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Abstract 

An emerging paradigm posits that the abyssal overturning circulation is driven by bottom-enhanced 
mixing, which results in vigorous upwelling in the bottom boundary layer (BBL) along the sloping 
seafloor and downwelling in the stratified mixing layer (SML) above; their residual is the overturning 
circulation. This boundary-controlled circulation fundamentally alters abyssal tracer distributions, 
with implications for global climate. 

Chapter 1 describes how a basin-scale overturning circulation arises from the coupling between 
the ocean interior and mixing-driven boundary layers over rough topography, such as the sloping 
flanks of mid-ocean ridges. BBL upwelling is well predicted by boundary layer theory, whereas the 
compensation by SML downwelling is weakened by the upward increase of the basin-wide strati 
fication, which supports a finite net overturning. These simulated watermass transformations are 
comparable to best-estimate diagnostics but are sustained by a crude parameterization of boundary 
layer restratification processes. In Chapter 2, I run a realistic simulation of a fracture zone canyon 
in the Brazil Basin to decipher the non-linear dynamics of abyssal mixing layers and their inter 
actions with rough topography. Using a hierarchy of progressively idealized simulations, I identify 
three physical processes that set the stratification of abyssal mixing layers (in addition to the weak 
buoyancy-driven cross-slope circulation): submesoscale baroclinic eddies on the ridge flanks, en 
hanced up-canyon flow due to inhibition of the cross-canyon thermal wind, and homogenization of 
canyon troughs below the level of blocking sills. Combined, these processes maintain a sufficiently 
large near-boundary stratification for mixing to drive globally significant BBL upwelling. In Chap 
ter 3, simulated Tracer Release Experiments illustrate how passive tracers are mixed, stirred, and 
advected in abyssal mixing layers. Exact diagnostics reveal that while a tracer’s diapycnal motion 
is directly proportional to the mean divergence of mixing rates, its diapycnal spreading depends on 
both the mean mixing rate and an additional non-linear stretching term. These simulations sug 
gest that the theorized boundary-layer control on the abyssal circulation is falsifiable: downwelling 
in the SML has already been confirmed by the Brazil Basin Tracer Release Experiment, while an 
upcoming experiment in the Rockall Trough will confirm or deny the existence of upwelling in the 
BBL. 

Thesis Supervisor: Raffaele Ferrari 
Title: Cecil and Ida Green Professor of Oceanography 
Massachusetts Institute of Technology 
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Chapter 1 

Introduction 

The inclusion of an eddy-conductivity, [𝜅], is a parametric way of including small scale 

vertical mixing processes into the theoretical model. Although this is a very common 

thing to encounter in the earlier oceanographical literature, it is a technique which 

present-day oceanographers are very reluctant to employ except as a last resort. 

Robinson and Stommel (1959) 

1.1 Background 

The abyssal ocean, though far removed from Earth’s atmosphere, plays a crucial role in modulating 

global climate. Its colossal mass and relatively high heat capacity allow it to store vast amounts 

of climatically-active tracers, such as heat, carbon, and nutrients (Sarmiento and Gruber, 2006). 

As forcing agents such as greenhouse gases and aerosols drive atmospheric changes, exchanges with 

this vast deep ocean reservoir tend to damp them1 (Schneider and Thompson 1981). For example, 

90% of the heat trapped by anthropogenic forcing agents in the atmosphere has been stored in the 

ocean (Levitus et al., 2012). Including also carbon uptake, the uptake of atmospheric tracers by the 

deep ocean slows the transient rate of atmospheric global warming by up to 30%, buying society 

more time for climate mitigation and adaptation (Figure 1-1; Drake et al. 2020b). In the absence 

of ocean mixing or circulation, these tracer exchanges would occur on an excessively long timescale 
(2000 m)2 

set by the slow rate of molecular diffusion, e.g. 𝜏 = 𝐻2/𝜅𝑀 = ≈ 1 Myr (for heat), 
1.4 × 10−7 m2/s 

much too slow to play an active role in modulating anthropogenic climate change. 

1Although these exchanges tend to have a damping effect in isolation, interactions between several tracers, coupling 
with atmospheric dynamics, and other complexities can result in various system instabilities, some of which support 
multiple physical climate equilibria (see the original Stommel 1961, or a modern review by Weijer et al. 2019). 
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Figure 1-1: Decomposing the global warming response (solid black line) to a hypothetical high-
emissions scenario (RCP-bollox; thick brown line) in a simple climate model (Drake et al. 2020b, 
based on Joos et al. 2013 and Geoffroy et al. 2012). The thin grey line (left axis) shows the 
hypothetical equilibrium response to the instantaneous radiative forcing in a given year (i.e. the 
adjustment due to atmospheric feedbacks alone). Including heat uptake in the deep ocean (thin 
red line) delays 20–40% of the warming, but does not change the eventual equilibrium warming. 
By contrast, carbon uptake by the deep ocean progressively depletes the atmospheric stock, such 
that its cooling effect grows over time (thin blue line). Carbon uptake by the terrestrial biosphere 
removes a slightly smaller fraction of the atmospheric carbon stock, further reducing the greenhouse 
effect and bringing the total warming down to its actual level of about 6 °C (solid black line). Due 
to the compensating time-dependencies of ocean carbon and heat uptake, global warming stops if 
and only if carbon emissions reach net-zero (dashed line). 

The observed rich spatial structure and temporal evolution of oceanic tracers, however, im 

plies the existence of strong mean flows and turbulence (Broecker and Peng, 1982). Meridional 

hydrographic sections across entire ocean basins, for example, reveal tongues of dense high oxygen 

(recently ventilated) waters that penetrate into the abyss (below a depth of 2000 m) off the coast 

of Antarctica and lose oxygen due to respiration as they flow northwards (Talley, 2013a). Since 

these abyssal density classes outcrop to the surface only in the Southern Ocean regions where they 

are formed (i.e., diapycnal downwelling), their equal and opposite destruction (i.e., diapycnal up 

welling) must occur within the abyss itself. A small fraction of this upwelling can occur due to 

geothermal heating, and is further modulated by interactions between isopycnal stirring and seawa 

ter’s non-linear equation of state (McDougall, 1989; Klocker and McDougall, 2010). The majority 

of abyssal waters, however, must be lightened by a mechanical process through which the fluid’s 

kinetic energy is converted into raising its potential energy (Winters et al., 1995). The most likely 
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energy source for mixing is turbulent breaking of internal waves, themselves ultimately sourced by 

some combination of astronomical tidal forcing, direct wind forcing, or topographic interactions 

with wind-forced geostrophic currents (Wunsch and Ferrari, 2004). High-mode internal waves break 

due to shear and gravitational instabilities; low-mode internal waves, on the other hand, can either 

break due to critical reflections at topography or can transfer their energy to unstable higher modes 

by topographic scattering and non-linear wave-wave interactions (see Whalen et al. 2020’s recent 

review of mixing by internal waves). While the detailed attribution of abyssal turbulence to the 

various energy sources remains an interesting unsolved problem, we are here most interested in the 

implications of the observed turbulence patterns for the large-scale overturning circulation; indeed, 

most of the theoretical arguments are agnostic as to the origin of abyssal mixing2 . 

Turbulent flows, such as those caused by breaking internal waves, distort tracer distributions 

𝜑 and thus modulate the tracer transport by larger-scale mean flows. In an integral sense, tur 

bulent advection (by u ′) enhances tracer gradients ∇𝜑 by orders of magnitude locally (turbulent 

production) and dramatically accelerates the rate at which tracer variance is destroyed by molecular 

diffusion (turbulent dissipation) relative to the laminar case (mean dissipation), 

−u ′ 𝜑 ′ · ∇𝜑 ≃ 𝜅𝑀 |∇𝜑 ′|2 ≫ 𝜅𝑀 |∇𝜑|2 , (1.1)⏟  ⏞ ⏟  ⏞ ⏟  ⏞ 
(turbulent production) (turbulent dissipation) (mean dissipation) 

where the overline represents an average over many turbulent events (e.g. as a spatial average over 

the scale of a climate model’s grid cell) and primes denote fluctuations away from that average. It 

is thus tempting to extend the molecular diffusion analogy to macroscopic scales and parameterize 

2It is nonetheless worth mentioning two alternate abyssal recipes which depart from the mainstream internal wave 
paradigm. Following Munk’s leading speculation of "boundary mixing", Armi (1978) posits that turbulent bottom 
boundary layer processes (e.g. shear instability induced by no-slip boundary condition)– produce the required mixing 
(e.g. Armi and D’Asaro, 1980; D’Asaro, 1982) and that their effect on scalars is then communicated to the interior by 
topographic separation or lateral eddy transport (see Armi, 1979a). Bryden and Nurser (2003) propose yet another 
version of the "boundary mixing" recipe, through which mixing associated with deep overflows over hydraulically 
critical sills (and associated hydraulic jumps) sequentially modify abyssal water properties and produce the observed 
abyssal stratification. While large mixing rates have indeed been observed surrounding the sills of several straits (e.g. 
Polzin et al., 1996; Alford et al., 2013), their total contribution to global watermass transformations have not yet 
been quantified. Neither of these processes explain the widespread in-situ observations (Waterhouse et al., 2014) of 
large dissipation rates that extend several hundreds of meters above rough topographic features (which could also be 
considered "boundary mixing"), whose dynamical characteristics are strongly suggestive of internal waves (Polzin, 
2004, 2009; Whalen et al., 2020; Lavergne et al., 2020). Thus, however important these additional poorly-quantified 
processes may be, they operate only in addition to the internal wave mixing that drives a net upwelling of 10–35 Sv 
(de Lavergne et al., 2016c) comparable to the 21–27 Sv of Antarctic Bottom Water that fills the global abyss from 
the Southern Ocean (Talley et al., 2003). 
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the mean turbulent tracer flux as an enhanced diffusion acting on mean tracer gradient3 , 

u ′ 𝜑 ′ ≈ −𝜅𝑇 ∇𝜑, (1.2) 

although the challenge is then to find the appropriate value of 𝜅𝑇 for the problem at hand. Since the 

turbulent diffusivity is the result of macroscopic turbulent flow properties, the same value is generally 

used for all tracers. Mixing by large-scale baroclinic eddies (or "stirring") is orders of magnitude 

stronger than the turbulent mixing described above, but is at leading order confined by stratification 

and planetary rotation to act along buoyancy surfaces (i.e. quasi-adiabatic) (Montgomery, 1940; 

Redi, 1982; Gent and McWilliams, 1990; Young, 2011); hereafter, I refer to small-scale mixing across 

buoyancy surfaces as "mixing" (𝜅𝑇 , hereafter just 𝜅) by "turbulence" and mixing along buoyancy 

surfaces as "stirring" by "eddies". Turbulent mixing is the star of this thesis, but we will find 

that "turbulence" and "eddies" are not independent of each other and must be considered together. 

The original theories of a mixing-driven abyssal circulation were developed by Stommel and his 

collaborators Arons and Faller (Stommel, 1957; Stommel et al., 1958; Stommel, 1958; Stommel and 

Arons, 1959a,b). Following the success of his upper-ocean theory for wind-driven gyres (Stommel 

1948, still considered to be generally correct), he describes a horizontal abyssal circulation in which 

abyssal water columns are stretched from above by mixing-driven upwelling 𝑤 at a depth 𝑧 (with 
def ∫︀ 𝑧

𝑤 = 0 at a flat seafloor 𝑧 = 0) and thus the vertically-integrated meridional flow 𝑉 ≡ 𝑣 d𝑧 must 0 

be polewards (𝑉 𝑓 ≥ 0) to conserve linear vorticity on a 𝛽-plane: 

𝛽𝑉 = 𝑓𝑤. (1.3) 

He also applies his ideas of western-intensification to the abyss, predicting the existence of frictional 

Deep Western Boundary Currents that would close this abyssal gyre circulation by connecting 

the localized origins of bottom water to their broadly distributed fate via upwelling. One of the 

major caveats of Stommel’s model is that the parameterized mixing rate is poorly justified, and is 

qualitatively tuned by fitting an early theory for the structure of the thermocline to observations 

(Robinson and Stommel, 1959). 

In his ground-breaking paper, Munk (1966) proposes a simple recipe to explain the relationship 

3Many have cautioned against relying on this poorly-justified parameterization, and have advocated for directly 
specifying the turbulent flux itself (e.g. Polzin, 2009); in practice, however, most existing parameterizing are only for 
thermodynamic tracer fluxes (e.g. buoyancy or temperature), such that parameterizing the flux of other tracers still 
makes use of the diffusive closure (e.g. Melet et al., 2013). 
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between the inferred upwelling of abyssal waters (required by conservation of mass to balance 

observed downwelling at high latitudes) and the observed deep ocean stratification: upwelling of 

dense water across buoyancy surfaces is balanced by mixing of buoyancy downwards, 

(︁ )︁
𝑤𝑏𝑧 = 𝜕𝑧 𝜅𝑏𝑧 . (1.4) 

Assuming a uniform upwelling 𝑤 and mixing 𝜅, this vertical advection-diffusion balance admits ex 

ponential solutions; given the exponential decay scale 𝛿 = 𝜅/𝑤 = 1000 m fit to observations, closing 

the abyssal overturning circulation with a globally-averaged upwelling 𝑤 ≃ 1 cm/day (inferred from 

the rate of dense water formation in the Southern Ocean), the recipe requires the now canonical4 

value of 𝜅 ≃ 10−4 m2/s (or 1 Munk). 

In the following decades, several methods for inferring in-situ oceanic 𝜅 values are developed (see 

brief review in Chapter 4.1) and the race is on to confirm or deny Munk (1966)’s required abyssal 

mixing rate. The most common approaches are indirect variance budget methods that estimate 

turbulent buoyancy fluxes based on microstructure (velocity shear and temperature variances) or 

finestructure (internal wave strain/shear) observables. Combined with a down-gradient closure (1.2) 

These indirect observations reveal small mixing rates of 𝜅 = 𝒪(0.1 Munks) in the deep interior and 

much larger mixing rates of 𝜅 = 𝒪(100 Munks) above rough abyssal topography, such as the mid-

ocean ridges (Polzin et al., 1997). This general pattern is qualitatively (but not quantitatively) 

confirmed by more direct estimates of the mixing rates from purposeful tracer release experiments 

(Ledwell et al., 1993, 2000), in which a filtered tracer equation is inverted to estimate the effective 

𝜅. These observations of bottom-enhanced mixing over rough topography are also consistent with 

bottom-up theories of internal wave generation, propagation, and breaking (MacKinnon et al., 2017; 

Whalen et al., 2020), which are commonly used to extrapolate estimates of mixing rates globally 

(St. Laurent and Garrett, 2002; Polzin, 2009; Lavergne et al., 2020). 

Combined with hydrographic measurements of the buoyancy field, three-dimensional maps of 

mixing rates provide estimates of the turbulent vertical buoyancy flux divergence, which is thought 

to dominate the total turbulent flux divergence because density surfaces are relatively flat outside 

of thin boundary layers. In steady state, these estimates of diabatic forcing by turbulent mixing 

are directly related to the velocity normal to a buoyancy surface, which can be integrated over 

buoyancy surfaces to estimate large-scale cross-buoyancy (or "diapycnal") transports (Marshall 

4The mixing rate estimated by Robinson and Stommel (1959)’s thermocline theory and used to force Stommel 
and Arons (1959b)’s abyssal circulation model was remarkably similar at 0.85 Munks. 
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et al., 1999). While observed buoyancy flux profiles generally appear to increase towards to the 

bottom in the abyssal ocean (at least where they are large over rough topography St. Laurent et al., 

2001; Waterhouse et al., 2014), the buoyancy flux must go to zero within a thin bottom boundary 

to satisfy the insulating bottom boundary condition (Ferrari et al., 2016); the resulting net diabatic 

abyssal overturning circulation is the small residual of vigorous upwelling in the Bottom Boundary 

Layer (BBL) and a partially-compensating downwelling in the Stratified Mixing Layer (SML) above. 

Like Munk’s original balance, this watermass transformation framework is a useful diagnostic tool 

(Walin 1982; see also recent review by Groeskamp et al. 2017): given the mixing and stratification, 

one can diagnose the diapycnal transport (Ferrari et al., 2016; McDougall and Ferrari, 2017); given 

the stratification and diapycnal transport, one can invert for the mixing (Holmes et al., 2018). 

1.2 The problem 

The modern conceptual model of the abyssal circulation, described above, has emerged largely from 

diagnostic studies5 (McDougall, 1989; Klocker and McDougall, 2010; Ferrari et al., 2016; de Lavergne 

et al., 2016b; McDougall and Ferrari, 2017; Holmes et al., 2018); reliable reconstruction of past cir 

culations or prediction of future circulations, however, requires prognostic dynamical models. Fol 

lowing Stommel (1958) and Munk (1966), most idealized dynamical models of an abyssal circulation 

driven by boundary mixing assume flat bottoms and vertical sidewalls (Marotzke, 1997; Scott and 

Marotzke, 2002; Samelson, 1998; Callies and Marotzke, 2012); whether these models parameterize 

boundary-enhanced mixing as a horizontal enhancement towards the sidewalls or vertical enhance 

ment towards the flat bottom, they result in unrealistic boundary flows and interior stratifications 

(Mashayek et al., 2015). Another approach has been to generalize Stommel (1958)-like models to 

allow both the direct effects of mid-ocean ridge topography on the flow and indirect effects such as 

enhanced mixing-driven upwelling; the resulting one-and-a-half or two-layer systems, however, do 

not resolve both the bottom-enhancement of the diffusivity (driving downwelling) and the buoyancy 

flux convergence in the BBL (driving upwelling) (Spall, 2001; Andersson and Veronis, 2004; Marchal 

and Nycander, 2004; Katsman, 2006). 

Recognizing the importance of the sloping sidewalls, Ferrari et al. (2016) simulate the flow 

5In my opinion, this kinematic approach has dramatically overemphasized the role of "hypsometric" effects in 
controlling the abyssal circulation. For example, de Lavergne et al. (2016c) and de Lavergne et al. (2017)’s claims that 
the "incrop area" drives the net diabatic overturning gives the impression that the overturning is set by topography 
(effectively fixed), while in reality incrop areas vary largely due to changes in the stratification (a prognostic variable, 
which itself varies in response to the buoyancy flux). 
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in a bowl-shaped basin with a circumpolar channel in the South and force an abyssal circulation 

with a prescribed bottom-enhanced turbulent buoyancy flux profile (which goes to zero over the 

bottom few hundred meters to satisfy the no-flux bottom boundary condition). The simulated 

overturning features a realistic abyssal stratification and overturning circulation, which is the result 

of broad downwelling in the interior SML and upwelling along the sloping BBLs on the sidewalls 

of the basin. However, the imposed buoyancy flux (inspired by observations) is fixed, omitting 

the influence of stratification on the buoyancy flux and thus effectively prescribing the anticipated 

diabatic overturning. Neverthless, the qualitative consistency of the solution with observations 

demonstrates that sloping sidewalls are a key element of the abyssal circulation. Callies and Ferrari 

(2018b) run similar– but even more idealized– simulations where they instead prescribe the bottom-

enhanced diffusivity, and allow both the buoyancy field and turbulent buoyancy flux to co-evolve. 

The resulting circulation is similar to that described by Ferrari et al. (2016), although the emerging 

sloping boundary layer flows are now prognostic, well-resolved by their use of terrain-following 

coordinate, and can be qualitatively (but not quantitatively) understood using classical sloping 

boundary layer theory6 . 

Sloping boundary layer theory is an idealized framework for studying the dynamics of rotating 

and stratified flows along an infinitely sloping seafloor, which can be arise either through mixing 

("spin-up") or in response to an imposed along-slope external flow ("spin-down" or "Ekman arrest") 

(see review by Garrett et al., 1993). In the classical "spin-up" problem, which I focus on in this 

thesis7, turbulent mixing forces buoyancy surfaces to plunge downwards to meet the insulating ("no 

flux") boundary condition at the seafloor. The resulting buoyancy force drives a flow up the slope, 

which is known as the "secondary" circulation (where "primary" circulation refers to the along-slope 

flow). Callies and Ferrari (2018b) argue that the strength of the net overturning circulation in their 

three-dimensional general circulation model is well-predicted by one-dimensional sloping boundary 

layer dynamics. Extrapolated to the global ocean, these boundary layers produce a realistically large 

net overturning circulation (and BBL upwelling and SML downwelling consistent with diagnostic 

estimates of watermass transformations). 

Mixing only drives efficient watermass transformations if it acts upon stratified water; paradox 

6Huang and Jin (2002) describe similar simulations (restricted to just the Brazil Basin), although their realistic 
configuration obscures the fundamental aspects of the circulation and does not resolve the thin bottom boundary 
layers on the mid-ocean ridge. 

7See a discussion of the role of "spin-down" and the competition between "spin-up" and "spin-down" in Outlook 
Section 5.3. For a quite different but complementary discussion of sloping boundary layers in the coastal ocean 
context, see (Trowbridge and Lentz, 2018). 
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ically, however, these watermass transformations also tend to homogenize stratified water. What, 

then, maintains the strong near-bottom stratification that sustains large watermass transformations 

at equilibrium? The restratification dynamics of sloping bottom boundary layers is a particularly 

controversial topic (Armi, 1978; Garrett, 1979; Armi, 1979b; Garrett, 1990; Callies, 2018). A number 

of processes are known to affect the near-boundary stratification: the cross-slope8 "secondary" cir 

culation (Garrett, 1990), restratification by bottom-intensified submesoscale baroclinic instabilities 

(Wenegrat et al., 2018; Callies, 2018), and the inhibition of along-slope momentum by narrowly-

separated canyon walls (Dell, 2013; Ruan and Callies, 2020). However, the detailed dynamics and 

relative importance (both regionally and globally) of these processes are poorly understood. Prob 

lematically, all of these processes also occur well below the grid scale of global circulation models, 

so their effects are thus either omitted or must be parameterized. 

Callies and Ferrari (2018b)’s conceptual and numerical model of the abyssal overturning circu 

lation, and their interpretation of it in terms of sloping boundary layer theory, though enticing, is 

vulnerable to four major criticisms: 

1. One-dimensional boundary layer theory predicts a vanishingly small net up-slope transport of 

𝜅BG cot 𝜃𝐿 ≈ 0.5 Sv (for weak background mixing rates of 𝜅BG = 10−5 m2/s and typical mid-

ocean ridge slopes of tan(𝜃) = 2 × 10−3), unrealistically confining finite transformations to 

the base of the mid-ocean ridge where the compensating SML downwelling vanishes. 

2. Their predictive model relies upon a poorly-justified parameterization of friction, a placeholder 

for "the more complicated and incompletely understood turbulent dynamics of real boundary 

regions" that act to maintain a realistic near-bottom stratification. 

3. While they parameterize the indirect effects of rough topography on mixing by breaking 

internal waves, they do not account for direct effects of multi-scale topographic roughness– 

such as steering and blocking– on the boundary layer flows themselves, which are evident from 

both observations (Armi, 1978; Ledwell et al., 2000; Thurnherr and Speer, 2003) and previous 

modelling studies (Ruan and Callies, 2020; Dell and Pratt, 2015). 
8Terminology: Throughout the thesis I follow the convention of sloping boundary layer theory (Garrett et al., 

1993) in referring to the direction parallel to the large-scale topographic slope as "cross-slope", the direction normal 
to the local topographic tangent-plane as the "slope-normal", and the third orthogonal direction is the "along-slope" 
direction. In general, the large-scale slope refers to the slope of mid-ocean ridges and I thus occasionally use the 
terms "cross-ridge" or "along-ridge". In Chapter 3, I re-introduce smaller-scale topographic features such as fracture 
zone canyons; it is important to note that the "cross-slope" direction refers to the large-scale slope of the mid-ocean 
ridge, and not necessarily the local "cross-isobath" direction, which is scattered by the rough topography. Since 
fracture zone canyons are typically oriented perpendicular to mid-ocean ridges, I instead refer to the "along-canyon" 
(≡cross-ridge) and "cross-canyon" (≡ along-ridge) directions to avoid confusion (Thurnherr et al., 2005). 
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4. The main prediction of the theory– vigorous mixing-driven diapycnal upwelling in the BBL– 

is not yet falsifiable with available observations. 

These criticisms of the emerging theory of boundary layer control on the abyssal 

circulation present major open questions; they also provide a blueprint for this thesis. 

A first goal of this thesis is thus to understand how abyssal mixing layers couple with the 

large-scale circulation to support a finite diabatic overturning at equilibrium. A second goal is 

to clarify the processes that maintain a sufficiently strong near bottom stratification to support 

substantial upwelling in the BBL. A third goal is to extend ideas from large-scale models and 

sloping boundary layer theory to account for the characteristic topographic roughness of mid-ocean 

ridges (both abyssal hills and fracture zone canyons). An overarching fourth goal is to unify the 

three largely independent approaches to the abyssal mixing problem discussed above: 1) global 

watermass transformation diagnostics, 2) in-situ observations of mixing, stratification, currents, and 

tracer transport along the Mid-Atlantic Ridge in the Brazil Basin, and 3) sloping boundary layer 

theory. As described above, several of these past approaches to mixing-driven abyssal upwelling are 

(at least superficially) in direct conflict (e.g. sloping boundary layer flows appear too weak to sustain 

the observed near-bottom stratification and the inferred watermass transformations), hindering the 

development of a consensus view and slowing progress. 

The problem is perhaps best illustrated by marrying two of Walter Munk’s analogies (Munk, 

1966; Munk and Wunsch, 1998): most approaches to the abyssal mixing problem are like trying to 

bake an apple pie using oranges, apple-sauce, or an generic spherical fruit; below, I present progress 

towards a more coherent and comprehensive abyssal recipe. 

1.3 The thesis statement 

Together, the thesis paints a revised conceptual picture of the mixing-driven abyssal overturning 

circulation (Figure 1-2) that is dynamically self-consistent (and at least qualitatively consistent 

with available observations). Dense bottom waters form at high latitudes and fill the global abyss 

via Deep Western Boundary Currents (DWBC) (Stommel, 1958). These bottom waters then flow 

adiabatically (and geostrophically) across the abyssal plains towards regions of rough topography 

(e.g. mid-ocean ridges), where bottom-enhanced mixing causes buoyancy to converge within a 

thin bottom boundary layer, driving diapycnal upwelling of ℰBBL = 𝒪(20 to 50 Sv). However, 

this diapycnal upwelling is partially offset by an interior downwelling of ℰSML = −𝒪(10 to 40 Sv), 
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resulting in a net overturning of ℰ = ℰBBL + ℰSML = 𝒪(10 to 30 Sv). The average water parcel 

experiences this net diabatic upwelling as it transforms from Bottom Water into lighter Deep Water. 

The newly formed Deep Water then flows adiabatically back towards the west, where a frictional 

DWBC allows a return flow towards the Southern Ocean9. In the Antarctic Circumpolar Current, 

a combination of winds and mesoscale eddies upwell the deep water adiabatically to the surface 

along sloping isopycnals (Wolfe and Cessi, 2011; Marshall and Speer, 2012), at which point surface 

buoyancy fluxes close the abyssal loop by transforming the deep waters back into bottom waters 

(or lightening the waters and connecting the abyssal cell to the North Atlantic Deep Water cell of 

the overturning, as described by Talley 2013a and Tamsitt et al. 2018). 

The magnitude of BBL upwelling ℰBBL is set by the minimum of the vertical buoyancy flux profile 

𝐹(𝑧) ≈ −𝜅𝑏𝑧 , or, for a fixed bottom-enhanced diffusivity profile, the vertical structure of the strat 

ification within a few hundred meters of the boundary where diffusivities are large. Mixing tends 

to homogenize mixing layers but also produces buoyancy forces that drive a "secondary" up-slope 

circulation; while sloping boundary layer theory predicts that this cross-slope advection maintains 

a non-zero stratification at equilibrium, the corresponding watermass transformations are too small 

to contribute significantly to the abyssal overturning circulation. Three-dimensional submesoscale 

baroclinic eddies and topographic steering/blocking effects, however, conspire to maintain a suffi 

ciently large stratification of 𝑏𝑧 = 𝒪(10−7s−2) to support the inferred ℰBBL. The net overturning ℰ , 
on the other hand, depends largely on the degree of compensation by diabatic downwelling ℰSML in 

the SML above. Since the SML’s buoyancy flux divergence is spread over a much thicker 𝒪(1000 m) 

outer layer and is thus locally weak, it is more susceptible to being modified by coupling with the 

large-scale circulation. In particular, increases in the basin-wide stratification with height (or buoy 

ancy) significantly reduce the buoyancy flux divergence in the SML (relative to that predicted by 

sloping boundary layer theory), allowing a finite net overturning ℰ at all depths. 

In each Chapter, I compare my models against available observations. The simulated basin-

scale overturning driven by bottom-enhanced mixing along a rough mid-ocean ridge is qualitatively 

consistent with available diagnostic estimates for similarly-sized regions in each ocean basin (Chapter 

2, Figure 2-12). Similarly, the simulated overturning circulation in a small sub-region of the Brazil 

Basin is quantitatively consistent (within a factor of 2) with observations of the fracture zone 

canyon’s stratification, up-canyon mean flows, and the diapycnal transport and diapycnal spreading 

9Of course, such watermass transformations also occur within DWBCs and the Southern Ocean as long as there is 
substantial mixing, as has been observed in a Southern Ocean DWBC just downstream of a Bottom Water formation 
site (Garabato et al., 2019; Spingys et al., 2021). 
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of a purposefully released inert chemical tracer (Chapters 3 and 4). My theoretical and simulation 

results from Chapter 4 suggest that observations of the tracer-weighted buoyancy tendency from the 

on-going Bottom Boundary Layer Turbulence and Abyssal Recipes field campaign should provide 

a reasonable estimate of the buoyancy velocity; a large positive value would be strong supporting 

evidence for the ideas in this thesis10 . 

1.4 Structure of the thesis 

1.4.1 Chapter 2: basin-scale dynamics 

In Chapter 2, I use Callies and Ferrari (2018b)’s Planetary Geostrophic Circulation Model (PGCM) 

to configure the simplest possible model of a mixing-driven basin-scale abyssal overturning cir 

culation. To capture the leading order spatial patterns of deep ocean mixing (e.g. the famous 

Brazil Basin zonal section from Polzin et al. 1997), I impose a weak background diffusivity of 

2.5 × 10−5 m2/s in the interior and over the smooth continental slopes and abyssal plains, but im 

pose a strongly bottom-enhanced profile over a rough mid-ocean ridge. A simple Rayleigh drag 

parameterization on the horizontal velocity maintains a realistically large stratification in the mix 

ing layers and substantially thickens the BBL, allowing them to be resolved by the terrain-following 

discretization. Using a constantly-stratified initial condition, the initial spin-up of the 3D model 

is reasonably emulated by a mosaic of 1D boundary layer models. As predicted by 1D theory, the 

solution exhibits large BBL upwelling at all depths and almost-as-large SML downwelling above, 

such that net watermass transformations are vanishingly small except at the base of the mid-ocean 

ridge, where there is no SML to compensate for the convergence in BBL. 

Eventually, the imposed mixing would homogenize the whole basin; to allow a non-trivial solution 

at equilibrium, I add a restoring term to the buoyancy field in the Southern region of the model, 

a crude parameterization for the transformation of deep waters back into bottom waters in the 

Southern Ocean. As time evolves, initially small cross-ridge convergences drive exchanges with 

the interior ocean, and the basin-wide stratification begins to drift. This coupling between the 

interior and mixing layers results in a basin-wide equilibrium stratification that increases with 

height and reduces the buoyancy flux divergence in the SML, allowing a realistically large net 

watermass transformation over the full vertical extent of the mid-ocean ridge. Basin-wide watermass 

10Rumor has it that shortly before the final submission of this thesis, the fluorescent dye released in the BBL 
at more than 1500 m did indeed rapidly upwell across buoyancy surfaces, roughly consistent with observations of 
vigorous turbulent mixing. 
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In Chapter 3, I describe the structure of the mixing-driven cross-slope mean flow, its strat 

ification, and its finite-amplitude instabilities. Both watermass transformations analysis and a 

generalized slope-normal buoyancy budget reveal that the maintenance of a strong near-bottom 

stratification allows efficient mixing to drive much larger BBL upwelling than implied by 1D bound 

ary layer dynamics (both within the fracture zone canyon and on the surrounding ridge flanks). 

Using a series of mechanism denial experiments in a hierarchy of progressively idealized simula 

tions, I identify the three leading-order restratification processes: 1) slumping of isopycnals by 

finite-amplitude submesoscale baroclinic instabilities (Wenegrat et al., 2018; Callies, 2018); 2) the 

blocking of rotational effects within narrow fracture zone canyons (Thurnherr and Speer, 2003; 

Dell, 2013; Ruan and Callies, 2020); and 3) the effect of sills in blocking up-canyon mean flows and 

homogenizing depressions below the sill height (Winters and Armi, 2012; Dell, 2013). 

In Chapter 4, I use this quasi-realistic regional model configuration to simulate the Brazil Basin 

Tracer Release Experiment (BBTRE), in which an inert chemical tracer was injected in the SML 

and its evolution was traced over several years. I apply a recently developed tracer-weighted buoy 

ancy moment approach (Ruan and Ferrari, 2021) to exactly attribute the mean diapycnal transport 

and diapycnal spreading of the tracers to the underlying mixing-driven diabatic forces. A surprising 

result is that non-linear diapycnal stretching effects in this experiment are not important for interior 

releases due to almost perfect compensation by stretching in the SML and contraction by boundary 

suppression (such as in the BBTRE), but can be as large as the straightforward diapycnal diffusion 

effect for near-bottom releases. Transiently, I find that diapycnal diffusion of a tracer can counter 

intuively cause net diapycnally contraction. I show that the simulated downwelling and diapycnal 

spreading of the BBTRE tracer is quantitatively consistent with the tracer evolution observed by 

Ledwell et al. (2000). I also simulate a tracer released directly in the BBL and another released 

roughly at the height of the crests of the canyon flanks, roughly at the expected transitional bound 

ary between buoyancy convergence (diabatic upwelling) and divergence (diabatic downwelling). The 

tracer-weighted moments of the three tracers (in principle observable) provide reasonable quantita 

tive estimates of four key mixing layer quantities: the upwelling buoyancy velocity in the BBL, the 

downwelling buoyancy velocity in the SML, and the in-situ height-above-bottom-averaged diffusivity 

profile (except in the BBL where diapycnal stretching dominates). 

23
 



24
 



Chapter 2 

Abyssal circulation driven by near-boundary 

mixing: water mass transformations and interior 

stratification 

This work is now published as Drake et al. (2020a) in the Journal of Physical Oceanography, © 

American Meteorological Society. Used with permission. 

2.1 Motivation 

The abyssal ocean, below 2500 m, is a massive reservoir for climatically active tracers such as carbon 

and heat. The rates at which heat is mixed and advected into the high capacity abyssal ocean are 

key parameters in understanding both past climate reconstructions (e.g. Toggweiler et al., 1989) 

and future projections of climate change (e.g. Hansen et al., 1985). Similarly, the partitioning of 

carbon between the deep ocean and the atmosphere is a major factor on millennial-scale climate 

change, whether natural (e.g. Sarmiento and Toggweiler, 1984) or anthropogenic in origin (Archer 

et al., 1998). It is thus vital to have a firm phenomenological and dynamical understanding of the 

abyssal ocean’s mean state. 

The general structure of the abyssal ocean circulation is easily inferred from surface buoyancy 

fluxes and large-scale tracer properties (Sverdrup et al., 1942). Antarctic Bottom Waters, the 

densest oceanic waters, form in the Southern Ocean and fill the global abyssal oceans up to a depth 

of about 2500 m (Talley, 2013a). They outcrop at the surface only in the Southern Ocean, where they 

experience a significant area-integrated buoyancy loss (Abernathey et al., 2016) and are converted 

back into lighter waters by mixing with lighter overlying waters, resulting in a diabatic abyssal 
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overturning circulation of 𝑂(15 Sv), where 1 Sv = 106 m3s−1 . Non-linearities in the equation of 

state of seawater and geothermal heating at the seafloor are thought to play secondary roles in 

shaping this circulation (Emile-Geay and Madec, 2009; de Lavergne et al., 2016b) and will be 

ignored in the conceptual models described below. 

