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Abstract— Path planning is an essential algorithm to help 

robots complete their task in the field quickly. However, some 

path planning algorithms are computationally expensive and 

cannot adapt to new environments with a distinctly different set 

of obstacles. This paper presents an optimal path planning 

based on a genetic algorithm (GA) that is proposed to be carried 

out in a dynamic environment with various obstacles. First, the 

points of the feasible path are found by performing a local 

search procedure. Then, the points are optimized to find the 

shortest path. When the optimal path is calculated, the position 

of the points on the path is smoothed to avoid obstacles in the 

environment. The simulation results show that the proposed 

algorithm successfully finds the optimal path in an environment 

with multiple obstacles. Compared to a traditional GA-based 

method, our proposed algorithm has a smoother route and a 

faster computation time due to path optimization. Therefore, 

this makes the proposed method advantageous in a dynamic 

environment. 

Keywords—genetic algorithm, mobile robot, optimal path, 

path planning, shortest path. 

I. INTRODUCTION 

The industrial revolution is claimed to be the era of 

automation, such as businesses, research facilities, and 

academic institutions around the world are researching 

robotics. Robots are increasingly prominent in our daily lives 

and have taken a significant part in humanitarian assistance 

[1], services industry [2], security[3], and drone photography 

[4], [5]. Robots are developed to make human life more 

comfortable, both for daily activities such as cleaning [6], 

cooking [7], assisting the elderly [8] and customer in a 

shopping center [9], even with risky activities such as 

monitoring hazardous environment [10] or for outdoor 

surveillance [11]. One of the crucial things that can help a 

robot complete its task quickly and accurately is path 

planning.  

Path planning is an action to produce a path or movement 

series from the initial position to the desired state with a 

collision-free performance under certain restrictions and 

limitations [12]. The path planning algorithms aim to provide 

robot mobility to overcome specific obstacles without human 

intervention while achieving the shortest path with minimal 

energy consumption and the lowest running time [13]. The 

shortest path is a common constraint on path planning 

algorithms. While the robot follows the shortest path, it takes 

less time to do the work, and energy consumption will be kept 

to a minimum. Since the robot is equipped with limited 

energy, it is crucial to keep the energy as long as possible.  

In general, the path planning algorithm is divided into two 

main implementations: probabilistic and artificial potential 

fields, i.e., genetic algorithms. Some algorithms for path 

planning are computationally expensive, especially when 

new environments and constraints are introduced. These 

algorithms cannot adapt to the new environment or recognize 

a different set of constraints. A method in [14] presents an 

outline of an autonomous mobile robot path planning 

algorithm that focuses on techniques to provide an ideal route 

for the robot to traverse the environment. Dijkstra algorithm 

is exploited in [15] to find the shortest path in a two-

dimensional grid planar robot workspace. This method 

reduces time complexity since one adjacent grid node is only 

inspected once. But, this can only be implemented in a static 

environment with a single constraint. When the environment 

changes or more constraints are added to the system, the 

performance was not evaluated. Authors in [13] used 

information from sensors installed on the robot to avoid 

obstacles. A near-shortest path for mobile robot (NSPMR) 

algorithm was introduced based on local path planning with 

energy consumption and processing time limits. Though, the 

number of obstacles the robot can avoid is limited and static. 

If the obstacles increases and their position change, the robot 

needs to restart the sensing process, so the processing time 

will increase.  

A primal-dual based heuristic for planning robot paths 

with different loading conditions is proposed in [16]. Since 

the robot has a wide variety of payloads, the time 

consumption and work handling of the system is 

heterogeneous. Nevertheless, this method can cause the 

expansion of the selected nodes and increase the computation 

time when several active subsets with the same constraint 

value are selected and go through the iteration process. 

Moreover, if the iteration result does not meet the constraints, 

the discarded components will be reselected to undergo the 

same procedure. This will certainly increase the processing 

time. Rapidly-exploring random tree (RRT) is implemented 

in [17] and [18] to modify the current path when an unknown 

obstacle blocks the path. Although the process shows high 
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flexibility in path planning, the higher number of dynamic 

obstacles resulted in higher computational cost.  

