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CHERLIN’S CONJECTURE FOR SPORADIC SIMPLE GROUPS

FRANCESCA DALLA VOLTA, NICK GILL, AND PABLO SPIGA

Abstract. We prove Cherlin’s conjecture, concerning binary primitive permutation groups, for those groups with socle

isomorphic to a sporadic simple group.

1. Introduction

In this paper we consider the following conjecture which is due to Cherlin, and which was given first in [2]:

Conjecture 1.1. A finite primitive binary permutation group must be one of the following:

(1) a Symmetric group Sym(n) acting naturally on n elements;
(2) a cyclic group of prime order acting regularly on itself;
(3) an affine orthogonal group V ·O(V ) with V a vector space over a finite field equipped with an anisotropic quadratic

form acting on itself by translation, with complement the full orthogonal group O(V ).

Thanks to work of Cherlin himself [3], and of Wiscons [17], Conjecture 1.1 has been reduced to a statement about
almost simple groups. In particular, to prove Conjecture 1.1 it would be sufficient to prove the following statement.

Conjecture 1.2. If G is a binary almost simple primitive permutation group on the set Ω, then G = Sym(Ω).

In this paper, we prove this conjecture for almost simple groups with sporadic socle. Formally, our main result is the
following:

Theorem 1.3. Let G be an almost simple primitive permutation group with socle isomorphic to a sporadic simple group.
Then G is not binary.

Note that we include the group 2F4(2)′ in the list of sporadic groups – this group is sometimes considered “the 27th

sporadic group” – so Theorem 1.3 applies to this group too.
The terminology of Theorem 1.3 and the preceding conjectures is all fairly standard in the world of group theory, with

the possible exception of the word “binary”. Roughly speaking an action is “binary” if the induced action on `-tuples can
be deduced from the induced action on pairs (for any integer ` > 2); a formal definition of a “binary permutation group”
is given below in §2.

1.1. Context and methods. We will not spend much time here trying to motivate the study of “binary permutation
groups”. As will be clear on reading the definition of “binary” in §2, this notion is a particular instance of the more general
concept of “arity” or “relational complexity”. These notions, which we define below in group theoretic terms, can also be
formulated from a model theoretic point of view where they are best understood as properties of “relational structures”.
These connections, which run very deep, are explored at length in [2], to which we refer the interested reader.

Theorem 1.3 settles Conjecture 1.2 for one of the families given by the Classification of Finite Simple Groups. It is the
third recent result in this direction: Conjecture 1.2 has also been settled for groups with alternating socle [10], and for
groups with socle a rank 1 group of Lie type [8]. Work is ongoing for the groups that remain (groups with socle a group
of Lie type of rank at least 2) [9].

Our proof of Theorem 1.3 builds on ideas developed in [10] and [8], in particular the notion of a “strongly non-binary
action”. In addition to this known approach, we also make use of a number of new lemmas – we mention, in particular,
Lemma 2.7, which connects the “binariness” of an action to a bound on the number of orbits in the induced action on
`-tuples. These lemmas are gathered together in §2.

In addition to these new lemmas, though, the current paper is very focused on adapting known facts about binary
actions to create computational tests that can be applied using a computer algebra package like GAP [7] or magma [1]. This
process of developing tests is explained in great detail in §3.

In the final two sections we describe the outcome of these computations. In §4 we are able to give a proof of Theorem 1.3
for all of the sporadic groups barring the monster. In §5 we give a proof of Theorem 1.3 for the monster. The sheer size of
the monster means that some of the computational procedures that we exploit for the other groups are no longer available
to us, and so our methods need to be refined to deal with this special case.
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2. Definitions and lemmas

Throughout this section G is a finite group acting (not necessarily faithfully) on a set Ω of cardinality t. Given a subset
Λ of Ω, we write GΛ := {g ∈ G | λg ∈ Λ,∀λ ∈ Λ} for the set-wise stabilizer of Λ, G(Λ) := {g ∈ G | λg = λ,∀λ ∈ Λ}
for the point-wise stabilizer of Λ, and GΛ for the permutation group induced on Λ by the action of GΛ. In particular,
GΛ ∼= GΛ/G(Λ).

