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Diapause vs. reproductive programs:
transcriptional phenotypes in a keystone copepod
Petra H. Lenz1, Vittoria Roncalli 1,2✉, Matthew C. Cieslak1, Ann M. Tarrant 3, Ann M. Castelfranco1 &

Daniel K. Hartline1

Many arthropods undergo a seasonal dormancy termed “diapause” to optimize timing of

reproduction in highly seasonal environments. In the North Atlantic, the copepod Calanus

finmarchicus completes one to three generations annually with some individuals maturing into

adults, while others interrupt their development to enter diapause. It is unknown which, why

and when individuals enter the diapause program. Transcriptomic data from copepods on

known programs were analyzed using dimensionality reduction of gene expression and

functional analyses to identify program-specific genes and biological processes. These ana-

lyses elucidated physiological differences and established protocols that distinguish between

programs. Differences in gene expression were associated with maturation of individuals on

the reproductive program, while those on the diapause program showed little change over

time. Only two of six filters effectively separated copepods by developmental program. The

first one included all genes annotated to RNA metabolism and this was confirmed using

differential gene expression analysis. The second filter identified 54 differentially expressed

genes that were consistently up-regulated in individuals on the diapause program in com-

parison with those on the reproductive program. Annotated to oogenesis, RNA metabolism

and fatty acid biosynthesis, these genes are both indicators for diapause preparation and

good candidates for functional studies.
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Large copepods are at the base of the metazoan food web of
high-latitude marine ecosystems that support highly pro-
ductive fisheries1–3. Low recruitment of young-of-the-year

fish larvae in the North Atlantic, North Pacific and the Bering Sea
have been correlated with below-average abundances of these
lipid-rich copepods4–8. While their population abundances do
correlate negatively with temperature5,9, observed temperatures
are well within known species’ tolerances10, suggesting that
indirect effects may be more important. Changes in ocean cir-
culation patterns and the timing and magnitude of spring phy-
toplankton blooms could have major impacts on zooplankton
abundances and distributions11–13. Furthermore, lipid-rich
copepods have complex life histories and depend on a seasonal
dormancy (diapause) to ensure the continued presence of a
strong spring population in a system. Thus, poor spring recruit-
ment due to changes in diapause could be a tipping point for a
local ecosystem. However, the copepods’ adaptive potential and
phenotypic plasticity are unknown and require a more precise
understanding of diapause and how it is controlled before
environmental tipping-points can be predicted.

Our current understanding of the life cycle and ecology of
lipid-rich copepods has emerged mostly from studies on Calanus
finmarchicus, a keystone species that plays a central role in North
Atlantic food webs2,4,14–16. Its annual cycle begins with genera-
tion G0 when copepods emerge from diapause as pre-adults
(copepodid stage CV), molt into adults, mate, and reproduce17,18.
The offspring (G1) of the G0 generation then make a critical
“choice”: some individuals develop directly through six naupliar
and six copepodid stages into adults (“reproductive program”)
and produce another generation (G2), while others develop to the
CV stage, then migrate to depth and enter diapause (“diapause
program”)14,19–21. In the Gulf of Maine, C. finmarchicus can
complete up to three such generations annually, with each gen-
eration in turn appearing to contribute to the overwintering
population19,22. In contrast, those of very high latitudes, such as
the Norwegian Sea, have only one (G1) generation per year; all
are on the diapause program23. Copepods destined to diapause
accumulate lipids that fuel the dormant period and contribute
energetically to reproduction post-diapause17,24.

Predicted changes in phenology in response to ocean
warming25 raise two central questions about diapause in C. fin-
marchicus. The first one, how many, which and when copepods
from each generation initiate the diapause program, is critical for
assessing recruitment in the following year and for predicting the
population cycle in the current year. Copepods that migrate to
depth take their accumulated lipids with them and thus
reduce lipid availability for upper trophic levels in surface waters.
Those entering into diapause sequester biomass and lipids,
effectively removing carbon at least temporarily from the upper
100 m and placing it into long-term storage for later availability to
the ecosystem15,26–28. The second question relates to the basic
biology and evolution of post-embryonic diapause in copepods.
Developmental programs that include dormancy have evolved
multiple times in arthropods29. The copepod diapause differs in
that it is unlikely to be regulated by temperature and/or
photoperiod14. A central question then is how does the copepod
diapause compare with that of other organisms? What physio-
logical characteristics are shared and which ones differ? While
depressed metabolic rates and an arrest in development char-
acterize diapause24,30, gene expression studies suggest that the
specific molecular mechanisms that control diapause vary among
taxa29,31–34. Modern transcriptomic technology permits exam-
ining a comprehensive array of genes involved in all aspects of an
organism’s life, and thus offers an opportunity to address both
questions.

The inability to distinguish between uninterrupted (reproduc-
tive program) vs. interrupted (diapause program) life-history
phenotypes is an impediment to a mechanistic understanding of
how the decision to enter the diapause program changes
depending on genotype, environment, and season. While major
programmatic differences in physiology have been demonstrated
in insects, these studies have relied on controlled experimental
conditions35–37. In contrast, developmental program is difficult
to assess in field-collected individuals of species with facultative
diapause and unknown triggers for entering the diapause pro-
gram. This includes C. finmarchicus23,24. However, once
program-specific patterns in gene expression have been char-
acterized, the how-when-why of diapause initiation can be
investigated. A transcriptomic approach that reliably distin-
guishes reproductive-program from diapause-program stage CV
individuals could transform C. finmarchicus population studies by
enabling tracking of how the number (and proportion) of
diapause-program CVs changes during the season.