Classical theories for the abyssal ocean describe the steady state circulation and stratification of 

a flat-bottom ocean forced by uniform turbulent mixing (Stommel, 1957; Robinson and Stommel, 

1959; Stommel and Arons, 1959b,a; Munk, 1966). These theories remain pedagogically useful, but 

are at best qualitative descriptions, as demonstrated for example by the fact that the direction of the 

flow in the Stommel and Arons (1959b) solution changes sign when a sloping seafloor is introduced 

(Rhines, 1993) and that the Munk (1966) solution does not satisfy the no-flux boundary condition 

at the seafloor. The classical view of a uniform mixing-driven upwelling is further challenged by 

the observation that turbulent mixing is typically bottom-enhanced over rough topography (see 

MacKinnon et al. 2017 for a recent review), reversing the sign of the vertical flow implied by the 

interior ocean vertical density balance (Polzin et al., 1997; Ferrari et al., 2016). 

Since Munk (1966), several approaches have been taken to address the limitations of classical 

theories. First, boundary layer theories (Wunsch, 1970; Thorpe, 1987; Garrett, 1990; Thompson 

and Johnson, 1996) arose to elucidate the local behavior of mixing-induced flow along a sloping 

and insulating sea floor. Second, the limitations of the Stommel and Arons (1959b) theory in 

spired a number of extensions to account for baroclinic structure (Kawase, 1987; Pedlosky, 1992), 

non-uniform seafloor depth (Rhines, 1993), and/or non-uniform turbulent diffusivities 𝜅 (Marotzke, 

1997; Samelson, 1998). Third, the observation of bottom-enhanced mixing motivated the devel 

opment of progressively more sophisticated parameterizations of vertical (or diapycnal) turbulent 

diffusivities (Bryan and Lewis, 1979; St. Laurent and Garrett, 2002; Polzin, 2009; Lavergne et al., 

2020) which have been subsequently implemented into general circulation models (Huang and Jin, 

2002; Jayne, 2009; Melet et al., 2016; Boucher et al., 2020). Fourth, the conundrum of interior down-

welling implied by bottom-enhanced mixing was resolved by applying the watermass transformation 

framework to a downwelling interior layer of turbulent buoyancy flux divergence and an upwelling 

bottom boundary layer of turbulent buoyancy flux convergence, respectively (Ferrari et al., 2016; 

de Lavergne et al., 2016c; McDougall and Ferrari, 2017). Despite the direct relevance of all of these 

approaches to the abyssal circulation1, there has been little work done to unify them into a general 

1Regional heat budgets and inverse models have also been used to estimate mixing rates and overturning circula 
tions from available observations (Hogg et al., 1982; Ledwell et al., 2000; St. Laurent et al., 2001; Morris et al., 2001), 
and deserving mentioning. While we do not engage much with this ideas in this Chapter, we revisit them in detail in 
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theory of the abyssal circulation and stratifcation. 

Building on the framework introduced by Callies and Ferrari (2018b) (hereafter, CF18), we 

present a unified prognostic model of the circulation in an abyssal basin forced by bottom-enhanced 

mixing along a mid-ocean ridge. We modify the geometry, buoyancy forcing, and initial condition of 

the CF18 model to include the effects of a smooth mid-ocean ridge (with the effects of local roughness 

parameterized by bottom-enhanced mixing) and of a non-uniform background stratification on the 

circulation. Our approach is to formulate the simplest possible model which captures what we 

believe to be the key aspects of the problem: 1) the transformation of abyssal bottom waters 

into relatively lighter deep waters by bottom-enhanced mixing on the flanks of a mid-ocean ridge, 

2) frictional processes acting on boundary currents, 3) restratification of abyssal mixing layers by 

baroclinic turbulence (crudely parameterized as a linear drag on the horizontal flow), and 4) bottom 

water formation in the Southern Ocean. 

The general structure of the abyssal circulation that emerges from the model consists of layered 

deep western boundary currents along the western continental slope which are connected by zonal 

flows to watermass transformations driven by bottom-enhanced mixing along a mid-ocean ridge, as 

schematized in Figure 2-1. The evolution of the interior stratification and the mixing layer watermass 

transformations are coupled by slope-normal exchange flows, with the vertically-varying equilibrium 

stratification being determined by a combination of the mixing layer dynamics and the formation 

of dense waters in the south. Finite net watermass transformations arise ubiquitously along the 

flanks of the mid-ocean ridge, supported by vertical variations in the interior stratification, such 

that the crest of the mid-ocean ridge determines the vertical extent of the abyssal overturning cell, 

in contrast to a previous constant-stratification interpretation in which finite net transformations 

are confined to the base of topographic slopes (CF18). 

The paper is structured as follows. Section 2.2 reviews the results of several theories of abyssal 

stratification and circulation in the literature. Section 2.3 presents the formulation of the Planetary 

Geostrophic Circulation Model (PGCM) used to produce the simulation results presented in the 

paper. Section 2.4 describes the general structure of the abyssal circulation as it emerges in the 

PGCM. In Section 2.5 we use local solutions to the one-dimensional boundary layer equations to 

emulate the three-dimensional abyssal circulation in the PGCM. Section 2.6 describes the spin-up to 

equilibrium of the vertical structure of abyssal interior stratification and its influence on watermass 

transformations. Section 2.7 compares watermass transformations in our PGCM simulations with 

Chapters 3 and 4. 
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2.2 Theoretical Background 

2.2.1 Classical theories of abyssal stratification and circulation 

Modern theories of the abyssal circulation begin with a series of papers by Stommel and Arons 

(1959b,a). In their theory, the circulation of a homogeneous abyssal layer is fed by high-latitude 

sources of abyssal water (diabatic downwelling) and driven by a uniformly-distributed sink (diabatic 

upwelling) of abyssal water. A uniform upwelling across the base of the thermocline is prescribed, 

inspired by the thermocline-thermohaline theory of Robinson and Stommel (1959). Munk (1966) 

further simplifies the Robinson and Stommel (1959) balance by restricting his attention to the deep 

ocean (i.e. below the thermocline) and by considering only vertical advection and diffusion, 

𝑢𝑧 𝜕𝑧 𝑏 = 𝜕𝑧 (𝜅𝜕𝑧 𝑏) , (2.1) 

where 𝑏 is buoyancy, 𝑢𝑧 is a uniform vertical velocity, 𝜅 is a uniform turbulent diffusivity. The Munk 

formulation allows exponential solutions which can be fit to the observed temperature profiles and 

combined with fits of an advection-diffusion-decay equation to radiocarbon profiles to yield the 

canonical estimate of deep ocean mixing 𝜅 ≃ 10−4 m2s−1 for a uniform upwelling of 𝑢𝑧 = 1.4 × 10−7 

m/s. 

The horizontal abyssal circulation associated with the upwelling is described by Stommel and 

Arons (1959b,a): interior flow is geostrophically-balanced and its meridional component 𝑢𝑦 is driven 

by vortex stretching, as shown by the vertically-integrated planetary-geostrophic vorticity balance 

𝑢𝑧 
0𝛽 𝑈 𝑦 = 𝑓 , (2.2)
𝐻 

where 𝐻 is the thickness of the abyssal layer, 𝑢𝑧 > 0 is the upwelling across the base of the 0 

thermocline, 𝑓 is the Coriolis parameter, 𝛽 > 0 is the meridional gradient of the Coriolis parameter, 

and the vertically-integrated flow 𝑈𝑦 is thus poleward in both hemispheres (see Pedlosky 1996 for 

an elucidating derivation). Inspired by the success of analogous theories for the wind-driven gyre 

circulation (Stommel, 1948), Stommel and Arons (1959b,a) suppose the existence of a deep western 

boundary current in which frictional effects allow the current to deviate from geostrophy and return 

the interior flow such that the abyss conserves mass. 
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2.2.2 Turning ocean mixing upside down 

The Stommel and Arons (1959b,a) and Munk (1966) theories rely on the existence of a uniform 

turbulent diffusivity 𝜅 ≃ 10−4 m2s−1, roughly an order of magnitude larger than the interior ocean 

mixing inferred from observations (Gregg, 1989; Ledwell et al., 1993). While sufficiently vigorous 

mixing was eventually discovered deeper in the ocean near rough seafloor topography (Polzin et al., 

1997; Ledwell et al., 2000; Sheen et al., 2013), the abyssal mixing problem only became more 

complicated: applying the vertical advection-diffusion balance (eq. 2.1) point-wise to mixing profiles 

𝜅(𝑧)𝜕𝑧𝑏 that increase with depth implies diapycnal downwelling 

𝑢𝑧 = (𝜕𝑧 𝑏)
−1𝜕𝑧 (𝜅𝜕𝑧 𝑏) < 0, (2.3) 

in contrast to the diapycnal upwelling required to balance diapycnal downwelling at high latitudes2! 

This apparent conundrum is resolved by considering the insulating boundary condition at a 

sloping seafloor, which causes buoyancy convergence and hence diapycnal upwelling in a thin bottom 

boundary layer (Polzin et al., 1997; Ferrari et al., 2016; de Lavergne et al., 2016c). In this framework, 

the abyssal overturning is the net effect of downwelling driven by bottom-enhanced mixing in a 

stratified mixing layer and upwelling driven by buoyancy convergence in a bottom boundary layer, 

which we collectively refer to as abyssal mixing layers (CF18). 

2.2.3 A puzzling constraint from boundary layer theory 

Bottom boundary layer theory (see review of Garrett et al., 1993) is a useful dynamical approach 

to the problem of flow driven by near-boundary mixing on a slope, which exerts a strong control on 

the basin-scale abyssal circulation (CF18). Following Thorpe (1987), who built on the approaches 

of Wunsch (1970) and Phillips (1970), we rotate the Boussinesq equations into slope coordinates 

and assume the flow depends only on the slope-normal coordinate 𝑧 ′, which gives the simplified 

buoyancy equation (see derivation of full equation set in Section 2.5.1): 

[︂ (︁ )︁]︂
𝜕𝑡𝑏 

′ + 𝑢𝑥 ′ 𝑁0 
2 sin 𝜃 = 𝜕𝑧 ′ 𝜅 𝑁0 

2 cos 𝜃 + 𝜕𝑧 ′ 𝑏 
′ (2.4) 

where 𝑢𝑥 ′ is the up-slope velocity, 𝜃 the slope angle, 𝜅 = 𝜅(𝑧 ′ ) the turbulent diffusivity, and we 

decompose the buoyancy field 𝑏(𝑥, 𝑦, 𝑧, 𝑡) = 𝑁0 
2𝑧 + 𝑏 ′ (𝑥, 𝑦, 𝑧 , 𝑡) into a background corresponding to a 

2While the sign of the vertical velocity changes, we note that 𝜕𝑧 𝑢
𝑧 > 0 and thus the interior geostrophic flow 

driven by vortex stretching is still of the same sign as in the Stommel-Arons solution. 
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constant stratification 𝑁 2 and a buoyancy anomaly 𝑏 ′ = 𝑏 ′ (𝑧 ′ ). The boundary conditions are a no 0 

flux condition 𝜕𝑧 ′ 𝑏 = 𝜕𝑧 ′ 𝑏 ′ +𝑁0 
2 cos 𝜃 = 0 at the seafloor 𝑧 ′ = 0 and decay conditions 𝜕𝑧 ′ 𝑢

𝑥 ′ , 𝜕𝑧 ′ 𝑏 ′ → 0 

as 𝑧 ′ → ∞. At steady state, the boundary layer equation for the buoyancy anomaly (eq. 2.4) can 

be integrated from 𝑧 ′ = 0 to 𝑧 ′ → ∞, which yields an integral constraint 

def 
Ψbg ≡ 𝜅bg cot 𝜃 (2.5) 

∫︀ ∞ def
for the net up-slope transport per unit length Ψbg = 𝑢𝑥 ′ d𝑧 ′, where 𝜅bg ≡ 𝜅(𝑧 → ∞) is the 0 

background diffusivity. The simplicity of this integral constraint is surprising: the net up-slope 

transport depends only on the background turbulent diffusivity 𝜅bg and the slope angle 𝜃, and is 

independent of other environmental parameters which might be expected to influence diapycnal 

transport, such as frictional parameters, the background stratification 𝑁 2, the Coriolis parameter 0 

𝑓 , and the vertical structure of the turbulent diffusivity 𝜅(𝑧). 

Integrating the prediction Ψbg for the diapycnal transport per unit length along the perimeter 

𝐿global ≃ 108 m of the global mid-ocean ridge system (Callies, 2018) for a typical ridge slope 

tan(𝜃) = 2 × 10−3 and a background diffusivity of 𝜅bg ≃ 10−5 m2s−1 produces a global mixing-

driven diapycnal overturning transport of 𝐿global𝜅bg cot 𝜃 ≃ 0.5 Sv, more than an order of magnitude 

smaller than the inferred abyssal diapycnal overturning transport of roughly 15 Sv (Lumpkin and 

Speer, 2007). 

CF18 resolve this conundrum by using the magnitude of the upwelling-downwelling ‘dipole’ 

from boundary layer theory as a prediction for the net watermass transformation, since at the 

base of topographic slopes the flows in and out of the boundary layers occur at different density 

classes and thus drive a diabatic overturning. They find that the strictly upwelling transport in the 

bottom boundary layer accurately predicts the scaling of the maximum net diapycnal overturning 

transport, although the predicted overturning is unrealistically confined to the base of topographic 

slopes, where the constraints from one-dimensional boundary layer theory break down. 

2.2.4 Boundary-interior exchange 

The integral constraint Ψbg ≡ 𝜅bg cot 𝜃 (eq. 2.5) relies on the assumption of constant background 

stratification 𝑁 2 and slope angle 𝜃. By construction, none of the other terms are assumed to vary in 0 

the plane of the slope (𝑥 ′ , 𝑦 ′ ) either; it follows that there are no cross-slope convergences 𝜕𝑥 ′ 𝑢
𝑥 ′ = 0 

and hence no slope-normal exchange between the abyssal mixing layers and the interior, 𝑢𝑧 ′ = 0 
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(Wunsch, 1970). 

With a vertically varying stratification 𝑁 2(𝑧), however, variations in the buoyancy gradient 

project onto the cross-slope direction 𝑥 ′ = 𝑥 cos 𝜃 + 𝑧 sin 𝜃, introducing a second dimension to the 

problem (e.g. Phillips et al., 1986; Salmun et al., 1991) and permitting both slope-normal exchange 

flows 𝑢𝑧 ′ ̸ ≡ 
∫︀∞ d𝑧 ′ = Ψ̸ bg. Heterogeneities can also arise = 0 and a net diapycnal transport Ψ∞ 

def 
𝑢𝑥 ′ 

0 

due to cross-slope variations in the turbulent diffusivity 𝜅(𝑥, 𝑦) or the slope angle 𝜃(𝑥, 𝑦) (Dell and 

Pratt, 2015), and have been argued to contribute significantly to oceanic watermass transformations 

(McDougall and Ferrari, 2017; de Lavergne et al., 2017; Holmes et al., 2018). These additional 

heterogeneities are both kept relatively small by construction in our idealized model configuration 

to keep the focus on the effects of variations in the basin stratification. 

2.2.5 Dynamics controlling the interior abyssal stratification 

The abyssal stratification is thought to be controlled by the combined effects of 1) diapycnal mixing 

in ocean basins and 2) the competing effects of winds and mesoscale eddies in setting the slope of 

isopycnals in the Southern Ocean. Diapycnal mixing maintains the stable stratification of the abyssal 

ocean by effectively diffusing buoyancy downwards, transforming dense abyssal waters into lighter 

deep waters (Munk, 1966). This vertical advection-diffusion model is an incomplete model of the 

abyssal stratification, however, as it omits the complementary process which closes the overturning 

circulation by transforming light deep waters into denser abyssal waters. Munk and Wunsch (1998) 

consider a heuristic correction to Munk (1966)’s vertical advection-diffusion equation for the effect 

of horizontal advection from regions of high mixing (or homogenization by convection), which acts 

to restratify regions of weak mixing. A breakthrough in understanding the abyssal stratification was 

the development of quasi-adiabatic theories of Southern Ocean circulation. In these theories, deep 

waters are upwelled adiabatically along sloping isopycnals in the Southern Ocean, are transformed 

into abyssal waters in the Southern Ocean mixed layer by a negative surface buoyancy flux, and 

return to the abyss adiabatically along isopycnals (Marshall and Speer, 2012, and references therein). 

The Southern Ocean isopycnal slope is determined by a balance between wind stress and stirring by 

mesoscale eddies, which steepen and flatten isopycnals, respectively (Marshall and Radko, 2003). 

Building on these two independent theories, Nikurashin and Vallis (2011) develop an idealized 

model which couples quasi-adiabatic Southern Ocean dynamics to a diabatic abyssal ocean basin 

and predicts the abyssal stratification and circulation, given only surface boundary conditions and 

mixing coefficients. For moderate diapycnal mixing of 10−5 m2s−1 < 𝜅 < 10−3 m2s−1, a regime 
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applicable to both the Ocean and the model described here, the Nikurashin and Vallis (2011) model 

predicts that the interior abyssal stratification depends both on winds and eddies in the Southern 

Ocean and diapycnal mixing in the basin. 

A promising aspect of zonally-integrated models of the meridional overturning circulation (e.g 

Nikurashin et al., 2012; Thompson et al., 2016) is that they accurately reproduce the overturning and 

stratification exhibited by idealized "box"-geometry general circulation models. The emerging view, 

however, is that the abyssal circulation of the ocean is controlled by mixing layer flows along sloping 

boundaries and thus that the commonly-used "box" geometry models may be a misleading point of 

reference for theories of the abyssal stratification and circulation (Ferrari et al., 2016). Building on 

CF18, we describe the formulation of an improved idealized general circulation model in a "bowl + 

ridge" geometry which accommodates the recent revisions to our theoretical understanding of the 

abyssal ocean circulation. 

2.3 Planetary Geostrophic Circulation Model (PGCM) 

The numerical model used here is the Planetary Geostrophic Circulation Model (PGCM) developed 

by CF18 to study how bottom-enhanced mixing on slopes drives an abyssal circulation. We describe 

the key elements of our PGCM configuration below, which closely follows the exposition of CF18. 

The main differences between the present study and CF18 are the inclusion of the mid-ocean ridge, 

the localization of vigorous bottom-enhanced mixing to a mid-ocean ridge, and the generalization 

to vertically-varying interior stratifications. Readers familiar with the methods of CF18 can skip 

Section 2.3 and simply consult Figure 2-2, which summarizes our changes to the configuration. 

2.3.1 Equations 

The model solves the Navier-Stokes equations under the Boussinesq and planetary-scale geostrophic 

approximations, with parameterizations for the frictional and diabatic effects of unresolved pro 

cesses, given by 

𝑓z × u = −∇𝑝 + 𝑏z − 𝑟(𝑢𝑥 x + 𝑢𝑦 y), (2.6) 

∇ · u = 0, and (2.7) 

𝜕 𝑏 
+ u · ∇𝑏 = ∇ · (𝜅∇𝑏) − 𝜆(𝑦)(𝑏 − 𝐵(𝑧)), (2.8)

𝜕 𝑡 
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where 𝑡 is time; x, y, z are unit vectors pointing east, north, and up, respectively; 𝑓 = 𝛽 𝑦 is the 

linearized Coriolis parameter (𝛽-plane approximation3); u = (𝑢𝑥, 𝑢𝑦 , 𝑢𝑧 ) is the velocity vector; 

𝑝 is the pressure divided by a reference density; 𝑏 is the buoyancy; 𝑟 is a frictional parameter; 

𝜅 = 𝜅(𝑥, 𝑦, 𝑧 ) is a spatially-dependent turbulent diffusivity; and 𝜆 = 𝜆(𝑦) is a meridionally-varying 

restoring rate (see Section 2.3.3). The system of equations (2.6) - (2.8), with appropriate initial 

and boundary conditions, yields a self-consistent and prognostic model of abyssal circulation and 

stratification. 

The Boussinesq approximation filters out acoustic waves while the planetary-geostrophic approx 

imation filters out gravity waves and geostrophic turbulence. The resulting planetary-geostrophic 

equations are appropriate for basin-scale oceanic circulations and are typically used for idealized 

studies of the abyssal circulation (e.g Pedlosky, 1996, and references therein) and intermediate-

complexity earth system models (e.g. Holden et al., 2016). While it is computationally and con 

ceptually useful that the planetary-geostrophic equations filter out the effects of fast waves and 

turbulence, the turbulent fluxes of these relatively small-scale flows are thought to have leading or 

der effects on abyssal mixing layers. We include their qualitative effects in the planetary-geostrophic 

formulation by way of two idealized parameterizations. 

First, to include the effects of turbulent mixing produced by the local breaking of internal waves 

generated by flow over rough topography, we introduce a term for the turbulent buoyancy flux 

convergence ∇ · (𝜅∇𝑏) to the buoyancy equation (e.g. as in St. Laurent and Garrett, 2002). The 

imposed spatially-dependent turbulent diffusivity 𝜅(𝑥, 𝑦, 𝑧) approximates the leading-order spatial 

structure described by observational estimates4 (e.g. Polzin et al., 1997; Waterhouse et al., 2014) 

and is described in detail in Section 2.3.3. 

Second, to include the qualitative effects of isopycnal mixing by baroclinic turbulence in restrat 

ifying the abyssal mixing layers (Callies 2018 and Chapter 3) and in thickening western boundary 

currents (e.g. Stommel, 1948), we introduce a dissipative term to the momentum equation. Great (︀ )︀
batch and Lamb (1990) show that introducing vertical momentum diffusion 𝜕𝑧 𝜈eddy 𝜕𝑧 u to the 

planetary geostrophic equations with an eddy viscosity 𝜈eddy = 𝜅GM𝑓
2/𝑁 2 is equivalent to intro 

ducing isopycnal diffusion of potential vorticity with an effective isopycnal diffusivity of 𝜅GM (Gent 

3We consider an equatorial 𝛽-plane with 𝑓0 = 0 because we are interesting in a hemispherically-symmetric ocean 
basin. 

4Quantitatively similar profiles of turbulent kinetic energy dissipation are reproduced in simulations of internal 
wave turbulence above rough topography, wherein energy from a geostrophic mean flow (Nikurashin and Ferrari, 
2009) or the barotropic tide (Nikurashin and Legg, 2011) is converted into unstable high-mode internal waves via a 
cascade of wave-wave interactions. 
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and McWilliams, 1990). Following Salmon (1992), we simplify the dynamics further by using a 

linear friction term (Rayleigh drag), −𝑟(𝑢𝑥x + 𝑢𝑦y) and scale the frictional parameter 𝑟 according 

to the Greatbatch and Lamb (1990) parameterization, 

𝑓2 
−1𝑟 = 𝜅GM ≈ 1.2 × 10−5 s , (2.9)

𝛿2𝑁2 

where we choose 𝛿 = 400 m to be roughly the thickness of the abyssal mixing layers observed 

in the Brazil Basin (Callies, 2018); typical abyssal mixing layer values of 𝑓 = 5 × 10−5 s−1 and 

𝑁 2 = 5 × 10−7 s−1; and assume 𝜅GM = 100 m2s−1 based on the isopycnal diffusion inferred from 

the Brazil Basin Tracer Release Experiment (Ledwell; in prep), which yields a value 𝜈eddy = 0.5 

m2s−1 similar to the value 𝜈eddy = 𝜎𝜅bot = 0.4 m2s−1 proposed by Callies (2018) and Holmes et al. 

(2019), where 𝜎 is the turbulent Prandtl number. We use a constant 𝑟 since the parameterization 

is meant to be a crude placeholder for boundary layer restratification. To our relief, supplementary 

sensitivity experiments showed that watermass transformations and the boundary layer structure 

are relatively insensitive to the friction parameter 𝑟, in agreement with CF18. The linear drag 

parameter is small enough that the frictional terms are negligible in the interior where the flow is 

approximately geostrophic and are important only in near-boundary flows (both the deep western 

boundary currents and the abyssal mixing layers along the mid-ocean ridge) where the horizontal 

velocities are large (Salmon, 1992, CF18). The choice of 𝑟 = 1.2 × 10−5 s−1 gives a non-dimensional 
𝑟value 𝑟 = = 0.1 such that the width of the Stommel and Arons (1959b,a) deep western boundary 𝛽𝐿 

currents is one-tenth of the domain width (see Section 2.3.4). 

2.3.2 Geometry and boundary conditions 

We configure the PGCM to approximate the leading-order structure of a typical cross-hemispheric 

abyssal ocean basin with a rectangular basin of zonal width 𝐿 = 3000 km and meridional length 

2𝐿 = 6000 km. Our idealized basin contains a mid-ocean ridge caused by seafloor spreading in the 

middle and is bounded in the west, east, and north by continental slopes (Figure 2-2a). Although the 

southern region in our configuration (𝑦 < −𝐿/2 = −3000 km) is also zonally bounded, it should be 

thought of as a Southern Ocean-like sponge layer. In this southern region, the transformation of deep 

waters into bottom waters arising from complex circumpolar channel dynamics (e.g. as described in 

Marshall and Speer, 2012) are parameterized by an idealized buoyancy restoring forcing which pins 

the buoyancy field to a reference vertical profile (described in detail in the next Section 2.3.3). The 

35
 



model extends from 𝑧 = −2500 m at the upper boundary to a maximum depth of 𝑧 = −5000 m 

and should be interpreted as representing only the diabatic lower cell of the meridional overturning 

circulation. The idealized configuration can be thought to apply locally to the Atlantic, Pacific, 

and Indian Ocean basins below 𝑧 = −2500 m, which in the present climate are all bounded by 

topography in the west, east, and north and have roughly meridionally-aligned mid-ocean ridges 

(e.g. those highlighted in Figure 2-12). The idealized continental slopes are half-Gaussian and the 

mid-ocean ridge is Gaussian in the zonal direction and tapers down to zero meridionally in the 

southern restoring region to allow unconstrained zonal flows to close the circulation of interest in (︀ )︀
the diffusively-forced basin to the north. The characteristic seafloor slopes of roughly tan 𝜃𝑟𝑖𝑑𝑔𝑒 ≃ 

2 × 10−3 for the mid-ocean ridge and tan(𝜃𝑐𝑜𝑛𝑡.) ≃ 4 × 10−3 for the continental slope are inspired 

by the South Atlantic, where the abyssal mixing layers and large-scale abyssal circulation are best 

constrained by existing observations (Hogg et al., 1982; Polzin et al., 1997; Ledwell et al., 2000; 

St. Laurent et al., 2001; Thurnherr et al., 2005). The PGCM is bounded from above by assuming 

isopycnals are flat, i.e. 𝑏 = 0 at 𝑧 = −2500 m, which is approximately valid in all basins north of 

the Southern Ocean (Talley, 2007; Koltermann et al., 2011; Talley, 2013b). The PGCM is bounded 

from below by an insulating seafloor, n · ∇𝑏 = 0 at 𝑧 = −𝑑(𝑥, 𝑦), where 𝑑(𝑥, 𝑦) is the seafloor depth 
and n is the unit vector normal to the boundary. 

2.3.3 Buoyancy forcing 

The abyssal circulation in our model is forced by two competing diabatic terms in the buoyancy 

equation: minus the divergence of the turbulent buoyancy flux −∇ · (−𝜅∇𝑏), which has a positive 
integral contribution (diapycnal upwelling); and restoring to a reference buoyancy profile −𝜆(𝑏−𝐵), 

which must necessarily have a negative integral contribution (diapycnal downwelling). Available 

potential energy is produced by parameterized turbulent mixing and converted into kinetic energy 

via the buoyancy production term 𝑢𝑧 𝑏 to drive a planetary-geostrophic abyssal circulation and 

balance the available potential energy loss due to restoring. 

Turbulent mixing 

The prescribed turbulent diffusivity 𝜅 = 𝜅(𝑥, 𝑦, 𝑧) is everywhere bottom-enhanced with a contri 

bution equal to 𝜅bot exp{−(𝑧 + 𝑑)/ℎ} over the mid-ocean ridge, where we choose 𝜅bot = 5 × 10−3 

m2s−1 and ℎ = 250 m to roughly match observations in the Brazil Basin (Figure 2-11). The 
𝜅bot bottom-enhanced contribution to 𝜅 is reduced by a factor of 20 to exp{−(𝑧 + 𝑑)/ℎ} over the 
20 

36
 



continental slopes to reflect the observed weakness of local wave-driven turbulence over smooth 

continental slopes (Figure 2-11 and Polzin et al. 1997). A uniform weak background diffusivity 
𝜅bot

𝜅bg = = 2.5 × 10−5 m2s−1 is added to stabilize the numerical solution, yielding a total diffu 
200 

sivity distribution ⎧
{⎪⎪
⎨𝜅bot exp{−(𝑧 + 𝑑(𝑥, 𝑦))/ℎ}, if 𝐿/2 < 𝑥 < 3𝐿/2 (mid-ocean ridge) 
𝜅(𝑥, 𝑦, 𝑧) = 𝜅bg + (2.10)⎪𝜅bot⎩⎪ exp{−(𝑧 + 𝑑(𝑥, 𝑦))/ℎ}, else (continental slopes),

20 

with a smoothing function applied over a horizontal distance of 𝐿/10 near the transitions at 𝑥 = 𝐿/2 

and 𝑥 = 3𝐿/2. The net effect of this prescribed mixing is to power a diabatic upwelling along the 

mid-ocean ridge, where mixing is vigorous. 

Buoyancy restoring in the southern restoring region 

The prescribed restoring rate 𝜆 has a meridional dependence ⎡ (︃ (︂ )︂)︃⎤ 
𝑦 + 𝐿/2 

𝜆(𝑦) = 𝜆0 ⎣0.5 1 − tanh ⎦ , (2.11)
10𝐿 

which is equal to 𝜆0 ≃ (10 years)−1 in the southern restoring region and vanishes rapidly northwards, 

𝜆 → 0 as 𝑦 > −𝐿/2. The prescribed restoring rate is chosen based on the baroclinic adjustment 
(106 m)2 

timescale given by a lateral diffusive timescale 𝜏𝑆𝑂 = 𝐿𝑆𝑂 
2 /𝜅𝐺𝑀 = ≃ 10 years, determined

3000 m2s−1 

for an isopycnal diffusivity 𝜅𝐺𝑀 ≃ 3000 m2s−1 (Abernathey et al., 2013) and a Southern Ocean cir 

cumpolar current of meridional width 𝐿𝑆𝑂 ≃ 1000 km. This restoring rate is much faster than the 

vertical diffusive timescale which spins up the overturning circulation 𝜏mix = 𝐻2/𝜅 ≃ 1000 years, 

where 𝐻 = 2500 m is the maximum thickness of the abyssal ocean and 𝜅 ≃ 10−4 m2s−1 is the 

volume-weighted mean diffusivity in the basin. Thus, the stratification in the southern restor 

ing region does not deviate much from the prescribed profile (see Figure 2-7). The net effect of 

this parameterized buoyancy forcing in the southern restoring region is to transform deep waters 

into bottom waters (diabatic downwelling) to balance the transformation of bottom waters into 

deep waters (diabatic upwelling) driven by mixing along the mid-ocean ridge in the basin to the 

north. In contrast to CF18, we allow reference buoyancy profiles 𝐵(𝑧) corresponding to vertically-

varying stratification 𝜕𝑧𝐵 = 𝑁 2(𝑧), complicating the interpretation of the solution in terms of 

one-dimensional boundary layer dynamics which require a constant interior stratification 𝑁0 
2 . 
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Figure 2-2: Configuration of the Planetary Geostrophic Circulation Model (PGCM). (a) Seafloor 
depth in the PGCM. We highlight the southern restoring region where we apply a buoyancy restor 
ing which acts to transform deep waters into bottom waters (see Section 2.3.3) and a northern-
hemisphere region in which we diagnose watermass transformations along the mid-ocean ridge (see 
Section 2.4.3). (b) Zonal section of the imposed turbulent diffusivity 𝜅, which is bottom-enhanced 
over the mid-ocean ridge. (c) The red lines show the four stratification profiles 𝐵𝑧 used in the 
PGCM as both the initial condition and as the reference profile for buoyancy restoring in the 
southern restoring region. The black line shows the observed stratification profile from the World 
Ocean Circulation Experiment (Gouretski and Koltermann, 2004) in the South Pacific, averaged 
horizontally from 55∘S to 45∘S and 175∘E to 115∘W. 

2.3.4 Dimensional parameters and scaling 

While the PGCM is discussed in dimensional terms, the PGCM is formulated and implemented 

non-dimensionally. The following dimensional scales, 

𝐿 = 6000 km (basin width), 
𝐻 = 2500 m, (abyssal ocean vertical extent), 

−1 −1𝛽 = 2 × 10−11 m s , (meridional gradient of Coriolis parameter), 
−2𝑁 2 = 1.5 × 10−6 s , (reference stratification at 𝑧 = −2500 m), 
2 −1𝜅𝑏𝑜𝑡 = 5 × 10−3 m s , (diffusivity at the mid-ocean ridge seafloor), 
−1𝑟 = 1.2 × 10−5 s , (frictional parameter), 
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are used to non-dimensionalize the system, with the coordinate transformation 

𝑥 = 𝐿𝑥,ˆ 𝑦 = 𝐿ˆ 𝑧 𝑧𝑦, = 𝐻 ̂ (2.12) 

and the substitutions 

𝛽 𝐿3 

𝑡 = 𝑡,̂ 𝑏 = 𝑁 2𝐻�̂�, 𝑝 = 𝑁 2𝐻2𝑝,̂ (2.13)
𝑁 2𝐻2 

𝑁 2𝐻2 
𝑥 𝑁 2𝐻2 

𝑦 𝑁 2𝐻3 
𝑧𝑢𝑥 = �̂�^, 𝑢𝑦 = �̂�^, 𝑢𝑧 = �̂�^. (2.14)

𝛽 𝐿2 𝛽 𝐿2 𝛽 𝐿3 

def
For reference, the non-dimensional time 𝑡 = 1 corresponds to 𝑡 = 𝜏 ≃ 10 years, where 𝜏 ≡ 

𝛽 𝐿3/𝑁 2𝐻2. While the basin scale circulation takes a long time 𝜏mix = 𝐻2/𝜅 ≃ 1000 years ≫ 𝜏 to 

spin up, the abyssal mixing layers are spun up on a fast timescale 𝜏BL = 𝑞−2/𝜅bot ≃ 1 year ≪ 𝜏 , 

where √︂ 
𝜅bot(𝑓2 + 𝑟2)

𝑞−1 = ≃ 400 m (2.15)
𝑟𝑁 2 tan2 𝜃 

is the thickness of the mixing layer predicted by 1D theory (CF18), 𝜅bot = 5 × 10−3 m2/s is the 

diffusivity at the seafloor, and 𝑓 = 𝛽 𝐿/2 is a representative value of the Coriolis parameter. 

The non-dimensionalized equations (see CF18) depend only on the non-dimensional parameters 

𝐻 𝜅𝛽 𝐿3 𝑟 
�̂� = , �̂� = , 𝑟 = , (2.16)

𝐿 𝑁 2𝐻4 𝛽 𝐿 

where �̂� is the aspect ratio of the basin; �̂� = 𝜏 /𝜏mix is the ratio of the cross-basin propagation 

timescale of long Rossby waves (with 𝑓 = 𝛽 𝐿) 

𝛽 𝐿−2 𝛽𝐿3 

𝜏 ≡ 𝐿/𝑐𝑔 = 𝐿/(︀ )︀2 = , (2.17)
𝑁2𝐻2

𝑁 𝐻/𝑓 

def
to the diffusive spin-up timescale 𝜏mix ≡ 𝐻2/𝜅. 𝑟 is the ratio of the Stommel (1948) western bound 

ary layer width 𝑟/𝛽 to the basin width 𝐿. Since the prescribed 𝜅 is spatially-dependent, the non-

dimensional diffusivity �̂� inherits its spatial dependence in the numerical implementation. Scaling 𝜅 

by using the volume-weighted average value 𝜅 in 𝜏mix gives �̂� = 𝜏 /𝜏mix ≃ 0.01. Because the imposed 

turbulent diffusivity is isotropic, the small aspect ratio �̂� ∼ 5×10−4 results in a non-dimensionalized 

horizontal diffusivity many orders of magnitude smaller than the non-dimensionalized vertical dif 

fusivity, which is difficult to implement numerically. Instead, we artificially increase the horizontal 
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diffusivity for numerical stability by increasing the aspect ratio parameter to �̂� = 0.2. This param [︂ (︁ )︁ (︁ )︁]︂
eter only enters in the horizontal diffusion term �̂�2 

𝑥 𝜅𝜕^ˆ + 𝜕^ ˆ 𝑦 𝑏𝜕^ ˆ 𝑥𝑏 𝑦 𝜅𝜕^ˆ (CF18) and remains 

small enough that it does not qualitatively affect the results presented here, as evidenced by the 

negligible role of horizontal buoyancy fluxes in the watermass transformations (Figure 2-5). 

