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A generalization of a theorem of Rodgers and Saxl
for simple groups of bounded rank

N. Gill, L. Pyber and E. Szabó

Abstract

We prove that if G is a finite simple group of Lie type and S1, . . . , Sk are subsets of G satisfying∏k
i=1 |Si| � |G|c for some c depending only on the rank of G, then there exist elements g1, . . . , gk

such that G = (S1)
g1 · · · (Sk)

gk . This theorem generalizes an earlier theorem of the authors and
Short.

We also propose two conjectures that relate our result to one of Rodgers and Saxl pertaining
to conjugacy classes in SLn(q), as well as to the Product Decomposition Conjecture of Liebeck,
Nikolov and Shalev.

1. Introduction

This note is inspired by two earlier results. One of them is the following theorem of Rodgers
and Saxl [13]:

Theorem 1. Suppose that C1, . . . , Ck are conjugacy classes in SLn(q) such that
∏k

i=1 |Ci| �
|SLn(q)|12. Then

∏k
i=1 Ci = SLn(q).

The other is a result of Gill, Pyber, Short and Szabó [2]:

Theorem 2. Fix a positive integer r. There exists a constant c = c(r) such that if G is a
finite simple group of Lie type of rank r and S is a subset of G of size at least two, then G is
a product of N conjugates of S for some N � c log |G|/ log |S|.

Our main result is a generalization of Theorem 2 in the spirit of Rodgers and Saxl:

Theorem 3. Let G = Gr(q) be a finite simple group of Lie type of rank r. There exists

c = f(r) such that if S1, . . . , Sk are subsets of G satisfying
∏k

i=1 |Si| � |G|c, then there exist
elements g1, . . . , gk such that G = (S1)g1 · · · (Sk)gk .

Theorem 3 differs to that of Rodgers and Saxl in three important respects, two good, one
not so good: First, our result pertains to all finite simple groups G of Lie type. Second, our
result does not just pertain to conjugacy classes, but to subsets of the group, provided we are
free to take conjugates.
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The third difference is a weak point: our result replaces the constant ‘12’ in Theorem 1 with
an unspecified constant that depends on the rank of the group G. We conjecture that we should
be able to do better, and not just for finite simple groups of Lie type, but for alternating groups
as well:

Conjecture 1. Let G be a non-abelian finite simple group. There exists c such that if
S1, . . . , Sk are subsets of G satisfying

∏k
i=1 |Si| � |G|c, then there exist elements g1, . . . , gk

such that G = (S1)g1 · · · (Sk)gk .

Conjecture 1 seems out of reach at the moment. Indeed, it is a significant generalization of
a conjecture that already exists in the literature — the Product Decomposition Conjecture of
Liebeck, Nikolov and Shalev [8] — and which already appears to be very challenging.

In light of the undoubted difficulty of proving Conjecture 1, we propose a second, weaker
conjecture. A proof of this conjecture, as well as being of interest in its own right, would
represent a significant staging post in the pursuit of a proof of Conjecture 1.

Conjecture 2. Let G be a non-abelian finite simple group. There exists c such that if
S1, . . . , Sk are normal subsets of G satisfying

∏k
i=1 |Si| � |G|c, then G = S1 · · ·Sk.

Note that S is a normal subset of the group G if it is invariant under conjugation by elements
of G; in other words, S is a union of conjugacy classes of G. Conjecture 2 is a generalization
of an important theorem of Liebeck and Shalev [9].

1.1. Structure of the paper

In § 2 we give the necessary background results used to prove Theorem 3. In §§ 3, 4 and 5, we
give partial results towards a proof of Theorem 3, depending on the size of the sets S1, . . . , Sk:
we use different techniques if these sets are ‘small’, ‘medium-sized’ or ‘large’. Finally, in § 6 we
prove Theorem 3.