Analysis strategy for an existing RNA-Seq dataset. Our goal was
to determine whether the two programs could be separated by
their respective gene expression (transcriptomic) phenotypes and
whether this difference would lead to new insights into the
physiological basis of the diapause program. The analysis was
based on an RNA-Seq dataset generated by Tarrant and collea-
gues that included predominantly C. finmarchicus pre-adult
copepodid stage CVs on different developmental programs23,38.
These data allowed a broad-based comparison of transcriptional
profiles of copepods on either the reproductive or the diapause
program.

The RNA-Seq dataset comprised two-time points each,
obtained from two sources of copepod: a laboratory-cultured
group that was on the reproductive program, and a field-collected
group from Trondheimsfjord that was on the diapause program.
On close examination, the latter group was discovered to contain
a limited admixture of two additional congeners, also on the
diapause program, which we found had little impact on the
results (see “Methods” and details in the Supplementary Note).
The laboratory culture had been originally isolated from the same
local fjord39. The laboratory-culture experimental groups were
based on the number of days after molting into copepodid stage
CV. Such history was unknown for the field copepodids. The
analysis was tailored to identify gene expression differences that
could be linked to the diapause program with the goal of
excluding culture vs. field effects, or differences related to
maturation within the molt-cycle.

To reliably separate stage CV individuals by the program
without a priori knowledge, we employed three strategies to
identify distinguishing gene expression patterns embedded in the
data (Fig. 1). The first strategy applied a dimensionality-reduction
algorithm, the t-Distributed Stochastic Neighbor Embedding
technique (t-SNE) to cluster samples agnostically by similarity in
gene expression patterns (Fig. 1)40,41. The second strategy focused
on the identification of differentially expressed genes (DEGs)
followed by downstream correlation network analysis and
examination of predicted gene function (strategy 2a)32,42,43. The
third approach was focused on functional analysis of expression
differences and comparison with expected physiological and
transcriptional differences (strategies 2b, 3)23,35,36,44–48. This
targeted strategy builds computational filters to generate sets of
genes based on relevant biological processes and gene ontology
(GO) terms that reliably separate samples by the developmental
program. The goal of the analysis was to design filters that
identified processes that were independent of or minimally
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affected by the environment (culture vs field) and/or time (early
vs. late).

Results and discussion
Transcriptional phenotypes and analysis of differentially
expressed genes. Transcriptional phenotypic similarities among
samples were assessed by applying the t-SNE algorithm to the C.
finmarchicus expression data (see “Methods”). The t-SNE algo-
rithm, widely used to distinguish among cell types within a single
tissue, can identify homogeneous transcriptional phenotypic
groups without a priori knowledge of “origin” or “treatment”49,50.
It considers all transcripts simultaneously, grouping like pheno-
types together, while excluding non-similar ones. The 16 samples
aggregated into three separate clusters (Fig. 2). All field samples
(diapause program), early (EF), and late (LF), belonged to the
same transcriptional phenotype (i.e., in a single cluster), while the
early (EC) and late (LC) culture samples (reproductive program)
separated into distinct phenotypes.

Maturation during the CV stage for individuals on the
reproductive program involves large changes in expression as
reported previously38. The LC individuals were approaching the
final molt, while the EC individuals were only about ¼ of the way
through the ~2-week molt cycle (see “Methods”). The difference
between early and late culture could not be attributed to
“environmental” factors, since culture conditions remained
constant during the experiment, nor could they be attributed to
differences in the program since none of the cultured copepods
entered diapause. In contrast, the field-collected individuals
clustered together, despite the two-week separation between
sampling points. The samples presumably derived from the same
population in the fjord and represent different stages in progress
within the diapause program. Asynchrony within the field
population might have partially obscured any temporal changes
in expression. However, because diapause involves the develop-
mental arrest and a lengthening of life span, the similarity in
expression patterns between early and late fields may well be
intrinsic to CVs on the diapause program.

Fig. 1 Diagram of workflow. Three different strategies used to assess the physiological ecology of copepods in the different samples are laid out using
circled numbers. Initial steps included downloading of RNA-Seq data, removal of low-quality reads and sequence trimming followed by mapping against the
Gulf of Maine Calanus finmarchicus annotated reference transcriptome (96 K transcripts) using Bowtie2. The mapped count data were normalized and log-
transformed before dimensionality reduction by t-SNE and identification of clusters using DBSCAN (strategy 1). For differential gene expression
analysis (DEGs), the mapped count data were entered into EdgeR for statistical testing using a generalized linear model (GLM) (strategy 2). The
downstream analysis involved weighted correlation network analysis (WGCNA) on the log-transformed expression of the DEGs (sub-strategy 2a).
SwissProt-based annotations for the DEGs were retrieved from the reference transcriptome and distribution of DEG function was visualized using ReviGO
(sub-strategy 2b). DEGs from the GLM analysis and WGCNA modules were assessed for enriched processes (TopGO). Enrichment results in combination
with expected differences in physiology were used to generate GO filters and retrieve log-transformed relative expression of all genes in the reference
annotated to a specific filter for additional t-SNE and DBSCAN analyses (strategy 3). Gene expression patterns were visualized as z-scores in heatmaps.
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Differential gene expression and functional analysis. A gen-
eralized linear model (GLM) identified over 11,000 DEGs among
the four treatments (Table 1; strategy 2, Fig. 1). Consistent with
the t-SNE results the smallest number of DEGs were found
between the two sets of field samples, while the largest numbers of
DEGs were between late culture CVs and those collected from the
field (early and late field). The analysis also identified a large
number of DEGs between early and late culture (6908), which is
similar to the number reported previously for this comparison
(“unique comps:” 7470) using a different reference transcriptome
and short-read mapping program38.