2.3.5 Numerical implementation 

The model is formulated in terrain-following coordinates to accurately resolve the thin mixing-

driving flows along the sloped bottom boundary. The numerical implementation is described in 

CF18. The Julia (Bezanson et al., 2017) implementation is available at https://github.com/ 

joernc/pgcm. The input files, output files, and post-processing notebooks necessary to replicate 

the study are available at https://github.com/hdrake/AbyssalFlow (Drake, 2020). 

2.4 Abyssal Circulation Controlled By Mixing Layer Dynamics 

We begin by describing the general structure of the abyssal circulation at equilibrium in the PGCM, 

i.e. at 𝑡 = 50 or 𝑡 ≃ 500 years ≃ 𝜏mix, when buoyancy tendencies have become sufficiently small 

(Figure 2-7a). The stratification in the PGCM solution presented in this section is restored to 

an exponential profile with a decay scale of 𝛿 = 1000 m in the southern region (solid red dashed 

line in Figure 2-2), which exhibits vertical variations of similar magnitude to those observed in the 

Southern Ocean (black solid line). This is arguably our most "realistic" simulation of the abyssal 

ocean and hereafter we refer to it as PGCM-REAL. 

2.4.1 Abyssal Mixing Layers and Deep Western Boundary Currents 

Figure 2-3 (a-c) shows the three Cartesian components of the abyssal flow field along a zonal section 

3000 km north of the equator. In the abyssal mixing layers spanning both flanks of the mid-ocean 

ridge, buoyancy surfaces plunge to intersect the seafloor at a right angle (visually distorted by 

the aspect ratio) to satisfy the no-flux boundary condition. As expected from 1D theory (CF18), 

the boundary flows are thicker and stronger over the mid-ocean ridge where mixing is strong than 

over the continental slopes where mixing is weak. In the bottom boundary layer (BBL), plunging 

buoyancy surfaces drive frictionally-balanced upwelling (Figure 2-3c) and frictional-geostrophic flow 

opposite the direction of Kelvin wave propagation (Figure 2-3b), i.e. anti-cyclonic in the northern 

hemisphere. In the stratified mixing layer (SML) just above the BBL, buoyancy surfaces are at 
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leading order flat and the bottom-enhanced mixing drives downwelling (Figure 2-3c), as expected 

from the vertical advection-diffusion balance (eq. 2.3) reviewed in Section 2.2. 

Figure 2-3: Cartesian components of the velocity vector in the PGCM-REAL simulation along: 
(a-c) a mid-latitude section in the northern hemisphere, 𝑦 = 3000 km, and (d-f) a section at the 
equator, 𝑦 = 0 km. Black lines show three equally spaced buoyancy surfaces. 

Net diapycnal upwelling in the Northern Hemisphere can be inferred from the meridional flow 

field at the equator: dense bottom waters flow into the northern hemisphere and relatively lighter 

deep waters flow out (Figure 2-3e). Since the Coriolis force vanishes at the equator, the buoyant 

force associated with the bending of buoyancy surfaces to satisfy the bottom-boundary condition can 

only be balanced by a cross-slope frictional flow (Figure 2-3d,f) and any along-slope flows associated 

with the abyssal mixing layers vanishes (compare Figure 2-3e to Figure 2-3b). The only meridional 

flow are Stommel (1948)-like deep western boundary currents (DWBC) along the continental slope 

on the western side of the domain and the eastern flank of the ridge (Figure 2-3e). In this particular 

configuration, a southward-flowing DWBC develops on the eastern flank of the ridge near its crest 

and is much weaker than the DWBC on the western continental slope. The southward DWBC on 

the ridge is relatively intensified in simulations with a taller ridge. 

2.4.2 Depth-integrated and Overturning Circulations 

The global abyssal circulation is more intuitively visualized by considering the three Cartesian 

streamfunctions that describe the flow, which we compute by integrating the 𝑢𝑥 , 𝑢𝑦, and 𝑢𝑧 velocities 
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in the other two dimensions 5 (Figure 2-4). Figure 2-4b shows the familiar streamfunction for 

the meridional overturning circulation (MOC) in the 𝑦-𝑧 plane, which should be thought of as 

corresponding to the lower-cell of the global MOC. This circulation has a strength of about 1.6 Sv 

at the equator, with water 1) downwelling diabatically in the southern restoring region, 2) flowing 

northwards to fill the abyssal depths, 3) gradually upwelling along the length of the basin, and 4) 

returning to the southern restoring region to close the circulation. We note in particular that the 

MOC extends all the way from the ocean seafloor to the top of the mid-ocean ridge, in contrast 

to the MOC in the CF18 framework, in which significant overturning is confined to the base of 

topographic slopes (see Section 2.6.3 for a discussion on the role of the ridge height in setting the 

vertical extent of the MOC). 

Figure 2-4: (a) Barotropic, (b) meridional, and (c) zonal overturning circulations in the PGCM 
REAL simulation (see definitions in 2.4.2). In all cases, positive values (red) correspond to counter 
clockwise circulations. The blue and red solid lines in (b) and (c), respectively, show the height of 
the mid-ocean ridge along the dashed lines of the same colors in (a). The thick black lines in (a) 
are the 3000 m and 4000 m isobaths, which highlight both the continental slopes and the mid-ocean 
ridge. The thin black lines in (b) and (c) are equally-spaced buoyancy surfaces, sampled at 𝑥 = 𝐿/4 
and 𝑦 = 𝐿/2, respectively. 

The up- and down-welling in the abyssal mixing layers is evident in the zonal overturning 

streamfunction in the 𝑥-𝑧 plane, which shows upwelling in a thin BBL and broader downwelling 

𝜕𝑢𝑥 𝜕 𝑢𝑦 𝜕 𝑢𝑧 
5Integrating the continuity equation in + + = 0 along any of the three directions 𝑥, 𝑦, or 𝑧 and 

𝜕 𝑥 𝜕 𝑦 𝜕 𝑧 (︂ )︂∫︀ 𝜕 𝑢𝑥1 𝜕 𝑢𝑥2 𝜕 𝑢𝑥3 

imposing the no-normal flow boundary condition yields an equation of the form + + d𝑥3 = 
𝜕 𝑥1 𝜕 𝑥2 𝜕 𝑥3 

𝜕 𝑈 𝑥1 𝜕 𝑈 𝑥2 ∫︀ ∫︀ 
+ = 0, where 𝑥1, 𝑥2, 𝑥3 are permutations of 𝑥, 𝑦, 𝑧, 𝑈 𝑥1 = 𝑢𝑥1 d𝑥3 and 𝑈 𝑥2 = 𝑢𝑥2 d𝑥3. The resulting 

𝜕 𝑥1 𝜕 𝑥2 
non-divergent flow field can then be expressed as a streamfunction 𝜓3 defined by U = 𝑈 𝑥1 x1 +𝑈

𝑥2 x2 = (−∇ × 𝜓3x3). 
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in the SML above (Figure 2-4c). The upwelling in bottom boundary layers is confined to the two 

flanks of the mid-ocean ridge, where mixing is vigorous and bottom-enhanced, and is negligible over 

the weakly-mixed continental slopes. In this case, the upwelling and downwelling transports are 

equal and opposite in strength, i.e. the circulation closes, because the downwelling flow includes 

both the residual diabatic upwelling along the ridge as well as the net diabatic downwelling by 

the restoring condition in the southern region, which is concentrated on the eastern continental 

slope. Nonetheless, the zonal overturning streamfunction provides a qualitative sense of the zonal 

overturning circulations driven by mixing layer dynamics along the mid-ocean ridge. 

The depth-integrated circulation in our simulations stands in contrast to that of Stommel and 

Arons (1959a)’s barotropic model and is the expression of a combination of various baroclinic deep 

western boundary currents and mixing layer flows (Figure 2-4a). Within 2000 km of the equator, the 

northward and southward components of the deep western boundary currents alternatively dominate 

(compare with the meridional velocity at the equator in Figure 2-3). North of 𝑦 = 2000 km, 

the depth-integrated circulation is dominated by the along-slope flow in the bottom boundary 

layer, which is opposite the direction of Kelvin wave propagation. The depth-integrated circulation 

is strongly influenced by mixing layer dynamics, both near the boundaries and in the interior, 

and is structurally distinct from that predicted by the linear response to vortex stretching alone 

(Stommel and Arons, 1959b; Pedlosky, 1992; Cember, 1998). Sverdrup balance only holds far from 

the boundaries and accounts for little of the net transport compared to the abyssal mixing layer 

and western boundary current flows, where friction is important. 

2.4.3 Partially-Compensating Watermass Transformations 

Watermass transformation represents the net flow across a buoyancy surface driven by diabatic 

forcing. Watermass transformation in the PGCM is driven by: 1) bottom-enhanced turbulent mixing 

(positive in the net) and 2) restoring to a reference buoyancy profile in the southern restoring region 

(negative in the net). In the northern hemisphere, the restoring rate vanishes by construction and 

watermass transformation is dominated by the mixing-driven component. Its calculation, following 

Walin (1982) and Ferrari et al. (2016), is given by 

∫︁ 
𝜕 

𝑇 (𝑏) = ∇ · (𝜅∇𝑏 ′ )d𝑉 , (2.18)
𝜕 𝑏 𝑉𝑏 ′ <𝑏 
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where 𝑉𝑏 ′ <𝑏 is the volume of water less buoyant than 𝑏. Watermass transformation is conveniently 

expressed in units of volumetric transport (m3/s) and can be decomposed into various contributions. 

When applied to regions of bottom-enhanced mixing in the abyss, it is informative to decompose 

the net watermass transformation into the typically negative contribution (balanced by diapycnal 

downwelling) in the SML and the typically positive contribution (balanced by diapycnal upwelling) 

in the BBL (e.g. Ferrari et al., 2016; McDougall and Ferrari, 2017). For the purposes of watermass 

transformation calculations in this paper, we define the BBL as the layer with a convergent buoyancy 

flux, ∇·(𝜅∇𝑏) > 0, which extends upwards from the seafloor to the level at which the buoyancy flux 

attains its maximum magnitude; the remainder of the ocean is considered the SML and is dominated 

by a buoyancy flux divergence, ∇ · (𝜅∇𝑏) < 0. For convenience, all watermass transformations in 

this paper are computed in buoyancy space and remapped into depth space according to the average 

depth of buoyancy surfaces, ∫︁ 
1 

𝑧(𝑏) = 𝑧(𝑏)𝑑𝐴, (2.19)
𝐴(𝑏) 

which facilitates comparison across simulations with dramatically different stratifications and against 

the fixed depths of topographic features in the ocean. 

Figure 2-5: Watermass transformations from the PGCM-REAL simulation in (a) the full northern 
hemisphere basin (𝑦 > 0), (b) along the northern-hemisphere mid-ocean ridge (𝑦 > 0, 𝐿/2 < 𝑥 < 
3𝐿/2), and (c) in a limited watermass analysis region along the northern-hemisphere mid-ocean 
ridge (0 < 𝑦 < 𝐿/2, 𝐿/2 < 𝑥 < 3𝐿/2), as highlighted in Figure 2-2. The black line shows 
the net watermass transformation, defined by equation (2.18). The red and blue lines show the 
contributions from the bottom boundary layer (BBL) and the stratified mixing layer above (SML). 
The dashed lines show the contributions from only the vertical component of the buoyancy flux. All 
watermass transformations in the paper are computed in buoyancy space and remapped into depth 
space (according to eq. 2.19). 

The net northern hemisphere watermass transformation of 𝑇net = 1.6 Sv at 3750 m (Figure 
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2-5a), where it reaches its maximum, is consistent with the depth and magnitude of the maximum 

of the MOC streamfunction at the equator (Figure 2-4b). The net watermass transformation 𝑇net = 

𝑇BBL + 𝑇SML = 1.6 Sv (black line) is the residual of a positive contribution of 𝑇BBL = 2.1 Sv from 

the BBL (red line) and a negative contribution of 𝑇SML = −0.5 Sv from the SML (blue line), both 

of which are dominated by the vertical component of the buoyancy flux divergence (dashed lines), 

i.e. ∫︁ ∫︁ (︀ )︀
𝑇 (𝑏) = 𝜕𝑏 ∇ · (𝜅∇𝑏 ′ )d𝑉 ≃ 𝜕𝑏 𝜕𝑧 𝜅𝜕𝑧 𝑏 

′ d𝑉 . (2.20) 
𝑉𝑏 ′ <𝑏 𝑉𝑏 ′ <𝑏 

Virtually all of this transformation occurs on the flanks of the mid-ocean ridge (compare Figure 

2-5a,b). 

For the convenience of being able to ignore meridional variations in the basin geometry (and 

their effects on watermass transformations via the "perimeter" effect, as described by Holmes et al. 

2018), we limit the remaining discussion to a domain from 𝐿/2 < 𝑥 < 3𝐿/2 and 0 < 𝑦 < 𝐿/2 

along the north-hemisphere mid-ocean ridge, which is responsible for roughly 1 Sv of the full basin’s 

transformation (Figure 2-5c; limited domain outlined in Figure 2-2a). 

The net watermass transformation 𝑇net = 1 Sv at equilibrium is much larger than the 𝐿Ψbg ≤ 

0.1 Sv predicted by the integral constraint (eq. 2.5) from 1D boundary layer theory. To clarify 

the discrepancy between the watermass transformations that emerge from the 3D PGCM and the 

watermass transformations predicted by 1D dynamics, we emulate the 3D PGCM simulation by 

solving the 1D boundary layer equations locally and interpolating them onto the 3D PGCM grid. 

2.5 Emulating the 3D PGCM with local 1D boundary layer models 

2.5.1 Boundary layer theory 

Following CF18, we transform the planetary-geostrophic equations (2.6) - (2.8) from the Cartesian 

coordinates (𝑥, 𝑦, 𝑧) to a coordinate system (𝑥 ′ , 𝑦 ′ , 𝑧 ′) aligned with an infinitely extending sea floor at 

𝑧 = 𝑥 tan 𝜃, with slope angle 𝜃, and ignoring the southern region restoring condition on buoyancy. 

The transformation is given by 𝑥 ′ = 𝑥 cos 𝜃 + 𝑧 sin 𝜃, 𝑦 ′ = 𝑦, 𝑧 ′ = −𝑥 sin 𝜃 + 𝑧 cos 𝜃. Buoyancy 

𝑏 = 𝐵(𝑧) + 𝑏 ′ is decomposed into a background 𝐵(𝑧) with constant stratification 𝜕𝑧 𝐵 = 𝑁 2 and an 0 
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anomaly 𝑏 ′ (𝑧 ′ ). The planetary-geostrophic boundary layer equations are thus given by: 

−𝑓 cos 𝜃𝑢𝑦 ′ = 𝑏 ′ sin 𝜃 − 𝑟 cos 𝜃2𝑢𝑥 ′ (2.21) 

𝑓 cos 𝜃𝑢𝑥 ′ = −𝑟𝑢𝑦 ′ (2.22) [︂ (︁ )︁]︂
𝜕𝑡𝑏 + 𝑢𝑥 ′ 𝑁0 

2 sin 𝜃 = 𝜕𝑧 ′ 𝜅 𝑁 2 cos 𝜃 + 𝜕𝑧 ′ 𝑏 
′ , (2.23) 

with a no-flux boundary condition 𝜕𝑧 ′ 𝑏 ′ + 𝑁0 
2 cos 𝜃 = 0 at the seafloor 𝑧 ′ = 0 and decay conditions 

𝜕𝑧 ′ 𝑢
𝑥 ′ , 𝜕𝑧 ′ 𝑢

𝑥 ′ , 𝜕𝑧 ′ 𝑏 ′ → 0 as 𝑧 ′ → 0. At steady state, these equations yield exact analytical solutions 

for constant 𝜅 (CF18) and approximate analytical solutions for elementary 𝜅(𝑧) profiles (Dell, 2013; 

Callies, 2018). 

2.5.2 Emulator setup 

We emulate the PGCM solution by using finite differences to solve the time-dependent boundary-

layer equations (2.21) - (2.23) with the local Coriolis parameter 𝑓(𝑦) and slope angle 𝜃(𝑥, 𝑦) at each 

(𝑥, 𝑦) = (𝜉, 𝜂) of the PGCM grid, which is a sensible approach given that the parameters 𝑓(𝑦) and 

𝜃(𝑥, 𝑦) vary on scales larger than the those of the boundary-layer solutions (Dell and Pratt, 2015). 

Since these local boundary layer solutions are given in terms of the local slope-normal direction 𝑧 ′ 

rather than the true vertical direction 𝑧, we project the solution onto the true vertical direction 

𝑧 with the substitution 𝑧 ′ → 𝑧/ cos 𝜃 and linearly interpolate from the projected 𝑧-levels of the 

boundary layer solution to the PGCM’s local 𝜎-levels. This process provides an emulator of the 

PGCM which is purely the result of local 1D dynamics but is re-gridded to the same grid as the 3D 

PGCM and can thus be directly compared. While the emulator does not conserve mass or other 

properties, it does yield insight into the structure and dynamics of the 3D solution. 

2.5.3 Emulator evaluation 

We evaluate the emulator against the spin-up of a PGCM simulation with a constant stratification 

initial condition 𝑁0 
2, hereafter PGCM-CONST. The 1D emulator accurately reproduces the initial 

spin-up of buoyancy and velocity fields of the PGCM-CONST simulation along most of the mid-

ocean ridge flanks, but fails at the top and bottom of the ridge where the topographic curvature is 

large and the cross-slope convergences omitted by 1D dynamics become important (Figure 2-6a,b). 

As the solution nears equilibrium, however, the interior basin stratification drifts away from its 

constant initial value (compare gray and black contours in Figure 2-6d) and the boundary layer 
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Figure 2-6: Vertical velocity (colors) and buoyancy surfaces (black lines) in abyssal mixing layers 
along a zonal section across the mid-ocean ridge at 𝑦 = 𝐿/2 in (a,c) the 1D PGCM emulator and 
(b,d) the full 3D PGCM, where both are initialized from identical constant stratification buoyancy 
fields. The top row shows the solutions at an initial time 𝑡 = 0.1, at which point the abyssal mixing 
layers have spun up but the basin-scale circulation has not (see Section 2.3.4). The bottom row 
shows the solution at 𝑡 = 50, at which point the full solution has roughly come to equilibrium 
with the buoyancy restoring in the Southern Ocean. The predicted buoyancy surfaces in (a,c) are 
reproduced as dashed grey lines in (b,d) to show how the 1D emulator predicts the buoyancy field 
well for short times but that the interior stratification in the PGCM drifts far from the 1D emulator’s 
prediction as it approaches equilibrium. 

flows diverge from the 1D emulator’s prediction (Figure 2-6c,d). This is expected, as the basin 

stratification of PGCM-CONST is allowed to evolve in response to the 3D circulation while the 

background interior stratification 𝑁 2 is a constant parameter in the emulator6 . Relative to the 0 

emulator, the equilibrium PGCM-CONST solution exhibits reduced downwelling in the SML and 

enhanced upwelling in the BBL, both of which contribute to enhancing the net diapycnal upwelling. 

In Section 2.6, we use the 1D emulator to identify properties of the watermass transformations in 

the PGCM that can be explained by one-dimensional dynamics alone. 

6An attempt was made to correct for this by imposing the equilibrium stratification of the 3D model as the far-
field stratification for the 1D emulator, but the results were underwhelming (not shown) and suggest instead that the 
coupling between boundary layers and the interior is at least a first-order if not leading order effect. 

47
 



2.6	 The Effect of Variable Interior Stratification on the Abyssal 

Circulation 

2.6.1	 What sets the abyssal stratification? 

In our PGCM simulations, the drift of interior buoyancy surfaces over time (Figure 2-6d) suggests 

that the interior stratification at equilibrium may differ substantially from the stratification of the 

southern region buoyancy profile. Figure 2-7a shows the temporal evolution of the horizontally-

averaged vertical stratification profile, averaged over the northern hemisphere basin in the PGCM, 

where darker greys represent later times. In PGCM-CONST, the abyssal stratification develops sub 

stantial vertical structure in the basin over time, despite being rapidly restored back to a constant 

stratification in the southern restoring region (solid lines, Figure 2-7a). Net watermass transfor 

mation is initially unbalanced by Eulerian diapycnal flow (compare Figure 2-8b,f) and thus drives 

changes in the volume of buoyancy layers, which can be interpreted as a component of the diapy 

cnal transport due to the velocity of buoyancy surfaces (Marshall et al., 1999). Excess watermass 

transformations near the base of the slope destroy the densest layers and expand the deep layers, 

which translate into a reduction of the stratification that originates at the bottom of the ridge 

and propagates upwards over time. The details of the vertical structure of the equilibrium basin 

stratification depend on ridge height (not shown), but in all cases the basin stratification increases 

from zero at the maximum depth (imposed by the no-flux condition at the flat bottom) up to near 

the restoring reference value of 𝑁 2 at the top boundary. 0 

The zonal-mean basin stratification develops a significant meridional structure, wherein the 

zonal-mean stratification along the ridge weakens with distance from the Southern restoring region 

(Figure 2-7b,c). In contrast to the mixing layer stratification, which is strongest at the equator and 

weaker polewards (Callies, 2018, CF18), the zonal-mean stratification decreases roughly monotoni 

cally with increasing latitude. 

Simulations using a reference buoyancy profile that corresponds to an exponential stratification 

with decay scale of 𝛿 = 1000 m exhibit much less drift in their stratifications over time (dashed 

lines, Figure 2-7a,b). Although the equilibrium basin stratifications in all of the different PGCM 

experiments develop vertical structure, there does not seem to be a single preferred equilibrium 

stratification that depends only on the mixing: both the geometry of the abyssal topography and the 

restoring profile in the southern restoring region influence the interior stratification at equilibrium. 
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Figure 2-7: (a) Temporal evolution and (b,c) meridional structure of the stratification in PGCM 
simulations. Grey-scale lines in (a) show the temporal evolution of the horizontal-mean stratification 
in the Northern Hemisphere for simulations with a constant stratification restoring buoyancy profile 
(solid lines) and a restoring buoyancy profile corresponding to stratification that decays with depth 
with a scale height of 𝛿 = 1000 m (dashed lines). The dashed brown line delineates the height of 
the ridge crest. Panels (b) and (c) show the zonal-mean stratification at equilibrium 𝑡 = 50 (colors) 
and equally-spaced buoyancy surfaces (black lines) for experiments with restoring to constant and 
exponential stratification, respectively. 

2.6.2 Effect of variable stratification on watermass transformations 

We begin by considering the case of transient spin-up from a reference buoyancy profile with con 

stant stratification 𝑁 2, PGCM-CONST. It is useful to consider the evolution of the PGCM during 0 

its initial spin-up (𝑡 ≃ 𝜏BL/𝜏 = 0.1) when only mixing layer dynamics are relevant and the solution is 

thus well-predicted by the 1D Emulator (Figure 2-6). Figure 2-8a shows the watermass transforma 

tions in the 1D Emulator at 𝑡 = 0.1, which almost exactly predicts the watermass transformations 

in the full 3D PGCM (Figure 2-8b). 

Between −4200 m < 𝑧 < −3000 m, where the slope of the mid-ocean ridge is roughly constant, 

the near-boundary flow exhibits a vanishingly small net transport (solid black line in Figure 2-8a), 

which is approximately equal to the integral constraint 𝑇net ≃ 𝐿Ψbg = 𝐿𝜅bg cot 𝜃 ≤ 0.1 Sv predicted 

by 1D boundary layer theory (dashed black line in Figure 2-8a). This vanishingly small net transport 

is the result of large positive transformation 𝑇BBL (diabatic upwelling, in red) in the BBL and 

almost-as-large negative transformation 𝑇SML (diabatic downwelling, in blue) in the SML. Below 

𝑧 = −4200 m, at the base of the topographic slope, abyssal bottom waters feed the upwelling in the 

BBL and the maximum net watermass transformation is well predicted by the strictly upwelling 
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Figure 2-8: Watermass transformations in: (a, e) a 1D emulator of the PGCM and (b-d, f-h) the 
3D PGCM simulations with restoring buoyancy profiles corresponding to stratification profiles with 
various exponential scale heights 𝛿 (we recover 𝑁2 = constant as 𝛿 → ∞). The initial spin-up at 
𝑡 = 0.1 is shown in (a-d) and the equilibrium state at 𝑡 = 50 is show in (e-h). Black, red, and blue 
lines show the net, bottom boundary layer (BBL), and stratified mixing layer (SML) contributions 
to the watermass transformations, respectively. The black dashed line in (a,e) shows the integral 
constraint 𝐿Ψ∞ = 𝐿𝜅bg cot 𝜃max derived from boundary layer theory, where we take 𝜃max as the 
maximum slope angle of the mid-ocean ridge flank. 

transport in the bottom boundary layer from 1D theory (Figure 2-8a,b), as suggested by CF18. 

For the spin-up from a reference stratification that increases exponentially with height (as is 

almost ubiquitously the case in the abyssal ocean), the integral constraint (eq. 2.5) no longer 

holds at 𝑡 = 0.1 and the solution already exhibits a net transformation much larger than 𝐿Ψbg 

at all depths from the base of the slope to the ridge crest (Figure 2-8c,d). The increase in the 

net transformation, which spans the full vertical extent of the ridge, is primarily due to a decrease 

in the downwelling in the SML which, in the extreme case of an exponential scale height of 𝛿 = 

500 m for the restoring stratification, vanishes completely (Figure 2-8d). The strongly positive net 

transformation is primarily due to the buoyancy convergence driven by the rapid increase of the 

initial stratification with height, i.e. 𝜅𝜕𝑧 𝑧 𝐵 > 0 reduces the divergence ∇·(𝜅∇𝑏) < 0 due to 𝜕𝑧 𝜅 < 0 

in the SML (see also Figure 2-14). 

As these solutions reach equilibrium, they retain a finite net transformation at all depths from 

the base of the slope to the ridge crest, slightly reduced by gradually strengthening negative trans 

formations in the SML (compare Figure 2-8g,h to Figure 2-8c,d). At equilibrium, we find the degree 

of compensation near the ridge crest depends on the vertical scale over which the restoring stratifi 
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cation varies (within a range applicable to the ocean): the more rapidly the stratification increases 

with height, the less upwelling in the BBL is compensated by downwelling in the SML (Figure 2-8f-h 

and Figure 2-9a). In contrast, upwelling in the BBL is remarkably invariant to vertical variations in 

the stratification and remains a reasonable prediction for the maximum net transformation (Figure 

2-9a,b), which occurs at the base of the slope where the compensating downwelling contribution 

from the SML vanishes (Figure 2-9c). Thus, while the maximum net watermass transformation is 

accurately predicted by upwelling in the BBL alone, the vertical structure and extent of watermass 

transformations depend also on downwelling in the SML, which itself is strongly dependent on the 

vertical stratification, and is not predicted by 1D theory. 

Figure 2-9: Scaling of watermass transformations in mixing layers with (a) the height 𝛿 over which 
the restoring stratification varies and (b) the bottom diffusivity 𝜅bot. Colored symbols represent the 
absolute value of the maximum transport in the BBL (red), the SML (blue), and the net (black), with 
diamonds representing the PGCM-REAL simulations. The grey shading in (a) represents realistic 
vertical scales 𝛿 over which abyssal stratification varies and in (b) represents plausible values of 
the bottom diffusivity 𝜅bot. Panel (c) provides an example of the watermass transformations for a 
bottom diffusivity 𝜅bot = 5 ×10−3 m2s−1, a stratification height scale 𝛿 = 1000 m, and a ridge height 
of 𝑟ℎ = 1500 m, where the corresponding maxima are marked by diamonds and the dashed brown 
line represents the ridge crest. In all experiments, the maximum net and BBL transformations occur 
at depths of roughly 4250 m, at the base of the ridge slope, while the maximum SML transformation 
occurs at the ridge crest. 

2.6.3 Vertical extent of overturning set by ridge height 

We have shown that most of the watermass transformation occurs within abyssal mixing layers 

along the mid-ocean ridge (Figure 2-5a,b). We further hypothesize that variations in the height of 

the ridge modulate the vertical extent of abyssal watermass transformations and thus the vertical 

extent of the abyssal overturning cell. We test this hypothesis by running variations of the PGCM 

CONST where we vary the ridge height from 500 m to 2000 m, in increments of 500 m. In the 
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initial spin-up, largely compensating positive and negative transformations develop in the BBL and 

SML, respectively, from the base of the ridge slope up to the ridge crest (Figure 2-10a-d). The net 

transformation below the ridge crest vanishes according to the integral constraint (eq. 2.5), except 

near at the base of the ridge where bottom water feeds into the BBL. At equilibrium, however, the 

stratification drifts away from its constant reference state (e.g. Figure 2-7) and permits a finite 

net transformation (Figure 2-10e-h), which spans the full vertical extent of the ridge. The result 

that the vertical extent of the abyssal MOC follows the vertical extent of the mid-ocean ridge is 

consistent with Lumpkin and Speer (2007)’s global inversion for the MOC, which shows that the 

vertical extent of the Atlantic and Indo-Pacific lower MOC cells appear to closely follow the vertical 

extent of their respective major bathymetric features (i.e. mid-ocean ridges). 

Figure 2-10: Watermass transformations in PGCM simulations as a function of ridge height. All 
panels are for a fixed constant stratification restoring buoyancy profile. The initial spin-up at 𝑡 = 0.1 
is shown in (a-d) and the equilibrium state at 𝑡 = 50 is shown in (e-h). Mid-ocean ridge height 
increases in increments of 500 m from left to right, as indicated by the dashed brown lines. Black, 
red, and blue lines show the net, bottom boundary layer (BBL), and stratified mixing layer (SML) 
contributions to the watermass transformations, respectively. 

2.7 Comparison with realistic mid-ocean ridges 

The topography and mixing in the PGCM is inspired by observations from the Brazil Basin (Figure 

2-11), one of the regions of the abyssal ocean best characterized by observations (e.g. St. Laurent 
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et al., 2001; Thurnherr and Speer, 2003). The circulation that emerges from the PGCM-REAL 

simulation (Figure 2-11b) is qualitatively similar to the circulation inferred from observations using 

an inverse model (Figure 2-11a, based on St. Laurent et al. 2001): bottom-enhanced mixing along 

the slope of the mid-ocean ridge drives upwelling in a bottom boundary layer and downwelling in a 

stratified mixing layer above. 

To contextualize our simulated watermass transformations, we estimate watermass transforma 

tions in the ocean based on hydrography and a commonly-used mixing parameterization, following 

Ferrari et al. (2016)’s modifications of Nikurashin and Ferrari (2013) (see Cimoli et al. 2019 for 

the sensitivity to the results to assumptions about functional dependence of the flux coefficient 

and the partitioning of local vs. remote internal tide dissipation). The buoyancy flux is approxi 

mated by 𝑤 ′ 𝑏 ′ = −Γ𝜖, where 𝜖 is the kinetic energy dissipation and Γ is a ‘mixing efficiency’ set 

to Γ = 0.2 (Osborn, 1980); the buoyancy field (computed from the neutral density 𝛾) is taken 

from a gridded product derived from hydrographic sections of the World Ocean Circulation Experi 

ment (Gouretski and Koltermann, 2004); and we impose the insulating bottom boundary condition 

n · u ′ 𝑏 ′ ≃ 𝑤 ′ 𝑏 ′ = 0 (where n ≃ z for typical bathymetric slopes of tan 𝜃 ≪ 1). The dissipation 

rate 𝜖 is parameterized by applying linear wave radiation theory for internal tides (Nycander, 2005) 

and lee waves (Nikurashin and Ferrari, 2011) and assuming a fraction 𝑞 = 0.3 of the radiated en 

ergy is locally dissipated according to a bottom-enhanced structure function with a height scale 

of 500 m (St. Laurent and Garrett, 2002). We compare watermass transformation estimates from 

the ocean with estimates from PGCM-REAL, a simulation with restoring to an exponential refer 

ence stratification with a decay scale of 1000 m and which is our simulation with a stratification 

in the southern restoring region most similar to the Southern Ocean’s (Figure 2-2c). We focus on 

rectangular regions with dimensions 3000 km by 3000 km (in the PGCM) or 30∘ longitude by 30∘ 

latitude (in the ocean), which encompass comparable ridge lengths and surface areas at subtropical 

latitudes. Watermass transformations in the PGCM-REAL simulation (Figure 2-12a) are the result 

of partially compensating buoyancy flux convergence (Figure 2-12e) in the BBL (red colors) and 

buoyancy flux divergence in the SML (blue colors). Qualitatively similar (but noisier) watermass 

transformations emerge for the mid-ocean ridge regions in the Pacific, Atlantic, and Indian (Figure 

2-12b-d, regions delineated by boxes in panels e,f). While the net transformation varies from 0.5 Sv 

in the limited-area South Pacific region to 2 Sv in the Indian Ocean region, the net transformation is 

always the result of partially compensating upwelling and downwelling. This qualitative similarity 

emerges in the large-scale watermass diagnostic, despite the relatively heterogeneous nature of the 
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Figure 2-11: Diabatic zonal overturning circulation driven by bottom-enhanced mixing on the west 
ern flank of a mid-ocean ridge in (a) the South Atlantic Ocean and (b) the western half of the 
PGCM-REAL simulation domain. White lines show arbitrariy chosen contours of the counter 
clockwise zonal overturning streamfunction, where the values for (a) are digitized from Figure 14 of 
St. Laurent et al. (2001) and for (b) are diagnosed from PGCM-REAL simulation. Coloring shows 
the vertical diffusivity in log-scale (light-grey shading represents depths with no microstructure mea 
surements and does not necessarily represent topography), where panel (a) is inspired by Figure 2 
of Polzin et al. (1997) and the diffusivity is calculated with microstructure profiles from the BBTRE 
experiment (Polzin et al. 1997; St. Laurent et al. 2001, archived at microstructure.ucsd.edu). Black 
lines are: (a) potential density 𝜎4 surfaces (referenced to 4000 m) from the microstructure profiles 
and (b) buoyancy surfaces from the PGCM solution, chosen arbitrarily to show that the zonal over 
turning circulation is indeed diabatic. The dark grey lines in (a) show the depth minimum (canyon 
thalweg) and maximum (canyon crest) seafloor depth within 0.5∘ latitude of the microstructure pro 
files. In (b), zonal distance along the PGCM section has been converted to an equivalent longitude 
at 25∘S so that length scales can be directly compared between the two panels. 

estimated buoyancy flux and topography in the ocean basins (compare Figure 2-12f, e), because in 

all cases the turbulent buoyancy flux is bottom-enhanced (driving downwelling) and tapers to zero 

over the last grid cell to meet the insulating boundary condition within some bottom boundary 

layer (driving upwelling). This property of compensating watermass transformations is in contrast 
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to the case of a constant buoyancy flux (Ferrari et al., 2016; Holmes et al., 2018), in which there 

is no compensating downwelling. Estimates of global abyssal watermass transformations, however, 

exhibit stronger compensation by downwelling in the SML than shown here for mid-ocean ridge 

regions (by factors of 2 and 3 for Ferrari et al. 2016 and McDougall and Ferrari 2017, respectively). 

In Section 2.8 we present evidence in support of McDougall and Ferrari (2017)’s speculation that 

much of this discrepancy arises due to the effects of correlations between the buoyancy flux and the 

stratification, which are omitted in their calculations. Ferrari et al. (2016)’s estimate includes these 

correlation terms but relies on poorly-sampled knowledge of the buoyancy flux and stratification 

close to the seafloor, which likely introduces substantial uncertainty in their estimate. While much 

work has gone into understanding how the compensation factor depends on various parameters of 

the diagnostic approach based on climatological observations and parameterized mixing (McDougall 

and Ferrari, 2017; Holmes et al., 2018; Cimoli et al., 2019), the functional dependence of the com 

pensation factor in the prognostic dynamic approach has received comparably little attention and 

is not well known. 

