly-used parameter selection tool, scores groups of 

parameters by the number of features detected after XCMS that contain a naturally-occurring 

13C isotopologue. Many separate XCMS runs are required to find ideal parameters, sometimes 
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taking weeks to complete [76-78]. Currently, these parameter selection algorithms depend on 

high performance computing resources. As users continue to adopt ultra-high pressure liquid 

chromatography systems and rapid scanning mass spectrometers, the size and abundance of 

data from these platforms will preclude the use of unscalable parameter selection algorithms to 

users without access to high performance computing resources [79, 80]. 

 We designed a novel parameter optimization algorithm, AutoTuner, to ameliorate these 

challenges. The method performs statistical inference on raw data in a single step in order to 

make parameter estimates as opposed to iteratively checking estimates. Further, it 

complements recent tools focused on generating higher-confidence feature annotations [81-

84]. AutoTuner is capable of selecting parameters for seven continuously valued parameters 

required for centWave peak selection algorithm used by both MZmine2 and XCMS, and it 

determines a key parameter for grouping in XCMS. AutoTuner is freely distributed through 

BioConductor as an R package. 

 

2.2 Theory and Design of AutoTuner 

2.2.1 Algorithm Overview. 

AutoTuner makes estimates for the following mass spectrometry peak-picking and grouping 

algorithms parameters: Group difference, ppm, S/N Threshold, Scan count, Noise, Prefilter 

intensity, and Minimum/Maximum Peak-width. We chose to optimize these parameters 

because they have the greatest influence on the number and quality of post-processing 

features and have the greatest number of possible values [77, 85]. We chose to optimize 

centWave peak-picking parameters over other peak-picking methods, as centWave is the 

recommended method for processing high-resolution untargeted data, which is increasingly 

becoming the standard for untargeted metabolomics [46]. See Table 1 for a description of 

parameters and their matching arguments in XCMS. AutoTuner makes estimates in three steps 

(Figure 1): 

1. TIC Peak Detection: A user identifies peaks within each sample’s total ion 

chromatogram (TIC), which is the plot of integrated ion intensities within the mass 

spectrometer over time.  
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2. Parameter Estimation Within EICs of Each TIC Peak: AutoTuner isolates predicted 

extracted ion chromatograms (EICs) within each identified TIC peak. An EIC is a plot of 

one or more selected m/z values in a series of mass spectra. AutoTuner applies 

statistical inference on all EIC peaks to estimate parameters in an unsupervised manner.  

3. Dataset-Wide Parameter Estimates: AutoTuner integrates all peak-specific estimates 

into a dataset-wide set.  

 

2.2.2 Total Ion Chromatogram (TIC) Peak Detection 

To identify TIC peaks, AutoTuner first applies a sliding window analysis, which detects peaks by 

testing if an upcoming scan’s intensity is greater than an intensity threshold determined by the 

average and standard deviation of a fixed number of prior scans. To ensure the correct peak 

bounds are retained, AutoTuner generates a linear model from the first three and last three 

points bounding each TIC peak. If the model fails to calculate an R2 value greater than or equal 

to 0.8 or to reach a local R2 maximum, AutoTuner expands the ending bound by one scan and 

reruns the model until the model meets either criterion. The time difference of a TIC peak’s 

final bounds represents its width.  

AutoTuner groups all TIC peaks originating from distinct samples whose maxima co-

occur within each other’s retention-time bounds. It then determines the time differences 

between intensity maxima of all pairs of grouped peaks. AutoTuner returns the largest time 

difference as the estimate for the Group difference parameter that is used in the grouping step 

following peak-picking. Because highly complex datasets may contain distinct sample-specific 

peaks occurring at similar retention times, AutoTuner may overestimate this parameter. 

Prioritizing the inclusion of experimental replicates within AutoTuner would limit this issue. The 

overestimation of Group difference does not affect downstream parameter estimation, as 

future estimates do not involve comparisons across samples and instead focus on properties of 

individual EICs. At this point, AutoTuner has only collected data to estimate the Group 

difference parameter. 
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2.2.3 Parameter Estimation Within EICs of Each TIC Peak 

AutoTuner estimates remaining parameters (ppm, S/N Threshold, Scan count, Noise, Prefilter 

intensity, and Minimum/Maximum Peak-width) from raw data contained within each 

individual TIC peak. A central assumption in AutoTuner is that TIC peaks represent 

chromatographic regions enriched in chemical ions relative to electrical noise [65].  

Error (ppm). First, AutoTuner sorts all m/z values detected in mass spectra contained within the 

bounds of a TIC peak. AutoTuner bins m/z values if the difference in mass of two adjacent m/z 

values is below a user-provided threshold. AutoTuner stores unbinned m/z values as noise 

peaks. Because peaks of true features are made up of m/z values within adjacent scans (scan 

continuity criterion), AutoTuner sorts each bin by scan number to check that this criterion holds 

for the binned m/z values. In the case where two or more m/z values are retained from a single 

scan, only the m/z value with the lowest difference in mass to the previous scan’s mass is 

retained. If multiple m/z values occur within the first scan of the bin, the difference in mass is 

calculated for the next adjacent scan’s m/z value instead. AutoTuner stores m/z values within 

bins that fail the scan continuity criterion as noise peaks, similar to the noise removal step 

earlier. 

 AutoTuner estimates the parts per million (ppm) error parameter from the remaining 

bins by distinguishing between bins formed by random associations of noise peaks and those of 

hypothesized true features. To do this, AutoTuner first calculates the ppm of all m/z values 

within bins. AutoTuner then builds an empirical distribution of ppm values using a Gaussian 

kernel density estimator (KDE) defined by: 

 

          (1) 

where 

 

     (2) 
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and  is the set of all observations,  is the ith observation,  is the number of observations, 

and  is a measure of smoothness for the empirical distribution. The function between ppm and 

absolute error is not surjective, meaning two identical absolute mass error values can have 

distinct ppm values.  Thus, we hypothesize that the ppm value of noise peaks should be 

scattered widely, while ppm values of real features should be within a narrow range [72]. 

Hence, we expect that by using a user-provided mass difference threshold larger than an 

instrument-defined threshold, the KDE will have a long-tail and a high narrow peak 

representing the instrument-dependent ppm of real features and a shorter smaller down-

stream peak representing the ppm from erroneously binned m/z values (Figure S1).  

 AutoTuner subsamples the empirical distribution of all ppm values to speed 

downstream calculations when calculated ppm values are abundant (> 500). To do this, 

AutoTuner checks the similarity between the original distribution comprising all ppm values and 

seven distributions comprising one-half of all ppm values randomly sampled from the total. 

Seven was chosen arbitrarily. The distance between the original distribution and each 

subsampled distribution is calculated using the Kullback-Leibler divergence (KLD), a function 

that calculates the information theoretic gain required to describe both distributions. A KLD 

value of 0.5 represents an increase of one-half bit of information required to store the two 

distributions. If a KLD value of 0.5 or greater is not calculated across any comparison, 

AutoTuner replaces the original distribution with one consisting of half as many ppm values 

subsampled randomly from the original, and repeats the subsampling.  

AutoTuner then calculates an outlier score for each ppm value to distinguish between 

error values derived from real features and those derived from random associations of noise 

using the following outlier score function [86]: 

  

          (3) 

 

where  represents the largest cluster of error values and  is the ith observation similar to (1). 

To identify this cluster, AutoTuner uses k-means clustering, a data partitioning technique used 
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to separate a set of observations into k-many groups. Either the gap statistic or a user-provided 

variance-explained threshold is used to determine the appropriate number of clusters [87]. 

Using  ensures that the density of each calculated ppm value is normalized by the density of 

the true error values (Figure S1).  

The ppm estimate is calculated by the following:  

 

           (4) 

 

where  is any calculated ppm value with outlier scores above 1, and ሺ ሻ is the standard 

deviation of all  values. An outlier score value above 1 indicates that the density of that 

particular x is at least as great as the expected value of the density of all elements within . The 

statistical properties of probability distributions inspired this heuristic, as the sum of a 

probability distribution’s mean and three times its standard deviation provides an upper bound 

containing 99.7 percent of the total distribution area [86].  

Signal-to-noise threshold. We calculate the maximum intensity of each bin as well as the mean 

and standard deviation of the intensity of all noise features occurring within two peak widths 

from the original bin to estimate the signal to noise (S/N) threshold, similar to Myers et al.[72] 

First, AutoTuner subtracts the maximum intensity of each bin ( ) from the mean intensity 

of adjacent noise ( ). AutoTuner retains the bin if this difference is greater than three 

times the standard deviation ( ) of adjacent noise intensity values:  

     (5) 

AutoTuner calculates the S/N Threshold from the smallest observed value of bin and noise 

intensity difference divided by the standard deviation of noise intensity across all bins passing 

the above threshold: 

   (6) 

Remaining Parameters. AutoTuner sets the Scan count estimate as the minimum number of 

scans across all bins. AutoTuner estimates Noise and Prefilter intensity parameters by first 

determining the minimum integrated bin and single scan intensities. Then, it returns 90 percent 

https://www.codecogs.com/eqnedit.php?latex=S%2FN_%7Bthreshold%7D%20%3D%20%5Cmin(k)%20%5C%20%20%5Ctextrm%7Bwhere%7D%20%5C%20%5Cfrac%7B%5Cmu_%7Bbin%5C%20i%7D%20-%20%5Cmu_%7Bnoise%7D%7D%7B%5Csigma_%7Bnoise%7D%7D%20%3D%20k_i%250
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of the magnitude of these values as the estimate to ensure that no AutoTuner-detected bin is 

removed during actual peak-picking. The Minimum Peak-width represents the lowest number 

of scans within any bin multiplied by the duty cycle of the instrument. To estimate the 

Maximum Peak-width, AutoTuner expands bins at the boundaries of the TIC peak. The 

expansion continues until an adjacent scan does not contain a m/z value whose error against 

the mean m/z of the bin is below the estimated ppm threshold. A correlation checks to ensure 

that adjacent m/z values are not coming from noise after a bin has been expanded by 3 scans. 

For this, AutoTuner requires an absolute Spearman correlation coefficient of 0.9 between scans 

and intensity values for expansion to continue. AutoTuner returns the Maximum Peak-width 

across bins.  

 

2.2.4 Dataset-Wide Parameter Estimates 

AutoTuner uses the average of all ppm and S/N Threshold values weighed by the number of 

bins within each TIC peak to return dataset-wide estimates for these parameters. For dataset-

wide values of Scan count, Noise, Prefilter intensity, and Minimum Peak-width, AutoTuner 

returns the minimum values from all bins detected. The maximum calculated Group difference 

parameter represents the dataset wide parameter estimate. The average of each sample’s 

maximal peak-width represents the Maximum Peak-width estimate. 

 

2.3 Experimental Demonstration 

2.3.1 Materials 

We chose a suite of 85 metabolites that represent compounds expected in metabolomic 

experiments, including cofactors, amino acids, and secondary metabolites. Of these, 41 ionized 

exclusively in negative mode, 28 ionized exclusively in positive mode, and 16 ionized in both 

modes. See Table S1 for a complete list of standards. 

We prepared stock solutions of each metabolite standard in water or a 1:1 mix of 

methanol and water at 1000 mg mL-1, unless constrained by solubility. Some standards required 

the addition of ammonium hydroxide or formic acid for dissolution. We stored stock solutions 

in the dark at -20°C. We created a standard metabolite mix (10 mg ml-1) from the stock 

solutions and diluted it with Milli-Q water to obtain four solutions with standard concentrations 
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of 500 ng mL-1. We obtained standards at the highest grade available through Sigma Aldrich 

(MO, USA) with the exception of dimethylsulfoniopropionate (DMSP), purchased from 21 

Research Plus Inc. (NJ, USA).  

 

2.3.2 Mass Spectrometry 

We analyzed four replicates of the standard mixes with ultra-high-performance liquid 

chromatography (UPLC; Accela Open Autosampler and Accela 1250 Pump (Thermo Scientific)), 

coupled via heated electrospray ionization (H-ESI) to an ultrahigh resolution tribrid mass 

spectrometer (Orbitrap Fusion Lumos (Thermo Scientific)). We performed chromatographic 

separation with a Waters Acquity HSS T3 column (2.1 × 100 mm, 1.8 μm) equipped with a 

Vanguard pre-column, both maintained at 40°C. We used mobile phases of (A) 0.1% formic acid 

in water and (B) 0.1% formic acid in acetonitrile at a flow rate of 0.5 mL min-1 to elute the 

column. The gradient started at 1% B for 1 min, ramped to 15% B from 1-3 min, ramped to 50% 

from 3-6 min, ramped to 95% B from 6-9 min, held until 10 min, ramped to 1% from 10-10.2 

min, and finally held at 1% B (total gradient time 12 min). We made separate positive and 

negative ion mode autosampler injections of 5 μL. We set electrospray voltage to 3600 V 

(positive) and 2600 V (negative), and source gases to 55 (sheath) and 20 (auxiliary). We set the 

heated capillary temperature to 375°C and the vaporizer temperature to 400°C. We acquired 

full scan MS data in the Orbitrap analyzer (mass resolution 120,000 FWHM at m/z 200), with an 

automatic gain control (AGC) target of 4e5, a maximum injection time of 50 sec, and a scan 

range of 100-1000 m/z. We set the AGC target value for fragmentation spectra at 5e4, and the 

intensity threshold at 2e4. We collected all data in profile mode. 

 

2.3.3 Validation Data 

We used two published datasets to validate AutoTuner’s performance on experimental 

data: (1) a bacterial culture experiment[88], MetaboLights [89] identifier MTBLS157, and (2) a 

rat fecal microbiome, by direct contact with authors (Table 2) [90].  
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2.3.4 Data Processing and Quality Control 

We converted all raw data files from their proprietary formats to mzML files using 

msconvert [91]. All computing of mzML files took place within an Ubuntu Xenial 16.04 Google 

Cloud instance with 8 CPUs and 10Gb of memory. During time comparisons, we used 8 and 1 

CPU(s) to obtain IPO and AutoTuner data processing parameters, respectively. We used an m/z 

mass error threshold of 0.005 Daltons for AutoTuner, because this absolute error was 

sufficiently large enough to return a broad range of error values (in ppm) greater than those of 

the mass analyzers used to generate the validation data (See Table 2).  

We used XCMS and centWave to generate feature tables for each dataset [71, 92], and 

CAMERA for isotopologue and adduct detection [93]. Table S2 contains parameters used for 

processing. For the standards, we searched for most abundant parent ion within EICs (See Table 

S1). We confirmed the presence of a metabolite standard within feature tables if a feature had 

an intensity above 1e4, was within an exact mass error of 5 ppm of the parent ion, and had a 

retention time error of 5 seconds from the EIC peak. We identified 12Cn-1
13C1 and 12Cn-2

13C2 

isotopologue peaks as features with exact mass error of 5 ppm of the parent ion isotopologue 

masses (1.0033 for 13C1 and 2.0066 for 13C2). Additionally, we required that peaks matching m/z 

values of isotopologues also had retention time error less than 5 seconds from the 12Cn
13C0 

peak. Prior to any identification, we confirmed that standards contained isotopologue peaks by 

visually inspecting raw data. For the culture experiment, the data was subjected to quality 

control as described previously [94]. Briefly, we removed features detected in process blanks, 

features detected within only one replicate, and features representing isotopologues and 

adducts. Additionally, we removed features with coefficient of variation values above 0.4 across 

six pooled samples. We defined overlapping features in AutoTuner- and IPO-parameterized 

feature tables to be those with ppm error below 5 and retention time differences less than 20 

seconds. The culture experiment allowed a higher retention time correction because it relied on 

data collected with HPLC compared to the standards which were analyzed with a UPLC system. 
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2.3.5 Statistical Analyses 

We applied several distinct statistical methods to summarize the various pieces of data 

used to validate AutoTuner. We used R programming language to perform all analyses (CRAN R-

Project). We used a Kolmogorov-Smirnov Test (KS-test) to compare empirical cumulative 

distribution functions. We used the hypergeometric test to compare MS2 enrichment of IPO- 

and AutoTuner-specific features against features observed in the intersect of the two datasets. 

In order to estimate the robustness of AutoTuner parameter estimation, we performed a 

Monte Carlo experiment by running AutoTuner on distinct subsets of the data. We first 

randomly selected 7 subsets of 11 samples to compare the variability across parameters. We 

used the coefficient of variation from estimates within each group as a measure of variability. 

We also performed linear regressions on these values to find trends between estimate 

variability and sample numbers used for estimates. We randomly selected 3 to 9 samples from 

each of these subsets 55 times. In total, there were 385 estimates for each group of 3-9 

samples, resulting in a total of 2695 separate runs of AutoTuner per dataset. We performed a 

sensitivity analysis to determine the downstream data processing effect different values on 

mzDiff, the only continuous valued centWave parameter not optimized by AutoTuner, had on 

the returned feature table. To accomplish this, we counted the number of unique features 

between pairs of feature tables generated with mzDiff parameters varying by a value of 0.001.  

 

2.4 Results 

2.4.1 AutoTuner Accuracy and Comparison to IPO 

At this time, the only open source method for automated selection of peak-picking parameters 

for XCMS is isotopologue parameter optimization (IPO) [78]. IPO uses a gradient descent 

algorithm that requires users to iteratively run centWave with different combinations of 

parameters until the set that maximizes a scoring function is identified. We used 5 distinct 

metrics to compare the accuracy, speed, and downstream data structure of IPO- and 

AutoTuner-derived parameters. The metrics include the accuracy, number of features, the peak 

areas and shapes of EIC peaks only detected using parameters from one of the two methods, 

and MS2 count. 
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We searched for 85 known chemical standards (a total of 101 possible ions) within 

feature tables generated with IPO- and AutoTuner-derived parameters to test the influence of 

each parameter selection method on data processing accuracy (Figure 2, Table 2, Table S1). We 

detected 82 and 100 standards within the feature table generated with IPO- and AutoTuner-

derived parameters, respectively. Figure S2 provides an example of compounds that were only 

detected with AutoTuner and were absent when the IPO-derived parameters were used. These 

results were robust to the choice of intensity thresholds (Figure S3). 

Additionally, we enumerated all features matching 12Cn-1
13C1 and 12Cn-2

13C2 

isotopologues of standards to determine the influence of parameter values on detection of 

lower intensity features (Figure 2). We only considered these isotopologues if the 12Cn
13C0 ion 

was present within the feature tables derived with method-specific parameters. We detected 

80 out of 81 and 38 out of 64 possible 12Cn-1
13C1 and 12Cn-2

13C2 peaks, respectively, within the 

AutoTuner-derived feature table. We detected 46 out of 68 and 8 out of 59 possible 12Cn-1
13C1 

and 12Cn-2
13C2 peaks, respectively, within the IPO-derived feature table. 

We first compared the number of features from culture data generated with parameters 

from each algorithm to understand the influence of parameter selection on downstream data 

properties (Figure 3A, Figure S5A). Each feature table contained a distinct number of total 

features following processing and quality control (Table S3). In positive ion mode, AutoTuner-

derived parameters detected fewer unique features (203) compared to 2606 unique features 

detected with IPO-derived parameters (Figure 3A), while sharing 1022 features between them. 

A similar situation was observed in negative ion mode where AutoTuner detected 540 unique 

features compared to 3420 unique features found with IPO-derived parameters, while sharing 

904 features (Figure S5A). 

 We then compared the structural differences between features exclusively detected 

using IPO- and AutoTuner-derived parameters. We created an empirical cumulative distribution 

function (CDF) to compare the distribution of peak areas (Figure S5, Figure S5B) and maximum 

observed continuous wavelet transform (CWT) coefficients (Figure 3B, Figure S5C) of all EIC 

peaks belonging to features outside of the intersect. The maximum observed CWT coefficient 

increases with peak steepness, may provide a measure of a peak’s chromatographic resolution 
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(Figure 3: see inset). The CDF of each metric was significantly different in positive (KS-Test, 

Area: p < 10-6; CWT: p < 10-4, n = 203) and negative (KS-Test, area: p < 10-14, CWT: p < 10-8, n = 

540) ionization mode data. Applying the same test on unbalanced comparisons (e.g., negative 

ion mode: 3420 IPO- vs. 540 AutoTuner-unique features) was more highly significant than using 

equivalent numbers of features obtained through subsampling. 

 Next, we compared the abundance of features with MS/MS spectra within each unique 

feature table because features with MS/MS spectra can be compared to spectral datasets and 

authenticated standards, thus enabling potential identification. In total, we observed more 

features with MS/MS spectra within the feature table generated with IPO-derived parameters 

compared to that generated with AutoTuner-derived parameters (positive: 448 vs. 115; 

negative: 686 vs. 121, both for IPO vs. AutoTuner, respectively). However, this is due primarily 

to the greater number of features in the IPO-derived table. Indeed, relative to total features, 

IPO-derived features were less likely to have associated MS/MS spectra than features within 

the intersect of both datasets (Hypergeometric Test, Negative ion mode: p < 10-10, Positive ion 

mode: p < 10-10). A similar comparison revealed that MS/MS enrichment was not significantly 

different between AutoTuner-derived features and those within the intersect (Table S4). 

 Finally, using all three of the test datasets, we compared the time required to run 

AutoTuner and IPO (Table 3). After accounting for number of CPUs, AutoTuner ran hundreds to 

thousands of times faster. 

 

2.4.2 Testing Robustness of AutoTuner Estimation 

Figure 4 shows coefficient of variation and estimates values for each 11-sample subset 

for the parameter ppm obtained from Monte Carlo analysis on culture and community 

datasets. Figures S6-S13 show the complete set of results from the Monte Carlo analysis for all 

parameters. For all parameter estimates, the variability of estimation decreased linearly with 

the number of samples used under both ionization modes (Figure 4A and Figures S6-S13). The 

rendered parameter estimates were consistent with expectations based on the mass analyzer 

used to generate the data (Table 2). With the exception of the Maximum Peak-width 

parameter estimate in the community dataset and the Noise estimate in the negative culture 
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data, all parameters had a coefficient of variation (CV) less than or equal to 0.1 when using 9 

samples to obtain estimates (Figures S6, S8, S10, and S12). 

 

2.5 Discussion 

AutoTuner is a robust, rapid, and high-fidelity estimator of untargeted mass 

spectrometry data processing parameters. Its unique design improves upon previous methods 

by providing a scalable framework to handle large datasets, reducing runtime, and generating 

high-accuracy parameters that retain known features. AutoTuner’s ease of use make it an ideal 

candidate to include within existing data processing pipelines [95-98].  

 AutoTuner’s high accuracy indicates that its parameter selection is based on true data 

features. One possible explanation for the lower accuracy of IPO is that the peak-width of the 

missing standards was below the Minimum Peak-width parameter selected by IPO (Table S2 

and Figure S2). 

AutoTuner parameter estimates were robust across all datasets and ionization modes. 

Some parameters like ppm, Noise, S/N Threshold, Prefilter intensity, and Scan count reflect 

systematic properties inherent to the platform chromatography, mass analyzer, and/or sample 

matrix [98]. Other parameters like Maximum peak-width are more specific to each sample; 

hence increasing the total number of samples used to estimate parameters always 

strengthened their robustness. The low CV values for parameter estimates suggests that using a 

subset of samples to generate estimates returns a set representative for all samples. Based on 

our results, we recommend the use of 9 and 12 samples to generate estimates in culture and 

community datasets, respectively. For most of the parameters estimated here, 9 samples 

proved sufficient to obtain estimates with CV values less than 0.1. The 12-parameter 

recommendation originated from extrapolating the linear fits of these data to obtain 0.1 CV 

values for remaining parameters that failed this criterion (Figure S6, S8, S10, and S12). We were 

unable to check the robustness of the Group difference parameter estimate, as this parameter 

is estimated through a non-automatable cross sample comparison during the TIC peak 

detection step of the algorithm.  