A search of the reference transcriptome for functional
annotations returned nearly half of the DEGs with gene ontology
(GO) terms (n= 5509; strategy 2, Fig. 1). The ReviGO
summarization grouped DEGs into nine GO terms (Fig. 3). The
broad categories of ‘development’ (group 1) and ‘lipid metabo-
lism’ (group 2) included four and two GO terms respectively.
Development included GO terms associated with reproduction
(e.g., ‘germ cell development’, ‘developmental process involved in
reproduction’). Enrichment analysis identified two metabolic

processes as over-represented among the DEGs (‘very long-chain
fatty acid metabolic process’ and ‘RNA metabolic process’). These
processes might well be expected to be over-represented between
individuals on reproductive vs diapause programs.

Differences between samples were further analyzed using
correlation network analysis (WGCNA) to group DEGs into
modules with highly correlated expression patterns (strategy 2a,
Fig. 1). WGCNA identified four modules using the 11 K DEGs.
The largest numbers of DEGs were assigned to two modules
(blue > 3500; turquoise > 5000) (Fig. 4A). Expression patterns of
these two modules differentiated between field and culture

Fig. 2 Dimensionality reduction and cluster identification of expression
data from all genes using t-SNE and DBSCAN. Two-dimensional t-SNE
plot of normalized and log-transformed expression profiles from mapped
read data generated by Bowtie2 for the samples from the four groups
(diapause program: EF, LF; reproductive program: EC, LC). The perplexity
parameter was set to 5, and 50,000 iterations of the t-SNE algorithm were
run. The DBSCAN algorithm was followed by the calculation of the Dunn
index to determine the optimal grouping of points into clusters (enclosed in
black ovals). Samples are coded by fill (open: early [E]; filled: late [L]) and
by symbol and color (blue squares: field [F]; red circles: culture [C]).

Table 1 Statistical comparison of gene expression across four groups of stage CV Calanus that differed by source (field/diapause
program vs. culture/reproductive program) and time point (early vs. late).

Statistical test Comparison DEGs Upregulated Downregulated

Generalized linear model 11,503
Pairwise likelihood ratio test EF vs LF 1739 982 757
EF vs EC 7197 3926 3271
EF vs LC 10,077 3090 6987
LF vs EC 7675 3960 3715
LF vs LC 9939 5056 4883
EC vs LC 6908 3090 3818

Summary of the number of differentially expressed genes (DEGs). DEGs were identified using a generalized linear model followed by downstream pairwise likelihood ratio tests (significant for p-value≤
0.05; p-value adjusted with the Benjamini–Hochberg procedure to control for false discovery rate [FDR]). Field-collected: EF (early field), LF (late field). Culture: EC (early culture), LC (late culture).

Fig. 3 Biological processes represented among the differentially
expressed genes (DEGs). ReviGO two-dimensional representation of all
GO terms represented among the total number of annotated DEGs (n=
5509). The redundancy reduction filter was set to “small” (0.5). Each
“bubble” represents a GO term; bubble color scales by the p-value
determined by EdgeR (color scale, bottom right) and the bubble size
indicates the frequency of the GO term in the underlying gene-ontology
annotation database. Based on the Gene Ontology hierarchical
organization, GO terms with the same GO parent have been circled (black
line) and are indicated as a single number. GO term annotation: (1)
Development/reproduction (‘developmental process involved in
reproduction’ [GO:0003006], ‘reproduction’ [GO:0000003], ‘cellular
developmental process’ [GO:0048869], ‘germ cell development’
[GO:0007281]). (2) Lipid metabolism (‘lipid metabolic process’
[GO:0006629], *‘long-chain fatty acid metabolic process’ [GO:0001676]);
(3) ‘Response to stress’ [GO:0006950]; (4) ‘Signal transduction’
[GO:0007165]; (5) *‘RNA metabolic process’ [GO:0016070]. Asterisks (*)
mark GO terms that were already represented among the DEGs but were
significantly enriched ([GO:0001676] and [GO:0016070]).
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samples, as shown in the box and whiskers plots of module
eigengene expression (Fig. 4B, C, see “Methods”). DEGs in the
blue module were positively correlated with CVs on the diapause
program (warm colors in field, cool colors in culture), while the
DEGs in the turquoise module had the opposite expression
pattern (Fig. 4A). Enrichment analysis of the GO terms
represented among the DEGs identified a single over-
represented process in each module: ‘glycerophospholipid
biosynthetic process’ (GO:0046474) in the blue module and
‘positive regulation of RNA metabolic process’ (GO:0051254) in

the turquoise module. ‘Glycerophospholipid biosynthetic process’
is associated with the formation of glycerophospholipids, which
are constituents of membranes and lipoproteins. It is a ‘child
term’ of ‘lipid metabolic process’ (GO:0006629; bubble 2, Fig. 3).
‘Positive regulation of RNA metabolic process’ is a child term of
‘RNA metabolic process’ (GO:0016070), which was identified as
an enriched process in the overall analysis (bubble 5, Fig. 3). In
summary, this analysis identified only two key biological
processes that drive gene expression differences between
culture/reproduction and field/diapause programs.

