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Risk aversion, the value of information and traffic equilibrium∗

André de Palma† Robin Lindsey‡ Nathalie Picard§

December 13, 2008

Abstract

Information about traffic conditions has traditionally been conveyed to drivers by radio and variable message

signs, and more recently via the Internet and Advanced Traveler Information Systems. This has spurred research

on how travelers respond to information, how much they are willing to pay for it and how much they are likely

to benefit from it collectively. In this paper we analyze the decisions of drivers whether to acquire information

and which route to take on a simple congested road network. Drivers vary in their degree of risk aversion with

respect to travel time. Four information regimes are considered: No information, Free information which is

publicly available at no cost, Costly information which is publicly available for a fee, and Private information

which is available free to a single individual. Private information is shown to be individually more valuable

than either Free or Costly information, while the benefits from Free and Costly information cannot be ranked

in general. Free or Costly information can decrease the expected utility of drivers who are very risk-averse,

and with sufficient risk aversion in the population the aggregate compensating variation for information can be

negative.

Introduction

For decades information about driving conditions and traffic delays has been provided to drivers by radio, TV

and variable message signs. It has also long been recognized that the relation between individual and aggregate

drivers’ behaviour depends on the specification of information availability (see the seminal paper of Mahmassani et

al., 1986). More recently, information has become available via telephone information systems, Advanced Traveler

Information Systems (ATIS) and the Internet. The advent of modern communications technology has spurred

research on how travelers respond to information, how much they are willing to pay for it and how much they

are likely to benefit from it individually and collectively. Because information affects individual travel decisions,

individual travel decisions collectively affect travel conditions, and travel conditions determine what information

should be conveyed, a complex and recursive set of interdependencies exists.

Due to these complexities much of the research on ATIS has considered simple road networks and focused on

just one or two dimensions of travel behaviour. Furthermore, it is usually assumed that travelers seek to minimize

their expected travel costs. In a context where route choice is a decision variable this implies that travelers choose
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is gratefully acknowledged.
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a route with the lowest expected travel time. But it is unrealistic to assume that expected travel time is the only

criterion for route choice (Jackson and Jucker, 1981; Abdel-Aty et al., 1997), and a number of recent studies (e.g.,

Bates et al, 2001; Lam and Small, 2001; Brownstone and Small, 2005; Small et al., 2005; de Palma and Picard, 2005)

provide convincing empirical evidence that travelers dislike not only travel time but also uncertainty about travel

time. de Palma and Picard (2006) incorporate travel time uncertainty into the analysis of information systems

with endogenous route choice by assuming that travelers are risk averse and seek to maximize their expected utility

where utility is a decreasing and concave function of travel time. However, these authors do not analyze the

decisions of drivers whether to acquire information or the welfare impacts of information as a function of its cost.

This paper builds on de Palma and Picard (2006) by assuming that information is costly and considering the

decisions of drivers whether to purchase it. The paper therefore spans the literature on demand for information

with endogenous route choice with risk-neutral drivers (e.g., Yang, 1998; Lo et al., 1999; Lo and Szeto, 2002) and

the literature that adopts a utility-theoretic approach with risk-averse drivers but does not analyze demand for

information (e.g., Mirchandani and Soroush, 1987; Kobayashi, 1994; Tatineni et al., 1997; Yin and Ieda, 2001a,b;

Chen et al., 2002; Yin et al., 2004). In our model, individuals have a choice between a “safe” route, and a “risky”

route with a travel time that fluctuates from day to day according to a known probability and according to known

road performance functions. Individuals are risk averse and weigh average travel time and variability of travel time

when choosing a route. Individuals differ in their degrees of risk aversion so that they trade off expected travel

time and variability of travel time at different rates. By combining costly information and risk aversion, the paper

takes an important step towards a realistic analysis of the developing market for driver information systems that

may ultimately provide significant benefits to drivers in terms of quicker and more predictable trips. Heterogeneity

in risk aversion effectively plays an analogous role to heterogeneity in value of travel time which is an important

determinant of travel decisions such as mode choice and whether to use toll lanes. In the model, risk aversion

governs whether individuals prefer the “safe” route or the “risky” route in the absence of information, and how

much they are willing to pay for information about conditions on the “risky” route. By modeling risk aversion the

paper accounts not only for the benefits from ATIS in reducing average travel times but also the benefits (or costs)

to drivers from changes in the variability in travel times.

Four information regimes are considered. In the No information regime drivers do not have day-specific in-

formation and base their route-choice decisions on the unconditional probability distribution of states which they

are assumed to know. The second regime is one of Free information in which all drivers receive free and accurate

information about travel conditions each day. In the third regime of Costly information drivers can purchase the

information. The analysis focuses on how the purchase decision depends on the fee and the individual degree of

risk aversion, as well as on how the route-choice decisions of informed drivers affect the expected utilities of drivers

who do not purchase information. The final information regime is one of Private information in which information

is available free to a single individual.

Three results stand out. One is that an individual driver always benefits more from Private information

than from Free information or Costly information. The second – and less obvious – finding is that both Free

information and Costly information leave sufficiently risk-averse drivers worse off even though individually they

may be willing to pay for the information. Third, if there are enough highly risk-averse drivers in the population

the aggregate compensating variation for information may be negative. All three results derive from the fact that,

while information helps drivers to make better decisions individually (and never worse decisions), their collective

response to information can exacerbate the distribution and variability of congestion delay on the network, and

may even leave drivers collectively worse off.

In summary the analysis is based on a stochastic network deterministic user equilibrium (SN-DUE) model in
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which road network capacity is stochastic and users do not have idiosyncratic perception errors. Route-choice

behaviour is based on expected utility theory. The model is static in the sense that users know the probability

distribution of states conditional on the information regime so that learning does not take place. Finally, the ATIS

provides perfect rather than imperfect information. Although this framework is restrictive it permits the derivation

of analytical results that have an intuitive appeal and should help to promote understanding of more complicated

simulation, experimental and empirical studies of ATIS.

The paper is organized as follows. Section 2 lays out the model and explains the measurement of welfare

change using compensating variation. As a benchmark, Section 3 analyzes the equilibria and welfare properties

of the information regimes when drivers are risk-neutral. Section 4 derives equilibria for the No information

and Free information regimes when drivers are risk averse, and analyzes the positive and normative impacts of

Free information. Section 5 – which constitutes the heart of the paper – conducts a parallel analysis for Costly

information. Section 6 considers Private information and compares its benefits with the benefits of Free information

and Costly information. Section 7 presents a numerical example that illustrates the theoretical results and conveys

a sense of the magnitude of the welfare impacts. Section 8 concludes.

1 The model

This section presents the model which is based on de Palma and Picard (2006). It defines the information regimes

and explains the measurement of welfare change. Notation is modified and simplified where feasible to streamline

extensions in later sections.

1.1 Assumptions

A continuum of drivers with mass N travels from a common origin to a common destination. N is fixed and

exogenous. Each driver has to choose between a safe route, S, with a deterministic and known travel time, tS , and

a risky route, R, with a stochastic travel time, TR, which depends on the state. There are two states: a good state

denoted “−” with a travel time t−R, and a bad state denoted “+” with a larger travel time t
+
R > t−R. For brevity

the two states will hereafter be called Good days and Bad days. The probability of a Bad day is p ∈ (0,1) which
is assumed fixed and exogenous. Thus:

P
¡
TR = t+R

¢
= p, and P

¡
TR = t−R

¢
= 1− p.

There is congestion on route S, as well as on route R on Bad days, in the sense that travel time on route j increases

with the number, Nj , of users who choose route j, j = R,S. However, there is no congestion on route R on Good

days: t−R is constant. To formalize:

Assumption 1 Travel time tS(NS) is continuous and strictly increasing in NS. On Good days travel time on

route R is a constant t−R. On Bad days, travel time on route R is a continuous and strictly increasing function

t+R(NR) of NR.

Therefore, t+R(0) represents free-flow travel time on route R on bad days. Three further assumptions are made

about travel times. First, on Good days route R is faster than S even with NS = 0. Second, on Bad days travel

time on R is always longer than on Good days even with NR = 0. Finally, if all drivers choose one route on a Bad

day then it is slower than the other (unused) route. Therefore:
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Assumption 2 t−R < tS(0) < t+R(N) and t−R < t+R(0) < tS(N).

No assumption is made about the relative magnitudes of tS(0) and t+R(0) or t
+
R(N) and tS(N).

Assumptions 1 and 2 are illustrated in Figure 1. The number of drivers taking route R, NR, is measured in

the usual way to the right from the left-hand vertical axis, while the number taking route S, NS , is measured to

the left from the right-hand axis. Travel times are measured on the vertical axes. Functions t+R(NR) and tS(NS)

intersect where NR > 0 and NS > 0, and lie wholly above the horizontal line at t−R.

Figure 1 about here

Drivers’ preferences are specified in:

Assumption 3 Drivers’ preferences are represented by a differentiable utility function U (t; θ) where θ ≥ 0 is the
risk aversion parameter. For θ = 0, U (t; 0) = − (a+ t), where a ≥ 0. For θ > 0 and t > 0, U (t; θ) is strictly

decreasing and strictly concave in t. Writing U (t; θ) as U (u; θ) where u = U (t; θ), for θ > 0: (a) ∂U (t; θ) /∂θ is

a strictly concave function of u and (b) Lim
θ→∞

U (t2; θ) /U (t1; θ) =∞, for t2 > t1 > 0.

Property (a) in the last sentence of Assumption 3 is used to prove Lemma 1 below. Property (b) is a technical

condition. It formalizes the idea that additional travel time is disproportionately costly for an “infinitely” risk-

averse individual. It is straightforward to check (see Appendix 1) that Assumption 3 is satisfied for Hyperbolic

Absolute Risk Aversion (HARA) preferences which include Constant Relative Risk Aversion (CRRA) preferences

and Constant Absolute Risk Aversion (CARA) preferences as special cases. For HARA the utility function is

U (t; θ) = − (a+t)
1+θ

1+θ , a ≥ 0, for CRRA it is U (t; θ) = − t1+θ

1+θ , and for CARA it is U (t; θ) = 1−exp(tθ)
θ . CARA

preferences will be adopted in the numerical example of Section 6.

Expected utility on a route is EU (T ; θ) = pU (T+; θ) + (1− p)U (T−; θ), where T+ denotes travel time on the

route on Bad days, and T− denotes travel time on Good days. The distribution of θ in the population is described

in:

Assumption 4 The risk aversion parameter θ has a continuous distribution over an interval I, with either I =
R+ or I =

h
0; θM

i
⊂ R+ for θM ∈ [0,∞). The distribution is characterized by the strictly increasing CDF

F (θ) ∈ [0; 1] , ∀ θ ∈ I, and by the density f (θ) > 0, ∀ θ in the interior of I. If the distribution is bounded then
EU

³
TR (N) ; θ

M
´
< U

³
tS (0) ; θ

M
´
.

The last sentence of Assumption 4 implies that either expected travel time is larger on R when all drivers select

R, or θM is sufficiently large. This assumption is necessary for an interior equilibrium to exist. Otherwise, all the

users would select R when the state is unknown. No similar assumption is necessary when θ is distributed over R+

since the assumption t+R(N) > tS(0) guarantees that a sufficiently risk-averse driver prefers route S to route R.

Before turning to the information regimes some justification for the assumptions is in order. As noted in the

introduction, restrictive assumptions are required for the model to be analytically tractable and the assumptions

chosen allow us to concentrate on the effects of drivers’ aversion to travel time variability. The assumption that

the number of users, N, is fixed means that travel demand is deterministic and price inelastic. This is a common

assumption in the literature on ATIS and it is reasonable in settings where travelers have few alternatives to

driving. Some other studies (e.g., Emmerink et al., 1996; Zhang and Verhoef, 2006) adopt models with elastic

travel demand while treating route and other choices as fixed.
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Stochasticity is manifest in the model only on route R. On Good days travel time on route R is constant, and

on Bad days there is congestion and travel time is higher. Route R can be thought of as a multilane freeway that,

under ideal conditions (Good days), has adequate capacity to handle all traffic (N users) at free-flow speeds. But

when conditions are impaired (Bad days), capacity is reduced and congestion develops. (According to Assumption

2, free-flow travel time is also higher than on Good days.) Non-ideal conditions can arise for various reasons:

bad weather that makes the surface slippery, reduces visibility or requires snow plowing; natural disasters such

as rock slides; accidents or disabled vehicles that block one or more lanes; unscheduled road maintenance and so

on. The probability of Bad days is treated as exogenous. This is reasonable for acts of nature, but problematic

for accidents and other anthropogenic causes. Nevertheless, most existing ATIS studies treat state probabilities as

exogenous. Moreover, empirical studies of the relationship between the frequency of accidents and traffic volumes

have produced mixed results. The additional assumption that drivers know the probabilities allows us to focus on

risk rather than uncertainty. If the probabilities were unknown, learning would take place, and this would make

the problem far more complex (see Chancelier et al., 2007).

The assumption that travel time on route S is deterministic also deserves comment. One possibility is that route

S is equipped with emergency or breakdown lanes that can accommodate disabled vehicles and vehicles involved in

accidents without reducing throughput. The assumption may also be reasonable if route S is located in a corridor

that is not susceptible to landslides, fog and other forces that cause Bad days on route R.

Assumption 3 stipulates that drivers’ preferences are defined in terms of utilities rather than costs and that

drivers choose the route with the higher expected utility. Although expected utility theory is now being challenged

in the field of transportation (e.g. Avineri and Prashker, 2004, 2005; see also de Palma et al., 2008), it is still

the most common paradigm. Note, however, that the model developed here (based on a binary distribution of

travel time) trivially extends to the most common deviations to expected utility: probability weighting, prospect

theory and cumulative prospect theory. Introducing expected and non expected utility in Random Utility Models

and other Discrete Choice Models remains an open and challenging topic (see de Palma et al., 2008). Note that

expected utility maximization includes expected travel cost minimization as a special case that is analyzed as a

benchmark in Section 3.

1.2 Information regimes

Four information regimes will be considered that differ according to drivers’ knowledge of the state when they

choose a route:

No information (Z ): drivers know the probability p, but not the actual state.