Although other algorithms return more parameter estimates than AutoTuner, the 

parameters calculated by AutoTuner represent continuous valued ones with the greatest 
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possible number of choices. Performing a parameter sweeping optimization like previous 

approaches to estimate the remaining parameters after fixing the AutoTuner derived ones 

reduces the total combinations of available centWave parameters from a space of at least 24*58 

possible choices of parameters to one of 40. This is because the centWave algorithm, used by 

both XCMS and MZmine2 data processing tools, requires tuning of 11 distinct parameters. Of 

these, 8 are continuously valued, meaning that they can be any real number. The remainder are 

either boolean values or can be one of a few discrete choices (Table S5). The reduction of the 

total number of combinations is achieved by optimizing 7 of the 8 continuous valued 

parameters. In regards to the last continuous parameter not optimized by AutoTuner, mzDiff, 

we performed a sensitivity analysis to show that distinct values had minimal effect on the 

returned feature table (Table S6). Future contributions towards AutoTuner’s design can help 

the estimation of additional parameters not covered within its current design.   

 AutoTuner’s low runtime indicates that the algorithm is scalable (Table 3). As more and 

more data is generated due to increases in analytical throughput and dataset size, AutoTuner 

will remain a tractable option to generate estimates of metabolomics data processing 

parameters [46, 99]. Because AutoTuner estimates parameters much faster than IPO, and IPO 

was shown to perform at a faster rate than software preceding it, we surmise that AutoTuner is 

the fastest parameter selection algorithm available [78].  

Evaluating quality between culture dataset feature tables generated with IPO- and 

AutoTuner-derived parameters is impossible without performing a complete validation of all 

possible features. Such analyses are time consuming, labor intensive, and beyond the scope of 

this manuscript. However, the measured properties of these datasets may provide some 

expectation for practitioners of metabolomics of how the data generated using each method 

may differ.  

When considering the unique features identified by each algorithm in the culture 

dataset, AutoTuner found fewer features in each case (Figure 3, Figure S4). This may be due to 

the selection of different ppm error parameters between AutoTuner and IPO; the ppm error 

thresholds selected by IPO were higher under each ionization mode than those selected by 

AutoTuner (Table S2). AutoTuner’s lower ppm error estimates do not appear to be too 
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stringent, as they are between 4 and 6 times greater than the instrument-recommended error 

threshold of 0.5 ppm and they are consistent with recommendations by the ‘centWave’ 

developers [92]. The size of the processed data using AutoTuner-derived parameters was in line 

with previous work validating the metabolome of Escherichia coli after performing stringent 

isotope labeling experiments and quality control filtering [81]. AutoTuner feature selection does 

not appear to be biased towards higher intensity features, because the standard dataset 

processed with AutoTuner-derived parameters contained a high percentage of possible 13C 

isotopologues. The paucity of size-validated metabolome datasets precludes further evaluation 

of the feature number comparison. Within the AutoTuner-derived feature tables, those 

features unique to AutoTuner-parameters were enriched in MS/MS relative to the unique IPO-

derived features. We stress that features with MS/MS spectra cannot be assumed to be more 

or less important features within a metabolomics data set; however, the presence of these 

spectra enhances down-stream identification efforts and may be desirable to some 

investigators.  

AutoTuner has several avenues for possible improvement. First, AutoTuner could be 

parallelized to reduce computation time by a factor of the total number of CPUs used. Second, 

additional algorithms may be implemented to optimize parameters not covered here. One 

drawback from the speed gained in the computation through its “divide-and-conquer” 

approach comes at a loss of comparing EIC peaks across samples to estimate retention time 

correction algorithms. This challenge leaves room for the implementation of additional 

algorithms. Third, the replacement of the sliding window analysis with a more sophisticated 

and sensitive peak detection approach may eliminate the need for user input during the first 

portion of AutoTuner. However, this automation comes at the cost of manual inspection of the 

raw data. We support manual inspection of the raw data, because it provides a quality control 

check for the data generation steps leading up to the analysis. AutoTuner provides several built-

in plotting functions to facilitate this evaluation step. Despite these minor caveats, AutoTuner is 

a viable and time-saving option to determine proper data processing parameters for untargeted 

metabolomics data.  
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2.6 Figures 

 

Figure 1. Schematic of the three stages of the AutoTuner algorithm. (A) Total Ion 

Chromatogram (TIC) Peak Detection requires user input and is focused upon identifying peaks 

within each sample’s TIC. The user directly adjusts a signal processing sliding window analysis to 

identify peaks within the TIC. (B) Parameter Estimation Within Extracted-Ion Chromatograms 

(EICs) of Each TIC Peak iteratively looks at each peak to make parameter estimates from EICs. 

(C) Dataset-Wide Parameter Estimates aggregates results from the second stage to provide an 

ideal set of parameters for the entire dataset. Parameters estimated are in bold. The R package 

vignette at BioConductor provides an example on how to use the algorithm.  
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Figure 2. AutoTuner and IPO accuracy comparison. Percentages were determined from number 

of detected standard peaks relative to total possible set. M denotes 12Cn
13C0 isotopologue, 

[M+1] denotes 12Cn-1
13C1 isotopologue and [M+2] denotes 12Cn-2

13C2 isotopologue. We 

normalized percentages by the total number of possible detectable peaks based on the 

detection of 12C standards (12Cn
13C0).  
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Figure 3. Comparing the differences between positive ion mode data generated by AutoTuner 

and IPO on culture dataset. A) portrays the overlap in the number of m/z-rt features generated 

by both methods. Features with an error of 5 ppm and retention time error of 20 seconds are 

placed in the intersect. B compares the differences in structural properties for the maximum 

continuous wavelet transform coefficient (CWT) between peaks detected only within 

AutoTuner (orange) and IPO (green). Both curves are empirical cumulative distribution 

functions (CDF) of the calculated metric. C shows three randomly selected EIC peaks that fall on 

distinct regions of the maximum CWT empirical cumulative distribution function to 

demonstrate how this metric influence peak shapes. The EIC shape reflects the maximal CWT 

rather than parameterization method. The curves were significantly different (KS-test, p < 10-4, 

n = 203). Results for positive mode data area CDF and negative data were similar to this data 

and are found in figure S4 and S5, respectively. 
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Figure 4. Results from Monte Carlo experiment for parameter ppm in positive ion mode data. 

A) depicts the distribution of coefficient of variation from parameters within 11 sample group, 

while B) shows the distribution of all estimates for ppm. Blue bars describe data collected by 

qTOF instrument (community data) while yellow bars describe FT-ICR-MS data (culture data). 

See figures S5-12 for results on other parameter estimates in each ionization mode and dataset.  
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2.7 Tables 

Table 1. Parameters estimated through AutoTuner algorithm. We chose to optimize these 

parameters due to their influence on the number and quality of features returned following 

XCMS data processing [76, 84]. Table S4 gives more information on these parameters. 

Parameter Description XCMS 
parameter 
name 

Functionality Application 

Group 
difference 

Expected retention time deviation 
of an mz/rt feature between 
samples 

bw Grouping XCMS  
 

ppm Parts per million (ppm) error 
threshold used to bin consecutive 
mass intensities across adjacent 
scans into a single peak 

ppm centWave 
(peak-picking) 

XCMS & 
MZmine2 

S/N 
Threshold 

The minimum ratio between peak 
and average noise intensity 
required to retain a feature 

snthresh centWave 
(peak-picking) 

XCMS & 
MZmine2 

Scan count Minimum number of scans 
required to retain a peak 

Prefilter 
scan 

centWave 
(peak-picking) 

XCMS & 
MZmine2 

Noise Numerical threshold used to filter 
out noise from true masses  

noise centWave 
(peak-picking) 

XCMS & 
MZmine2 

Prefilter 
intensity 

Minimum integrated intensity to 
required retain a peak 

Prefilter 
intensity 

centWave 
(peak-picking) 

XCMS & 
MZmine2 

Peak-width The width of a 
chromatographically 
resolved peak 

min/max 
peakwidth 

centWave 
(peak-picking) 

XCMS & 
MZmine2 
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Table 2. Information on the datasets used to test AutoTuner’s performance. The mass 

spectrometers and liquid chromatography systems herein are some of the most commonly 

used analytical platforms for untargeted metabolomics [46].  

Dataset Reference Access Mass  
Spectrometer 

Liquid 
Chromatography 

Sample 
Number 

Ionization 
Mode 

Standards (current 
project) 

(current 
project) 

Orbitrap 
Fusion Lumos 

(Thermo) 

Ultra-high 
Performance 

Liquid 
Chromatography 

(Accela 2015 
Pump - Thermo) 

4  Pos/Neg 

Culture [88] MetaboLig
hts 
MTBLS157 

Hybrid Linear 
Ion Trap 7T 

Fourier 
Transform Ion 

Cyclotron 
Resonance 
(Thermo) 

High 
Performance 

Liquid 
Chromatography 

(Surveyor MS 
Pump Plus - 

Thermo) 

45 Pos/Neg 

Community [90] Contributi
ng Author 

Time-Of-Flight 
Tandem Mass 
Spectrometer 

(Xevo-G2 
waters) 

Ultra-high 
Performance 

Liquid 
Chromatography 

(Acquity - 
Waters) 

90 Pos/Neg 
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Table 3. Run-times for AutoTuner and IPO required to run 6 common samples collected in 

positive (+) and negative (-) ionization modes. All system time measurements were done on an 

8 CPUs and 10Gb of memory Ubuntu Xenial 16.04 Google Cloud instance. IPO ran on 8 CPUs, 

while AutoTuner ran on 1 CPU. The ratio accounts for the total computing power used to run 

both algorithms.  

Algorithm  Culture (-) Culture (+) Standards (-) Standards 
(+) 

Community 
(-) 

Community 
(+) 

AutoTuner 2 min 9 min 2 min 3 min 25 min 26 min 

IPO 7 hr 23 min 28 hr 40 
min 

31 hr 56 min 28 hr 5 min 38 hr 4 min 21 hr 27 min 

Ratio 
(Auto/IPO) 

1479 1518 6970 4238 715 396 

Samples 
Used 

6 6 4 4 6 6 
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2.8 Supplementary Material 

2.8.1 Supplementary Figures 

 

Figure S1. Example of AutoTuner-generated ppm error distribution. Such plots are returned by 

the algorithm to check quality of estimates. Red line represents the maximum ppm error value 

with an outlier score greater than 1 (see equation 3). In this example, a ppm error value of 1.15 

meets this criterion (see legend). Blue line represents the ppm error parameter estimate 

described in equation 4, or 2.02 in this example (see legend). The “Range” subtitle represents 

the original chromatographic bounds of the TIC peak used to obtain estimates. The peaks under 

the arrow are assumed to originate from ppm values calculated from random associations of 

noise rather than from true features. 
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Figure S2. Example EIC peaks of standards not detected within feature table generated with 

IPO-derived parameters. The lines represent individual standard samples. 3’AMP = 3’-adenosine 

monophosphate; NAD = ß-nicotinamide adenine dinucleotide 
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Figure S3. Impact of feature intensity threshold on standard detection. Intensity threshold 

varied by 5000 from 5000 until 10000. Lines indicate the number of detected standards from 

feature tables generated with IPO- and AutoTuner-derived parameters. The minimum intensity 

value observed across standards was measured at 74804.84.  
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Figure S4. Positive ion mode data empirical cumulative distribution functions (CDF) comparison 

of peak area from EICs of features uniquely identified within feature tables generated with 

AutoTuner- and IPO-derived parameters. The curves were significantly different from one 

another (KS-test, Area: p < 10-6; n = 203). 
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Figure S5. Negative ion mode data comparison of feature tables based on AutoTuner- and IPO-

derived parameters on the culture dataset. A) portrays the overlap in the number of m/z-rt 

features generated by both methods. Features with an error of 5 ppm and retention time error 

of 20 seconds are placed in the intersect. B and C compare the differences in structural 

properties for the (B) peak area and (C) maximum continuous wavelet transform coefficient 

(CWT) between peaks detected only within AutoTuner or IPO. Both curves are empirical 

cumulative distribution functions (CDF) of the calculated metrics. An empirical cumulative 

distribution function is a non-parametric estimator of the underlying CDF of a random variable. 

In this case, the random variable is the set of calculated values for the AutoTuner- and IPO-

specific features. CDFs for each metric were significantly different from one another (KS-test, 

Area: p < 10-14; CWT: p < 10-8, n = 540), similar to positive ion mode data.  

http://en.wikipedia.org/wiki/ECDF
http://en.wikipedia.org/wiki/ECDF
http://en.wikipedia.org/wiki/Nonparametric
http://en.wikipedia.org/wiki/Cumulative_distribution_function
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Figure S6. The coefficient of variation (CV) for groups of parameters estimated in the Monte 

Carlo analysis on negative mode community data. Each plot denotes the calculated CV values 

for each unique parameter. The x-axis describes the number of samples used to generate 

estimates, while the y-axis describes the CV of the estimates from each group of 11 randomly 

selected samples. P-value and R2 statistics are derived from linear regressions of data (n = 49). 

(NaN = not a number).  
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Figure S7. The parameters estimated in the Monte Carlo analysis on negative mode community 

data. Each plot denotes the calculated parameter estimate values for each unique parameter 

across 385 runs of AutoTuner. The x-axis describes the number of samples used to generate 

estimates, while the y-axis portrays the determined 55 parameter estimates within each n-

sample subset (n = 3-9).  
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Figure S8. The coefficient of variation (CV) for groups of parameters estimated in the Monte 

Carlo analysis on positive mode community data. Each plot denotes the calculated CV values for 

each unique parameter. The x-axis describes the number of samples used to generate 

estimates, while the y-axis describes the CV of the estimates from each group of 11 randomly 

selected samples. P-value and R2 statistics are derived from linear regressions of data (n = 49). 

(NaN = not a number).  
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Figure S9. The parameters estimated in the Monte Carlo analysis on positive mode community 

data. Each plot denotes the calculated parameter estimate values for each unique parameter 

across 385 runs of AutoTuner. The x-axis describes the number of samples used to generate 

estimates, while the y-axis portrays the determined 55 parameter estimates within each n-

sample subset (n = 3-9).  
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Figure S10. The coefficient of variation (CV) for groups of parameters estimated in the Monte 

Carlo analysis on negative mode culture data. Each plot denotes the calculated CV values for 

each unique parameter. The x-axis describes the number of samples used to generate 

estimates, while the y-axis describes the CV of the estimates from each group of 11 randomly 

selected samples. P-value and R2 statistics are derived from linear regressions of data (n = 49). 

(NaN = not a number).  
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Figure S11. The parameters estimated in the Monte Carlo analysis on negative mode culture 

data. Each plot denotes the calculated parameter estimate values for each unique parameter 

across 385 runs of AutoTuner. The x-axis describes the number of samples used to generate 

estimates, while the y-axis portrays the determined 55 parameter estimates within each n-

sample subset (n = 3-9).  
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Figure S12. The coefficient of variation (CV) for groups of parameters estimated in the Monte 

Carlo analysis on positive mode culture data. Each plot denotes the calculated values for each 

unique parameter. The x-axis describes the number of samples used to generate estimates, 

while the y-axis describes the CV of the estimates from each group of 11 randomly selected 

samples. P-value and R2 statistics are derived from linear regressions of data (n = 49). (NaN = 

not a number).  
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Figure S13. The parameters estimated in the Monte Carlo analysis on positive mode culture 

data. Each plot denotes the calculated parameter estimate values for each unique parameter 

across 385 runs of AutoTuner. The x-axis describes the number of samples used to generate 

estimates, while the y-axis portrays the determined 55 parameter estimates within each n-

sample subset (n = 3-9).  
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2.8.2 Supplementary Tables 

Table S1. Standards used to validate AutoTuner accuracy. These compounds are common 

targets of metabolism and are commonly detected within untargeted metabolomics 

experiments. Compounds detected in both ionization modes are separated by “|” in the order 

they were presented in the “Ionization Mode” column.  

 

Compound Ionization 
Mode 

In AutoTuner In IPO m/z Retention 
Time (s) 

3-methyl-2-
oxopentanoic acid 

NEG TRUE TRUE 129.061|NA 237.7 
 

3-methyl-2-
oxobutanoic acid 

NEG TRUE TRUE 115.05|NA 149.2 
 

4-aminobenzoic 
acid 

POS TRUE TRUE NA|138.043 202.2 

4-hydroxybenzoic 
acid 

NEG TRUE TRUE 137.028|NA 235.4 
 

4-methyl-2-
oxopentanoic acid 

NEG TRUE TRUE 129.061|NA 255.3 

adenosine 5'-
monophosphate 
(5'AMP) 

NEG|POS TRUE|TRUE FALSE|TRUE 346.039|348.054 53.0 
 

adenosine 3'-
monophosphate 
(3'AMP) 

NEG|POS TRUE|TRUE FALSE|TRUE 346.039|348.054 59.5 

6-phosphogluconic 
acid 

NEG TRUE TRUE 275.002|NA 32.9 
 

acetyl taurine NEG TRUE TRUE 166.017|NA 43.6 

adenine NEG|POS TRUE|TRUE TRUE|TRUE 134.053|136.063 52.4 

adenosine  POS TRUE TRUE NA|268.091 110.6 

alpha-ketoglutaric 
acid  

NEG TRUE TRUE 145.039|NA 53.0 

4-amino-5-
aminomethyl-2-

POS TRUE TRUE NA|139.1 27.1 
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methylpyrimidine 
(AmMP) 

arginine POS TRUE FALSE NA|175.103 30.1 

aspartic acid NEG|POS TRUE|TRUE FALSE|TRUE 132.025|134.055 31.2 

biotin NEG|POS TRUE|TRUE FALSE|FALSE 243.069|245.073 266.2 

caffeine POS TRUE TRUE NA|195.069 248.1 

citric acid NEG TRUE TRUE 191.005|NA 59.5 

cytosine POS TRUE TRUE NA|112.054 34.2 

desthiobiotin NEG|POS TRUE|TRUE TRUE|TRUE 213.109|215.117 285.7 

glucosamine 
phosphate  

NEG TRUE FALSE 258.026|NA 30.6 

pantothenic acid NEG|POS TRUE|TRUE FALSE|TRUE 218.094|220.108 186.6 

ribose 5-phosphate NEG TRUE TRUE 229.006|NA 32.3 

3-phosphoglyceric 
acid 

NEG TRUE TRUE 184.986|NA 35.9 

diacetylchitobiose POS TRUE TRUE NA|425.132 44.2 

dihydroxy acetone 
phosphate 

NEG TRUE TRUE 168.984|NA 32.3 

dimethylsulfoniopr
opionate (DMSP) 

POS TRUE TRUE NA|135.052 31.9 
 

ectoine POS TRUE TRUE NA|143.14 38.3 

folic acid NEG|POS TRUE|TRUE TRUE|TRUE 440.101|442.121 230.3 

fosfomycin NEG TRUE TRUE 137.011|NA 37.7 

fumarate NEG TRUE TRUE 115.007|NA 71.0 

gamma-
aminobutyric acid 
(GABA) 

POS TRUE TRUE NA|104.087 32.4 

glucose 6-
phosphate 

NEG TRUE TRUE 259.004|NA 31.2 

glutamic acid NEG TRUE FALSE 146.047|NA 32.9 

glutamine POS TRUE FALSE NA|147.073 31.3 

glycine betaine POS TRUE TRUE NA|118.08 34.8 
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glyphosate NEG TRUE TRUE 168.061|NA 31.7 

guanine POS TRUE TRUE NA|152.064 53.0 

guanosine NEG|POS TRUE|TRUE TRUE|TRUE 282.06|284.099 137.6 

4-methyl-5-
thiazoleethanol 
(HET) 

POS TRUE TRUE NA|144.057 178.1 

(4-amino-2-methyl-
5-
pyrimidinyl)methan
ol (HMP) 

POS TRUE TRUE NA|140.084 46.5 

c 3-acetic acid POS TRUE TRUE NA|176.065 318.6 

inosine  NEG TRUE TRUE 267.061|NA 138.5 

inosine 5'-
monophosphate 

NEG|POS TRUE|TRUE TRUE|TRUE 347.022|349.037 57.1 

isethionic acid  NEG TRUE TRUE 125.055|NA 34.1 

citrulline POS TRUE TRUE NA|176.089 33.0 

glutathione POS TRUE TRUE NA|308.053 77.7 

glutathione 
oxidized 

POS TRUE TRUE NA|613.161 77.7 

isoleucine POS TRUE TRUE NA|132.092 87.3 

kynurenine POS TRUE TRUE NA|209.12 159.9 

leucine POS TRUE TRUE NA|132.091 82.9 

phenylalanine POS TRUE TRUE NA|166.079 166.3 

tryptophan POS TRUE TRUE NA|205.084 213.9 

tyrosine POS TRUE TRUE NA|182.105 81.5 

methionine POS TRUE FALSE NA|150.052 57.1 

5'methylthioadeno
sine (MTA) 

POS TRUE TRUE NA|298.081 209.8 

muramic acid NEG TRUE TRUE 250.086|NA 40.0 

N-acetyl d-
glucosamine 

POS TRUE TRUE NA|222.077 37.2 

N-acetyl l-glutamic 
acid 

NEG TRUE TRUE 188.054|NA 70.1 



 
 

 59 

N-acetylmuramic 
acid 

NEG|POS TRUE|TRUE TRUE|TRUE 292.085|294.121 109.6 

ß-nicotinamide 
adenine 
dinucleotide (NAD)  

NEG|POS TRUE|TRUE FALSE|FALSE 662.041|664.078 57.1 

ß-nicotinamide 
adenine 
dinucleotide 
phosphate (NADP) 

NEG TRUE TRUE 742.011|NA 53.9 

ornithine POS TRUE TRUE NA|133.098 27.7 

orotic acid NEG TRUE TRUE 155.004|NA 50.1 

phosphoenolpyruv
ate 

NEG TRUE TRUE 166.970|NA 37.7 

proline POS TRUE TRUE NA|116.076 32.2 

pyridoxine  POS TRUE TRUE NA|170.079 61.2 

riboflavin POS TRUE FALSE NA|377.100 262.4 

S-(1,2-
dicarboxyethyl)glut
athione 

POS TRUE TRUE NA|424.121 65.9 

S-(5'-adenosyl) -L-
homocysteine 
 (SAH) 

NEG|POS TRUE|TRUE TRUE|TRUE 383.054|385.062 78.7 

S-adenosyl-l-
methionine (SAM) 

POS TRUE FALSE NA|399.200 31.3 

serine POS TRUE FALSE NA|106.052 30.7 

sn-glycerol 3-
phosphate 

NEG|POS TRUE|TRUE TRUE|TRUE 170.999|173.004 32.3 

succinic acid NEG TRUE TRUE 117.022|NA 76.6 

syringic acid NEG TRUE TRUE 197.030|NA 266.2 

taurine NEG TRUE FALSE 124.012|NA 43.6 

thiamine 
monophosphate 

POS FALSE FALSE NA|345.060 NA 

threonine POS TRUE TRUE NA|120.069 31.9 

thymidine NEG TRUE TRUE 241.074|NA 173.8 
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triacetylchitotriose POS TRUE TRUE NA|628.269 53.0 

uracil POS TRUE TRUE NA|113.051 114.0 

uridine 5'-
monophosphate 

POS TRUE TRUE NA|325.031 51.2 

valine POS TRUE TRUE NA|118.091 34.8 

xanthine NEG|POS TRUE|TRUE TRUE|TRUE 151.017|153.045 161.0 

xanthosine NEG|POS TRUE|TRUE FALSE|TRUE 283.053|285.084 161.0 
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Table S2. Parameters used to process data. We rounded the values returned by AutoTuner and 

IPO at the tenths place. Each column aside from the “Dataset” and “Method” represent XCMS 

parameters described in Table 1. The community dataset is not mentioned here, as no 

comparison between IPO- and AutoTuner-parametrized feature tables was performed. The 

same standard set of parameters were used for density grouping and loess spline retention 

time correction. XCMS function syntax is described in parentheses. For the first run of density 

grouping (group.density): group difference =10, minfrac = 0, minsamp = 1, mzwid = 0.001. For 

the second run of density grouping after retention time correction (group.density):, group 

difference = 5, minfrac = 0.5, minsamp = 1, mzwid = 0.001. For loess spline retention time 

correction (retcor.peakgroups): span = 0.5.  