Fig. 4 Correlation network analysis (WGCNA) of DEGs showing modules of genes with similar expression patterns. A WGCNA network significance
correlation matrix. Heatmap of correlation of module eigengenes with sample traits (rows correspond to modules [labeled by color] and columns to groups
or individual samples). The first four columns represent the correlation of module eigengenes with each group (diapause program: early field [EF], late field
[LF]; reproductive program: early culture [EC], late culture [LC]). Columns on the right (16) are the correlations of the eigengene expression for each
module with the individual samples. Direction and the strength of correlation are indicated by color with blue showing negative (downregulation) and red
showing positive (upregulation) (color scale on right). Number of genes in the four major modules: blue (n= 3827), yellow (n= 745), brown (n= 1133),
turquoise (n= 5689). A small number of DEGs were placed into the “unassigned” gray module (n= 109). B Box and whiskers plot of the blue module
eigengene expression for each group (n= 4). C Box and whiskers plot of the turquoise module eigengene values for each group (n= 4). The box displays
the median and interquartile range, while the whiskers give the minimum and maximum values for each group.
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Transcriptional analysis of expected physiological differences.
The goal of the third strategy was to analyze differences in
expression by employing a priori knowledge on differences in
developmental, metabolic and regulatory processes described in
insects and expected in copepods23,36,45,46,51. Diapause prepara-
tion includes metabolic changes that lead to fat accumulation in
arthropods and the build-up of wax ester stores in C. finmarch-
icus and other calanid copepods20,23,30,47,52–55. In contrast,
maturing females require energetic resources for provisioning
oocytes17,56. The differential gene expression analysis presented
above broadly supports this, but has provided few details. In
combination with heatmaps of the DEGs, we used gene ontology
(GO) filters to establish transcriptional phenotypes associated
with all genes annotated to specific processes in the reference
transcriptome independent of whether they were differentially
expressed (strategy 3, Figs. 1, 5).

Gonad development and early oogenesis occur during stage CV
in individuals on the reproductive57, but not the diapause
program, a difference that was confirmed by microscopic
examination of cultured and field-collected individuals done
concurrently with the transcriptomics23. In the reference
transcriptome, 584 genes were annotated to oogenesis
(GO:0048477, and its child terms). Dimensionality reduction by
t-SNE of relative expression of these genes separated the

16 samples into two clusters (Fig. 5A). The late culture
individuals, which were approaching maturity, aggregated into a
distinct cluster. However, there was no substantial separation of
the 12 remaining samples, which were widely distributed within a
single cluster. A heatmap of relative expression of the 178 DEGs
annotated with the oogenesis GO term is consistent with the t-
SNE result: somewhat more than half of the oogenesis genes were
upregulated and the rest downregulated in late culture CV
samples when compared with all other samples (Fig. 6). For the
remaining 12 samples, even if more variable, the expression
pattern of several genes separated the field samples from the early
culture samples. Thus, a general oogenesis filter may prove useful
in the identification of CVs approaching the final molt, but it may
be less successful in separating recently molted CVs on the
reproductive program from those on the diapause program.

Genes involved in lipid metabolism are expected to be
differentially expressed between reproductive- and diapause-
program CV individuals given fat accumulation during diapause
preparation23. Processes linked to lipid metabolism were found to
be enriched among all DEGs, and a child term was enriched in
the blue (diapause-correlated) module of the WGCNA analysis.
To pursue this further, two lipid metabolism filters were applied
to the whole transcriptome: ‘lipid metabolic process’
(GO:0006629 and its child terms) with 717 genes and ‘fatty acid

Fig. 5 t-SNE plots for subsets of transcripts filtered according to membership in different gene ontology (GO) terms and their child terms. Circular
profiles enclose clusters as determined by DBSCAN algorithm. A ‘Oogenesis’ filter [GO:0048477]; B ‘Lipid metabolic process’ filter [GO:0006629];
C ‘Fatty acid biosynthesis’ filter [GO:0006633]; D ‘RNA metabolic process’ filter [GO:016070]. Only the ‘RNA metabolic process’ filter divided the
samples into separate field and culture transcriptional phenotypes. Symbol coding: field samples [F]: squares; culture samples [C]: circles; early samples
[E]: open symbols; late samples [L]: closed symbols. All panels: perplexity= 5; number of iterations= 50,000 identified using DBSCAN with MinPts= 3
and the Eps value that maximized the Dunn index.
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biosynthetic process’ (GO:0006633 and its child terms) with 70
genes. A t-SNE analysis that included all genes annotated to the
first of these separated the 16 samples into three clusters (Fig. 5B)
that were qualitatively similar to the t-SNE analysis that included
all genes (Fig. 2). The culture samples segregated into an early
and a late group suggesting that maturation during the CV stage
includes regulation of lipid metabolism.

The more specific filter of ‘fatty acid biosynthesis’ separated the
samples into four clusters, with the early and late field samples
placed into distinct transcriptional phenotypes (Fig. 5C). Such a

pattern could be explained by the regulation of fatty acid
metabolism along the CV’s progression towards diapause in the
field, and/or it could reflect responses to environmental
differences between the two sampling times. Thus, a limitation
of a GO filter associated with lipid metabolism is that expression
differences may occur in response to environmental factors such
as food quantity and quality, as reported in another diapausing
calanid, Neocalanus flemingeri40,42. Nevertheless, the 23 DEGs
annotated to ‘fatty acid biosynthesis process’ (GO:0006633) show
a general upregulation of genes associated with lipid synthesis in

Fig. 6 Expression heatmap showing z-scores of DEGs involved in oogenesis. Differentially expressed genes between field/diapause program and culture/
reproductive program and early and late CV copepodids annotated with the ‘oogenesis’ [GO:0048477] GO term and its child terms (n= 178). Color-
coding for each gene indicates the magnitude of expression as z-scores of each individual sample. Relative expression of each sample is given in a separate
column (ordered by group) as labeled at the top. Genes (rows) were ordered by hierarchical clustering.