Free information (F ): all drivers are informed about the state at no cost.

Costly information (C ): any driver can learn the state at a cost π.

Private information (I ): a single driver learns the state at no cost.

It is assumed that for each information regime, all drivers know the probability distribution of travel times

on the two routes conditional on the information regime and whether they are personally informed. (It is not

necessary for drivers to know the distribution of risk attitudes in the population or for them to predict what route

each individual driver will choose. All they need to know is aggregate usage on each route in each state.) With

Private information the equilibrium is the same as with No information since, with a continuum of drivers, the

route choice of one driver does not affect traffic conditions.

In the case of Costly information it is assumed that the price of information is equivalent to an increase in

travel time, with the value of time (VOT) normalized to unity and hence independent of θ. Expected utility can
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then be written EU (T + π; θ). This specification incorporates two underlying assumptions. One is that VOT is

independent of the duration of a trip and the same for uncongested and congested travel time. The second is

that individuals have the same risk attitudes towards travel time and monetary cost. There is little empirical

evidence on which to judge the validity of this second assumption. Aversion to travel time uncertainty is now well

documented in the literature. In general people also dislike uncertainty about payment even when the amount

at stake is small. However, a majority of drivers are favorably disposed towards High Occupancy Toll (HOT)

lane facilities in the U.S. where tolls vary dynamically in near real-time to maintain free-flow conditions. Users of

the toll lanes therefore purchase a (nearly) risk-free travel time in exchange for an uncertain price. This type of

opportunity is not available on other tolled facilities or in the model used here, and driver attitudes may differ.

Denote usage of the two routes on Good days by N−R and N−S , and on Bad days by N
+
R and N

+
S . For all regimes

except Free information the division of traffic between routes is characterized by:

Proposition 1 On Bad days, in the No information, Costly information and Private information regimes, traffic
N+
R on R is such that t+R

¡
N+
R

¢
> tS

¡
N+
S

¢
.

Proof. Assumptions 1 and 2 imply that route R is preferred by all users to route S on Good days even if everyone
takes R. If R were also preferred to S on Bad days, then R would be preferred to S whatever the state. But this

implies N+
R = N and t+R (N) ≤ tS (0), which contradicts Assumption 2.

Depending on their preferences and on π, in the Costly information regime drivers choose between three

strategies:

• Strategy R (nR drivers): Do not pay for information and choose route R in both states.

• Strategy S (nS drivers): Do not pay for information and choose route S in both states.

• Strategy I (nI drivers): Pay for information. Given Assumption 2 and Proposition 1, the best choice when

informed is route R on Good days and route S on Bad days.

The following conservation laws apply: nR + nS + nI = N+
R +N+

S = N−R +N−S = N.

Traffic Nq
j on route j when the state is q is therefore as given in Table 1:

Route j \ State q Bad days (q = “ + ”) Good days (q = “− ”)
j = R N+

R = nR N−R = nR + nI = N − nS

j = S N+
S = nS + nI = N − nR N−S = nS

Table 1: Route split in Costly information regime

The strategies, the numbers of drivers choosing each strategy, their route choices and expected utilities in the

four information regimes are summarized in Table 2. Note that Strategies R and S are equivalent to a route choice

in both states. With Strategy I, drivers select route R on Good days and route S on Bad days. (With Free

information all drivers are informed at no cost. Since, however, nF+R drivers take route R on Bad days they can

be thought of as choosing Strategy R and ignoring the state.)

6



Strategy
Numbers

of drivers

Bad

days

Good

days
Expected utility

No information

R nZR R R pU
¡
t+R
¡
nZR
¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢
S nZS S S U

¡
tS
¡
nZS
¢
; θ
¢

Free information

R nF+R = N+
R R R pU

¡
t+R
¡
nF+R

¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢
I nF+I = N+

S S R pU
¡
tS
¡
nF+I

¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢
Costly information

R nCR R R pU
¡
t+R
¡
nCR
¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢
S nCS S S pU

¡
tS
¡
nCS + nCI

¢
; θ
¢
+ (1− p)U

¡
tS
¡
nCS
¢
; θ
¢

I nCI S R pU
¡
tS
¡
nCS + nCI

¢
+ π; θ

¢
+ (1− p)U

¡
t−R + π; θ

¢
Private information

R nZR R R pU
¡
t+R
¡
nZR
¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢
S nZS S S U

¡
tS
¡
nZS
¢
; θ
¢

I Single driver S R pU
¡
tS
¡
nZS
¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢
Table 2: Strategies, numbers of drivers, route choices and expected utilities

1.3 Measuring welfare change

Willingness to pay is measured in economics using compensating variation and equivalent variation (see Varian

1992, Chapter 10). The compensating variation (CV) is defined to be the amount an individual is willing to pay

for a change to take place, whereas equivalent variation (EV) is defined to be the amount an individual requires in

order to be as well off as if a change takes place. Compensating variation will be adopted here since it is assumed

when assessing the Free, Costly and Private information regimes that information is actually provided so that

the change does take place. CV will be measured in time units in the same way that the cost of information is

measured; thus it corresponds to the additional certain travel time that a driver is willing to incur for information.

Since the value of time (VOT) is assumed to be constant, if desired CV can be translated into monetary units by

multiplying the CV by the VOT.

Definition 1 The individual compensating variation for information regime r, CV r (θ), r ∈ {F,C, I}, corresponds
to the additional time an individual with utility U (.; θ) is willing to incur for a shift to regime r from the No

information regime. CV r (θ) is defined implicitly by the condition EUr (T + CV r (θ) ; θ) = EUZ (T ; θ).

(Note that the corresponding definition for EV is EUr (T ; θ) = EUZ (T −EV r (θ) ; θ) which does not yield the

same value as CV unless U (.; θ) is linear; i.e. the individual is risk-neutral.) The CV for information depends, a

priori, on who receives it, and the CVs for Free, Costly and Private information all differ in general. Naturally,

proprietary information is never unfavorable to an individual. But when other individuals also have access to

information, they may respond to it in ways that exacerbate the distribution of congestion on the network.

2 Risk-neutral drivers

To develop a preliminary understanding of the model, as well as to provide a benchmark against which to assess

the implications of risk aversion, it is instructive to identify and characterize equilibria for the four information
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regimes when drivers are risk neutral. (Risk neutrality is a limiting case of the model with a compact distribution

of risk aversion with parameter θM in Assumption 4 set to zero.)

2.1 Free information

In the Free information regime all drivers choose route R on Good days and incur a travel cost CF− = t−R.

The equilibrium corresponds to point F−R in Figure 2 with coordinates
¡
nR = N, t−R

¢
, where the subscript R on

F−R indicates that the outcome is realized on Route R. On Bad days, drivers divide themselves between routes

according to Wardrop’s principle so that travel costs are equalized: CF+ = t+R
¡
nF+R

¢
= tS

¡
nF+S

¢
= tS

¡
N − nF+R

¢
.

The corresponding point in Figure 2 is F+R,S where the subscript R,S indicates that the outcome is realized on

both routes. Expected travel costs are ECF = (1− p)CF− + pCF+ = (1− p) t−R + pt+R
¡
nF+R

¢
.

Figure 2 about here

2.2 No information and Private information

If drivers do not know the state then they do not know actual travel costs on each route. However, if drivers are risk

neutral, they are only concerned with expected travel cost, and they prefer the route with lower expected travel cost.

Following Emmerink (1998) it is assumed that Wardrop’s principle applies in terms of expected travel costs; thus,

drivers allocate themselves between routes so that expected travel costs are equal: ECZ = (1− p) t−R + pt+R
¡
nZR
¢
=

tS
¡
N − nZR

¢
. (To obtain nZS = N − nZR > 0, the probability of Bad days must satisfy p >

tS(0)−t−R
t+R(N)−t

−
R

.) Point Z•S
identifies the equilibrium for users of Route S. This outcome is certain because travel costs are the same in both

states. Point Z−R identifies the outcome for users of Route R on Good days, and Z+R the outcome on Bad days.

The comparative statics properties of the equilibrium are derived in Appendix 2 and presented in Table 3.

p N

nR < 0 ∈ (0, 1)
nS > 0 ∈ (0, 1)
E ·CZ > 0 > 0

Table 3: Comparative statics properties of No information equilibrium with risk neutral drivers

As expected, an increase in the probability of Bad days reduces usage of route R, increases usage of route S, and

increases expected travel costs. If the number of drivers increases, usage of both routes increases as do expected

travel costs.

With risk-neutral drivers the CV for Free information is simply the difference in expected costs between the No

information and Free information regimes: CV F = ECZ − ECF = p
¡
t+R
¡
nZR
¢
− t+R

¡
nF+R

¢¢
> 0. CV F is positive

because on Bad days fewer drivers take route R; i.e. nF+R < nZR. The welfare gain can be decomposed into three

parts. First, on Good days information benefits drivers who would otherwise take route S. This benefit is identified

by the speckled area labeled B− in the lower right of Figure 2. Second, on Bad days information benefits drivers

who take route R as indicated by the speckled area B+ in the upper left. Finally, information imposes a loss on

drivers who take route S as shown by the shaded area L+ to the upper right. (Area B− corresponds to what

Zhang and Verhoef (2006) call decision-making benefits. Areas B+ and L+ correspond to what they call travel

cost benefits (or costs).) The loss L+ is outweighed by the benefits B− and B+. To see this geometrically note

that area B− (weighted by the probability of Good days) equals the area of the rectangle defined by points Z•S ,
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Z+R , tZ+R and tZS (weighted by the probability of Bad days) which exceeds area L
+. Area B− thus outweighs area

L+, and area B+ adds to the net benefit.

Free information reduces expected travel time, as well as variability of travel time on route R. But it also

raises travel time on Bad days on route S (since tS
¡
nF+S

¢
> tS

¡
nZS
¢
) and results in travel time uncertainty for all

drivers. This uncertainty is of no consequence per se for risk-neutral drivers, but it does matter with risk-averse

drivers as will be shown in Section 4.

Before turning to Costly information consider the Private information regime. If a single driver is informed he

can take route R on Good days, and route S on Bad days. The CV for Private information is CV I = ECZ −ECI

= p
¡
t+R
¡
nZR
¢
− tS

¡
nZS
¢¢

> 0. CV I exceeds the CV for Free information since tS
¡
nZS
¢
< t+R

¡
nF+R

¢
= tS

¡
nF+S

¢
.

Information is always valuable when it is private because the benefits of shifting to route S on Bad days are not

dissipated by similar adjustments of other drivers. As will be seen, the advantage of Private information over Free

information holds – and with greater force – when drivers are risk-averse.

2.3 Costly information

Equilibrium for the Costly information regime with risk-neutral drivers is derived in Appendix 2. In order for some

drivers to be willing to purchase information (Strategy I) the cost cannot be too high; otherwise the equilibrium is

the same as with No information. Regardless of the cost of information some drivers choose not to purchase it and

stick to route R (Strategy R). If the cost of information exceeds a lower bound then some drivers choose Strategy

S; otherwise all drivers adopt either Strategy R or Strategy I. The comparative statics properties of equilibrium

are presented in Table 4. Predictably, as the cost of information increases, nCI decreases and nCR and nCS increase.

As the probability of Bad days increases, nCS rises and n
C
R falls. As shown in Appendix 2, n

C
I increases if p is small,

and decreases if p is large. This is because travel time uncertainty is greatest for intermediate values of p. Perhaps

surprisingly, nS is independent of N . To see why, note that the choice between strategies I and S depends on the

cost of information relative to the travel time saved on Good days from taking route R. Since both the cost of

information and travel time on R on Good days are constants, travel time on route S must also be constant and

hence usage of S must be independent of N . This result does not obtain with risk-averse drivers as shown below.

π p N

nR > 0 < 0 ∈ (0, 1)

nS
> 0 if nS > 0

0 if nS = 0

> 0 if nS > 0

0 if nS = 0
0

nI < 0

> 0 if nS > 0 and p small

< 0 if nS > 0 and p large

> 0 if nS = 0

∈ (0, 1)

ECC > 0 > 0 > 0

Table 4: Comparative statics properties of Costly information equilibrium with risk-neutral drivers

Equilibrium with Costly information is depicted in Figure 3 for the case with nCS > 0. On Good days, Groups

R and I take Route R and realize an outcome at point C−R,I . Group S incurs a higher cost at point C−S . On Bad

days, Group R ends up at point C+R , while Groups S and I incur a lower cost at point C+S,I . Group I enjoys the

best of both worlds, but pays a fee π for the privilege.

Figure 3 about here
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Since expected travel costs are the same for all three groups, the CV for Costly information can be computed

for any one of them. For Group R, expected costs are ECC
R = (1− p) t−R+pt+R

¡
nCR
¢
, and hence CV C = ECZ−ECC

R

= p
¡
t+R
¡
nZR
¢
− t+R

¡
nCR
¢¢

> 0. CV C is positive, but it is smaller than for Free information since nCR > nF+R . This

is apparent in Figure 3 from the fact that area B+ is thinner than in Figure 2. For Group S travel costs are higher

on Good days than with Free information (tC−S > t−R), but lower on Bad days (t
C+
S < tF+S ). Consequently, Group

S suffers less variability in costs – which is advantageous if they are risk averse as is the case in the general model.

3 No information and Free information with risk-averse drivers

This section establishes some properties of the No information and Free information regimes when drivers are risk

averse and examines the CV for Free information. Some of the results generalize results in de Palma and Picard

(2006), and other results are new. de Palma and Picard (2006) derive most of their results for CRRA and CARA

preferences. The results here are derived under Assumption 3, which includes CRRA and CARA as special cases

and permits more compact proofs.

3.1 Existence and uniqueness of equilibria

The equilibrium of the Free information regime is described by:

Proposition 2 Consider the Free information regime. Under Assumptions 1 and 2:
(a) On Good days there exists a unique corner equilibrium: (NF−

R = N,NF−
S = 0).

(b) On Bad days there exists a unique interior equilibrium: (NF+
R ∈ (0, N) , NF+

S = N−NF+
R ), with t+

¡
NF+
R

¢
=

tS
¡
N −NF+

R

¢
.