2.8 Classic recipes and new trends in abyssal cuisine 

Quantitative study of the abyssal stratification began with the classic study of Munk (1966): a point-

wise theory in which the observed abyssal stratification is the result of a balance between uniform 

upwelling and a uniform turbulent vertical mixing. As anticipated by Munk (1966), subsequent 

observations show turbulent mixing to be strongly heterogeneous, with an emerging pattern of weak 

background mixing and vigorous mixing near rough topography (Polzin et al., 1997; Waterhouse 

et al., 2014). In light of these observations, Munk and Wunsch (1998) revisited Munk (1966)’s 

theorized point-wise vertical balance and re-derive it as a horizontally-averaged buoyancy budget, 

which we transcribe as [︁ ]︁𝑑 ⟨𝑤⟩𝐴 ≃ ⟨𝑁2⟩−1 𝐴(𝑧)⟨𝜅⟩⟨𝑁 2⟩ (2.24)
𝑑𝑧 

in our notation, where the key assumption is that correlations between the turbulent diffusivity 

𝜅, the stratification 𝑁 2, and the vertical velocity 𝑤 are all assumed to be negligible, such that 

⟨𝑤𝑁 2⟩ = ⟨𝑤⟩⟨𝑁2⟩ and ⟨𝜅𝑁 2⟩ = ⟨𝜅⟩⟨𝑁 2⟩. In Figure 2-13a,b,c, we show, respectively, the three terms 

in eq. 2.24: the horizontally-averaged stratification ⟨𝑁 2⟩, the turbulent buoyancy flux ⟨𝜅⟩⟨𝑁 2⟩, and 
the isobath surface area (ocean area at a fixed depth) 𝐴(𝑧). In Figure 2-13d we show the left-

and right-hand sides of eq. 2.24 in the PGCM-REAL simulation at equilibrium. The horizontally 
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Figure 2-12: (a-d) Watermass transformations at all abyssal depths and (e,f) buoyancy flux con 
vergence at 3250 m depth in similarly-sized domains containing mid-ocean ridges, as diagnosed 
from (a,e) the PGCM-REAL simulation and estimated for the (b,f) Pacific, (c,f) Atlantic, and 
(d,f) Indian Oceans. In (a-d), the black, red, and blue lines show the net, bottom boundary layer 
(BBL), and stratified mixing layer (SML) contributions to the watermass transformations, respec 
tively (grey shaded indicates depths representing very little ocean volume). The black boxes in 
(e,f) delineate the similarly-sized regions (each with dimensions of roughly 3000 km× 3000 km) for 
which we compute the watermass transformations. In (e,f), red and blue show regions of buoyancy 
flux convergence (positive buoyancy tendency) and buoyancy flux divergence (negative buoyancy 
tendency), respectively. 

averaged vertical flux divergence (right-hand side of eq. 2.24) is a poor prediction for the diagnosed 

vertical transport. This is not surprising, given that 1) 𝑤, 𝑁 2 , and 𝜅 are spatially-correlated in our 

solutions and 2) that density surfaces are strongly sloping near boundaries. Analysis in buoyancy 

coordinates, such as either the thickness-weighted average framework (De Szoeke and Bennett, 1993; 

Young, 2011) or the watermass transformation framework (Walin, 1982), are more appropriate. 

The mixing-driven watermass transformation (solid black line) equals the diapycnal transport (the 

diabatic MOC of interest here), by definition, but also serves as a better approximation of the 

vertical transport ⟨𝑤⟩𝐴 than the right hand side of eq. 2.24. 

In Figure 2-13c, we show that ignoring correlations within the buoyancy flux ⟨𝜅𝑁 2⟩ ≈ ⟨𝜅⟩⟨𝑁 2⟩ 
introduces large biases relative to the full horizontal-mean buoyancy flux, which results in even larger 

biases in the flux divergence (Figure 2-13d). To investigate the role of these spatial correlations 
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Figure 2-13: Comparison of abyssal upwelling diagnostics in the PGCM-REAL simulation for the 
watermass transformation analysis region highlighted in Figure 2-2a. The orange and blue lines 
in panel (d) represent the left- and right-hand sides, respectively, of the horizontally-averaged [︀ ]︀
advection-diffusion balance ⟨𝑤⟩𝐴 ≃ ⟨𝑁 2⟩−1 𝑑 𝐴(𝑧)⟨𝜅⟩⟨𝑁 2⟩ (eq. 2.24), which accounts for changes 𝑑𝑧 
in isobath surface area 𝐴(𝑧) with depth but ignores correlations between 𝑤, 𝜅, and 𝑁 2 and excludes 
the horizontal advection. The solid blue lines in panels (a), (b), and (c) show the individual compo 
nents of the expressions: (a) the horizontally-averaged stratification ⟨𝑁 2⟩, (b) the isobath surface 
area 𝐴(𝑧), and (c) the horizontally-averaged buoyancy flux ⟨𝜅⟩⟨𝑁 2⟩. The dashed line in (b) shows 
the role of correlation terms ⟨𝜅𝑁 2⟩ − ⟨𝜅⟩⟨𝑁 2⟩ in setting the vertical structure of the buoyancy flux. 
Finally, the solid black line in (d) shows the net watermass transformation, where its native density 
coordinate has been mapped into a pseudo-depth coordinate by taking the average depth of a given 
buoyancy surface (eq. 2.19). For all of our simulations, vertical advection-diffusion bulk models are 
poor approximations of diapycnal abyssal upwelling. 

between 𝜅 and 𝑁2 more exactly, we return to the watermass transformation framework, where we 
def ∫︀ 

now define ⟨·⟩ ≡ 𝐴−1 · d𝐴 as the average along a buoyancy surface. We can thus decompose the 𝑏 𝐴𝑏 
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vertical component of the watermass transformation into uncorrelated and correlated components, 

respectively: (︀ )︀ (︀ )︀ (︀ )︀
𝑇net ≈ 𝜕𝑏 𝐴⟨𝜅𝜕𝑧𝑏⟩ = 𝜕𝑏 𝐴⟨𝜅⟩⟨𝜕𝑧 𝑏⟩ + 𝜕𝑏 𝐴⟨𝜅 ′ 𝜕𝑧 𝑏 

′ ⟩ , (2.25) 

where 𝜅 ′ = 𝜅 − ⟨𝜅⟩ and 𝜕𝑧 𝑏 ′ = 𝜕𝑧 𝑏 − ⟨𝜕𝑧 𝑏⟩ are deviations from the mean along a buoyancy surface. 

Figures 2-14a,c show that ignoring the correlation terms in the watermass transformation results 

in an overestimation of the net transformation by 20% to 200% because the stratification 𝜕𝑧 𝑏 ′ is 

locally reduced in the abyssal mixing layers where 𝜅 ′ is high (orange lines in Figure 2-14a,c), with the 

magnitude of this bias varying dramatically across simulations with different topographic geometries 

and restoring profiles. 

To support our hypothesis that vertical variations in the stratification are necessary to support 

large net watermass transformations, we further decompose the uncorrelated component into a 

component related to the change in the mean stratification and a residual component related to 

changes in both the area of the buoyancy surface and the mean diffusivity, respectively: 

(︀ )︀ (︀ )︀
𝜕𝑏 𝐴⟨𝜅⟩⟨𝜕𝑧 𝑏⟩ = 𝐴⟨𝜅⟩𝜕𝑏⟨𝜕𝑧𝑏⟩ + (𝜕𝑧 𝑏)𝜕𝑏 𝐴⟨𝜅⟩ . (2.26) 

In the experiment shown in Figure 2-14a,b, where the uncorrelated component is a reasonable 

approximation of the net transformation, we find the net transformation to be largely driven by 

variations of the stratification with buoyancy, 𝐴⟨𝜅⟩𝜕𝑏⟨𝜕𝑧𝑏⟩, although variations in the diffusivity 
integrated along a buoyancy surface are also important. Variations in the stratification also appear 

important in the experiment shown in Figure 2-14d, although this decomposition is more difficult 

to interpret since the uncorrelated component overestimates the net transformation by a factor of 

3 (Figure 2-14c). 

2.9 Discussion 

The idealized numerical model presented here describes an abyssal circulation and stratification 

controlled by mixing-driven flows along a mid-ocean ridge in a cross-equatorial basin (Figure 2-1). 

By initializing with- and restoring to- a series of reference buoyancy profiles in the south of the 

basin, we investigate transient and equilibrium coupling between the basin stratification and the 

mixing-driven boundary flows. At equilibrium, dense abyssal waters form in the southern restoring 

region and flow north via adiabatic deep western boundary currents (red circle), filling the abyssal 
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Figure 2-14: Decomposition of the watermass transformation into various physical components in the 
PGCM-REAL experiment (top row) and an experiment with a shorter ridge and constant reference 
stratification (bottom row). In panels (a,c), we approximate the full watermass transformation (︀ )︀
(dashed black) by the contribution from the vertical buoyancy flux 𝜕𝑏 𝐴⟨𝜅𝜕𝑧 𝑏⟩ (solid black), which (︀ )︀
we then decompose into an uncorrelated component 𝜕𝑏 𝐴⟨𝜅⟩⟨𝜕𝑧𝑏⟩ (solid blue) and a residual (︀ )︀
𝜕𝑏 𝐴⟨𝜅 ′ 𝜕𝑧 𝑏 ′ ⟩ (solid orange), where ⟨·⟩ denotes averaging along a buoyancy surface. In panels 
(b,d), we further decompose the uncorrelated component into contributions due to the buoyancy 
derivative of the mean stratification 𝜕𝑏⟨𝜕𝑧 𝑏⟩ (dashed) and the integrated diffusivity along a buoyancy 
surface 𝜕𝑏(𝐴⟨𝜅⟩) (dotted). 

depths in both hemispheres. Along the mid-ocean ridge, bottom-enhanced mixing (squiggly lines) 

drives a net transformation of dense abyssal waters into lighter deep waters, the residual of partially-

compensating upwelling in a bottom boundary layer (BBL) and downwelling in a stratified mixing 
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layer (SML) right above it. The newly formed light deep waters flow zonally towards the western 

continental slope (solid arrow; reminiscent of Spall 2001’s two-layer model), returning southward 

via an adiabatic deep western boundary current to the restoring region (blue circles), and closing 

the abyssal overturning circulation as they are once again transformed into dense abyssal waters. 

Despite the extreme degree of idealization in our formulation of the Planetary Geostrophic 

Circulation Model (PGCM), the watermass transformations that emerge at equilibrium are quali 

tatively similar to diagnostic estimates of watermass transformations near mid-ocean ridges in the 

Pacific, Atlantic, and Indian Oceans (Figure 2-12), which are themselves fairly uncertain (Cimoli 

et al., 2019; de Lavergne et al., 2016c). Similarly, the zonal overturning that emerges within bot 

tom mixing-driven flows along the mid-ocean ridge are qualitatively similar to that described by an 

inverse model of the abyssal Brazil Basin based on in-situ measurements (St. Laurent et al., 2001, 

and Figure 11). Remaining differences between our simulations and observations are likely due to 

the crude nature of our parameterizations for the restratification by submesoscale turbulence (and 

other unresolved effects on the stratification, such as topography blocking/steering; see Chapter 

3) and for the formation of bottom waters in the Southern Ocean, as well as uncertainties in the 

observational estimates. 

The equilibrium interior stratification in the PGCM always exhibits dynamically significant 

vertical variations, the structure of which is determined by a combination of mixing layer dynamics 

and the restoring condition in the south. Even in our simulations that are initialized from- and 

restored to- a constant stratification reference buoyancy profile, heterogeneities in the topographic 

slope cause cross-slope divergence and a corresponding exchange flow between the abyssal mixing 

layers and the interior. Over time, these exchange flows modify the interior stratification and 

associated watermass transformations. 

As in CF18, we find the prediction of upwelling in the BBL by one-dimensional (1D) boundary 

layer theory provides a reasonable approximation to the maximum net transformation or, equiva 

lently, the strength of the diabatic meridional overturning circulation (Figures 2-8 and 2-9). While 

this interpretation provides a useful prediction for the maximum net transformation which occurs 

at the base of topographic slopes, it does not inform the net transformation along the flanks of the 

mid-ocean ridge, where upwelling in the BBL is instead partially compensated by downwelling in 

a SML. At depths where both the BBL and the SML are active, 1D theory predicts almost per 

fect compensation and a resulting net transformation that is vanishingly small (eq. 2.5 and Figure 

2-8a,e). In contrast, our PGCM simulations exhibit finite net watermass transformations that ex 
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tend from the base of the ridge slopes all the way up to the ridge crest (Figure 2-10), consistent 

with both our oceanic estimates (Figure 2-12) and inverse models of the Indo-Pacific overturning 

circulation (Lumpkin and Speer, 2007). We attribute the existence of a finite net transformation to 

vertical variations in the basin stratification7 (Figures 2-8 and 2-14). As we increase the degree to 

which the restoring stratification varies in the vertical, the compensation of BBL upwelling by SML 

downwelling (evaluated near the depth of the ridge crest) ranges from nearly-perfect compensation 

to nearly-zero compensation (Figure 2-9a). Thus, while 1D bottom boundary layer theory provides 

a reasonable approximation to maximum net watermass transformation, the vertical extent and 

structure of watermass transformations depends on the degree of compensation by downwelling in 

the SML, which is itself coupled to the vertically-varying basin stratification. 

Callies (2018) show that 1D boundary layer models with realistic inputs produce weak near-

boundary stratification and correspondingly weak BBL upwelling transports. In both the 3D PGCM 

and its 1D emulator, this problem has been abstracted away by tuning the simple linear momentum 

drag term to effectively produce a BBL stratification consistent with observations. While we justify 

our parameter choice a posteriori in terms of a crude parameterization for slumping of isopycnals 

by finite-amplitude submesoscale instabilities (proposed by Callies 2018 as a key restratification 

process), this should be considered little more than a placeholder until these restratification pro 

cesses are better understood. Thus, disentangling the processes responsible for maintaining the 

stratification of abyssal mixing layers over rough topography is the focus of Chapter 3. 

Our simulations show that correlations between mixing and stratification (Figure 2-14a,c), which 

are typically ignored in idealized models of the zonal-mean abyssal overturning (Nikurashin and 

Vallis, 2011; Jansen and Nadeau, 2019), can be of leading-order importance in abyssal watermass 

transformations; whether these correlations are important in the ocean remains an open question. 

Despite our improved understanding of the roles of bottom mixing and the interior basin stratifica 

tion on the abyssal watermass transformations and circulation, we fall short of a predictive analytical 

theory for the abyssal overturning and stratification that couples boundary layer dynamics with a 

model for the evolution of the interior stratification. Recent and ongoing work in 1) observing 

abyssal mixing layers (e.g. Garabato et al., 2019), 2) investigating their dynamics with idealized 

theory and simulations (Wenegrat et al., 2018; Callies, 2018; Holmes et al., 2019), 3) developing 

and evaluating parameterizations of their turbulent fluxes (Yankovsky et al., 2020), 4) and coupling 

7Since the publication of this article, this basin-scale result has been confirmed by a regional study of mixing-
driven watermass transformations in the Orkney Passage (Spingys et al., 2021), which finds a mixing-driven diapycnal 
upwelling of 0.5 Sv is almost entirely due to to the increase of the average stratification with buoyancy (or height). 
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them to the basin stratification (e.g. refining the approach of Salmun et al. 1991; see my preliminary 

attempt in Appendix A) will all be key ingredients for cooking up a revised theory of the abyssal 

circulation and stratification. 
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Chapter 3 

Dynamics of eddying abyssal mixing layers over 

rough topography 

3.1 Introduction 

Below the oceanic pycnocline, the vast volumes of the deep ocean are ventilated by two intercon 

nected cells of a global meridional overturning circulation (Gordon, 1986). The lower cell of this 

circulation is sourced along the coast of Antarctica, where atmospheric cooling and brine rejec 

tion transform surface waters into the dense Antarctic Bottom Waters (AABW) that fill the global 
def

abyssal ocean at a rate of approximately 30 Sv (1 Sv ≡ 106 m3/s) (Talley, 2013a). Since the buoy 

ancy surface bounding AABW from above does not outcrop elsewhere in the ocean, conservation of 

mass implies that an equal amount of AABW must upwell across buoyancy surfaces (diabatically) 

in the abyss. Isolated from surface exchange with the atmosphere, waters below about 2000 m depth 

(corresponding to the crests of major topographic features, such as mid-ocean ridges) can only be 

upwelled diabatically by interior watermass transformations (e.g. small-scale turbulent mixing) or 

fluxes across the seafloor boundary (geothermal heating) (Walin, 1982; Tziperman, 1986; Ferrari, 

2014). 

These basic inferences of a global diabatic upwelling in the abyss (e.g. Sverdrup et al., 1942) 

are also consistent with more detailed inverse modelling at regional scales (e.g. Talley et al., 2003). 

Most notably, Hogg et al. (1982) consider the fate of 4 Sv of AABW (colder than 0 °C) that enters 

the Brazil Basin from the Southern Ocean through the Vema Channel; since there are no other 

exits from the basin and since geothermal fluxes are relatively weak, they infer a basin-averaged 

turbulent diffusivity of 𝒪(3 cm2/s) is required to upwell these waters across the 0 °C isotherm. 
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Early measurements of in-situ turbulence in the upper ∼ 1000 m of the interior ocean find 

diffusivities more than an order of magnitude smaller than those predicted by the large-scale abyssal 

tracer budgets described above (Gregg, 1987; Ledwell et al., 1993). A subsequent field campaign 

in the abyssal waters of the Brazil Basin finds similarly weak background diffusivities over the 

smooth topography of the abyssal plains, but reveals diffusivities that increase downwards by several 

orders of magnitude over the rough topography of the Mid-Atlantic Ridge (Polzin et al., 1997; 

Ledwell et al., 2000). Huang and Jin (2002) simulate how this observed bottom-enhanced mixing 

modifies the classical theories of basin-scale abyssal circulation: bottom-enhanced mixing drives 

interior downwelling as opposed to upwelling (Munk, 1966) and the basin-scale horizontal circulation 

(Stommel, 1958) is instead dominated by narrow mixing-driven flows along the ridge flanks. 

The bottom-enhancement of mixing over rough topography, confirmed by many subsequent 

measurements (Waterhouse et al., 2014), is thought to be largely due to the local breaking of internal 

waves generated by the sloshing of the barotropic tide over rough abyssal topography (St. Laurent 

et al., 2001; Nikurashin and Legg, 2011). Theoretical understanding of internal-wave generation, 

propagation, and breaking processes has enabled the development of increasingly sophisticated 

internal wave mixing parameterizations (St. Laurent and Garrett, 2002; Polzin, 2009; Melet et al., 

2014; Lavergne et al., 2020), which have been used to extrapolate mixing estimates globally. 

Combined with hydrographic measurements of the buoyancy field, these global maps of param 

eterized mixing rates provide the first quantitative estimates of global abyssal watermass transfor 

mations (Nikurashin and Ferrari, 2013; de Lavergne et al., 2016c). Based on these estimates, and 

inspired by the pioneering studies of mixing in the Brazil Basin, Ferrari et al. (2016) and McDougall 

and Ferrari (2017) develop a revised conceptual model of the global mixing-driven abyssal upwelling: 

mixing-driven diabatic upwelling is confined to a thin Bottom Boundary Layer (BBL) just above 

insulating (or geothermally heated) seafloor while bottom-enhanced mixing drives diabatic down-

welling in the Stratified Mixing Layer (SML) above; the net diabatic overturning is the residual 

of these two opposing mixing layer flows. In this emerging framework, the global overturning cir 

culation is modulated by the dynamics of thin BBLs; however, since these abyssal boundary layer 

flows are challenging to observe (Garabato et al., 2019; Spingys et al., 2021) and are too small to be 

resolved by the coarse abyssal vertical resolution in conventional general circulation models (Callies 

and Ferrari, 2018b), they remain poorly understood (Callies, 2018; Wenegrat et al., 2018; Drake 

et al., 2020a). 

The interpretation of the role of boundary mixing in the abyssal overturning circulation has a 
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contentious history: on the one hand, in-situ observations of weakly-stratified BBLs would seem 

to imply the existence of vigorous boundary mixing (Armi, 1978); on the other hand, mixing of 

already well-mixed water is inefficient1 and does not lead to significant watermass transformation 

(Garrett, 1979). These two arguments are based on two fundamentally different views about the 

restratification processes that sustain the stratification and mixing at equilibrium: 

1. an observation-based three-dimensional (3D) perspective in which vigorous mixing creates 

transient well-mixed BBLs; a finite near-bottom stratification is maintained by exchange with 

the well-stratified SML due to topographic separation or baroclinic eddies, as evidenced by 

weakly-stratified step-like layers carrying suspended sediment and other anomalies into the 

interior (Armi, 1977; Armi and D’Asaro, 1980; Kunze et al., 2012; McPhee-Shaw et al., 2021) 

2. a theory-based one-dimensional (1D) perspective in which a buoyancy-driven up-slope flow 

maintains the near-bottom stratification (Garrett, 1990, 1991, 2001). 

The two views are not inherently contradictory: even when the flow may be described as 1D at 

leading order, cross-slope variations in the stratification (Salmun et al., 1991), topography (Dell and 

Pratt, 2015), and mixing rates (Kunze et al., 2012) may drive slope-normal exchanges between the 

interior and the boundary at higher order (McDougall, 1989; Garrett et al., 1993). 

Sloping boundary layer theory, by virtue of its simplicity and generality, provides a useful ground 

ing for the study of mixing layer flows. The key idea is to approach the problem from a coordinate 

frame aligned with the mean topographic slope and to assume uniformity along the plane of the 

slope, aside from a constantly stratified and hydrostatic background state. Wunsch (1970) de 

rives one-dimensional solutions in which slope-normal mixing causes buoyancy convergence at the 

seafloor boundary and the resulting buoyancy force drives up-slope flow. Thorpe (1987) extends 

the theory to account for rotation, and shows that an along-slope thermal wind shear develops in 

response to horizontal buoyancy gradients, which drives a corresponding Ekman-like modification 

to the cross-slope boundary layer flow. Using the same model, Garrett (1990) clarifies the role of 

the buoyancy-driven up-slope "secondary" circulation in maintaining a finite near-bottom equilib 

rium stratification upon which mixing can efficiently act. In light of Toole et al. (1994)’s pioneering 
1Throughout the thesis, we take the perspective that turbulent buoyancy fluxes can be parameterized as a down-

gradient vertical diffusive flux −𝜅𝑏𝑧 . In this framing, we assume the diffusivity increases towards the bottom and 
the no-flux boundary condition on buoyancy is instead satisfied by vanishing of the stratification; alternatively, this 
condition can be implicit in the diffusivity profile, as in Holmes and McDougall (2020). Analogously, in dissipation-
based closures of the buoyancy flux Γ𝜖, it is instead typically assumed that the flux coefficient Γ vanishes near the 
boundary; in recent parameterizations, for example, this is achieved by a decrease of Γ with the buoyancy Reynolds 
number 𝑅𝑒𝑏 = 

𝜖 
at high 𝑅𝑒𝑏 or, equivalently, a linear scaling Γ ∝ 𝑏𝑧 (Melet et al., 2013; Mashayek et al., 2017b). 

𝜈𝑏𝑧 
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observations, Thompson and Johnson (1996) explore transient numerical solutions for the case of 

bottom-enhanced mixing and present qualitative evidence of their relevance to the Pacific Ocean 

abyssal circulation. 

In light of diagnostic evidence for boundary-control on the abyssal circulation (Ferrari et al., 

2016), Callies (2018) tests whether sloping BBL theory is quantitatively consistent with observa 

tions. In his analysis of the sloping flank of the Mid-Atlantic Ridge in the Brazil Basin (where 

co-located measurements of both abyssal mixing rates and stratification are available), he finds that 

the steady-state 1D boundary layer solution forced by the observed mixing exhibits a stratification 

an order of magnitude weaker than observed. Thus, the watermass transformations sustained by the 

1D "secondary" circulation are too inefficient to contribute significantly to the global abyssal over 

turning circulation. In Chapter 2, we used a simple Rayleigh drag parameterization as a placeholder 

for the yet unknown physical processes that maintain a realistically high mixing layer stratification; 

here, we tackle this restratification problem head on. 

To reconcile boundary layer dynamics with observations, Callies (2018) argues the stratification 

of abyssal mixing layers is instead maintained by submesoscale baroclinic eddies, which act to slump 

sloping buoyancy surfaces back to the horizontal. Indeed, Wenegrat et al. (2018) demonstrate that 

mixing-driven 1D boundary layers solutions are linearly unstable to submesoscale baroclinic modes, 

in a manner similar to the well-studied analagous problem in the surface mixed layer (Boccaletti 

et al., 2007). Callies (2018) simulates the finite amplitude evolution of these instabilities in a 3D 

generalization of the 1D boundary layer framework and show that the solutions converge on a 

quasi-equilibrium stratification consistent with observations. 

While Callies (2018)’s 3D solutions for a smoothly sloping plane appear consistent with avail 

able observations of the stratification, this is a relatively weak constraint; as will become clear 

later on, different combinations of various dynamical processes can produce similar stratifications. 

As discussed by Callies (2018), it is not clear to what extent such idealized solutions are directly 

applicable to the mid-ocean ridge, which is famously characterized by particularly rough topogra 

phy. For example, any of the observations of bottom-enhanced mixing, stratification, and diabatic 

upwelling from the region are confined to 𝒪(500 m)-deep fracture zone canyons which cut across 

the ridge (Polzin et al., 1997; Ledwell et al., 2000; St. Laurent et al., 2001; Thurnherr et al., 2020). 

To account for these leading-order topographic features, Ruan and Callies (2020) run simulations 

of mixing-driven flow over a sinusoidal mid-ocean ridge incised by an idealized Gaussian fracture 

zone canyon. They find that the canyon sidewalls suppress along-slope (or cross-canyon) flow and 
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thus support a vigorous up-canyon (or cross-slope) mean flow; the restratifying tendency of this 

up-canyon mean flow is much stronger than that of either the 1D up-slope flow or the submesoscale 

eddies on the smooth ridge flanks, implying that abyssal watermass transformations are, per unit 

area, much larger within the canyons than on the ridge flanks. However, they acknowledge that a 

major caveat of their results is that the simulated stratification in the canyon is orders of magnitude 

larger than is observed, suggesting they are still missing important physics. In addition to frac 

ture zone canyons, mid-ocean ridges are also characterized by smaller-scale anisotropic abyssal hills; 

these features have characteristic scales taller than 1D BBLs and comparable to those of the fastest 

growing baroclinic mode (Wenegrat et al., 2018), so we would expect them to affect both mean and 

eddying circulations. Within the fracture zone canyons, abyssal hills often manifest as sills that 

substantially block or constrain the up-slope flow, leading to hydraulic acceleration of mean flows 

and locally enhanced turbulence (Thurnherr et al., 2005; Dell, 2013; Dell and Pratt, 2015; Clément 

et al., 2017). The complexity induced by the boundary conditions at a rough seafloor prevents the 

direct application of existing idealized theories to in-situ observations (see also Polzin, 2009), as one 

might do for the surface mixed layer. This complexity is exacerbated by the sparsity of observa 

tional constraints (de Lavergne et al., 2016a); as a result, our understanding of abyssal mixing layer 

dynamics remains comparatively poor. 

Here, we use a quasi-realistic "slope-native" numerical simulation to bridge the gap between 

idealized 1D BBLs and the complexity of observed flows in a region scarred by a fracture zone 

canyon and dotted with abyssal hills. In Section 3.2, we review key insights from the 1D BBL 

buoyancy budget and derive a generalized buoyancy budget that permits topographic variations 

and spatio-temporal eddy correlations. In Section 3.3, we describe the simulation configuration, 

which leverages a coordinate frame aligned with the mean topographic slope to apply doubly-

periodic boundary conditions that allows mean up-slope flow across background buoyancy gradient 

to support a non-trivial equilibrium solution. In Section 3.4, we describe the simulated mixing 

layer flows and show they are qualitatively consistent with available observations. In Section 3.5, 

we analyze the simulated buoyancy budget, and show a three-way balance between 1) bottom-

enhanced mixing, 2) cross-slope mean flow, and a 3) slope-normal eddy flux. By progressively 

simplifying the configuration in a hierarchy of models framework (Held, 2005), we quantify the 

role of particular physical processes in setting the near-boundary stratification; in the process, we 

reproduce the qualitative results of all of the idealized simulations discussed above. In Section 3.6, 

we explore the magnitude and structure of mixing-driven watermass transformations in the BBL 
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and SML. In Section 3.7, we discuss how our results bridge the gap between in-situ observations 

(Armi, 1978; Thurnherr and Speer, 2003; Polzin, 2009) and 1D BBL theory (Garrett, 1979), and 

how they illustrate– at a regional scale– the control of abyssal mixing layers on an "upside-down" 

abyssal overturning circulation (Ferrari et al., 2016). We conclude that a combination of both 

submesoscale eddies and topographically-controlled secondary circulations are required to maintain 

a steady-state near-boundary stratification consistent with in-situ observations and a finite abyssal 

overturning circulation. 

3.2 Theory 

3.2.1 Slope-native equations 

In sloping boundary layer theory (e.g. Wunsch, 1970; Garrett et al., 1993; Callies, 2018), analytical 

progress is achieved by modelling the system in a more natural coordinate frame aligned with its 

mean topographic slope, rather than the typical coordinate frame (ˆ 𝑦, ˆ 𝑧 aligned with 𝑥, ˆ 𝑧) with ˆ
def

gravity. It is useful to decompose the buoyancy 𝑏 = 𝐵 + 𝑏 ′ into a background component 𝐵 ≡ 𝑁 2𝑧, 

where 𝑁2 is a constant vertical buoyancy gradient, and a perturbation component 𝑏 ′ ( ̂ 𝑦, ˆ𝑥, ˆ 𝑧, 𝑡); 

the background buoyancy is assumed to be in hydrostatic balance with a background pressure, 
d𝑃 = 𝐵, and we similarly decompose 𝑝 = 𝑃 + 𝑝 ′ . Then, we rotate the coordinate system from d ̂𝑧 

def
the gravity-aligned frame to the coordinate frame aligned with the mean-slope (𝑥, 𝑦, 𝑧) ≡ ( ̂𝑥 cos 𝜃 + 

𝑧 sin 𝜃, ˆ 𝑧 cos 𝜃 − ˆ 𝑥-direction (e.g. dashed 𝑦, ˆ 𝑥 sin 𝜃), where 𝜃 is the region’s average slope angle in the ̂

black lines in Figure 3-2b). For small slopes tan 𝜃 ≪ 1, the hydrostatic Boussinesq equations in the 

mean-slope coordinates are, at leading order, given by2 

𝑢𝑡 + u · ∇𝑢 − 𝑓 𝑣 = −𝑝 ′ 𝑥 + 𝑏 ′ sin 𝜃 + ∇ · (𝜈∇𝑢) , (3.1) 

𝑣𝑡 + u · ∇𝑣 + 𝑓 𝑢 = −𝑝 ′ 𝑦 + ∇ · (𝜈∇𝑣) , (3.2) 

𝑝 ′ = 𝑏 ′ cos 𝜃, (3.3)𝑧 

∇ · u = 0, (3.4) [︂ (︁ )︁]︂
𝑏 ′ 𝑡 + u · ∇𝑏 ′ + 𝑁 2(𝑤 cos 𝜃 + 𝑢 sin 𝜃) = ∇ · 𝜅 𝑁 2 cos 𝜃z + ∇𝑏 ′ , (3.5) 

where subscripts represent partial derivatives, ∇ is the gradient operator, 𝑢 is the along-canyon (or 

cross-slope) velocity, 𝑣 is the cross-canyon (or along-slope) velocity, 𝑤 is the slope-normal velocity, 
2While sin 𝜃 ≃ 𝜃 and cos 𝜃 ≃ 1 in this limit, we retain these geometric terms explicitly so they are not forgotten. 
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𝑓 is a constant Coriolis parameter (𝑓 -plane approximation), 𝜅 is an isotropic eddy diffusivity, and 

𝜈 = 𝜎 𝜅 is an isotropic eddy viscosity determined by the turbulent Prandtl number 𝜎. The along-

canyon x-momentum equation is identical in form to the zonal x̂-momentum equation with the 

exception of the small but dynamically significant projection of the perturbation buoyancy force 𝑏 ′ ̂z 

on x. Advection and diffusion across the background buoyancy gradient effectively enter as forcing 

terms in the perturbation buoyancy equation. 

The anomalous seafloor depth, relative to the mean slope, is given by 

𝑑(𝑥, 𝑦) = 𝑑( ̂𝑥, 𝑦) + �̂� tan 𝜃 (3.6) 

We set 𝑧 = 0 along the sloping plane that intersects the point with the greatest anomalous seafloor 

depth, max(𝑑). Boundary conditions at the seafloor, 𝑧 = max(𝑑) − 𝑑(𝑥, 𝑦), are u = 0 (no-slip and 

no-normal-flow) and n · (𝜅∇𝑏) = 0 (insulating), where n is a unit vector normal to the boundary. 

3.2.2 Smooth planar slopes and steady 1D dynamics 

Assuming a smoothly sloping infinite plane (𝑑 ≡ 0) and mixing rates that vary only in the slope-

normal direction, the equilibrium solution also varies only in the slope-normal direction and the 

equations dramatically reduce down to 

−𝑓 𝑣 = 𝑏 ′ sin 𝜃 + 𝜕𝑧 (𝜈 𝑢𝑧 ) , (3.7) 

𝑓 𝑢 = 𝜕𝑧 (𝜈 𝑣𝑧) , (3.8) 

𝑝 ′ = 𝑏 ′ cos 𝜃, (3.9)𝑧 [︂ (︁ )︁]︂
𝑢𝑁 2 sin 𝜃 = 𝜕𝑧 𝜅 𝑁 2 cos 𝜃 + 𝑏 ′ , (3.10)𝑧 

where the continuity equation 𝑤𝑧 = 0 combines with the no-normal-flow bottom boundary condition 

at 𝑧 = 0 to require 𝑤 ≡ 0 everywhere (no slope-normal exchange). These equations can be solved 

analytically in the case of constant parameter values (Wunsch, 1970; Phillips et al., 1986; Garrett, 

1990), or approximately in the case for varying parameters in some asymptotic limits (Salmun 
def

et al., 1991; Callies, 2018). In either case, the slope Burger number 𝑆 ≡ 𝑁 2 sin2 𝜃/𝑓 2 and the BBL 

thickness √︂ 
def 2𝜈 

𝛿 ≡ 𝑞−1 = (1 + 𝑆 𝜎 )− 1 
4 , (3.11)

𝑓 
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√︁ 
def 2𝜈emerge as key parameters; we recognize 𝛿 as the Ekman layer thickness 𝛿𝐸 ≡ modified by 𝑓 

buoyancy effects at the sloping boundary; for typical abyssal values, 𝑆 ≪ 1 and buoyancy effects 

are weak. 

We briefly review key results from sloping BBL theory; we closely follow the modern presentation 

of Callies (2018), who uses boundary layer analysis to derive insightful approximate analytical 

solutions to the steady 1D system (eqs. 3.7-3.10) forced by exponentially bottom-enhanced mixing, 

𝜅(𝑧; 𝑑) = 𝜅BG + 𝜅BOT 𝑒
−(𝑧−𝑑)/ℎ with 𝜅BOT/𝜅BG ≫ 1. These approximate solutions are valid in the 

limit that the inner BBL thickness 𝛿 is much thinner than the decay scale ℎ of the diffusivity, i.e. 

ℎ/𝛿 ≫ 1, as is the case for the rough mid-ocean ridge flanks characterized by a small slope Burger 

number (see Polzin 2009 for a theoretical parameterization of the decay-scale based on heuristic 

internal wave dynamics). For transient solutions or equilibrium solutions for which ℎ/𝛿 ̸≫ 1, we 

present the results of numerical solutions instead, also following the methods of Callies (2018). 

Under the crucial assumption of a constant background vertical stratification 𝑁 2, the slope-

native buoyancy equation (3.5) reduces to (3.10), a direct balance between slope-normal diffusion of 

heat downwards towards the boundary and cross-slope advection against the constant background 

buoyancy gradient; this balance is a near-boundary analog of Munk (1966)’s classic interior ocean 

vertical balance. It is also useful to integrate (3.10) in the slope-normal direction, 

∫︁ 𝑧 (︁ )︁ (︁ )︁
def 

𝜓(𝑧) ≡ 𝑢 d𝑧 = 𝜅 cot 𝜃 𝑏𝑧/𝑁 2 cos 𝜃 = 𝜅 cot 𝜃 1 + 𝑏 ′ 𝑧 /𝑁 2 cos 𝜃 , (3.12) 
0 

where we define 𝜓 as the up-slope transport (per along-slope unit length) and we have invoked the 

insulating bottom boundary condition on the full stratification, 𝑏𝑧 = 0 at 𝑧 = 0. Equation (3.12) 

reveals two keys insights: 

1. The net up-slope transport, integrated over both the upwelling BBL and the downwelling 

SML, converges to the negligibly small value 

def 
𝜓∞ ≡ 𝜓(𝑧 → ∞) = 𝜅BG cot 𝜃 (the 1D integral constraint) (3.13) 

since far from the boundary 𝑏 ′ 𝑧 → 0 and 𝜅 → 𝜅BG (Thorpe, 1987). 