Fig. 7 Expression heatmap showing z-scores of DEGs involved in fatty acid biosynthesis. Differentially expressed genes between field/diapause program
and culture/reproductive program and early and late CV copepodids annotated with the GO term ‘fatty acid biosynthetic process’[GO:0006633] or its
child terms (n= 23). Color-coding for each gene indicates the magnitude of expression as z-scores of each individual sample. Relative expression of each
sample is given in a separate column (ordered by group) as labeled at the top. Genes (rows) were ordered by hierarchical clustering.
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field-collected individuals in comparison with cultured indivi-
duals (Fig. 7). However, the expression pattern was quite variable
among individual samples. Consistent with diapause preparation
in field CVs, we observed the upregulation of enzymes involved in
wax ester biosynthesis (two diacylglycerol O-acyltransferases 1 and
two fatty acyl-CoA reductases), a process directly related to lipid
accumulation.

Downregulation of genes involved in RNA and DNA
metabolism during diapause has been demonstrated in insects,
copepods, and other arthropods32,36,58. While the environmental
triggers of diapause in calanid copepods remain unknown, in
insects the developmental program can be pre-set by varying day
length. This allowed Poelchau and colleagues to compare gene
expression in non-diapause (“ND”) with diapause-bound (“D”)
individuals in the mosquito Aedes albopictus during
embryogenesis35. Downregulation of genes involved in metabo-
lism, energy production, and protein synthesis, including a child
term of ‘RNA metabolic process’ was already apparent during
pre-diapause. A similar pattern was observed in C. finmarchicus.
Genes involved in ‘RNA metabolic process’ were downregulated
in field CV individuals and this process was enriched among the
DEGs (Figs. 3, 4, see turquoise module).

Application of a general filter for ‘RNA metabolic process’
(GO:0016070 and child terms, n= 1064) followed by t-SNE
separated the 16 samples into two clusters consisting of either
culture or field samples (Fig. 5D). This filter did not show
differences in gene expression associated with maturation in CVs
on the reproductive program (i.e., clustering both EC and LC
together). The pattern in the heatmap of 335 DEGS is consistent
with the t-SNE analysis and clearly separated the field from the
culture samples, in spite of individual variability among replicate
samples (Fig. 8). Most of these DEGs showed low expression in
diapause-bound (field) individuals and substantially higher
expression in culture individuals. Among the DEGs are several
genes encoding proteins involved in RNA processing such as pre-
mRNA splicing factors, spliceosomes, and mRNA decay activators
(Fig. 8). This signal was more pronounced and pervasive in C.
finmarchicus than in the mosquito35. While it is possible that

environmental factors contributed to this separation of culture
and field individuals, neither ‘RNA metabolic process’ nor any of
its child terms were identified as enriched among the differen-
tially expressed genes reported in diapause-bound N. flemingeri
collected from locations with order of magnitude differences in
food resources42.

Another approach to identify calanids on the diapause
program has been to explore potential biomarker genes by
selecting a set of genes a priori based on comparisons between
presumably active or dormant field-collected individuals. Such
comparisons exist for C. finmarchicus and Calanus sinicus with
samples collected from different depths and profiling relative gene
expression using a variety of molecular methods59–61. Differen-
tially expressed genes from these studies were then cross-
referenced to genes regulated just prior to diapause in insects,
Artemia and/or Caenorhabditis elegans35,62–65. Using this
approach, we identified 14 potential candidates for biomarker
genes (Fig. 9A, B, Supplementary Table S1). These genes did not
include any annotated to GO terms used in the previous filters.
Based on our analysis, seven genes were differentially expressed
(three serpins [out of 4], two nitric oxide synthases [out of eight],
one phosphoenolpyruvate carboxylase kinase [out of 1], one RAS-
related protein Rab-10 [out of 1]), and relative expression of these
genes differed between field and culture as shown in the heatmap
(Fig. 9B). However, a t-SNE analysis of the relative expression of
these 14 genes failed to separate the samples into cohesive field
and culture clusters, but rather generated three clusters, similar to
the pattern generated in the initial analysis that included all genes
(Fig. 9A).

Workflow to separate CVs by program using RNA-Seq of
individuals. While we focused on a set of 16 pooled RNA-Seq
samples from four known treatment groups, the goal was to
develop a protocol to determine which and how many CVs are on
the diapause program in a natural population. Gene expression
profiles generated for individual CVs collected from the envir-
onment could be assessed for the developmental program by

Fig. 8 Expression heatmap showing z-scores of DEGs involved in RNA metabolism. Differentially expressed genes between field/diapause program and
culture/reproductive program and early and late CV copepodids annotated with the GO term ‘RNA metabolic process’ [GO: 0016070] or its child terms
(n= 335). Color-coding for each gene indicates the magnitude of expression as z-scores of each individual sample. Relative expression of each sample is
given in a separate column (ordered by group) as labeled at the top. Genes (rows) were ordered by hierarchical clustering.
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producing expression profiles for the ca. 1000 genes annotated to
‘RNA metabolic process’ in the reference transcriptomes and
applying t-SNE. We hypothesize that applying t-SNE to these
profiles will separate individuals into two clusters based on
developmental program, which can then be confirmed using

differential gene expression. Individuals can be separated by
cluster membership and tested for expected gene expression
differences between the diapause and reproductive programs.

