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Abstract

Introduction and hypothesis Several studies have assessed birth-related deformations of the levator ani muscle (LAM) and
perineum on models that depicted these elements in isolation. The main aim of this study was to develop a complex female pelvic
floor computational model using the finite element method to evaluate points and timing of maximum stress at the LAM and
perineum in relation to the birth process.

Methods A three-dimensional computational model of the female pelvic floor was created and used to simulate vaginal birth
based on data from previously described real-life MRI scans. We developed three models: model A (LAM without perineum);
model B (perineum without LAM); model C (a combined model with both structures).

Results The maximum stress in the LAM was achieved when the vertex was 9 cm below the ischial spines and measured
37.3 MPa in model A and 88.7 MPa in model C. The maximum stress in the perineum occurred at the time of distension by
the suboocipito-frontal diameter and reached 86.7 MPa and 119.6 MPa in models B and C, respectively, while the stress in the
posterior fourchette caused by the suboccipito-bregmatic diameter measured 36.9 MPa for model B and 39.8 MPa for model C.
Conclusions Including perineal structures in a computational birth model simulation affects the level of stress at the LAM. The
maximum stress at the LAM and perineum seems to occur when the head is lower than previously anticipated.
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Introduction

Vaginal birth causes a significant degree of deformation to the
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levator ani muscle (LAM) and perineum including the anal
sphincter complex. Trauma to the pelvic floor can have a
short- and long-term negative impact on a woman’s quality
of life including increasing her risk for urinary or anal incon-
tinence, perineal pain, dyspareunia and symptoms of pelvic
organ prolapse [1—4]. Therefore, the thorough analysis of the
actual components of birth and the evaluation and quantifica-
tion of their impact on the pelvic floor are of paramount im-
portance to understand the underlying mechanism of such
deformation. Furthermore, a focus on understanding the tim-
ing(s) and site(s) of maximal deformation and displacement is
an essential prerequisite to find solutions to mitigate the risk of
adverse outcomes.

In the clinical setting, quantification of the deformation of
the external visible structures is achieved by means of manual,
stereo-video or photo documentation assessments [5—7].
However, the precise direct measurement of deeper layers is
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a serious limitation of real-life measurements. Therefore, re-
cently several research groups have focused on using finite
element models based on available anatomical and biome-
chanical data [8—16]. This technology has been used to assess
the impact of certain obstetric maneuvers and interventions on
the level of strain of pelvic floor structures. However, more
recent advancements in computational science and biome-
chanical material simulation have facilitated the refinement
of such models, making them more realistic and ready for
testing.

The majority of studies have assessed LAM and perineal
muscle deformations on models that depicted these elements
in isolation [8—14, 16, 17]. These studies reported an LAM
stretch ratio ranging between 1.63 and 3.5:1 [8, 9]. The max-
imum LAM stretch was reported to occur when the leading
margin of the fetal head was between 5 and 11 cm below the
level of the ischial spines [9, 15, 17, 18]. Jing et al. developed
a model incorporating the LAM and perineum. However, the
perineum was modeled as a simplified structure integrated
within that of the LAM. In their study, the maximum stretch
ratios for the LAM and perineum were 4.64 and 4.15:1, re-
spectively. These values varied with the alteration in the stiff-
ness of the modeled perineum. Moreover, their reported max-
imum LAM stretch was achieved when the tip of the head
reached 12.2 cm along the curve of Carus [10].

Hence, the main aim of this study was to develop a com-
plex female pelvic floor computational model using the finite
element method and use it to simulate vaginal birth evaluating
the points of maximum stress at the LAM and perineum (i.e.,
perineal muscles, perineal membrane and overlying skin) and
the timing of their occurrence in relation to the process of
birth. As a secondary aim, we wanted to assess the impact of
the presence of perineal structures and the anococcygeal liga-
ment on LAM stress and vice versa by assessing the same
parameters on more simplified models of the perineum or
LAM only.