2. Maximal up-slope transport in the BBL is achieved when both 𝜅 is large (i.e. near the 

boundary) and 𝑏𝑧 is large (strong restratification). If the stratification is maintained near the 

large background value 𝑁 2 cos 𝜃 where the diffusivity is largest (i.e. for 𝑧 ≪ ℎ) then the up 
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𝜅BOTslope transport in the BBL reaches an upper limit3 max{𝜓} ≃ 𝜅BOT cot 𝜃 = 𝜓∞ ≫ 𝜓∞. 
𝜅BG 

In Callies (2018)’s solution, the equilibrium stratification 𝑏𝑧 is approximately inversely proportional 

to 𝜅 in the SML (their eq. 10; Figure 3-8a, solid lines), such that the turbulent buoyancy flux 

𝜅𝑏𝑧 is constant and finite buoyancy flux convergence occurs only within the thin BBL. Since the 
𝜅BGnear-boundary stratification is reduced to roughly 𝑏𝑧 ≈ 𝑁 2 cos 𝜃 (Figure 3-8a, solid lines) and 
𝜅BOT 

near-boundary mixing is thus inefficient, up-slope BBL transport is roughly equal to the negligibly 

small integral constraint (3.13), max{𝜓} ≃ 𝜅BG cot 𝜃 (Figure 3-7a, dotted and dashed lines). This 

weak BBL upwelling and irrelevant SML downwelling contrasts with the strong bi-directional flows 

inferred from watermass transformation analyses (Ferrari et al., 2016; McDougall and Ferrari, 2017). 

Callies (2018) proposes a simple parameterization of restratification by 3D submesoscale baro 

clinic eddies as a way to improve the 1D boundary layer solution such that it can maintain a 

realistically-large near-bottom stratification. The main effect of baroclinic eddies is to extract avail 

able potential energy from the mean flow by slumping sloping buoyancy surfaces back towards the 

horizontal; this adiabatic process is most conventionally parameterized as an eddy overturning cir 

culation (Gent and McWilliams, 1990; Fox-Kemper et al., 2008). Taking advantage of thermal wind 

balance (𝑓 𝑣𝑧 = 𝑏�̂�), the slumping of isopycnals by baroclinic instability– which decreases horizontal 

buoyancy gradients 𝑏�̂�– can equivalently be parameterized as a reduction in the vertical shear 𝑣𝑧, 

e.g. by enhanced vertical momentum diffusion (Rhines and Young, 1982; Greatbatch and Lamb, 

1990; Young, 2011). Since vertical momentum diffusion is the simplest parameterization to imple 

ment and interpret, we follow Callies (2018) in parameterizing submesoscale eddy restratification 

by artificially increasing the vertical eddy viscosity 𝜈 = 𝜎𝜅, setting 𝜎 = 230 as a best fit to the 

observed stratification. This parameterization results in weakening the slope-normal shear of the 

along-slope flow and, because of the approximate thermal wind balance 𝑓 𝑣𝑧 ≃ 𝑏 ′ 𝑧 sin 𝜃 that holds in 

the SML (eq. 3.8), results in a corresponding weakening of the negative perturbation stratification 

𝑏 ′ (equivalent to a strengthening of the total stratification 𝑏𝑧 ; compare dash-dotted and solid lines 𝑧 

in Figure 3-8a). At equilibrium, this parameterized eddy restratification triples 𝑏𝑧 , 𝜅𝑏𝑧 , and 𝜓 at the 

top of the 1D solution’s BBL (Figure 3-7b, dotted lines), bringing the watermass transformations 

of the 1D BBL more in line with the global overturning (Callies, 2018). 

3While one can imagine scenarios in which the stratification could be locally much larger than the background 
value, we only find small overshoots (< 20%) across all of our experiments. 
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3.2.3 Rough topography and eddy fluxes 

We aim to derive a generalized version of the 1D steady buoyancy budgets (3.10, 3.12) for slop 

ing boundary layers that allows for topographic and flow variations along the plane of the slope. 

Consider the buoyancy budget for a volume 𝒱 within a height 𝑧 above the mean slope: 

∫︁ ∫︁ ∫︁ ∫︁ ∫︁ 
𝑏𝑡 d𝑉 = (−u𝑏 + 𝜅∇𝑏) · n d𝐴, (3.14)

def 
𝒱(𝑧 ′ <𝑧) 𝒜 ≡ 𝜕𝒱(𝑧 ′ <𝑧) 

where we use the divergence theorem to rewrite the right-hand side terms in terms of fluxes normal to 

the bounding surface 𝜕𝒱 (Figure 3-1a). Fluxes through the seafloor at 𝑧 ′ = max 𝑑−𝑑(𝑥, 𝑦) vanish due 
to the no-flow and insulating bottom boundary conditions. Motivated by the simulations in Section 

3.3, we presume fluxes through cross-slope and along-slope boundaries cancel due to periodicity 

(e.g. 𝑏 ′ (𝑥) = 𝑏 ′ (𝑥 + 𝐿𝑥)), except for the up-slope flow across the background buoyancy gradient 

(recall 𝑏 = 𝑏 ′ + 𝑁 2𝑧), 

∫︁ ∫︁ ∫︁ ∫︁ ∫︁ ∫︁ 
(−𝑢𝑏) d𝑦d𝑧 ′ − (−𝑢𝑏) d𝑦d𝑧 ′ = −𝑁 2𝐿𝑥 sin 𝜃 𝑢 d𝑦d𝑧 ′ (3.15) 

𝒜(𝑥+𝐿𝑥; 𝑧 ′ ≤𝑧) 𝒜(𝑥; 𝑧 ′ ≤𝑧) 𝒜(𝑥; 𝑧 ′ ≤𝑧) 

This, combined with the slope-normal component of the flux through the 𝑧 ′ = 𝑧 surface, gives 

∫︁ ∫︁ ∫︁ 
𝑏𝑡 d𝑉 = ⟨𝜅𝑏𝑧 ⟩ − ⟨𝑤𝑏⟩ − 𝑁 2𝐿𝑥 sin 𝜃Ψ, (3.16) ⏟ 𝒱(𝑧 ′ ≤𝑧)⏞ 

LHS 

⏟  ⏞ 
Mixing 

⏟  ⏞ 
Eddies ⏟ ⏟ ⏞ ⏞ 

Mean Flow 

RHS 

def ∫︀∫︀ def ∫︀∫︀ 
where we define ⟨ ∙ ⟩ ≡ ∙ d𝑥d𝑦 as the slope-integral operation and Ψ(𝑧) ≡ 𝑢 d𝑦d𝑧 ′ 𝒜(𝑧) 𝒜(𝑥; 𝑧 ′ ≤𝑧) 

as the up-slope transport across the periodic boundary (Figure 3-1a). At equilibrium, the form of the 

generalized volume-integral buoyancy equation (3.16) is similar to the 1D transport equation (3.12), 

although there is now an additional eddy flux of buoyancy towards or away from the boundary, and 

the turbulent buoyancy flux may be modified by along- and cross-slope correlations between 𝜅 and 

𝑏𝑧 . Assuming a steady state and integrating up far enough into the interior that 𝜅 → 𝜅BG and the 

perturbations vanish, we recover the integral constraint (3.13) on the net up-slope transport from 

the 1D solution, Ψ∞/𝐿𝑦 = 𝜅BG cot 𝜃. 

The phenomenology of idealized bottom mixed layer eddies, which are trapped within a hew 

hundred meters of the bottom, suggests that their buoyancy flux reaches a maximum a few meters 

above the bottom, implying they have a tendency to cool the BBL, warm the SML, and restratify 
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fracture zone canyon and the smaller-scale abyssal hills characteristic of mid-ocean ridges4 . We 

interpolate the bathymetry onto a locally-tangent Cartesian grid ( ̂𝑥, ˆ 𝑧) aligned with the BBTRE 𝑦, ˆ

Canyon, where �̂� denotes the along-canyon dimension and 𝑦 denotes the cross-canyon dimension 

(Figure 3-2a), and produce a gridded bathymetry field 𝑑( ̂𝑥, 𝑦). The simulated canyon stretches from 

a few km west of the Tracer Release Experiment site around 18.5 °W (Ledwell et al., 2000) to a few 

km east of the DoMORE sill that dramatically constrains the up-canyon flow at 14.5 °W (Clément 

et al., 2017). Thus, our simulation domain contains several of the best-studied dynamical features 

of the Brazil Basin (Figure 3-2a,b). 

3.3.2	 Implementing the perturbation Boussinesq equations in the mean-slope 

coordinate frame 

Following Section 3.2.1, we transform equations (3.1-3.5) into a coordinate frame aligned with the 

domain’s mean slope. Equations (3.1-3.5) are solved in terms of the perturbation variables, with 

the background buoyancy field 𝑁2𝑧 entering only indirectly via linear and inhomogeneous terms 

in the perturbation buoyancy equation, implemented as additional explicit tendency terms in the 

MITgcm equations. To stabilize the numerical solution in a way that allows submesoscale eddies 

to grow, we additionally implement biharmonic hyper-diffusion of momentum and buoyancy along 

the plane of the slope. Hyper-diffusive tendencies are sufficiently small to not alter the budgets 

presented here at leading order, so we omit them in all of our analyses. We enforce an insulating5 

boundary condition on the full buoyancy at the seafloor: n · (𝜅∇𝑏) = 0. 

Relative to the mean slope, the anomalous seafloor topography 𝑑(𝑥, 𝑦) 
def 
𝑑( ̂𝑥, 𝑦) − �̂� tan 𝜃 is by ≡ ˆ

construction nearly continuous across the periodic boundaries in the along-canyon direction x and 

in the cross-canyon direction y; to avoid any remaining discontinuities across these boundaries due 

to aliasing of abyssal hills, we join the two boundaries smoothly by linear interpolation over 7 grid 

cells in x and 11 grid cells in y, chosen such that the resulting artificial slopes do not exceed those 

typical of the region. 

By 1) removing the constantly-stratified background state from the prognostic variables, 2) 

formulating the model in the slope coordinate frame, and 3) making the boundary conditions and 

forcing terms periodic in the (𝑥, 𝑦) plane, we are free to apply periodic boundary conditions to state 

4Polzin (2009) caution that errors in bathymetric products result in mischaracterizations of mixing hotspots, e.g. 
whether mixing is higher on the hilly ridge flanks or along the slopes of fracture zone canyons. 

5Geothermal heating is thought to contribute negligibly to abyssal watermass transformations in the BBTRE 
canyon region (Thurnherr et al., 2020), so we ignore it for simplicity here. 
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Figure 3-2: Numerical model domains. (a) Seafloor elevation −𝑑( ̂𝑥, 𝑦), including the doubly-periodic 
simulation domain centered on the Brazil Basin Tracer Release Experiment (BBTRE) canyon. Red 
markers show the locations of moorings from Clément et al. (2017) (CTS17) and Thurnherr et al. 
(2005) (T05). The inset highlights the DoMORE sill that dramatically constrains up-canyon flow. 
White markers mark the injection location from the BBTRE (Ledwell et al., 2000). (b) Imposed 
slope-normal diffusivity field, the result of applying a self-similar exponential profile as a function of 
the height-above-bottom (eq. 3.17) to variable topography. Arrows show the Cartesian along-canyon 
ŷ and cross-canyon x̂, as well as the transformed slope-normal z and along-canyon x coordinate 
vectors, which appear distorted because the vertical dimension is exaggerated. (c-f) A hierarchy of 
simulations with progressively complex seafloor bathymetry geometries (relative to a constant mean 
slope of angle 𝜃; see dashed lines in panel b). Thin black lines distinguish three sub-regions: the 
canyon trough, the canyon’s flanks, and the ridge flank surrounding the canyon. 

variables u, 𝑏 ′, and 𝑝 ′ in both x and y. 

3.3.3 Forcing by observed bottom-enhanced turbulent mixing 

Following the classic one-dimensional boundary layer configuration (Wunsch, 1970), we inject energy 

into the system only through small scale turbulent mixing, which is parameterized as a slope-normal 
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diffusive buoyancy flux (−𝜅 𝜕𝑧𝑏) z. We use Callies (2018)’s self-similar height-above-bottom profile 

(︂ )︂
𝑧 + 𝑑 

𝜅(𝑥, 𝑦, 𝑧) = 𝜅(𝑧; 𝑑) = 𝜅BG + 𝜅BOT exp − , (3.17)
ℎ 

with 𝜅BOT = 1.8 × 10−3 m2/s, 𝜅BG = 5.3 × 10−5 m2/s, and ℎ = 230 m; these parameter values are 

chosen by performing a least-squares fit to the height-above-bottom-average of 126 microstructure 

profiles in the BBTRE region. While turbulent mixing in this region is known to be intermittent 

in both time and space (Clément et al., 2017), the sparsity and noisiness of individual profiles does 

not provide sufficient detail to formulate a parameterization with a richer spatial structure. We 

imagine this imposed bottom-enhanced mixing to represent a variety of turbulent ocean processes, 

but especially the breaking of internal waves (Whalen et al., 2020). We assume that small-scale 

turbulent mixing acts similarly to mix momentum, i.e. we assume a turbulent Prandtl number of 
def ≡ 𝜈𝜎 = 1.𝜅 

This configuration implies a directionality to the simulated flow of energy: local mixing provides 

available potential energy, some of which is converted into kinetic energy by a mean flow and its 

instabilities, and all of which is eventually dissipated by the imposed eddy viscosity; there is no 

explicit external forcing by winds, tides, or non-local mean flows. 

3.3.4 Parameter regime 

Following Callies (2018), we assume a background far-field stratification 𝑁 = 1.3 × 10−3 s−1 and a 

local Coriolis parameter 𝑓 = −5.3 × 10−5 s−1 characteristic of the BBTRE region above the weakly 

stratified BBLs. A linear fit to the bathymetry 𝑑(𝑥, 𝑦, ) yields the domain’s average topographic 

slope angle 𝜃 = 1.26 × 10−3 in x̂. Mixing layers are thus characterized by weak stratification and 
def

gentle large-scale slopes, equating to a small Burger number, 𝑆 ≡ 𝑁 2 tan2 𝜃/𝑓 2 = 10−3 ≪ 1 and 

BBL thickness 𝛿 ≈ 8 m (eq. 3.11). 

3.3.5 Numerics 

The horizontal grid spacing of Δ𝑥 = Δ𝑦 = 600 m is fine enough to permit the anticipated sub 

mesoscale baroclinic turbulence, which for the 1D sloping BBL problem has a maximum linear 

growth rate near the local deformation radius 𝐿 ∼ 𝑁 𝐻𝑀 𝐿 = 6 km (Wenegrat et al., 2018), where 𝑓 

𝐻𝑀 𝐿 ≈ 250 m is the thickness of the weakly-stratified bottom layer (Callies, 2018). Yet, the grid 

spacing is also coarse enough for three-dimensional modelling of the entire 480 km by 60 km region 
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to be computationally feasible. We set 𝜅4 ≡ 𝜈4 = 2 × 104 m4/s, the smallest value that maintains a 

stable solution, so that the hyper-diffusion interferes minimally with diapycnal buoyancy fluxes and 

the growth of submesoscale instabilities (Callies and Ferrari, 2018b; Ruan and Callies, 2020). In 

the vertical, a cell thickness of Δ𝑧 = 6 m (with partial cells down to 1.2 m) marginally resolves the 

predicted 𝒪(10 m)-thick BBL. A 1D spin-up experiment with these parameters confirmed this ver 

tical resolution is sufficient to accurately reproduce the analytical solution for BBL upwelling (not 

shown). Far above the sloping sea floor, the cell thickness Δ𝑧 is stretched up to 50 m to efficiently 

fit the several-kilometer vertical scale of abyssal mixing layers (Callies, 2018) into a domain that 

spans a height 𝐻 = 2700 m above the mean slope. 

We spin up the simulations from a constantly-stratified rest state (𝑏 ′ ≡ 0, u ≡ 0). The BBL 

adjusts rapidly on a timescale 𝜏BBL = 𝛿2/𝜅BOT = 10 hours. While the full equilibration of the 

solution occurs over a prohibitively long diffusive timescale characteristic of the abyssal ocean inte 

rior, 𝜏INT = 𝐻2/𝜅BG ≈ 5000 years, buoyancy tendencies are small enough by 𝑡 = 5000 days in the 

bottom 1000 m (see Section 3.5) that we consider the solution sufficiently quasi-equilibrated for the 

analyses presented here. For the initial spin-up, we use a centered second order advection scheme 

with as large a timestep as possible under the CFL constraint (Δ𝑡 = 60 s) for efficiency and accu 

rate conservation of tracers. At quasi-equilibrium, we switch to a higher-order non-linear advection 

scheme and a smaller timestep of Δ𝑡 = 15 s for more stable and accurate tracer diagnostics. 

3.3.6 Hierarchy of progressively idealized simulations 

The simulations in our model hierarchy differ only in their seafloor topography, domain length, and 

dimensionality. We progressively idealize the BBTRE canyon configuration (Figure 3-2f): first, we 

remove the abyssal hills along the ridge flank and idealize the geometry of the remaining canyon and 

sill features ("Canyon+Sill"; Figure 3-2e); second, we remove the sill ("Canyon"; 3-2d); third, we 

remove the canyon entirely ("Smooth3D"; Figure 3-2c); and finally, we eliminate variations along the 

plane of the slope, collapsing the solution onto a single slope-normal dimension as in classical BBL 

theory ("1D"). For reference, we also include some additional variants on the 1D model where we 

vary one parameter at a time: non-rotating ("1D𝑓 =0"), non-sloping ("1D𝜃=0"), and parameterized 

eddies ("1D𝜎=230"). Unless we specify otherwise, results refer to the default BBTRE simulation. 
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3.4	 Mixing-driven up-canyon flow, submesoscale turbulence, and 

stratification 

At quasi-equilibrium, the time-mean flow (averaged over days 5000 to 5500) is dominated by a 

vigorous up-canyon jet along the canyon thalweg, banked along the steeper southern flank of the 

canyon (as in Dell, 2013; Ruan and Callies, 2020). The up-canyon jet exhibits a maximum along 

canyon-averaged velocity of 𝑢𝑥 = 0.75 cm/s about 400 m above the seafloor (Figure 3-3a). This 

up-slope jet is partially compensated by a down-slope jet on the gentler northern flank, such that 

the cross-canyon-averaged velocity is reduced to 𝑢𝑦 = 𝒪(0.1 cm/s) (Figure 3-3a,b). The up-stream 

jet accelerates as it spills over two major cross-canyon sills: the BBTRE sill at 𝑥 = 110 km and the 

DoMORE sill at 𝑥 = 420 km (Figure 3-3a,b), both suggestive of hydraulic control (Pratt and White ∫︀ 𝐻head, 2008). The vertically-integrated cross-slope transport 𝑢 d𝑧 is dominated by standing eddy 𝑧=0 

features above the canyon (Figure 3-3c, recall 𝑧 = 0 at the deepest point relative to the mean slope), 

but prominently features meandering up– and down–canyon jets when integration is restricted to ∫︀ 800 m just the canyon itself, 𝑢 d𝑧 (Figure 3-3d). These simulated mixing-driven means flows can 𝑧=0 

be compared against two in-situ mooring observations: the BBTRE mooring at 𝑥 = 110 km just 

upstream of the BBTRE sill (Toole 2007; also analyzed by Thurnherr et al. 2005) and the DoMORE 

mooring at 𝑥 = 420 km atop the DoMORE sill (Clément et al., 2017). At the DoMORE sill, hor 

izontal and vertical constrictions accelerate the up-canyon flow to 5 cm/s over a layer 𝛿𝑧 = 150 m 

thick and 𝛿𝑥 = 2.5 km wide (Figure 3-4a). The simulated transport at the DoMORE sill is roughly 

constant in time, also suggestive of hydraulic control (Pratt and Whitehead, 2008), and is about 

25% that suggested by the mooring observations (half as fast and half as thick; Figure 3-4b). By 

contrast, at the BBTRE mooring, which is a few km upstream of the BBTRE sill, the up-canyon 

flow is much weaker (𝑢 ≈ 0.75 cm/s) but spread over a thicker (𝛿𝑧 ≈ 600 m) and wider (𝛿𝑥 ≈ 5 km) 

layer, such that the total up-canyon transport at the two sections are similar (Figure 3-4c); such 

a comparison is impossible from observations since the single BBTRE mooring profile cannot be 

reasonably extrapolated across the canyon (Thurnherr et al., 2005). The simulated flow at the 

BBTRE mooring has roughly the same vertical structure as in the moored current meter velocities, 

but about half their magnitude (Figure 3-4d). The relative weakness of the simulated flows suggest 

that either the imposed microstructure-based mixing rates are too biased low (Thurnherr et al., 

2005, as hypothesized by) or that we have omitted important physics, such as tidal rectification 

effects or large-scale external forces. 
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Figure 3-3: Structure of up-canyon mean flow in the BBTRE Canyon. (a) Along-canyon-averaged 
up-canyon flow 𝑢𝑥, with the mean canyon seafloor outlined in transparent grey shading and cross-
canyon thalweg shown in the dark gray shading. (b) Cross-canyon-averaged up-canyon flow 𝑢𝑦 in 
the Cartesian coordinate frame ( ̂𝑥, 𝑧). Grey lines represent equally-spaced buoyancy surfaces, with 
dashed lines showing the full buoyancy field (800 grid column profiles) and solid lines showing the 
buoyancy field subsampled like the hydrographic observations (11 equally-spaced profiles Thurnherr 
et al., 2020), which gives the misleading appearance of buoyancy surfaces gently impinging into the 
bottom. The black line marks the mean seafloor depth of the half of the domain furthest from the 
canyon thalweg and acts as a proxy for the crest of the canyon. (c) Up-canyon flux, integrated in the 
slope-normal direction 𝑧. Black and grey contours show a deep and shallow isobath, respectively, 
to highlight the canyon topography that shallows to the right. (d) Same as (c), but integrated only 
from 𝑧 = 0 m to 𝑧 = 800 m to highlight the core up-canyon jet within the canyon. 

Averaging the BBTRE simulation in height-above-bottom (hab) coordinates reveals that the 

stratification generally remains close to its background value, except in the 𝒪(10 m)-thick BBL 

(Figure 3-5a, solid blue line). Upon first inspection, this result appears inconsistent with observa 

tions which, when averaged in hab, exhibit much weaker stratification up to 1 km above the seafloor 

(Figure 3-5, red lines). However, much of this discrepancy is resolved by sampling the simulation 

at the exact locations of the observational profiles (Figure 3-5b), and comparing their sample-mean 
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Figure 3-4: Structure of up-canyon flow at two mooring sites. (a,c) Cross-canyon sections of the up-
canyon flow at locations of DoMORE sill mooring (Clément et al., 2017) (CTS17-P1) and BBTRE 
mooring Thurnherr et al. (2005) (T05). Light grey shading shows the local seafloor depth while 
the dark grey shading in (a) shows the mean height of the canyon floor above the mean slope, 
highlighting the significant vertical and cross-canyon constriction introduced by the sill. (b,d) 
Height-above-bottom profiles of the up-canyon flow at the locations of the two moorings (light grey 
lines) and shifted a few grid columns over to improve the fit. 

to that of the observations (Figure 3-5a). Since the BBTRE sampling strategy was to find as much 

tracer as possible, the field campaign specifically focused on sampling the deep depressions in the 

BBTRE canyon, which appear to exhibit unusually weak stratification compared to the canyon 

flanks, sills, and the surrounding ridge flank. However, even with this like comparison, the simula 

tion is still too stratified by about a factor of two relative to the observations; we attribute this to 1) 

the possibility that the turbulent mixing we prescribe is too weak, 2) residual buoyancy tendencies, 

3) the omission of large-scale vertical gradients in the background stratification 𝑁 2 (see Chapter 

2), or 4) other unknown effects. We discuss these points further in Section 3.7. 

The time-mean view of the up-canyon circulation above betrays a rich field of submesoscale 

eddies which have radii comparable to the deformation radius and are trapped within a few hundred 

meters of the seafloor, including within the 𝒪(10 km)-wide canyon (Figure 3-6). These eddies 
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Figure 3-5: Comparison between observed and simulated stratification in the BBTRE Canyon re 
gion. (a) Height above bottom-averaged profile of stratification for the full simulation domain (solid 
black), for the sample-mean of nine co-located CTD casts (dashed red) and free-falling microstruc 
ture profilers (solid red), and for the sample-mean of nine simulated profiles sampled at the locations 
of the observations (dotted black). (b) Observed (solid) and simulated (dashed) stratification pro 
files at the nine locations sampled by the BBTRE observational campaign, overlaid on a map of the 
seafloor-elevation. An additional simulated profile typical of the crest region outside of the canyon is 
also shown, revealing an apparent sampling bias due to the strategy of measuring weakly-stratified 
deep depressions along the trough of the canyon in search of the released tracer (Ledwell et al., 
2000). 

manifest themselves as spatial and temporal meanders of the mean up-canyon jet, which we show 

in the following section contribute significantly to the simulation’s buoyancy budget and likely 

contribute to maintaining its strong stratification. 

3.5 Buoyancy budgets: mixing, mean flow, and eddies 

In Figure 3-7, we present volume-integrated buoyancy budgets (eq. 3.16) across our model hierarchy, 

time-averaged over days 5000 to 5200. All of the solutions exhibit substantial residual tendencies 

in the interior, but tendencies are an order of magnitude smaller than other terms in the budgets 

within a few hundred meters of the ridge flanks and within the canyons (Figure 3-7, black). The 1D 

and 1D𝜎=230 simulations are computationally inexpensive, so we also provide their fully-equilibrated 

solutions for context (Figure 3-7a,b; dotted). 

In the classical 1D solution, a weak up-slope transport in the BBL (Figure 3-7a, blue line) 

maintains a weak near-boundary stratification (Figure 3-8, solid black/grey), as discussed in Section 

3.2.2. The evolution of the Smooth3D solution follows the 1D solution closely until about 800 days, 

at which point the laminar solution becomes unstable to submesoscale baroclinic modes (see linear 
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Figure 3-6: Instantaneous normalized relative vorticity 𝜁 /𝑓 , or local Rossby number, in and above 
the BBTRE Canyon at four different heights above the mean slope, at 𝑡 = 5050 days. 

stability calculations in Wenegrat et al. 2018) which rapidly grow and equilibrate at finite amplitude 

(see Callies, 2018). At quasi-equilibrium, these transient eddies transport buoyancy from the BBL 

to the SML (Figure 3-7b, orange), effectively restratifying the BBL (Figure 3-8, blue) and thus 

strengthening the maximum turbulent buoyancy flux (Figure 3-7b, red). Relative to the 1D model, 

these additional eddy and turbulent buoyancy fluxes exactly cancel, such that the transient up-

slope transport and residual tendencies remain identical to those of the 1D model (Figure 3-7a,b; 

blue and black lines, respectively); it is unclear whether this unexpected result is just a transient 

coincidence or a fundamental property of the equilibrium solution. The crude eddy parameterization 

in 1D𝜎=230 qualitatively captures this restratifying effect6 (Figure 3-8c, compare dash-dotted and 

blue with solid grey) and enhances the maximum buoyancy flux into the BBL by a factor of 3 

relative to the 1D model, both transiently and at equilibrium (Figure 3-7b,c; solid and dotted red 

lines, respectively). However, since the 1D𝜎=230 model does not permit explicit eddy fluxes, the 

parameterized effects of eddy fluxes are instead represented as an enhanced cross-slope transport 

due to less energy being partitioned to the along-slope thermal wind shear (Figure 3-7c; blue). 

The volume-integrated buoyancy budget is more complicated to interpret in the presence of 

variable topography. In the Canyon solution, a substantial turbulent buoyancy flux convergence 

6The available potential energy in our simulations has to build up from zero, in contrast to Callies (2018)’s solutions 
seeded with substantial available potential energy; thus, the parameterized restratification in 1D𝜎=230 is too strong 
and causes us to overestimate Smooth3D’s transient restratifying effect. 
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Figure 3-7: Generalized integral buoyancy budget in a hierarchy of increasingly complex simulations 
of mixing-driven flows up a mean slope of angle 𝜃: (a) 1D, (b) Smooth3D, (c) 1D𝜎=230, (d) Canyon, 
(e) Canyon+Sill, (f) BBTRE. Solid lines show terms of the volume-integrated buoyancy budget (eq. 
3.16) for a layer bounded by a given Height Above the Mean Slope (HAMS): residual tendencies 
are the result of a three-way balance between mean cross-slope advection, slope-normal turbulent 
mixing, and vertical eddy fluxes. We divide by the factor 𝑁2𝐿𝑥 sin 𝜃 to conveniently express the 

def
budget in terms of the quantity of interest, the up-slope volume transport Ψ with units of mSv ≡ 
103 m3/s. Dotted lines in (a,c) show 1D steady state solutions and the dashed red line shows the 
integral constraint (eq. 3.13); in panel a, the dotted and dashed red lines overlap. Grey shading 
shows the HAMS range spanned by the canyon, if present. 

drives a vigorous up-slope mean flow within the bottom 200 m along the narrow trough of the 

canyon 5 mSv (Figure 3-7d, blue), which is already larger than the total BBL transport in the 1D 

model (Figure 3-7a, blue). The stratification in the trough of the Canyon is efficiently maintained 

near the large background value (Figures 3-9b; 3-8f, orange line). Thurnherr and Speer (2003) and 

Ruan and Callies (2020) hypothesize that this efficient restratification is due to the canyon sidewalls 

blocking the along-ridge thermal wind, such that the momentum is redirected into the cross-slope 

flow. The 1D𝑓=0 model’s excellent agreement with the stratification in the Canyon trough supports 

this hypothesis (Figure 3-8f; orange and dotted lines). 
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Figure 3-8: Height above bottom-averaged stratification profiles at steady state (a) and at 𝑡 = 
5000 days (b-f), as a function of model complexity (lines) and domain sub-region (lower row). Panels 
(a,b) and grey lines in (d-f) show one-dimensional Dedalus solutions with: the same parameters as 
the BBTRE simulations (solid), with zero mean-slope (𝜃 = 0; dashed), without rotation (𝑓 = 0; 
dotted), and with a high turbulent Prandtl number (𝜎 = 230, crude proxy for restratification by 
baroclinic eddies; dash-dotted). Colored lines show a hiearchy of three-dimensional simulations with 
increasingly complex topographies (see Figure 3-2c-f). 

The turbulent buoyancy flux also converges around a Height Above the Mean Slope (HAMS) 

of 𝑧 = 800 m, at the transition between the canyon flanks and the smooth ridge flank, driving a 

substantial additional upwelling of about 15 mSv from 𝑧 = 600 m to 800 m (Figure 3-7d). Upwelling 

along the smooth ridge flank of the Canyon simulation is about twice as large as that of the 

Smooth3D simulation, despite covering a smaller area, because some of the high stratification at the 

crest of the canyon flanks is exported out of the canyon and onto the BBL on the smooth ridge flank 

(Figure 3-9b,d) by an isopycnal eddy thickness flux and maintains a much larger stratification there 

(Figures 3-8c,d,e). In the Canyon simulation’s quasi-equilibrium state, virtually all of the turbulent 

buoyancy flux divergence in the upper SML (far above the seafloor) is not yet equilibrated: the 

bottom-enhanced diffusion of buoyancy towards the boundary slowly cools the interior (Figure 3 
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7d, red and black lines).
 

Figure 3-9: Cross-slope (left) and along-slope (right) sections of the stratification along the trough 
of a canyon in a hierarchy of numerical simulations (Smooth3D has no canyon, so the section is 
arbitrary). Solid grey lines in the left column show the approximate elevation of the ridge flanks 
surrounding the canyon while in the right column they show HAMS of the topographic sill (if 
present). Dashed grey lines show the locations of the respective sections. 

In the Canyon+Sill simulation, the sill blocks up-slope flow within the trough of the canyon 

(Figure 3-7, e vs. d). This is expected, since the up-canyon flows of 𝒪(1 cm/s) only carry sufficient 

kinetic energy to lift a parcel across a stratification of 𝑁 ∼ 𝒪(10−4 − 10−3 s−1) by a height 𝛿Fr = 
def 

𝑈 /𝑁 ∼ 20−200 m (based on a topographic Froude number of Fr ≡ 𝑁 𝛿Fr/𝑈 ∼ 2), much smaller than 

the sill height of ℎsill = 800 m and resulting in a blocked flow layer of thickness ℎsill − 𝛿Fr (Baines, 

1979; Winters and Armi, 2012), both up– and down–stream of the sill (recall also the periodic 

boundary conditions). No up-slope mean flow is available to restratify the trough of the Canyon, 

so it slowly homogenizes due to mixing (Figure 3-9c); the evolution of the trough’s stratification 
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closely follows that of a diffusely-growing boundary layer over a flat bottom (compare with our 

1D𝜃=0 simulation; green and dashed grey lines in Figure 3-8f), suggesting that, in the absence of 

additional restratification processes, the trough will eventually completely homogenize7 (as in Dell 

2013). In contrast, within a slope-normal displacement 𝛿𝐹 𝑟 of the sill, mean flows along the two 

flanks of the canyon are able to maintain a layer of strong stratification (Figures 3-7e, 3-9e,f, and 

3-8e); as in the Canyon simulation, the strong stratification in this thin layer spills over onto the 

smooth ridge flanks and maintains a larger stratification there than in the Smooth3D case (Figure 

3-9e,b and 3-8c,d). 

The structure of the stratification in the BBTRE simulation is qualitatively similar to that 

of the Canyon+Sill simulation, although the rougher abyssal hill topography acts to thicken the 

layer of enhanced stratification near the DoMORE sill height and supports a large near-bottom 

stratification on the hilly ridge flanks surrounding the canyon (Figure 3-9g,h, 3-8d). The slope-

normal structure of the BBTRE canyon’s buoyancy budgets (Figure 3-7f) is remarkably similar to 

that of the Canyon+Sill simulation, and can be broken down into several key elements: 

1. cross-canyon sills block up-slope flow along the canyon trough, such that mixing slowly erodes 

its stratification; 

2. along the crests of the canyon flanks (𝛿𝐹 𝑟 below the sill height and above), a significant up-

slope transport maintains a layer of strong stratification that separates the weakly-stratified 

canyon trough from the interior; 

3. a combination of transient and standing submesoscale eddies maintain a strong near-bottom 

stratification along the ridge flanks, which supports a large turbulent buoyancy flux conver 

gence in BBLs; 

4. bottom-enhanced mixing drives a large buoyancy flux divergence in the SML, which compen 

sates for most of the convergence in the canyon and the BBLs (by construction, see eq 3.13); 

however, due to its slow diffusive timescale, by day 5000 only a small fraction of this buoyancy 

flux divergence is balanced by down-slope transport. 

7Tidal velocities, omitted for simplicity here, would imply a larger excursion height, a thinner blocked flow layer, 
and the potential for restratification processes to penetrate deeper into the canyon trough (as hypothesized by Clément 
et al., 2017). 
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3.6 Mixing-driven watermass transformations 

A more natural framework for understanding the drivers of diapycnal transport is watermass trans 

formation analysis (Walin, 1982; Marshall et al., 1999), which reframes the buoyancy budget in 

buoyancy space by integrating along buoyancy surfaces (or over buoyancy classes). Following Fer 

rari et al. (2016), the diapycnal transport ℰ(𝑏, 𝑡) across a buoyancy surface 𝒜(𝑏, 𝑡) is given by 

∫︁ ∫︁ ∫︁ (︁ )︁
def ℰ(𝑏, 𝑡) ≡ e · n d𝐴 = 𝜕𝑏 ∇ · 𝜅∇�̃� d𝑉 , (3.18) 

𝒜(𝑏,𝑡) 𝒱(�̃�<𝑏) (︂ )︂
def 𝑏𝑡where e ≡ u · n − n is the diapycnal velocity and 𝒱(�̃� < 𝑏) is the volume enclosing any water |∇𝑏|

denser than 𝑏. Since our simulations have not fully equilibrated in the SML, diapycnal transports 

include two components: flow across a buoyancy surface and the movement of the buoyancy surfaces 

themselves. In the present context, it is useful to decompose the diapycnal transport into a strictly 

upwelling BBL component ℰBBL, where the integral is only evaluated over the strictly upwelling 
volume 𝒱(�̃� < 𝑏; ∇ · (𝜅∇�̃�) > 0), and a strictly downwelling SML component ℰ𝑆 𝑀 𝐿 , similarly 

defined. 