2. Necessary background

We will use a theorem of Petridis [11, Theorem 1.7]:

Theorem 4. Let A and B be finite sets in a group G. Suppose that

(1) |AB| � α|A|;
(2) |AbB| � β|A| for all b ∈ B;
(3) |A| � γ|B|.
Then there exists S ⊆ A such that for all h > 1,

|SBh| � α8h−9βh−1γ4h−5|S|,
where Bh denotes the product of h copies of B.

From here on G is a finite group. Let minclass(G) denote the size of the smallest non-trivial
conjugacy class in G, and let mindeg(G) denote the dimension of the smallest non-trivial
complex irreducible representation of G.

As observed in [10], a result of Gowers [3] implies the following.

Proposition 2.1. Let G be a finite group and let k = mindeg(G). Take A,B,C ⊆ G such

that |A| · |B| · |C| � |G|3
k . Then G = ABC.
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The following two results give useful facts about simple groups of Lie type. Note that, if
we write Gr(q) for a simple group of Lie type of rank r over Fq, then there are multiple
conventions for the definition of r and the definition of q. We have stated the following results
very conservatively — they are valid for whichever standard definition of these two parameters
one cares to take (and this also explains the difference in the statement of the first, from that
which appears in [2]).

The first result follows for the classical groups from [6, Table 5.2.A] for the classical results
(taking into account the corrections listed in [18]), and for the exceptional groups from [15–17].

The second result is proved using the lower bounds on projective representations given by
Landazuri and Seitz [7] (taking into account the corrections listed in [6, Table 5.3.A]).

Proposition 2.2. Let G = Gr(q) be a simple group of Lie type of rank r over Fq, the finite

field of order q. We have qr/2 � minclass(G) < |G| � q8r2
.

Proposition 2.3. Let G = Gr(q) be a simple group of Lie type of rank r over Fq, the finite

field of order q. Let k = mindeg(G). Then |G| < k8r2
.

Note that Propositions 2.1 and 2.3 imply that if A,B,C are subsets of G = Gr(q) with
|A|, |B|, |C| > |G|1− 1

24r2 , then G = ABC.
The next result was obtained independently in [4, 14]. The subsequent corollary is an easy

consequence, and can be found in [2]. Note that, by the translate of a set S in a group G, we
mean a set of form Sg := {sg | s ∈ S} where g is some element of G.

Proposition 2.4. Each finite simple group G is 3
2 -generated; that is, for any non-trivial

element g of G there exists h in G such that 〈g, h〉 = G.

Corollary 2.5. Let G be a finite simple group and let S be a subset of G of size at least
two. Then some translate of S generates G.

Finally, we need the Product Theorem, proved independently in [1] and [12].

Theorem 5. Fix a positive integer r. There exists a positive constant η = η(r) such that,
for G a finite simple group of Lie type of rank r and S a generating set of G, either S3 = G or
|S3| � |S|1+η.

3. Medium-sized sets

Lemma 3.1. Fix r > 0. There exists ε > 0 such that if A and B are subsets of G = Gr(q), a
finite simple group of Lie type of rank r, with 2 � |B| � |A|, then one of the following holds.

(1) |A| � |B|1+ε.
(2) There exists g ∈ G such that |A ·Bg| � |A| · |B|ε.
(3) |A| � |G|1/26 · |B|25/26.
(4) There exists g ∈ G such that |A ·Bg| � |G|1/25 · |A|24/25.

Proof. Appealing to Corollary 2.5, let B0 = Bx be a translate of B that generates G.
Define γ = |A|/|B|, α = |AB|/|A| and β = max{|A ·Bb−1 |/|A| | b ∈ B}. We apply Theorem 4
with h = 3 to obtain that there exists S ⊂ A such that

|S ·B3
0 | � α15β2γ7|S|.
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This implies in particular that

|B3
0 | � α15β2γ7|A|. (1)

Now, since B0 generates G, Theorem 5 gives two possibilities for B3
0 .

First, suppose |B3
0 | � |B|1+η. We obtain that

|B|η � α15β2γ8.

We conclude that at least one of α, β or γ is greater than or equal to |B|η/25, and this implies
that either |A| � |B|1+η/25, or else there exists g ∈ G such that |A ·Bg| � |A| · |B|η/25. Taking
ε = η/25, we obtain one of the first two listed possibilities.