Given a positive integer r, the group G is called r-subtuple complete with respect to the pair of n-tuples I, J ∈ Ωn, if
it contains elements that map every subtuple of length r in I to the corresponding subtuple in J i.e.

for every {k1, k2, . . . , kr} ⊆ {1, . . . , n}, there exists h ∈ G with Ihki = Jki , for every i ∈ {1, . . . , r}.

Here Ik denotes the kth element of tuple I and Igk denotes the image of Ik under the action of g. Note that n-subtuple
completeness simply requires the existence of an element of G mapping I to J .

Definition 2.1. The action of G is said to be of arity r if, for all n ∈ N with n ≥ r and for all n-tuples I, J ∈ Ωn,
r-subtuple completeness (with respect to I and J) implies n-subtuple completeness (with respect to I and J). Note that
in the literature the concept of “arity” is also known by the name “relational complexity”.

When the action of G has arity 2, we say that the action of G is binary. If G is given to us as a permutation group,
then we say that G is a binary permutation group.

A pair (I, J) of n-tuples of Ω is called a non-binary witness for the action of G on Ω, if G is 2-subtuple complete with
respect to I and J , but not n-subtuple complete, that is, I and J are not G-conjugate. To show that the action of G on
Ω is non-binary it is sufficient to find a non-binary witness (I, J).

We now recall some useful definitions introduced in [8]. We say that the action of G on Ω is strongly non-binary if
there exists a non-binary witness (I, J) such that

• I and J are t-tuples where |Ω| = t;
• the entries of I and J comprise all the elements of Ω.

We give a standard example, taken from [8], showing how strongly non-binary actions can arise.

Example 2.2. Let G be a subgroup of Sym(Ω), let g1, g2, . . . , gr be elements of G, and let τ, η1, . . . , ηr be elements of
Sym(Ω) with

g1 = τη1, g2 = τη2, . . . , gr = τηr.

Suppose that, for every i ∈ {1, . . . , r}, the support of τ is disjoint from the support of ηi; moreover, suppose that, for each
ω ∈ Ω, there exists i ∈ {1, . . . , r} (which may depend upon ω) with ωηi = ω. Suppose, in addition, τ /∈ G. Now, writing
Ω = {ω1, . . . , ωt}, observe that

((ω1, ω2, . . . , ωt), (ω
τ
1 , ω

τ
2 , . . . , ω

τ
t ))

is a non-binary witness. Thus the action of G on Ω is strongly non-binary.

The following lemma, taken from [8], shows a crucial property of the notion of strongly non-binary action: it allows
one to argue “inductively” on set-stabilizers (see also Lemma 2.8).

Lemma 2.3. Let Ω be a G-set and let Λ ⊆ Ω. If GΛ is strongly non-binary, then G is not binary in its action on Ω.

Proof. Write Λ := {λ1, . . . , λ`} and assume that GΛ is strongly non-binary. Then there exists σ ∈ Sym(`) with I :=
(λ1, λ2, . . . , λ`) and J := (λ1σ , λ2σ , . . . , λ`σ ) a non-binary witness for the action of GΛ on Λ. Now, observe that (I, J) is
also a non-binary witness for the action of G on Ω because any (putative) element g of G mapping I to J fixes Λ set-wise
and hence g ∈ GΛ. �

Next we need an observation, made first in [8], that the existence of a strongly non-binary witness is related to the
classic concept of 2-closure introduced by Wielandt [12]: given a permutation group G on Ω, the 2-closure of G is the set

G(2) := {σ ∈ Sym(Ω) | ∀(ω1, ω2) ∈ Ω× Ω, there exists gω1ω2 ∈ G with ωσ1 = ω
gω1ω2
1 , ωσ2 = ω

gω1ω2
2 },

that is, G(2) is the largest subgroup of Sym(Ω) having the same orbitals as G. The group G is said to be 2-closed if and
only if G = G(2).

Lemma 2.4. Let G be a permutation group on Ω. Then G is strongly non-binary if and only if G is not 2-closed.

Proof. Write Ω := {ω1, . . . , ωt}. If G is not 2-closed, then there exists σ ∈ G(2) \G. Set I := (ω1, . . . , ωt) and J := Iσ =
(ωσ1 , . . . , ω

σ
t ); observe that I and J are 2-subtuple complete (because σ ∈ G(2)) and are not G-conjugate (because σ /∈ G).

Thus (I, J) is a strongly non-binary witness. The converse is similar. �
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Our next two lemmas make use of Lemma 2.3 and Example 2.2 to yield easy criteria for showing that a permutation
group is not binary.