Proof. See Appendix 3.
On Good days all drivers prefer route R. This follows from Assumption 1 that t−R is constant and represents the

lowest possible travel time. On Bad days both routes are used and all drivers are indifferent between them because

travel times are equal and there is no uncertainty. The equilibrium is the same as when drivers are risk-neutral

(Section 2).

To determine equilibrium for the No information regime it is necessary to identify which individuals take each

route. Individual route choice decisions are described by:

Lemma 1 Consider the No information regime. Under Assumptions 1-4, for any NR such that t+R (NR) >

tS (N −NR) and pt
+
R (NR) + (1− p) t−R < tS (N −NR):

(a) There exists a unique risk aversion threshold θ̃
Z
(p,NR) such that R Â S ⇔ θ < θ̃

Z
(p,NR).

(b) θ̃
Z
(p,NR) is strictly decreasing in p and NR.

Proof. See Appendix 4.
According to Lemma 1(a), whenever expected travel time is lower onR than on S a group of drivers with the least

risk aversion prefer to use R, and the remainder prefer S. The number who use route R is nZR = NF
³
θ̃
Z
(p,NR)

´
.

Lemma 1(b) indicates that nZR decreases with the probability of Bad days and with usage of R.

Equilibrium in the No information regime is described by:

10



Proposition 3 Consider the No information regime. Under Assumptions 1-4, there exists a unique equilibrium
traffic volume on R, nZR (p) ∈

¡
nF+R , N

¢
, and a unique risk aversion threshold, equal to θ̃

Z ¡
p, nZR

¢
, which solve:⎧⎨⎩ (a)F−1

¡
nZR/N

¢
= θ̃

Z ¡
p, nZR

¢
(b) pU

³
t+R
¡
nZR
¢
; θ̃

Z ¡
p, nZR

¢´
+(1−p)U

³
t−R; θ̃

Z ¡
p, nZR

¢´
= U

³
tS
¡
N−nZR

¢
; θ̃

Z ¡
p, nZR

¢´ . (1)

Moreover, nZR (p) and θ̃
Z ¡

p, nZR
¢
are decreasing in p.

Proof. See Appendix 5.
The uniqueness of θ̃

Z
given nZR follows from Lemma 1. In words, part (a) of Proposition 3 states that drivers

with risk aversion less than θ̃
Z
choose route R and the rest choose S. Part (b) states that the driver with risk

aversion θ̃
Z
is indifferent between the routes.

We now turn to a comparison of the No information and Free information regimes.

Proposition 4 Under Assumptions 1-4:
(a) With Free information, equilibrium usage of route R on Bad days is less than usage with No information:

nF+R < nZR.

(b) Free information reduces expected travel time for all drivers, and the reduction is larger for the most risk -

averse drivers (θ > θ̃
Z ¡

p, nZR
¢
) than for the least risk -averse drivers (θ < θ̃

Z ¡
p, nZR

¢
): pt+R

¡
nF+R

¢
+ (1− p) t−R <

pt+R
¡
nZR
¢
+ (1− p) t−R < tS

¡
N − nZR

¢
.

(c) Free information reduces the variability of travel time for the least risk-averse drivers, and increases the

variability of travel time for the most risk-averse drivers.

Proof. See Appendix 6.
Part (a) of Proposition 4 is a natural consequence of the fact that route R is impaired on Bad days while

route S is unaffected. Part (b) follows from the fact that with No information travel time is higher for the most

risk-averse drivers than for the least risk-averse drivers. With respect to Part (c) travel time variability is reduced

for the least risk-averse drivers because usage of route R is reduced on Bad days and travel time thus exceeds t−R
by a smaller amount. Travel time becomes more variable for other drivers because it does not vary at all with No

information.

The CV for Free information equalizes individual expected utility in the No information and Free information

regimes and is therefore driver-specific. Recall that with No information the nZR least risk-averse drivers choose

route R and incur a random travel time:

TR
¡
nZR
¢
=

(
t−R on Good days

t+R
¡
nZR
¢
on Bad days

,

and the N − nZR most risk-averse drivers choose route S with deterministic travel time tS
¡
N − nZR

¢
. In the Free

information regime, all users choose R on Good days (with travel time t−R) and are indifferent between R and S on

Bad days since equilibrium traffic on R on Bad days, nF+R , is such that t+R
¡
nF+R

¢
= tS

¡
N − nF+R

¢
. The individual
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CVs for Free information for groups R and S, CV F
R (θ) and CV F

S (θ), therefore solve:

R (if θ < θ̃
Z ¡

p, nZR
¢
) :

pU
¡
t+R
¡
nF+R

¢
+ CV F

R (θ) ; θ
¢
+ (1− p)U

¡
t−R + CV F

R (θ) ; θ
¢
=

pU
¡
t+R
¡
nZR
¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢ ,

S (if θ > θ̃
Z ¡

p, nZR
¢
) :

pU
¡
t+R
¡
nF+R

¢
+ CV F

S (θ) ; θ
¢
+ (1− p)U

¡
t−R + CV F

S (θ) ; θ
¢
=

U
¡
tS
¡
nZS
¢
; θ
¢ .

(2)

The left-hand side of each equation in (2) is expected utility in the Free information regime with CV added to

travel time, and the right-hand side is expected utility in the No information regime. The pair of equations in (2)

is the counterpart to the equation CV F = ECZ − ECF for risk-neutral drivers.

According to Proposition 4, Free information reduces expected travel time for all drivers and the reduction

is larger for the most risk-averse drivers who choose route S. CV, however, exhibits a different pattern. Under

Assumption 3, CV F
R (θ) is an increasing function of θ and CV F

S (θ) is a decreasing function of θ. CV is therefore

highest for drivers with risk aversion θ̃
Z ¡

p, nZR
¢
who are indifferent between strategies R and S. Furthermore, CV

is negative for drivers who are sufficiently risk averse. (This follows intuitively from the definition of CV F
S (θ) and

the fact that t+R
¡
nF+R

¢
= tS

¡
nF+S

¢
> tS

¡
nZS
¢
so that drivers who take the safe route fare worse on Bad days when

information is provided.) These results are formalized in:

Theorem 1 Under Assumptions 1-4:
(a) The CV for Free information is an increasing function of risk aversion for the least risk-averse drivers who

take route R with No information, and a decreasing function of risk aversion for the most risk-averse drivers who

take route S with No information.

(b) When the risk aversion parameter is distributed over R+, the CV for Free information is negative for the

most risk-averse users.

Proof. Part (a) is proved in Appendix 7. Part (b) is proved in Appendix 8.

The most risk-averse drivers take the safe route in the No information regime. They gain and lose from Free

information. They gain on Good days because they can save time by shifting to the risky route. But they lose on

Bad days because some of the least risk-averse drivers shift onto the safe route. This increases travel time on the

safe route and also increases the variability of travel time that the most risk-averse drivers experience. The benefit

on Good days outweighs the loss on Bad days for drivers with intermediate levels of risk aversion. (Recall from

Section 3 that this is true of all drivers if drivers are risk-neutral.) But for the very most risk-averse drivers the

benefit is outweighed by the loss.

The possibility that providing (better) information about travel conditions on a congested road network can

make users worse off is not new. It has been demonstrated in models with endogenous numbers of trips (e.g.,

Arnott et al., 1996; de Palma and Lindsey, 1998) and with endogenous departure times (e.g., Arnott et al., 1991)

as well as endogenous route choice when drivers overreact to information (e.g., Schelling, 1978; Ben-Akiva, de Palma

and Kaysi, 1991; Mahmassani and Jayakrishnan, 1991). None of these papers features risk aversion. Emmerink

et al. (1998) use a model that does incorporate risk aversion by including in the generalized cost function a

term proportional to the standard deviation of travel time. They show that in regimes equivalent to the Free

information and Costly information regimes, information makes all drivers better off. However, if an exogenous

fraction of drivers is informed the uninformed can be worse off if the cost of travel time variation is sufficiently

large. In their model this happens because elimination of uncertainty encourages informed drivers to travel more.
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The basic mechanism whereby drivers can be worse off is similar to the mechanism here although details differ (in

their model and example, individuals are homogeneous with respect to risk aversion, the proportion of users who

are informed is exogenous, demand and travel cost functions are linear, and the number of trips is endogenous

rather than route choice).

In the model here free information is individually welfare-reducing when it induces changes in driver behaviour

that exacerbate congestion in a particular way. The expected private benefit that an individual derives from ad-

justing his or her route choice on the basis of daily travel conditions can be outweighed by the effects of adjustments

by other drivers. As the next section demonstrates, this is also possible if drivers have to pay for information.

4 Costly information with risk-averse drivers

The Costly information regime is more complicated than the No information regime since drivers can choose

between three strategies (R, S and I) rather than just two (R and S). Similar to the approach taken for the No

information regime, equilibrium will be derived in two steps. In the first step, an individual driver’s strategy choice

for information acquisition and route selection is derived while holding fixed the numbers of drivers who adopt

each strategy (i.e. nR, nS and nI). For the second step, the sets of drivers choosing each strategy and thus the

equilibrium values of nR, nS and nI are determined given the individual strategy choices derived in step 1.

4.1 Driver strategy choice with exogenous traffic

The first step is to derive an individual driver’s choice between strategies R, S and I as a function of θ, the price of

information, π, and traffic conditions (nR, nS , nI). If a driver is not informed, the choice is restricted to strategies

R and S. The preference ranking between R and S is described by the condition:

R Â S ⇔ pU
¡
t+R (nR) ; θ

¢
+ (1− p)U

¡
t−R; θ

¢
> pU (tS (nS + nI) ; θ) + (1− p)U (tS (nS) ; θ) ,

where the expected utilities of R and S are as given in Table 2. Rearranging terms, this condition can be written

in terms of the difference in utilities:

R Â S ⇔ ψRS (θ; p, nR, nS , nI) ≡
p
£
U
¡
t+R (nR) ; θ

¢
− U (tS (nS + nI) ; θ)

¤
+(1− p)

£
U
¡
t−R; θ

¢
− U (tS (nS) ; θ)

¤ > 0.

Naturally, for given nI this condition does not depend on the price of information – although if π is small enough

a driver may prefer strategy I to either R or S. The properties of the preference ranking between R and S are

described in:

Lemma 2 Under Assumptions 1-4:
(a) There exists a unique risk aversion threshold θ̂RS (p, nR, nS , nI) such that R Â S ⇔ θ < θ̂RS (p, nR, nS , nI).

(b) For θ̂RS <∞, θ̂RS is decreasing in p and nR, and increasing in nS and nI .

Proof. See Appendix 9.
Lemma 2 is the counterpart to Lemma 1 for Zero information. The threshold θ̂RS is a decreasing function of p

and nR for the same reason that θ̃
Z
is decreasing. θ̂RS is increasing in nS and nI because the safe route becomes

less attractive.
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The preference ranking between strategies R and I is described by the condition:

R Â I ⇔ pU
¡
t+R (nR) ; θ

¢
+ (1− p)U

¡
t−R; θ

¢
> pU (tS (nS + nI) + π; θ) + (1− p)U

¡
t−R + π; θ

¢
,

which is equivalent to:

R Â I ⇔ ψRI (θ, π; p, nR, nS + nI) ≡
p
£
U
¡
t+R (nR) ; θ

¢
− U (tS (nS + nI) + π; θ)

¤
+(1− p)

£
U
¡
t−R; θ

¢
− U

¡
t−R + π; θ

¢¤ > 0.

Note that this condition depends on the combined numbers of drivers who choose Strategies S and I, nS + nI .

It does not depend independently on nS and nI because Strategies R and I differ only in the Bad state where

drivers choosing Strategies S and I all take route S. The properties of the preference ranking between R and I are

described in:

Lemma 3 Under Assumptions 1-4:
(a) There exists a unique risk aversion threshold θ̂RI (π, p, nR, nS + nI) such that R Â I ⇔ θ < θ̂RI (π, p, nR, nS + nI).

(b) For θ̂RI <∞, θ̂RI is decreasing in p and nR, and increasing in π and nS + nI .

Proof. See Appendix 10.
The comparative statics properties of θ̂RI are similiar to those of θ̂RS in Lemma 2. θ̂RI is increasing in π

because Strategy I becomes less attractive as the cost of information rises. The preference ranking for the final

pair of strategies, I and S, is:

I Â S ⇔ pU(tS(nS + nI) + π; θ) + (1−p)U
¡
t−R + π; θ

¢
> pU(tS(nS + nI) ; θ) + (1−p)U(tS(nS) ; θ) ,

or

I Â S ⇔ ψIS (θ, π; p, nS , nI) ≡
p [U(tS(nS + nI) + π; θ)− U(tS(nS + nI) ; θ)]

+ (1−p)
£
U
¡
t−R + π; θ

¢
− U(tS(nS) ; θ)

¤ > 0.

The properties of the preference ranking between I and S are given in

Lemma 4 Under Assumptions 1-4:
(a) There exists a unique risk aversion threshold θ̂IS (π, p, nS , nI) such that I Â S ⇔ θ < θ̂IS (π, p, nS , nI).

(b) For θ̂IS <∞, θ̂IS is decreasing in π, p and nI , independent of nR, of ambiguous sign in nS, but increasing

in nS with nS + nI held fixed.

Proof. See Appendix 11.
To see why threshold θ̂IS is independent of nR note that users of Strategy S never take route R, while users of

Strategy I take it only on Good days when travel time is independent of usage.

Figure 4 about here

Figure 4 depicts the combinations of (θ, π) for which drivers choose strategy R, S or I when traffic conditions

are fixed. Along the boundary labelled R ≈ S, ψRS = 0 and drivers are indifferent between R and S. The boundary

between regions R and I where R ≈ I, and the boundary between regions I and S where I ≈ S, are interpreted

similarly. The locations of the indifference curves depicted in Figure 4 are described by the following two remarks.
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Remark 1 When R Â S, the curve R ≈ I lies below the curve I ≈ S. When S Â R, the curve R ≈ I lies above

the curve I ≈ S.