The second possibility is that B3
0 = G. Now (1) implies

|G| � α15β2γ7|A|.
We conclude that at least one of α, β or γ is greater than or equal to (|G|/|A|)1/25, and some
simple rearranging yields the final two listed possibilities. �

Lemma 3.2. Fix r > 0 and 0 < δ < 1. There exists η = f(r, δ) > 0 such that if A and B are
subsets of G = Gr(q), a finite simple group of Lie type of rank r, with 2 � |B| � |A|, then one
of the following holds.

(1) |A| � |B|1+η.
(2) There exists g ∈ G such that |A ·Bg| � |A| · |B|η and there exists h ∈ G such that |Bh ·

A| � |A| · |B|η;
(3) |B| � |G|δ.

Proof. Let ε be the positive number whose existence is guaranteed by Lemma 3.1. Define
η = min{ 1−δ

26δ , ε}. Then δ � 1
1+26η , and we apply Lemma 3.1. If the third option of that lemma

holds, then we obtain that either |A| � |B|1+η or else

|G|1/26 · |B|25/26 < |B|1+η

and, rearranging, we get that |B| � |G| 1
1+26η � |G|δ, as required.

Similarly, if the fourth option of Lemma 3.1 holds, then we obtain that either |A ·Bg| �
|A| · |B|η or else

|G|1/25|A|24/25 < |A| · |B|η,
in which case we obtain that |G| < |A| · |B|25η. Then either |A| � |B|1+η (and so (1) holds),
or else we obtain that |G| < |B|1+26η and we obtain (3) as before.

If the first option of Lemma 3.1 holds, then the first option holds here. Finally, suppose that
the second option of Lemma 3.1 holds. We obtain immediately that the first part of option (2)
holds here. To see that the second part holds, observe that

|Bh ·A| = |A−1 · (B−1)h|.
Now we can apply Lemma 3.1 to the two sets A−1 and B−1. If the first, third or fourth option
holds, then the argument given above implies that the item (1) or (3) holds here for A−1 and
B−1, hence also for A and B. On the other hand, if the second option holds, then we obtain
the second part of item (2) here, and we are done. �

Lemma 3.3. Fix 0 < ζ < δ < 1 and r a positive integer. Then there exists c = f(ζ, δ, r) > 0
such that if S1, . . . , St ⊂ G, where

(1) G is a finite simple group of Lie type of rank r;
(2) |Si| � |G|ζ ;
(3)

∏t
i=1 |Si| � |G|c;
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then there exist elements g1, . . . , gt ∈ G and positive integers k1, k2, k3 such that t = k1 + k2 +
k3 and

min{|T1|, |T2|, |T3|} � |G|δ

where T1 = Sg1
1 · · ·Sgk1

k1
, T2 = S

gk1+1

k1+1 · · ·Sgk1+k2
k1+k2

and T3 = S
gk1+k2+1

k1+k2+1 · · ·Sgt
t .

Note that no attempt is made in the subsequent proof to optimize c.

Proof. Let η = f(r, δ) be the constant whose existence is guaranteed by Lemma 3.2. Let
S1, . . . , St be subsets of G satisfying condition (2).

Let κ = log |Si|/ log |G|, where Si is the smallest set in S1, . . . , St. By supposition, κ � ζ.
We will apply Lemma 3.2 a number of times so as to produce a new family of larger sets
S′

1, . . . , S
′
� t

2 �
: For each even i between 2 and t, let A be the larger of Si and Si−1, and let B be

the smaller. Lemma 3.2 gives three possibilities.
If the first possibility holds, then |A| � |G|κ(1+η), and we let S′

i/2 = Si−1Si. If the second
possibility holds and A = Si−1, then we choose g so that |A ·Bg| is as large as possible, and we
set S′

i/2 = Si−1S
g
i ; if the second possibility holds and A = Si, then we choose h so that |Bh ·A|

is as large as possible, and we set S′
i/2 = Sh

i−1Si. Note that in both of these cases we end with
|S′

i/2| � |G|κ(1+η). If the third possibility holds, then |B| � |G|δ and we set S′
i/2 = Si−1 · Si.