 

Dataset Method Maximum 
Peak-width 

Minimum 
Peak-width 

ppm Noise Prefilter 
Intensity 

Scan 
Count 

S/N 
Threshold 

Pos 
Standards 

IPO 26.0 12.0 6.2 250.0 100.0 3.6 10 

Pos 
Standards 

AutoTuner 29.3 5.7 4.0 436.8 1421.3 2.0 6 

Pos 
Culture 

IPO 48.0 18.6 5.3 470 100.0 2.5 7 

Pos 
Culture 

AutoTuner 38.3 3.6 3.0 66.7 292.0 2.0 3 

Neg 
Standards 

IPO 26.0 12.0 6.2 250.0 100.0 3.6 10 

Neg 
Standards 

AutoTuner 29.3 5.7 4.0 436.8 1421.3 2.0 6 

Neg 
Culture 

IPO 60.0 27.4 4.7 121.0 100.0 4.0 9 

Neg 
Culture 

AutoTuner 66.9 4.9 1.8 7.8 117.5 2.0 3 
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Table S3. Feature count from each dataset during the different stages of quality assurance 

processing of culture data. The initial feature count was reduced after processing to remove 

blanks (‘post blank)’, features found in only one replicate (‘post reproducibility), isotopologues 

and adducts (‘post isotopes’, and ‘post adducts’, respectively), and features with a CV greater 

than 0.4 in the pooled samples (‘post CV’).  

Ionization 
Mode 

Algorithm Initial 
Feature 
Count 

Post 
Blank 

Post 
Reproducibility 

Post 
Isotopes 

Post 
Adducts 

Post 
CV 

Negative IPO 40422 37903 8225 7695 4324 4226 

Negative AutoTuner 22599 17640 2921 2805 1444 1363 

Positive IPO 28794 28042 5907 5591 3628 3520 

Positive AutoTuner  13731 12451 2099 2012 1225 1143 
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Table S4. Counts of total detected features with MS/MS within figures 3 and S5 Venn diagrams.  

Ionization Mode AutoTuner MS2 Count IPO MS2 Count Intersect MS2 Count 

Positive 122 686 477 

Negative 115 448 197 
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Table S5. Standard parameters used within centWave algorithm and their number of possible 

combinations. We cite these values in our discussion of speed improvements gained via 

AutoTuner relative to traditional parameter sweeping approaches dependent on optimization 

functions.  

 

Parameter Type Possible Choices Checked by AutoTuner 

ppm Continuous Infinite Yes 

S/N Threshold Continuous Infinite Yes 

Scan count Continuous Infinite Yes 

Noise  Continuous Infinite Yes 

Prefilter intensity Continuous Infinite Yes 

Minimum Peak-width Continuous Infinite Yes 

Maximum Peak-width Continuous Infinite Yes 

mzDiff Continuous Infinite No 

Fit gauss Boolean 2 No 

Mz center function Discrete 4 No 

Integrate Discrete 2 No 
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Table S6. Number of unique features observed after processing data with unique mzDiff values. 

Columns two and three denote the mzDiff values used during pairwise comparisons of feature 

tables. Missing Count column represents the number of features observed outside the intersect 

of both feature tables. Feature tables were generated from 8 negative ion mode community 

data samples. 

Missing Count mzDiff value of First Feature 

Table 

mzDiff value of Second 

Feature Table 

0 -0.001 -0.002 

0 -0.002 -0.003 

0 -0.003 -0.004 

0 -0.004 -0.005 

0 -0.005 -0.006 

0 -0.006 -0.007 

0 -0.007 -0.008 
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Chapter 3:  
 
Harmful Algal Bloom-Forming Organism Responds to Nutrient Stress Distinctly From Well-
Studied Phytoplankton 
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3.1 Introduction 

The scarcity of nitrogen (N) and phosphorus (P) limits primary production across aquatic 

ecosystems [10, 100] by regulating the growth and structure of phytoplankton communities 

[11, 101, 102]. These communities consist of an extremely diverse group of phylogenetically 

and physiologically distinct phytoplankton [17, 23]. The abundance of individual phytoplankton 

groups can vary widely over space and time [103], due in large part to their group-specific 

ecological strategies for managing resource limitation [18, 19]. These strategies vary from 

reallocation of intracellular nutrients [35, 45, 54], to reduction of nutrient quotas needed for 

growth [55, 56], and increased production of dissolved inorganic nutrient transporters [24, 25, 

45].  

The impact of distinct nutrient response strategies is most evident when considering 

harmful algal blooms (HABs). HABs may occur when a set of physiological traits allow a single 

phytoplankton group to prosper over its neighbors [13]. Such blooms have increased in 

frequency over the past 40 years with climate change and eutrophication [4], causing hundreds 

of millions of dollars in economic damages to fisheries and public health [7]. Many blooms have 

been linked to resource availability [5], and as a result, knowledge of nutrient response 

mechanisms and their associated trade-offs towards fitness holds tremendous promise in 

managing HABs [104]. The mechanics of how nutrients influence metabolic response strategies 

have been identified in only a few well-studied phytoplankton (e.g., diatoms [57-59], 

coccolithophores [37, 60, 61]), leaving significant gaps in our understanding of nutrient 

responses in HAB-forming groups. 

It is unclear whether metabolism data from well-studied phytoplankton reflects that of 

less well-studied phytoplankton. Although core metabolic functional redundancies occur in all 

primary producers [105], physiological studies suggest that phytoplankton groups vary widely in 

their capabilities beyond carbon processing [6]. For example, elemental stoichiometry studies 

observe that phytoplankton groups differ in their intracellular macromolecular pool 

composition [15], and transcriptome studies show that phytoplankton respond differently to 

environmental perturbations [19]. Therefore, direct evaluations of less well-studied 

phytoplankton metabolism, specifically under conditions of acute shortages of essential 
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nutrients (stress), are needed to evaluate the extent to which metabolic knowledge from well-

studied phytoplankton can describe other groups. 

One factor driving the knowledge discrepancy between well-studied and less well-

studied phytoplankton groups is the paucity of fully sequenced eukaryotic genomes for most 

phytoplankton. These resources are required to build genome-scale models and evaluate 

systems level changes to stress [38, 106, 107]. Due to this constraint, investigators have used 

‘omics techniques like transcriptomics or metabolomics to characterize metabolic responses of 

phytoplankton to nutrient stress [57-61, 108-110]. While each of these methods offers 

substantial insights on physiological differences among phytoplankton [18], they fail to capture 

the systems level changes when used in isolation [37]. For example, metabolomic approaches 

provide evidence of biochemical reactions, but predicting the mechanism driving the activity is 

challenging. By contrast, transcriptomic techniques reveal pathway level changes, yet such 

changes may be inhibited by post-translational regulatory processes beyond the scope of the 

data. Applying metabolomic and transcriptomic methods in tandem circumvents these issues. 

Although computational challenges have typically limited these multi-‘omics efforts to targeted 

analyses of specific pathways rather than systems level changes [45], combining ‘omics 

techniques holds tremendous promise for understanding the diversity of phytoplankton 

responses to N- and P-stress.  

In this study, we examined N- and P-stress metabolism using a combination of 

metabolomics and transcriptomics data for the HAB-forming raphidophyte, Heterosigma 

akashiwo. H. akashiwo populations are distributed ubiquitously within coastal subtropical 

environments [8, 50], and their blooms have caused significant economic losses [51]. Both N- 

and P-stress are known to be important drivers of H. akashiwo blooms [52, 53]. Our findings 

provide a mechanistic understanding of H. akashiwo stress response and suggest that a broader 

understanding of less well-studied phytoplankton metabolism is necessary to understand how 

phytoplankton communities will adapt to a changing ocean.  
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3.2 Materials and Methods: 

3.2.1 Culture Maintenance:  

We cultured H. akashiwo strain CCMP 2393 (isolated from Rehoboth Bay, Delaware, USA) in L1 

medium (N:P 24, 882 µM NaNO3, 36.2 µM NaH2PO4) made with autoclaved 0.2-μm filtered 

seawater from Vineyard Sound, MA. Cultures were not axenic, but were uni-algal and uni-

eukaryotic. We grew each culture with light intensity of 100 μmol quanta m-2 s-1 of 

photosynthetically active radiation (400-700 nm) during a 14h:10h light:dark cycle at 18°C.  

 

3.2.2 Experimental Design: 

We used entrainment cultures to initiate experimental cultures to decrease carryover of 

nutrients from stock cultures and promote acclimation to the experimental conditions. We 

grew single entrainment cultures (∼100 mL) for all organisms for three days in modified L1 

medium (base seawater as above) under the following nitrogen and phosphorus conditions: 

replete (N:P = 16, 576 µM NaNO3 and 36.2 µM NaH2PO4), N-stress (N:P = 0.1, 5 µM NaNO3 and 

36.2 µM NaH2PO4), and P-stress (N:P = 2880, 576 µM NaNO3 and 0.2 µM NaH2PO4).  We kept 

entrainment cultures at 18 °C on a 14:10 light:dark cycle (as above) with gentle rotation (75 

rpm). We initiated experiments by inoculating triplicate 1-L flasks (containing 0.3 L media) for 

each treatment with 30 mL of the corresponding entrainment culture. We maintained 

experimental flasks under the same conditions as the entrainment cultures.  

We monitored growth in each flask by in vivo chlorophyll fluorescence on a Turner 

Designs Aquafluor handheld fluorometer with paired cell counts. We preserved cell count 

samples in 2% (final concentration) acid Lugol's solution and we determined cell concentrations 

by microscopy for all time points except for those of the inoculum. For that, we report relative 

fluorescent units. We took cell concentration measurements at the same time each day (during 

the middle of the light phase) to avoid diel changes in metabolite synthesis. We harvested 

replete cultures in exponential phase, and harvested N-stress and P-stress cultures once growth 

rates and cell yields were reduced relative to the replete control, in agreement with the 

definition of nutrient stress rather than deficiency [111]. Specifically, we harvested treatments 

for metabolomics analysis on day 3, when we observed significant differences (p < 0.001, 
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Tukey-HSD Test, n = 3) in cell counts between stressed and replete cultures (Figure S1). We 

filtered cells (300 mL) of each replicate in each treatment onto combusted 47 mm GF/Fs 

(Whatman) using combusted glass filtration funnels under low vacuum pressure (never 

exceeding 5 mm Hg) to collect particulate metabolite samples. We flash-froze filters in cryovials 

in liquid nitrogen and stored them at −80°C until extraction.   

 
3.2.3 Filter Extractions:  

We split each filter in half for separate extractions for targeted and untargeted metabolomic 

analyses. The extraction procedure for untargeted and targeted samples were identical with 

the exception of the final solid phase extraction (see below). For both types of analyses, we first 

cut each filter half into six roughly equivalent pieces and placed them into an 8-mL amber glass 

vial. We extracted metabolites from filters using 1 mL of cold 40:40:20 acetonitrile: 

methanol:water + 0.1 M formic acid similar to previous work [112, 113]. We then added 25 µL 

of 1 µg/mL deuterated standard mix (d3-glutamic acid, d4-4-hydroxybenzoic acid, and d5-

taurocholate) as extraction recovery standards. We sonicated the solvent-filter mixture for 10 

minutes to lyse the cells, and transferred the solvent into a microcentrifuge tube. We rinsed the 

filters with three 200-µL aliquots of extraction solvent to capture any remaining organic matter. 

We centrifuged the combined extracts at 20,000 × g for 5 minutes, and transferred the 

supernatant into clean 8-mL amber glass vials with care to leave behind any filter or cellular 

debris. We neutralized the extracts with 25.6 μL of 6 M ammonium hydroxide in water and 

dried them down to near dryness in a vacufuge. We reconstituted dried samples for targeted 

analysis in 200 µL 95:5 water:acetonitrile solution plus 2.5 μL of 5 μg/mL deuterated biotin 

injection standard.  

For the untargeted analysis, a PPL extraction step is necessary to reduce high salt 

concentrations that can block the ion transfer tube within the mass spectrometer used for 

untargeted data [114]. We reconstituted these samples with 500 μL 0.1 M HCl to lower the pH 

to 2 and ran these samples through 100 mg/1 mL Agilent Bond Elut PPL cartridges. We pre-

conditioned the cartridge with one cartridge-volume of 100% methanol and passed acidified 

untargeted samples through the cartridge at a flow rate below 40 mL min-1. We rinsed the 

cartridges with one cartridge-volume of 0.01 M HCl, dried them down for 5 minutes, and eluted 
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the metabolites with one cartridge-volume of methanol. We dried untargeted samples again to 

near dryness and reconstituted them with 247.5 µL of 95:5 water:acetonitrile plus 2.5 µL of 5 

µg/mL deuterated biotin injection standard. We combined 45 µL aliquots from each sample to 

create a pooled sample.  

 

3.2.4 Liquid Chromatography and Mass Spectrometry:  

We analyzed metabolite samples for untargeted analyses by high-performance liquid 

chromatography (HPLC, Micro AS autosampler and Surveyor MS Pump Plus, Thermo Scientific) 

coupled via electrospray ionization (ESI) to a hybrid linear ion trap- Fourier transform ion 

cyclotron resonance (FT-ICR) mass spectrometer (7T LTQ FT Ultra, Thermo Scientific). We 

separated metabolites on a Synergi Fusion reverse phase C18 column (4 µm, 2.0 x 150 mm, 

Phenomenex), equipped with a guard column and precolumn filter, and maintained at 35°C. We 

eluted the column with (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile at 

a flow rate of 0.25 mL min-1.  We held the column at 5% B for 2 min, ramped to 65% B over 18 

min, quickly ramped to 100% B over 5 min, held at 100% B for 7 min and then equilibrated at 

5% B for 8 min prior to the next injection (total run time = 40 min). We separately injected 20 

µL of sample onto the HPLC column individually for positive and negative ion mode analyses. 

We externally calibrated the mass spectrometer just prior to analysis in positive and negative 

ion modes using the manufacturer’s solutions. We optimized the capillary temperature and ESI 

voltage at 330°C and 4.2 kV in positive mode and at 365°C and 3.8 kV in negative mode. We 

maintained sheath gas, auxiliary gas, and sweep gas flow rates at 35, 5, and 2, respectively 

(arbitrary units) for both polarities. We collected MS and data dependent MS/MS scans as 

follows: (1) a full MS scan in the FT-ICR analyzer from 100-1000 m/z, with mass resolving power 

set to 100,000 (defined at m/z 400); and (2) collision-induced dissociation fragmentation scans 

(MS/MS) in the linear ion trap for the four most abundant ions in each full scan. We collected 

MS/MS spectra under dynamic exclusion with an exclusion time of 20 seconds. At the start of 

each batch, we injected the pooled sample multiple times to condition the column with the 

sample matrix and to stabilize peak retention times. We also analyzed the pooled sample every 

nine samples for quality assurance. 
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We analyzed targeted samples by ultrahigh-performance liquid chromatography 

(UHPLC, Accela Open Autosampler and Accela 1250 Pump, Thermo Scientific) coupled via 

heated electrospray ionization (H-ESI) to a triple quadrupole mass spectrometer (TSQ Vantage, 

Thermo Scientific) operated under selected reaction monitoring (SRM) mode. We set the spray 

voltage at 4000 V (positive mode) and 3200 V (negative mode). We set source gases at 55 

(sheath) and 20 (aux gas), heated capillary temperature at 375 °C, and the vaporizer 

temperature at 400 °C. We performed chromatographic separation on a Waters Acquity HSS T3 

column (2.1 × 100 mm, 1.8 μm) equipped with a Vanguard pre-column and maintained at 40 °C. 

We eluted the column with (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile 

at a flow rate of 0.5 mL min-1. The gradient started at 1% B for 1 min, ramped to 15% B from 1-3 

min, ramped to 50% from 3-6 min, ramped to 95% B from 6-9 min, held until 10 min, and 

ramped to 1% B from 10-10.2 min, with final re-equilibration at 1% B (total gradient time = 12 

min). We made separate autosampler injections of 5 μL for positive and negative ion modes. 

 
3.2.5 Standard Optimization:  

We obtained authentic standards at the highest grade available from Sigma Aldrich for 

compounds outside of our existing targeted method [115]. We injected standards at 

concentrations of 1 μg/mL in Milli-Q water to optimize selected reaction monitoring (SRM) 

conditions (s-lens, collision energy, product ions). We monitored at least two SRM transitions 

(precursor-product ion pairs) for quantification and confirmation of each target compound, 

derived from optimization protocols that maximize analyte signal-to-noise. We determined the 

chromatographic retention time of each compound with standards dissolved in Milli-Q.   

 
3.2.6 Data Processing:  

We converted untargeted data files from proprietary Thermo RAW into mzML format using 

msConvert [91]. We processed these files using XCMS and AutoTuner [71, 92, 116] to generate 

a spreadsheet of features. We define features as chromatographic peaks with unique mass-to-

charge (m/z) and retention time values, with relative abundances determined by their area. We 

subjected processed data to quality-control filtering by removing possible contaminants and 

non-reproducible features as described previously [117]. Briefly, we removed features within 
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blanks, features with a coefficient of variation higher than 0.2 within pooled samples, and 

features with low reproducibility across factor groups. We report feature intensities normalized 

by the cell counts from day 3.  

We used MAVEN to integrate compound peak areas within targeted data [118]. We 

used an in-house MATLAB script to apply quality-control filtering and to quantify peak areas 

using a standard curve of 4 to 10 points. We retained metabolites for this analysis if the peak 

included a confirm ion, and the metabolite was present within two of three biological replicates 

for each treatment. We further culled the list by correcting for metabolite presence in 

procedural blanks.  

 
3.2.7 Statistics and Data Analysis:  

We used ANalysis Of VAriance (ANOVA) hypothesis testing to identify significantly different 

untargeted mass spectral features, targeted compound abundances, and growth time points. 

We identified significant pairwise-comparisons using Tukey’s honestly significant difference test 

(Tukey-HSD Test). We used linear models to identify significant trends between Hessa et al. 

[119]  and Wimley and White [120] amino acid hydrophobicity scales and feature retention 

time. We applied Benjamini-Hochberg corrections to control for type 1 error following all tests, 

and considered any p-value equal to or less than 0.05 to be significant.  

We putatively annotated features to Kyoto Encyclopedia of Genes and Genomes (KEGG) 

compounds and tetrapeptides if feature masses were within 2.5 ppm error of the expected ion 

masses [121]. Tetrapeptide masses represent the set of all possible masses of any four amino 

acids linked together by a peptide bond. We used mummichog to match features to KEGG 

compounds [122]. Whenever possible, we matched MS/MS spectra with in silico modeled 

MS/MS spectra of known compounds from MetFrag to increase strength of annotation [123]. 

Due to prohibitive costs required to confirm all features with authentic standards, we focused 

on features pertinent to pathways involved in central metabolism and intracellular scavenging. 

See Note S1 for a description of the general trends within both the targeted and untargeted 

metabolomics data. 

We obtained previously-published transcriptome data (see Table S1 from reference 17) 

from H. akashiwo strain CCMP 2393 grown under identical conditions to our study. We did not 
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collect our metabolite data at the same time as the transcriptomic data. Hence, any signal 

appearing across both datasets is considered to be highly biologically robust. We combined the 

expression of all reads mapping to a single KEGG ortholog to find the net expression of the 

putatively identified KEGG orthologs prior to analysis of the data. All transcriptomic 

comparisons were between data from stress and replete cultures [124]. We used Analysis of 

Sequence Counts (ASC) to identify transcripts with a posterior p-value (post-p) > 0.95 for a log2 

fold change greater than 2 or less than -2. This value reflects the likelihood that the fold change 

is real based on the distribution of all transcripts across samples. ASC is an empirical Bayes 

method that estimates the prior distribution by modeling biological variability using the data 

itself, rather than imposing a negative binomial distribution. ASC has been shown to perform 

similarly to, though more conservatively than, other differential expression analyses 

implemented on data sets with and without replicates [124]. We considered individual 

transcripts satisfying either of these criteria to be significantly more or less abundant. When 

analyzing groups of transcripts together across nutrient treatments, we first normalized 

individual genes by the mean expression of that gene to remove baseline differences across 

genes. We applied the Wilcoxon-Test to check if a group of transcripts was significantly more or 

less abundant under a given stress condition relative to the control. We corrected all p-values 

for multiple comparisons using Bonferroni method. We considered any p-value equal to or less 

than 0.05 to be significant.  

 

3.3. Results and Discussion: 

Raphidophytes are ubiquitous in estuarine and coastal systems worldwide and their blooms 

cause severe damage to fisheries and local ecosystems [50]. Yet, they are understudied relative 

to other marine phytoplankton groups like diatoms and coccolithophores. Here we used a 

combined metabolomic and transcriptomic approach to build a conceptual model of how the 

raphidophyte H. akashiwo remodels its metabolism under N- and P-stress, and compare that to 

other phytoplankton taxa.  
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3.3.1 P-stressed cells catabolize lipids for sugar synthesis.  

Central carbon metabolism is the biochemical hub connecting intracellular macromolecular 

pools and its net flux drives differences in intracellular nutrient stoichiometry [125, 126]. To 

understand the direction of this pathway under P-stress, we first sought to determine whether 

glycolysis or gluconeogenesis was taking place. These pathways interconvert sugars and organic 

acids, and are distinguished by a few non-reversible reactions. Hence, we evaluated the 

differential expression of transcripts unique to each pathway (Figure 1a). Within P-stressed 

cells, two out of three gluconeogenic transcripts were significantly more abundant (post-p > 

0.95, ASC, log2(FC) > 2), while one of the three glycolytic transcripts was significantly more 

abundant (post-p > 0.95, ASC, log2(FC) > 2), suggesting that P-stressed cells may be 

transcriptionally supporting gluconeogenesis over glycolysis. The log2 fold change between the 

mean expression of gluconeogenic and glycolytic exclusive transcripts was 2.4, consistent with 

this hypothesis (Figure S2). To determine if increased gluconeogenic transcription resulted in a 

concomitant increase of pathway activity, we measured the activity associated with a 

downstream product of gluconeogenesis, trehalose [127]. Prior studies show trehalose 

enrichments within diatom P. tricornutum when fed with glycerol [128]. Glycerol enters central 

carbon metabolism as glycerol-3-phosphate, and must traverse through gluconeogenesis to 

become trehalose. Within P-stressed cells, trehalose concentrations were significantly (p < 0.05, 

Tukey-HSD Test, n = 3) enriched (Figure 1b). Additionally, we observed that transcripts for 

trehalose biosynthesis enzymes trehalose-6-phosphate synthase and trehalose-6-phosphatase 

had a log2 fold changes of 0.7 and 0.71, respectively. We next sought to confirm whether the 

combined signals from our transcriptomic analysis of gluconeogenesis and trehalose 

enrichment supported a net occurrence of gluconeogenesis. The overall gene expression of 

these genes was significantly higher within P-stressed cells (p < 0.05, Wilcoxon-Test, n = 5). 