Lemma 2.5. Let G be a transitive permutation group on Ω, let α ∈ Ω and let p be a prime with p dividing both |Ω| and
|Gα| and with p2 not dividing |Gα|. Suppose that G contains an elementary abelian p-subgroup V = 〈g, h〉 with g ∈ Gα,
with h and gh conjugate to g via G. Then G is not binary.

Proof. Let g ∈ Gα and let h ∈ gG with 〈g, h〉 an elementary abelian p-subgroup of G of order p2 with gh also conjugate
to g via G. In particular, h = gx, for some x ∈ G. Write α0 := α and αp := αx.

Since g ∈ Gα0
and h ∈ Gαp commute, αh

i

0 is fixed by g and αg
i

p is fixed by h, for every i. Write αi := αh
i

0 and

αp+i := αg
i

p , for every i ∈ {0, . . . , p − 1}. Moreover, g acts as a p-cycle on {αp, . . . , α2p−1} and h acts as a p-cycle on
{α0, . . . , αp−1}.

Since gh is conjugate to g via an element of G, there exists y ∈ G with gh = gy. Write α2p = αy. Observe that gh

fixes (α2p)
g−i = αh

i

2p for every i. Write α2p+i := αg
i

2p, for every i ∈ {0, . . . , p− 1}. Thus g and h act as inverse p-cycles on

{α2p, . . . , α3p−1}.
Write Λ := {α0, . . . , α3p−1}. We have

gΛ = (αp, . . . , α2p−1)(α3p−1, . . . , α2p),

hΛ = (α0, . . . , αp−1)(α2p, . . . , α3p−1),

(gh)Λ = (α0, . . . , αp−1)(αp, . . . , α2p−1).

If GΛ is strongly non-binary, then G is not binary by Lemma 2.3. Assume that GΛ is not strongly non-binary. Then,
in view of Example 2.2, there exists f ∈ G with fΛ = (αp, . . . , α2p−1). This is a contradiction, because by hypothesis |Gα|
is not divisible by p2 but 〈g, f〉 has order divisible by p2 and fixes α0 = α. �

Lemma 2.6. Let G be a permutation group on Ω and suppose that g and h are elements of G of order p where p is a
prime such that g, h and gh−1 are all G-conjugate. Suppose that V = 〈g, h〉 is elementary-abelian of order p2. Suppose,
finally, that G does not contain any elements of order p that fix more points of Ω than g. If |Fix(V )| < |Fix(g)|, then G
is not binary.

We remark that there are well-known formulae that we can use to calculate Fix(V ) and |Fix(g)| when G is transitive
(see for instance [11, Lemma 2.5]). Suppose that M is the stabilizer of a point in Ω; then we have

(2.1) |FixΩ(g)| = |Ω| · |M ∩ g
G|

|gG|
, |FixΩ(V )| = |Ω| · |{V

g | g ∈ G,V g ≤M}|
|V G|

.

Proof. We let
Λ := Fix(g) ∪ Fix(h) ∪ Fix(gh−1).

Observe, first, that Λ, Fix(g), Fix(h) and Fix(gh−1) are g-invariant and h-invariant. Observe, second, that

Fix(g) ∩ Fix(h) = Fix(g) ∩ Fix(gh−1) = Fix(h) ∩ Fix(gh−1) = Fix(V ).

Write τ1 for the permutation induced by g on Fix(gh−1), τ2 for the permutation induced by g on Fix(h), and τ3
for the permutation induced by h on Fix(g) (observe that τi’s are non trivial as gh−1, h and g are conjugate). Since
|Fix(V )| < |Fix(g)|, we conclude that τ1, τ2 and τ3 are disjoint non-trivial permutations. What is more, g induces the
permutation τ1τ2 on Λ, while h induces the permutation τ1τ3 on Λ.

In view of Example 2.2, GΛ is strongly non-binary provided there is no element f ∈ GΛ that induces the permutation
τ1. Arguing by contradiction, if such an element f exists, then f has order divisible by p and fo(f)/p is a p-element fixing
more points than g, which is a contradiction. Thus GΛ is strongly non-binary and G is not binary by Lemma 2.3. �

For the rest of this section we assume that G is transitive. Given ` ∈ N \ {0}, we denote by Ω(`) the subset of the
Cartesian product Ω` consisting of the `-tuples (ω1, . . . , ω`) with ωi 6= ωj , for every two distinct elements i, j ∈ {1, . . . , `}.
We denote by r`(G) the number of orbits of G on Ω(`).