In practice, meaningful evaluation of this integral in the slope-native configuration requires 

stitching together 𝐻/(𝐿𝑥 tan 𝜃) ≈ 𝒪(5) periodic copies of the domain before adding in the back 

ground buoyancy field 𝐵, so that each isopycnal can be followed all the way from its incrop at the 

seafloor to the interior far-field where mixing is weak (Figure 3-10). Further, because our simulation 

is periodic in the cross-slope direction (and thus in mean buoyancy), the resulting watermass trans 

formations are periodic over a buoyancy interval Δ𝐵 = 𝑁 2𝐿𝑥 tan 𝜃 ≈ 0.52 °C. Temporal variability 

of watermass transformations is small relative to the other variations we focus on, so all results 

hereafter refer to their time-mean. 

Net watermass transformations computed from (3.18) are small (≈ 2 mSv) and when averaged 

over the periodic buoyancy integral Δ𝐵 converge on the integral constraint 𝜅BG cot 𝜃𝐿𝑦 (Figure 

3-11a, black and dashed grey). However, this small net transformation is the residual of a large 

BBL upwelling (60 mSv) and an almost-as-large SML downwelling (Figure 3-11a; solid red and 

blue squares, respectively). The ratio ℰBBL/ℰ ≈ 30, known as the amplification factor, quantifies 

the magnitude of upwelling in the BBL relative to the net overturning. Despite forcing watermass 

transformations by a uniform height-above-bottom diffusivity, ℰBBL(𝑏) varies from 45 to 70 mSv 

(Figure 3-11a; solid red and blue lines). 

87
 



Figure 3-10: Turbulent buoyancy (temperature) flux convergence along the trough of the BBTRE 
canyon. Vertical olive lines show along-canyon boundaries of the simulation domain; the solution is 
doubly periodic in buoyancy perturbations, but discontinuous in the total buoyancy in the along-
canyon direction due to a constant background mean slope and stratification. For the small mean 
slopes considered here, computing watermass transformations thus requires reconstructing the full 
extent of buoyancy surfaces by stitching together multiple copies of the domain, each translated by 
a multiple of the domain extent 𝐿𝑥 and background temperature jump Δ𝑇 = 𝑁

2 
𝐿𝑥 tan 𝜃 ≈ 0.52 °C.𝑔𝛼 

To understand these variations, we invoke the divergence theorem to rewrite the BBL watermass 

transformations in terms of fluxes across bounding surfaces, 

∫︁ ∫︁ 
ℰBBL(𝑏) = 𝜕𝑏 𝜅∇�̃� · n d𝐴. (3.19) 

𝜕𝒱(�̃�<𝑏; ∇·(𝜅∇𝑏) > 0) 

Δ𝑏Averaging over an arbitrary buoyancy interval {𝑏 − Δ𝑏 ; 𝑏 + }, we find 2 2 

∫︁ 𝑏+ Δ𝑏 ∫︁ ∫︁ 
𝑏±Δ𝑏 def 1 1 ℰBBL (𝑏) ≡ 

2 

ℰBBL d�̃� = 𝜅∇�̃� · n d𝐴. (3.20)
Δ𝑏Δ𝑏 𝑏− Δ𝑏 Δ𝑏 𝜕𝒱(𝑏 − Δ𝑏 < ̃𝑏 < 𝑏 + ; ∇·(𝜅∇𝑏) > 0)

2 2 2 

The right hand side of (3.20) can be broken into four different components (see schematic in Figure 

3-1b): (A) the flux through the seafloor, which vanishes due to the no-flux boundary condition; 

(B) the flux across the transitional surface that separates the upwelling BBL from the downwelling 

SML, defined by ∇ · (𝜅∇𝑏) = 0; (C) the flux across the 𝑏 − Δ𝑏 surface intersected with the BBL; 2 

Δ𝑏and (D) the flux across the 𝑏 + surface intersected with the BBL. The contributions of (C) and 2 

(D) are much smaller than (B), both because the roughly horizontal surfaces of (B) cover a much 

larger area than the vertical surfaces of (C) and (D) (for the choice of Δ𝑏 ≈ 0.05 °C shown here) 

and because (C) and (D) are in opposite directions and largely cancel each other. A reasonable 

approximation of (B), the turbulent flux into the layer’s BBL, is provided by approximating the 

transitional surface as a constant height-above-bottom surface, with habBBL > 𝛿 slightly larger than 
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the typical BBL thickness; in practice, we find that habBBL = 40 m yields reasonable results. Since 

habBBL ≪ ℎ implies 𝜅(habBBL) ≈ 𝜅BOT, we can pull 𝜅 out of the integral in (3.20), such that 

∫︁ ∫︁ habBBL 
𝑏±Δ𝑏 1 1 𝜕 𝑏 ℰBBL ≈ 𝜅BOT ∇�̃� · n d𝐴 ≈ 𝜅BOT 𝐴incrop, (3.21)

Δ𝑏 Δ𝑏 𝜕 𝑧 𝒜(habBBL) 

where we assume the integrated buoyancy gradient term is dominated by the slope-normal (or 

vertical) component and that the slopes of the 𝑏 ± Δ𝑏 buoyancy surfaces are sufficiently similar 2 

in the BBL that the 𝒜(habBBL) surface at the top of the BBL is well approximated by the more ∫︀∫︀ 
readily available seafloor incrop area, 1 d𝐴 ≈ 𝐴incrop (as in de Lavergne et al. 2016c; 𝒜habBBL 

𝑏±Δ𝑏see also schematic Figure 3-1b). This approximation reproduces the variations of ℰBBL with 

buoyancy (Figure 3-11a, red) and allows us to attribute them to two related effects: buoyancy 

variations in 1) the average near-bottom stratification (Figure 3-11b) and 2) the incrop area (Figure 

3-11c). In particular, we highlight the {0.25 °C, 0.35 °C} layer, which covers a large incrop area 

(including a large depression in the canyon trough) and exhibits weak mean stratification, and 

the {0.6 °C, 0.7 °C} layer, which has a much smaller incrop area which mostly covers the strongly-

stratified canyon flanks (Figure 3-11d). The observed negative correlation between stratification 

and incrop area is expected, since large stratification (or small layer thickness d𝑧 ) projects onto the d𝑏 

local topogaphic slope ∇𝑑 as a small area. 

A plausible upper bound for BBL upwelling is given by 

𝑏±Δ𝑏ℰBBL < 𝜅BOT cot 𝜃𝐿𝑦 = 85 mSv, (3.22) 

where we assume the background stratification 𝑁2 is a reasonable upper bound for the near 
𝐿𝑦 Δ𝑏boundary stratification and 𝐴incrop ≈ is a geometrical estimate of the incrop area of a 

𝑁2 sin 𝜃 

buoyancy layer with thickness Δ𝑏 given the background vertical stratification 𝑁 2 and slope angle 𝜃. 

Diapycnal upwelling in the BBL varies from 60% to 90% of this upper bound (Figure 3-11a), a testa 

ment to the remarkable efficiency of the processes that maintain strong near-boundary stratification 

throughout most of the domain in the BBTRE simulation (Figure 3-11b, d). 

The detailed vertical (or HAB) structure of upwelling and downwelling watermass transforma 

tions are also of interest, since these are more directly comparable with measurements from vertical 

profilers and 1D BBL theory. Building upon Holmes and McDougall (2020), we define the height 
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Figure 3-11: Drivers of watermass transformations in the BBTRE Canyon. (a) Positive, negative, 
and net watermass transformation rates as a function of temperature, averaged over many snapshots 
between days 5000 and 5500, in the BBTRE Canyon simulation. The dashed grey line represents the 
integral constraint on the net watermass transformation, which is set by the far-field flux of buoyancy 
into the domain. The dotted grey lines show an approximate upper bound on the positive and 
negative components of the watermass transformations, which is set by the maximum buoyancy flux 
𝜅Bot𝑁 2 expected in the domain. The red and blue shading in all panels delineate two temperature 
classes that exhibit particularly strong and weak positive transformation rates, respectively. We 
note that by construction the watermass transformations are periodic in temperature, such that 
the temperature class shaded in blue shows up again as a colder temperature class shaded in light 
blue (their average values across all times and temperatures are shown as squares). The dashed red 
line in (a) shows a simple scaling for the positive component of the watermass transformation rate, 
which approximates the total integrated buoyancy flux at the top of the BBL by a product of the 
bottom diffusivity 𝜅Bot, the average stratification 𝜕 𝑏 at the top of the thin BBL (b, d), and the area 𝜕 𝑧 
𝐴incrop over which a temperature class incrops into the seafloor (c, d). 

above-bottom watermass transformation structure as: [︃ (︁ )︁ ]︃∫︁ 
𝜕ℰ def 𝜕 𝜕 ≡ ∇ · 𝜅∇�̃� d𝑉 . (3.23)
𝜕hab 𝜕hab 𝜕 𝑏 𝒱(�̃�<𝑏; hab’<hab) 

Consistent with the HAB-averaged stratification profiles in Figure 3-8, vigorous upwelling is on 

average confined to the 40 m-thick BBL, with compensating weak but broad downwelling in the 

SML above; the notable exception is the canyon trough, whose maximum buoyancy flux is achieved 

250 m above the bottom and which exhibits much weaker upwelling per unit area (Figure 3-12a). 
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Figure 3-12: Height-above-bottom structure of watermass transformations (eq. 3.23) in three 
dynamically-distinct regions: the canyon trough, the canyon’s sloping flanks, and the ridge flanks 
surrounding the canyon. To directly compare watermass transformations from differently-sized re 
gions, we normalize by their area 𝐴ℛ and scale them up to the domain area 𝐴 = 𝐿𝑥𝐿𝑦. Percentages 
reported in the legend quantify the relative contributions of BBL upwelling and surface area of each 
region, highlighting the inefficiency of upwelling in the weakly-stratified canyon trough. 

3.7 Conclusions and Discussion 

By generalizing the methods of classical 1D sloping Bottom Boundary Layer (BBL) theory, we con 

struct simulations of 3D mixing-driven flows above sloping rough topography that permit non-trivial 

equilibrium states: the homogenizing tendency due to mixing is balanced by cross-slope advection 

across a background stratification, effectively providing an infinite reservoir of dense bottom waters. 

These slope-native solutions are more interpretable than previous models8, which either require 

aphysical sponge layers at distant horizontal boundaries (Dell, 2013) or can only be analyzed tran 

siently due to their eventual homogenization by mixing (Ruan and Callies, 2020). In particular, the 

slope-native model converges exactly upon the classical 1D model in the limit of smoothly sloping 

topography (and suppressed variations along the plane of the slope), allowing a robust hierarchy of 

models approach. While the local nature of the sloping BBL framework is conceptually convenient, 

8A second advantage is that the large-scale slope is implicitly imposed and does not need to be explicitly resolved, 
permitting much high-resolution simulations without sacrificing the approximate effects of a large-scale mean slope. 
In the atmosphere, a somewhat similar approach applies the "Weak Temperature Gradient" approximation of the 
large-scale tropical circulation (Sobel et al., 2001) to cloud-resolving simulations of radiative-convective equilibria 
(e.g. Abbott and Cronin, 2021). 
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ignored non-local factors may be equally important. For example, externally-imposed along-slope 

flows (e.g. boundary currents) spin-up bottom Ekman layers which are arrested by buoyancy forces 

(MacCready and Rhines, 1991; Garabato et al., 2019). Additionally, imposing a external cross-slope 

pressure gradient that ensures the net up-slope transport vanishes (as required by continuity in a 

finite-depth ocean) fundamentally alters the transient spin-up problem, motivating a transport-

constrained reformulation of sloping 1D BBL theory (Peterson and Callies, in prep). 

The results of our quasi-realistic simulation of the Brazil Basin Tracer Release Experiment 

(BBTRE) unifies two dominant boundary mixing paradigms: yes, bottom-enhanced mixing drives 

up-slope flow in the BBL; but, this flow is much stronger than predicted by 1D theory (Garrett, 1979, 

1990) due to the net restratification by transient baroclinic eddies and topographic steering/blocking 

(Armi, 1978; Thurnherr and Speer, 2003; Callies, 2018; Ruan and Callies, 2020). These restratifying 

effects can to a large extent be attributed to three distinct physical processes: 

1. slumping of isopycnals by finite-amplitude submesoscale baroclinic instabilities (Wenegrat 

et al., 2018; Callies, 2018), 

2. the blocking of rotational effects within narrow fracture zone canyons (Thurnherr and Speer, 

2003; Dell, 2013; Ruan and Callies, 2020), and 

3. the effect of sills in blocking up-canyon mean flows and homogenizing depressions well below 

the sill height (Baines, 1979; Winters and Armi, 2012; Dell, 2013). 

An idealized Canyon+Sill simulation, which minimally permits all three of these processes, qualita 

tively reproduces the flow structures of the realistic-topography BBTRE simulation; quantitatively, 

however, the addition of rough abyssal hills in the BBTRE simulation results in a near-bottom 

stratification that is twice as large as in Canyon+Sill. Attributing this additional restratification to 

a specific process is challenging because abyssal hill roughness affects both the mean mixing-driven 

boundary layer flow (Dell, 2013) and the properties (e.g. growth rates and length scales) of the 

mean flow’s instabilities (e.g. Szoeke, 1983; Wenegrat et al., 2018; Radko, 2020); we leave this to 

future work. 

Our quasi-realistic simulations provide the first BBL-resolving simulations of the mixing-driven 

abyssal overturning in the Brazil Basin, complementing Huang and Jin (2002) and Ogden and Fer 

rari (in prep)’s coarser-resolution basin-scale simulations. Despite the extreme idealization of the 

numerical set-up (spin-up from rest, only forced by mixing across background stratification), we 

qualitatively reproduce key features of the observations: broad up-slope flow and near-boundary 
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stratification of 𝑏𝑧 ≈ 𝒪(10−7s−2) along the canyon trough (Toole, 2007; Polzin et al., 1997); 

hydraulically-accelerated flow over blocking sills (Clément et al., 2017); and the mean diapycnal 

downwelling and spreading of a tracer released in the SML (Ledwell et al. 2000; see also Chapter 

4 for an updated discussion of these estimates). Despite this qualitative agreement, the simulated 

diapycnal transports are too weak– and the stratification too strong– by roughly a factor of 2. There 

are several possible reasons for these remaining discrepancies. First, we speculate that the specu 

late that the observed dissipation rates may be biased low due to sampling biases (e.g., see Watson 

et al., 1988; Voet et al., 2015; Cael and Mashayek, 2021); biases in the mixing parameterization 

(Ijichi et al., 2020), such as the conventional assumption that the flux coefficient is Γ = 0.2 (Osborn, 

1980). Indeed, based on observations and basin-scale simulations of tracer spreading, both Ledwell 

(in prep) and Ogden and Ferrari (in prep), respectively, similarly conclude that tracer observations 

are more consistent with a diffusivities about 2 times larger than those inferred from microstructure9 . 

Ignored external factors such as along-slope currents (MacCready and Rhines, 1991; Benthuysen 

and Thomas, 2013) or cross-slope pressure gradients could also explain the remaining discrepancies 

(Peterson and Callies, in prep.). 

The relative contributions of canyon troughs, canyon flanks, and the hilly ridge flanks surround 

ing the canyons (or "crests") to basin-wide abyssal watermass transformations are the subject of a 

long-standing debate (e.g. St. Laurent et al., 2001; Thurnherr and Speer, 2003; Thurnherr et al., 

2005; Polzin, 2009; Dell, 2013; Callies, 2018; Thurnherr et al., 2020; Ruan and Callies, 2020). Based 

on observations of large dissipation rates and strong up-canyon flows at the DoMORE sill and similar 

hydrographic features in other fracture zone canyons, Thurnherr et al. (2020) argues that virtually 

all lightening of bottom waters occurs in fracture zones. Ruan and Callies (2020)’s idealized simula 

tions suggest that watermass transformations may be disproportionately large within canyons due 

to strong restratification by up-canyon jets, although they acknowledge that this is a direct result 

of unrealistically large stratification in the canyons. Our more realistic simulations show that sills 

block restratification of the canyon trough, resulting in much weaker watermass transformations. 

Combined with the more expansive and strongly-stratified canyon flanks, however, the full canyon 

system (trough and flanks) contributes just as much watermass transformation, per unit area, as 

the surrounding ridge flank (a bit less, in absolute terms, since the canyon covers only 40% of the 

total domain area). These results only hold if mixing is uniformly bottom-enhanced; if mixing is 

9Given the uncertainties of the microstructure methods, agreement within a factor of 2 is generally considered to 
be good (e.g. Gregg et al., 2018). 
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stronger in the canyons, as suggested by some available observations (e.g. St. Laurent et al. 2001; 

Clément et al. 2017; Ijichi et al. 2020), then their watermass transformations would be likely be 

proportionally stronger (e.g. following eq. 3.21). This characterization of strong mixing in canyons 

is not uniformly accepted, however, with others claiming the exact opposite pattern (Polzin, 2009). 

Because of the geological origins of the characteristic topographic features in the BBTRE (large 

scale slope, canyon, and hills), the dynamics described can be thought to apply to the global mid-

ocean ridge system (with the steepness of slopes and hills modulated by the age of the rift valley). 

Extrapolating the 60 mSv of diapycnal upwelling implied by watermass transformations (Figure 

3-11) to the length of the Mid-Atlantic Ridge in the Brazil Basin (30 to 40 times the domain 

width 𝐿𝑦 = 60 km), the upwelling transport of ℰ𝐵 𝐵 𝐿 = 1.8–2.4 Sv is comparable to 4 Sv inflow of 

Antarctic Bottom Water into the Brazil Basin (Hogg et al., 1982; Morris et al., 2001; Polzin, 2009; 

Clément et al., 2017); extrapolating to a global mid-ocean ridge system of length 40 × 103 km– 

100 × 103 km (including both flanks of the ridge) leads to a global BBL upwelling of 40 Sv–100 Sv 

due to upwelling along mid-ocean ridges (Thurnherr et al., 2005; Callies, 2018, respectively), much 

larger than estimates of the net diabatic overturning and consistent with global diagnostic estimates 

of BBL upwelling (Ferrari et al., 2016; McDougall and Ferrari, 2017). 

Global extrapolations of localized estimates of BBL upwelling, such as the above, have been 

used to attribute the net abyssal overturning to specific processes (Thurnherr et al., 2020; Spingys 

et al., 2021; Callies, 2018); these arguments, however, ignore the possibility that this localized 

upwelling is largely offset by related downwelling elsewhere along the same buoyancy surface, which 

would render these quantitative comparisons meaningless. For example, Thurnherr et al. (2020) 

argue that the observed turbulent buoyancy flux convergence in the BBTRE canyon, extrapolated 

to all of the fracture canyons in the Brazil Basin, is sufficient to transform "the total inflow of 

AABW". Above the canyon, however, their own observations imply an opposing buoyancy flux 

divergence of comparable magnitude: following a single buoyancy surface in their Figure 3, we infer 

from the buoyancy flux profiles in their Figure 7 that diapycnal upwelling within the Canyon at the 

DoMORE site will be significantly offset by diapycnal downwelling above the canyon at the BBTRE 

site. In a similar vein, Callies (2018) argues that submesoscale eddies maintain a sufficiently large 

stratification at the top of the BBL to support a BBL upwelling comparable to the observed 𝒪(30 Sv) 

of abyssal overturning. This argument neglects, however, that the 1D integral constraint implies 

SML downwelling of a similar magnitude, such that the net transport reduces to the negligibly-

small integral constraint 𝜓∞ = 𝜅BOT cot 𝜃 (eq. 3.13). At a global scale, diagnostics estimates of 
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watermass transformations exhibit typical amplification factors ℰBBL/ℰ of 2 to 5 (Ferrari et al., 

2016; McDougall and Ferrari, 2017; Cimoli et al., 2019), suggesting that significant compensation 

is the norm10. Since the quantity of interest– the net diabatic overturning– is the small residual of 

two large compensating components, errors in either component risk dramatically biasing estimates. 

The two examples above are perhaps extreme, since we expect the SML downwelling to eventually 

vanish at the base of the mid-ocean ridge, where the sloping flanks give way to the abyssal plains 

(Callies and Ferrari 2018b; Ruan and Callies 2020; Chapter 2) but they nevertheless illustrate the 

risk of misinterpretation. 

Relatedly, the gravest caveat of this work is the assumption of a constant background stratifica 

tion. We know from Salmun et al. (1991)’s asymptotic analysis that small perturbations away from 

a constant background stratification drive a "tertiary circulation" that exchanges fluid between the 

boundary and the interior. In the context of the abyssal ocean, vertical variations in the basin-scale 

interior stratification are relatively large (Spingys et al., 2021); they enter as leading order terms 

in watermass transformations and drive substantial exchange between the mixing layers and the 

interior (Holmes et al., 2018). In the idealized basin-scale simulations of Chapter 1, we found that 

the decrease of stratification with buoyancy (or depth) offsets much of the sinking in the SML for 

realistic abyssal values, such that the net overturning scales roughly with upwelling in the BBL 

(with amplification factors of ℰ/ℰBBL = 1.5 to 2), in contrast to the negligibly small integral con 

straint implied by 1D theory (ℰ is so small that amplification factors become meaningless). The 

dynamical coupling between mixing layers and the interior remains poorly understood; improved 

understanding of this process seems to be a pre-requisite of developing improved models of the 

abyssal overturning circulation. The asymptotic model of Salmun et al. (1991), though an impres 

sive exercise, is sufficiently complicated and opaque to interpretation that it is not clear whether it 

yields any additional insights relative to a conceptually simpler configuration in a general circulation 

model (such as the PGCM used in Chapter 2, or the MITgcm used here); for completeness, I include 

in Appendix A my preliminary attempts at deriving a minimal asymptotic model (using the simpler 

Rayleigh drag parameterization of Chapter 2) that might clarify the dynamical coupling between 

abyssal mixing layers and the interior. 

10Full range goes towards ±∞, since the amplification factor blows up as the net overturning goes to ±0 (e.g. 
Figure 9 of Ferrari et al., 2016). 
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Chapter 4 

Diapycnal motion, diffusion, and stretching of 

tracers above rough topography 

4.1 Introduction 

The lower limb of the ocean’s meridional overturning circulation traces the diabatic life cycle of 

abyssal bottom waters (Talley, 2013a), which store vast quantities of climatically-active tracers like 

heat and carbon. Bottom waters are formed at the surface of the Southern Ocean by atmospheric 

cooling and brine rejection and are consumed in the deep ocean by buoyancy-flux convergence due 

to small-scale mixing and geothermal heating (Abernathey et al., 2016; de Lavergne et al., 2016c). 

Since mixing processes are too small to be resolved by large-scale ocean models, the rate at which 

tracers are mixed across density surfaces– the diapycnal diffusivity– enters as a key free parameter 

in ocean and climate models (Bryan and Lewis, 1979; Simmons et al., 2004; Lavergne et al., 2020). 

While early models of the abyssal circulation assume this mixing to be spatially uniform (Munk, 

1966; Stommel and Arons, 1959a), subsequent in-situ observations reveal a complex geography of 

mixing processes (e.g. Polzin et al., 1997; Waterhouse et al., 2014). A robust pattern that emerges 

from these in-situ mixing observations is the bottom-enhancement of mixing over rough topography, 

consistent with theoretical arguments that this mixing is predominantly caused by breaking internal 

waves radiating from flow over topography (Polzin, 2009; Nikurashin and Ferrari, 2009; Nikurashin 

and Legg, 2011; MacKinnon et al., 2017). 

The observed bottom-enhancement of deep mixing demands a revision to classic abyssal circu 

lation theory: bottom-enhanced mixing above rough topography drives diapycnal downwelling in 

the stratified interior– or Stratified Mixing Layer (SML)– and an even larger diapycnal upwelling 
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in the Bottom Boundary Layer (BBL) due to convergence of buoyancy at the seafloor (Huang and 

Jin, 2002; Ferrari, 2014; Ferrari et al., 2016; de Lavergne et al., 2016c; McDougall and Ferrari, 2017; 

Callies and Ferrari, 2018b). Geothermal heat flux into the BBL acts to amplify upwelling, but 

is thought to be secondary to mixing globally (de Lavergne et al., 2016b) and is negligible in the 

Brazil Basin subregion considered here (Thurnherr et al., 2020). The global diabatic overturning 

circulation is the small residual of substantial downwelling in the SML and even larger upwelling in 

the BBL (Ferrari et al. 2016 and Chapter 2). While the existence of these upwelling/downwelling 

flows is virtually guaranteed by the combination of a bottom-enhanced turbulent buoyancy flux 

and an insulating boundary condition along a sloping seafloor, their structure, magnitudes, and 

underlying dynamics remain poorly understood (Callies 2018 and Chapter 2). Since diapycnal (or 

vertical) velocities and fluxes are challenging to measure directly due to the ocean’s small aspect 

ratio, indirect methods must be used to infer the flow, such as volume or buoyancy budgets. Water-

mass transformation analysis is a commonly-used framework which combines volume and buoyancy 

budgets to express diapycnal transport across a buoyancy surface in terms of the average turbulent 

buoyancy flux along the surface, which can be inferred from indirect observations (Walin, 1982; 

Marshall et al., 1999; de Lavergne et al., 2016c; Ferrari et al., 2016). 

There are several observational methods for estimating in-situ turbulent buoyancy fluxes and 

their corresponding diffusivities: 1) velocity variance microstructure based on an approximate tur 

bulent kinetic energy budget (Osborn, 1980), 2) temperature variance microstructure based on 

an approximate temperature variance budget (Osborn and Cox, 1972), 3) shear/strain variance 

finestructure based on idealized spectral models of internal wave dynamics (e.g. Garrett and Munk, 

1972, 1975; Henyey et al., 1986; Polzin et al., 1995; Gregg et al., 2003), and 4) scaling analysis 

based on the Thorpe scale of density overturns (Dillon, 1982), listed roughly in order of decreasing 

accuracy and generality (Gregg et al., 2018). All of these methods are indirect and require some 

degree of approximation to convert the measured quantity into a diffusivity. Furthermore, they 

provide only localized snapshots of spatially and temporally intermittent mixing events, and thus 

may provide biased estimates of the mean diffusivity. 

Tracer Release Experiments (TREs; Watson et al. 1988) are considered by many (e.g. Gregg 

et al., 2018) to provide the gold standard of mixing rate estimates. In TREs, an assumed in 

ert chemical tracer (or fluorescent dye) is deliberately injected into the ocean and its distribution 

is surveyed over time. The evolution of the tracer is then typically inverted (using approximate 

advection-diffusion models) to yield estimates of the diffusivity and velocity, which can be com 
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pared to other in-situ turbulence measurements. Localized TREs are experimental analogues of the 

Green’s function and thus anticipate a strong diapycnal mixing signal by construction, especially 

in contrast to thermodynamic or biogeochemical tracers with more complicated dynamics and mix 

ing histories (e.g. Hogg et al., 1982; Lumpkin and Speer, 2007; Trossman et al., 2020). However, 

the results of the inversion process still depend upon the validity of the simple advection-diffusion 

forward models. 

Watson et al. (1988) pitch TREs in the ocean as an "unambiguous measure of the diapycnal 

mixing rate" since tracers average over the spatial and temporal variability that challenges the inter 

pretation of in-situ mixing estimates; for example, they hypothesize that the sparse in-situ sampling 

of log-normally distributed (or worse, log-skew-normal) mixing events risks under-estimating mean 

mixing rates (Cael and Mashayek, 2021). Superficially, observations from two deep-ocean TREs 

seem to corroborate this hypothesis: tracer-based estimates of mixing rates are ubiquitously 1.5– 

10 times larger than co-located in-situ microstructure measurements (Ledwell et al., 2000; Watson 

et al., 2013; Mashayek et al., 2017a). While there are ad-hoc and site-specific explanations for each 

of these discrepancies, there is no consensus on how to compare tracer-based and microstructure-

based estimates (Gregg et al., 2018), nor what to make of the fact that tracer-based estimates seem 

to always exceed microstructure-based estimates. 

Recent advances in the numerical modelling and theory of TREs provide some guidance for in 

terpreting tracer-based estimates of mixing and comparing them to microstructure-based estimates. 

For example, Mashayek et al. (2017a) use a realistic regional simulation to argue that the mixing 

inferred from the DIMES TRE (Watson et al., 2013) was an order-of-magnitude larger than the 

in-situ diffusivity estimated from microstructure because the average diapycnal spreading of the 

tracer was dominated by a small fraction the tracer distribution that resided in regions of strong 

mixing near rough topography. Ruan and Ferrari (2021) derive exact evolution equations for the 

first and second tracer-weighted buoyancy moments (see Section 4.2.1), which confirm Mashayek 

et al. (2017a)’s speculation that the tracer’s diapycnal variance grows with the tracer-weighted in-

situ diffusivity. However, Ruan and Ferrari (2021) also identify a second "diapycnal stretching" 

term through which the bottom-enhancement of the buoyancy velocity in the SML further acceler 

ates the diapycnal spreading of the tracer. Holmes et al. (2019) use a similar approach but include 

the effects of a sloping bottom boundary, and find that the diapycnal stretching in the SML is 

compensated for by a diapycnal contraction effect due to upwelling of relatively dense tracer in the 

BBL. However, since both of these analyses use extremely idealized models, it remains unclear to 
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what extent diapycnal stretching affects tracers in realistic conditions. 

In this paper, we present the first application of the buoyancy moments method in a quasi-

realistic TRE simulation. We use tracer-weighted buoyancy moments diagnosed from the simulation 

to explain the diapycnal downwelling and spreading observed in the Brazil Basin TRE (BBTRE; 

Ledwell et al. 2000) in the context of an emerging paradigm of bottom mixing layer control of the 

abyssal circulation (Ferrari et al., 2016; McDougall and Ferrari, 2017). We also provide guidance for 

the interpretation of past (e.g. Ledwell and Hickey, 1995; Ledwell et al., 2004, 2016; Visbeck et al., 

2020) and future TREs near topography. 

4.2 Theory 

We briefly review a recently proposed framework for comparing tracer-based and microstructure-

based mixing estimates, based on exact evolution equations for tracer moments in buoyancy space 

(Ruan and Ferrari, 2021). The derivation begins with the conservation equations for tracer concen 

tration 𝑐 and buoyancy 𝑏, 

𝜕 𝑐 
+ u · ∇𝑐 = ∇ · (𝜅∇𝑐) (4.1)

𝜕 𝑡 
𝜕 𝑏 

+ u · ∇𝑏 = ∇ · (𝜅∇𝑏) , (4.2)
𝜕 𝑡 (︁ )︁

𝜕 𝜕 𝜕where u is the velocity vector, ∇ = is the gradient operator, and 𝜅 is an isotropic 𝜕 𝑥 , 𝜕 𝑦 , 𝜕 𝑧 

turbulent diffusivity. Buoyancy, tracer concentrations, and velocity have been filtered on spatial 

and temporal scales larger than those associated with small-scale turbulence, and the filtered scalar 

fluxes are parameterized as an enhanced diffusive flux F𝜑 = −𝜅∇𝜑, where the turbulent diffusivity 
is much larger than the molecular diffusivity. For simplicity of exposition, we here approximate 

density as a linear function of temperature; thus, density 𝜌, buoyancy 𝑏, and temperature 𝑇 are all 
def

proportional and will be used interchangeably throughout: 𝑏 ≡ −𝑔 𝜌 ≈ 𝑔𝛼𝑇 , where 𝜌0 is a reference 𝜌0 

density and 𝛼 is the thermal contraction coefficient. 

4.2.1 Exact tracer-weighted buoyancy-moment models 

In his classic paper, Taylor (1922) demonstrates that the growth rate of half the second moment of 

a 1D tracer distribution in physical space is exactly equal to its diffusivity. Ruan and Ferrari (2021) 

generalize this theory to the case of variable diffusivity in a stably stratified fluid by considering 
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4.2.2 Interpreting the tracer-weighted buoyancy moments 

Consider the extreme example of a tracer distribution 𝑐𝑖,𝑗 consisting of two infinitesimal patches at 

locations x𝑖 and x𝑗 and with equal mass, 

𝑐𝑖,𝑗 (x) = 𝛿(x𝑖) + 𝛿(x𝑗 ), (4.5) 

where 𝛿(x) is the Kronecker delta. The evolution of the first moment (4.3) is simply given by the 

twice the average buoyancy velocity of the two patches, 

𝜕𝑡𝑇 = 2𝜔 = 𝜔𝑖 + 𝜔𝑗 , (4.6) 

def
where we use the shorthand 𝜑𝑘 ≡ 𝜑(x𝑘). The evolution of the centered second moment (4.4), is 

given by (︁ )︁21 1 
𝜕𝑡 𝑇 − 𝑇 = 𝜅|∇𝑇 |2 + Δ𝜔Δ𝑇 , (4.7)

2 2 

def def
where Δ𝜔 ≡ 𝜔𝑗 − 𝜔𝑖 and Δ𝑇 ≡ 𝑇𝑗 − 𝑇𝑖 are buoyancy velocity and temperature differences between 

the two patches, respectively. While the first moment tendency is simply given by the average of the 

two patches’ tendencies, the centered second moment tendency includes an additional non-linear 

interaction term. If the warmer patch upwells faster than the colder patch (Δ𝜔Δ𝑇 > 0), this term 

drives diapycnal stretching (e.g. 𝑐1,3 and 𝑐3,2 in Figure 4-1); conversely, Δ𝜔Δ𝑇 < 0 corresponds to 

diapycnal contraction (e.g. 𝑐1,2 in Figure 4-1). 

A corollary of (4.7) is the fact that estimates of the in-situ diffusivity are most reliable when 

the injected tracer distribution is compact in buoyancy space (i.e. Δ𝑇 ≈ 0), an implicit assumption 

underlying the practice of localized TREs. Conversely, this scaling can be exploited to construct 

tracer distributions with arbitrarily small or large diapycnal spreading rates which have no clear 

relationship to the in-situ diffusivity, e.g. ±𝜅Tracer ≫ max(𝜅). Even for an initially compact 

tracer injection, diapycnal stretching effects may become significant over time as Δ𝑇 increases 

due to diapycnal diffusion; on the other hand, while isopycnal stirring does not increase Δ𝑇 (by 

definition), it can increase Δ𝜔 by spreading tracer into regions with varying buoyancy velocities; 

while the former effect is likely to be well represented in 1D advection-diffusion models, the latter 

is not. 
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4.3 Numerical methods overview: simulated TREs
 

We use the MITgcm to simulate mixing-driven flow in the BBTRE region, as described in detail in 

Chapter 3.3. After spinning up the flow to a quasi-equilibrium state at 𝑡 = 5000 days, we release 

three Gaussian blobs of tracer, ⎧ (︃ )︃⎫ ⎨ (𝑥 − 𝑥0)
2 (𝑦 − 𝑦0)

2 (𝑧 − 𝑧𝑛)
2 ⎬ 

𝑐𝑛(𝑥, 𝑦, 𝑧, 𝑡 = 0) = 𝑐0 exp − + + , (4.8)⎩ 𝜎2 𝜎2 𝜎2 ⎭𝑥 𝑦 𝑧 

with horizontal widths of 𝜎𝑥 = 𝜎𝑦 = 10 km, a thickness 𝜎𝑧 = 100 m, and horizontal release co 

ordinates (𝑥0, 𝑦0) corresponding to the oceanic BBTRE coordinates of (18.3 °W, 21.7 °S) (Figure 

4-2). The tracers are released at three different heights 𝑧𝑛 corresponding to distinct dynamically 

interesting regimes: far above the topography, 𝑧BBTRE − 𝑑(𝑥0, 𝑦0) = 1050 m above the seafloor 

(actual BBTRE release location; hereafter the "BBTRE" tracer); roughly at the height of the 

canyon crests, 𝑧Crest − 𝑑(𝑥0, 𝑦0) = 600 m ("Crest"); and within the thick BBL of the canyon trough, 

𝑧Bottom − 𝑑(𝑥0, 𝑦0) = 150 m ("Bottom"). 