Based on these findings, we conclude that P-stress favors gluconeogenesis in H. akashiwo. 

Gluconeogenesis requires a flux of reduced carbon from the mitochondria. For reduced 

carbon to leave the mitochondria, it must avoid tricarboxylic acid (TCA) cycle oxidation via the 

glyoxylate shunt (GS) [129]. To determine whether GS or oxidation was more prevalent within 

P-stressed cells, we evaluated the differential expression of transcripts driving the bifurcation 
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between the pathways; isocitrate lyase (IL) for GS and isocitrate dehydrogenase (ICD) for 

oxidation. IL had a log2 fold change of 0.74 while ICD had a fold change of -0.73. Based on these 

trends, we hypothesize that P-stress transcriptionally increases the relative abundance of GS 

activity over oxidation (Figure 1a).  

TCA cycle oxidation supports oxidative phosphorylation, which can lead to the 

production of reactive oxygen species (ROS) such as superoxide [130]. Changes in ROS 

concentrations can lead to oxidative stress. Hence, we sought to estimate the relative amount 

of oxidative stress within the cells to evaluate the hypothesis of decreased mitochondrial 

carbon oxidation under P-stress. We first calculated the ratio of glutathione (GSSG) to reduced 

glutathione (GSH), a measure of cellular oxidative stress [131]. This ratio was significantly (p < 

0.05, Tukey-HSD, n = 3) decreased in P-stressed cells relative to replete cells, supporting our 

hypothesis (Figure S3b). Next, we evaluated the transcriptional patterns of genes responsible 

for ROS production during oxidative phosphorylation, those of Complex I and III [130]. We 

observed that overall expression of these genes was significantly (p < 0.05, Wilcoxon-Test, n = 

26) depleted within P-stressed cells (Figure S3c), in agreement with the GSSG/GSH ratio. Future 

studies could test this result with ROS production measurements via fluorescent staining 

techniques [132]. Our combined metabolite and transcriptomic trends imply that under P-

stress, H. akashiwo reduces carbon oxidation, relative to replete conditions. This decrease may 

support an enhanced flux through the GS under P-stress. Completion of isotope tracer 

experiments would confirm this hypothesis.  

Mitochondrial carbon bound for gluconeogenesis may originate from the catabolism of 

triacylglyceride (TAG) lipids [126]. To be catabolized, TAGs must be solubilized by cholic acid 

derivatives [133]. Hence, we quantified taurocholate, a cholic acid derivative. P-stressed cells 

had nearly significant (p < 0.07, Tukey-HSD Test, n = 3) elevated taurocholate concentrations 

(Figure 1b). We hypothesize that the observed elevated concentrations may be due to increases 

in TAG catabolism. To test this idea, we evaluated the expression of TAG lipase enzyme TGL4. 

TAG lipase enzymes are required to mobilize TAGs stored within lipid droplets [134]. TGL4 was 

significantly more abundant (post-p > 0.95, ASC, log2(FC) > 2) within P-stressed cells. We next 

sought to confirm whether downstream TAG catabolism enzymes were also enriched under P-
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stressed cells. For this, we evaluated the differential expression of transcripts from the carnitine 

shuttle (CS) and cytosolic lipid elongation pathways. The carnitine shuttle is considered the rate 

limiting step of lipid catabolism [135] and is regulated to oppose lipid elongation to avoid futile 

cycles [126]. We observed that one of three carnitine shuttle transcripts were significantly more 

abundant (post-p > 0.95, ASC, log2(FC) > 2) within P-stressed cells. By contrast, one of three lipid 

elongation enzymes was significantly less abundant (post-p > 0.95, ASC, log2(FC) > 2) within P-

stressed cells. These results suggest that TAG catabolism is being upregulated by P-stressed 

cells (Figure 1a). Indeed, the combined metabolite abundance and transcription patterns from 

both datasets were significantly (p < 0.05, Wilcoxon-Test, n = 6) enriched within P-stressed cells, 

supporting this hypothesis. We sought to confirm evidence of carnitine shuttle activity by 

quantifying carnitine but its concentration was not significantly different in P-stressed cells than 

replete ones (Figure 1b). One possible explanation is that in preparation for TAG degradation, 

P-stressed cells accumulate acyl-carnitines [136]. These molecules were not detected by our 

analytical method and future small molecule quantification experiments are needed to confirm 

this hypothesis. Additional targeted lipidomic analysis measuring TAG concentrations would 

serve to validate our hypothesized trends.  

These concerted pathway level changes suggest that under P-stress, H. akashiwo drives 

gluconeogenesis via the catabolism of TAG carbon (Figure 1c). The system-level dynamics are 

most similar to those of P-stressed diatoms, as these organisms are hypothesized to upregulate 

gluconeogenesis and the carnitine shuttle under P-stress [57, 58]. By contrast, P-stressed 

metabolism in the coccolithophore, Emiliania huxleyi, appears to be quite different. Prior 

studies reported that this organism upregulates gluconeogenesis, glycolysis, and TAG synthesis 

in tandem [37, 60]. To our knowledge, this is the first report of P-stress driven glyoxylate shuttle 

transcription and trehalose enrichment among phytoplankton groups. These distinguishing 

features may underlie physiological differences exhibited between H. akashiwo and other 

closely related phytoplankton.  
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3.3.2 N-stressed cells increase respiration and store excess carbon as lipids.  

Like our analysis of P-stressed cells, we sought to determine the direction of central carbon 

metabolism in N-stressed cells. Again, we evaluated whether glycolysis or gluconeogenesis was 

upregulated by examining the differential expression of pathway-specific transcripts. The 

results were equivocal, with one of three gluconeogenic transcripts significantly more abundant 

(post-p > 0.95, ASC, log2(FC) > 2) within N-stressed cells, and one of three glycolytic transcripts 

significantly more abundant (post-p > 0.95, ASC, log2(FC) > 2) within N-stressed cells, suggesting 

either pathway may be taking place (Figure 1a). It is possible that our calculation integrates 

gene expression from versions of the pathway that are localized to the cytosol and the plastid, 

which may be differentially regulated under N-stress [57]. Constraining the cellular location is 

not possible due to the lack of a fully sequenced genome for H. akashiwo. In order to 

differentiate the activity between pathways, we calculated a log2 fold change of -1.2 between 

the averaged expression of gluconeogenic relative to glycolytic exclusive transcripts, suggesting 

that gluconeogenic transcripts are less abundant than glycolytic ones within N-stressed cells 

(Figure S2). In addition, trehalose concentrations were not significantly enriched (Figure 1b), 

pointing to lower gluconeogenic activity in N-stressed cells. Based on these combined findings, 

we hypothesize that N-stressed cells favor glycolysis over gluconeogenesis.  

Increased glycolytic carbon flux would foster greater TCA cycle oxidation. To determine 

if oxidation was preferentially upregulated in N-stressed cells, we examined the differential 

expression and the log2 fold change of isocitrate lyase (IL) to isocitrate dehydrogenase (ICD). 

We observed that ICD was significantly more abundant (post-p > 0.95, ASC, log2(FC) > 2) under 

N-stress (Figure 1a) and the ratio of IL to ICD had a log2 fold change of -0.98, supporting the 

hypothesis that N-stressed cells increase carbon oxidation (Figure S2). We then evaluated the 

differential expression of transcripts downstream of ICD-catalyzed oxidation reactions. We 

observed that three out of five transcripts were significantly more abundant (post-p > 0.95, 

ASC, log2(FC) > 2), supporting our hypothesis of increased oxidation (Figure 1a). To evaluate if 

transcriptional upregulation patterns resulted in a tandem increase in TCA cycle activity, we 

quantified citrate because cytosolic citrate accumulation is a common signature of upregulated 

TCA cycle flux [126]. We observed that citrate concentrations were significantly higher (p < 
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0.05, Tukey-HSD Test, n = 3) under N-stress, consistent with our hypothesis of increased TCA 

cycling (Figure 1b). To determine if N-stressed cells experienced elevated oxidative stress from 

TCA cycling, we evaluated glutathione recycling and Complex I and III genes of the electron 

transport chain. Although the ratio of glutathione (GSSG) to reduced glutathione (GSH) was not 

significantly different under N-stress, the concentrations of both GSSG and GSH were 

significantly depleted (p < 0.05, Tukey-HSD Test, n = 3) (Figure 1b) and transcripts driving 

glutathione recycling were significantly more abundant (p < 0.05, Wilcoxon-Test, n = 6) (Fig 

S3a). Both GSSG and GSH are N-rich molecules; hence their depletion may be due to N 

reallocation. The increased transcription of glutathione recycling enzymes may suggest that N-

stressed cells overcome the decrease in reduced glutathione concentrations by increasing its 

recycling rates. In line with this observation, we observed that transcripts annotated for genes 

of Complex I and III of the electron transport chain involved in oxygen radical synthesis were 

significantly enriched under N-stress (p < 0.001, Wilcoxon-Test, n = 26) (Figure S3c). Together, 

these findings support the hypothesis that N-stressed cells upregulate TCA cycle carbon 

oxidation.  

Excess cytosolic citrate may be converted to TAG lipids to limit the repression of 

glycolysis [126]. One prior study shows that N-stressed H. akashiwo cells are enriched with TAG 

lipids [137]. In our dataset, concentrations of taurocholate, a TAG mobilization marker, were 

significantly higher (p < 0.05, Tukey-HSD Test, n = 3) within N-stressed cells, suggesting elevated 

TAG mobilization under N-stress (Fig 1b). To determine if mobilization supported the storage of 

newly synthesized TAGs, we quantified the precursor to TAG lipid backbone glycerol, glycerol-3-

phosphate. This compound was significantly enriched (p < 0.05, Tukey-HSD Test, n = 3) in N-

stressed cells (Figure 1b). We next investigated changes in transcription of TAG synthesis genes. 

Specifically, we evaluated the transcriptome changes of the carnitine shuttle and enzymes 

initiating lipid elongation. While none of these transcripts were significantly more or less 

abundant, the log2 fold change of the averaged expression of carnitine shuttle and lipid 

elongation exclusive transcripts showed a value of -0.38, suggesting that elongation was slightly 

upregulated relative to the carnitine shuttle (Figure S2). Although we did not measure TAGs 
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within this study, our results suggest elevated TAG production due to enrichment of precursors 

and depletion of TAG catabolism transcripts.  

These concerted pathway-level changes suggest that N-stress drives TAG synthesis via 

an increase in glycolysis (Figure 1c). Our findings match previously-published isotope tracer 

experiments on N-stressed H. akashiwo [138]. Similar observations of increased glycolysis, TCA 

cycling, and TAG synthesis have been reported for both N-stressed diatoms and haploid E. 

huxleyi [59, 61, 139, 140]. Unlike several diatoms and diploid E. huxleyi, H. akashiwo enriches 

citrate [37, 141], which can allosterically inhibit glycolysis or increase TAG synthesis rates [126]. 

This citrate enrichment and its role in regulation may distinguish phytoplankton like H. 

akashiwo from others.   

N-stress has been reported to be linked to the initiation of the diel migration employed 

by H. akashiwo during blooms [53, 142]. The diel migration is hypothesized to help H. akashiwo 

acquire dissolved nutrients below the thermocline [50]. Sinking rates are linked to TAG 

accumulation and the resulting increase in cellular specific gravity [143-145]. Hence, TAG 

synthesis in situ may be linked to an increased in glycolysis and TCA cycle oxidation as 

presented here for N-stressed cells. The system level dynamics described here should be 

considered when building models of H. akashiwo blooms. 

 

3.3.3 Nutrient stress responses use central metabolism in opposite ways 

H. akashiwo appears to use central carbon metabolism in two distinct ways to overcome 

N- and P-stress, in contrast to haploid E. huxleyi, which responds to N- and P-stress similarly 

[37, 60]. Our hypothesis of stress-specific metabolic dynamics is based on the enrichment and 

proposed sources of central carbon metabolism storage molecules, trehalose and TAGs. These 

molecules vary drastically in their potential to contribute towards future biomass and other 

cellular functions. Trehalose can enter glycolysis after one reaction (cleavage of the 

disaccharide bond) [146], and may be quickly redirected towards the synthesis of nucleic and 

amino acids [125]. In contrast, TAGs must be converted into sugars via gluconeogenesis before 

this is possible. However, TAGs may be broken down into acetyl-CoA directly during beta-

oxidation, thus providing far higher amounts of ATP per carbon than trehalose which must 
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traverse glycolysis prior to its arrival to the TCA cycle (see Note S2). It is critical to consider 

these trade-offs when building models to describe H. akashiwo ecosystem processes, as 

accumulation of either would result in distinct impacts on fitness [104]. As TAGs are far more 

carbon-rich than trehalose, the differences in orientation of central carbon metabolism may 

also explain why N-stressed cells had a greater measured C:N (14.37) ratio than that (8.95) of P-

stressed cells [25]. These metabolic nuances and their hypothesized physiological consequences 

underscore the importance of understanding the metabolism of more less well-studied 

phytoplankton to develop models to characterize bloom and nutrient cycling dynamics [32]. 

These findings would not have been possible without the tandem analysis of transcriptomic and 

metabolomic data [37]. Hence, our approach may serve investigators of raphidophytes and 

other less well-studied phytoplankton in similar ways.  

 
3.3.4 Intracellular recycling is pervasive under N-stress 

Phytoplankton, including H. akashiwo, employ various strategies in response to nutrient 

stress [24, 35, 45, 54-56]. A prior transcriptomic-based study suggested that under N- and P-

stress, H. akashiwo increases extracellular inorganic nutrient scavenging transporters, and 

upregulates urea cycle driven N-recycling and pigment catabolism [25]. However, transcriptome 

studies are insufficient to confirm these processes in most regards without metabolite data as 

indicators of the biological cascade initiated by transcription.  For example, prior work with H. 

akashiwo was unable to identify which amino acids drive the urea cycle [25]. Here, we 

evaluated our data to uncover possible intracellular macromolecular recycling processes.  

 Previously, it was shown that urea cycle transcripts are significantly more abundant 

within N-stressed H. akashiwo cells [25]. Indeed, our data also show that urea cycle 

intermediates are enriched within N-stressed cells, confirming these trends (see Note S2 and 

Fig S4). However, the source of these compounds is unclear and could include either 

extracellular uptake or the degradation of endogenous protein. Prior studies show that H. 

akashiwo favors assimilation of inorganic N over organic N relative to sympatric phytoplankton 

[147], suggesting that urea cycling is supported from an endogenous source of amino acids. 

Hence, we hypothesized that H. akashiwo may sustain increased urea cycling by degrading 

endogenous proteins.  
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One endogenous protein degradation mechanism is proteasome-mediated enzyme 

degradation (PMED) [148]. PMED is an ATP-dependent process where enzymes are tagged with 

ubiquitin, shuttled into the proteasome, and released as peptides between 4 and 20 amino 

acids in length (Figure 2a). We observed that putatively-identified tetrapeptides from 

untargeted data were significantly depleted (p < 10-10, Kruskal-Wallis Test, n = 597) under both 

P- and N-stress, suggesting differential activity of PMED in both stress cultures (see Note S3). 

These trends may be explained by either the deactivation of the proteasome under stress or 

the increased of removal of residual tetrapeptides by peptidase enzymes. To evaluate between 

these two possible scenarios, we gathered transcripts involved in enzyme ubiquitin tagging 

(ubiquination), proteasome biosynthesis, and downstream peptide cleavage (peptidases). We 

observed that transcripts for eight of ten subprocesses within PMED were significantly more 

abundant (p < 0.05, Wilcoxon-Test) in N-stressed cells, while three of ten were significantly 

more abundant (p < 0.05, Wilcoxon-Test) and one was significantly less abundant (p < 0.05, 

Wilcoxon-Test) in P-stressed cells (Figure 2b). These results suggest that trends in untargeted 

data within P-stressed cells may be due to a decrease in proteasome activity, while trends in N-

stressed cells may be due to increased breakdown of peptides. To test whether this 

transcriptional upregulation corresponded with an increase in peptide degradation activity, we 

quantified hydroxyproline. Hydroxyproline is synthesized via post-translational modifications of 

proteinaceous proline through the activity of enzyme prolyl 4-hydrolase [149], hence its 

cytosolic concentration serves as evidence of protein degradation within diatoms [36]. 

Hydroxyproline concentrations were significantly enriched (p < 0.05, Tukey-HSD Test, n = 3) in 

N-stressed cells exclusively, supporting our prior hypothesis. Our paired transcriptomic and 

metabolomic datasets suggest that H. akashiwo upregulates proteasome enzyme degradation 

to overcome N-stress. To our knowledge, this is the first indicator of PMED as an N-stress 

mitigation strategy in phytoplankton. PMED is highly specific, hence it may contribute to an 

observed proteome-level depletion of N-rich proteins, as observed in the N-stressed green alga 

Chlamydomonas reinhardtii [150].  

In addition to amino acid recycling, we sought to constrain whether nucleotide recycling 

enabled a reallocation of N within N-stressed H. akashiwo. To check this hypothesis, we first 
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quantified 17 distinct intermediates within nucleic acid metabolism (Figure 3a). Surprisingly, we 

observed an enrichment of nucleic acid bases and nucleosides and a significant depletion of 

nucleotide monophosphates (NMPs) (Figure 3a). Indeed, five of eleven measured nucleosides 

or nucleobases were significantly enriched (p < 0.05, Tukey-HSD, n = 3) under N-stress. Similar 

metabolite trends were reported in N-stressed yeast due to the autophagy-mediated 

breakdown of ribosomes and other nucleic acids [151]. To investigate if this mechanism could 

support metabolite enrichments, we gathered the gene expression of 21 DNA and/or RNA 

degradation enzymes (Figure 3b). These transcripts were significantly more abundant within N-

stressed cells (p < 10-10, Wilcoxon-Test, n = 21), suggesting that autophagic breakdown may 

drive our observed metabolite trends. Unfortunately, none of our annotated transcripts 

corresponded to reactions driving interconversion reactions between distinct purines or 

pyrimidines. This may be due to challenges assigning putative gene homologs within this 

pathway, as studies of this pathway in yeast faced similar obstacles [151].   

 To determine if nucleic acid recycling within H. akashiwo produced a downstream 

response similar to yeast, we evaluated the activity of the pentose phosphate pathway (PPP). In 

yeast, carbon scavenged from NMPs leads to both an enrichment of PPP metabolite ribose-5-

phosphate and an increase in non-oxidative PPP activity [151]. We observed that ribose-5-

phosphate concentrations were significantly higher (p < 0.05, Tukey-HSD, n = 3) under N-stress 

(Figure 3a), similar to yeast. However, when we gathered transcripts for non-oxidative PPP 

reactions, we observed that three of four non-oxidative PPP transcripts were significantly less 

abundant (post-p > 0.95, ASC, log2(FC) > 2) within N-stressed cells, contrary to our expectation 

(Figure S5). This result suggests that ribose-5-phosphate derived from nucleic acids degradation 

may support an function other than non-oxidative PPP activity within H. akashiwo.  

One possible alternative is the biosynthesis of aromatic amino acids. These compounds 

all originate from erythrose-4-phosphate, a downstream product of ribose-5-phosphate [125]. 

We evaluated the activity of the aromatic amino acid biosynthesis pathway (Figure 3a and 

Figure S5) and observed that two of ten transcripts were significantly more abundant (post-p > 

0.95, ASC, log2(FC) > 2) and that transcription of enzymes within the pathway was enriched, 

although not significantly (p < 10-7, Wilcoxon-Test, n = 14), in N-stressed cells. Additionally, all 
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aromatic amino acid biosynthesis metabolites with the exception of phenylalanine were 

significantly enriched (p < 0.05, Tukey-HSD Test, n = 3) in N-stressed cells (Figure 3a). Taken 

together, these observations suggest that ribose scavenged from NMP degradation drives 

aromatic amino acid biosynthesis (Figure 3c). Within plants and algae, aromatic amino acids 

serve a variety of processes due to their diverse functions ranging from electron carriers to 

natural products and chemical signals [152]. For example, tryptophan secreted by the diatom 

Thalassiosira pseudonana was shown to support mutualistic growth with a sympatric microbe 

[21]. H. akashiwo may rely on a similar strategy to overcome N-stress. Studies on diatoms have 

noted that nutrient stress increases PPP activity [58]. Nucleoside enrichment patterns have 

been observed in other marine phytoplankton, as inosine was also enriched in N-stressed 

Prochlorococcus [153]. However, to our knowledge, we provide the first evidence of either the 

connection between the PPP and nucleic acid degradation or its connection to aromatic amino 

acid biosynthesis.  

Intracellular recycling appears to be a critical N-stress response strategy within H. 

akashiwo. Recycling may support H. akashiwo life history and behavior changes such as diel 

migration in addition to supporting sustained growth under resource limiting situations. 

Modeling of H. akashiwo will need to consider intracellular recycling and its impact on fitness 

for predicting behavior and bloom dynamics. The extent to which these processes uniquely 

define the niche of H. akashiwo or other raphidophytes, relative to other phytoplankton is 

uncertain and underscores the need for additional multi-‘omics studies across a range of 

phytoplankton lineages.  

 
3.3.5 Phytoplankton nutrient stress biomarkers reveal stress status within H. akashiwo 

Our data allowed us to evaluate the efficacy of proposed phytoplankton N-stress 

(glutamine: glutamate) and P-stress (adenosine monophosphate (AMP): adenosine) diagnostics 

within H. akashiwo [45, 148]. We observed that N-stressed cells had significantly lower (p < 

0.05, Tukey-HSD Test, n = 3) glutamine-to-glutamate ratios relative to the other treatments, 

while the P-stressed cells had significantly lower (p < 0.05, Tukey-HSD Test, n = 3) AMP-to-

adenosine ratios (Figure 4). To our knowledge, this is the first evidence of the utility of these 

stress diagnostics in any raphidophyte. Measurements of these ratios in field raphidophyte 
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populations would serve as an important new approach for identifying whether a population is 

experiencing N- or P-stress, and defining the resource controls on bloom dynamics in situ.  

 

3.6 Conclusions 

This work employs a multi-omics approach to explore the impact of N- and P-stress on 

the HAB-forming raphidophyte, H. akashiwo. We characterized the stress-mediated system-

level changes within central carbon metabolism and observed that intracellular recycling of 

macromolecules is pervasive under stress (Figure 5). Under N- and P-stress, H. akashiwo 

showed similar central carbon metabolism acclimation patterns as other well studied 

phytoplankton under nutrient stress. However, fine scale enrichment of distinct molecules 

distinguished its metabolic shifts from more frequently-studied phytoplankton (Figure 5). 

Identifying these differences would not have been possible without a multi-‘omics approach. 

Evidence of novel intracellular recycling pathways could support sustained growth of H. 

akashiwo under conditions of low N and may be a mechanism underpinning niche segregation 

among competitors more reliant on N uptake. Taken together, these insights suggest that 

nutrient stress has distinct physiological impacts on H. akashiwo relative to diatoms. Our results 

suggest metabolism data from well-studied phytoplankton does not capture the nuances of less 

well-studied phytoplankton completely. Hence, more characterizations of metabolic stress 

responses within other phytoplankton are critical to accurately understand phytoplankton 

community composition and function in a changing ocean [32].  
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3.7 Figures 
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Figure 1: Central carbon metabolism stress response. A) Transcriptomic data on irreversible 

steps of gluconeogenesis, glycolysis, TCA oxidation, glyoxylate shunt, carnitine shuttle (CS), and 

triacylglyceride (TAG) lipid synthesis. Data are from N-stress or P-stress normalized to the 

condition in the replete cells (-N/R and -P/R, respectively). * - denotes significance defined as a 

log2(FC) > 2 and ASC post-p > 0.95. B) Metabolomics data supporting hypothesized pathway 

activity. We present data of individual metabolites in the order of N-stressed (-N, green), 

nutrient replete (R, white), and P-stressed (-P, purple) treatments. Boxes with distinct letters 

above them are significantly different as defined by pairwise Tukey-HSD test p < 0.05. C) 

Hypothesized fluxes of central carbon metabolism under N-stress (green) and P-stress (purple). 