Let π : G → N be the permutation character of G, that is, π(g) = fixΩ(g) where fixΩ(g) is the cardinality of the fixed
point set FixΩ(g) := {ω ∈ Ω | ωg = ω} of g. From the Orbit Counting Lemma, we have

r`(G) =
1

|G|
∑
g∈G

fixΩ(g)(fixΩ(g)− 1) · · · (fixΩ − (`− 1))

= 〈π(π − 1) · · · (π − (`− 1)), 1〉G,

where 1 is the principal character of G and 〈·, ·〉G is the natural Hermitian product on the space of C-class functions of G.

Lemma 2.7. If G is transitive and binary, then r`(G) ≤ r2(G)`(`−1)/2 for each ` ∈ N.
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Note that this lemma is, in effect, an immediate consequence of the fact that, for a binary action, the orbits on pairs
“determine” orbits on `-tuples. Thus, to uniquely determine the orbit of a particular `-tuple, it is enough to specify the
orbits of all

(
`
2

)
pairs making up the `-tuple.

Proof. We write r2 := r2(G) and r` := r`(G) and we assume that r` > r
(`−1)`/2
2 for some ` ∈ N. Clearly, ` > 2.

Let

(ω1,1, . . . , ω1,`), . . . , (ωr`,1, . . . , ωr`,`)

be a family of representatives for the G-orbits on Ω(`). From the pigeon-hole principle, at least r`/r2 of these elements
have the first two coordinates in the same G-orbit. Formally, there exists κ ∈ N with κ ≥ r`/r2 and a subset {i1, . . . , iκ}
of {1, . . . , r`} of cardinality κ such that the κ pairs

(ωi1,1, ωi1,2), . . . , (ωiκ,1, ωiκ,2)

are in the same G-orbit. By considering all possible pairs of coordinates, this argument can be easily generalized. Indeed,

from the pigeon-hole principle, there exists κ with κ ≥ r`/r(`−1)`/2
2 > 1 and a subset {i1, . . . , iκ} of {1, . . . , r`} of cardinality

κ such that, for each 1 ≤ u < v ≤ `, the κ pairs

(ωi1,u, ωi1,v), . . . , (ωiκ,u, ωiκ,v)

are in the same G-orbit. In other words, the `-tuples

(ωi1,1, . . . , ωi1,`), . . . , (ωiκ,1, . . . , ωiκ,`)

are 2-subtuple complete. Since G is binary, these `-tuples must be in the same G-orbit, contradicting κ > 1. �

Observe that when r2(G) = 1, that is, G is 2-transitive, Lemma 2.7 yields r`(G) = 1 for every ` ∈ {2, . . . , |Ω|}. Therefore
G = Sym(Ω) is the only 2-transitive binary group.

Lemma 2.8. Let G be transitive, let α be a point of Ω and let Λ ⊆ Ω be a Gα-orbit. If G is binary, then GΛ
α is binary.

In particular, if g ∈ G and the action of Gα on the right cosets of Gα ∩Ggα in Gα is not binary, then G is not binary.

Proof. Assume that G is binary. Let ` ∈ N and let I := (λ1, λ2, . . . , λ`) and J := (λ′1, λ
′
2, . . . , λ

′
`) be two tuples in Λ`

that are 2-subtuple complete for the action of Gα on Λ. Clearly, I0 := (α, λ1, λ2, . . . , λ`) and J0 := (α, λ′1, λ
′
2, . . . , λ

′
`) are

2-subtuple complete for the action of G on Ω. As G is binary, I0 and J0 are in the same G-orbit; hence I and J are in the
same Gα-orbit. From this we deduce that GΛ

α is binary.
Suppose now that g ∈ G and that the action of Gα on the right cosets of Gα ∩Ggα in Gα is not binary. Set β := αg and

Λ := βGα . Now Λ is a Gα-orbit contained in Ω \ {α} and the action of Gα on Λ is permutation isomorphic to the action
of Gα on the right cosets of Gα ∩Gβ = Gα ∩Ggα in Gα. Therefore, GΛ

α is not binary and hence G is not binary. �

3. On computation

In this section we explain how to make use of the lemmas given in the previous section in a computational setting. The
computational problem we are faced with is as follows: given a transitive action of a group G on a set Ω, we wish to show
that the action is non-binary; in some cases we will require more, namely that the action is strongly non-binary. If the
set Ω is small enough, then we can often exhibit G as a permutation group in the computer algebra package magma and
compute explicitly; when Ω gets too large, then this may be infeasible and we may know only the isomorphism type of G
and the isomorphism type of a point-stabilizer.