Observe that there are �t/2� � t/3 sets in our new family, and that the minimum size of a
set in the new family is at least |G|min{κ(1+η),δ}.

We repeat this process as long as κ < δ. We must choose c to ensure that we end with at
least three sets in our final family: all of these, by construction, will have size at least |G|δ,
and the result follows. Note first that the minimum size of a set in the family produced after i
iterations is at least |G|ζ(1+η)i . Now ζ(1 + η)i � δ if and only if

i � I :=
log δ − log ζ
log(1 + η)

.

On the other hand, after each iteration, the number of sets diminishes by at most a third,
so if we start with at least 3I+1 sets, then we will definitely end with at least three sets, as
required. To ensure that we start with this number of sets, then we can take c = 3I+1, and we
are done. �

4. Large sets

To deal with large sets, we will use ‘the Gowers trick’, Proposition 2.1. When combined with
our work on medium-sized sets, we obtain the conclusion that we need.

Proposition 4.1. Fix 0 < ζ < 1 and r a positive integer. Then there exists c = f(r, ζ) > 0
such that if S1, . . . , St ⊂ G, where

(1) G is a finite simple group of Lie type of rank r;
(2) |Si| � |G|ζ ;
(3)

∏t
i=1 |Si| � |G|c;

then there exist elements g1, . . . , gt ∈ G such that

Sg1
1 · · ·Sgt

t = G.

Proof. Set δ = 1 − 1
24r2 and apply Lemma 3.3. The resulting three sets T1, T2, T3 satisfy the

property that min{|T1|, |T2|, |T3|} � |G|δ and Propositions 2.1 and 2.3 imply that T1 · T2 · T3 =
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G (see the remark after Proposition 2.3). But, given the definition of the sets T1, T2 and T3,
the desired conclusion follows immediately. �

5. Small sets

In this section, we use a variant of the ‘greedy lemma’ argument of [2]. First we need an easy
little lemma.

Lemma 5.1. If A and B are finite subsets of a group G, then

|AB||A−1A ∩BB−1| � |A||B|.

Note that a similar result is stated by Helfgott in [5, Lemma 2.2].

Proof. Let m = |AB|. Choose elements a1, . . . , am of A and b1, . . . , bm of B such that AB =
{a1b1, . . . , ambm}. Let A−1A ∩BB−1 = {x1, . . . , xn}. Consider the map

Θ : AB × (A−1A ∩BB−1) → G×G, (aibi, xj) �→ (aix−1
j , xjbi).

The map Θ is injective, because, given an element (aix−1
j , xjbi) we can recover the element

aibi = aix
−1
j xjbi. Since the elements a1, . . . , am and b1, . . . , bm are fixed and each element of

AB has a unique expression of the form akbk we recover the elements ai and bi, along with the
element xj , and injectivity follows. Therefore,

|AB||A−1A ∩BB−1| = |AB × (A−1A ∩BB−1)| = |Θ(AB × (A−1A ∩BB−1))|.
We complete the proof by establishing that A×B is in the image of Θ. Given (a, b) in A×B
we can choose i such that ab = aibi. Therefore, a−1ai = bb−1

i ; this element belongs to A−1A ∩
BB−1, and hence is equal to xj , for some j. Therefore, (a, b) = Θ(aibi, xj), as required. �

Lemma 5.2. Given subsets A and B of a finite group G, we have∑
C∈C(G)

|A ∩ C||B ∩ C|
|C| =

1
|BG|

∑
B′∈BG

|A ∩B′|,

where C(G) is the set of conjugacy classes in G, and BG denotes the set of G-conjugates of B.

Proof. First observe that∑
C∈C(G)

|A ∩ C||B ∩ C|
|C| =

∑
C∈C(G)

∑
a∈A∩C

|B ∩ C|
|C| =

∑
a∈A

|B ∩ aG|
|aG| .