Transcript abbreviations: PFK – phosphofructokinase, PK – pyruvate kinase, HK – hexose kinase, 

PEPCK – phosphoenolpyruvate carboxykinase, PC – pyruvate carboxylase, FBP – fructo-

bisphosphate phosphatase, fabD – malonyl carrier protein transacylase, fabH – oxoacyl carrier 

protein synthase III, fabH – oxoacyl carrier protein synthase III, ACACA – acyl-CoA carboxylase, 

CPT1A – carnitine O-palmitoyltransferase 1, CPT2 – carnitine O-palmitoyltransferase 2, CACT – 

mitochondrial carnitine/acylcarnitine transporter, DLD – dihydrolipoamide dehydrogenase, 

sucB – 2-oxoglutarate dehydrogenase complex (dihydrolipoamide dehydrogenase), sucA – 2-

oxoglutarate dehydrogenase complex (E1 component), ICD – isocitrate dehydrogenase, LSC2 – 

succinyl-CoA synthetase (beta subunit), sucD – succinyl-CoA synthetase (alpha subunit), IL – 

isocitrate lyase, FC – fold change. Metabolomic abbreviations: Glut. – glutathione, G3P – 

glycerol-3-phosphate, Tauro. – taurocholate.  
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Figure 2: Proteasome mediated enzyme degradation. A) Schematic overview of proteasome 

enzyme degradation process. Enzymes tagged with ubiquitin (U) are brought into the 

proteasome to be broken down into peptides between 4 and 20 amino acids in length. Peptides 

are then broken down by cytosolic peptidases. B) Normalized gene expression values for 

distinct processes related to enzyme ubiquitination, the proteasome, and cytosolic peptidases. 

Genes were normalized by the mean expression of enzymes across all treatments. Boxes with 

distinct letters above them are significantly different as defined by pairwise Wilcoxon Test and 

Bonferroni correction p < 0.05. C) Hydroxyproline concentrations, an enzyme degradation by-

product. Boxes with distinct letters above them are significantly different as defined by pairwise 

Tukey-HSD test p < 0.05. Abbreviations: -N - N-stressed, R - nutrient replete, -P - P-stressed, U – 

ubiquitin.  
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Figure 3: Stress induced nucleic acid scavenging. A) Targeted metabolite data of nucleoside 

monophosphates (NMPs), nucleic acid bases (Bases), nucleosides, and pentose phosphate 

pathway and aromatic amino acids (PPP). * denotes significant enrichment or depletion of 

compound concentration (p < 0.05, Tukey-HSD Test, n = 3). B) Normalized gene expression for 

RNA and DNA cleavage enzymes. Boxes with distinct letters above them are significantly 

different as defined by pairwise Wilcoxon Test and Bonferroni correction p < 0.05. C) Proposed 

pathway dynamics within N-stressed cells. Colored arrows adjacent to names indicate the net 

enrichment/depletion status of compounds or processes described by our data. Abbreviations: 

-N - N-stressed, R - nutrient replete, -P - P-stressed, UMP – uridine monophosphate, IMP – 

inosine monophosphate, AMP – adenosine monophosphate.   
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Figure 4: Diagnostic N-stress and P-stress ratios in H. akashiwo. Ratios were calculated using 

measured concentrations of each metabolite. Boxes with distinct letters above them are 

significantly different as defined by pairwise Tukey-HSD test p < 0.05. Abbreviations: Gln – 

glutamine, Glu – glutamic acid, AMP – adenosine monophosphate.  
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Figure 5: Conceptual model summarizing the changes in metabolism of H. akashiwo under 

nutrient stress. Each white numbered circle in the model displays a distinct intracellular process 

responding to stress. The purple and green arrows denote predicted systems-level biochemical 

activity for P-stressed and N-stressed H. akashiwo, respectively. + and – signs indicate increased 

and decreased activity, respectively, in each phenotype relative to the replete phenotype. 

Values for diatoms and E. huxleyi are based on reported pathway enrichment trends from prior 

studies [37, 57-61]. Boxes with question marks denote biochemical processes without existing 

data. Diatoms includes data from T. pseudonana, Phaeodactylum tricornutum, and Skeletonema 

costatum. Abbreviations: PPP – pentose phosphate pathway, AAA – aromatic amino acid.  
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3.8 Supplementary Material 

3.8.1 Supplementary Notes  

Note S1 - Overview of Metabolomics Data.  

Untargeted Metabolomics: Following data processing and quality control filtering, we obtained 

5090 and 1455 unique features under negative and positive ion modes, respectively. From this 

set, we found 844 and 408 features whose m/z values were within 1 ppm error of KEGG 

compounds under negative and positive ion modes, respectively. We found that 190 and 91 

features with KEGG annotations had significantly different (p < 0.05, ANOVA, n = 3) intensities 

between growth treatments under negative and positive ion modes, respectively. Only 7 and 12 

significant KEGG annotated features contained MS/MS spectra and metFrag fragmenter scores 

> 100.  

Targeted Metabolomics: After quality control measures, we retained 57 of 69 and 69 of 85 

targeted compounds for quantification in negative and positive ion modes, respectively. We 

found only two compounds with standard curves with R2 values below 0.9. We evaluated 

changes in concentrations of targeted compounds based on their known roles in metabolism.  
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Note S2 - ATP budget per carbon molecule respired via beta oxidation and glycolysis.  

Cells contain main pathways that feed carbon into the TCA cycle for respiration. Two of the 

most common ones are glycolysis and beta oxidation. Glycolysis is responsible for the 

conversion of sugars into acetyl-CoA, while beta oxidation is responsible for the conversion of 

fatty acid chains into acetyl-CoA. In addition to utilizing distinct starting materials, these 

pathways vary in the biosynthetic potential of intermediates and the total possible per-carbon 

energy. To understand the difference in per-carbon energy, consider the 12 carbon 

disaccharide trehalose and the 12 carbon saturated fatty acid lauric acid. The following 

reactions describe the catabolism of trehalose and lauric acid to acetyl-CoA via glycolysis and 

beta oxidation-respectively. In addition, they highlight the net total units of energy 

intermediates NADH and UQH2 formed during respiration via each pathway. Abbreviations: 

NADH – nicotinamide adenine dinucleotide, UQH2 - ubiquinol.  

 

Trehalose breakdown:  

Trehalose + Pi -> glucose + glucose-6-phosphate  

Glucose glycolysis:  

glucose + 2[NAD+] + 2[ADP] + 2[Pi] -> 2[pyruvate] + 2[NADH+] + 2H+ + 2[ATP] + 2H2O  

Pyruvate conversion to acetyl-CoA:  

pyruvate + [NAD+] + CoA -> Acetyl-CoA + [NADH+] + CO2 + H+ 

Net TCA cycle reaction:  

Acetyl-CoA + 3[NAD+] + UQ + GDP + Pi + 2[H2O] -> CoA-SH + 3[NADH] + UQH2 + 3H+ + GTP + 

2CO2 

Beta oxidation: 

Lauric acid-CoA + FAD + NAD + H+ + H2O + CoA -> 6[Acetyl-CoA] + 6[UQH2] + 6[NADH] + 6[H+] + 

6[CoA] 
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The table below describes the net ATP per reducing/oxidizing energy intermediates. 

Molecule ATP/Molecule 

NADH 2.5 

UQH2 1.5 

 

Based on this, we can see that the catabolism of trehalose results in the formation of 

20[NADH+] and 4[UQH2] resulting in a total of 56[ATP] per molecule. By contrast, the catabolism 

of lauric acid results in the formation of 24[NADH+] and 4[UQH2] resulting in a total of 69[ATP]. 

Hence, trehalose catabolism provides 81 percent ATP per carbon more than that of lauric acid.  
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Note S3 - Metabolomic Evidence of Increased Urea Cycling. H. akashiwo increases the relative 

abundance of transcripts of the urea cycle when stressed by N [25]. We sought to confirm 

whether previously observed transcriptional changes resulted in a concomitant increase in 

pathway activity. Hence, we quantified 7 distinct intermediates. We observed that 

concentrations of arginine, glutamine, and N-acetyl glutamic acid were significantly decreased 

(p < 0.05, Tukey-HSD Test, n = 3), while the concentrations of ornithine and aspartic acid were 

significantly increased (p < 0.05, Tukey-HSD Test, n = 3) exclusively in N-stressed cells (Figure 

S4A). To understand if these concentration dynamics suggested increased urea cycle flux, we 

calculated the Global Arginine Bioavailability Ratio (GABR = arginine/[ornithine + citrulline]) 

[154]. Low GABR values indicate increased flux of arginine through the urea cycle relative to 

other paths [154]. We observed that GABR values were significantly lower (p < 0.05, Tukey-HSD 

Test, n = 3) in N-stress cells, corroborating a previous transcriptomics study [25] (Figure S4B). 

Increased urea cycle activity under N-stress was reported in both diatoms and haptophytes [35, 

61, 139]. Interestingly, GABR values were also significantly lower in P-stressed cells (p < 0.05, 

Tukey-HSD Test, n = 3) without the transcriptomic enrichment observed in N-stressed cells 

(Figure S4B). The urea cycle produces TCA intermediate fumarate as a by-product. Fumarate 

enters the TCA cycle after oxidation, hence it may serve as a carbon source for gluconeogenesis 

[125]. Prior studies show that P-stress mediated urea cycling varies among phytoplankton. 

While dinoflagellates also increase urea cycle activity under P-stress [155], E. huxleyi was 

reported to throttle its activity under P-stress [60]. This disagreement speaks to the niche 

differences experienced by distinct phytoplankton groups. We hypothesize that the increased 

transcriptional upregulation in N- versus P-stressed H. akashiwo may suggest that N-stressed 

cells have a greater urea cycle flux. Future isotope tracer experiments measuring urea cycle 

reaction rates would confirm this hypothesis. 
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Note S4 - Proteasome Mediated Enzyme Degradation (PMED) Evidence from Untargeted 

Data. We sought to determine if PMED may provide a viable source of amino acids for the urea 

cycle. For this, we first gathered all untargeted features with m/z matches to known 

tetrapeptides in all treatments. We elected to use tetrapeptides as a biomarker as they are well 

known by-products of PMED activity [125]. We filtered the total set of 758 putative 

tetrapeptides into 199 features with p-values < 0.05 following hypothesis testing. The intensity 

of these features was significantly depleted (p < 10-10, Wilcoxon-test, n = 597) in stressed cells 

relative to replete ones (Figure S6), suggesting that PMED may differ significantly between 

replete and stressed treatments. To increase the strength of annotation of these features, we 

modeled the retention times of all 199 putative matches against the predicted hydrophobicity 

values of the tetrapeptides based on amino acid composition. We found that feature retention 

time was significantly (p < 10-8, Linear Model, n = 199) related to predicted hydrophobicity 

values from two separate scales [119, 120] (Figure S7). Additionally, five of these features 

contained MS/MS spectra and matched tetrapeptides through in silico fragmentation, further 

supporting our putative identifications. These results suggest there is better than random 

chance that our features may originate from tetrapeptides. 
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3.8.2 Supplementary Figures 
 

 

Figure S1: H. akashiwo growth curves. Error bars represent the standard deviation of triplicate 

cultures. We monitored growth of N-stressed (-N, green circles), P-stressed (-P, open purple 

triangles), and replete (R, open diamonds) cultures over three days. If two time points share a 

letter, then Tukey-HSD test between two factors was not significant. Significance is defined as p 

< 0.01. We harvested cells for metabolomics analysis on day 3, similar to previously-published 

transcriptome work [25]. 
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Figure S2: Pathway bifurcation ratios. These ratios represent either the expression of genes 

known to be inversely regulated (gluconeogenesis vs glycolysis and TAG synthesis vs carnitine 

shuttle) to avoid futile cycles, or genes driving the immediate bifurcation between the 

glyoxylate shunt and TCA cycle carbon oxidation. These ratios were calculated by first dividing 

each enzyme’s expression by the enzyme’s replete expression. Color denotes data from P-stress 

(-P, purple) and N-stress (-N, green) data. For inversely related genes, we constructed the ratios 

using the mean expression of normalized genes of each pathway. For the glyoxylate shunt 

oxidation comparison, we only considered the expression of two enzymes, isocitrate lyase 

(glyoxylate shunt) and isocitrate dehydrogenase (oxidation). Abbreviations: FC – fold change, 

Gluconeo – gluconeogenesis, TAG – triacylglyceride.  
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Figure S3: Oxidative stress biomarkers within stressed cells. A) Log2 fold change of RNA involved 

in the interconversion of glutathione and reduced glutathione in nutrient stressed cells relative 

to replete cells. * - denotes significance defined as a log2(FC) > 2 and ASC > 0.95. B) Ratio of 

reduced glutathione (RG) to glutathione (G) based on the measured concentrations of these 

compounds. Boxes with distinct letters above them are significantly different as defined by 

Tukey-HSD test p < 0.05. Abbreviations: G6PD – glucose-6-phosphate dehydrogenase, PRDX6 – 

peroxiredoxin 6, GSR – glutathione reductase, gpx -glutathione peroxidase 2, PGD – 

phosphogluconate dehydrogenase, IDH1 – isocitrate dehydrogenase. 
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Figure S4: Urea cycle dynamics across experimental factors. A) Concentrations of urea cycle 

intermediates across experimental treatments. Boxes with distinct letters above them are 

significantly different as defined by pairwise Tukey-HSD test p < 0.05 B) The Global Arginine 

Bioavailability Ratio (GABR), defined as the ratio of arginine/(ornithine + citrulline) across 

experimental factors. This ratio provides a measure of urea cycle flux relative to other arginine 

catabolism pathways; lower values indicate a greater flux through the urea cycle. Boxes with 

distinct letters above them are significantly different as defined by Tukey-HSD test p < 0.05. 
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Figure S5: Transcripts related to non-oxidative pentose phosphate pathway (PPP) and aromatic 

amino acid biosynthesis. * - denotes significance defined as a log2(FC) > 2 and ASC > 0.95. 

Abbreviations: aroK – shikimate synthase, aroF – 3-deoxy-7-phosphoheptulonate synthase, 

aroC – chorismate synthase, trpE – anthranilate synthase, trpD – anthranilate 

phosphoribosyltransferase, ARO8 – amino acid aminotransferase 1, cm – chorismate mutase, 

aroB – 3-dihydroquinate synthase,  aroA – chorismate mutase, trpC – anthranilate synthase, 

ARO1 – pentafunctional arom polypeptide, trpB – tryptophan synthase, tal - transaldolase, rpe 

– ribulose-phosphate 3-epimerase, rpiA – ribose 5-phosphate isomerase, tkt - transketolase. 
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Figure S6: Distribution of intensity values of putative tetrapeptides from untargeted data across 

nutrient stress treatments. Boxes with distinct letters above them are significantly different as 

defined by pairwise Wilcoxon test p < 0.05. 
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Figure S7: Linear regression between feature retention time and predicted hydrophobicity. The 

retention times with m/z matches to tetrapeptides show a significant (p < 10-9, linear model, n = 

119) related predicted hydrophobicity value from the Hessa et al. scale [119]. Diamonds 

represent features with MS/MS predicted to belong to tetrapeptides through in silico 

fragmentation matching. Colors denote the experimental factor in which the intensity of each 

feature was maximal. We observed similar trends using the scale from Wimley and White [120]. 
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Chapter 4  

Pathway Responses to Nutrient Stress Distinguishes Phytoplankton Groups 
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4.1 Introduction 

Marine phytoplankton are responsible for over 50% of global primary production [2]. 

Primary production is driven by the external inputs of dissolved inorganic nutrients like 

phosphorus and nitrogen [9, 10]. Modeling studies predict that the availability of these 

nutrients will decrease in the future due to the impacts of climate change on marine 

ecosystems [62], causing decreases in overall global primary production. These studies often 

regard phytoplankton as a monolithic unit, and do not take into account the distinct 

evolutionary capacities of these organisms. Hence, the extent to which primary production will 

be impacted due to climatic changes remains unclear.  

 Parameterizing models with information describing how phytoplankton communities 

respond to complex environmental perturbations will reduce the uncertainties surrounding 

future climate predictions [156]. However, the biological complexity of phytoplankton 

communities poses as a major obstacle towards the acquisition of this knowledge. 

Phytoplankton communities are made up of a myriad of phylogenetically distinct organisms 

[23], each of which has acquired unique adaptations to their environments and applies distinct 

acclimations towards external disturbances [63]. Adaptations are distinguishing physiological 

properties of phytoplankton acquired through the course of evolution. Commonly cited 

examples include differences in cell size [17], changes in membrane composition under various 

temperature regimes [157], variations in stoichiometric nutrient quotas and macromolecular 

composition [14], and employment of distinct life history strategies [6]. Acclimations describe 

behaviors these organisms employ over short time scales to respond to changes in the 

environment. Examples of acclimation strategies include increased production of inorganic 

nutrient transporters [24, 25], upregulation of enzymatic recycling [42], and the release of info-

chemical signals between community members [158]. Understanding how adaptive and 

acclimatory strategies distinguish phytoplankton would improve our ability to forecast future 

phytoplankton community dynamics under changing environmental conditions.  

The advent of field-based genomic and transcriptomic techniques has greatly improved 

our capacity to define and classify inter-phytoplankton adaptations and acclimations. For 

example, prior studies using these techniques revealed that phytoplankton respond distinctly to 
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environmental conditions [18, 19, 31], employ various nutritional acquisition strategies [30], 

and experience varying degrees of stress in different marine environments [159]. Gene-based 

methods, however, remain limited in their capacity to serve as indicators of ongoing metabolic 

activity [33]. Orthogonal approaches, such as metabolomics, reveal finger prints of biochemical 

processes [34], and may describe metabolic activity. The use of metabolomics to understand 

phytoplankton is burgeoning. Recent studies show they viably describe system-level changes in 

phytoplankton metabolism as a result of stress [42] and diel dynamics of in situ phytoplankton 

communities [41]. Additionally, due to the paucity of available genomes for most 

phytoplankton [23], these approaches can help reconstruct pathways that lack complete 

genomic resolution [42].  

Understanding phytoplankton metabolism can reveal mechanisms responsible for 

driving the unique acclimations of phytoplankton [42]. For example, the raphidophyte 

Heterosigma akashiwo acclimates to nitrogen stress by producing greater quantities of 

triacylglyceride lipids [137]. These lipids increase the specific gravity of cells, which facilitates 

diel vertical migratory patterns [160]. This metabolic change fosters a unique physiological 

response to nitrogen stress that allows H. akashiwo to outcompete neighboring species for 

dissolved inorganic nutrients below the thermocline and sustain their bloom within estuarine 

environments.  

Similarly, metabolism can also reveal unique adaptations that support phytoplankton 

fitness. Past studies show that unlike plants, diatoms contain a fully functional urea cycle [35]. 

This pathway was partially acquired from bacterial via horizontal gene transfer, and provides a 

means of reallocating N and generating additional oxidizable carbon for these organisms. It is 

hypothesized that this capability primes diatoms to sequester episodic influxes of N, thereby 

supporting their ecological dominance under environmentally variable conditions [38].  

Recent advances in resource allocation modeling [104] make it possible to predict 

phytoplankton community dynamics in the context of both acclimatory and adaptive behaviors 

by linking changes in metabolism and physiology. However, they require detailed knowledge of 

how metabolism drives physiology, which remains limited across phytoplankton groups. A 
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broader understanding of phytoplankton metabolism and how it responds to external 

perturbations would provide a foundation for these models.  

In this study, we expand our existing knowledge of metabolic adaptations and 

acclimations of different phytoplankton. To accomplish this aim, we cultured four organisms 

from distinct abundant and globally important phytoplankton groups under replete, 

phosphorus-stress, and nitrogen-stress growth conditions. We chose to explore the impact of 

nitrogen- and phosphorus-stress on metabolism due to their roles as limiting nutrients within 

marine ecosystems [10]. Additionally, prior studies show phytoplankton groups in low nutrient 

field populations modulate their transcriptome distinctly [19], suggesting each group employs 

different metabolic acclimations to these nutrients. In order to evaluate changes in metabolism, 

we performed untargeted and targeted metabolomic analyses on cells from these groups. We 

evaluated distinguishing adaptations by comparing the metabolomes across organisms, and 

acclimations by comparing organism-specific metabolites across stress conditions. To aid in our 

analysis of the untargeted data in light of a lack of genomes for the taxa, we developed and 

evaluated a novel Network-based Permutation Test (NEPTune) to identify overrepresented 

biochemical pathways within each phytoplankton taxon.  

 

4.2 Methods      

4.2.1 Culture Maintenance:  

We cultured four species of phytoplankton from three globally important phyla (Bacillariophyta, 

Haptophyta, and Ochrophyta). These species include the cosmopolitan diatom Chaetoceros 

affinis (‘diatom’) CCMP159 (isolated from Great South Bay, NY, USA, 1958), the haptophytes 

Chrysochromulina polylepis CCMP1757 (‘prymnesiophyte’) (isolated from the North Sea 1988) 

and Gephyrocapsa oceanica RCC1303 (‘coccolithophore’) (isolated from Arachon Bay, France, 

1999), and the raphidophyte Heterosigma akashiwo strain CCMP 2393 (‘raphidophyte’) 

(isolated from Rehoboth Bay, Delaware, USA). We cultured all species with the exception of the 

coccolithophore in modified L1 medium made with autoclaved 0.2-μm filtered seawater from 

Vineyard Sound, MA under the following culture conditions: replete (576 µM NaNO3, 36.2 µM 

NaH2PO4; N:P = 16), N-stress (5 µM NaNO3 and 36.2 µM NaH2PO4; N:P = 0.14), and P-stress (576 
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µM NaNO3 and 0.2 µM NaH2PO4; N:P = 2880). We cultured the coccolithophore under the 

following conditions: replete (100 µM NaNO3 and 6 µM NaH2PO4; N:P = 16.7), N-stress (1 µM 

NaNO3 and 6 µM NaH2PO4; N:P = 0.12), and P-stress (100 µM NaNO3 and no added NaH2PO4; 

N:P = 1000+). The lower nutrient concentrations for the coccolithophore were necessary to 

ensure consistent calcification. We grew each culture with light intensity of 100 μmol quanta m-

2 s-1 of photosynthetically active radiation (400-700 nm) during a 14h:10h light:dark cycle. We 

grew the diatom, the coccolithophore, and the raphidophyte at 18◦ C, and the prymnesiophyte 

at 15◦ C to match species-specific preferences. We continuously rotated some cultures on an 

orbital shaker (the raphidophyte, 75 rpm; the diatom, 100 rpm; the prymnesiophyte, 100 rpm) 

to maintain optimal growth. Cultures were not axenic, but were uni-algal and uni-eukaryotic. 

 
4.2.2 Experimental Design:  

We used entrainment cultures to initiate experimental cultures to decrease carryover of 

nutrients from stock cultures and promote acclimation to the experimental conditions as 

described in Harke et al. [24]. No culture was axenic, however each was uni-algal. We grew 

single entrainment cultures for all organisms with modified L1 medium (base seawater as 

above) for three days. We inoculated triplicate 2-L bottles (1 L experimental volume) with 25 

mL of entrainment culture into the same modified L1 medium at the start of the experiment. 