Since the advent of artificial intelligent methods, path 

planning algorithms have been developed by introducing a 

genetic algorithm (GA) for node selection or possible path 

detection. A GA-based method was presented to find the 

shortest path for robots in a static environment and a fixed 

number of obstacles [19], [20]. These methods ensure the 

convergence of the algorithm, and the optimal path chosen is 

the shortest. However, there is no discussion of the time 

consumption of the algorithm. Time consumption appears to 

be high since the algorithms will calculate all possible paths 

between the starting and destination points with a randomly 

selected initial point. The selection of the adjacent points 

should be made based on the fixed conditions of the 

workspace map. If there is no prior knowledge about the 

position of obstacles, these methods cannot perform 

optimally. GA is integrated in [21] to find the Bezier curve 

control points to define a smoother and more consistent path. 

The purpose of this method is to reduce energy loss in the 

robot. But, as the algorithm emphasizes path quality, the 

processing time increases. The computation time will be 

much higher when the environment has more obstacles. 

A method in [22] improves a new mutation operator in 

dynamic environments to find the optimal path faster. 

However, due to the mutations which are not randomized, the 

complexity of the algorithm is high. The algorithm will check 

all free nodes close to the mutation node and compare them 

with the fitness value of the complete path instead of selecting 

the nodes one by one. GA enhancement is proposed in [23] 

using multi-domain inversion to increase the number of 

offsprings. This method was claimed to be able to overcome 

the slow convergence and preterm population in traditional. 

As the number of offspring increases, a fitness condition is 

used to eliminate unwanted offsprings during the calculation. 

Although this method has superior performance compared to 

conventional methods, the complexity of this algorithm is 

increasing and sacrificing computational time. A method in 

[24] combined GA with the travelling salesman problem 

(TSP). This method claims that the simulated algorithm is 

feasible and could be implemented in real-world 

experiments. Since the GA and TSP have high computational 

costs, the authors need to consider the cost function regarding 

the obstacle position and numbers. 

This paper proposes an improvement of the GA-based 

path planning algorithm that can be implemented in a 

dynamic environment with changeable obstacles. Since there 

is no prior information about the adjacent points between the 

starting and destination nodes, GA is used to find the feasible 

path by performing a local search procedure. The points 

found are then optimized to get an optimal path that focused 

on the shortest and smoother routes while avoiding obstacles 

in the trajectory. Centralized computation is implemented so 

that there will be no additional burden to the systems in the 

robot. Thus, the resulting path can be efficient. 

The remainder of the paper is organized as follows. 

Section II and III introduce the path planning objectives and 

an overview system of the proposed method. Section IV 

presents the results and discussion. Finally, conclusions are 

drawn in Section V. 

II. PATH PLANNING OBJECTIVES 

A. Genetic Algorithm 

In this paper, the simulation of the autonomous mobile 

robot is designed for viewing the workspace, locating the 

robot position in the environment, recognizing obstacles, and 

improving the path route. Therefore, path planning is a crucial 

step for the navigation of the robot since it is challenging to 

ensure convergence towards a dynamic environment.  

GA works simultaneously with individual populations and 

explores several new areas in the solution space in parallel 

[25]. Environmental information is known beforehand and 

before the navigation process [26]. Thus, it can reduce the 

probability of the search space trapped within the local 

minimum to reach the target [27], [28]. The genetic algorithm 

process is described as follows: 

1)  Population 

GA is initiated by randomly generating an initial 

population representing the possible paths (chromosomes) 

from the start point to the target point [29]. However, all of 

the possible shortest paths are initially considered as a 

population. If the entire population is found to be blocked 

during path planning by a robot collision, the configuration 

space is increased locally to ensure that alternative paths can 

be found. Therefore, the configuration space is only extended 

as needed to reduce the computational costs of finding a path. 

2)  Fitness function 

The population of paths is evaluated using the fitness 

function during each reproduction cycle [30]. The fitness 

function used in this method considers the values for the path 

length, smoothness or angle of the path, and the number of 

feasible steps as follows 

       path length , feasible step ,  smoothnessF F F F  (1) 

The smoothness of the path is considered because a 

smoother route directly impacts the time cost of the robot to 

travel from the starting point to the target point. If the path has 

rough angles, the robot has to slow down for each turn which 

increases the total travel time. The feasible paths include 

additional points generated for avoiding the obstacles in the 

path. Therefore, the fitness function in this paper can produce 

a path with a minimum length, minimum time, and minimum 

speed to reach the target. 