Proof. Transitivity of preferences implies that, when R Â S and I ≈ S, then R Â I and the curve R ≈ I is located

at a lower π. Similarly, when S Â R and I ≈ S, then R ≺ I and the curve R ≈ I is located at a higher π.

Remark 1 confirms that the decision whether to become informed involves a comparison between I and R for

the least risk-averse drivers, and a comparison between I and S for the most risk-averse drivers.

Remark 2 When π = θ = 0, I Â S and either R Â I or I Â R depending on the value of nR.

Proof. When θ = 0, U (t; 0) = − (a+ t) by Assumption 3. If π = 0 as well, then

ψIS (θ = 0, π = 0; p, nS , nI) = (1− p)
£
tS (nS)− t−R

¤
> 0, and

ψRI (θ = 0, π = 0; p, nR, nS + nI) = p
£
tS (nS + nI)− t+R (nR)

¤
≷ 0.

Lemmas 2, 3 and 4 lead to:

Proposition 5 Under Assumptions 1-4, for any (p, nR, nS , nI) there exists a unique price bπ (p, nR, nS , nI) > 0,

a unique risk aversion threshold θ̂RS (p, nR, nS , nI) and two functions θ̂RI (π, p, nR, nS + nI) and θ̂IS (π, p, nS , nI)

respectively increasing and decreasing in π such that:

θ̂RI (bπ (p, nR, nS , nI) , p, nR, nS + nI) = θ̂IS (bπ (p, nR, nS , nI) , p, nS , nI) = θ̂RS (p, nR, nS , nI) .

A driver selects strategy R if θ<θ̂RS (p, nR, nS , nI) and θ<θ̂RI (π, p, nR, nS + nI); selects S if θ>θ̂RS (p, nR, nS , nI)

and θ>θ̂IS (π, p, nS , nI), and selects I if θ>θ̂RI (π, p, nR, nS + nI) and θ<θ̂IS (π, p, nS , nI). For θ̂RS < ∞, θ̂RS is
decreasing in p and nR, and increasing in nS and nI . For θ̂RI <∞, θ̂RI is decreasing in p and nR, and increasing

in π and nS + nI . For θ̂IS < ∞, θ̂IS is decreasing in π, p and nI , independent of nR, of ambiguous sign in nS,

but increasing in nS with nS + nI held fixed.

4.2 Driver strategy choice and equilibrium

Proposition 5 characterizes individual driver strategy choices with Costly information for given traffic conditions.

The analysis now proceeds to the derivation of equilibrium values of nCR, n
C
S and nCI as functions of π. The first

step is to establish a critical price for information above which no driver chooses to be informed.

Proposition 6 Under Assumptions 1-4, for any probability p ∈ (0, 1) and any N > 0, there exists a unique

price πC (p,N), a unique risk aversion threshold θC0 (p,N), and a unique traffic equilibrium (nCR0 (p,N), n
C
S0 =

N − nCR0 (p,N),n
C
I0 = 0) such that the three indifference curves R ≈ S, R ≈ I and I ≈ S cross at

³
θC0 , π

C
´
.

Functions θC0 (p,N) and n
C
R0 (p,N) are decreasing in p.

Proof. See Appendix 12.
Proposition 6 establishes the existence of a critical price for information, πC (p,N), at and above which no driver

chooses to be informed, and the equilibrium with Costly information is therefore the same as with No information.

Consequently, θC0 (p,N) = θ̃
Z ¡

p, nZR
¢
. It remains to establish existence of equilibrium when π < πC (p,N).
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Proposition 7 Under Assumptions 1-4, for any probability p ∈ (0, 1), any N > 0 and any price π ≥ 0, there exists
a unique equilibrium nCR (π, p,N) , n

C
S (π, p,N) , n

C
I (π, p,N) = N − nCR (π, p,N) − nCS (π, p,N). If π ≥ πC (p,N),

the equilibrium is as described in Proposition 6 . If π < πC (p,N), there exist unique risk aversion thresholds,

θA (π, p,N) and θB (π, p,N) > θA (π, p,N), such that a driver with θ < θA (π, p,N) selects Strategy R, a driver

with θ ∈ (θA (π, p,N) , θB (π, p,N)) selects Strategy I, and a driver with θ > θB (π, p,N) selects Strategy S. The

comparative statics properties of nCR, n
C
S , n

C
I , θA and θB are given in Table 5.

Proof. See Appendix 13.
Comparative statics properties of the equilibrium shown in Table 5 are derived in Appendix 14.

π p N

nR > 0 < 0 ∈ (0, 1)
nS ? > 0 ?

nI ? ? ?

θA > 0 < 0 ?

θB ? < 0 ?

Table 5: Comparative statics properties of Costly information equilibrium with risk-averse drivers

Comparison of Table 5 with Table 4 reveals three differences in the properties of equilibria with risk-averse

drivers and risk-neutral drivers. First, if the cost of information is positive, sufficiently risk-averse drivers eschew

buying it and adopt strategy S instead. By contrast, if drivers are risk neutral none choose strategy S if information

is relatively cheap. Second, nS depends on N whereas with risk neutrality it is independent of N . Third, several

of the comparative statics properties are ambiguous in sign including all three of the derivatives for nI . Indeed, it

is not possible to rule out that the number of drivers who purchase information is a (locally) increasing function

of the price although it seems highly unlikely that this will be the case.

Given Proposition 6 and Proposition 7 it is possible to draw Figure 5, which is the counterpart to Figure 4 with¡
nCR, n

C
S , n

C
I

¢
set at their equilibrium values. Individual preference rankings for the information regimes are:⎧⎪⎨⎪⎩

R Â S ⇔ ϕRS (θ, π; p,N) > 0,

R Â I ⇔ ϕRI (θ, π; p,N) > 0,

I Â S ⇔ ϕIS (θ, π; p,N) > 0,

where ⎧⎪⎨⎪⎩
ϕRS (θ, π; p,N) = ψRS

¡
θ; p, nCR (π, p,N) , n

C
S (π, p,N) , n

C
I (π, p,N)

¢
,

ϕRI (θ, π; p,N) = ψRI
¡
θ, π; p, nCR (π, p,N) , n

C
S (π, p,N) + nCI (π, p,N)

¢
,

ϕIS (θ, π; p,N) = ψIS
¡
θ, π; p, nCS (π, p,N) , n

C
I (π, p,N)

¢
.

Figure 5 about here

The equilibrium threshold for π ≥ πC (p,N) is θC0 (p,N) = θ̂RS
¡
p, nCR0, n

C
S0, 0

¢
, and for π < πC (p,N) the thresholds

are: (
θA (π, p,N) = θ̂RI

¡
π, p, nCR (π, p,N) , n

C
S (π, p,N) + nCI (π, p,N)

¢
,

θB (π, p,N) = θ̂IS
¡
π, p, nCS (π, p,N) , n

C
I (π, p,N)

¢
.

In the limit as π → 0, θB →∞. Usage of the two routes is continuous at π = 0, and hence travel times, expected
utilities and CVs are continuous as well.
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4.3 Welfare effects of Costly information

Four groups of drivers must be distinguished in assessing the welfare effects of Costly information. As shown in

Figure 6, in order of increasing risk aversion these are: drivers who choose strategy R in both the No information

and the Costly information regimes, drivers who choose R with No information and I with Costly information,

drivers who choose S with No information and I with Costly information, and finally drivers who choose S in both

regimes. The four groups will be called RR, RI, SI and SS respectively, and their CVs denoted CV C
RR, CV

C
RI ,

CV C
SI and CV C

SS . CV is defined by a different equation for each group:

RR (if θ < θA) :

pU
¡
t+R
¡
nCR
¢
+ CV C

RR (θ) ; θ
¢
+ (1− p)U

¡
t−R + CV C

RR (θ) ; θ
¢

= pU
¡
t+R
¡
nZR
¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢
.

RI (if θA < θ < θC0 ) :

pU
¡
tS
¡
nCS + nCI

¢
+ π + CV C

RI (θ) ; θ
¢
+ (1− p)U

¡
t−R + π + CV C

RI (θ) ; θ
¢

= pU
¡
t+R
¡
nZR
¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢
.

SI (if θC0 < θ < θB) :

pU
¡
tS
¡
nCS + nCI

¢
+ π + CV C

SI (θ) ; θ
¢
+ (1− p)U

¡
t−R + π + CV C

SI (θ) ; θ
¢

= U
¡
tS
¡
nZS
¢
; θ
¢
.

SS (if θ > θB) :
pU
¡
tS
¡
nCS + nCI

¢
+ CV C

SS (θ) ; θ
¢
+ (1− p)U

¡
tS
¡
nCS
¢
+ CV C

SS (θ) ; θ
¢

= U
¡
tS
¡
nZS
¢
; θ
¢
.

(3)

The left-hand side of each equation in (3) is expected utility with Costly information, and the right-hand side is

expected utility with No information. Note that the cost of information, π, is added to CV C
RI and CV

C
SI for groups

RI and SI which purchase information so that their CVs are defined as net of π. As formalized in Theorem 2

below, CV C
RR (θ) and CV C

RI (θ) are increasing functions of θ, and CV C
SI (θ) and CV C

SS (θ) are decreasing functions

of θ. Consequently, CV is highest for drivers who are indifferent between strategies R and S in the No information

regime in the same way that CV for Free information is highest for the indifferent driver. CV is also negative for

drivers who are sufficiently risk averse.

Figure 6 about here

The CVs for Costly information and Free information can be ranked by comparing the defining equations in

(2) and (3):

CV C
RR (θ) < CV F

R (θ) since nC+R > nF+R ,

CV C
RI (θ) ≷ CV F

R (θ)

CV C
SI (θ) ≷ CV F

S (θ)

)
depending on π and the relative magnitudes of tS

¡
nCS + nCI

¢
and t+R

¡
nF+R

¢
,

CV C
SS (θ) ≷ CV F

S (θ) depending on the magnitudes of t+R
¡
nF+R

¢
, tS

¡
nCS + nCI

¢
, tS

¡
nCS
¢
and t−R.

CV for group RR is unambiguously smaller for Costly information than for Free information because fewer drivers

shift off route R in the Bad state. But no general ranking is possible for the other three groups. These results are

formalized in Theorem 2 which is the counterpart to Theorem 1 for Free information:

Theorem 2 Under Assumptions 1-4:
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(a) The CV for Costly information, CV C (θ), is an increasing function of risk aversion for the least risk-averse

drivers who take route R with No information, and a decreasing function of risk aversion for the most risk-averse

drivers who take route S with No information.

(b) When the risk aversion parameter is distributed over R+, CV C (θ) < 0 for the most risk-averse drivers.

(c) CV C (θ) < CV F (θ) for the least risk-averse drivers who take route R in both the No information and Costly

information regimes. For other drivers the ranking of CV C (θ) and CV F (θ) is ambiguous.

Proof. Part (a) is proved in Appendix 7, and Part(b) is proved in Appendix 8. Part (c) was proved in the text.

5 Private information

As the cost of information rises towards πC (p,N) the number of drivers who purchase information approaches

zero and information effectively becomes private in the sense that only a few drivers exploit it. As explained in

Section 2, the Costly information equilibrium approaches the equilibrium with No information and the CV for

Costly information (gross of the cost) approaches the CV for Private information. The CVs of Groups R and S

for Private information, CV I
R (θ) and CV I

S (θ) respectively, are defined by the conditions:

R (if θ < θRS) :

pU
¡
tS
¡
nZS
¢
+ CV I

R (θ) ; θ
¢
+ (1− p)U

¡
t−R + CV I

R (θ) ; θ
¢
=

pU
¡
t+R
¡
nZR
¢
; θ
¢
+ (1− p)U

¡
t−R; θ

¢
.

S (if θ > θRS) :
pU
¡
tS
¡
nZS
¢
+ CV I

S (θ) ; θ
¢
+ (1− p)U

¡
t−R + CV I

S (θ) ; θ
¢
=

U
¡
tS
¡
nZS
¢
; θ
¢
.

(4)

Since t+R
¡
nZR
¢
> tS

¡
nZS
¢
, CV I

R (θ) > 0, and since tS
¡
nZS
¢
> t−R, CV

I
S (θ) > 0. The CV for Private information is

therefore unambiguously positive. Given Assumption 3, CV I
R (θ) is an increasing function of θ, and CV I

S (θ) is a

decreasing function of θ so that, once again, CV is highest for drivers with risk aversion θRS who are indifferent

between strategies R and S with No information.

By comparing (4) with (2) and (3), it is clear that the CV for Private information is larger than the CV for

either Free information or Costly information:

CV I
R (θ) > CV F

R (θ) and CV I
S (θ) > CV F

S (θ) since tS
¡
nZS
¢
< tS

¡
nF+S

¢
= t+R

¡
nF+R

¢
,

CV I
R (θ) > CV C

RR (θ) and CV I
R (θ) > CV C

RI (θ) since tS
¡
nZS
¢
< tS

¡
nCS + nCI

¢
< t+R

¡
nCR
¢
,

CV I
S (θ) > CV C

SI (θ) and CV I
S (θ) > CV C

SS (θ) since tS
¡
nZS
¢
< tS

¡
nCS + nCI

¢
and t−R < tS

¡
nCS
¢
.

These results are formalized in

Theorem 3 Under Assumptions 1-4:
(a) The CV for Private information is positive for all drivers: CV I (θ) > 0.

(b) The CV for Private information exceeds the CV for either Free information or Costly information: CV I (θ) >

CV F (θ) and CV I (θ) > CV C (θ).

(c) The CV for Private information is an increasing function of risk aversion for the least risk-averse drivers

who take route R with No information, and a decreasing function of risk aversion for the most risk-averse drivers

who take route S with No information.

Proof. Parts (a) and (b) are proved in the text. Part (c) is proved in Appendix 7.
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Private information is more valuable to an individual than is Costly information or Free information because

the benefits from selecting the quicker route diminish as more drivers exploit the information. Diminishing returns

of this sort have been identified in a number of studies of ATIS with exogenous or endogenous market penetration

(e.g., Emmerink, 1998; Yang, 1998). In the model here the negative external effects of information arise not only

because the route choice decisions of informed drivers raise travel times for other informed drivers, but also because

they contribute to uncertainty in travel times. This impact is especially pernicious for the most risk-averse drivers

who try to avoid uncertainty by sticking to the “safe” route. However, uninformed and less risk-averse drivers who

take the risky route benefit when informed drivers switch to the safer route on Bad days.