We monitored growth in each flask by in vivo chlorophyll fluorescence on a Turner Designs 

Aquafluor handheld fluorometer with paired cell counts (Supplementary Figure 1 and 2). We 

preserved cell count samples in 2% acid Lugol's solution (final concentration) and we 

determined cell concentrations by microscopy. We took these measurements at the same time 

each day (during the middle of the light phase) to avoid diel changes. We harvested treatments 

for metabolomics analysis when we observed significant differences in cell counts between 

stressed and replete cultures, in agreement with the definition of nutrient stress rather than 

deficiency (Supplementary Figure 1 and 2) [111]. We used 47-mm glass fiber filters (nominal 

pore size = 0.45µm; GF/F, Whatman) and combusted glass filtration funnels under low vacuum 

pressure (never exceeding 5 mm Hg) to filter cells (300 mL) from each sample. We flash-froze 

filters in cryovials in liquid nitrogen and stored them at −80°C until extraction.  
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4.2.3 Filter Extractions:  

We split each filter in half for separate extractions for targeted and untargeted metabolomic 

analyses. The extraction procedure for untargeted and targeted samples are identical with the 

exception of the final solid phase extraction (see below). For both types of analyses, we cut 

each filter half into six roughly equivalent pieces and placed them into an 8-mL amber glass vial. 

We extracted metabolites from filters using 1mL cold 40:40:20 acetonitrile: methanol:water + 

0.1 M formic acid similar to previous work [112, 113]. We then added 25 µL of 1 µg/mL 

deuterated standard mix (d3-glutamic acid, d4-4-hydroxybenzoic acid, and d5-taurocholate) as 

extraction recovery standards. We sonicated the solvent-filter mixture for 10 minutes to lyse 

the cells, and transferred the solvent into a microcentrifuge tube. We rinsed the filters with 

three 200-µL aliquots of extraction solvent to capture any remaining organic matter. We 

centrifuged the combined extracts at 20,000 × g for 5 minutes, and transferred the supernatant 

into clean 8-mL amber glass vials, taking care to leave behind any scraps of filter or cellular 

detritus. We neutralized the extracts with 25.6 μL of 6 M ammonium hydroxide and dried them 

down to near dryness in a vacufuge. We reconstituted dried samples for targeted analysis in 

200 µL 95:5 water:acetonitrile solution plus 2.5 μL of 5 μg/mL deuterated biotin injection 

standard.  

For the untargeted analysis, a PPL extraction step is necessary to remove excess salt and 

prevent ion suppression [113]. We reconstituted these samples with 500 μL 0.01 M HCl to 

lower the pH to 2-3 and ran these samples through 100 mg/1 mL Agilent Bond Elut PPL 

cartridges. We pre-conditioned the cartridges with one cartridge-volume of 100% methanol and 

passed acidified untargeted samples through the cartridge at a flow rate below 40 mL min-1. We 

rinsed the cartridges with one cartridge-volume of 0.01 M HCl, dried them down for 5 minutes, 

and eluted the metabolites with 1 cartridge-volume of methanol. We dried untargeted samples 

again to near dryness and reconstituted them with 247.5 µL of 95:5 water:acetonitrile plus 2.5 

µL of 5 µg/mL deuterated biotin injection standard. We combined 45 µL aliquots from each 

sample to create a pooled sample.  
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4.2.4 Liquid Chromatography and Mass Spectrometry:  

We analyzed metabolite samples for untargeted analyses by high-performance liquid 

chromatography (HPLC, Micro AS autosampler and Surveyor MS Pump Plus, Thermo Scientific) 

coupled via electrospray ionization (ESI) to a hybrid linear ion trap- Fourier transform ion 

cyclotron resonance (FT-ICR) mass spectrometer (7T LTQ FT Ultra, Thermo Scientific). We 

separated metabolites on a Synergi Fusion reverse phase C18 column (4 µm, 2.0 x 150 mm, 

Phenomenex), equipped with a guard column and precolumn filter, and maintained at 35°C. We 

eluted the column with (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile at 

a flow rate of 0.25 mL min-1.  We held the column at 5% B for 2 min, ramped to 65% B over 18 

min, quickly ramped to 100% B over 5 min, held at 100% B for 7 min and then equilibrated at 

5% B for 8 min prior to the next injection (total run time = 40 min). We injected 20 µL of sample 

individually for positive and negative ion mode analyses. We externally calibrated the mass 

spectrometer just prior to analysis in positive and negative ion modes using the manufacturer’s 

solutions. We optimized the capillary temperature and ESI voltage at 330°C and 4.2 kV, 

respectively, in positive mode and at 365°C and 3.8 kV, respectively, in negative mode. We 

maintained sheath gas, auxiliary gas, and sweep gas flow rates at 35, 5, and 2, respectively 

(arbitrary units) for both polarities. We collected MS and data dependent MS/MS scans as 

follows: (1) a full MS scan in the FT-ICR analyzer from 100-1000 m/z, with mass resolving power 

set to 100,000 (defined at m/z 400); and (2) collision-induced dissociation fragmentation scans 

(MS/MS) in the linear ion trap for the four most abundant ions in each full scan. We collected 

MS/MS spectra under dynamic exclusion with an exclusion time of 20 seconds. At the start of 

each batch, we injected the pooled sample multiple times to condition the column with the 

sample matrix and to stabilize peak retention times. We also analyzed the pooled sample every 

nine samples for quality assurance. 

We analyzed targeted samples by ultrahigh-performance liquid chromatography 

(UHPLC, Accela Open Autosampler and Accela 1250 Pump, Thermo Scientific) coupled via 

heated electrospray ionization (H-ESI) to a triple quadrupole mass spectrometer (TSQ Vantage, 

Thermo Scientific) operated under selected reaction monitoring (SRM) mode. We set the spray 

voltage at 4000 V (positive mode) and 3200 V (negative mode). We set source gases at 55 
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(sheath) and 20 (auxiliary gas), heated capillary temperature at 375 °C, and the vaporizer 

temperature at 400 °C. We performed chromatographic separation on a Waters Acquity HSS T3 

column (2.1 × 100 mm, 1.8 μm) equipped with a Vanguard pre-column and maintained at 40 °C. 

We eluted the column with (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile 

at a flow rate of 0.5 mL min-1. The gradient started at 1% B for 1 min, ramped to 15% B from 1-3 

min, ramped to 50% B from 3-6 min, ramped to 95% B from 6-9 min, held until 10 min, and 

ramped to 1% B from 10-10.2 min, with final re-equilibration at 1% B (total gradient time = 12 

min). We made separate autosampler injections of 5 μL for positive and negative ion modes. 

 
4.2.5 Standard Optimization:  

We obtained authentic standards at the highest grade available from Sigma Aldrich and Cayman 

Chemical for compounds outside of our existing targeted method [113]. Due to prohibitive 

costs required to confirm all features with authentic standards, we focused on compounds that 

are both readily commercially available and pertinent to pathways showing significant 

enrichment within permutation across multiple organisms (Error! Reference source not 

found.). We injected standards at concentrations of 1 μg/mL in Milli-Q water to optimize 

selected reaction monitoring (SRM) conditions (s-lens, collision energy, product ions). We 

selected at least two SRM transitions (precursor-product ion pairs) for quantification and 

confirmation of each target compound. We determined the chromatographic retention time of 

each compound with standards dissolved in Milli-Q.   

 
4.2.6 Data Processing:  

We converted untargeted data files from proprietary Thermo RAW into mzML format using 

msConvert [91]. We processed these files using XCMS and AutoTuner [71, 92, 116] to generate 

a matrix of features (see Supplementary Table 2 for processing parameters). We define features 

as chromatographic peaks with unique mass-to-charge (m/z) and retention time values, with 

relative abundances determined by their area. We subjected processed data to quality control 

filtering by removing possible contaminants and non-reproducible features as described 

previously [117]. Briefly, we removed features within blanks, features with a coefficient of 
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variation higher than 0.2 within pooled samples, and features with low reproducibility across 

factor groups. We report feature intensities normalized by cell number.  

We used MAVEN to integrate compound peak areas within targeted data [118]. We 

used an in-house MATLAB script to apply quality control-filtering and to quantify peak areas 

using a standard curve of 4 to 10 points within Milli-Q. We retained metabolites for this analysis 

if (1) the peak included a confirm ion, and (2) the metabolite was present within two of three 

biological replicates for each treatment. We further culled the list by correcting for metabolite 

presence in procedural blanks. We measured the matrix effects of targeted compounds by 

calculating the relative error between the slope of matrix-matched standard curve and that of a 

Milli-Q standard curve [161]. Mathematically, this measure is described by the following 

equation: 

 

𝑀𝑎𝑡𝑟𝑖𝑥 𝐸𝑓𝑓𝑒𝑐𝑡 =
𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑐𝑢𝑟𝑣𝑒−𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑚𝑖𝑙𝑙𝑖−𝑄 𝑐𝑢𝑟𝑣𝑒

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑚𝑖𝑙𝑙𝑖−𝑄 𝑐𝑢𝑟𝑣𝑒
× 100 

 (1) 

 

We considered matrix effects between -130 and 130 to be acceptable, in agreement 

with community standards [161]. 

 

4.2.7 Data Analysis:  

We used a similar approach with growth curves and targeted metabolomics data to 

identify significant differences among case-control comparisons. First, we applied ANalysis Of 

VAriance (ANOVA) hypothesis testing to identify if measures across experiment factors were 

significantly different from one another. We identified significant pairwise-comparisons using 

Tukey’s honestly significant difference test (Tukey-HSD Test). We then applied the Benjamini-

Hochberg correction to control for type-I error. We considered any p-value following these 

tests equal to or less than 0.05 to be significant.  

We applied several distinct techniques to analyze the untargeted data. First, we used 

mummichog to match feature m/z values to Kyoto Encyclopedia of Genes and Genomes (KEGG) 

compounds [121, 122]. We consider any feature with an m/z match to be a level 3 annotation 
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as described by Sumner et al. [162]. Next, to reduce the dimensionality of this data, we applied 

non-negative matrix factorization (NMF) [163]. For this, we used the ranks of 4 and 3 for NMFs 

performed on the entire dataset and organism specific data subsets, respectively, after 

optimizing with cophenetic correlation metrics [164]. We used a basis contribution score 

threshold of 0.99 to assign features to particular basis vectors. We performed Global Natural 

Products Molecular Networking (GNPS) to facilitate mass shift analysis [165]. For this, we 

required that linked nodes have a cosine score of 0.7 and a minimum of 6 matched peaks. We 

considered all mass differences prescribed for chemical reactions with MetaNetter 2 [166, 167]. 

We used a chi-squared test to determine if mass shifts were distributed significantly differently 

across organisms. To increase the strength of annotation of untargeted features, we used 

METLIN [168] and the METLIN-guided In-Source Annotation (MISA) algorithm [83] to putatively 

identify compounds. We upgraded the annotation level of features from 3 to 2 if they matched 

METLIN reference spectra via MISA.  

We applied several techniques exclusively to the analysis of targeted data. We used 

hierarchical clustering to group compounds with similar measured concentrations across 

organisms. For this, we first averaged organism-specific target concentrations and then 

standardized these values across organisms using z-score normalization. We applied NMF with 

a rank of 4 to identify organism-specific compounds [163]. We used a basis contribution score 

threshold of 0.95 to assign compounds as organism-specific. This measure calculates the 

relative abundance of a given compound across the condensed columns. We utilized two 

distinct measures to check for enrichments or depletions of groups of targeted compounds. The 

first measure was designed to measure the effect size, i.e., the overall magnitude difference of 

case-control comparisons of targeted compounds. For this, we used a linear discriminant 

analysis (LDA). Similar to the microbiome feature selection algorithm LEfSe [169], we calculated 

the effect size of the comparison by using the difference between group centroids determined 

along the first axis LDA axis. Next, we applied a Wilcoxon-Rank Sum Test to evaluate the 

statistical significance of a given case-control comparison.  
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Finally, we applied a Procrustes analysis to compare the structure of targeted and 

untargeted data. For this, we compared the first two principal components of these datasets 

and evaluated the significance of this comparison using a permutation test. 

 
4.2.8 Network-based permutation test (NEPTune):  

Within metabolism, metabolites are connected to one another via enzymatically 

catalyzed reactions. The total sum of these combined metabolites and reactions may be 

described as a network, such as those described by KEGG pathways. We took advantage of the 

mathematical properties of these networks to construct a NEtwork-based Permutation Test 

(NEPTune) to identify overrepresented pathways within a dataset. This approach is 

advantageous over alternative pathway enrichment analyses, as it does not require a priori 

knowledge of the genes present in an organism. Instead, it relies on the proximity between 

nodes in a network to assign significance. Through this section, we describe the mathematical 

details of this approach (Figure 1). 

We treat each KEGG pathway as an individual undirected network. Within each 

network, we define the nodes as the compounds and the reactions as links. Given a network, G, 

we first identify all the reaction paths within G. We define a reaction path as the path of length 

L spanning nodes 𝑁 = {𝑁1, … , 𝑁𝐿}. Here, 𝑁1 is the node of highest degree in 𝐺 and 𝑁𝐿  is the 

furthest node away from 𝑁1 mapped by a feature m/z value. The score of each reaction path 

for G is defined by  

 

𝑆𝑟𝑥𝑛 = Σ𝑖=1
𝐿 𝑧𝑖       (2) 

 

Here, 𝑧𝑖 = 1 if node is mapped by a feature m/z value and 𝑧𝑖 = 0 otherwise. Intuitively, this 

score reflects the extent to which unique m/z values fall into a predefined set of consecutive 

reactions.  

We next want to determine if the 𝑆𝑟𝑥𝑛 score is higher than we would expect by chance. 

For this, we first divide 𝐺 into a subnetwork of radius 𝐿, centered at 𝑁1. Then we repeatedly 

make randomized draws of 𝐿 many nodes from the subnetwork and calculate the empirical 

scores for all draws. We create a distribution from the scores of our random draws and use the 
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z-scores method to compute an empirical p-value for the observed reaction path score 𝑆𝑟𝑥𝑛. 

During the randomization, we drew 5000 permutations unless limited by the size of the 

network. We consider any reaction path score 𝑆𝑟𝑥𝑛 to be significant when it has a p-value 

below 0.05 following type-II error correction through the Benjamini-Hochberg method. To 

confirm that NEPTune recapitulated previously-published overrepresented pathways, we 

applied the algorithm to an existing dataset of targeted metabolites [170].  

It is possible for NEPTune to incorrectly classify a pathway as overrepresented if the 

features map onto a reaction path that contains many structural isomers. Hence, we sought to 

evaluate the validity of hypothesized pathway overrepresentation to determine the efficacy of 

our algorithm. First, we checked whether organism-specific characterized features making up 

reaction paths were present within matching targeted samples. Next, to confirm that these 

putatively characterized features show similar trends in abundance to measured targeted 

compounds, we regressed the normalized intensity of observations from matching samples 

across both datasets. To evaluate the overall error of this approach across all targeted and 

untargeted matches, we calculated the empirical cumulative distribution function of all 

residuals. Lastly, we checked the concordance in retention time between targeted compounds 

and matching untargeted features by regressing their elution ranks across both datasets.  

 
4.2.9 Network-based permutation test filters:  

One challenge with the interpretation of untargeted metabolomics data is that features 

matched by mass cannot distinguish between structural isomers, i.e., compounds with the 

same mass but different atomic arrangements. We account for the possible occurrence of 

structural isomers within our significant reaction paths in two ways. First, we consider the 

probability that nodes making up a reaction path do not map to any alternative reaction path 

from a different pathway. Second, we consider the possibility that a given compound match 

within our data could have structural isomers. 

Our first measure, the pathway overlap probability, 𝑃𝑜𝑣𝑒𝑟𝑙𝑎𝑝, provides an estimate of 

the probability that a reaction path is specific to a given pathway. In our case, we compared 

KEGG pathways against one another, as these were the biochemical networks utilized by 
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NEPTune. Thus, it provided us with a means of evaluating how specific a detected reaction path 

is to a biochemical pathway. We calculate 𝑃𝑜𝑣𝑒𝑟𝑙𝑎𝑝 for each reaction path as:  

 

𝑃𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 1 −
maxሺ𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠ሻ

𝐿
    (3) 

 

where alternative pathways represent the number of times an m/z matched node from a given 

reaction path matches compounds within other pathways by mass. Each alternative pathway is 

counted once per node.  

Our next measure, path structural isomer coverage, 𝐼𝑠𝑜𝑝𝑎𝑡ℎ ,, describes how well our 

data covers structural isomers of compounds within significant reaction paths that may appear 

within metabolism. We calculate 𝐼𝑠𝑜𝑝𝑎𝑡ℎ  as: 

 

𝐼𝑠𝑜𝑝𝑎𝑡ℎ =
1

𝑙
Σi=1

𝑙 𝐼𝑠𝑜𝑠𝑐𝑜𝑟𝑒,𝑖     (4) 

 

Where 𝑙 is the number of m/z matched compounds within a reaction path and 𝐼𝑠𝑜𝑠𝑐𝑜𝑟𝑒  

represents the compound structural isomer coverage. 𝐼𝑠𝑜𝑠𝑐𝑜𝑟𝑒 is defined as: 

 

𝐼𝑠𝑜𝑠𝑐𝑜𝑟𝑒 =  
𝑛+ 

𝑛

𝑚

𝑛+ 
𝑚

𝑛

      (5) 

 

where 𝑛 represents the number of unique features matching a given node by m/z and 𝑚 

represents the total number of structural isomers of the m/z value in KEGG. We used a 15 

second retention time filter to ensure that adducts were not counted twice towards 𝑛. This 

measure was inspired by the Michaelis-Menten equation for enzyme kinetics, hence as 𝑛 → 𝑚,

𝐼𝑠𝑜𝑠𝑐𝑜𝑟𝑒 → 1. This metric assumes that KEGG is a complete representation of all possible 

biochemical pathways.  

We filtered out any significant reaction paths below our thresholds 𝑃𝑜𝑣𝑒𝑟𝑙𝑎𝑝 > 0.9 or 

𝐼𝑠𝑜𝑝𝑎𝑡ℎ > 0.9. We chose these thresholds after considering distributions of these metrics 

across all significant reaction paths (Supplementary Figure 3).  
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4.3 Results and discussion 

4.3.1 Taxonomy is the primary driver of variability within untargeted data 

 In order to understand how phytoplankton stress response varied between organisms, 

we grew four organisms from distinct phytoplankton groups under replete (R), phosphorus 

stressed (-P), and nitrogen stressed (-N) conditions. Although cultures varied from one another 

in total time required to respond to stress, each culture showed a significant drop in relative 

fluorescent units (Supplementary Figure 1) or cell counts (Supplementary Figure 2) relative to 

replete growth after 3 to 8 days. This result suggests that the cultures experienced nutrient 

stress similar to previous results from transcriptomic studies [24, 25, 111].  

 We initiated our investigation of the stress-response metabolisms of these 

phytoplankton by performing untargeted metabolomics on each culture. After obtaining these 

data, we applied several quality assurance filters to our data to distinguish biologically robust 

features from irreproducible or contaminant ones. In total, we retained 2564 and 4735 total 

features across all samples within the positive and negative ionization modes, respectively 

(Supplementary Table 3). These feature counts are on par with prior studies on a marine 

heterotrophic bacterium [88] and a diatom [171] generated using an identical analytical 

platform. From these totals, we matched 600 and 440 features within positive and negative 

ionization mode features to KEGG compounds by mass. We considered these features to have 

level 3 annotation (‘putative characterization’) based on Metabolomics Standards Initiative 

guidelines [162].   

 We next sought to determine which experimental factor introduced the greatest 

amount of variability to our putatively characterized features: taxonomy or nutrient stress 

status. To evaluate this, we ran a non-negative matrix factorization (NMF) on our positive 

(Figure 2A) and negative mode (Supplementary Figure 4A) datasets. This unsupervised 

clustering method condensed both datasets into a matrix of organism-specific vectors, 

suggesting that taxonomy was the primary driver across the dataset. We assigned features with 

a basis contribution score of .99 or greater to organism-specific NMF columns. This measure 

describes the relative abundance of a feature within a specific column vector. The number of 

unique features assigned to each organism ranged between 31 and 258 across both ionization 
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modes (Supplementary Table 4). This range is similar to that observed within a prior 

comparative study of the metabolomes of 12 distinct phytoplankton despite the use of 

different analytical platforms [172]. We observed that 31 and 77 features in negative and 

positive mode data, respectively, were present within multiple organisms, similar in size to 

previously reported work evaluating the core metabolome of phytoplankton [173]. Overall, 

untargeted features were primarily observed within samples belonging to a single organism. 

These trends are consistent with a prior transcriptomics study where most orthologous groups 

in these organisms did not overlap across taxa [24]. Hence, taxonomic differences in the 

metabolome may be transcriptionally conserved. 

Prior studies show that nutrient stress status has large impacts on the transcriptomic 

composition of these organisms [24, 25]. Hence, we next sought to determine the role of 

nutrient stress status on organism-specific putatively characterized features. We considered 

only taxonomically-specific putatively characterized features to eliminate variability introduced 

by taxonomic differences between samples. We next applied distinct NMFs to each subset. 

Each NMF separated the data into three columns each representing samples from nutrient 

stress experimental factors in an unsupervised manner (Figure 2B & Supplementary Figure 4B), 

suggesting that nutrient stress status also contributed to the variability within the dataset. We 

detected proportionally fewer putatively characterized features with basis contribution scores 

of .99 or greater from this NMF than the one done on the entire set of putatively characterized 

features. These differences suggest that subtle differences in metabolite distributions may 

underly physiological stress. Hence, considering groups of metabolites may be a more powerful 

measure of physiological stress status than considering individual metabolites.  

 

4.3.2 Metabolic differences explain taxonomic variability 

 We hypothesized that metabolic differences are driving the taxonomic clustering of 

features detected via NMF analysis. One possible driver for this trend is that the clustered 

putatively characterized features originate from distinct biochemical pathways. To evaluate this 

hypothesis, we sought to perform a pathway enrichment analysis. Currently, several methods 

exist to identify over-represented pathways within untargeted metabolomics data [122, 174, 

175]. Applying these approaches to study organisms without sequenced genomes is 
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challenging, as they depend on a priori knowledge of the organism’s biochemical pathway 

makeup and may be sensitive to missing intermediates due to low abundance or poor chemical 

ionization. To overcome these challenges, we crafted a novel NEtwork-based Permutation Test 

(NEPTune) to identify over-represented pathways within the clustered putatively characterized 

features (Figure 3).  

Prior to using NEPTune on our data, we validated its efficacy by testing whether it could 

reproduce previously published results [170]. This study reported an enrichment in the activity 

of purine and tyrosine metabolisms based on the observance of three or more targets. Using 

these data, our permutation test returned p-values below 0.05 for these pathways, confirming 

the previously reported results.  

Next, we applied NEPTune to each cluster of putatively characterized features. NEPTune 

detected a total of 39 significant (p < 0.05) over-represented pathways across all four organisms 

following quality assurance filtering (Figure 3 and Supplementary Table 5). To confirm the 

validity of these hypothesized over-representations, we sought to strengthen the annotation of 

features driving the pathway enrichments. To accomplish this goal, we applied the METLIN-

guided in-source annotation (MISA) algorithm to check whether our putatively characterized 

features and coeluted ions matched reference spectra from METLIN. MISA reported that seven 

of our annotated features had a cosine score above 0.8 to their matching 0 volt MS/MS spectra 

(Supplementary Table 6). Six of the MISA annotated features belonged to the arachidonic acid 

metabolism pathway and the other one to retinol metabolism, in support of our annotation 

predictions. We upgraded the annotation of 8 features with MISA matches from level 3 to level 

2 (“putative annotation”). These totals are on par with previous efforts to identify untargeted 

features on a similar analytical platform [88]. Our ability to generate more MISA annotations 

was limited by the compounds’ abilities to form in-source fragments at 0 volts and the available 

MS/MS reference spectra within METLIN. The addition of more standards to METLIN could 

improve on the latter limitation in future studies.  