3.1. Test 1: using Lemma 2.7. In some cases, Lemma 2.7 is very efficient for dealing with some primitive actions of
almost simple groups G with socle a sporadic simple group. In particular, whenever the permutation character of G is
available in GAP [7] or in magma [1], we can simply check directly the inequality in Lemma 2.7. For instance, using this
method it is easy to verify that each faithful primitive action of M11 is non-binary.

For practical purposes, it is worth mentioning that apart from

• the Monster,
• the action of the Baby Monster on the cosets of a maximal subgroup of type (22 × F4(2)) : 2,

each permutation character of each primitive permutation representation of an almost simple group with socle a sporadic
simple group is available in GAP via the package “The GAP character Table Library”. Therefore, for the proof of Theo-
rem 1.3, we can quickly and easily use Lemma 2.7 except for the Monster. To give a rough idea of the time to perform
this test, in the Baby Monster (except for the action on the cosets on a maximal subgroup of type (22 × F4(2)) : 2), it
takes less than two minutes to perform this checking. (The permutation character of the Baby Monster G on the cosets
of a maximal subgroup M of type (22 × F4(2)) : 2 is missing from the GAP library because the conjugacy fusion of some
of the elements of M in G remains a mystery: this information is vital for computing the permutation character.)

For reasons that will be more clear later, for the proof of Theorem 1.3, we need to prove the non-binariness of permutation
groups G ≤ Sym(Ω) that are not necessarily almost simple, let alone having socle a sporadic simple group. When |Ω| is
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relatively small (for practical purposes, here relatively small means at most 109), we can afford to compute the permutation
character and check the inequality in Lemma 2.7.

3.2. Test 2: using Lemma 2.4. By connecting the notion of strong-non-binariness to 2-closure, Lemma 2.4 yields an
immediate computational dividend: there are built-in routines in GAP [7] and magma [1] to compute the 2-closure of a
permutation group.

Thus if Ω is small enough, say |Ω| ≤ 106, then we can easily check whether or not the group G is 2-closed. Thus we
can ascertain whether or not G is strongly non-binary.

3.3. Test 3: a direct analysis. The next test we discuss is feasible once again provided |Ω| ≤ 106. It simply tests
whether or not 2-subtuple-completeness implies 3-subtuple completeness, and the procedure is as follows:

We fix α ∈ Ω, we compute the orbits of Gα on Ω \ {α} and we select a set of representatives O for these orbits. Then,
for each β ∈ O, we compute the orbits of Gα ∩Gβ on Ω \ {α, β} and we select a set of representatives Oβ . Then, for each
γ ∈ Oβ , we compute γGα ∩ γGβ . Finally, for each γ′ ∈ γGα ∩ γGβ , we test whether the two triples (α, β, γ) and (α, β, γ′)
are G-conjugate. If the answer is “no”, then G is not binary because by construction (α, β, γ) and (α, β, γ′) are 2-subtuple
complete. In particular, in this circumstance, we can break all the “for loops” and deduce that G is not binary.

If the answer is “yes”, for every β, γ, γ′, then we cannot deduce that G is binary, but we can keep track of these cases
for a deeper analysis. We observe that, if the answer is “yes”, for every β, γ, γ′, then 2-subtuple completeness implies
3-subtuple completeness.

3.4. Test 4: using Lemma 2.8. The next test is particularly useful in cases where Ω is very large, since its computational
complexity is independent of |Ω|. Let us suppose that G and its subgroup M are stored in a library as abstract groups (or
as matrix groups or as permutation groups). When |G : M | is too large, it is impractical (and sometimes impossible) to
construct G as a permutation group on the coset space Ω := G/M with point stabilizer M . However, using Lemma 2.8, we
can still prove that G acting on Ω is non-binary: all we need is g ∈ G such that the action of M on M ∩Mg is non-binary.
Now, for carefully chosen g, |M : M ∩Mg| might be much smaller than |G : M | and we can use one of the previous tests
to ascertain whether or not M in its action on M/(M ∩Mg) is binary.