Another approach is a search for robust indicator genes.
Ecological studies require testing large numbers of individuals

Fig. 9 “Designer” filters with high-responding genes to separate field from culture transcriptional phenotypes. A, B Filter selecting genes based on
evidence for involvement in diapause preparation, as described in the text. C–F Transcripts were selected from DEGs annotated with the GO terms
‘oogenesis’ (GO:0048477), ‘fatty-acid biosynthesis’ (GO:0006633) and ‘RNA metabolic process’ (GO:0016070). C–D Filter selecting transcripts having z-
scores in all culture samples higher than any in the field samples. E–F Filter selecting transcripts having z-scores in all field samples higher than any in the
culture samples. A, C, E t-SNE plots, perplexity= 5; max iterations 50,000; clusters identified by DBSCAN encircled. Key in (C) applies to all t-SNE plots: EF
early field, LF late field, EC early culture, LC late culture; B, D, F ordered heatmaps.
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across time and space, which calls for protocols capable of high-
throughput of samples based on RT-qPCR or nCounter (Nano-
String®) technologies66. These technologies need a smaller set of
indicator genes with a robust signal-to-noise ratio (Fig. 9). We
searched for a set of genes with consistent and large differences in
expression between culture and field samples among the DEGs
annotated to the three GO terms that we tested for differentiating
between programs (oogenesis, GO:0048477, n= 178; fatty-acid
biosynthesis, GO:0006633 n= 23; and RNA metabolic process,
GO: 0016070, n= 335). A transcript was included when all of its
expression z-scores in culture samples were either above or below
all of its values among the field samples (i.e., no overlap in relative
expression). This selection method is clearly shown in the
respective heatmaps for the two filters with all of one color for the
field and the opposite color for the culture samples (Fig. 9D, F).
Genes that were upregulated in culture (i.e., reproductive
program) compared with field included 111 such transcripts
from oogenesis (n= 32) and RNA metabolic process (n= 79),
but none from fatty acid biosynthesis passed this filter (Fig. 9C,
D). Relative expression of these genes was highly variable and did
not separate the CVs by the developmental program as shown by
the single cluster in the t-SNE plot (Fig. 9C).

In contrast, a filter comprising genes that were more highly
expressed in the field (i.e., diapause program) than culture
samples, produced two tight and distinct clusters in t-SNE
(Fig. 9E). The 54 transcripts in this filter included representatives
from all three GO terms: oogenesis (n= 19), RNA metabolic
process (n= 28), and fatty acid biosynthesis (n= 7) as shown in
the heatmap (Fig. 9F; Supplementary Table S2). While it is
premature to speculate on their specific functions with respect to
the diapause program in C. finmarchicus, these genes are good
candidates for further investigation. Two transcripts on this list,
one diacylglycerol O-acyltransferase 1 and one fatty acyl-CoA
reductase are predicted to be involved in wax ester biosynthesis,
while another AMP-activated protein kinase (AMPK) gamma 1 is
involved in the regulation of cellular energy metabolism.

Conclusions
An existing RNA-Seq dataset was analyzed to develop a workflow
for environmental transcriptomics that can classify pre-adult CV
C. finmarchicus individuals by developmental program. Through
a combination of statistical and functional analyses, we propose
two workflows. The first relies on a global gene expression ana-
lysis (RNA-Seq) and involves applying a gene ontology filter
(RNA metabolic process) followed by t-SNE clustering to separate
samples into groups for statistical comparison. The second
workflow employs an indicator strategy for high-throughput gene
expression technologies. A designer filter identified 54 genes that
were consistently upregulated in individuals on the diapause
program compared with those on the reproductive program. The
t-SNE analysis of the relative expression of these genes separated
the samples into two distinct transcriptional phenotypes based on
the developmental program. While these workflows need further
testing in natural populations, they may be broadly applicable to
C. finmarchicus and other diapausing calanid copepods. These
molecular approaches can be used to assess reproductive strate-
gies within an environmental context. Furthermore, the specific
genes and pathways identified in this analysis may be good
candidates for elucidating the physiological processes that dif-
ferentiate the two developmental programs, including determin-
ing when the decision to diapause is made in copepods.

Methods
Calanus finmarchicus reference transcriptome. The study used an existing Gulf
of Maine Calanus finmarchicus transcriptome for mapping the short sequence
reads (NCBI BioProject PRJNA236528)67. Briefly, this reference was assembled

from 100 bp short-sequence reads from six developmental stages and had been
annotated against the SwissProt protein database (www.uniprot.org). Annotation
identified 28,616 transcripts with significant similarity to known proteins (E-value
cutoff= 10−3) and 10,334 transcripts with significant GO annotations (E-value
cut-off= 10−6; http://geneontology.org/)67–69. The reference with 96 K transcripts
had no contamination from other Calanus species and was characterized by very
low ambiguous mapping (<1% ‘mapped more than once’ by Bowtie2)68.