Methods

A three-dimensional computational model of the female pel-
vic floor was created and used to simulate vaginal birth. The
model was based on live-subject MRI data (a 25-year-old
nulliparous woman with a BMI of 21.9 kg/m* and no pelvic
floor dysfunction symptoms or displacement) using 130 pre-
viously described axial 3-T MR images [15, 18]. The initial
geometry was reconstructed using free semiautomatic 3D-
Slicer software (3.0, BWH, Boston, MA, USA). The resulting
geometry and mesh were created in HyperMesh commercial
software (11.0, Altair, MI, USA). The final simulation was
performed using Virtual Performance Solution commercial
software (15.0; ESI Group, Paris, France).
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Developing the biomechanical model of the fetal
head

The fetal head and its trajectory through the pelvic floor struc-
tures followed those described by dynamic magnetic reso-
nance of a vaginal delivery [19]. However, the fetal head
was scaled up to ensure that its main dimensions corresponded
to those of an average-size term fetus.

Developing the biomechanical model of bony pelvis
and levator ani muscles

The bony pelvis and the three components of the LAM
(pubovisceral muscle, PVM; puborectal muscle, PRM;
iliococcygeus muscle, ICM) were adapted from our previous
modeling study using MRI data as well [15, 18]. The pelvis
was constructed with 2D triangular mesh as a rigid non-
deformable body, while the deformable muscle was modeled
by 3D tetrahedral mesh.

During vaginal birth, the LAM undergoes extremely large
deformation [8, 10, 15, 17, 18]. Therefore, similar to our pre-
vious studies and using the same parameters, the hyperelastic
nonlinear Ogden material model was used [18, 20]. The ma-
terial parameters were based on experimental measurements
of porcine muscle samples. Twenty LAM samples from ten
female pigs were measured (age: 12—14 weeks, weight: 33—
45 kg, nulliparous). The muscles were cleared of fascia and
cut into cuboid-shaped samples suitable for the measurement.
Each sample underwent preconditioning consisting of 20 cy-
cles up to 15% of the sample relaxed length after excision,
freezing, thawing and clamping in the measurement device as
previously described [18, 21]. The uniaxial mechanical test
was performed using the Zwick/Roell Z050 traction machine
(Zwick/Roell, Ulm, Germany). The extension continued until
the muscle ruptured. The tensile forces and sample elongation
were recorded. To identify the unknown parameters of the
Ogden model, we estimated the stress-strain characteristics
using these recordings by fitting two pairs of material con-
stants @ and «. The following values of the Ogden parameters
were used: pul =8.9 GPa; u2=21.6 GPa; xl =0.1803; o2 =
15.112. The detailed process of material parameter identifica-
tion was described in a previous publication [18]. The muscle
tissue density and Poisson’s ratio used were p = 1.06 kg/l and
v =0.499, respectively [22, 23].

Developing the biomechanical model for perineal
structures

The main perineal structures, such as the transverse perineal
muscle, bulbospongious muscle, ischiocavernous muscle,
anoccocygeal ligament, perineal membrane, anal sphincter
complex and perineal skin, were newly developed for this
study. To design these components, the geometry as well as
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material parameters were based on available data from previ-
ous experimental, clinical and biomechanical studies [6, 7,
24-27] as well as cadaveric measurements. For this study,
six embalmed cadaver pelvises were used with a mean age
of 69.2, SD =5.6. The preparations were obtained from the
Department of Anatomy at the Faculty of Medicine in Pilsen,
Charles University. Each of the donors had signed informed
consent forms for the donation of their body tissues to the
Faculty of Medicine in Pilsen for research and educational
purposes. Cadavers were treated according to local standard
fixation methods. After placement in embalming fluid (10%
formalin, 70% ethanol and 20% glycerine), the preparations
were switched to 70% ethanol. Once differentiated and
photographed, the prepared muscles were measured in situ
using calipers. Measured values included total muscle length,
muscle belly width and dimensions of muscular attachment.
Significant outliers of shape of muscle bellies were eliminated
from the study. This methodology was chosen because of the
lack of reliable and comprehensive data from imaging studies
about these structures as highlighted by several authors [9, 10,
16].