3.5. Test 5: a new lemma. Our final test requires an extra lemma which we include here, rather than in the earlier
section, as its computational aspect is somehow inherent in its very statement.

Lemma 3.1. Let G be a primitive group on a set Ω, let α be a point of Ω, let M be the stabilizer of α in G and let d be
an integer with d ≥ 2. Suppose M 6= 1 and, for each transitive action of M on a set Λ satisfying:

(1) |Λ| > 1, and
(2) every composition factor of M is isomorphic to some section of MΛ, and
(3) either M(Λ) = 1 or, given λ ∈ Λ, the stabilizer Mλ has a normal subgroup N with N 6= M(Λ) and N ∼= M(Λ), and
(4) M is binary in its action on Λ,

we have that d divides |Λ|. Then either d divides |Ω| − 1 or G is not binary.

Proof. Suppose that G is binary. Since {β ∈ Ω | βm = β,∀m ∈ M} is a block of imprimitivity for G and since G is
primitive, we obtain that either M fixes each point of Ω or α is the only point fixed by M . The former possibility is
excluded because M 6= 1 by hypothesis. Therefore α is the only point fixed by M . Let Λ ⊆ Ω \ {α} be an M -orbit. Thus
|Λ| > 1 and (1) holds. Since G is a primitive group on Ω, from [5, Theorem 3.2C], we obtain that every composition factor
of M is isomorphic to some section of MΛ and hence (2) holds. From Lemma 2.8, the action of M on Λ is binary and
hence (4) holds. Let now λ ∈ Λ and consider the orbital graph Γ := (α, λ)G. Observe that Γ is connected because G is
primitive. Let g ∈ G with αg = λ. Clearly, Λ is the set of out-neighbors of α in Γ and Λ′ := Λg is the set of out-neighbors
of αg = λ in Γ. Set N := (Gλ)(Λ′). Clearly, (Gα)(Λ) = M(Λ) and (Gαg )(Λg) = (Gλ)(Λ′) = N are isomorphic because they
are G-conjugate via the element g. Moreover, M(Λ) = (Gα)(λGα ) is normalized by Gα and, similarly, N is normalized by
Gλ: therefore they are both normalized by Gα ∩ Gλ = M ∩ Gλ = Mλ. If M(Λ) and N are equal, an easy connectedness
argument yields that M(Λ) = 1. Therefore (3) also holds.

Since the four hypotheses in the statement of this lemma hold for the action of M = Gα on its Gα-orbit Λ, we get d
divides |Λ|. Since this argument does not depend on the Gα-orbit Λ ⊆ Ω \ {α}, we obtain that Ω \ {α} has cardinality
divisible by d. Thus |Ω| − 1 is divisible by d. �

When it comes to implementing Lemma 3.1 on a computer, it is important to observe that we do not need to construct
the embedding of M = Gα in G; indeed we do not need the group G stored in our computer at all. Instead we need only
the index |G : M | = |Ω| and the abstract group M (given as a group of matrices, or as a permutation group, or as a
finitely presented group).

Given |Ω| and M , we may choose a prime p (typically p = 2) with p not dividing |Ω| − 1 and we construct all the
transitive permutation representations of degree greater than 1 and relatively prime to p of M satisfying (1), (2) and (3).
If none of these permutation representations is binary (and we can use any of Test 1 to 4 to test this), we infer that every
transitive permutation representation of M of degree greater than 1 satisfying (1), (2), (3) and (4) has degree divisible by
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p. Now, from Lemma 3.1, we get that G in its action on the set M of right cosets of M in G is not binary because p does
not divide |Ω| − 1.

We give an explicit example to show how easily Lemma 3.1 can be applied. The monster G has a maximal subgroup
M isomorphic to PGL2(19). The index of M in G is

118131202455338139749482442245864145761075200000000 ∼ 1050

and we can easily observe that this number is even. After implementing Lemma 3.1 in a computer, it takes the blink of
an eye to prove that each permutation representation of M of degree at least 1 and odd is non-binary. Thus G acting on
the cosets of M is non-binary. Observe that besides |G : M | and the isomorphism class of M , no information about G is
needed.