We follow the evolution of the released tracers until 𝑡𝑓 = 440 days after release, roughly corre 

sponding to the first survey in the BBTRE at 14 months. In our slope-native configuration, one 

should imagine infinitely many copies of TREs, each separated by a horizontal distance 𝐿𝑥 = 480 km 

(domain length) and vertical height 𝐿𝑥 tan 𝜃 ≈ 1000 m (corresponding to a background tempera 

ture difference Δ𝑇 ≈ d𝑇0 𝐿𝑥 sin 𝜃 = 0.52 °C). A limitation of this configuration is that by 1000 days d ̂𝑧 

enough of the tracer crosses the periodic boundaries that the copies of the tracers begin significantly 

interfering with each other and the temperature moment calculations become meaningless, which 

is why we truncate the simulations after the timing of the first BBTRE survey (14 months ≈ 440 

days). For all of the analysis presented here, we re-center our periodic domain on the center of 

mass of a single copy of the tracer cloud before adding the background state (i.e. the constantly 

stratified background temperature field 𝑇𝑏) back in and then we crop the infinite domain to ignore 

other copies of the tracer (similar to the approach used to compute watermass transformations in 

Chapter 3.6). 
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Figure 4-2: Numerical model configuration: domain geometry, prescribed forcing, and key features. 
a) Rectangular domain (solid lines) centered along the BBTRE canyon thalweg (dashed line) and 
interpolated onto locally-tangent cartesian coordinates (ˆ 𝑦)). b) Prescribed bottom-enhanced mix 𝑥, ˆ
ing (colors) along the canyon thalweg (grey shading). Dashed black lines show the domain limits 
in the slope-native coordinate frame (𝑥, 𝑧). The transparent grey line shows the average height of 
the canyon crests, which rise 500 m to 1000 m above the thalweg. White dots/contours show the 
locations of the simulated tracer releases. 

4.4 Results 

4.4.1 Temporal evolution of the released tracer distributions 

Within the first few eddy turnover timescales, the released tracer blobs are stirred into a web of 

filaments along isopycnals by submesoscale eddies (Figure 4-3a,b). While the BBTRE and Crest 

tracers are released well above the canyon thalweg (deepest section; Figure 4-2a), vigorous along-

ridge mean flow (Figure B-1) and isopycnal stirring by submesoscale eddies spread them to shallower 

regions (Figure 4-4). 

The tracers are diffused diapycnally by the prescribed bottom-enhanced turbulent mixing (e.g. 

Figure 4-5b,d). For the BBTRE tracer, which mostly remains well above the bottom, its distribu 

tion in temperature space remains reasonably Gaussian, reminiscent of diffusion with a constant 
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Figure 4-3: Instantaneous snapshots of the BBTRE tracer mass, vertically-integrated over the 
{1.0ºC, 1.1ºC} temperature layer, and normalized by the maximum initial tracer mass. The grey 
shading represents two major topographic obstacles, where the temperature layer in-crops. 

diffusivity and in the absence of boundaries; for the Crest and Bottom tracers, however, the tracer 

distributions depart significantly from Gaussianity (Figure 4-5h,l), suggesting the importance of 

variations in the diffusivity or boundary effects. Most notably, the Bottom tracer develops a bi 

modal distribution in temperature space as some of the tracer spills over the sill at 𝑥 = 120 km 
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Figure 4-4: Height above bottom distributions of the three tracers over time, normalized by the 
maximum bin value. Olive lines show the trajectory of the average height-above-bottom of the 
tracer distribution. 

and crosses the 𝑇 = 0.7 °C surface (Figure 4-5j, l). By the end of the experiment at 440 days, most 

of the Bottom tracer has spilled over the sill and its bi-modal distribution collapses onto a single, 

warmer, peak. While only the Bottom tracer exhibits a tracer-weighted diapycnal motion that is 

discernible by visually inspecting the tracer distributions in temperature space, the BBTRE and 

Crest tracers do exhibit slow mean diapycnal downwelling and upwelling, respectively. 

4.4.2	 Diapycnal interior downwelling and near-boundary upwelling driven by 

bottom-enhanced mixing 

As described in Section 4.2.1, the mean diapycnal motion of the tracer is directly driven by the 
def

tracer-weighted buoyancy velocity 𝜔 ≡ ∇ · (𝜅∇𝑇 ) (eq. 4.3). In the SML, well above the seafloor, 

the bottom-enhancement of the diffusivity 𝜅 dominates the buoyancy velocity, resulting in diapycnal 

downwelling, 𝜔 < 0 (Figure 4-7a; grey line). Closer to the seafloor, the temperature flux must vanish 

to satisfy the insulating bottom boundary condition, resulting in vigorous diapycnal upwelling, 

𝜔 > 0, in the BBL (Figure 4-7a; grey line). Thus, by definition a tracer entirely in the SML will 

sink, while a tracer entirely in the BBL will upwell. Since the upwelling velocity in the BBL is 

roughly an order of magnitude larger than the maximum downwelling velocity in the SML, at least 

ten times as much tracer must be in the SML than in the BBL for the tracer to downwell on average. 

The BBTRE tracer, which is released in the SML, exhibits diapycnal downwelling throughout 

the experiment (Figure 4-6c), consistent with the heuristic argument above. The magnitude of 
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Figure 4-5: Temporal evolution of the tracer distributions in Cartesian, height-above-bottom, and 
temperature coordinates for the BBTRE (a-d; blues), Crest (e-h; purples), and Bottom releases 
(i-l; reds). (a,e,i) Slope-normal column-integrated tracer concentrations and (b,f,j) cross-canyon 
integrated tracer concentrations, normalized by their maximum value (logarithmic scale). Grey 
contours in (a,e,f) show two representative isobaths of ocean depth 𝑑( ̂𝑥, 𝑦). Black lines in (b,f,j) 
show equally-spaced cross-canyon-averaged temperature surfaces. Tracer distributions in (c,g,k) 
height-above-bottom and (d,h,l) temperature coordinates, normalized by their maximum initial 
values (linear scale). Olive contours show the 10% contour for the initial tracer distribution; olive 
dashed and arrows show the temporal evolution of the tracer’s center of mass (first moments). 

downwelling, however, is modulated by a 45-day damped oscillation due to along-ridge advection by 

a mean-flow of speed 𝑈 ≈ 15 mm/s (Figure B-1) across a periodic domain of width 𝐿𝑦 = 60 km, such 

that the tracer aliases the roughly sinusoidal trough-crest topography on a timescale of 𝜏 = 𝐿𝑦 /𝑈 ≈ 
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45 days (Figure B-1). This modulation is damped over time as the tracer spreads isopycnally and 

spans a region wider than the typical trough-crest separation (Figure 4-5a). 

In the first 100 days, interpreting the mean diapycnal sinking of the BBTRE tracer is straight 

forward: the entire tracer distribution experiences a negative buoyancy velocity and so the tracer 

sinks diapycnally (Figure 4-6c), i.e. 𝜔 ≈ 𝜔<0, where we define: ∫︀ 
def 𝜔 𝑐 d𝑉𝒱𝜔<0𝜔<0 ≡ ∫︀ (4.9) 

𝒱 𝑐 d𝑉 

as the strictly downwelling buoyancy velocity. While this strictly downwelling contribution to the 

tracer-weighted buoyancy velocity increases slightly over the remainder of the experiment as the 

tracer sinks towards larger diffusivities, sufficient tracer is entrained into the BBL that a strictly 

upwelling contribution 𝜔>0 (similarly defined) grows at an even faster rate, such that the net 

diapycnal sinking of the tracer weakens over the last few hundred days of the experiment. 

At the other extreme, the Bottom tracer is released entirely in the BBL and thus upwells 

vigorously upon release, with 𝜔 ≈ 𝜔>0 (Figure 4-6g). As some of the tracer eventually spreads into 

the SML above and the strictly negative contribution 𝜔<0 grows, the net upwelling of the tracer 

weakens over time1 . 

The Crest release is perhaps the most interesting: at first, the Crest tracer is in the SML 

far above the canyon thalweg and thus downwells similarly to the BBTRE tracer; after roughly 

𝜏 = 46 days, however, enough of the Crest tracer is advected into the BBLs along the crest of the 

canyon that the strictly upwelling component wins out and the tracer begins upwelling in the net 

(Figure 4-6e). Over the last few hundred days of the experiment, the weak net upwelling of the 

tracer is the small residual of a substantial compensation between strictly upwelling and strictly 

downwelling contributions. 

Plotting the evolution of the temperature moment tendency as a function of the tracer-weighted 

height-above-bottom, we recover a blurred view of the height-above-bottom structure of the in-situ 

buoyancy velocity (Figure 4-7a, colored circles). In practice, however, only a time-averaged view 

of the first temperature moment tendencies is possible: time-averaged tendencies are calculated 

by differencing snapshots of a tracer moments at two different times (i.e. by integrating eq. 4.3, ∫︀ 𝑡1 𝑇 (𝑡1)−𝑇 (𝑡0)𝜕𝑡𝑇 dt = ), and provide an even more coarse-grained view of the in-situ vertical 𝑡1−𝑡0 𝑡0 𝑡1−𝑡0 

1The Bottom tracer is released near the bottom of a weakly stratified depression along the canyon thalweg, and 
its average stratification increases dramatically over the first 200 days (Figure 4-6a,b). Thus, the early diapycnal 
upwelling and spreading is enhanced when converting to physical space because the buoyancy surfaces are on average 
much further apart than they are later on (see normalization in equations 4.3 and 4.4, and Figure B-2). 

108
 

1 



structure than that provided by many instantaneous snapshots of the first moment tendencies 

(Figure 4-7a; stars). 

4.4.3 Bottom-enhanced diapycnal tracer spreading 

Over the course of the experiment, all three tracers spread across isopycnals on average. As antici 

pated from the prescribed bottom-enhanced diffusivity profile, the closer a tracer is released to the 

bottom the faster it spreads (Figure 4-7a; stars). However, this time-mean view betrays a surprising 

temporal variability (Figure 4-6f,h). This tendency is particularly dramatic for the Bottom tracer, 

which experiences extremely rapid diapycnal spreading in the first 150 days but, by day 350, stops 

spreading entirely and even begins temporarily contracting in buoyancy space (Figure 4-6h)! The 

interpretation of diapycnal tracer spreading is more subtle than that of the mean diapycnal motion 

of the tracer, since two separate terms contribute to spreading: the tracer-weighted effective dif 

fusivity 𝜅Taylor and diapycnal stretching 𝜅𝜔 (eq. 4.4). The contribution from the tracer-weighted 

effective diffusivity is familiar from Taylor (1922)’s classic derivation, and is well approximated by 

the tracer-weighted in-situ diffusivity 𝜅 since tracer-weighted variations in the squared temperature 

gradients are small (Figure 4-6d,f,h; B-2b,d,f), 

def 𝜅|∇𝑇 |2 
𝜅Taylor ≡ ≈ 𝜅. (4.10)

|∇𝑇 |2 

This contribution to diapycnal spreading from the tracer-weighted diffusivity remains roughly con 

stant in time, aside from an initial transient as the tracer spreads towards shallower topographic 

features (Figures 4-7b and 4-4). In contrast, the diapycnal stretching effect drives the substantial 

temporal variability in the diapycnal spreading experienced by the tracers (Figure 4-6d,f). De 

pending on the instantaneous distribution of the tracer, this term can vary substantially both in 

magnitude and sign, either amplifying the tracer-weighted diffusivity by up to 100% or off-setting 

it entirely (Figure 4-7b,c and B-2f, at 40 and 400 days, respectively). 

4.4.4 Disentangling diapycnal stretching and contraction effects 

Motivated by the bi-modal example in Section 4.2.2, we decompose the diapycnal stretching term 
′ 2𝜔 ′ 𝑇 by binning its contributions in (𝜔, 𝑇 ) space (Figure 4-8, as in Figure 4-1b), i.e. decomposing 
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Figure 4-6: Decomposition of the first and second tracer-weighted temperature moment tendencies, 
i.e. the rates of diapycnal motion and spreading, in terms of their driving mixing processes. The 
realistic BBTRE release is shown in blue, the Crest release in purple, and the Bottom release in red. 
(a-b) show the temporal evolution of the tracer-weighted stratification and stratification squared, 

≡ d𝑇𝑏with the background stratification Λ 
def 

for reference. (c-h) show the temporal evolution of the d ̂𝑧 
first and second moment tendencies (opaque solid lines), and the sum of the contributing mixing 
processes (transparent solid lines), as described by the left- and right-hand-sides of equations (4.3), 
𝜕𝑡𝑇 = 2𝜔, and (4.4), 1 𝜕𝑡(𝑇 − 𝑇 )2 = 𝜅|∇𝑇 |2 + 2𝜔 ′ 𝑇 ′, respectively. Orange lines in (c,d) show the 2 
time-averaged BBTRE moment tendencies from observations, reduced by a factor of 2 for ease of 
comparison. (c,e,g) Dashed and dotted lines show the contributions from strictly upwelling and 
strictly downwelling regions, respectively. (d,f,h) Dashed lines show the contribution from tracer-
weighted in-situ diffusion 𝜅Taylor (approximately equal to the tracer-weighted in-situ diffusivity 𝜅; 
dash-dotted lines) and dotted lines show the contribution from diapycnal stretching 𝜅𝜔. 

the sum ⎛ ∫︀ ⎞ 
𝜔 ′ 𝑇 ′ 𝑐 d𝑉 ⧸︁∑︁ 𝒱{𝜔𝑖}∩{𝑇𝑗 }′ ⎠2𝜔 ′ 𝑇 = ⎝2 ∫︀ |∇𝑇 |2 , (4.11)

𝑐 d𝑉 
𝑖,𝑗 

where the intersection of subsets {𝜔𝑖} and {𝑇𝑗 } correspond to distinct sub-volumes 𝒱{𝜔𝑖},{𝑇𝑗 } of the 

tracer distribution (e.g. where 𝑇 > 𝑇 ). Throughout this section, we quantify diapycnal stretching 

in terms of percentages of the effective diapycnal diffusion 𝜅Taylor (i.e., we normalize eq. 4.11 by 

𝜅Taylor), where positive percentages denote stretching and negative percentages denote contraction. 

We begin by exploring why the BBTRE tracer experiences very little net diapycnal stretching, 
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Figure 4-7: (a) Height-above-bottom-averaged buoyancy velocity (grey) and tracer-weighted buoy 
ancy velocity (colors). (b,c) As in (a), but for the tracer-weighted in-situ diffusivity 𝜅 and tracer 
diffusivity 𝜅Tracer. Dots show trajectories (colors darken over time) in terms of the magnitude of 
moment tendency terms and the tracer-weighted height-above-bottom (hab(𝑡)). Stars in (a,c) show 
the time-averaged moments, as they would be estimated from a TRE survey 440 days after release 
(assuming perfect spatial coverage). 

in contrast to the idealized SML simulation of Ruan and Ferrari (2021). At day 100 (Figure 4-8b), 
′for example, the tracer is diapycnally stretched (𝜔 ′ 𝑇 > 0) by an additional 23%𝜅Taylor as relatively 

′cold tracer relatively downwells (𝑇 < 0, 𝜔 ′ < 0) and relatively warm tracer relatively upwells 
′(𝑇 > 0, 𝜔 ′ > 0), so far consistent with Ruan and Ferrari (2021)’s idealized result of 18% additional 

stretching. However, a very small amount of cold tracer has made it close enough to the seafloor 

to be entrained in the BBL, where it upwells vigorously and results in a contraction effect of −9% 

which, supplemented by an additional −2% contraction from warm downwelling tracer, results in 

a reduction of the net diapycnal stretching to only 12%. By day 440, this patch of tracer is pulled 

further towards the bottom and its stretching effect grows to 69%, but is offset by an even larger 

diapycnal contraction of −76% in the BBL (Figure 4-8c); combined, these diapycnal stretching 

effects have a negligible effect of reducing diapycnal spreading by only −6%. 

At the other extreme, we aim to understand how the Bottom tracer undergoes first a large net 

diapycnal stretching effect and then an even larger net diapycnal contraction effect. Over the first 

100 days, most of the tracer upwells in the BBL and warms (Figure 4-6g). Some of the warmest 

tracer remains in the BBL, where its upwelling drives a substantial diapycnal stretching of 91% 

(Figure 4-8a). However, another relatively warm branch of the tracer is entrained into the SML, 

where its downwelling drives a largely compensating diapycnal contraction effect of −80%. The 

relatively cold patch of tracer that is left behind contributes a stretching of 41% − 15% = 26%, 
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Figure 4-8: Percentage contributions to the net diapycnal stretching, effect (eq. 4.11, normalized by 
𝜅Taylor) from each (𝜔, 𝑇 ) bin, as a percentage, for the BBTRE (top) and Bottom (bottom) tracers 
at 100 days (left) and 440 days (right). Numbers in the four corners of each panel show the total 

def def′contribution from each of the four quadrants defined by the signs of 𝜔 ′ ≡ 𝜔 − 𝜔 and 𝑇 ≡ 𝑇 − 𝑇 , 
′expressed as a percentage of the effective in-situ diffusivity, 𝜅Taylor. The 𝜔 ′ = 0 and 𝑇 = 0 lines 

in olive delineate the four quadrants. For reference, grey contours show the effective diapycnal 
def ′ ≡ 2 𝜔 ′ 𝑇stretching diffusivity, 𝜅𝜔 , that corresponds to each (𝜔, 𝑇 ) bin. Sub-titles decompose the 

|∇𝑇 |2 

′net diapycnal stretching effect into strictly stretching (𝜔 ′ 𝑇 > 0) and strictly contracting components 
′(𝜔 ′ 𝑇 < 0). PDFs of tracer mass show that a large portion of the tracers’ mass does not contribute 

significantly to these stretching effects (Figure B-3). 

dominated by its relatively slow upwelling (𝜔 > 0 but 𝜔 ′ < 0), bringing the net diapycnal stretching 

to 91% − 81% + 26% = 37%. By day 440, however, both modes of the tracer distribution (Figure 

4-5l) drive large diapycnal contraction effects: −98% due to cold upwelling upstream of the sill and 

−101% due to warm downwelling downstream of the sill (Figures 4-5j,l 4-8i). Diapycnal stretching 

of 93% from the other quadrants offset about half of this diapycnal stretching effect, but the net 

diapycnal contraction of −106% still overwhelms the spreading due to the in-situ diffusivity, causing 

the Bottom tracer to temporarily contract in buoyancy space. 
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4.5 Discussion and Conclusion 

By applying Ruan and Ferrari (2021)’s buoyancy-moment diagnostics to our quasi-realistic regional 

simulation of mixing-driven abyssal flows (described in detail in Chapter 3), we confirm the qualita 

tive results of Holmes et al. (2019)’s idealized analysis of the BBTRE release in the SML: over time, 

boundary suppression in the BBL almost exactly compensates for vertical stretching in the SML, 

such that the net diapycnal spreading of the BBTRE tracer coincidentally provides a reasonably 

accurate (±20%) estimate of the tracer-weighted in-situ diffusivity (Figure 4-6d). These simulation 

results are supported by a recent re-analysis of the BBTRE observations, which reveal a similarly 

negligible diapycnal stretching effect of < 5%𝜅Taylor (Ledwell, in prep). Quantitatively, however, 

the diapycnal spreading we simulate for the BBTRE tracer is smaller than the observed spreading 

by a factor of 2 (Figures 4-6d, 4-9), suggesting either the microstructure measurements we use to 

tune the prescribed diffusivity profile are biased low or our simulation is missing other unknown 

tracer dispersion processes. This is consistent with Ledwell (in prep)’s inversion of a 1D advection 

diffusion model, which produced optimal diffusivities about twice as large as the microstructure’s 

sample-mean. These results are consistent with our conclusion from Chapter 3 that biases in the 

simulated flows and stratification of the BBTRE fracture zone canyon are consistent with the im 

posed microstructure mixing rates being biased too low by a factor of roughly 2. They are also 

consistent with the broader observational literature, which unanimously finds that mixing rates 

estimated from TREs are larger than those suggested by co-located microstructure measurements 

(Ruan and Ferrari, 2021). 

In contrast to the BBTRE release, we find that for near-bottom tracers diapycnal stretch-

ing/contraction effects can be of either sign (depending on the tracer distribution) and of com 

parable magnitude to the tracer-weighted in-situ diffusivity, |𝜅𝜔 | ∼ 𝜅 (Figure 4-6h). Boundary 

suppression of diapycnal spreading, in particular, is even more dramatic in our simulation with real 

istically rough topography than in Holmes et al. (2019)’s model of tracer transport over a smoothly 

sloping bottom: for the Bottom tracer release, diapycnal stretching amplifies diapycnal spreading 

by 𝒪(100%𝜅Taylor) in the first few dozen days of the simulation but suppresses diapycnal spreading 

by 𝒪(−100%𝜅Taylor) for the last few dozen days (Figures 4-6h; 4-7c; B-2f). It has long been appre 

ciated that the interpretation of tracer spreading near topography requires greater care because of 

enhanced boundary mixing and hypsometric effects (e.g. Ledwell and Hickey, 1995). Attempts to 

modify the conventional 1D model to include these boundary effects are varied: by separating the 
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Figure 4-9: Simulated and observed tracer distributions in density space at 14 months. We fit {︁ }︁
−(𝜎4−𝜎4,0)2 

a Gaussian distribution ∝ exp to the observations by eye (dashed orange). The�̃�𝑡 

simulated distribution is reasonably well fit by a Gaussian distribution corresponding to a diffusivity 
reduced by a factor of 2 (dashed blue), consistent with the results of the buoyancy moments method 
(Figure 4-6c,d). 

tracer distribution into "boundary" and "interior" regions (Ledwell and Hickey, 1995; Ledwell et al., 

2016), by allowing vertical structure in the diffusivity profile (Ledwell et al., 2000), or by extending 

the 1D model to a 2D (Watson et al., 2013) or 3D (Mackay et al., 2018) model to account for lateral 

transport into regions of strong mixing. However, the ad-hoc derivations of these models render 

them difficult to interpret and compare, suggesting the more general buoyancy-moment approach 

may prove more fruitful (Ruan and Ferrari, 2021). 

Mesoscale/submesoscale-resolving regional simulations of TREs are now feasible thanks to ex 

ponential increases in computational power (Tulloch et al. 2014; Mashayek et al. 2017a; Ogden et 

al., in prep; this study) and have been used a posteriori to help interpret observations and explain 

differences between mixing rates inferred from TREs and microstructure profiles. However, such 

simulations have not yet been used to evaluate (or improve upon) operational methods for compar 

ing tracer and microstructure observations, such as by using a "perfect model" framework in which 

simulated tracer observations are inverted in an attempt to recover the prescribed "true" diffusivity 

field. Similarly, a priori or real-time numerical simulations could be used to inform future TRE 

sampling strategies (current best practice is to use real-time velocity estimates from ADCPs or 

altimetry; Ledwell, personal communication). To our knowledge, this has not yet been done, with 
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the notable exception of Ruan et al. (in prep), who have simulated an upcoming Tracer Release 

Experiment and are advising the release and sampling strategies. 

While our results suggest that estimates of in-situ diffusivity profiles from observations of a 

tracer’s second buoyancy moment may be corrupted by complicated diapycnal stretching processes 

(Figure 4-7c; consistent with Holmes et al. 2019), they also suggest that the first buoyancy moment 

provides a robust and straight-forward estimate of the tracer-weighted in-situ turbulent buoyancy 

flux convergence (or buoyancy velocity 𝜔; Figure 4-7a). As long as a sizable fraction (here ≫ 

𝑤SML/𝑤BBL ≈ 10%; Figure 4-7a) of the tracer remains in the BBL, the change in the first tracer-

weighted buoyancy-moment is likely to provide a reasonable lower-bound estimate of the average in-

situ buoyancy velocity in the BBL (Section 4.4.2). This is a promising result in light of the upcoming 

Bottom Boundary Layer Turbulence and Abyssal Recipes experiment (NSF Award #1756251), which 

will attempt to estimate the BBL buoyancy velocity from TREs. In combination with previous 

observations of tracer-weighted diapycnal sinking in the SML above rough topography (Ledwell 

et al., 2000), observations of vigorous tracer-weighted diapycnal upwelling in the BBL would be 

compelling direct evidence for the emerging paradigm of bottom mixing layer control of the abyssal 

meridional overturning circulation (Ferrari et al., 2016; de Lavergne et al., 2016b; Callies and Ferrari, 

2018a,b; Drake et al., 2020a). 
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Chapter 5 

Outlook 

Until the processes giving rise to [near-boundary] diffusion and 

advection are understood, the resulting differential equations 

governing the interior distribution, and their solutions, must 

remain what they have been for so long: a set of recipes. 

Walter Munk (1966) 

Below, I discuss implications of this work and some directions for future research on the topic. 

5.1	 Observational evidence of mixing-driven bottom boundary layer 

upwelling 

The emerging paradigm of Bottom Boundary Layer (BBL) control on the abyssal overturning, as 

argued in this thesis, predicts extremely large upwelling transports in a thin BBL; major criticisms 

of the theory (aside from those addressed by this thesis) are that 1) this predicted large diapycnal 

BBL upwelling is not yet falsifiable with available observations and 2) it is inferred from uncertain 

parameterizations of the vertical turbulent buoyancy flux. Such parameterizations are sensitive to 

assumptions about the underlying dynamics (e.g. the fraction of internal waves which break near 

their generation site; Cimoli et al. 2019) and whose underlying assumptions may break down in 

weakly-stratified bottom boundary layers (e.g. assuming a constant mixing efficiency; Mashayek 

et al. 2017b), such that their magnitudes may have uncertainties of up to a factor of 2-3 (Ferrari 

et al., 2016; de Lavergne et al., 2016b; Cimoli et al., 2019). 

The upcoming Bottom Boundary Layer Turbulence and Abyssal Recipes field campaign (or 

"BLT"; NSF Award #1756251) aims to make the first comprehensive observations of abyssal bot 
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tom boundary layer turbulence. Both the presence of a rough boundary and weak stratification 

raise questions about the adequacy of turbulence parameterizations that require assumptions about 

homogeneity, isotropy, or the "efficiency" of mixing (see Gregg et al., 2018). Thus, the plan for BLT 

is to use a plethora of methods to estimate the mixing as close to the bottom as possible: both 

shear and temperature microstructure, direct (but noisy) measurements of the turbulence flux, and 

localized releases of both dye (short-term) and tracer (long-term) followed by surveys of their three-

dimensional distributions. The hope is that these observations will not only provide the first reliable 

constraints on the near-boundary structure and magnitude of the turbulent buoyancy flux, but also 

that the observed average buoyancy gain of the released dyes and tracer will be generally consistent 

with the inferred buoyancy flux convergence. 

One reason that BBL upwelling transports have not yet been directly observed is that the 

diapycnal velocity e is much smaller than the isopycnal velocities associated with adiabatic mean 

flows and geostrophic turbulence, so small errors in the projection of the measured components 

onto the diapycnal direction can corrupt the estimates. Even where isopycnals are roughly flat 

and e ≃ 𝑤𝑧, estimates of the vertical velocity are small, noisy, and easily tainted by small errors 

in the instruments’ pitch angle relative to gravity. Thurnherr et al. (2005) attempt to circumvent 

this problem by considering the heat budget for a single fracture zone canyon: observed along-

canyon flows enter a volume confined by the canyon trough and sloping flanks from below and 

thus must upwell across the bounding buoyancy surface above; however, they are unable to find 

sufficient mixing to quantitatively close the canyon’s buoyancy budget (Thurnherr et al., 2020). 

Similar heat budgets in other regions (e.g. Hogg et al., 1982; Spingys et al., 2021) follow similar 

arguments, but the mean diapycnal upwelling is always inferred, never directly observed. Tracers 

naturally provide more reliable estimates of diapycnal velocities since they inherently integrate over 

spatial and temporal variability. In Chapter 4, for example, I re-interpret the slow tracer-weighted 

diapycnal sinking observed in Brazil Basin (Ledwell et al., 2000) as direct evidence of mixing-driven 

downwelling in the SML1 . 

Tracer-based estimates of mixing rates and transports are typically provided by fitting surveyed 

tracer concentrations to relatively ad-hoc tracer advection-diffusion models. In contrast, the tracer-

weighted buoyancy moment method, proposed by Ruan and Ferrari (2021), provides an exact corre 

spondence (eq. 4.3 and 4.4) between tracer observations (the left-hand-side) and the tracer-weighted 

1Ledwell et al. (2000) interprets it in this way too, but the theoretical scaffolding to contextualize it in the global 
abyssal circulation was not yet mature (except perhaps in the prescient minds of Munk 1966 and McDougall 1989). 
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in-situ mixing rates (the right-hand-side). For the BBTRE, Ledwell (personal communication) made 

a crude first attempt at evaluating these terms, based on the mixing rates produced by a 1D model 

inversion and objective maps of the tracer and hydrographic observations. This exercise yielded 

estimates of the LHS and RHS terms that were remarkably similar– within just a few percent of 

each other (Figure 4-6d)–– suggesting that the two methods are at least generally consistent. When 

diapycnal stretching effects are large, however, as is expected for the near-bottom BLT release, I 

expect the tracer-weighted buoyancy moments method to allow more meaningful comparisons of 

in-situ turbulence estimates against tracer observations, since these diapycnal stretching effects are 

not easily included in 1D model formulations. 

5.2 Tidal effects on abyssal mixing layers 

To considerably simplify the problem (see Section 1.2), I have omitted ocean tides from all of my 

solutions and instead opted to parameterize their driving of abyssal turbulence through an imposed 

bottom-enhanced turbulent diffusivity, 𝜅𝑇 . Thus, I consider my solutions as having filtered out 

internal waves and as representing averages over spatial- and time-scales longer than those associated 

with breaking internal waves and other non-hydrostatic processes (e.g. hydraulic jumps). It is 

certainly possible that my simulations have not accurately represented the net effects of tides on 

abyssal mixing layers, for example due to: shear dispersion, tidal rectification effects, or turbulent 

fluxes that are poorly captured by my imposed bottom-enhanced mixing rates (e.g. because they are 

strongly anisotropic). For example, direct measurements of turbulent fluxes (enabled by remarkable 

technological advances) in the deep ocean internal tide "swash zone" reveal large cross-slope (nearly 

horizontal) turbulent fluxes that raise doubts about the conventional assumption of shear turbulence 

characterized by a bulk mixing coefficient of Γ = 0.2 (Polzin et al., 2021). It is yet unclear what 

implications these observations have for the paradigm of a BBL-controlled abyssal circulation, but 

more comprehensive observations of deep BBLs will certainly help to shed light on the situation. 

One approach to circumvent the ignorance required by large-scale modelling is to zoom so far 

in on these processes that they can be directly solved (i.e. accurate direct numerical solution of 

the full Navier-Stokes equations; see Orszag 1970), as in Kaiser (2020)’s thesis, wherein he uses 

direct numerical simulations to resolve tidally-driven bottom boundary layer turbulence all the way 

down to the Kolmogorov scale of molecular dissipation. He finds that the laminar solution becomes 

gravitationally unstable at one phase of the tide, resulting in asymmetric non-linearities that modify 
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the time-mean near-boundary stratification and the up-slope flow relative to the classical laminar 

Phillips-Wunsch solution (Wunsch, 1970; Phillips, 1970). The trade-off of this setup, however, is that 

he is restricted to processes up to only a few meters above smoothly sloping seafloor, which contribute 

little turbulent dissipation and mixing compared to bottom-enhanced observations. Gayen and 

Sarkar (2011) simulate an analogous problem on the larger scale of the 𝒪(50 m) bottom boundary 

layer using (non-rotating) Large Eddy Simulations (LES) for the specific case of critical reflection 

of an incident internal tide beam. It would be instructive to run similar simulations over sloping 

rough topography, as Lee et al. (2020) do for the rough stratified Ekman layer without a mean slope 

(in various parameter regimes relevant to the abyssal ocean). 

At even larger scales, the entire life-cycle of the internal wave field can be simulated (again 

using an LES closure to arrest the turbulent cascade to unresolved small scales): conversion of 

the barotropic tide into internal tides at rough topography, internal wave propagation, wave-wave 

interactions, reflection, and breaking (Nikurashin and Legg, 2011; Yi et al., 2017; Jalali and Sarkar, 

2017). All of these past studies, however, are inherently transient exercises since there is no forcing 

that restores the stratification; tidally-driven turbulence homogenizes the near-bottom layers until 

eventually the stratification becomes too weak to support propagating internal waves, i.e. 𝑁 < 𝜔. 

(Transiently, however, internal waves are still generated from the interface at the top of the growing 

bottom mixed layer). In the present context of mixing-driven bottom boundary layer control on the 

abyssal circulation, we are more interested in the steady-state dynamics: What maintains the near-

bottom stratification that allows internal tides to be generated in the first place (and subsequently 

drive efficient mixing)? What is the steady-state contribution of these processes to the abyssal 

overturning circulation? 

The two flavors of simulations described above can be combined: Large Eddy Simulations of 

stratified flow on a slope, forced by an oscillating barotropic tide and where a mean cross-slope 

flow maintains the stratification of the bottom boundary layer (possibly supplemented by the other 

restratification processes described in Chapter 3) and allows the evolution towards a non-trivial 

statistical equilibrium solution. However, such Large Eddy Simulations would depend crucially on 

the adequacy of sub-grid scale closures for stratified near-boundary flows. I have recently prototyped 

a hydrostatic implementation of this model setup in the MIT General Circulation Model (Marshall 

et al., 1997) following the configurations of Chapter 3 and the set-up of Nikurashin and Legg 

(2011) (using the Klymak and Legg 2010 parameterization to parameterize wave breaking); a non-

hydrostatic implementation would probably be preferred, but it may be worth instead implementing 
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it in a more efficient and modern non-hydrostatic ocean model, such as SOMAR-LES (Chalamalla 

et al., 2017) or Oceananigans.jl (Ramadhan et al., 2020). 

5.3 Adjustment to non-local interior flows 

Throughout the thesis, I focus on sloping BBL flows forced locally by small-scale turbulent mixing. 

In addition to generating a buoyancy-driven up-slope flow (the "secondary" circulation), mixing 

near the boundary causes a horizontal buoyancy gradient which "spins-up" an along-slope thermal 

wind (the "primary" circulation) (Thorpe, 1987; MacCready and Rhines, 1991). If the naming of 

these circulations seems backward, it is because their origin traces back to the classical problem of 

the "spin-down" of a geostrophic current (the "primary" circulation) by frictional Ekman layer flows 

(the "secondary" circulation). Indeed, a number of other oceanic processes besides local mixing can 

generate strong along-slope flows, perhaps the most important being boundary currents2 driven by 

non-local wind (Stommel, 1948) or mixing (Stommel, 1958). Here, I briefly review these Ekman 

adjustment dynamics and discuss their potential relevance for abyssal watermass transformations. 

Let us consider the adjustment of a generic geostrophic flow to friction along a sloping no-slip 

boundary. As in the classical flat-bottom Ekman layer problem (see Pedlosky, 1987), this externally-

imposed along-slope flow sets up a bottom Ekman transport (up– or down–slope, depending on the 

direction of the along-slope flow) on a fast timescale 𝑓 −1. By continuity, this frictional close-slope 

flow is returned in the interior, where it is turned into the along-slope direction by the Coriolis 

force and thus opposes the along-slope that drives it; as a result of this feedback process, the along-
def 𝜈slope flow "spins down" on a timescale 𝜏𝑆 = 𝑓−1Ek−1/2, where Ek ≡ is the Ekman number 

𝑓 𝐻 2 

(Peterson and Callies, in prep). Additionally, however, the cross-slope Ekman transport causes 

buoyancy surfaces to bend near the boundary, setting up an opposing buoyancy force on a timescale 
def def 

𝜏𝐴 ≡ (𝑆 𝑓 )−1 where 𝑆 ≡ 𝑁 2 tan2 𝜃/𝑓 2 is the slope Burger number for a fluid with stratification 

𝑁 2 and topographic slope angle 𝜃. If 𝜏𝐴 ≪ 𝜏𝑆 , then this opposing buoyancy force shuts down the 

cross-slope Ekman transport, dramatically reducing the bottom stress on the along-slope flow and 

thus "arresting" its spin-down. (MacCready and Rhines, 1991; Garrett et al., 1993). As a result of 

this buoyancy arrest process, sloping boundaries are more "slippery" than flat-bottom boundaries 

and are able to sustain stronger along-slope currents (Durrieu De Madron and Weatherly 1994; 

2These are generally found on western boundaries due to vorticity constraints and Rossby wave dynamics (Ped 
losky, 1965; Kawase, 1987), but can be sustained by a combination of topographic vortex stretching and lateral eddy 
buoyancy fluxes (Yang et al., 2020, 2021). 
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see also laboratory experiments by MacCready and Rhines 1991). In the canonical 1D sloping 

BBL initial value problem, the Ekman adjustment solution spins down to the same steady state 

as the solution that is spun-up from rest by mixing (Garrett et al., 1993). However, to the extent 

that external forces maintain an along-slope flow or that cross-slope pressure gradients modify the 

cross-slope transport, this canonical 1D model may not adequately characterize the near-boundary 

stratification and the resulting watermass transformations (Garabato et al. 2019; Spingys et al. 