An interesting property of the model is that the CV for Private information for the drivers with risk aversion

θRS who value it most is strictly positive even in the limit as the probability of Bad days decreases to zero. This

result is formalized in:

Proposition 8 If Assumption 3 holds, and the risk -aversion parameter is distributed over R+, then as the prob-
ability of Bad days decreases to zero the maximum CV for Private information approaches from above a limiting

value of Min
¡
t+R (N)− tS (0) , tS (0)− t−R

¢
> 0.

Proof. See Appendix 15.
An intuitive explanation of sorts for Prop. 8 runs as follows. With No information a driver must choose between

Strategy R and Strategy S. If he chooses R, and Private information then becomes available, he can occasionally

save t+R (N)− tS (0) in travel time. (Note that in the limit p→ 0 all drivers take route R.) Since this is a recovery

from the worst state (a Bad day) an extremely risk-averse driver is willing to pay nearly t+R (N) − tS (0) for the

information even though it will be exploited only rarely. If the driver chooses Strategy S instead, and Private

information becomes available, he can almost always save tS (0)− t−R in travel time. Since this is a gain in the good
state (a Good day) the driver is willing to pay nearly tS (0) − t−R for the information. Now the driver’s expected

utility with Private information is a given amount. Hence the driver will effectively choose between strategies R

and S according to which willingness to pay is smaller. Hence the actual CV for Private information is the lesser

of t+R (N)− tS (0) and tS (0)− t−R.

Prop. 8 contrasts with Theorems 1 and 2 which establish that the CVs for Free information and Costly

information are negative for very risk-averse individuals. This highlights the contrast between the values of public

and private information that was demonstrated by Hirshleifer (1971) in the context of speculative activity. It also

suggests that there may be a niche demand for ATIS by highly risk-averse travelers even if travel conditions are

fairly predictable.

6 Numerical example

The numerical example is representative of a commuting corridor. Travel time functions for the safe route and the

risky route on Bad days have a Bureau of Public Roads form:⎧⎪⎪⎨⎪⎪⎩
tS (nS) = τS

∙
1 +

³
nS
KS

´b¸
,

t+R (nR) = τ+R

∙
1 +

³
nR
KR

´b¸
,

(5)

where τS and τ
+
R are free-flow travel times, KS andKR are capacities, and b is a parameter. For the base case of the

example the probability of a Bad day is p = 0.2 and the number of drivers is N = 10, 000. Other parameter values
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are τS = 25 min., τ
+
R = 25 min., t

−
R = 20 min., KS = 10, 000 per hr., KR = 8, 000 per hr. and b = 2. Drivers have

CARA preferences and θ has a log-logistic distribution with parameter θ̄ = 2; i.e. F (θ) = θ/
¡
θ + θ̄

¢
= θ/ (θ + 2).

(The value of θ̄ is based on estimates in de Palma and Picard (2005).) With these parameter values Assumptions

1-4 are all satisfied.

6.1 Base-case results

Summary statistics for the equilibria with the base-case parameterization are listed in Column 1 of Table 6.

6.1.1 No information

For the No information regime nZR = 6, 654: about two thirds of drivers (those with θ < θRS = 3.98) choose the

risky route. Travel time on the risky route is t−R = 20 min. on Good days, and t+ZR = 42.3 min. on Bad days.

Travel time on the safe route is tS = 27.8 min. in both states. Expected travel time is (1− p) t−R + ptZ+R = 24.46

min. for group R, and 27.8 min. for group S. Group S therefore incurs more than three min. extra mean travel

time for the privilege of travel time reliability.

6.1.2 Free information

With Free information all drivers take route R on Good days (nF−R = 10, 000) whereas less than half of them do on

Bad days (nF+R = 4, 444). The 4:5 division of traffic between the two routes is independent of the distribution of

risk preferences, and the set of drivers who take Route R on Bad days is indeterminate because travel time is known

in advance. All drivers experience the same travel times of t−R = 20 min. on Good days, and tF+R = tF+S = 32.72

min. on Bad days. Expected travel time is 22.54 min.: a drop from the No information regime of 1.92 min. for

Group R, and 5.26 min. for Group S. Average CVs are 2.60 min. for Group R, and 1.38 min. for Group S.

Thus, although Group S experiences a much larger average reduction in travel time as per Proposition 4, Group

S benefits less from Free information in terms of CV.

CV for Free information, CV F (θ), is plotted in Figure 7. (The other seven curves are discussed later.) Con-

sistent with Theorem 1, CV F (θ) reaches a maximum at θRS = 3.98, and then drops – eventually below zero.

Nearly 10 percent of the most risk averse users (with θ > 18.7) and over a quarter of Group S end up worse off.

This is consistent with Theorem 2(b) that sufficiently risk-averse drivers are worse off with Free information.

Figure 7 about here

6.1.3 Costly information

The numerical counterpart to Figure 5 for the Costly information regime is shown in Figure 8. As the cost of

information rises from 0 to the choke price of πC (p,N) = CV I (θRS) = 5.88, the number of drivers purchasing

information drops steadily to zero. Figure 9 shows how the fractions of drivers in each of the four groups evolve

with π. As expected, the two groups that acquire information (RI and SI) decline steadily in size towards zero,

whereas Groups RR and SS grow. The fraction of drivers who are worse off decreases with π because fewer drivers

are informed and there is less variation in travel time on route S.

Figure 8 about here
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Figure 10 presents the CV for Costly information by group. The two informed groups always fare better than

do the uninformed, and their benefits increase as information becomes cheaper except when the price nears zero.

As far as the two uninformed groups, the benefits to Group RR increase monotonically as information becomes

cheaper. Group SS gains as well while information is expensive, but it loses out once information becomes cheaper.

Nevertheless, the aggregate benefits for the two uninformed groups increase steadily because Group SS shrinks in

size. Overall, the pattern is one in which most drivers benefit from information while a small minority of highly

risk-averse drivers suffer appreciably.

Figure 9 about here

Figure 7 plots the CVs for Free information, Costly information and Private information as functions of π.

Consistent with Theorems 1, 2 and 3, all three CVs reach their maxima at θ = θRS . And consistent with Theorem

3, CV I (θ) exceeds CV F (θ) and CV C (θ, π) over the whole range of π. The behaviour of CV C (θ, π) is rather

complex. In the lower range of θ, CV C (θ, π) is bounded between 0 and CV F (θ) and decreases monotonically with

π. For larger values of θ, CV C (π, θ) > CV F (θ) because highly risk-averse drivers benefit from the fact that with

Costly information fewer drivers shift to the safe route on Bad days. CV C (π, θ) varies non-monotonically with π:

it rises initially, but eventually declines towards zero as the number of informed drivers diminishes and with it the

potential for information to be beneficial. However, part (b) of Theorem 2 guarantees that some drivers are worse

off as long as π < πC (p,N).

Figure 10 about here

6.1.4 Sensitivity analysis

Probability of Bad days Figure 11 shows how the effects of Free information evolve with p (the base-case value

of p = 0.2 is marked by the vertical dashed line). Over most of the range p ∈ [0, 0.5] the mean travel time saving
and CV decrease for Group S, and increase for Group R. In the limit as p → 0 the effects on Group R decrease

to zero as expected. For Group S the travel time reduction is greatest when p is close to zero since Group S is

almost always able to save time by taking route R rather than route S. As p rises travel time savings for Group S

drop, and so does its CV since Group R shifts more frequently to route S and increases travel time there.

Figure 11 about here

Distribution of risk aversion If parameter θ̄ of the log-logistic distribution is reduced to zero, the population

degenerates to a set of N identical risk-neutral drivers such as considered in Section 2. Equilibria for this case

are shown in Column 2 of Table 6. Compared to the base case, the fraction of drivers taking route R with No

information increases from roughly 2/3 to 4/5, and the difference in travel times on R and S on Bad days is

accentuated. This is because drivers are not averse to travel time variability on route R. (Chen et al. (2002)

obtain a similar result.) Mean travel time savings and CVs all coincide at 3.46 min., and all drivers benefit from

Free information by this amount. Figure 12 shows that as parameter θ̄ rises from 0 through the base case value

of θ̄ = 2 and upwards, mean travel time saving and CV F
R fall slowly for Group R. In contrast, for Group S mean

travel time saving rises and CV F
S drops rather sharply so that the divergence between travel time saving and CV

is much greater than for Group R. (To see why, note that with greater risk aversion in the population a larger

fraction of drivers take route S with No information. With Free information these drivers enjoy a greater time
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saving from taking route R on Good days, but they also suffer a greater cost from travel time variability on route

S.) Consistent with this, the fraction of drivers made worse off by Free information rises from zero at θ̄ = 0 to

more than 20 percent at θ̄ = 8.

Figure 12 about here

Other variations Raising the number of drivers from N = 10, 000 to N = 15, 000 (see Column 3 in Table 6)

increases the effects of Free information as expected, with the interesting exception that the mean CV for Group

S decreases slightly. This is attributable to the fact that with Free information travel time on the safe route varies

by 42.36− 34.11 = 8.25 min. compared to only 32.72− 27.80 = 4.92 min. in the base case.
Reducing the capacity of route R on Bad days from KR = 8, 000 to KR = 4, 000 (see Column 4) results in

travel times on Bad days with No information similar to the travel times in Column 3. But the benefits from Free

information are generally larger because the variation in performance of route R is more pronounced.

In Column 5 parameter b of the travel time function is reduced from 2 to 1. This increases the divergence

between mean travel time reduction and CV for group S, and increases the fraction of drivers made worse off by

Free information. This is because with linear travel costs more drivers take route R with No information, and

Free information has a bigger impact in shifting drivers to route S on Bad days. Raising parameter b to 4 has the

mirror image effect of reducing the fraction made worse off to about 4 percent.

In Column 6 the free-flow travel time on Route R, τ+R, is reduced from 25 min. to 20 min. to match the

free-flow travel time on Good days, τ−R. (This violates the strict inequality t
−
R < t+R (0) in Assumption 2, but does

not invalidate the equilibrium.) Usage of Route R expands considerably in both the No information and Free

information regimes. The welfare effects of information are slightly smaller than in the base case, but follow the

same pattern. As in Column 5, more drivers take route R. But the shift from R to S on Bad days is reduced

because τ+R is smaller.

The final “extreme” case (with N = 15, 000, b = 1, p = 0.5 and θ̄ = 8) combines several of the one-way

parameter variations in a direction that accentuates the adverse effects of Free information. Doing so does not

affect greatly the average CV for group R, but it does result in a negative average CV for Group S (CV F
S = −0.21)

and losses for nearly 30 percent of all drivers. This illustrates rather dramatically that even with heavy congestion,

a high probability of capacity loss, and a large proportion of highly risk-averse drivers, information is not necessarily

very beneficial. Adverse effects of information may be even worse from a welfare-distributional point of view since

it is plausible that drivers with a high level of risk aversion (those using the safe route) are also drivers with low

income (see empirical findings in de Palma and Picard, 2005). In such a case, information has a regressive effect

since it affects negatively low-income people (and positively high-income people).
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1 2 3 4 5 6 7

Base

case

Risk

neutral

N =

15000

KR =

4000
b = 1 τ+R = 20

Extreme

case†
No information equilibrium

nZR 6,654 8,000 8,963 4,665 7,144 9,117 7,551

nZS 3,346 2,000 6,037 5,335 2,856 883 7,449

tZ+R 42.30 50.00 56.38 59.01 47.32 37.45 48.60

tS 27.80 26.00 34.11 32.11 32.14 26.60 43.62

Free information equilibrium

nF+R 4,444 4,444 6,667 2,857 4,444 5,607 6,667

nF+S 5,556 5,556 8,333 7,143 5,556 4,393 8,333

tF+R = tF+S 32.72 32.72 42.36 37.76 38.89 29.82 45.83

Impacts of Free information

Mean travel time

red’n for group R
1.92 3.46 2.80 4.25 1.69 1.52 1.38

Mean travel time

red’n for group S
5.26 3.46 9.64 8.56 8.36 4.63 10.71

Mean CV F
R

for group R
2.60 3.46 4.21 5.53 2.68 2.08 2.10

Mean CV F
S

for group S
1.38 3.46 1.31 3.92 0.29 1.50 -0.21

Mean CV F

for all drivers
2.19 3.46 3.05 4.67 1.99 1.94 0.96

Max. CV F (θRS) 4.26 3.46 7.24 7.75 5.32 3.73 2.69

% drivers worse off 9.64 0 15.06 10.62 12.60 6.38 29.85

Private information

Max. CV I (θRS) 5.88 4.80 10.39 9.32 8.54 4.89 4.83

Table 6: Effects of Free information: Sensitivity analysis

† N = 15, 000, b = 1, p = 0.5, θ̄ = 8

Information can be welfare-reducing In the “extreme” case just considered Group S has a negative aggregate

CV for Free information, but its losses are outweighed by the gains for Group R. It is also possible for the aggregate

CV of all drivers to be negative. An example can be constructed by relaxing Assumption 4 and considering two

groups of drivers: Group 1 with N1 risk-neutral individuals (θ1 = 0), and Group 2 with N2 infinitely risk-

averse individuals (θ2 = ∞). For a range of parameter values all Group 1 adopts Strategy R, and all Group 2

adopts Strategy S. With No information, travel times are then tZS = τS

∙
1 +

³
N2

KS

´b¸
, tZ−R = τ−R and tZ+R =

τ+R

∙
1 +

³
N1

KR

´b¸
. Group 1 prefers Route R provided (1− p) τ−R + ptZ+R < tZS , and Group 2 prefers Route S

provided tZS < tZ+R . With Free information the division of drivers between routes on Bad days is determined by the

condition that travel times on Routes R and S are equal: tF+R = tF+S , or τ+R

∙
1 +

³
nF+R
KR

´b¸
= τS

∙
1 +

³
N−nF+R
KS

´b¸
.