The distribution of predicted pathways highlights the presence of both core and 

specialized metabolisms across the phytoplankton groups. Several core pathways like purine 

metabolism, glutathione metabolism and porphyrin and chlorophyll metabolism were observed 
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across multiple organisms. These observations likely reflect the fundamental physiological roles 

of these pathways for phytoplankton in processes like DNA synthesis, oxidative stress 

mitigation, and photosynthesis [125]. Indeed, prior studies found that several compounds 

belonging to these pathways were observed ubiquitously across many phytoplankton groups 

[173]. The observations of arachidonic acid metabolism and steroid hormone biosynthesis were 

unexpected due to their roles in secondary metabolism [158]. Both pathways have been 

identified in diatoms, and serve to initiate stress response and programmed cell death [158, 

176]. To our knowledge, this is the first observation of these pathways within a 

prymnesiophyte, raphidophyte, or a coccolithophore, and they may serve these organisms to a 

similar capacity. Alternatively, these enrichments may be due to the presence of structural 

isomers, as many of these putatively characterized features were assigned from distinct 

adducts. Seven pathways were observed exclusively within individual organisms. Many of these 

pathways like retinol, tyrosine metabolism, and terpenoid biosynthesis have well known 

responses in cell signaling and are important components of secondary metabolism [177, 178]. 

One alternative explanation for these patterns is that they emerge from the differences in 

culturing conditions between organisms. Additional targeted metabolomics studies of 

compounds from these pathways across various taxa would help elucidate between these 

hypotheses. Future studies evaluating the expression of genes from these pathways within 

environmental datasets may reveal if they foster unique ecological processes.  

In addition to profiling differences of well-characterized biochemical pathways, we 

evaluated whether distinct suites of chemical reactions characterized the metabolome of each 

organism. This type of analysis is possible due to advances in Global Natural Products Molecular 

Networking (GNPS) [165]. GNPS calculates the chemical similarity of features by correlating 

their MS/MS spectra. Features with correlations above a threshold form links within a network. 

The mass differences of the linked features may represent a specific chemical relationship that 

distinguishes two molecules with a common core structure [166]. We found 216 unique mass 

shifts across our data describing 23 distinct biochemical reactions. The distribution of mass 

shifts of 8 of these biochemical reactions across the organisms was significantly different (p < 

0.05, chi squared test) from random (Supplementary Table 7), suggesting that several reactions 
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distinguish these taxa, including but not limited to glycosylation within the raphidophyte and 

ribosylation in the prymnesiophyte. Perhaps one explanation for these trends is that these 

reactions occur more frequently in these taxa due to differences in compound concentrations. 

Regrettably, we were not able to putatively identify any of these compounds as GNPS lacked 

reference MS/MS spectra to these data. Future enhancements to spectral database GNPS may 

ameliorate this issue. 

 

4.3.3 Targeted analysis confirms hypothesized compound annotation and pathway enrichments 

 We analyzed targeted metabolite distributions in the remaining sample filters to 

confirm the NEPTune generated hypotheses. We measured a total of 135 unique metabolites, 

of which we detected between 93 and 118 within each organism (Supplementary Table 8). The 

raphidophyte dataset contained fewer total targets, as these data were analyzed for a prior 

study [42] and did not contain recently added standards to our existing method. The measured 

totals are in agreement with recent work on marine microbe Sulfurimonas denitrificans [179] 

and are similar to those measured in phytoplankton Micromonas pusilla [180]. To further 

confirm the validity of our results, we benchmarked the measured concentrations of sulfur 

metabolites against previously published concentrations values of these compounds within 

similar organisms [181]. Most of the previously published values were an order of magnitude 

higher than those reported here (Supplementary Table 9). Observed differences may be due to 

the impact of nutrient stress on sulfur-containing metabolites and differences in culturing 

between the two experiments. We measured the matrix effects from each organism on our 

targeted compounds using matrix matched standard curves. Of the total set of compounds, we 

measured the matrix effect on 71 to 78 of them (Supplementary Table 9 

Supplementary Table 8). High baseline concentrations of certain compounds precluded us from 

calculating additional matrix-matched standard curves. Of these, 44 to 51 of the matrix effects 

were considered acceptable (< 130 – see equation 1) [161]. Small organic and phosphate-

containing compounds were particularly susceptible to matrix effects. Neither of these groups 

of compounds is chromatographically separated well, which may contribute to our difficulties in 

determining their matrix effects [182]. New analytical separation techniques may alleviate such 

issues.  
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 Among the compounds we targeted were adenosine, adenosine monophosphate (AMP), 

glutamine (Gln), and glutamate (Glu). The ratios of adenosine to AMP and Gln to Glu are 

diagnostics for P- and N-stress, respectively, within diatoms, prymnesiophytes, and 

raphidophytes [42, 45, 180]. We calculated these ratios within the organisms in order to 

corroborate the stress status of these organisms and evaluate the sensitivity of the ratios across 

phytoplankton (Supplementary Figure 5). We observed that the expected trends occurred 

across organisms (low Gln to Glu and low adenosine to AMP under N-stress and P-stress, 

respectively).  However, the Gln to Glu ratio was only significantly different within raphidophyte 

and coccolithophore cultures. The P-stress ratio was significantly higher in all organisms with 

the exception of the prymnesiophyte. It is possible that these ratios may become more 

pronounced upon extended nutrient stress [183]. Alternatively, the sensitivity of these ratios 

may be organism-specific. Additional studies of these ratios over time would clarify between 

these hypotheses.   

 To determine the efficacy of the NEPTune hypothesized pathway over-representations, 

we evaluated putatively characterized features used for predictions with targeted data. We 

measured several compounds driving the hypothesized pathway over-representation, which 

allowed us to check a total of 36 distinct putatively characterized features. Of these, 33 were 

correctly annotated (Figure 4a), raising their annotation to level 1 (“identified”). Two of the 

mismatches belonged to prostaglandin molecules, which contain a high number of structural 

isomers relative to other compounds. Of the total annotations, 26 putatively characterized 

features contained masses matching reported adducts within METLIN reference spectra. We 

confirmed all of these compounds [168]. This result suggests that restricting NEPTune 

predictions to annotations matching METLIN adducts increases the veracity of predictions 

(Figure 4a). Financial constraints and the limited commercial availability of standards limited 

our ability to confirm additional putatively characterized compounds.  

In order to support the remaining NEPTune pathway enrichment hypotheses, we sought 

to evaluate the similarity between confirmed identifications and their matching putatively 

characterized untargeted features with two measures to check the concordance in abundance 

and retention time. We first evaluated whether the normalized intensity values of putatively 
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characterized features were proportional to their corresponding normalized measured 

concentrations. For this, we regressed the normalized targeted and matching untargeted 

abundances. Next, we calculated the residuals of these regressions, and used the distribution of 

these values to evaluate the homogeneity between matched data (Figure 4b). The empirical 

cumulative distribution functions for all residuals and those from compounds with METLIN 

matched adducts were comprised of 234 and 171 total residual measures, respectively. Over 46 

percent of all measured residuals were less than 0.1, over 80 percent were less than 0.25, and 

over 95 percent were less than 0.4 across all measured compounds. Untargeted metabolomics 

data is subject to high variability due to differences in ionization efficiency across features, and 

coefficient of variation thresholds of 0.25 are suggested when applying quality control filtering 

to samples with well-defined sample matrices [94]. The majority of our measured residuals 

appear to abide by these standards, suggesting that we observed high concordance in 

abundance between datasets. Next, we assessed the retention time agreement between both 

datasets. For this, we regressed the retention time ranks of these observations against one 

another (Figure 4c). Due to the different chromatographic platforms used to generate the 

targeted and untargeted datasets, direct comparisons of measured retention time values are 

not possible. Outside of a few outlier points, our analysis revealed that the rank 

correspondence in the data was highly significant (p < 0.001, linear model) and showed a clear 

linear trend, supporting the retention time coherence between putatively characterized 

features and their targeted analyses. We conclude that the NEPTune reported pathway 

enrichments are based on correctly identified compounds, and support the validity of other 

hypothesized pathway enrichments we were unable to confirm. Taken together, these results 

suggest that NEPTune is capable of detecting viable pathway over-representations within 

untargeted metabolomics data.  

 

4.3.4 Sparsity within untargeted data is driven by intracellular concentration differences 

 The trends from untargeted metabolomics data from this and prior [172, 173] studies 

revealed that features are primarily phytoplankton specific (Figure 2 and Supplementary Figure 

). This observation is unexpected considering that the taxa share aspects of core metabolism for 

central metabolic pathways [24]. Hence, we used our targeted data to reconcile these two 
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observations. We first determined whether our targeted data shared a similar mathematic 

structure to our untargeted data. For this, we performed a Procrustes analysis on the first two 

principal components of both datasets (Figure 5a). We chose to use the first two principal 

components as they explained a total of 70 and 40 percent of the variance within the targeted 

and untargeted datasets, respectively. The Procrustes analysis revealed that minimal 

transformations were required to align the ordinations from each dataset. A permutation test 

revealed that this degree of similarity was highly significant (p < 0.001, permutation test), 

suggesting that the variability in both datasets is due to a common underlying biological signal, 

i.e., taxonomic differences.  

As the untargeted data was highly sparse (91% of feature table elements were zeroes), 

we sought to determine if this was also captured by the targeted data. However, only 18 out of 

135 of targeted metabolites were present exclusively within a single organism (Supplementary 

Figure 6a). One possible explanation for this trend is that ion suppression and lower sensitivity 

of the mass spectrometer used for untargeted analysis artificially imposes this sparsity. To 

evaluate this hypothesis, we profiled distribution of concentrations of targeted metabolites 

using two measures, Shannon entropy and normalized concentration range (Figure 5b). The 

Shannon entropy provides a measure of evenness across concentration measurements, while 

the normalized concentration would provide a measure of the spread in concentration. We 

categorized metabolites into one of three domains based on their values of these two 

measures. The first domain characterizes metabolites with high entropy values and low 

normalized concentration ranges. The concentrations of these metabolites were similar across 

all organisms (Figure 5c). The second domain describes metabolites within one standard 

deviation of the mean of each measure. Metabolites within this domain were generally 

measured across all organisms, however with differences spanning several orders of magnitude 

(Figure 5d). The third domain describes metabolites with low entropy and high normalized 

concentration range. These metabolites are highly enriched exclusively in a single taxon (Figure 

5e). 114 of 135 metabolites belonged to the latter two domains, suggesting that large 

concentration metabolite concentration differences between organisms drive the reported 

similarity by the Procrustes analysis. These results suggest that sparsity within untargeted data 
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is primarily caused by differences in metabolite concentrations rather than a lack of 

biosynthesis of these molecules. The utility of phytoplankton-specific subsets of untargeted 

features has been suggested as a viable in situ indicator of individual taxa [173]. However, our 

result suggests that these observations may also be an artifact of instrument sensitivity and 

chromatographic separation rather than biological differences among phytoplankton. Future 

experiments comparing phytoplankton metabolomes should include both targeted and 

untargeted data to determine the extent to which sparsity is due to biological differences 

between cultures.  

 

4.3.5 Targeted metabolite distributions reveal unique physiological and ecological adaptations 

that distinguish these taxa 

 Applying NEPTune to the untargeted data suggested that the taxonomically clustered 

putatively characterized features may describe distinct biochemical processes. We sought to 

confirm this hypothesis using the targeted metabolite concentrations. We first normalized 

metabolite concentrations by cell volume [184], and performed a non-negative matrix 

factorization on all metabolites (Figure 6a). We assigned metabolites with basis contribution 

scores of 0.95 or greater to individual organisms. We chose to use a slightly more permissive 

threshold for the targeted data as there were fewer observations than in the untargeted data. 

We assigned 34 metabolites to individual organisms. The assignment of a metabolite to one 

organism does not preclude its non-zero measurement within others. Rather, it suggests that its 

concentration is highest in the organism where it was assigned.  

We observed several instances where multiple compounds belonging to a single 

metabolic pathway were assigned to an individual organism. For example, we observed that 

sulfur-containing metabolites taurine, isethionic acid, and n-acetyltaurine were all assigned to 

the diatom (Chaetoceros affinis) (Figure 6a). A prior study shows that taurine and isethionic acid 

are enriched within diatoms relative to other phytoplankton and may be exchanged in situ with 

other marine phytoplankton [181]. N-acetyltaurine was not measured in that study, but may 

serve a similar role. Further targeted analysis evaluating the covariation of these metabolites 

within marine communities may help elucidate any connectivity between these compounds.  
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As a second example, compounds 3-methyl-2-oxopentanoic acid (3m2op) and 4-methyl-

2-oxopentanoic acid (4m2op) were assigned exclusively to the raphidophyte samples (Figure 

6a). These compounds are intermediates of branched amino acid degradation and biosynthesis 

[185]. Hence, we sought to evaluate the dynamics of these processes within the raphidophyte 

(Figure 6b). All measured branched chain amino acids were significantly depleted under stress 

relative to replete conditions (p < 0.05, Tukey-HSD, n = 3). By contrast the concentrations of 

3m2op and 4m2op were enriched within stress relative to replete conditions. These dynamics 

may suggest that branched chain amino acid degradation may increase under stress. Branched 

chain amino acids have greater hydrophobicity relative to other amino acids [185], and 

primarily serve as proteinaceous building blocks. During catabolism, 3m2op and 4m2op lack the 

amino group of their precursors and can readily enter the TCA cycle, thus they may provide the 

raphidophyte with a carbon source for respiration and increased bioavailable N [125]. 

Alternatively, they may be enriched as a sink of excess carbon. Analysis of the transcriptome or 

isotope tracer experiments on the raphidophyte under these types of stress would clarify 

between these two hypotheses.  

A third example involves the co-occurrence of metabolites related to glucosamine 

within the coccolithophore (Figure 6a). Glucosamine is produced through its catabolism via the 

degradation of deacylated chitin, chitosan [186]. Through our method, we measured the 

concentrations of several metabolites involved in chitin anabolism and catabolism, and chitosan 

catabolism (Figure 6c). Among these compounds, glucosamine-6-phosphate was significantly 

depleted (p < 0.05, Tukey-HSD Test, n = 3) under P-stress. We next evaluated the overall 

enrichment of metabolites involved in chitin anabolism and catabolism. We observed that 

under P-stress while chitin catabolism was significantly (p < 0.05, Wilcoxon-test, n = 6) enriched 

under N-stress was significantly depleted (p < 0.05, Wilcoxon-test, n = 6). Based on these 

trends, we hypothesize that N-stressed cells slow the catabolism of chitin in favor of the 

catabolism of chitosan. Chitin and chitosan represent cell surface acetylated and deacetylated 

amino sugar chains, respectively [186]. Changes in their relative abundance have been shown 

to impact physiology. For example, the conversion of chitin to chitosan was shown to regulate 

the growth of fungi [187]. Hence, these changes may have physiological consequences on the 
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coccolithophore. Other studies have shown that chitin is readily produced within other 

phytoplankton, [188]. Despite this, we detected glucosamine exclusively within the 

coccolithophore. Hence, the coccolithophore may have become more reliant on this strategy 

over the course of evolution than other marine phytoplankton. Future studies measuring the 

composition of these two molecules within the cell surface in situ would reveal how this 

process supports the organism’s physiology.  

Differences in overflow metabolism may also contribute to the distribution of organism-

specific features [189, 190]. Overflow metabolism occurs when a metabolite is exuded from 

cells due to its increased intracellular production [190]. Exuded metabolites may then trigger 

distinct physiological responses in neighboring organisms [21]. The data reveals several 

organism-specific candidates for overflow metabolism: N-acetylserotonin, prostaglandins E2 A2 

and D2, and spermidine (Figure 6a). These molecules were assigned to the coccolithophore, 

diatom, and raphidophyte cultures, respectively. Prior studies show that these molecules 

possess some cell-to-cell signaling capacity. Both N-acetylserotonin originates from tryptophan 

metabolism and has reported roles in cell-to-cell signaling within studies of the gut microbiome. 

Indeed, N-acetylserotonin functions as a neurotransmitter within metazoa [192]. To our 

knowledge, this is the first report of these molecules within marine phytoplankton, and the 

possible signaling roles of this compound must be validated with culture screening 

experiments. Alternatively, targeted searches of these compounds along with their receptor 

genes within public datasets may reveal examples of the biosynthesis and uptake of these 

molecules. Recent studies showed that the diatom Thalassiosira rotula increases synthesis of 

prostaglandins at the end of exponential growth phase, resulting in sustained increases of 

prostaglandins within the extracellular medium [158]. These authors hypothesize that the 

production of this molecule is designed to elicit cell-to-cell signaling within the population 

similar to metazoa [158]. Finally, spermidine is a well-studied polyamine and a viable source of 

nitrogen and carbon for marine microbes [193]. Prior studies hypothesize that dinoflagellate-

derived spermidine may support the growth of bacteria such as Ruegeria pomeroyi [194]. These 

data suggest that these organisms may distinguish themselves from one another by employing 

distinct cell-to-cell signaling strategies. One alternative interpretation to these trends is that the 
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metabolite data highlighted here originates from bacteria rather than algae given that cultures 

were not axenic. Additional analyses using orthogonal yet taxonomically resolved data such as 

transcriptomics would help elucidate whether this was the case.  

 

4.3.6 Responses to nutrient stress may reveal phytoplankton-specific acclimations  

 Nutrient stress status was a secondary driver of the variability in the untargeted data. 

We hypothesized this trend would hold within the targeted data. To confirm this hypothesis, 

we checked the distribution of significantly different metabolites across the organisms 

(Supplementary Figure b and c). In total, 54 and 58 of 135 metabolites were significantly 

different (p < 0.05, Tukey-HSD Test, n = 3) within N-stressed and P-stressed cells, respectively, 

relative to replete cells. The majority of significant metabolites under N-stress were only 

significant in one (33 total) or two phytoplankton taxa (18 total). Similarly, most significant 

metabolites under P-stress were only significant in one organism (39 total) or two 

phytoplankton taxa (13 total) (Supplementary Figure b and c). These distribution patterns may 

highlight specific stress acclimation strategies between the phytoplankton. Alternatively, they 

could be related to the differential degree of stress experienced by each organism. 

We hypothesize that this observed stress response specificity is supported at a pathway 

level or across structurally similar compounds. Hence, we scored differences in compound 

distributions between case and control pairs using a measure that combines both statistical 

significance and the overall difference between groups, or effect size [169]. We applied this 

approach to compounds grouped into fourteen distinct categories based on their chemical 

characteristics (e.g., nucleosides, nucleobases) or known metabolic pathways (e.g. tryptophan 

metabolism) (Figure 7). 37 of the groups were significantly different under stress relative to 

replete conditions. Several groups showed similar activity across organisms under a single 

stress condition, suggesting their potential viability as stress-specific biomarkers. For example, 

nucleotides were significantly depleted across all organisms under P-stress, matching previously 

published results [45]. Another example is the enrichment of thiamine metabolism compounds 

under N-stress. All organisms showed an increased effect size and three out of four organisms 

showed significant enrichments (p < 0.05, Wilcoxon-test) of metabolites within this group. 

Thiamine is an essential cofactor of energy metabolism [195]. Its increase under N-stress may 
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suggest an increase in carbon respiration. Indeed, each organism with a significant enrichment 

of thiamine metabolism compound also shared an effect size greater than two for glycolysis 

compounds. Prior studies show that other diatoms upregulate glycolysis under N-stress to 

facilitate increased TCA cycling [58, 59, 196]. Hence, increased thiamine metabolism may 

support these diatom species due to its role in facilitating energy metabolism. Additional 

experiments with prymnesiophytes and raphidophytes are necessary to evaluate the generality 

of this response within other members of these groups. 

In addition to capturing general stress response mechanisms, these data revealed 

several examples of phytoplankton-specific stresses. The prymnesiophyte appeared to show 

the starkest response, as 15 out of 28 molecule groups were enriched under both types of 

stress. Several of these enrichments were unique for this organism, including the Yang cycle, 

the nucleobases and chitin metabolism under N-stress. It is unclear whether these trends are 

due to increases in metabolic activity associated with metabolite groups or due to decreases in 

the rates of their consumption. Clarifying these two would be possible using fluxomic type 

approaches [197].  

Interestingly, the prymnesiophyte featured the greatest response in effect size and 

degree of significance for tryptophan metabolism relative to the other organisms. Tryptophan 

metabolism serves a myriad of distinct roles in physiology through its capacity to form signaling 

compounds [125, 191, 198]. These signaling compounds have been shown to initiate both 

mutualistic [21] and antagonistic [22] interactions between phytoplankton and neighboring 

bacteria. It is possible that the prymnesiophyte relies on these or similar strategies to overcome 

nutrient stress.  

We also observed interesting changes associated with the metabolite groups of the P-

stressed coccolithophore that may highlight unique aspects of its metabolism. Under P-stress, 

this organism showed an exclusive enrichment of deoxynucleosides. These molecules are used 

as oxidative stress DNA damage biomarkers [199]. A major source of intracellular oxidative 

stress is energy metabolism [125]. Energy metabolism requires a steady flux of carbon from 

glycolysis or lipids to persist. Interestingly, glycolysis metabolites were significantly depleted 

under P-stress (p < 0.05, Wilcoxon-test). Perhaps this depletion was caused by an intentional 
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downregulation of energy metabolism to prevent additional oxidative stress. To support this 

hypothesis, we evaluated the concentration of citrate. Excess citrate is exported beyond the 

mitochondria where it allosterically inhibits glycolytic enzymes [125, 197]. The coccolithophore 

contained the greatest concentration of citrate relative to other phytoplankton. Additionally, its 

concentration was also significantly (p < 0.05, Tukey-HSD Test) higher under P-stress. Similar to 

the prymnesiophyte, the addition of fluxomic type experiments or genome scale modeling 

would evaluate this hypothesis.  

 

4.4 Conclusion  

 Contemporary ocean circulation models predict that under future scenarios, marine 

primary production may decrease as early as 2090 due to increased scarcity of phosphorus and 

nitrogen [62]. This study hypothesizes that lack of these nutrients will impact phytoplankton 

communities in a uniform manner, thereby causing a decrease in community photosynthesis. 

This assumption does not necessarily account for the biological and chemical complexity of 

these communities. In this study, we attempted to illustrate the importance of this complexity 

by profiling the metabolism of four phytoplankton and their responses to nitrogen and 

phosphorus stress.  

 To facilitate biological discovery, we crafted and validated a new method for the 

analysis of untargeted metabolomics data. Our new method, NEPTune, predicted pathway-

overrepresentations robustly that aided in the identification of new metabolites. This approach 

does not depend on knowledge of what genes are present within an organism, hence would 

serve investigators who currently study organisms without a sequenced genome. Our ability to 

thoroughly validate NEPTune was constrained to targets we could acquire commercially, and 

additional studies should be employed to confirm its efficacy.  

Through the analysis of the measured metabolite concentrations across the taxonomic 

groups, we uncovered several examples of group-distinguishing changes in metabolism. These 

changes reflect systematic differences in metabolite concentrations driven by taxonomy. Their 

distribution highlights differences in signaling and biochemical pathways between organisms. 

We hypothesize that these differences underlie the unique physiology and ecology of these 

organisms and that these patterns may have arisen through the course of evolution. Additional 
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studies evaluating the genetic make-up of these organisms would help support the latter 

hypothesis. If these pathway and metabolite patterns are confirmed to be due to adaptations, 

they may serve as indicators of group-specific physiology and could be parameterized into 

models of phytoplankton communities. Such models may provide a mechanistic perspective on 

seasonal successions of phytoplankton driven by the changes in the composition of dissolved 

organic matter [20], and aid in our understanding of contemporary and future global primary 

production.  