2021; Peterson and Callies, in prep.). 

To further complicate matters, the linear sloping Ekman layer solutions discussed above are 

subject to various flow instabilities which substantially modify the canonical solution. The most 

basic of these processes is gravitational instability, which is especially common in the case of a 

downwelling-favorable along-slope flow that drives a down-slope transport of buoyant waters, re 

sulting in convective mixing that progressively thickens the bottom boundary layer (Garrett et al., 

1993; Ruan et al., 2019). Whether the linear solution is originally gravitationally stable or only 

becomes so after a period of convective mixing (Ruan et al., 2019), it may yet exhibit negative Er 

tel potential vorticity that renders it susceptible to centrifugal, symmetric, and mixed instabilities 

(Haine and Marshall, 1998; Garabato et al., 2019; Wenegrat et al., 2018; Wenegrat and Thomas, 

2020). The effect of all of these instabilities is to restratify the bottom boundary layer and pro 

mote exchange with these interior, enhancing watermass transformations in the BBL. To the extent 

that these instabilities drive significant small scale turbulence (relative to other processes, such as 

boundary layer and internal wave shear turbulence), they may also modify the efficiency with which 

this turbulent production results in irreversible mixing (Garabato et al., 2019; Spingys et al., 2021). 

Finally, we note that in reality, along-slope flows have finite width and thus drive locally-closed sec 

ondary circulations (Benthuysen, 2010), which can evolve asymmetrically due to non-linear effects 

(Benthuysen and Thomas, 2013). 

5.4 Towards predictive models of boundary-interior exchange 

The simulation results in Chapters 2 and 3 provide some of the first quantitative evidence for the 

often-repeated speculation that boundary-interior exchange flows driven by along-slope heterogene 

ity (in mixing rates, the background stratification, or topographic slopes) contribute significantly 

to the abyssal overturning circulation (Armi, 1978; Phillips et al., 1986; McDougall, 1989; Garrett, 

1990; Salmun et al., 1991; Kunze et al., 2012; Dell and Pratt, 2015). It is useful to separate these 
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exchange flows into two categories: 1) basin-scale exchanges between the sloping mixing layers and 

the interior and 2) local slope-normal exchange flows within sloping mixing layers, e.g. eddy fluxes 

between the BBL and the SML. 

Chapter 2 explores the first case, where an increasing slope at the base of the mid-ocean ridge 

causes buoyancy flux convergence in the BBL and a decreasing slope at the ridge crest causes 

buoyancy flux divergence; at equilibrium, however, vertical variations in the interior stratification 

drive leading-order convergences at all depths (see also Spingys et al., 2021; Holmes et al., 2018). 

The asymptotic model developed by Salmun et al. (1991)3 provides first-order corrections to the 

1D boundary layer solutions due to pycnocline-induced convergences along the slope and frame the 

effects of these exchange flows in terms of an effective interior diffusivity. However, their poorly-

justified choices of non-dimensional parameters and the complexity of the resulting first-order system 

make the overall approach exceedingly difficult to follow and yield unlikely scaling laws (e.g. interior 

diffusivity scales like the inverse cube of the turbulent layer’s diffusivity, 𝜅I ∝ 𝜅−3). In Appendix A 

I have made some first attempts at setting up a simpler problem (e.g. using Rayleigh drag instead of 

momentum diffusion and some convenient assumptions about the parameter regime that simplify the 

non-dimensionalization), but have not yet searched for analytical or numerical solutions. Given the 

importance of this boundary-interior coupling in the emerging conception of the abyssal circulation, 

this decades-old problem should be revisited, perhaps with a bit more guidance from heuristic or 

scaling arguments. 

Chapter 3 explores the second case, where cross-slope (and along-slope) variations in the topo 

graphic slope drive slope-normal exchanges within the BBL and SML, and between the two. Dell 

(2013) describes these exchange flows extensively using various two- and three-dimensional simu 

lations; she provides some useful scaling laws that predict properties of the exchange flows and 

transitions from linear to non-linear to overflow regimes, but does not derive any general analytical 

solutions. In Dell and Pratt (2015), their simulation results for mixing-driven boundary layer flow 

over small-amplitude cross-slope corrugations are strongly suggestive of the classical (non-sloping) 

lee wave problem4, suggesting an asymptotic approach may be used to solve for: the smoothly-

sloping boundary layer solution, at leading order; the corrugation-induced exchange flows, at first 

3The asymptotic models of Woods (1991) and Imberger and Ivey (1993) are also noteworthy, but the problems 
they set up are not as relevant to abyssal mixing layers, in my opinion. 

4The major complication seems to be that the leading-order boundary flows vary rapidly in the vertical (on the 
𝒪(10 m) scale of even quite small topography) and conventionally satisfy a no-slip condition at the seafloor, so it is 
not clear what "bottom" velocity to use to generate the lee waves (Legg, 2021). Polzin (2009)’s bottom-enhanced 
mixing recipe suffers from a similar problem since the stratification of the bottom grid cell is a key input which likely 
also depends strongly on the model’s vertical resolution. 
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order; and perhaps insightful wave-mean or wave-wave interactions, at higher order (e.g., following 

Nikurashin and Ferrari, 2009). In Chapter 3, I find topographically-induced standing eddies (devia 

tions from the slope-normal mean) contribute somewhat to the buoyancy budget of a fracture zone 

canyon, although the nature and impact of these topographic eddies remain unclear. 

In Chapter 2, I test Munk (1966)’s classic vertical advection-diffusion model (re-interpreted as a 

basin-scale average as in Munk and Wunsch 1998) by comparing the left- and right-hand-side terms 

of their equations (Figure 2-13). The vertical turbulent buoyancy flux divergence provides a poor 

prediction of the upwelling transport in the basin. This has implications for the fidelity of zonally-

integrated theories of the meridional overturning circulation (Nikurashin et al., 2012, e.g.), which 

typically assume a Munk-like basin in the abyssal ocean (outside of the Southern Ocean). Reframing 

this vertical balance in buoyancy coordinates and accounting for hyposometric effects (e.g. Jansen 

and Nadeau, 2019) would likely improve the solution, but the decomposition in Figure 2-14 suggests 

that the omitted spatial correlation terms between the prescribed mixing 𝜅 and the prognostic 

stratification 𝑏𝑧 lead to errors of up to 100% (the impact of these correlations is a bit muted in the 

supporting simulation results of Spingys et al. 2021, but are still as large as 50%). It may be possible 

to develop an analytical (or idealized numerical model) for the abyssal overturning circulation 

based on the coupled evolution of bottom boundary layers and the interior, which would not suffer 

from these assumptions about horizontal homogeneity; alternatively, better understanding of these 

coupling processes could allow a simpler parameterization, such as a parameterized enhancement 

of the horizontally-averaged diffusivity that accounts for missing buoyancy fluxes in abyssal mixing 

layers (as in Salmun et al., 1991). 

5.5 Sub-gridscale parameterization in general circulation models 

The width of my simulation domain in Chapter 3 is comparable to the nominal width of a modern 

general circulation model’s (GCMs) oceanic grid cell; thus, the processes described in Chapter 3 

occur below the gridscale and thus can only be included in GCM solutions through parameteriza 

tion. The hierarchy of models approach in Chapter 3 revealed three key subgrid-scale processes that 

control the near bottom stratification (and thus, watermass transformations): finite-amplitude sub 

mesoscale baroclinic eddies, blocking of cross-canyon thermal wind by narrowly separated sidewalls, 

and blocking of up-slope restratification of deep depressions by topographic sills. 

The restratification effect of submesoscale bottom mixing layer eddies, which we might expect 
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to dominate over hilly ridge flanks, could conceivably be parameterized as an eddy overturning 

streamfunction, as has been successfully implemented for restratification by surface mixed layer 

eddies in GCMs (Boccaletti et al., 2007; Fox-Kemper et al., 2008, 2011). Reassuringly, a bottom 

mixing layers parameterization for submesoscale symmetric instability (intended for overflows) has 

also recently been implemented in a GCM (Yankovsky and Legg, 2019; Yankovsky et al., 2020). 

To some extent, the effects of larger-scale topographic features, such as canyons and their block 

ing sills, can be resolved by simply increasing the resolution a bit; for example, high-resolution 

simulations with nominal resolutions of about 1/10∘ or 10 km, which likely marginally resolve most 

fracture zone canyons of widths of 𝒪(20 km), are now increasingly feasible. If canyons are not 

explicitly resolved, but are thought to be sufficiently important that they should be included any-

ways, they can be "dug out" by altering the bathymetric input files; this is already a widely-used 

practice for including channels such as the Denmark Strait, the Faroe-Bank Channel, and the Strait 

of Gibraltar that have leading order effects on global ocean circulation and tracer distributions. 

Finally, if the dynamical effects of the topography on the flow are sufficiently well understood, they 

can be parameterized by numerical "piping", as in Polzin (2009)’s Abyssal Recipe for upwelling 

by mixing above unresolved abyssal hills or for narrow hydraulically-controlled channels and their 

associated downstream dense overflows (Danabasoglu et al., 2010; Legg et al., 2009). 

5.6 The role of abyssal mixing layers in climate 

Little is known about the role of abyssal mixing layers in climate. In part, this is because the 

emerging paradigm of boundary layer control of the abyssal circulation is relatively new and has 

not yet been analyzed in the context of a realistic global ocean or climate model. To the extent that 

abyssal mixing layer dynamics are resolved (or parameterized) in climate models, I expect them 

to have an impact on climate through their modulation of the large-scale abyssal circulation. In 

deed, we may get some hints from the substantial literature on the role of diapycnal mixing and the 

bottom-enhancement of diapycnal mixing on the abyssal circulation and various downstream climate 

impacts. Saenko and Merryfield (2005) show that, relative to the then-standard practice of assum 

ing a uniform (or piece-wise uniform, as in Bryan and Lewis 1979) diapycnal diffusivity, prescribing 

a realistically bottom-enhanced diffusivity improves the fidelity of the solution by strengthening the 

abyssal stratification and circulation in the Southern and Pacific Oceans. Friedrich et al. (2011) 

extend the impact of these oceanic changes by considering an ocean-atmosphere-biogeochemistry 
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model, and show that the bottom-enhancement of mixing additionally results in significant changes 

to surface air temperatures, atmospheric circulation patterns, and global biogeochemical cycling. 

Melet et al. (2013) show that not only do the magnitude and horizontal structure of the parameter 

ized mixing matter, but its vertical distribution too (using Polzin 2009’s dynamical parameterization 

of vertical internal-tide propagation, interaction, and breaking). 

To date, most studies of the impact of diapycnal mixing parameterizations on global climate have 

focused on the storage of atmospherically-sourced tracers (or out-gassing of stored tracers). Our 

emphasis on the role of bottom mixing layers, however, suggests we should turn to climatically-active 

tracers sourced from the bottom boundary. The climatically important hydrothermal fluxes of iron 

(Tagliabue et al., 2010), for example, are likely to be strongly modulated by the mixing and flows 

described in this thesis; imagine for a second that the tracers in Chapter 3 were hydrothermal plumes 

rich in nutrients (such as iron) that, although buoyant upon release, have settled at a neutrally-

buoyant level near the boundary. Indeed, hydrographic observations of a particular hydrothermal 

iron plume show its spreading across from its localized release near the crest of a mid-ocean ridge 

(Resing et al., 2015). Modern ocean biogeochemistry models still struggle to reproduce dissolved 

iron distributions (Tagliabue et al., 2016), and only models that include hydrothermal iron sources 

have any resemblance to the observations in the abyss (but even those correlations are quite poor). 

Mitigating human-induced climate change requires a broad portfolio of climate solutions. At 

least two important speculative climate solutions involve abyssal mixing layers: 1) enhancing the 

natural export of atmospheric carbon into the deep ocean (known as Ocean-based Carbon Dioxide 

Removal) and 2) the extraction of minerals required for renewable energy technologies (e.g. cobalt) 

from abundant reserves along the abyssal seafloor (known as Deep Sea Mining). The effectiveness 

of OCDR depends on the timescale over which the sequestered carbon (in the form of remineralized 

dissolved oceanic carbon in the BBL) remains isolated from the atmosphere (Siegel et al., 2021). 

Improved understanding of abyssal mixing layer dynamics, and their coupling to the large scale 

circulation, would improve estimates of the permanence of OCDR and allow for the identification 

of optimal sequestration sites. An appeal of DSM is that any environmental impacts would be 

far removed from humans and the familiar ecosystems that surround us, especially as compared 

to terrestrial mining of the same resources; but how remote are these impacts really? A major 

environmental impact of DSM is the dispersion of sediment plumes (both in the bottom mixing 

layers as a direct result of mining operations and in the interior as a result of unwanted discharged 

sediment) which potentially smother filter feeders and carry toxic metals (Peacock and Alford, 2018). 

126
 



Important inputs for environmental impact assessments, such as the seafloor area affected by these 

plumes and the Lagrangian connectivity of benthic ecosystems, are poorly known but expected to 

be controlled by the dynamics of abyssal mixing layers. 

5.7 Towards an abyssal cookbook 

After six decades of progress on the problem of the mixing-driven abyssal overturning, it seems the 

recipes are getting delicious enough to soon publish a cookbook5 . 

5See the upcoming book Ocean Mixing: Drivers, Mechanisms and Impacts edited by Meredith and Garabato 
(2021) for a modern account, for example. 
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Appendix A 

Asymptotics of pycnocline-induced boundary 

layer exchange flows 

A.1 The planetary geostrophic equations in slope coordinates 

Motivated by the impressive but convoluted asymptotic approach of Salmun et al. (1991), we aim to 

derive a more minimal and more interpretable model of the coupling between abyssal mixing layers 

and the interior due to vertical variations in the interior stratification. Our set-up of the problem 

follows that of (Salmun et al., 1991), but we consider a specific parameter regime appropriate for 

abyssal mixing layers. 

Following Chapter 2, the steady planetary geostrophic equations for a stratified, rotating fluid 

with friction provided by a linear (Rayleigh) drag are: 

−𝑓 𝑣 = −𝑝�̃� − 𝑟�̃� zonal momentum (A.1) 

𝑓�̃� = −𝑝𝑦 − 𝑟𝑣 meridional momentum (A.2) 

0 = −𝑝𝑧 + 𝑏 hydrostatic balance (A.3) 

˜ 𝑥 + ˜ 𝑧 = 𝜕˜ 𝑥) + 𝜕˜ 𝑧 ) buoyancy, (A.4)𝑢𝑏˜ 𝑤𝑏 ̃ 𝑥(𝜅𝑏˜ 𝑧(𝜅𝑏˜

where we set up the problem such that there are no variations in the meridional direction, i.e. 

𝑝𝑦 𝑦 = 0. Rotating into the slope reference frame (𝑥, 𝑦, 𝑧) = ( ̃ 𝑧 sin 𝜃, ˜ 𝑧 cos 𝜃 − ˜= 𝑏˜ 𝑥 cos 𝜃 + ˜ 𝑦, ˜ 𝑥 sin 𝜃) 
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where ( ̃𝑥, ˜ 𝑧) = (𝑥 cos 𝜃 − 𝑧 sin 𝜃, 𝑦, 𝑧 cos 𝜃 + 𝑥 sin 𝜃), we have 𝑦, ˜

−𝑓 𝑣 cos 𝜃 = −𝑝𝑥 + 𝑏 sin 𝜃 − 𝑟 cos 𝜃(𝑢 cos 𝜃 − 𝑤 sin 𝜃) cross-slope momentum (A.5)
 

𝑓(𝑢 cos 𝜃 − 𝑤 sin 𝜃) = −𝑟𝑣 along-slope momentum (A.6)
 

𝑓 𝑣 sin 𝜃 = −𝑝𝑧 + 𝑏 cos 𝜃 + 𝑟 sin 𝜃(𝑢 cos 𝜃 − 𝑤 sin 𝜃) slope-normal momentum (A.7)
 

𝑢𝑏𝑥 + 𝑤𝑏𝑧 = 𝜕𝑥(𝜅𝑏𝑥) + 𝜕𝑧 (𝜅𝑏𝑧 ) buoyancy. (A.8)
 

Combining the cross-slope and slope-normal momentum equations into an equation for the 

slope-normal vorticity, we have 

−𝑓 (𝑣𝑥 sin 𝜃 + 𝑣𝑧 cos 𝜃) = 𝑏𝑧 sin 𝜃 − 𝑏𝑥 cos 𝜃 − 𝑟[cos 𝜃(𝑢𝑧 cos 𝜃 − 𝑤𝑧 sin 𝜃) 

+ sin 𝜃(𝑢𝑥 cos 𝜃 − 𝑤𝑥 sin 𝜃)] along-slope vorticity 

(A.9) 

𝑓(𝑢 cos 𝜃 − 𝑤 sin 𝜃) = − 𝑟𝑣 along-slope momentum 

(A.10) 

𝑢𝑏𝑥 + 𝑤𝑏𝑧 = 𝜕𝑥(𝜅𝑏𝑥) + 𝜕𝑧 (𝜅𝑏𝑧 ) buoyancy. 

(A.11) 

A.2 The creeping flow equations in slope coordinates 

Since the coupling process is inherently buoyancy-driven, we begin with the simpler non-rotating 

case. For a non-rotating flow (𝑓 = 0), these equations simplify to 

𝑏𝑧 sin 𝜃 − 𝑏𝑥 cos 𝜃 = 𝑟[cos 𝜃(𝑢𝑧 cos 𝜃 − 𝑤𝑧 sin 𝜃) + sin 𝜃(𝑢𝑥 cos 𝜃 − 𝑤𝑥 sin 𝜃)] along-slope vorticity 

(A.12) 

0 = −𝑟𝑣 along-slope momentum 

(A.13) 

𝑢𝑏𝑥 + 𝑤𝑏𝑧 = 𝜕𝑥(𝜅𝑏𝑥) + 𝜕𝑧 (𝜅𝑏𝑧 ) buoyancy, 

(A.14) 
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where the along-slope momentum equation implies that there is no along-slope velocity, 𝑣 = 0. 

We now decompose the buoyancy field into a far-field component and a perturbation, 

𝑏(𝑥, 𝑧) = 𝐵( ̃𝑧) + 𝑏 ′ (𝑥, 𝑧), (A.15) 

where dd˜
𝐵 
𝑧 = 𝑁 2. We define a streamfunction by 𝑢 = 𝜓𝑧 and 𝑤 = −𝜓𝑥. In terms of the buoyancy 

perturbations and the streamfunction, the equations become 

[︁ ]︁
𝑏 ′ 𝑧 sin 𝜃 − 𝑏𝑥 

′ cos 𝜃 = 𝑟 𝜓𝑧𝑧 cos 
2 𝜃 + 2𝜓𝑧𝑥 sin 𝜃 cos 𝜃 + 𝜓𝑥𝑥 sin

2 𝜃 along-slope vorticity 

(A.16) 

𝜓𝑧 𝑏 
′ 
𝑥 − 𝜓𝑥𝑏𝑧 

′ + 𝜓𝑧 𝑁 2 sin 𝜃 − 𝜓𝑥𝑁 2 cos 𝜃 = 𝜕𝑧(𝜅𝑁 2) + 𝜕𝑥(𝜅𝑏 
′ 
𝑥) + 𝜕𝑧 (𝜅𝑏 

′ 
𝑧 ) buoyancy 

(A.17) 

where we note that 𝐵𝑧 sin 𝜃 − 𝐵𝑥 cos 𝜃 = 𝑁 2 cos 𝜃 sin 𝜃 − 𝑁 2 sin 𝜃 cos 𝜃 = 0. Notably, this differs 

from Imberger and Ivey (1993)’s model, since their background state only varies in the cross-slope 

direction 𝐵 ≡ 𝐵(𝑥) and is apparently unbalanced; as a result, the background buoyancy gradient 

𝐵𝑥 enter their system at leading order. 

We non-dimensionalize by 𝑥 = ˆ ˆ 𝑧 = 𝑧ℎˆ , where 𝐻 is the thickness of the turbulent 𝑥𝐿, 𝑧 = 𝑧 𝐻 , and ̃ ˜

bottom boundary layer, ℎ is the height over which the stratification varies, and 𝐿 = ℎ/ sin 𝜃 is the 

projection of ℎ onto the cross-slope direction. We write 𝑁 2 = 𝑁0 
2𝒢( ̃𝑧),where 𝑁 2 is a reference 0 

stratification and 𝒢( ̃𝑧) is a non-dimensional function of 𝒪(1), and 𝑏 ′ = �̂�𝑁0 
2𝐻. The streamfunction 

ˆis scaled as 𝜓 = 𝜓𝑄 where 𝑄 is determined by asserting that the leading order buoyancy balance 

should be the Phillips (1970) balance between cross-slope advection of background buoyancy and 

the slope-normal diffusion of buoyancy, 

𝜓𝑧 𝑁
2 sin 𝜃 = 𝜕𝑧(𝜅𝑏𝑧 ), (A.18) 

which gives a scaling of 𝑄 = 𝜅 sin−1 𝜃. Since we will only consider small angles 𝜃 ≪ 1, taking 

sin 𝜃 ≈ 𝜃 and cos 𝜃 ≈ 1 greatly simplifies our equations. For simplicitly, we assume the diffusivity 𝜅 

is constant within the turbulent layer of thickness 𝐻, and vanishes in the interior. 
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In the turbulent layer, the non-dimensional equations are then given by ⎤ (︂ )︂ (︃ )︃⎡ (︃ )︃ (︃ )︃
𝐻 𝜃 𝑟𝜅 𝐻 𝜃2 𝐻2𝜃6 

�̂� ′ 𝑧 − �̂� ′ �̂� = ⎣𝜓𝑧𝑧 + 2 𝜓�̂�𝑧 + 𝜓�̂��̂�
⎦ (A.19)

ℎ 𝑁0 
2𝐻2 ℎ ℎ2 (︂ )︂[︁ ]︁ (︃ )︃ (︃ )︃

𝐻 𝐻 𝜃2 𝐻2𝜃2 
ˆ ˆ ˆ ˆ ˆ ˆ𝜓𝑧𝒢( ̃𝑧) + 𝜓𝑧𝑏 

′ 
�̂� − 𝜓�̂�𝑏 

′ 
𝑧 − 𝜓�̂�𝒢( ̃𝑧) = 𝑏 ′ 𝑧𝑧 + 𝒢𝑧 + 𝒢�̂� + 

ℎ2 𝑏 ′ �̂��̂�, (A.20)
ℎ ℎ 

𝑁0 
2𝐻2 

where we recognize 𝑅𝑎 ≡ as the Rayleigh number. We now consider the limit 𝜖 ≡ 𝐻/ℎ ≪ 1,
𝑟𝜅 

where 𝜖 is the aspect ratio of bottom boundary layer flow; for a boundary layer thickness of 𝐻 = 

100 m and a vertical stratification scale ℎ = 1000 m, the aspect ratio is indeed small, 𝜖 ≈ 0.1 ≪ 1. 

For 𝑅𝑎 = 𝒪(1), we retrieve the 1D boundary layer model from Chapter 1 (eq. 2.21-2.23) at leading 

order (where we have set 𝑓 = 0): 

�̂� ′ 𝑧 ≃ 𝜓𝑧𝑧 (A.21) 

𝜓𝑧𝒢 ≃ �̂� ′ (A.22)𝑧𝑧

For simplicity, we set 𝑅𝑎 ≡ 1. As long as 𝜃 ≤ 𝜖, the leading order and first order equations are 

unchanged so without loss of generality we consider 𝜃 = 𝜖3 ≈ 10−3 (appropriate for the large-scale 

mid-ocean ridges considered in this thesis). The equations can now be expressed in terms of a single 

non-dimensional parameter, the aspect ratio 𝜖 

ˆ ˆ𝑏 ′ 𝑧 − 𝜖4�̂� ′ �̂� = 𝜓𝑧𝑧 + 2𝜖7𝜓�̂�𝑧 + 𝜖20𝜓�̂��̂� (A.23)^[︁ ]︁
ˆ ˆ ˆ ˆ ˆ𝜓𝑧𝒢( ̃𝑧) + 𝜖 𝜓𝑧𝑏𝑥 

′ 
^ − 𝜓�̂�𝑏 

′ 
𝑧 − 𝜓�̂�𝒢( ̃𝑧) = 𝑏 ′ ^𝑧 + 𝒢𝑧 + 𝜖7𝒢�̂� + 𝜖8�̂� ′ �̂��̂�. (A.24)𝑧^

Finally, we express the 𝒪(1) structure function for stratification as 𝒢( ̃𝑧) = 1 + 𝜖𝑔( ̃𝑧), where 𝑔( ̃𝑧) is an 

𝒪(1) structure function for the small perturbation away from a constant stratification. Expanding, 

we have 

�̂�𝑧 
′ 
^ − 𝜖4�̂�𝑥 

′ 
^ = 𝜓𝑧𝑧 + 2𝜖7𝜓�̂�𝑧 + 𝜖20𝜓�̂��̂� (A.25) [︁ ]︁

𝜓𝑧 + 𝜖 𝜓𝑧𝑔( ̃𝑧) + 𝜓𝑧 �̂� 
′ 
�̂� − 𝜓�̂��̂� 

′ 
𝑧 − 𝜓�̂� − 𝜖2𝜓�̂�𝑔( ̃𝑧) = �̂� ′ 𝑧𝑧 + 𝜖𝑔𝑧 + 𝜖8𝑔�̂� + 𝜖8�̂� ′ �̂��̂�. (A.26) 
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A.2.1 Boundary conditions 

Bottom boundary condition 

The bottom boundary conditions are the conditions of no normal flow at the sloping boundary and 

no buoyancy flux across the sloping boundary, 

𝜓𝑥 = 0 at 𝑧 = 0 (A.27) 

𝑏 ′ 𝑧 + 𝑁0 
2 cos 𝜃 = 0 at 𝑧 = 0. (A.28) 

Or, non-dimensionally, 

𝜓�̂� = 0 at 𝑧 = 0 (A.29) 

�̂� ′ 𝑧 + 1 + 𝜖𝑔( ̃𝑧) = 0 at 𝑧 = 0. (A.30)^

Matching conditions with the quiescent interior 

To close the system of equations, we need two more boundary conditions. We find two boundary 

conditions at the top of the bottom boundary layer by matching the buoyancy and vorticity balances 

on the inside and outside of the layer. 

Let 𝛿 ≪ 𝐻 be some small distance. We assert that the slope-normal velocity 𝑤 must be 

continuous in the slope normal direciton 𝑧 (otherwise 𝑢 is discontinuous in 𝑥 for all 𝑥 along the top 

of the boundary layer). However, we allow a jump in the buoyancy 𝑏 across the top of the boundary 

layer. Integrating the buoyancy equation from 𝑧 = 𝐻 − 𝛿 to 𝑧 = 𝐻 + 𝛿, we have 

∫︁ 𝐻+𝛿 

𝜕𝑥(𝑢𝑏) + 𝜕𝑧 (𝑤𝑏) − 𝜕𝑥(𝜅𝑏𝑥) − 𝜕𝑧 (𝜅𝑏𝑧 )𝑧 = 0. (A.31) 
𝐻−𝛿 

As 𝛿 → 0, the cross-slope divergence terms are finite values that scale with 2𝛿 and thus vanish. We 

are left with 

[𝑤𝑏 − 𝜅𝑏𝑧 ]
𝐻+𝛿 = 0. (A.32)𝐻−𝛿 

Since 𝑤 is continuous across the top of the boundary layer, 𝑤(𝐻 + 𝛿) = 𝑤(𝐻 − 𝛿) = 𝑤. Outside 

of the boundary layer, 𝜅 = 0, 𝑏 = 𝐵, and 𝑏𝑧 = 𝑁 2 cos 𝜃. Inside of the boundary layer, 𝜅 = 𝜅0, 
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𝑏 = 𝐵 + 𝑏 ′, and 𝑏𝑧 = 𝑁 2 cos 𝜃 + 𝑏 ′ . Thus, we have 𝑧 

(︁ )︁
0 = 𝑤𝑏 ′ − 𝜅 𝑏𝑧 

′ + 𝑁 2 cos 𝜃 (A.33) 

as a boundary condition at 𝑧 = 𝐻. Integrating the vorticity equation, we have 

∫︁ 𝐻+𝛿 

𝑏𝑧 sin 𝜃 − 𝑏𝑥 cos 𝜃 − 𝑟[cos 𝜃(𝑢𝑧 cos 𝜃 − 𝑤𝑧 sin 𝜃) + sin 𝜃(𝑢𝑥 cos 𝜃 − 𝑤𝑥 sin 𝜃)] d𝑧 = 0, (A.34) 
𝐻−𝛿 

which becomes 

[︀ ]︀𝐻+𝛿
𝑏 sin 𝜃 − 𝑟 cos 𝜃(𝑢 cos 𝜃 − 𝑤 sin 𝜃) = 0. (A.35)

𝐻−𝛿 

Outside of the boundary layer, there is no diabatic source of buoyancy so �̃� = 𝑤 cos 𝜃 + 𝑢 sin 𝜃 = 0, 

which we rearrange to give 𝑢 = −𝑤 tan−1 𝜃 for 𝑧 > 𝐻 . Since the background buoyancy and slope-

normal velocity are continuous across the top of the boundary, we are left with 

𝑟𝑤 cos 2 𝜃 tan−1 𝜃 = 𝑏 ′ sin 𝜃 − 𝑟𝑢 cos 𝜃 sin 𝜃 (A.36) 

as our second boundary condition at 𝑧 = 𝐻. 

Note: We require the slope-normal velocity 𝑤 to be continuous in 𝑧 across the top of the boundary 

layer but this need not apply to the cross-slope velocity, 𝑢, the true horizontal velocity �̃�, or the 

true vertical velocity �̃�. 

Non-dimensionally, the boundary conditions at the top of the boundary layer become 

𝜓𝑧 − ̂𝑏 ′ − 𝜖7𝜓�̂� = 0 at 𝑧 = 1 (A.37) 

�̂� ′ 𝑧 + 1 + 𝜖𝑔( ̃𝑧) − 𝜖�̂��̂� ′ = 0 at 𝑧 = 1 (A.38)^
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A.2.2 Non-dimensional problem
 

All together, the non-dimensional problem is given by
 

�̂� ′ 𝑧 − 𝜖4�̂� ′ �̂� = 𝜓𝑧𝑧 + 2𝜖7𝜓�̂�𝑧 + 𝜖20𝜓�̂��̂� (A.39) [︁ ]︁
ˆ ˆ ˆ ˆ𝜓𝑧 + 𝜖 𝜓𝑧𝑔( ̃𝑧) + 𝜓𝑧𝑏 

′ 
�̂� − 𝜓�̂�𝑏 

′ 
𝑧 − 𝜓�̂� − 𝜖2𝜓�̂�𝑔( ̃𝑧) = �̂�𝑧 

′ 
^𝑧 + 𝜖𝑔𝑧 + 𝜖8𝑔�̂� + 𝜖8�̂�𝑥 

′ 
^�̂�. (A.40) 

𝜓�̂� = 0 at 𝑧 = 0 (A.41) 

�̂� ′ 𝑧 + 1 + 𝜖𝑔( ̃𝑧) = 0 at 𝑧 = 0. (A.42)^

𝜓𝑧 − ̂𝑏 ′ − 𝜖7𝜓�̂� = 0 at 𝑧 = 1 (A.43) 

ˆ�̂�𝑧 
′ 
^ + 1 + 𝜖𝑔( ̃𝑧) + 𝜖𝜓�̂�𝑏 

′ = 0 at 𝑧 = 1 (A.44) 

A.3 Regular perturbation expansion in aspect ratio 𝜖 

We now consider a regular perturbation expansion in the small aspect ratio 𝜖 (and, for clarity, drop 

the hats that denote non-dimensional variables), such that 𝜓 = 𝜓0 + 𝜖𝜓1 + ... and 𝑏 ′ = 𝑏 ′ 0 + 𝜖𝑏1 
′ + ... 

A.3.1 𝒪(1) solution 

We retrieve the 1D boundary layer equations from Chapter 1 for 𝑓 = 0, where only the top boundary 

condition has been modified 

𝑏 ′ 0𝑧 
= 𝜓0𝑧 𝑧 (A.45) 

𝜓0𝑧 = 𝑏 ′ (A.46)0𝑧 𝑧 

𝜓0𝑥 = 0 at 𝑧 = 0 (A.47) 

𝑏 ′ 0𝑧 
+ 1 = 0 at 𝑧 = 0 (A.48) 

𝜓0𝑧 − 𝑏0 
′ = 0 at 𝑧 = 1 (A.49) 

𝑏0𝑧 + 1 = 0 at 𝑧 = 1 (A.50) 
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We note that there is no dependence on 𝑥 in the 𝒪(1) problem and so 𝑏0 = 𝑏0(𝑧) and 𝜓0 = 𝜓0(𝑧). 

A.3.2 𝒪(𝜖) solution 

The 𝒪(𝜖) equations are identical to the 𝒪(1) equations except that the buoyancy equation contains 

two additional forcing terms corresponding to advection of the perturbed background stratification 

by the 𝒪(1) flow and turbulent mixing across the perturbed background stratification. 

𝑏 ′ 1𝑧 
= 𝜓1𝑧𝑧 (A.51) 

𝜓1𝑧 + 𝜓0𝑧 𝑔 = 𝑏 ′ + 𝑔𝑧 (A.52)1𝑧𝑧 

𝜓1𝑥 = 0 at 𝑧 = 0 (A.53) 

𝑏 ′ 1𝑧 
+ 𝑔 = 0 at 𝑧 = 0 (A.54) 

𝜓1𝑧 − 𝑏1 
′ = 0 at 𝑧 = 1 (A.55) 

𝑏 ′ 1𝑧 
+ 𝑔 = 0 at 𝑧 = 1 (A.56) 

Since 𝑔 = 𝑔( ̃𝑧) = 𝑔(𝑥, 𝑧 ), the 𝒪(𝜖) solution will depend on 𝑥 and drives a ‘tertiary’ exchange flow 

𝑤|𝑧=1 = 𝜓𝑥|𝑧=1 = 0 ̸ between the turbulent bottom boundary layer and the quiescent interior. 

The general solution to the 𝒪(1) problem is a sum of exponentials, with coefficients determined 

by the boundary conditions. For elementary choices of the perturbed background stratification 𝑔( ̃𝑧) 

that are periodic in 𝑥, it seems plausible that there may be analytical solutions to the 𝒪(𝜖) problem 

that provide insight into the coupling between the mixing layers and the interior. However, we 

expect that the exchange flows produced by the 𝒪(𝜖) solution will inevitably feedback upon the 

interior solution on some slow timescale. Coupling the boundary layer model above to a model for 

the interior stratification (see Section 5 of Salmun et al. 1991 for a simple "filling-box" model) may 

provide insight into the long-term equilibration of the basin-wide stratification, as described for the 

idealized general circulation model Chapter 1. 
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Appendix B 

Figures 

Figure B-1: (a) Cross-canyon meridional velocity 1300 m above the mean slope, i.e. at the release 
height of BBTRE tracer. (b) Same as a), but averaged across the whole domain. 
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Figure B-2: As in Figure 4-6, but after normalizing (a,c,e) by |∇𝑇 | and (b,d,f) by |∇𝑇 |2 to convert 
to units of velocity and diffusivity, respectively, as in equations (4.3) and (4.4). 
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Figure B-3: Probability density function of tracer mass, as a percent contribution of each bin to the 
total tracer mass. Grey contours and olive lines as in Figure 4-8. 
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