Given tZS < tZ+R , this implies tZS < tF+S = tF+R < tZ+R . CVs are CV F
R =.p

¡
tZ+R − tF+R

¢
> 0 for Group 1, and
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CV F
S =

¡
tZS − tF+S

¢
< 0 for Group 2. The total CV for all drivers is CVtot = N1p

¡
tZ+R − tF+R

¢
+N2

¡
tZS − tF+S

¢
. None

of the travel times depends on parameter p. And the route choice condition for Group 1, (1− p) τ−R + ptZ+R < tZS ,

is necessarily satisfied in the limit p → 0 since τ−R < tZS . Hence Limp→0
CVtot = N2

¡
tZS − tF+S

¢
< 0. Thus, if Bad

days are sufficiently rare, Free information is welfare-reducing as measured by the sum of compensating variations.

By continuity, CVtot is also negative if Assumption 4 holds and the distribution of θ is bimodal with peaks at 0

and some large number. CVtot is also negative if Group 2 has a finite but sufficiently high degree of risk aversion.

For example, with θ2 = 120, N1 = 5, 000, N2 = 5, 000 and other parameters set at their base-case values for

the numerical example, CVtot = −1, 257 which is -2.8 percent of the aggregate travel time savings from Free

information.

7 Conclusions and extensions

This paper studies the information-acquisition and route-choice decisions of risk-averse drivers on a simple road

network with one “safe” route and one “risky” route. Four information regimes are considered: No information,

Free information – which is publicly available at no cost, Costly information – which is publicly available for a

fee, and Private information – which is available free to a single individual.

Several general theoretical results are derived. First, it is drivers with intermediate levels of risk aversion who

purchase information in order to select the quickest route each day. The least risk-averse drivers remain uninformed

and take the risky route every day, while the most risk-averse drivers take the safe route every day. This pattern

mirrors a finding of Emmerink et al. (1996) that it is individuals with intermediate demands for travel who gain

the most from information because travel is worthwhile for them under some conditions but not others.

Second, Private information is always beneficial to an individual driver relative to No information, and the

benefit from Private information exceeds the benefit from Free information or Costly information. Third, Free

information and Costly information benefit drivers who are risk neutral or moderately risk averse. But very risk-

averse drivers end up worse off even though some of them may be willing to pay for the information. A numerical

example suggests that losers are likely to comprise a relatively small fraction of the population, but also that their

losses as measured by CV can be comparable to the highest gains of other drivers (cf. Figure 10). Moreover, if a

large proportion of the population is highly risk-averse it is possible for the aggregate CV of drivers to be negative

so that the potential losers could – in principle – bribe the potential winners not to implement an ATIS.

The analysis could be extended in various directions. One is to examine more complex road networks. The

two-route network with one safe route has the advantage of being analytically tractable. And it is a natural choice

to demonstrate the potential drawbacks of public information for highly risk-averse drivers. But real applications

of ATIS are likely to involve multiple links and routes. Furthermore, the property of the model that information is

most valuable to drivers with intermediate risk aversion is counterintuitive insofar as the benefits from information

would seem, a priori, to be greatest for the most risk-averse individuals. In part, this result is driven by the

assumptions that demand is inelastic and that there is a safe route with superior “worst-case” properties than the

other route.

A second extension is to consider alternatives to the expected utility paradigm. Empirical evidence has been

accumulating at least since Allais (1953) that contradicts expected utility theory, and in recent years Prospect

Theory and other non-expected utilities have been applied in transportation research. Nevertheless, there are several

reasons why these alternatives do not (at least yet) offer a clearly superior paradigm to expected utility theory for

analyzing traveler decisions of the sort considered here. See the discussion in de Palma et al. (2008). First, route-
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choice decision-making differs substantially from gambling on monetary values, and it is not obvious that similar

behavioral patterns apply in the two contexts. Moreover, it is not clear what is an appropriate reference point for

Prospect Theory (Avineri and Prashker, 2004). Second, route-choice decisions are made repeatedly for commuting

and other routine trips, and it is plausible that as individuals become familiar with a particular environment their

travel decisions will converge towards expected utility maximization. Third, Avineri and Prashker (2005) found

that Cumulative Prospect Theory failed to predict route-choice feedback-based decisions observed in laboratory

experiments. Yet asymmetry with respect to gains and losses remains potentially relevant to describe route choice

decisions. A recent empirical application has been developed by de Lapparent (2009), who imbeds Cumulative

Prospect Theory in the Discrete Choice framework.

A third extension is to relax the assumption that travelers know the probability distribution of states and

to model learning. Jotisankasa and Polak (2005) review studies of learning in route and departure time choice,

and Bonsall (2008) discusses information acquisition and learning. In the model setting here it is drivers with

intermediate degrees of risk aversion who have the most to gain from learning the distribution of states on the

risky route – either by driving on it themselves or by drawing on other drivers’ experience (see Chancelier et al.

(2007) for the case of a single driver facing uncertainty and rational learning concerning the unknown probability of

good and bad days). The extension involving both learning and congestion would lead to the information cascade

problem described in economics (see Bikhchandani et al., 2006). One question that arises is whether provision of

information would speed up learning. In theory the answer would appear to be yes, but if information is conveyed

in the form of advice it may deter people from learning (Adler, 2001; Chorus et al., 2006).

Finally, the model could be made more practically useful by considering heterogeneity in value of time and

idiosyncratic preferences with respect to routes. Such preferences could be estimated using surveys and stated

preference methods as in De Palma and Picard (2005). For the purpose of designing and operating ATIS systems

this would help to identify different driver categories and the amount and type of information that would be of

greatest benefit to them. There is a need for more empirical studies of risk aversion and route-choice decisions

in the context of information provision – both in the field and in laboratory settings (see, for example, Helbing

(2004), Rapoport et al. (2006) and Hartman (2007)).
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8 Appendixes

8.1 Appendix 1: Assumption 3, HARA, CRRA and CARA preferences

Since CRRA is obtained from HARA simply by setting parameter a = 0, whereas the transformation from HARA

to CARA is more cumbersome, Assumption 3 will be verified separately for HARA and CARA.

8.1.1 HARA preferences

U (t; θ) ≡ u = − (a+t)
1+θ

1+θ is differentiable, and U (t; 0) = − (a+ t). For θ > 0 and t > 0, U (t; θ) is negative

and strictly concave in t. ∂U
∂θ = −

(1+θ)(a+t)1+θ ln(a+t)−(a+t)1+θ
(1+θ)2

= − (a+t)
1+θ

1+θ

³
ln (a+ t)− 1

1+θ

´
. Now (a+ t)

1+θ
=

− (1 + θ)u, and ln (a+ t) = ln(−(1+θ)u)
1+θ . Hence φ (u) ≡ ∂U

∂θ = u ln(−(1+θ)u)−11+θ , ∂φ∂u =
ln(−(1+θ)u)

1+θ , and ∂2φ
∂u2 =

1
(1+θ)u <

0 for t > 0. Finally, Lim
θ→∞

U(t2;θ)
U(t1;θ)

= Lim
θ→∞

³
a+t2
a+t1

´1+θ
=∞ for t2 > t1 > 0.

8.1.2 CARA preferences

U (t; θ) ≡ u = 1−exp(θt)
θ is differentiable and U (t; 0) = −t. For θ > 0 and t > 0, U (t; θ) is negative and strictly

concave in t. ∂U
∂θ = −θ+t exp(θt)+exp(θt)−1

θ2
. Now exp (θt) = 1 − θu, and t = ln(1−θu)

θ . Hence φ (U) ≡ ∂U
∂θ =

−θ(1−θu) ln(1−θu)θ +1−(1−θu)
θ2

= −(1−θu) ln(1−θu)+θu
θ2

. ∂φ
∂u =

θ ln(1−θu)+θ−θ
θ2

= ln(1−θu)
θ , and ∂2φ

∂u2 = −
1

(1−θu) < 0. Finally,

Lim
θ→∞

U(t2;θ)
U(t1;θ)

= Lim
θ→∞

1−exp(θt2)
1−exp(θt2) = Lim

θ→∞
exp (θ (t2 − t1)) =∞ for t2 > t1 > 0.

8.2 Appendix 2: Comparative statics properties of equilibria with risk-neutral drivers

8.2.1 No information regime

In the No information equilibrium the division of traffic, nZR and n
Z
S , equalizes expected travel costs between routes:

ECZ = (1− p) t−R + pt+R
¡
nZR
¢
= tS

¡
nZS
¢
, where nZS = N − nZR. Comparative statics properties of the equilibrium

are derived by totally differentiating this condition:

∂nZR
∂p =

t−R−t
+
R(n

Z
R)

∂tS(N−nZR)
∂nS

+p
∂t+
R(nZR)
∂nR

< 0, ∂n
Z
R

∂N =

∂tS(N−nZR)
∂nZ

S

∂tS(N−nZR)
∂nS

+p
∂t+
R(nZR)
∂nR

∈ (0, 1),

∂E·CZ

∂p = −∂tS(N−nZR)
∂nS

∂nZR
∂p > 0, ∂E·C

Z

∂N =
∂tS(N−nZR)

∂nS

³
1− ∂nZR

∂N

´
> 0.

8.2.2 Costly information regime

Equilibrium when nCS > 0 If strategies R, I and S are all adopted in the Costly information equilibrium, the

numbers in each group, nCR, n
C
S and nCI , are determined by the accounting identity

nCR + nCS + nCI = N , (6)

and two equal-cost conditions. First, the expected costs of Strategies I and R must be equal:

π + (1− p) t−R + tS
¡
nCS + nCI

¢
= (1− p) t−R + pt+R

¡
nCR
¢
. (7)
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Condition (7) can be written π = p
¡
t+R
¡
nCR
¢
− tS

¡
nCS + nCI

¢¢
: the cost of information must balance the travel time

saving gained by taking Route S rather than Route R on Bad days. Second, the expected costs of Strategies I and

S must be equal:

π + (1− p) t−R + tS
¡
nCS + nCI

¢
= (1− p) tS

¡
nCS
¢
+ ptS

¡
nCS + nCI

¢
. (8)

Condition (8) can be written π = (1− p)
¡
tS (n

c
S)− t−R

¢
: the cost of information must balance the travel time

saving gained by taking Route R rather than Route S on Good days.

Totally differentiating (6), (7) and (8) one obtains
∂nCR
∂π = 1

p
∂tS(nCS+nC

I )
∂nS

+
∂t
+
R(nCR)
∂nR

> 0, ∂n
C
R

∂p =
tS(nCS+n

C
I )−t

+
R(n

C
R)

p
∂tS(nCS+nC

I )
∂nS

+
∂t
+
R(nCR)
∂nR

< 0,

∂nCR
∂N =

∂tS(nCS+nCI )
∂nS

∂tS(nCS+nC
I )

∂nS
+
∂t
+
R(nCR)
∂nR

∈ (0, 1); ∂n
C
S

∂π = 1

(1−p)
∂tS(nCS )

∂nS

> 0, ∂n
C
S

∂p =
tS(nCS )−t

−
R

(1−p)
∂tS(nCS )

∂nS

> 0, ∂n
C
S

∂N = 0;

∂nCI
∂π = −

³
∂nCR
∂π +

∂nCS
∂π

´
< 0, ∂nCI

∂p = −
³
∂nCR
∂p +

∂nCS
∂p

´
s
= (1− p)

2 ∂tS(nCS )
∂nS

− p2
µ
∂tS(nCS+nCI )

∂nS
+

∂t+R(n
C
R)

∂nR

¶
; ∂nCI

∂N =

∂t
+
R(nCR)
∂nR

∂tS(nCS+nC
I )

∂nS
+
∂t
+
R(nCR)
∂nR

∈ (0, 1).

Using these derivatives it is readily shown that ECC is an increasing function of π, p and N . Note that the

derivative ∂nCI
∂p switches sign from positive to negative as p increases.

Equilibrium when nCS = 0 If the cost of information is sufficiently small, the condition I ≈ S is not satisfied

even with nCS = 0; i.e. π < (1− p)
¡
tS (0)− t−R

¢
. If so, Condition (8) is not applicable and the equilibrium is

derived using Conditions (6) and (7) with nCS = 0. The comparative statics properties of the model are the same

as for nCS > 0 except that ∂nCI
∂p = −∂nCR

∂p =
t+R(n

C
R)−tS(nCS+nCI )

p
∂tS(nCS+nC

I )
∂nS

+
∂t+
R(nCR)
∂nR

> 0, so that the ambiguity in the sign of this

derivative is eliminated.

8.3 Appendix 3: Proof of Proposition 2

Part (a) follows from the inequality tS (0) > t−R. For Part (b) defineΨ (nR) ≡ t+R (nR)−tS (N − nR). By Assumption

1, Ψ (nR) is a continuous and strictly increasing function of nR. By Assumption 2, Ψ (0) = t+R (0) − tS (N) < 0,

and Ψ (N) = t+R (N) − tS (0) > 0. Hence there exists a unique nF+R ∈ (0, N) such that Ψ
¡
nF+R

¢
= t+R

¡
nF+R

¢
−

tS
¡
N − nF+R

¢
= 0.

8.4 Appendix 4: Proof of Lemma 1

Part (a): Define ψ (p,NR; θ) ≡ pU
¡
t+R (NR) ; θ

¢
+ (1− p)U

¡
t−R; θ

¢
− U (tS (N −NR) ; θ).

ψ (p,NR; 0) = −
£
pt+R (NR) + (1− p) t−R

¤
+ tS (N −NR) > 0. Given t+R (NR) > tS (N −NR) and Assumption 3,

Lim
θ→∞

ψ (p,NR; θ) < 0. Given Assumption 3, ψ (·) is a continuous function of θ. Hence there exists at least one θ̃
Z

such that ψ
³
p,NR; θ̃

Z
´
= 0 and hence R ≈ S. Let Let Ei denote the expectations operator for route i, i ∈ {R,S}.