Now, ⋃
B′∈BG

{(a′, B′) : a′ ∈ aG, a′ ∈ B′} =
⋃

a′∈aG

{(a′, B′) : B′ ∈ BG, a′ ∈ B′},

and comparing cardinalities gives |BG||B ∩ aG| = |aG|∑B′∈BG 1B′(a) where we define

1B′(a) :=

{
1, a ∈ B′,
0, otherwise.

It follows that ∑
a∈A

|B ∩ aG|
|aG| =

1
|BG|

∑
a∈A

∑
B′∈BG

1B′(a)
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=
1

|BG|
∑

B′∈BG

∑
a∈A

1B′(a)

=
1

|BG|
∑

B′∈BG

|A ∩B′|,

as required. �

Proposition 5.3. Suppose A and B are subsets of a finite group G. Suppose, in addition,
that |A|, |B| < (minclass(G))1/4. Then there exists g ∈ G such that |A ·Bg| = |A| · |B|.

Proof. Suppose that we cannot find such a g. This implies that, for every B∗ conjugate to
B, |AB∗| < |A| · |B|. Now Lemma 5.1 yields

|A| · |B||A−1A ∩B∗B−1
∗ | > |AB||A−1A ∩B∗B−1

∗ | � |A||B|.
We obtain that |A−1A ∩B∗B−1

∗ | � 2. As before, let C(G) be the set of conjugacy classes in G,
and let C∗(G) be the set of non-trivial conjugacy classes in G. Lemma 5.2 implies∑

C∈C(G)

|C ∩A−1A| · |C ∩BB−1|
|C| =

1
|(BB−1)G|

∑
X∈(BB−1)G

|A−1A ∩X| � 2

=⇒
∑

C∈C∗(G)

|C ∩A−1A| · |C ∩BB−1|
|C| + 1 � 2

=⇒
∑

C∈C∗(G)

|C ∩A−1A|
|C| � 1

|BB−1| .

In particular, we obtain that |A−1A| � min
C∈C∗(G)

|C|
|BB−1| . Now, since |A−1A| � |A|2 and

|BB−1| � |B|2, the result follows. �

6. A proof of Theorem 3

Proof of Theorem 3. Let ζ = 1
32r , and note that Proposition 2.2 implies |G|ζ <

(minclass(G))1/4. Let c0 be the constant whose existence is guaranteed by Proposition 4.1.
We define c = 2c0 + ζ; observe that, since ζ depends only on r, c also depends only on r.

Suppose, first of all, that there exists i such that |Si|, |Si+1| � |G|ζ . Then Proposition 5.3
implies that there exists g such that |Si · Sg

i+1| = |Si| · |Si+1|. Thus, we replace Si and Si+1

with this product; this does not affect the ordering of the sets, nor does it affect the product
of the cardinalities of the sets. We repeat this process until there are no ‘adjacent’ sets of
cardinality less than |G|ζ .

If k is even, then, for every even i between 1 and k we replace Si−1 and Si by the product
of the two. This results in a family of sets with the same ordering, all of which have order at
least |G|ζ , and for which the product of cardinalities is at least |G|c0+ζ/2. Now Proposition 4.1
implies the result.

If k is odd and |Sk| � |G|ζ , then, for every even i between 1 and k, we replace Si−1 and Si

by the product of the two and we retain Sk. We obtain a family with the same properties as
in the previous paragraph and, once again, Proposition 4.1 implies the result.

If k is odd and |Sk| < |G|ζ , then for every even i between 1 and k − 3 we replace Si−1 and
Si by the product of the two; we also replace Sk−2, Sk−1 and Sk by the product of the three.
This results in a family of sets with the same ordering, all of which have order at least |G|ζ ,
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and for which the product of cardinalities is at least |G|c0 . Now Proposition 4.1 implies the
result and we are done. �

References

1. E. Breuillard, B. Green and T. Tao, ‘Approximate subgroups of linear groups’, Geom. Funct. Anal.
21 (2011) 774–819.
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