All perineal muscles, as well the anococcygeal ligament,
were modeled by the Ogden material model to ensure they
could cope with the large deformations occurring during vag-
inal delivery. For the perineal muscles, we used the same
material constants as for LAM modeling. However, for the
anococcygeal ligament, the material parameters were based
on data available in the literature [24]. The perineal membrane
was modeled as a layered membrane, and the material param-
eters were adapted from previously published information
[25]. The layered membrane was composed of the matrix
and two layers of fibers in perpendicular directions. The per-
ineal skin model was based on an elastic shell; the material
parameters were in line with those published by Long et al.
[26]. The dimensions and positioning of most of perineal
structures were based on cadaveric measurements. Those of
the anal sphincter were determined from a 3D ultrasound scan
volume of a primiparous woman participating in another clin-
ical study. This was deemed suitable as measurements do not
seem to be affected by birth [27]. Anal sphincter volume was
acquired transperineally in the supine position using a GE
Voluson E8 (GE Kretz Medizintechnik, Zipf, Austria) with
an 8—4-MHz curved array volume transducer (acquisition an-
gle 85°). Volume acquisition was performed at rest and max-
imal squeeze.

Boundary conditions

Some surrounding tissues were not represented and replaced
by boundary conditions to ensure the realistic behavior of
represented parts. The pelvis was fixed for all degrees of free-
dom to fit the whole model in space. In our model, the ICM
attachment to the arcus tendineus fasciae pelvis was replaced

by fixation of this area in the superior-inferior direction. The
PVM attachment was replaced by full fixation of this muscle
part and its connection to the ICM was not implemented. The
PRM normally originates from the inferior part of the pubic
symphysis and forms a sling around the rectum. This connec-
tion was modeled by two boundary conditions where the or-
igin was fixed for all degrees of freedom, and the lower arch of
muscle was firmly connected to the external anal sphincter.

The areas of perineal muscle attachments were fixed re-
specting the real anatomy [3, 8].

Anatomically, the superficial transverse perineal muscles
originate from the ischial rami and are inserted into the peri-
neal body. In this model, the attachment to the pelvis was
modeled by full fixation of this part in space. The connection
to the perineal body was replaced by the interference fit to this
tissue. The bulbospongious muscle origins are in the perineal
body and are inserted into the pubic arch, fascia of corpora
cavernosa and clitoris. Their close connection with the peri-
neal body was also replaced by interference fit and the inser-
tion was modeled by fixation to the pubic arch. The same
principle of fixation was used for the ischiocavernous mus-
cles, which originate from the ischial tuberosities and rami on
either side and are inserted into clitoris. With respect to anat-
omy, the anococcygeal ligament was fixed in all degrees of
freedom in its attachment to the coccyx and connected to the
external anal sphincter. The interference fit was also modeled
between the external and internal anal sphincters and for the
other connections such as the perineal membrane and perineal
muscles. In addition, the perineal membrane was also fully
fixed along the sides to simulate the connection to the inferior
pubic ramus. The perineal skin was connected to the perineal
muscles by linked elements to substitute connective tissues.

Simulations

The vaginal delivery of the fetal head was simulated using the
developed finite element model and the Virtual Performance
Solution commercial software (15.0; ESI Group, Paris,
France). The same fetal head and birth trajectory were used
for all three models to facilitate comparison. No obstetric in-
terventions or maneuvers were simulated, i.e., all simulations
were “hands off” (Video). We measured the site, absolute
values and timing of points of maximum stress in the LAM
and perineum in relation to the course of vaginal birth. The
timing of the maximum LAM values was defined by stations,
i.e., the head descent measured between the most distal point
of the fetal head and the level of the ischial spines as previ-
ously described by Krofta et al. [15]. The timing of the max-
imum perineal stress values was defined by the fetal head
diameter passing the plane between the lower margin of the
pubic bone and posterior fourchette [12, 13]. Finally, the
downward displacement of the LAM and perineal structures
were compared to their pre-delivery position [15, 18].
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For the purpose of this study we developed three models:
model A (LAM without perineum); model B (perineum with-
out LAM); model C (a combined model with both structures)
(Fig. 1a—d). Due to the nature of this computational study, a
sample size calculation and advanced statistics were not
applicable.