4. The non-monster groups

The centre-piece of this section is Table 1; it summarises the results of applying the tests described in the previous
section to all almost simple groups with a sporadic socle, barring the monster.

Table 1 consists of two columns: the first column lists all of the almost simple groups G with socle a sporadic simple
group (recall that we include Tits group 2F4(2)′ in the list of sporadic groups). In the second column, we list all pairs
(M, ◦), where M is a maximal subgroup of G with the property that the action of G on the set G/M of right cosets of M
in G satisfies Lemma 2.7 (in other words, the action is not excluded by Test 1, and hence is a potentially binary action).
We use the ATLAS [4] notation for the group M .

Now the symbol ◦ is either ∞ or a prime p or “?”. We write ◦ = ∞ if we have proved the non-binariness of G in its
action on G/M using Tests 2 or 3; we write ◦ = p if we have proved the non-binariness of G in its action on G/M using
Test 5 applied to the prime p; and we write ◦ =? if both methods have failed. The symbol “−” in the second column
means that each primitive permutation representation of G is not binary via Lemma 2.7 (Test 1).

We have made use of the fact that full information on the maximal subgroups for each group in the first column of
Table 1 is available: these are all stored in GAP or in magma. To be more precise, in each case, either the maximal subgroup
M is stored providing a generating set (written as words in the standard generators for G), or when such information is
not available (for instance, already for some of the maximal subgroups of Fi23), the group M is explicitly described (for
instance, as a p-local subgroup) and hence also in this case it is possible to construct M with a computer.

We are now able to prove Theorem 1.3 for all groups bar the monster.

Proposition 4.1. Let G be an almost simple primitive group with socle a sporadic simple group. If G is binary, then G
is the Monster group.

Proof. In view of Table 1, it suffices to consider the case that G is either Co3, or Ru, or B: these are the only groups
having a “?” symbol in one of their rows. We first assume that G is either Co3 or Ru; here, in view of Table 1 the group
G is acting on the cosets of M = A4 × S5 when G = Co3, or M = 5 : 4×A5 when G = Ru. Given a Sylow 2-subgroup P
of M , in both cases it is easy to verify with magma that there exists g ∈ NG(P ) with M ∩Mg = P . When G = Co3, P is
of type 2 × 2 ×D4 and, when G = Ru, P is of type 4 × 2 × 2. Another computation shows that the actions of A4 × S5

on the cosets of 2× 2×D4, and of 5 : 4× A4 on the cosets of 4× 2× 2 are not binary. Therefore, G in its action on the
cosets of M is not binary by Lemma 2.8.

Finally assume that G is the Baby Monster B. In view of Table 1, G is acting on the cosets of M where M is of one
of the following types

(22 × F4(2)) : 2, 31+8.21+6.U4(2).2, (32 : D8 × U4(3).22).2, 32.33.36.(S4 × 2S4).

Let Ω be the set of right cosets of M in G and let α ∈ Ω with Gα = M (that is, α is the coset M). We go through the
four remaining cases one at a time.

that M ∼= (32 : D8 × U4(3).22).2. Observe that a Sylow 7-subgroup of G has order 72 = 49, that G has a unique
conjugacy class of elements of order 7, that |M | and |G : M | are both divisible by 7. Then Lemma 2.5 implies that G is
not binary.

Suppose that M ∼= 31+8.21+6.U4(2).2. The group G has two conjugacy classes of elements of order 5, with the ATLAS
notation, of type 5A and of type 5B. By computing the permutation character of G via the package “The GAP character
Table Library” in GAP, we see that an element of type 5A fixes no point and that an element of type 5B fixes 25000
points. Observe that |M | is divisible by 5, but not by 52 = 25. Moreover, using the ATLAS [4], we see that G contains
an elementary abelian 5-group V of order 53 generated by three elements of type 5B; moreover, the normalizer of V is a
maximal subgroup of G of type 53 : L3(5). In particular, each non-identity 5-element of V is of type 5B, because L3(5)
acts transitively on the non-zero vectors of 53. Since |M | is not divisible by 25, we conclude that Fix(V ) is empty. Now
we apply Lemma 2.6 to L, a subgroup of M of order 25 such that |Fix(L)| < |Fix(g)|. We conclude that G is not binary.