RNA-Seq data description, retrieval, and pre-processing. Short-read sequences
for 16 samples were downloaded from the short-sequence read archive (SRA) in
the National Center for Biotechnology Information (NCBI) database (Table S1,
Supplementary Note; Illumina HiSeq2000, 50 bp, paired-end with ≥30M spots per
sample, (BioProject: PRJNA 231164)38. For each sample, RNA had been extracted
from pools of stage CV individuals (5–7)38. The dataset included four replicate
samples for each of the two time-points in both the laboratory-cultured population
and the field-collected wild population23,38. The experimental design and number
of replicates provided the necessary statistical power for this analysis, which
focused on distinguishing between two developmental programs. Additional details
on the experiments can be found in previous studies23,38 and in the biosample
descriptions in the NCBI database. Previous analysis of the data focused on
characterizing transcriptional changes associated with maturation in stage CV
copepodids on the reproductive program38. In a second study, differences in the
developmental program were sought by analyzing pathways associated with lipid
metabolism for temporal changes in gene expression of biomarkers in culture and
field CVs using RT-qPCR. While differences in relative expression were noted, this
analysis was not detailed enough to discriminate between “within stage matura-
tion” and developmental program23. Neither study included an analysis of the
high-throughput sequencing of the field samples, which is the central approach
used in the current study.

Briefly, the laboratory-cultured samples consisted of recently molted (≤24 h)
stage CV copepodids that had been isolated and incubated separately until
harvested at three (early culture, “EC”) and 10 days (late culture, “LC”) post-molt.
The time points represented early and late stages in the molt cycle, which under the
experimental conditions had a median duration of 13.5 days38. During the
incubation, copepods were maintained on the standard culture diet38,39.
Microscopic examination of other individuals from each experimental set of CVs
confirmed the presence of early development of gonads at both three and 10 days
post-molt. At three days post-molt, all individuals were in the pre-apolysis jaw
phase, and by days 9 through 11, 45% had matured into post-apolysis jaw phases
consistent with progression toward the terminal molt.

The diapause-program copepodids had been collected from the field at Trollet
Station in Trondheimsfjord (63°29′N, 10°18′E) with a zooplankton net towed
vertically from 50 to 0 m on 28 May 2013 (early field, “EF”) and 14 days later on 10
June 2013 (late field, “LF)23. Microscopic examination of CVs revealed that,
consistent with pre-diapause, all had undifferentiated gonads and were in the pre-
apolysis jaw phase23. The juvenile copepods were not sorted according to sex, and
presumptive males and females were included in laboratory and field samples.
Although the field samples were originally thought to contain only C. finmarchicus
CVs, recent studies reported that C. glacialis and C. helgolandicus can co-occur
with C. finmarchicus in the region including Trondsheimfjord70–72. The three
congeners are morphologically very similar and can only be identified reliably to
species using genetic tools (Choquet et al.71). We confirmed the presence of the
congeners in the field samples using a molecular approach (see below,
Supplementary Note).

In Trondsheimfjord, C. glacialis and C. helgolandicus are on the same diapause-
bound program as is C. finmarchicus73, and thus are not expected to diverge greatly
in their transcriptional phenotypes. Nevertheless, we examined the possibility of
bias impacting the analysis due to species composition differences between field
and culture samples. We concluded that there was no significant bias, and the
multi-step analyses that led us to this conclusion are described in detail in the
Supplementary Note.

Briefly, we assessed the species composition of each sample by using species
differences in the mtCOI sequences74 and quantifying reads mapping to each
sequence. Significant contamination was limited to the field samples. Congener
composition of most samples was below 32%, which combined with an estimated
30% cross-mapping efficiency to congeneric references75, indicated a modest 11%
estimate for mean cross-mapping levels (Table S1, Supplementary Note). We then
used publicly available congeneric read sets to identify the most cross-map-prone
transcripts in our C. finmarchicus reference. About half of the transcripts
susceptible to cross-mapping were among the transcripts with significant
expression (>1 count per million reads [cpm]). This proportion was maintained in
most of the analyses we performed in our more targeted transcript selections,
indicating a uniform contribution from cross-mapped sources (Table S2,
Supplementary Note). However, there was some enrichment of cross-mapped
transcripts, so in our last test we compared the t-SNE analyses for each transcript
set with a paired set that excluded all transcripts with cross-mapped reads (Fig. S1,
Supplementary Note). The effects were minimal, and duplicated the transcriptional
phenotype results when the conserved transcripts with some contamination from
cross-mapped reads were included in the set. Thus, the main text refers to samples
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as C. finmarchicus samples, this being the dominant species present and the species
used as the bioinformatic reference.

Mapping of short reads and computation of relative gene expression. After
quality filtering to remove sequences with a Phred score ≤20, short sequence reads
from each sample were mapped against the C. finmarchicus reference tran-
scriptome to generate gene expression profiles (Fig. 1) using Bowtie2 software
(default settings; v.2.1.0)76 (Table S1, Supplementary Note). After the mapping
step, RPKM (reads per kilobase of transcript length per million mapped reads)
were calculated to normalize relative gene expression [i.e., for transcript i from
sample j, RPKM(i,j)= reads(i,j)/[(length(i)/1000)*(mapped_reads(j)/1000000)]77.
We next log2 transformed the relative expression data after adding a pseudocount
of 1 to the RPKM value for each transcript (i.e., log2[RPKM+1]) (Fig. 1). These
log-transformed relative expression data were used in all dimensionality-reduction
analyses and to calculate z-scores for each transcript and sample. Z-scores were
used in heatmaps for expression comparisons across samples.