Then ψ = ERU (t; θ)− ESU (t; θ), and ∂ψ
∂θ = ER

∂U(t;θ)
∂θ − ES ∂U(t;θ)

∂θ . By Assumption 3, ∂U/∂θ is a strictly concave
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function of U . Hence by Jensen’s inequality

∂ψ (p,NR; θ)

∂θ

¯̄̄
θ=θ̃

Z
(p,NR)

< 0 . (9)

This proves that θ̃
Z
(p,NR) is unique. Furthermore,

ψ (p,NR; θ) ≷ 0 as θ ≶ θ̃
Z
(p,NR) . (10)

Part (b): Consider p0 > p. Since t+R (NR) > tS (N −NR), ψ
³
p0, NR; θ̃

Z
(p,NR)

´
> 0. Given (9) it follows that

θ̃
Z
(p0,NR) < θ̃

Z
(p,NR); hence θ̃

Z
(p,NR) is strictly decreasing in p.

Now consider ŃR > NR. Since t
+
R (NR) is increasing in NR and tS (N −NR) is decreasing in NR,

ψ
³
p, ŃR; θ̃

Z
(p,NR)

´
> 0. By similar reasoning it follows that θ̃

Z
(p,NR) is strictly decreasing in NR.

8.5 Appendix 5: Proof of Proposition 3

Since the cdf F (θ) is continuous and strictly increasing for θ ∈ I, n (θ) = NF (θ) defines an increasing relationship,

with n (0) = 0 and n (θ) →
θ→∞

N . Furthermore, Lemma 1 implies that θ̃
Z
(p,NR) defines a decreasing relationship

between θ and n, with n (θ) ∈ [0, N ]. The two curves therefore cross exactly once, which defines nZR (p) and
θ̃
Z
(p,NR). Consider the function

Ω (p, n; θ) ≡ pU
¡
t+R (n) ; θ

¢
+ (1− p)U

¡
t−R; θ

¢
− U (tS (N − n) ; θ) .

According to Assumption 2, t−R < t+R (n), so U
¡
t+R (n) ; θ

¢
− U

¡
t−R; θ

¢
< 0 and ∂Ω

∂p < 0. Decreasing utility and

Assumption 1 imply that U
¡
t+R (n) ; θ

¢
is decreasing in n and U (tS (N − n) ; θ) is increasing in n, so ∂Ω

∂n < 0.

Finally, for any relevant (p, n), Ω is locally decreasing in θ at point
³
p, n, θ̃

Z

p (n)
´
because, according to Lemma 1,

Ω
³
p, n, θ̃

Z
(p, n)

´
= 0, Ω (p, n; θ) > 0 for any θ < θ̃

Z
(p, n) and Ω (p, n; θ) < 0 for any θ > θ̃

Z
(p, n). As a result,

∂θ̃
Z(p,nZR)
∂p = −∂Ω

∂p /
∂Ω
∂θ < 0, and ∂nZR

∂p =
∂nZR
∂θ

∂θ̃
Z(p,nZR)
∂p = Nf

³
θ̃
Z
´
∂θ̃

Z(p,nZR)
∂p < 0.

8.6 Appendix 6: Proof of Proposition 4

Part (a): By Proposition 3, in the No information regime

pU
³
t+R
¡
nZR
¢
; θ̃

Z
´
+ (1− p)U

³
t−R; θ̃

Z
´
= U

³
tS
¡
N − nZR

¢
; θ̃

Z
´
where θ̃

Z
> 0. (11)

Given t+R
¡
nZR
¢
> t−R, it follows that

t+R
¡
nZR
¢
> tS

¡
N − nZR

¢
. (12)

With Free information:

t+R
¡
nF+R

¢
= tS

¡
N − nF+R

¢
. (13)

Inequality (12) and equation (13) imply nF+R < nZR.

Part (b): The goal is to show pt+R
¡
nF+R

¢
+(1− p) t−R < pt+R

¡
nZR
¢
+(1− p) t−R < tS

¡
N − nZR

¢
. The first inequality

follows from Part (a). The second inequality follows from equation (11) and θ̃
Z
> 0.

Part (c): Travel times in the No information and Free information regimes are given in the following table:
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Row Regime Group Good days Bad days

1 No information R t−R t+R
¡
nZR
¢

2 No information S tS
¡
N − nZR

¢
tS
¡
N − nZR

¢
3 Free information R and S t−R t+R

¡
nF+R

¢
That travel time variability decreases for Group R follows from Rows 1 and 3, and t−R < t+R

¡
nF+R

¢
< t+R

¡
nZR
¢
. That

travel time variability increases for Group S follows from Rows 2 and 3, and t−R < tS
¡
N − nZR

¢
< t+R

¡
nF+R

¢
.

8.7 Appendix 7: Compensating variation and degree of risk aversion

Let travel time in the No information regime (Z) be T1 on Good days, and T2 on Bad days. And let travel time

in the Free information (F ), Costly information (C), or Private information regime (I) be T3 on Good days, and

T4 on Bad days. The compensating variation CV r (θ) for information regime r, r ∈ {F,C, I}, is defined by the
condition

Ψ (θ) ≡ EUr (T + CV r (θ) ; θ)− EUZ (T ; θ) = 0,

or

(1− p)U (T3 + CV r (θ) ; θ) + pU (T4 + CV r (θ) ; θ)− (1− p)U (T1; θ)− pU (T2; θ) = 0.

Two generic cases cover all the cases considered in the text.

8.7.1 Case 1: T1 = T3 < T4 < T2

This case covers CV F
R , CV

C
RR, CV

C
RI and CV

I
R. CV for these cases is guaranteed to be positive. With CV

r (θ) > 0,

U1 > U3 > U4 > U2, and No information induces a mean-preserving spread of utility relative to information. Now
∂ψ
∂θ = Er ∂U(t;θ)∂θ − EZ ∂U(t;θ)

∂θ . By Assumption 3, ∂U/∂θ is a strictly concave function of U . Hence by Jensen’s

inequality ∂ψ
∂θ

¯̄
CV r(θ) > 0 . Given

∂ψ
∂CV r(θ) < 0, it follows that CV

r (θ) is an increasing function of θ for Case 1.

8.7.2 Case 2: T3 < T1 = T2 ≤ T4

This case covers CV F
S , CV

C
SI , CV

C
SS and CV

I
S . CV is not guaranteed to be positive. But whether or not it is positive,

after CV is added to travel times U3 > U1 = U2 > U4. Information therefore induces a mean-preserving spread

of utility relative to No information. Hence by Jensen’s inequality ∂ψ
∂θ

¯̄
CV r(θ) < 0 , and CV r (θ) is a decreasing

function of θ for Case 2.

8.8 Appendix 8: Compensating variation is negative for sufficiently risk-averse
drivers

For brevity let tZ denote (certain) travel time with No information, tG travel time on Good days with information,

and tB > tG travel time on Bad days with information. CV (θ) is defined by the condition

pU (tB + CV (θ) ; θ) + (1− p)U (tG + CV (θ) ; θ)− U
¡
tZ ; θ

¢
= 0,
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or

G (t; θ) ≡ U
¡
tZ ; θ

¢
⎡⎢⎢⎢⎣pU (tB + t; θ) + (1− p)U (tG + t; θ)

U (tZ ; θ)| {z }
≡H(t;θ)

− 1

⎤⎥⎥⎥⎦ = 0 at t = CV (θ) .

If t < tZ − tB then Lim
θ→∞

H (t; θ) = 0, and Lim
θ→∞

G (t; θ) = ∞. If t > tZ − tB then Lim
θ→∞

H (t; θ) = ∞, and
Lim
θ→∞

G (t; θ) = −∞. Therefore Lim
θ→∞

CV (θ) = tZ − tB. Now tZ = tS
¡
N − nZ+R

¢
. With Free information, tB =

tS
¡
N − nF+R

¢
and Lim

θ→∞
CV (θ) = tS

¡
N − nZ+R

¢
−tS

¡
N − nF+R

¢
< 0. With Costly information, tB = tS

¡
N − nC+R

¢
and Lim

θ→∞
CV (θ) = tS

¡
N − nZ+R

¢
− tS

¡
N − nC+R

¢
< 0.

8.9 Appendix 9: Proof of Lemma 2

Part (a): The proof follows closely the proof of Lemma 1. R R S ⇐⇒ ψRS (θ; p, nR, nS , nI) T 0. If R Â S

for all θ ∈ [0,∞) then θ̂RS = 0. If R ≺ S for all θ ∈ [0,∞) then θ̂RS = ∞. If neither preference ranking
holds for all θ then, by continuity of ψRS in θ, there exists at least one θ̂RS such that ψRS

³
θ̂RS ; ·

´
= 0. Now

ψRS = ERU (t; θ)− ESU (t; θ), and
∂ψRS
∂θ = ER ∂U(t;θ)

∂θ − ES ∂U(t;θ)
∂θ . By Assumption 3, ∂U/∂θ is a strictly concave

function of U , and hence by Jensen’s inequality

∂ψRS
∂θ

¯̄̄
θ=θ̂RS

< 0 , (14)

and θ̂RS is unique. Furthermore,

ψRS (θ; p, nR, nS , nI) ≷ 0 as θ ≶ θ̂RS (p, nR, nS , nI) . (15)

Part (b): Consider p0 > p. Since t−R < tS (nS) and t+R (nR) ≥ tS (nS + nI),

U
³
t−R; θ̂RS (p, nR, nS , nI)

´
> U

³
tS (nS) ; θ̂RS (p, nR, nS , nI)

´
, and

U
³
t+R (nR) ; θ̂RS (p, nR, nS , nI)

´
≤ U

³
tS (nS + nI) ; θ̂RS (p, nR, nS , nI)

´
.

Therefore ψRS
³
θ̂RS (p, nR, nS , nI) ; p

0, nR, nS , nI
´
< 0. Given (14) it follows that

θ̂RS (p
0, nR, nS , nI) < θ̂RS (p, nR, nS , nI) .

This proves that θ̂RS is decreasing in p. The comparative statics properties for nR, nS and nI are derived similarly

using the respective inequalities

ψRS

³
θ̂RS (p, nR, nS , nI) ; p, n

0
R, nS , nI

´
< 0 for n0R > nR,

ψRS

³
θ̂RS (p, nR, nS , nI) ; p, nR, n

0
S , nI

´
> 0 for n0S > nS ,

ψRS

³
θ̂RS (p, nR, nS , nI) ; p, nR, nS , n

0
I

´
> 0 for n0I > nI .

8.10 Appendix 10: Proof of Lemma 3

Part (a): The proof follows the proof of Lemma 2(a) by replacing regime S by regime I.
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Part (b): Consider p0 > p. Since t−R < t−R + π and t+R (nR) ≥ tS (nS + nI),

U
³
t−R; θ̂RI (π, p, nR, nS + nI)

´
> U

³
t−R + π; θ̂RI (π, p, nR, nS + nI)

´
, and

U
³
t+R (nR) ; θ̂RI (π, p, nR, nS + nI)

´
≤ U

³
tS (nS + nI) ; θ̂RI (π, p, nR, nS + nI)

´
.

Hence ψRI
³
θ̂RI (π, p, nR, nS + nI) , π; p

0, nR, nS + nI

´
< 0. The counterpart to Condition (15) is

ψRI (θ, π; p, nR, nS + nI) ≷ 0 as θ ≶ θ̂RI (π, p, nR, nS + nI) .

It follows that

θ̂RI (π, p
0, nR, nS + nI) < θ̂RI (π, p, nR, nS + nI) .

The comparative statics properties for nR, π and nS + nI are derived similarly using the respective inequalities

ψRI

³
θ̂RI (π, p, nR, nS + nI) , π; p, n

0
R, nS + nI

´
< 0 for n0R > nR,

ψRI

³
θ̂RI (π, p, nR, nS + nI) , π

0; p, nR, nS + nI

´
> 0 for π0 > π,

ψRI

³
θ̂RI (π, p, nR, nS + nI) , π; p, nR, n

0
S + n0I

´
> 0 for n0S + n0I > nS + nI .

8.11 Appendix 11: Proof of Lemma 4

Part (a): The proof follows the proof of Lemma 2(a) by replacing regime R by regime I.

Part (b): The comparative statics properties for π, p, nI , nS , and nS with nS + nI held constant are derived

using the respective inequalities

ψIS

³
θ̂IS (π, p, nS , nI) , π

0; p, nS , nI
´
< 0 for π0 > π,

ψIS

³
θ̂IS (π, p, nS , nI) , π; p

0, nS , nI
´
< 0 for p0 > p,

ψIS

³
θ̂IS (π, p, nS , nI) , π; p, nS , n

0
I

´
< 0 for n0I > nI ,

ψIS

³
θ̂IS (π, p, nS , nI) , π; p, n

0
S , nI

´
≷ 0 for n0S > nS ,

ψIS

³
θ̂IS (π, p, nS , nI) , π; p, n

0
S , n

0
I

´
> for n0S > nS and n0S + n0I = nS + nI

The last three inequalities are readily established if it assumed that all relevant functions are differentiable. For

the third inequality:

∂ψIS
∂nI

= p

⎡⎢⎢⎣∂U (tS (nS + nI) + π; θ)

∂t
− ∂U (tS (nS + nI) ; θ)

∂t| {z }
−

⎤⎥⎥⎦ ∂tS (nS + nI)

∂NS| {z }
+

< 0,
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where the term in square brackets is negative because U (·) is strictly concave in t. For the fourth inequality:

∂ψIS

∂nS
= p

⎡⎢⎢⎣∂U (tS (nS + nI) + π; θ)

∂t
− ∂U (tS (nS + nI) ; θ)

∂t| {z }
−

⎤⎥⎥⎦ ∂tS (nS + nI)

∂NS| {z }
+

− (1− p)
∂U (tS (nS) ; θ)

∂t| {z }
−

∂tS (nS)

∂NS| {z }
+

≷ 0.

For the fifth inequality

∂ψIS
∂nS

− ∂ψIS
∂nI

= − (1− p)
∂U (tS (nS) ; θ)

∂t| {z }
−

∂tS (nS)

∂NS| {z }
+

> 0.