3) Encoding of chromosomes 

The chromosome or path represents a candidate solution to 

find an optimal path planning [31]. A chromosome consists of 

a start point, a target point, and points that are generated along 

the path for the mobile robot to pass. These points are referred 

to as chromosomal genes. In our method, the points are 

represented as pixel locations in the two-dimensional 

environment by  ,n nx y . 
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4) Selection method 

The selection procedure stores the best genes on 

chromosomes for transfer to new generations. First, the 

objective function values of all chromosomes are found. Then, 

fitness values are assigned to the chromosomes according to 

the value of the objective function. The rank-based fitness is 

given to prevent some chromosomes from becoming 

dominant in the population. In the last step, the two 

chromosomes with the highest probability are selected as 

parents to mate via crossover to produce new chromosomes. 

5) Crossover operator 

The crossover operator takes two parents and divides their 

features in half at the center position. Half of each parent is 

then used to form a new individual. So that two offsprings are 

produced. The crossover of two infeasible chromosomes can 

generate a new infeasible path. To solve this problem, every 

chromosome must be checked. If it intersects with an obstacle 

while generating the initial population, the genes intersecting 

on the chromosomes are randomly changed to a feasible one. 

6) Mutation operator 

All candidate chromosomes in the population undergo 

random mutations after the crossover operation. This 

procedure is applied with uniform probability to all genes of 

all individuals in the population. The mutation operator takes 

a random point from the path and replaces it with a random 

path to its neighboring point. Therefore, mutations can 

increase population diversity and avoid premature 

convergence. 

 

B. Environment 

In this paper, four main points (i.e., A, B, C, and D) are 

simulated to be selected as a start point (S) and a target point 

(T) in a two-dimensional environment. Obstacles (blue 

square) can be randomly generated and their location 

information is known, as shown in Fig. 1. The path planning 

is designed to find the optimal path from S to T within ten 

randomly generated points (small blue circle) that do not 

collide with the obstacles. Then, a robot (yellow circle) is 

converted into a single point in the field of computational 

geometry [32]. The points on the path are indicated by 

  0 1 2 1, , , , , , ,n np S p p p p p T L                (2) 

where pn is the n-th gene of chromosomes or points in the 

path. The coordinate of pn is denoted as (xn, yn). 

In our method, length and smoothness are used as path 

optimization which is related to energy loss in the path. If the 

distance of the robot from the obstacles during running is less 

than the sensor safe distance, this can be a dangerous situation 

that can damage the robot. Therefore, a considerable distance 

between the robot and the obstacle is required for a safer 

route. The objectives designed to improve the optimal route 

of the robot as follows:  

 

 

 

Fig. 1. Environmental simulation. 

 

1) Path length 

The path length can be calculated as the sum of the 

distances between each point in a path as follows 

 1

0

,
L

p n n

n

d p p 



                            (3) 

where L is the length of the chromosome, d is the distance of 

every two points connected which can be calculated using the 

Euclidean distance as follows 

     
2 2

1 1 1,n n n n n nd p p x x y y               (4) 

where  1 ,n n np x y   and  1 1 1,n n np x y   , 
1np 
 consists of 

the position of the next horizontal and vertical point. 

2) Path smoothness 

The path smoothness can be assumed as the degree of path 

sleekness. A smoother route can reduce the energy loss of the 

robot when running along the path. First, the average turning 

angle of the path is calculated by [33] 

 

     

   

1 2

1 2 1 1 2 11

1 2

, ,

cos
, ,

n n n

n n n n n n n n

n n n n

p p p

x x x x y y y y

d p p d p p





 

     

 


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    

 (5) 

Then, the total average turning angle in 
p  can be 

determined by 

   1 2

0

1
, ,

L

i i i

n

p p p p
L

   



                      (6) 

III. PROPOSED METHOD 

The proposed method process is summarized in Algorithm 

1. First, variables are initialized and information on the 

environment is stored. The Sn and Tn are selected by user, and 

several points pn are generated along the path. The obstacles 

Oi are randomly generated and their positions are known. The 

obstacles positions are stored as pn. Oi is added as population 

POP. In POP, the objectives of each individual are evaluated. 