Dimensionality reduction and identification of transcriptional phenotypes.
The dimensionality reduction method t-distributed Stochastic Neighbor Embed-
ding (t-SNE) was used to visualize variation in gene expression across samples41,78

(Fig. 1, strategy 1). The t-SNE algorithm reduces the high dimensional gene
expression profiles to a two-dimensional representation while seeking to conserve
the local relationships among the samples. We have found t-SNE to be better for
identifying copepod transcriptional phenotypes than other dimensionality-
reduction methods such as principal component analysis (PCA)40. We applied t-
SNE as implemented in the R package Rtsne (Rtsne URL: https://github.com/
jkrijthe/Rtsne)79 to the log-transformed RPKM values for either the entire set of
transcripts (n= 96,090), or for subsets of transcripts filtered for specific GO terms
(see below; Fig. 1, strategy 3). After pre-testing, program parameters were set as
follows: perplexity= 5, maximum number of iterations= 50,000 and the remain-
ing parameters equal to their default values. In addition, the t-SNE algorithm was
run multiple times to ensure that the output was representative (i.e., to ensure that
the phenotypes so identified were robust)40. The results were plotted as a 2-D
scatterplot in the t-SNE coordinates. To provide an objective method of identifying
which samples formed clusters, the density-based clustering algorithm, DBSCAN
(withMinPts= 3) was applied to the t-SNE results (coordinates of points)40,80. The
clustering cut-off (Eps parameter) was chosen to maximize the Dunn index score81.
Both the DBSCAN algorithm and the Dunn index were run in R (dbscan: https://
CRAN.R-project.org/package=dbscan; clusterCrit: https://CRAN.R-project.org/
package=clusterCrit)40,82,83.

Differential gene expression and weighted gene correlation network analysis
(WGCNA). The “mapped reads” file generated by Bowtie2 was used as the input to
the BioConductor package EdgeR to identify differentially expressed genes
(DEGs)84 (Fig. 1, strategy 2). Prior to the statistical analysis, transcripts with very
low expression levels (those failing to have at least 1 cpm in 4 of the 16 samples)
were removed leaving a total of 27,870 transcripts (out of the original 96,060 in the
reference). As implemented by EdgeR, libraries were normalized using the TMM
method (trimmed mean of M values). The negative binomial generalized linear
model (GLM) identified DEGs across samples (glmFit function) with p-values
adjusted for false discovery rate (FDR; Benjamini–Hochberg procedure). The GLM
analysis was followed by pairwise comparisons using the downstream likelihood
ratio test (glmLRT) to identify significant differences in gene expression between
each treatment pair (p-value ≤ 0.05, corrected for FDR).

Patterns of differential gene expression among samples were explored using
weighted gene correlation network analysis (WGCNA), a technique for finding
modules of highly correlated genes across treatments85,86. Downstream analysis of
modules or a representative of the gene expression profiles in each module, such as
the “eigengene”, provides a network-based method for data reduction. The
WGCNA analysis was performed on the log-transformed (log2[RPKM+1]) gene
expression of all DEGs (11 K, Fig. 1, strategy 2). The analysis used an unsigned,
weighted network with a soft threshold power of 14 and minimum module size
(minModuleSize) set to 100. Modules were determined by applying the automatic
block-wise module detection function of the WGCNA package. The module
eigengene, defined as the first principal component of the module gene expression
matrix, gives a weighted average of the module expression profiles and was used to
investigate the relationship between modules and biologically interesting sample
traits. Pearson correlations between module eigengenes and membership in a
specific experimental group were computed. A heatmap was generated to visualize
these correlations by experimental group and for the individual samples to allow
comparison of expression patterns across replicates. We used boxplots to display
the descriptive statistics (median, first (25%) quartile, third (75%) quartile,
minimum and maximum) of module eigengene expression for each experimental
group (EF, LF, EC, and LC). Annotated genes assigned into WGCNA modules
were tested for enriched GO terms (see below).

Functional analysis and filtering of genes using gene ontology. Functional
analysis of the DEGs was based on the C. finmarchicus transcriptome. Briefly,
DEGs were cross-referenced with the annotated transcriptome and nearly half were

found to have GO term annotations. ReviGO software was used to summarize and
visualize in two-dimensional space the biological processes represented among the
DEGs87. The list of GO-annotated DEGs (all) and their p-values were summarized
using a very stringent filter (similarity setting to “small”= 0.5), which substantially
reduced the redundancy intrinsic to the Gene Ontology hierarchy.

Enrichment analysis was performed using TopGO software88 on DEGs with
GO annotations. As implemented by TopGO, a Fisher exact test with a
Benjamini–Hochberg correction (p-values ≤ 0.05 [v. 2.88.0, set to the default
algorithm “weight01”]) was used to compare the DEGs identified for each sample
pair (n= 6) against all transcripts with GO terms in the reference transcriptome67.

Based on the enrichment results (strategy 2, Fig. 1) and pre-determined
functional hypotheses (strategy 3), several GO filters were applied to workflow
strategies 2 and 3 (Fig. 1). Specifically, the AmigGO software GO Online SQL
Environment (GOOSE)(October, 2019: http://amigo2.berkeleybop.org/goose/cgi-
bin/goose) was used to search descendants of target GO terms to obtain all
transcripts annotated to a specific process. For this, the LEAD SQLwiki on the
AmiGO Labs prototype page, using the example called “find descendants of the
node ‘nucleus’ was edited to replace ‘nucleus’ with the specific GO term to be used
for the filter. The annotated reference transcriptome was then used to retrieve all
transcripts within each functional category defined by specific GO terms and their
child terms. In addition, GO lists were searched for DEGs, and heatmaps were
generated using z-scores (see above) and the software package heatmaply in R,
which clusters genes by expression similarity (heatmaply: https://github.com/
talgalili/heatmaply/)89.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-Seq data analyzed in this study are available on the National Center for
Biotechnology Information (NCBI) database under the BioProject PRJNA 231164. The
files generated in this study with relative expression per contig (counts, RPKM,
log2[RPKM+1] and z-scores) are available in DryAd90.
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