8.12 Appendix 12: Proof of Proposition 6

By Proposition 5, for any (p, nR, nS , nI) there exists a unique price π = π̂ (p, nR, nS , nI) and a unique risk aversion

threshold θ̂RS (p, nR, nS , nI) such that a driver with risk aversion θ̂RS is indifferent between R, S and I. With

π = π̂, nI = 0. The size of group R is nR = NF (θ) with θ = θ̂RS (p, nR, nS , nI = 0). By Assumption 4, F (·) is
continuous and strictly increasing in θ over its support so that nR is a continuous and strictly increasing function

of θ, with nR = 0 at θ = 0 and Lim
θ→∞

nR = N . By Lemma 2, θ̂RS is continuous and decreasing with nR, and

continuous and increasing with nS . And by Assumption 4, θ̂RS (p, nR = N,nS = 0, nI = 0) <∞. Hence the pair of
equations nR = NF (θ) and θ = θ̂RS (p, nR, nS , nI = 0) has a unique solution nR = nCR0 (p,N) and θ = θC0 (p,N)

with nCR0 = NF
³
θC0

´
and θC0 = θ̂RS

¡
p, nCR0,N − nCR0, 0

¢
. In addition, πC (p,N) = π̂

¡
p, nCR0, N − nCR0, 0

¢
.

To establish the comparative statics properties for p, consider p0 > p. The curve n = NF (θ) is unchanged

while the curve θ = θ̂RS (p, nR, nS , nI = 0) is decreasing in p by Lemma 2. Hence θC0 (p
0, N) < θC0 (p,N) and

nCR0 (p
0, N) < nCR0 (p,N).

8.13 Appendix 13: Proof of Proposition 7

For π = πC (p,N) the equilibrium is as described in Proposition 6 with no one choosing strategy I. The same equilib-

rium clearly applies for π > πC (p,N). For 0 < π < πC (p,N), all three strategies R, S and I are selected. By Propo-

sition 5, for any (p, nR, nS , nI) there exists a unique price π̂ (p, nR, nS , nI) and two functions θ̂RI (π, p, nR, nS + nI)

and θ̂IS (π, p, nS , nI) such that for π < π̂, θ̂RI < θ̂IS and nR = NF
³
θ̂RI

´
, nI = N

³
F
³
θ̂IS

´
− F

³
θ̂RI

´´
and

nS = N
³
1− F

³
θ̂IS

´´
. The five unknowns

³
nCR, n

C
S , n

C
I , θ̂RI , θ̂IS

´
can be solved in two steps. The first step is to

solve nCR and θ̂RI . The function NF (θ) is continuous and strictly increasing in θ over its support. By Proposition

5, θ̂RI is continuous, decreasing in nR, and increasing in nS+nI . And θ̂RI (π, p,N, 0) <∞. Hence the pair of equa-
tions nR = NF (θ) and θ = θ̂RI (π, p, nR, N − nR) has a unique solution nR = nCR (π, p,N) and θ = θA (π, p,N)

with nCR = NF (θA) and θA = θ̂RI
¡
π, p, nCR, N − nCR

¢
.

The second step is to solve nCS , n
C
I , and θ̂IS . Now θ̂IS ∈

h
θ̂RS ,∞

´
and nCS + nCI = N − nCR. The func-

tion nS = N (1− F (θ)) is continuous and decreasing from N − nCR to 0 as θ̂IS increases from θ̂RS to ∞. By
Proposition 5, θ̂IS is a continuous and increasing function of nS with nS + nI held fixed. Hence the pair of equa-

tions nS = N (1− F (θ)) and θ =θ̂IS
¡
π, p, nS , nI = N − nCR − nS

¢
has a unique solution nS = nCS (π, p,N) and

θB =θ̂IS
¡
π, p, nCS , N − nCR − nCS

¢
. Finally, nI = nCI (π, p,N) = N − nCR − nCS .
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8.14 Appendix 14: Comparative statics of Costly information equilibrium

The five endogenous variables {nR, nS , nI , θA, θB} are determined by the five equations

nR = NF (θA) , (16)

nI = N (F (θB)− F (θA)) , (17)

nS = N (1− F (θA)) , (18)

indifference between Strategies R and I at θ = θA:

pU
¡
t+R (nR) ; θA

¢
+ (1− p)U

¡
t−R; θA

¢
= pU (tS (N − nR) + π; θA) + (1− p)U

¡
t−R + π; θA

¢
, (19)

and indifference between Strategies I and S at θ = θB:

pU(tS(N − nR) + π; θB) + (1−p)U
¡
t−R + π; θB

¢
= pU(tS(N − nR) ; θB) + (1−p)U(tS(nS) ; θB) . (20)

Variable nI does not appear in eqns. (19) or (20), and hence can be solved ex post using eqn. (17). To simplify

notation, index the six travel times numerically in order of increasing magnitude:

t−R|{z}
t1

< t−R + π| {z }
t2

< tS(nS)| {z }
t3

< tS(nS + nI)| {z }
t4

< tS(nS + nI) + π| {z }
t5

< t+R (nR)| {z }
t6

,

and define mij ≡ ∂U(ti;θj)
∂t < 0, ci ≡ ∂ti

∂ni
> 0, vij ≡ ∂U(ti;θj)

∂θ < 0 and Uij ≡ U (ti; θj) < 0, i = 1, ..., 6, j = A,B.

(Note that c1 = c2 = 0 < c3 ≤ c4 = c5.) Eqns. (16), (18), (19) and (20) can then be written:

nR −NF (θA) = 0, (21)

nS −N (1− F (θB)) = 0, (22)

p (U6A− U5A) + (1− p) (U1A− U2A) = 0, (23)

p (U4B− U5B) + (1− p) (U3B− U2B) = 0. (24)

Equations (21) and (23) are separable in nR and θA. The total differentials are"
1 −Nf (θA)

p (m5Ac5 +m6Ac6) p (v6A − v5A) + (1− p) (v1A − v2A)

#"
dnR

dθA

#
=

"
0 0 F (θA)

pm5A + (1− p)m2A U5 − U6 + U1 − U2 pm5Ac5

#⎡⎢⎣ dπ

dp

dN

⎤⎥⎦ .
Define ∆A ≡ p (v6A − v5A)+(1− p) (v1A − v2A)+p (m5Ac5 +m6Ac6)Nf (θA) < 0. The comparative statics effects

for nR are:

∂nR
∂π

= ∆−1A

⎡⎢⎣pm5A + (1− p)m2A| {z }
−

⎤⎥⎦Nf (θA) > 0, (25)
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∂nR
∂p

= ∆−1A

⎡⎣U5 − U6 + U1 − U2| {z }
+

⎤⎦Nf (θA) < 0, (26)

∂nR
∂N

= ∆−1A

⎧⎪⎨⎪⎩F (θA)

⎡⎢⎣p (v6A − v5A) + (1− p) (v1A − v2A)| {z }
−

⎤⎥⎦+Nf (θA) pm5Ac5| {z }
−

⎫⎪⎬⎪⎭ ∈ (0, 1) . (27)

Given (21), (25) and (26),

∂θA
∂π

> 0, and
∂θA
∂p

< 0, (28)

∂θA
∂N

= ∆−1A p [m5Ac5 (1− F (θA))−m6Ac6F (θA)]
s
=?, (29)

where s
=? indicates that the sign is indeterminate. Equations (22) and (24) can be used to derive the compara-

tive statics for nS and θB by substituting in the comparative statics derivatives just derived for nR. The total

differentials are "
1 Nf (θB)

(1− p)m3Bc3 p (v4B − v5B) + (1− p) (v3B − v2B)

#"
dnS

dθB

#
=

⎡⎢⎣ 0 0 1− F (θB)

pm5B + (1− p)m2B

+p (m4Bc4 −m5Bc5)
dnR
dπ

U5 − U4 + U3 − U2

+p (m4Bc4 −m5Bc5)
dnR
dp

p (m5Bc5 −m4Bc4) ·¡
1− dnR

dN

¢
⎤⎥⎦
⎡⎢⎣ dπ

dp

dN

⎤⎥⎦ .
Define ∆B ≡ p (v4B − v5B)+(1− p) (v3B − v2B)− (1− p)m3Bc3Nf (θB) > 0. The comparative statics derivatives

for nS are:

∂nS
∂π

= −∆−1B

⎡⎢⎢⎣pm5B + (1− p)m2B| {z }
−

+ p(m4Bc4 −m5Bc5)| {z }
+

∂nR
∂π| {z }
+

⎤⎥⎥⎦Nf (θB)
s
=?, (30)

∂nS
∂p

= −∆−1B

⎡⎢⎢⎣U5 − U4 + U3 − U2| {z }
−

+ p(m4Bc4 −m5Bc5)| {z }
+

∂nR
∂p| {z }
−

⎤⎥⎥⎦Nf (θB) > 0, (31)

∂nS
∂N = ∆−1B

⎧⎪⎨⎪⎩[p (v4B − v5B) + (1− p) (v3B − v2B)]| {z }
+

(1− F (θB))

−p(m5Bc5 −m4Bc4)| {z }
−

µ
1− ∂nR

∂N

¶
| {z }

+

Nf (θB)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
> 0. (32)

Given (22), (30) and (31)

∂θB
∂π

s
=?, and

∂θB
∂p

< 0.
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Given (22) and (32)

∂θB
∂N

= ∆−1B

⎡⎢⎢⎢⎣p(m5Bc5 −m4Bc4)| {z }
−

µ
1− ∂nR

∂N

¶
| {z }

+

− (1− p)m3Bc3| {z }
−

(1− F (θB))

⎤⎥⎥⎥⎦ s
=?,

∂nI
∂π

= −

⎛⎜⎜⎝∂nR
∂π| {z }
+

+
∂nS
∂π|{z}
?

⎞⎟⎟⎠ s
=?,

∂nI
∂p

= −

⎛⎜⎜⎝∂nR
∂p| {z }
−

+
∂nS
∂p|{z}
+

⎞⎟⎟⎠ s
=?,

∂nI
∂N

= 1−

⎛⎜⎜⎝∂nR
∂N| {z }
+

+
∂nS
∂N|{z}
+

⎞⎟⎟⎠ s
=?

8.15 Appendix 15: Proof of Proposition 8

The proof has a similar structure to the proof of Lemma 2. By Theorem 3, CV I (θ) is maximal at θ = θRS , where

θRS is defined by the condition of indifference between Strategies R and S:

pU
¡
t+R
¡
nZR
¢
; θRS

¢
+ (1− p)U

¡
t−R; θRS

¢
= U

¡
tS
¡
N − nZR

¢
; θRS

¢
,

or

p
U
¡
t+R
¡
nZR
¢
; θRS

¢
U
¡
tS
¡
N − nZR

¢
; θRS

¢ + (1− p)
U
¡
t−R; θRS

¢
U
¡
tS
¡
N − nZR

¢
; θRS

¢ = 1. (33)

Now Lim
p→0

t+R
¡
nZR
¢
= t+R (N), Limp→0

tS
¡
N − nZR

¢
= tS (0), Lim

p→0
θRS =∞, and

Lim
p→0

U(t−R ;θRS)
U(tS(N−nZR);θRS)

= Lim
p→0

U(t−R ;θRS)
U(tS(0);θRS)

= 0 since t−R < tS (0). Hence by (33)

p
U
¡
t+R
¡
nZR
¢
; θRS

¢
U
¡
tS
¡
N − nZR

¢
; θRS

¢ →
p→0

1. (34)

CV I (θRS) is defined by the condition

pU
¡
tS
¡
N − nZR

¢
+ CV I (θRS) ; θRS

¢
+ (1− p)U

¡
t−R + CV I (θRS) ; θRS

¢
−U

¡
tS
¡
N − nZR

¢
; θRS

¢
= 0,

or
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G (t; p, θRS (p)) ≡ U
¡
tS
¡
N − nZR

¢
; θRS

¢
⎡⎢⎢⎢⎢⎣pU

¡
tS
¡
N − nZR

¢
+ t; θRS

¢
U
¡
tS
¡
N − nZR

¢
; θRS

¢| {z }
≡H(t;p,θRS(p))

+

(1− p)
U
¡
t−R + t; θRS

¢
U
¡
tS
¡
N − nZR

¢
; θRS

¢| {z }
≡J(t;p,θRS(p))

− 1

⎤⎥⎥⎥⎥⎦ = 0 at t = CV I (θRS) .

There are two cases to consider.

8.15.1 Case 1: tS (0)− t−R < t+R (N)− tS (0) .

If t < tS (0) − t−R, then Lim
p→0

J (·) = 0. And given tS (0) + t < tS (0) + t+R (N) − tS (0) = t+R (N), Limp→0
H (·) = 0 by

(34) and Lim
p→0

G (·) = +∞.

If t > tS (0)− t−R, then Lim
p→0

J (·) = +∞ =⇒ Lim
p→0

G (·) = −∞. Therefore Lim
p→0

CV I (θRS) = tS (0)− t−R.

8.15.2 Case 2: t+R (N)− tS (0) < tS (0)− t−R.

If t < t+R (N)− tS (0), then Lim
p→0

J (·) = 0, Lim
p→0

H (·) = 0 by (34) and Lim
p→0

G (·) = +∞.

If t > t+R (N) − tS (0), then Lim
p→0

H (·) = +∞ and Lim
p→0

G (·) = −∞. Therefore Lim
p→0

CV I (θRS) = t+R (N) − tS (0).

Cases 1 and 2 combined imply CV I (θRS) →
p→0

Min
¡
tS (0)− t−R, t

+
R (N)− tS (0)

¢
.
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Figure 1: Travel time functions
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Figure 2: Effects of Free information with risk-neutral drivers and nCS > 0

41



Figure 3: Effects of Costly information with risk-neutral drivers

Figure 4: Strategy choice with Costly information
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Figure 5: Strategy choice in Costly information equilibrium

Figure 6: Strategy choices for No information and Costly information regimes
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Figure 8: Strategy choice in Costly information equilibrium in numerical example
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Figure 10: Compensating variation for Costly information in numerical example
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Figure 11: Varying probability of Bad days with Free information in numerical example
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Figure 12: Varying parameter θ̄ with Free information in numerical example
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