obstacle 

obstacle 

obstacle 

obstacle 

path path 

path 

path 
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Point B
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Robot
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If the stopping conditions have not been reached, a new 

population POP’ is generated. Individuals are selected from 

POP by a selection operator. Individuals in POP are paired 

and a crossover operator is performed. Every individual in 

POP’ is evaluated and the infeasible solutions examined. If 

there is a possibility that an infeasible path can occur, then 

the mutation operator is carried out. Individuals in POP are 

classified according to the set of feasible and infeasible 

solutions. This process is repeated until a solution is found that 

satisfies the optimal path planning and a fixed number of 

generations is reached. 

 

Algorithm 1: Path planning pseudocode 

1. Initializing and setting the environment, population-

scale Npop, the maximum iteration of GA N, number 

of obstacles Nobs, the position of every obstacle Oi, 

the crossover probability αc, the mutation 

probability αm, and the whole population set pL. 

2. Determine start position Sn, target position Tn, and 

path point pn. 

3. Calculate visible space of Sn as Vn. 

4. While i < Npop 

    Set Oi to store in pn . 

    Add pn to Oi. 

    Sj= Sn and VSi = Vn. 

    While Tn ≠ VSn 

         Select a pn from VSi, pi= pn. 

    Add Tn into Oi. 

    Add Oi into population POP. 

    i = i +1 

5. Determine the feasible path and start the genetic 

operation. 

6. While j < N  

    Calculate chromosome fitness in the population. 

    Perform a selection operation.     

    Perform a crossover operation. 

If the crossover point can cause infeasible 

solution 

    Then modify the chromosome by a mutation 

operation. 

New generated individual stored in child 

population POP’.     

7. Output the optimal solution. 

8. The robot starts moving to travel along the path. 

 

A. Path Planning Improvements 

In the selection operator, the best individuals are selected 

and stored in POP. Two individual in POP are selected and 

their features are swap by a crossover operation. The location 

of the points and individual in POP are evaluated to improve 

the optimal solution as follows:   

1)  Shortest path 

A single point variation is used to determine the shortest 

path when passing by the obstacles. A point in the path is 

randomly selected and replaced with a point randomly 

generated around an obstacle. The path that is produced after 

the mutation can be better or worse than the previous path. 

Therefore, mutations are continued until the shortest path is 

optimal. Fig. 2 shows the point mutation to find the shortest 

path. 

 

 

(a) (b) 

Fig. 2. Mutation of points on the path to obtaining the shortest path. (a) A 
randomly selected point (red circle) is replaced by a randomly generated 

point (green circle). (b) New path results. 

 

2) Position update 

Several three continuous points  1 1, ,n n np p p 
 around 

obstacles are selected to examine for their positions in the 

path, as shown in Fig. 3. The position of 
np  is updated by 

n np p                                      (7) 

where   is the displacement of the 
np  in the solution space,  

can be calculated by 

a b                                    (8) 

where α and β are the velocity constraints in the updated 

position which are set to ±1% of the vector distance between 

the upper and lower boundaries of the solution space, 

1a n np p    , and 
1b n np p   . 

 

 

(a)  (b) 

Fig. 3. Update point positions. (a) Three continuous points are selected and 

the center point is moved to a new position (green circle). (b) New path 

results. 

 

B. Obstacle Avoidance Approach 

In the case of infeasible path, the solution operator is 

performed to change the position of several points to create a 

feasible path. The infeasible path usually occurs when two or 

more points intersect an obstacle. Every two vertices are 

connected to form a new set of edges between the obstacle 

and the two selected points  1,n np p 
, as shown in Fig. 4. The 

edge that intersects with the obstacles will be deleted. 

Djikstra algorithm is applied to achieve the optimal shortest 

path based on graph vertices and edges. The path p can be 
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adjusted by adding a new point q. Thus, the new path is 

generated  as  0 1 2 1 1, , , , , , , , ,n n np S p p p p q p p T 
  L L . 