Results

This study revealed that the maximum stress in the LAM was
in the anterior portion of the PVM. It measured 37.3 MPa in
model A and 88.7 MPa in model C. This stress was achieved
when the vertex was 9 cm below the ischial spines (Fig. 2a—c).
The maximum downward displacement of the PVM at the
level of the vagina was 0.2 cm and 2.4 cm in models A and
C, respectively, while the maximum downward displacement
of the PVM at the level of the rectum was 0.6 cm in model A
and 1.3 ¢cm in model C (Table 1).

The maximum stress at the perineal body was found in the
area of the posterior fourchette and was caused by the
suboccipito-frontal diameter. The maximum measurements
were 86.7 MPa and 119.6 MPa in models B and C, respec-
tively. The distal displacement was 4.9 cm in both models
(Table 2). The stress level in the posterior fourchette when
the suboccipito-bregmatic diameter was distending the peri-
neum was 36.9 MPa for model B and 39.8 MPa for model C.

Fig. 1 Variants of the model. a a
Model A: LAM without

perineum. b Model B: Perineum
without LAM. ¢ Model C:

Combined model containing both

LAM and perineum. d Color

legend
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Discussion
Summary of findings

The aim of this study was to develop a complex pelvic
floor finite element model to assess the impact of head
expulsion on the LAM and perineum in isolation with all
structures represented. Hence, we were able to analyze the
behavior of both structures separately and compare these
data with those obtained from the complex model. We
found that the LAM maximum stress markedly differed
between the model with LAM only (model A) and the
complex model (model C). However, the difference was
not as marked when comparing stress at the perineum be-
tween models B and C. Therefore, it is imperative that any
future computational modeling to assess the impact of
childbirth on LAM must be done on a model equipped with
both LAM and perineal elements. Our study was designed
to explore whether there were differences in LAM stress in
the LAM-only compared to a more realistic computational
model and not to assess the reasons for any identified dif-
ferences. Nevertheless, we believe that the observed differ-
ence in the measured LAM stress between models A and C
is interesting. Although only speculative, it is possible that
some of the tension that occurs at the LAM during birth is
secondary to the traction force from the displacement of
superficial layers, which is transmitted to the LAM through
its ligamentary attachments.

fetal head

pelvic bones
levator ani muscle
skin

anal sphincter
perineal membrane

perineal muscles

anococcygeal ligament
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Table 1

Measured values at the time of maximum stress in the LAM in models A and C

Model A (LAM)

Model C (LAM) Difference model C/A

Location (anatomical description or some coordinates)

Maximum stress (MPa) 373

Timing: head descent/station (cm) +9.1

Downward displacement of PVM at level of vagina 0.2
(cm against resting position)

Downward displacement of PVM at level of rectum 0.6

(cm against resting position)

Antero-inferior margin

Antero-inferior margin None
88.7 2.4-fold
+8.9 0.98-fold
2.4 12-fold
1.3 2.1-fold

We were able to assess the station of the fetal head associ-
ated with the maximal LAM stress. Interestingly, this seemed
to happen when the baby’s zygomatic processes of the tem-
poral bones were at the level of the maternal ischial spines
(Fig. 2a) and hence much lower than we previously expected.
This implies that attempts to reduce pressure on pelvic floor
structures before crowning of the perineum are probably of
limited protective value and strengthens the view that inter-
ventions to reduce such pressure at the time of head crowning
might be useful, not only for the perineum but also for the
LAM. Furthermore, based on the previously described real-
life fetal head trajectory [19], we identified that the maximum
stress at the perineum is caused by the suboccipito-frontal
rather than the suboccipito-bragmatic diameter secondary to
the natural head extension as the subocciput pivots against the
maternal symphysis pubis. This suggests that, in the clinical

Fig. 2 Fetal head position at the
time of maximum stress in the
LAM in model C. a Relationship
between the fetal head and level
of ischial spines. b Obstetrician’s
view at the time of maximum
stress in the LAM. ¢
Obstetrician’s view at the time of
maximum stress in the LAM with
all structures superficial to the
LAM not demonstrated to
facilitate its visualization

setting, manual perineal support at the time of head expulsion
should be maintained at least till the supraorbital margin of the
frontal bone passes the posterior fourchette.