Secondly, by comparing the pathway dynamics within an organism across nutrient stress 

conditions, we identified several examples of acclimations to stress unique to each organism. 

These examples include both well-known nutrient stress biomarkers, and ones not previously 

reported. Though many organisms appeared to contain most of the evaluated acclimatory 

pathways, the dynamics of these pathways varied significantly between them and by stress 

conditions. Similar results were observed within transcriptomic studies [19]. Future studies 

should seek to identify which pathways are most prominent in driving the differences in 

physiology due to an external perturbation within these groups. This knowledge would provide 

a mechanistic basis for the study of phytoplankton community stability and help explain the 

observed differences in stoichiometric nutrient quotas across these organisms. 
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4.5 Figure  

 
 

 
Figure 1: Schematic of network-based permutation test (NEPTune). a) An observed reaction 

path of length L within a KEGG pathway network. The circles denote KEGG pathway 

compounds, while arrows depict reactions. Dashed arrows are used to represent an unspecified 

series of reactions. Labeled nodes are nodes that belong to the reaction path 

{𝑁0, 𝑁1, … , 𝑁𝐿−1, 𝑁𝐿}, and red nodes are nodes with an m/z match. b) Circles with blue outlines 

represent random draws from a network of radius L. NEPTune draws L-many nodes from the 

network randomly each time. c) Scores of empirical linked nodes (red triangle) and 

permutations from randomized draws (blue histogram). We evaluate the significance of the 

empirical linked nodes using the properties of the distribution of random draws. 
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Figure 2: Non-negative Matrix Factorization (NMF) of positive mode untargeted metabolomics 

features. (a) Each column vector contains weights describing the contribution of features within 

groups of samples. The NMF assigned sample groups based on taxonomic differences in an 

unsupervised manner. (b) Taxon-specific features clustered via NMF groups by nutrient stress 

status. We determined the NMF’s rank using the cophenetic correlation measure. The scale is a 

log-transformed unitless representation of the original data determined following matrix 

factorization. We used a cophenetic correlation measure to define the rank of these matrices. 

See Supplementary Figure  for NMF of negative mode data. Abbreviations: -N – nitrogen stress, 

-P – phosphorus stress, and R – replete.   
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Figure 3: Significant (p < 0.05) metabolic pathway over-representations detected by NEPTune. 

Legend color corresponds to the number of m/z matched to unique network compounds 

observed within that pathway for a particular organism. Pathways are defined by KEGG 

networks. 
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Figure 4: NEPTune Validation. a) Detection of compounds used for NEPTune pathway over-

representations. Blue categories (matching) represent annotated features with masses 

matching METLIN adducts. Orange categories (None) represent untargeted feature annotations 

without matching METLIN adducts. b) Comparison of intensity dynamics between measured 

targeted compounds and annotated untargeted features. Concordance was measured using the 

residuals of a line of best fit between these two data types. Red Empirical Cumulative 

distribution function (CDF) represents the CDF of residuals of comparisons of annotated 

untargeted features with masses matching METLIN adducts. Purple represents all residuals. c) 

Retention time correspondence between annotated untargeted features and matching targets. 

Retention time ranks calculated using elution order. We used ranks instead of absolute 

retention time due to the differences in chromatographic platforms between these data.  
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Figure 5: Mathematical structure of measured metabolites. a) Procrustes analysis of untargeted 

and targeted first two principal components. Circles and arrow heads represent the location in 

principle component space of untargeted samples and targeted samples, respectively. Length 

of arrow represents the amount of stretching between both datasets. Difference between solid 

and dashed axis lines represents the rotation required to align the datasets. First two principal 

components explained 59 and 40 percent of the variance within targeted and untargeted 

datasets, respectively. Similarity between both datasets was highly significant, suggesting that 

taxonomy servers as the primary driver of variability within targeted data (permutation test, p < 

0.001). b) Distribution of targeted metabolites across inter-organism variability measures. 

Shannon entropy describes the evenness of data across factors while normalized concentration 

range describes the overall difference in magnitude. Blue square denotes area on plot one 

standard deviation from the mean of each marginal distribution. c-e) concentrations of 

metabolites denoted on b). Their dynamics represents the three types of trends observed 

across all molecules: c) small differences accros all organisms, d) large concentration 
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differences among organisms, e) metabolites are primarily detected within a single organism. 

Abbreviations: Prym. = prymnesiophyte, Cocc. = coccolithophore, Raph. = raphidophyte.  
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Figure 6: Distribution of taxonomically clustered metabolites and their biochemical processes. 

a) Distribution of targeted metabolites assigned to a phytoplankton via NMF. Metabolites were 

assigned to individual organisms if they had a feature contribution score at of at least 0.95. 

These metabolites are often highly abundant within one organism relative to other.  b) 

Branched chain amino acid metabolism within the raphidophyte, H. akashiwo. Both 3-methyl-2-

oxopentanoic acid and 4-methyl-2-oxopentaonic acid were assigned to the raphidophyte. These 

metabolites represent the degradation products of branched chain amino acids leucine and 

isoleucine, respectively. c) chitin metabolism within the coccolithophore G. oceanica. 

Glucosamine and fructose-6-phosphate were assigned to this organism from NMF analysis. The 

net concentration of Chitin anabolism metabolites was significantly depleted within P-stressed 

cells relative to replete (p < 0.05, Wilcoxon-test, n = 12). The net concentration of Chitin 

catabolism metabolites was significantly depleted within N-stressed cells relative to replete (p < 

0.05, Wilcoxon-test, n = 6). . – p < 0.1, * - p < 0.05, ** - p < 0.01, *** - p < 0.001.  
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Figure 7: Enrichment of pathways and compound groups under nitrogen and phosphorus stress. 

Effect size describes the magnitude of change between case-control comparisons, where 

positive values indicate enrichment and negative ones indicate depletion. . – p < 0.1 * - p < 

0.05, ** - p < 0.01, *** - p < 0.001. Abbreviations: PPP – pentose phosphate pathway.  
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4.6 Supplementary Material 

4.6.1 Supplementary Figures 

 

Supplementary Figure 1: Phytoplankton cell counts and relative fluorescent units (RFUs) under 

replete (R), P-stressed (-P), and N-stressed (-N) conditions. Error bars represent the standard 

deviation among triplicate measurements. We harvested cultures for metabolomics at the final 

measured timepoint of each growth curve, when nutrient stressed growth conditions diverged 

significantly from replete growth (ANOVA, p < 0.05, n = 3).  
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Supplementary Figure 2: Phytoplankton cell counts under replete (R), P-stressed (-P), and N-

stressed (-N) conditions at the final time point of sampling. Error bars represent the standard 

deviation among triplicate measurements. Difference in letters between bars signifies that 

measurements were significantly from one another (ANOVA, p < 0.05, n = 3).  
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Supplementary Figure 3: Distribution of network-based permutation test filtering metrics of (a) 

Pathway Overlap Probability and (b) Path Structural Isomer Coverage. We retained paths with 

scores greater than 0.9 for Pathway Overlap Probability and Path Structural Isomer Coverage, 

(dashed lines).  
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Supplementary Figure 4: Non-negative Matrix Factorization (NMF) of negative mode 

untargeted metabolomics features. (a) Each column vector contains weights describing the 

contribution of features within groups of samples. The NMF assigned sample groups based on 

taxonomic differences in an unsupervised manner. (b) Taxon specific features clustered via 

NMF groups by nutrient stress status. We determined the NMF’s rank using the cophenetic 

correlation. The scale is a log-transformed unitless representation of the original data 

determined following matrix factorization. We used a cophenetic correlation measure to define 

the rank of these matrices. Abbreviations: -N – nitrogen stress, -P – phosphorus stress, and R – 

replete.  
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Supplementary Figure 5: Measured phosphorus (a) and nitrogen (b) stress ratios. P-stress ratio 

(a) was formed from the measured concentrations of adenosine and adenosine 

monophosphate (AMP), while the N-stress ratio was formed from the measured concentrations 

of glutamine (Gln) and glutamate (Glu). Boxplots sharing a common letter are not significantly 

different from one another (p > 0.05). We only made comparisons across intra-organism stress 

samples.  
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Supplementary Figure 6: Distribution of targeted metabolite data across organisms. a) 

metabolites detected across organisms. Metabolite is counted if its measured concentration is 

above the limit of detection following QC. Distribution of significantly  different metabolites in 

N-stressed (b) and P-stressed (c) cultures relative to replete.  
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4.6.2 Supplementary Tables 

Supplementary Table 1: SRM transitions of validation compounds predicted by the network-

based permutation test. 

Target Parent Confirm Ion Quantification 

Ion 

Retention 

Time (s) 

Prostaglandin F2 alpha 353.13 309.313 193.249 6.7 

Prostaglandin E2 351.13 271.315 203.201 6.82 

15-Keto Prostaglandin F2 alpha 333.116 219.209 173.353 6.92 

Prostaglandin D2 351.13 271.315 189.243 7 

Prostaglandin A2 333.124 271.329 315.309 7.62 

N-Acetylserotonin 219.102 115.057 160.081 4.44 

Anthranilate 120.059 65.049 92.056 4.88 

6-Hydroxymelatonin 249.101 158.057 190.091 4.76 



 

 151 

Supplementary Table 2: AutoTuner derived parameters used to process untargeted 

metabolomics data through XCMS. 

Parameters Negative Positive 

Parts Per Million Mass Error 1.4 1.8 

Noise 900 7 

Prefilter Intensity 1419 135 

Prefilter Scan Count 2 2 

Signal-to-Noise Threshold 3 3 

Maximum Peak-width 48 108 

Minimum Peak-width 4 3 
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Supplementary Table 3: Feature counts following QC of processed data from both ionization 

modes. Pre-QC represents the total number of features following XCMS processing. Post Blank 

represents the total number of features following blank correction. Post CV (coefficient of 

variation) represents the total number of features after removing high variability features, i.e., 

those features whose intensity values had coefficients of variation above 0.2 across organism 

specific pooled samples. In 2 out of 3 samples represents the features occurring in only two out 

of three experimental replicates.  

   

QC Check Positive Mode Negative Mode 

Pre-QC 19124 28865 

Post Blank 17800 28133 

Post CV  11263 18158 

In 2 out of 3  samples 2564 4735 
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Supplementary Table 4: Distribution of organism specific features determined by NMF of 

untargeted metabolomics data. We used a relative basis contribution threshold of .99 (max 1) 

to assign features to individual organisms. Features within the column, No Organism, were not 

considered definitive for any organism. 

Ionization 

Mode 

Diatom Raphidophyte Coccolithophore Prymnesiophyte No Organism 

Negative 215 88 31 43 33 

Positive 258 81 111 74 76 
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Supplementary Table 5: Network-based permutation test quality filtering. Total significant 

paths represent the number of significant reaction paths determined by the network-based 

permutation test. Pathway overlap probability and structural isomer coverage rows represent 

the number of reaction paths retained after applying these filters.  

Filter Diatom Raphidophyte Prymnesiophyte Coccolithophore 

Total Significant Paths 12 14 11 7 

Pathway Overlap Probability 11 11 10 7 

Structural Isomer Coverage 11 11 10 7 
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Supplementary Table 6: Putatively identified compounds using METLIN-guided In-Source 

fragment Annotation (MISA) algorithm. The Feature Group column denotes the set of coeluting 

adduct ion species and in-source fragments mapped to available MS/MS spectra in METLIN to 

make putative identifications.  

Compound 

Fragments 

Matched 

Total 

Fragments 

Cosine 

Score 

Feature 

Group 

Leukotriene B 2 2 0.817 A 

Retinoate 2 5 0.809 B 

Leukotriene B 3 4 0.883 C 

PGD2 3 6 0.998 D 

PGE2 3 5 0.998 D 

PGH2 3 6 0.854 D 

PGD2 2 6 0.960 E 

PGE2 2 5 0.979 E 

PGH2 2 6 0.987 E 

5(S)-HpETE 2 4 0.880 G 

Leukotriene B 2 2 1.000 I 

13,14-dihydro-15-ketone PGE2 2 2 0.850 J 
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Supplementary Table 7: Characteristic mass shifts occurring across organisms. Each row 

represents a mass shift whose observed distribution was significantly different (p < 0.05, chi 

squared test) from random.  

Chemical 

Formula 

Reaction Diatom Prymnesiophyte Coccolithophore Raphidophyte 

C2H3NO Glycine 23 4 0 0 

C3H5NO Alanine 7 0 0 1 

C4H6N2O2 Asparagine 1 9 0 17 

C5H8N2O2 Glutamine 1 12 1 12 

C6H10O5 monosaccharide (-H2O) 5 5 3 15 

C6H11NO "Isoleucine, Leucine" 5 0 0 0 

O hydroxylation (-H) 17 28 2 5 

C5H8O4 D-Ribose (-H2O) 

(ribosylation) 

0 5 0 0 
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Supplementary Table 8: statistics of targeted data quality assurance. Each column is defined as 

follows: Targets detected in MAVEN – metabolites identified within MAVEN peak area 

integration software, Above LOD – metabolites with concentrations above the limit of 

detection, Passed CV Check – metabolites with a coefficient of variation below 0.4 across 

pooled samples, Constrained valid standard curve – metabolites with standard curves with R2 

values above 0.8 and 5 or more points in milliQ water, Constrained matched standard curve – 

metabolites with standard curves with R2 values above 0.8 and 5 or more points in matrix, 

Acceptable matrix effect – metabolites with measured matrix effects below 130, Dereplicated 

counts – total unique metabolites detected.  

Organism Targets 

Detected  

in Maven 

Above 

LOD 

Passed 

CV 

Check 

Contained 

Valid 

Standard 

Curve 

Matrix 

Matched 

Standard 

Curve 

Acceptable 

Matrix 

Effect 

Dereplicated 

Counts 

Diatom 184 171 165 161 34 5 117 

Prymnesiophyte 184 144 135 131 29 5 93 

Coccolithophore 189 173 171 163 31 3 118 

Raphidophyte 156 140 131 123 NA NA 94 
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Supplementary Table 9: Comparison of measured concentrations of sulfur metabolites to prior 

results [181]. Units – amol/cell. 

 
 
  

Compound Diatom 

(chaetoceros 

affinis) 

Coccolithophore Prymnesiophyte Previously 

Reported Diatom 

Previously 

Reported 

Haptophyte 

DHPS 5-20 1-5 <1-3 92-2146 341-715 

Cysteate <1 <1 <1 1-99 2-3 

Isethionate 600-1000 <1 <1 34626-99357 < 1 

Taurine <1-2 < 1 < 1 10-71 < 1 
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Chapter 5  

Conclusions 
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This thesis begins the journey of linking phytoplankton metabolism to physiology 

through a series of detailed culture studies. The results serve as a foundation to accomplish 

similar aims within in situ communities. Each individual chapter helps bridge the technical and 

biological gaps that have precluded these efforts in the past. This knowledge may serve future 

investigations within the fields of metabolomics data science [200], harmful algal bloom 

formation [5], phytoplankton community ecology [201], and global carbon cycling [32].  

Within the second chapter, I describe an algorithm, AutoTuner. I developed AutoTuner 

to facilitate the analysis of untargeted metabolomics data. More specifically, AutoTuner was 

designed to improve on existing data processing capabilities [116]. Prior to this, the existing 

solutions were computationally demanding, time consuming, and often inaccurate. Through the 

results of this chapter, I show that AutoTuner is robust, rapid, and trustworthy. This algorithm 

facilitated the analysis of data presented within chapters 3 and 4. The algorithm could be 

improved in many ways. For one, prior to running this algorithm, the user must perform a 

sliding window analysis on peaks within the mass chromatogram of individual samples. More 

sophisticated signal processing algorithms could automate this function, which would increase 

the scalability of the algorithm. Secondly, many practitioners of metabolomics include internal 

standards into their samples to ensure the fidelity of the mass spectrometry measurements and 

data processing. Perhaps AutoTuner could include a post-processing validation check on these 

peaks to automatically evaluate the fidelity of processing.  

Chapter 3 describes an analysis of metabolite and gene expression data to characterize 

the metabolism of the harmful algal bloom formatting raphidophyte Heterosigma akashiwo. 

Through this effort, I constructed conceptual models that describe how the metabolism of this 

organism responds to the acute shortage of nitrogen (N) and phosphorus (P) (nutrient stress). 

These models were dissimilar to previously reported models of N- and P-stress metabolism of 

diatoms and coccolithophores. Diatoms and coccolithophores are among the most well-studied 

phytoplankton. Our research suggests that additional studies evaluating the metabolisms of 

less-well studied phytoplankton groups would greatly expand on the known suite of stress 

response mechanisms. Understanding these responses is key to predicting, managing, and 

concluding harmful algal blooms [6, 13]. The presented results provide several impactful areas 
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for continued investigation. Firstly, there is strong similarity in the metabolism of H. akashiwo 

under P-stress and while it is within a cyst state. For example, H. akashiwo reduces 

triacylglyceride lipids as a cyst [202] and under P-stress [42]. A similar analysis to the one 

described within chapter 3 using encysted H. akashiwo cells would confirm this hypothesis. 

Secondly, we uncover several previously unrecognized responses to stress which may provide a 

fitness advantage to this organism and foster bloom formation. A high resolution 

metatranscriptomic and metabolomic analysis of an in situ H. akashiwo bloom could reveal 

whether these pathways improve organismal fitness prior, during, and post a bloom. 

Additionally, such field campaigns would help confirm the viability of the reported nutrient 

stress biomarkers presented within this chapter. The approach presented here may be readily 

adapted to study the metabolism of other harmful algal bloom forming phytoplankton, as it 

does not depend on the availability of a fully sequenced genome.  

 Finally, within the fourth chapter of this thesis, I reported the distinguishing adaptations 

and acclimations of four phytoplankton from three phyla. These differences are hypothesized 

to support the coexistence of these organisms through their unique impacts on physiology [19, 

31]. Through this effort, I found several examples of pathways and signaling molecules that 

appear within single organisms. I hypothesize that their occurrence may be due to organism 

specific adaptations. Additionally, I reported several examples of pathways that organisms use 

to acclimate to nutrient stress. Although most organisms contained each evaluated pathway, 

the response to stress often varied between them. This suggested that each organism performs 

their own acclimatory strategies to stress. These findings may be followed in several distinct 

ways to obtain a better understanding of phytoplankton community ecology and marine carbon 

cycle. First, the dynamics of the pathways we identified may be evaluated during experiments 

characterizing physiological behavior of unique phytoplankton group. For example, they could 

be explored for their roles in diatom aggregation [203], raphidophyte swimming [204], or 

coccolithophore sinking. A secondary avenue of further exploration involves the evaluation of 

the role of group-specific signaling compounds. Prior studies show that phytoplankton-derived 

marine signaling compounds may produce a systems level shift within sympatric bacteria [21, 

22, 88]. My study revealed several potential candidate molecules for future exploration. Finally, 
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a third area would be to check the efficacy of group specific stress markers to determine 

whether they can reveal in situ stress status. These results may provide valuable information 

for modelers predicting how an influx of timely nutrients would impact community structure 

and carbon sequestration.  

 Perhaps the most exciting area for continued research following this thesis would be the 

exploration of the causal factors driving the diatom-specific enrichment of prostaglandins. 

These molecules have long been studied for their role within various aspects of metazoan 

physiology from the initiation of inflammation, initiation of distinct disease states, and cell-to-

cell signaling [205]. In 2017, a study showed that the diatom Skeletonema costatum was 

capable of producing prostaglandins and contained prostaglandin biosynthesis genes similar to 

those in metazoa [206]. In subsequent work, these investigators have shown that the 

extracellular concentrations of these molecules within cultures of diatom Thalassiosira rotula 

peak upon the initiation of stationary growth phase when faced with silica limitation [158].  

Additionally, using genomic data mining approaches, they have posited that dinoflagellates are 

also capable of producing prostaglandins following the annotation of prostaglandin 

biosynthesis genes from reference transcriptomes [207]. Within this study, we show the first 

evidence that these molecules are also produced within a coccolithophore and a 

prymnesiophyte. Additionally, we expand on the range of known diatoms capable of producing 

prostaglandins, by confirming that diatom Chaetoceros affinis is capable of this function.  

 Interestingly, the concentrations of all measured prostaglandins were far higher in C. 

affinis than other phytoplankton under all growth media states. We hypothesize that these 

differences suggest that C. affinis is more likely to exude these molecules due to over-flow 

metabolism than other phytoplankton. If this is the case, then prostaglandins may serve 

diatoms as mediators of cell-to-cell signaling similar to metazoa. Within higher organisms, these 

molecules are known to trigger a transition in metabolic state, hence they may cause similar 

effects to whatever aquatic recipient is responding to their presence. Prior work suggests that 

these changes are driven by stress; hence such a metabolic change may be associated with an 

ecological strategy.  
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 Several possible follow-up experiments may determine whether prostaglandins trigger a 

metabolically driven change in physiology and if this process is ecologically relevant. First, there 

are many distinct prostaglandin molecules. Careful culture experiments may help narrow down 

the ones which most affect diatom physiology. Following this, observing how physiology 

changes with the addition of key prostaglandins followed by transcriptomic analyses may reveal 

the mechanisms driving the changes. An alternative strategy would be to mine existing datasets 

containing diatoms for either transcriptomic or metabolomic evidence that prostaglandin 

biosynthesis or availability increases with diatom population size. Such an approach would be 

more tractable than the experimental route, and could help facilitate targeted experiments. 

Understanding the impact of prostaglandins on a microbial community will be key to exploring 

their impact in higher community processes related to the physiology of diatoms.  

 My choice of prostaglandins as an interesting area of continued research is a little 

biased by the known role of these molecules in metazoa. Many other molecules and pathways 

identified here hold similar promise. Another example would be tryptamine, or the entire suite 

of molecules within tryptophan metabolism. These molecules were all enriched under stress 

within the prymnesiophyte culture described within chapter four. In general, such molecules 

feature a variety of functions ranging from growth [152], and cell-to-cell signaling [21], to 

antagonism [22]. Due to their increase under stress, we hypothesize that they may serve the 

studied prymnesiophyte in a similar manner. Perhaps the most tractable means of ascertaining 

this would be to evaluate available metatranscriptomics data that has been mapped to the 

prymnesiophyte described here. The expression of genes involved in this pathway may be 

normalized by other genes shown to denote nutrient stress status, like inorganic phosphate 

transporters [24], to determine within which areas of the ocean these genes are most likely to 

be engaged. Finally, considering which neighboring microbes correlate with pathway 

engagement may provide some testable hypotheses for which organism may respond to the 

increased availability of these molecules.  

 Together these findings help bridge our understanding of phytoplankton physiology and 

ecology by evaluating stress response through the lenses of biochemistry and metabolism. 

These results help advance several of the posited hypotheses during the beginning of this 
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thesis, either by directly providing knowledge towards their resolution or by providing a 

foundation to begin asking more targeted questions. In regards to bloom formation, we may 

consider the pathways level changes detected within H. akashiwo. Such changes may be 

considered while understanding how blooms occur and persist, while the approach may be 

adapted to study the bloom formation of other species. For coexistence, consider the distinct 

pathways detected by each phytoplankton described in chapter 4. Their metabolisms were 

highly dissimilar, along with their responses of stress. Perhaps these stress response pathways 

may serve as indicators of in situ stress status for these organisms. Determining whether an 

organism is experiencing phosphorus stress would certainly help improve forecasts of 

community structure to perturbations like the addition of dissolved phosphate from 

groundwater. This foundation of knowledge may be expanded to understand processes that 

take place on local and global scales. Moreover – I hope that these findings end up serving 

diverse stakeholders, thereby improving upon existing problems.  
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