 

 

(a) (b) 

Fig. 4. Obstacle avoidance. (a) The points in the path are intersecting the 

obstacle (red circle). (b) New path results with a new point position (green 

circle). 

IV. RESULTS AND DISCUSSION 

 We compared the results with the traditional GA method 

to evaluate the performance of the proposed method. The 

robot is run from a start point to a target point with 5, 8, and 

10 obstacles in the environment. The numbers (x,y) indicate 

the center position of the obstacles. Fig. 5, 6, and 7 show the 

results of path planning using the traditional GA method and 

the proposed method.  

 In Fig. 5 (a), point 4 has a non-optimal location which 

makes the path longer, where it should have been between 

points 3 and 5 could have a shorter path. Between point 5 and 

the target point some improper points cause the path to 

intersect with the obstacle. Our proposed method can solve 

this problem, as shown in Fig. 5(b), the points 4 and 5 are 

updated so that the path can be shorter and avoid the 

obstacles. The same situation occurs in Fig. 6(a) and 7(a), the 

path generated by the traditional GA method cannot solve the 

problem of the infeasible path which makes the path not 

optimal and collides with obstacles. Fig. 6(b) and 7(b) show 

that our proposed method fixes these common problems of 

path planning and produces the optimal path while avoiding 

obstacles. A solution is found when the best fitness value 

meets the average fitness value, as shown in Fig. 5(c), 6(c), 

and 7(c). 

 Table I shows that the proposed method has shorter and 

smoother path compared to the traditional GA method. Table 

II summarizes the performance results of our proposed 

method. The more obstacles generated in the path would 

allow the algorithm to produce more individual generations 

and mutation operators. More mutations occur because the 

path has more obstacles, which means it is more difficult to 

find the optimal path solution. 

TABLE I.  PERFORMANCE COMPARISON 

Method 
Average Results 

Time 

(s) 

Path Length 

(pixels) 

Smoothness 

Traditional GA 10.68 565 7.8 

Proposed Method 8.57 521 6.5 

  

(a) 

 

(b) 

 

(c) 

Fig. 5. Path planning results of 5 obstacles. (a) Traditional GA. (b) Proposed 

method. (c) Average fitness value (green) and the best fitness value (red). 

 

TABLE II.  PERFORMANCE RESULTS 

Total Number 

of Obstacles 

Generations Mutations Average 

Fitness Value 

5 1002 1955 13646 

8 1008 2056 14283 

10 1012 2086 16382 

 

In Fig. 6(a), the traditional GA method cannot find a path 

that can avoid the obstacle between points 2 and 3, the same 

situation happens between points 4 and 5. Our proposed 

method updates the position for point 2 so that the path 

between points 2 and 3 do not hit obstacles, which also fix 

the position of point 5 so that the path is more optimal, as 

shown in Fig. 6(b). 

In Fig. 7(a), there are 5 points that are not optimal to create 

a path between a start point to a target point. Our proposed 

method makes the path more optimal with a few additional 

points to avoid obstacles around point 1 and a shorter path 

between points 2 and 4, as shown in Fig. 7(b). 
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(a) 

 

(b) 

 

(c) 

Fig. 6. Path planning results of 8 obstacles. (a) Traditional GA. (b) Proposed 

method. (c) Average fitness value (green) and the best fitness value (red). 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 7. Path planning results of 10 obstacles. (a) Traditional GA. (b) Proposed 

method. (c) Average fitness value (green) and the best fitness value (red). 

V. CONCLUSIONS 

This paper has presented path planning improvements for 

a mobile robot using genetic algorithms in an environment 

with multiple obstacles. Two objectives to be optimized are 

applied to find the optimal path. The GA operators are 

proposed to accelerate the evolution of individual populations 

in the path. This method selects points according to the fitness 

value of the total path rather than the direction of movement 

through the mutated points. Compared with the traditional 

GA method, the proposed method shows that the 

chromosomes generated by path planning have better 

characteristics and a faster computation time in the solution 

space. The average fitness values and the number of 

generations generated on this improved GA are more suitable 

for optimal path planning than the traditional method. Thus, 

the resulting path is shorter and smoother and can be used as 

a travel path for a mobile robot in a real application. For 

future works, the characteristics of the sensors in the robot 

can be considered for better path planning implementation. 
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