Comparison of findings to other studies

Several of the computational models used to describe defor-
mations of the LAM during vaginal birth were not equipped
with a perineum [8, 9, 14, 16]. Although Jing et al. developed
a model incorporating an LAM and perineum, the latter was
developed as a simplified structure within the levator [10].
Furthermore, our previous computational modeling studies
involved only modeling of the perineal structures without
the LAM [11-13]. Based on the differences we identified in
the maximum stress between models A and B compared to C,
the reported previous measurements might not have been
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Table 2 Measured values at the time of maximum stress in perineal structures in models B and C

Model B

Location in the perineal body
(Anatomical description)
Maximum stress (MPa) 86.7
Timing: passing fetal head circumference
[anatomical description]

Caudal displacement (cm against resting position) 4.9

Posterior fourchette

Suboccipito-frontal

Model C Difference model C/B
Posterior fourchette None

119.6 1.4-fold
Suboccipito-frontal None

4.9 None

precise particularly for the maximum LAM stress.
Nevertheless, our findings concur with the results of these
studies in that the point of maximum LAM stress seems to
occur in the anterior portion of the PVM [8-10, 15, 17, 18].
We identified that the LAM maximum stress was achieved
when the leading edge of the head was at 9 cm below the level
of the ischial spines. Interestingly, Jing et al. reported the
maximum stretch when the tip of the head was 12.2 cm along
the curve of Carus [10]. It is important to emphasize that our
measurement was based on the vertical distance from the is-
chial spines rather than the distance along the birth trajectory.

Strengths and limitations

We appreciate that there are some limitations to our study.
First, the muscles material properties were based on uniaxial
testing of porcine LAM after preconditioning. Furthermore,
our cadaveric measurements were taken from an older cohort
of women. These properties and measurements may differ
from those of a younger pregnant woman particularly as they
only represent the muscle rather than the pelvic diaphragm
(LAM together with its superior and inferior fascia) and do
not consider the impact of pregnancy hormones on muscles
and connective tissue. It is possible that these issues could
have affected the accuracy and realism of our model.
However, for ethical reasons, obtaining such parameters from
women in the childbearing age was not feasible. Second, in
the dynamic MRI real-time fetal head trajectory we used [19],
there was a degree of left asynclitism (Fig. 2a) that seemed to
persist throughout this delivery. This is probably the reason
why measured stresses on the left and right side of the LAM
and perineum were not symmetrical. Due to this left
asynclitism, the highest LAM stress was measured on the left
side. It is possible that if the fetal head passed the pelvic floor
synclitically, the maximum stress might have been lower.
Finally, we did not assess the realism of the model by com-
paring the calculated levels of strain with actual anatomical
displacement data obtained from real-time imaging of the
birth process. However, to our knowledge such data are not
readily available yet. It would be prudent to explore the fea-
sibility of such comparisons in future validation studies of our
model. Nevertheless, our ability to develop a finite element
model that depicts both the LAM and perineal components
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with realistic material properties and utilizing dimensions and
trajectories based on real-life MRI images are major strengths
to our work.

Conclusion

Including the perineal structures in a computational model
seems to affect the maximum LAM stress. Moreover, the
maximum stress at the LAM and perineum seems to occur
when the fetal head is lower than anticipated. Due to the nov-
elty of our results, it is important for these findings to be
assessed in future independent studies using different birth
trajectories, fetal head dimensions and positions.
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