Suppose that M ∼= 32.33.36.(S4 × 2S4). From the ATLAS [4], we see that M = NG(V ), where V is an elementary
abelian 3-subgroup of order 32 with V \{1} consisting only of elements of type 3B. For the proof of this case, we refer to [14]
and [16]. According to Wilson [14, Section 3], there exist three G-conjugacy classes of elementary abelian 3-subgroups
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Group Outcome of tests
M11 −
M12 −
M12.2 −
M22 −
M22.2 −
M23 −
M24 (L2(7),∞)
J1 (D6 ×D10,∞), (7 : 6,∞)
J2 (A5,∞)
J2.2 (S5,∞)
J3 −
J3.2 (19 : 18, 3)
J4 (M22 : 2, 2), (111+2

+ : (5× 2S4), 2), (L2(32) : 5, 11), (L2(23) : 2, 2)
(U3(3), 2), (29 : 28, 2), (43 : 14, 7), (37 : 12, 2)

2F4(2)′ −
2F4(2) (M, 2) where M has order 156
Suz (A7, 2), (L2(25), 2)
Suz.2 (S7, 7)
McL −
McL.2 −
HS (M22, 2)
HS.2 (M22 : 2, 2)
Co3 (A4 × S5, ?)
Co2 (51+2

+ : 4S4, 2)
Co1 (A9 × S3, 3), ((A7 × L2(7)) : 2, 2), ((D10 × (A5 ×A5).2).2, 2)

(51+2
+ : GL2(5), 2), (53 : (4×A5).2, 2), (52 : 4A4, 2), (72 : (3× 2A4), 2)

He (52 : 4A4, 2)
He.2 −
Fi22 −
Fi22.2 −
Fi23 (L2(23), 2)
Fi′24 ((A5 ×A9) : 2, 3), (A6 × L2(8) : 3, 2), (7 : 6×A7, 7), (U3(3).2, 2)

(U3(3).2, 2), (L2(13).2, 2), (L2(13).2, 2), (29 : 14, 7)
Fi24 (S5 × S9, 3), (S6 × L2(8) : 3, 2), (7 : 6× S7, 7), (71+2

+ : (6× S3).2, 2), (29 : 28, 7)
Ru (L2(13) : 2, 2), (5 : 4×A5, ?), (A6.2

2, 2), (51+2
+ : [25], 2), (3.A6.2

2, 2)
O′N (A7, 2), (A7, 2)
O′N.2 (31 : 30, 5), (L2(7) : 2, 2), (A6 : 22, 2)
Ly (67 : 22, 11), (37 : 18, 3)
Th (35 : 2S6, 2), (51+2

+ : 4S4, 2), (52 : GL2(5), 2), (72 : (3× 2S4), 2)
(L2(19).2, 2), (L3(3), 2), (M10 = A6.23, 2), (31 : 15, 4), (S5, 5)

HN (31+4
+ : 4A5, 2)

HN.2 −
B ((22 × F4(2)) : 2, ?), (31+8.21+6.U4(2).2, ?), ((32 : D8 × U4(3).22).2, ?), (5 : 4×HS : 2, 2)

(32.33.36.(S4 × 2S4), ?), (S4 × 2F4(2), 2), (S5 × (M22 : 2), 2), ((S6 × (L3(4) : 2)).2, 2),
(53 : L3(5), 2), (51+4.21+4.A5.4, 2), ((S6 × S6).4, 2), ((52 : 4S4)× S5, 2)

(L2(49).2, 2), (L2(31), 2), (M11, 2), (L3(3), 2), (L2(17) : 2, 2), (L2(11) : 2, 2), (47 : 23, 23)
Table 1. Disposing of some of the sporadic simple groups.

of G of order 32 consisting only of elements of type 3B, denoted in [14] as having type (a), or (b), or (c). Moreover,
from [14, Proposition 3.1], we see that only for the elementary abelian 3-groups of type (a) the normalizers are maximal
subgroups of G and of shape 32.33.36.(S4×2S4). Thus V is of type (a). Let V1, V2, V3 be representatives for the conjugacy
classes of elementary 3-subgroups of G of order 32 and consisting only of elements of type 3B. We may assume that
V1 = V . From [14] or [16], for W ∈ {V1, V2, V3}, NG(W ) has shape 32.33.36.(S4 × 2S4), (32 × 31+4).(22 × 2A4).2, and
(32 × 31+4).(2× 2S4); in [14, 16], these cases are refered to as type (a), type (b) and type (c), respectively.

Next, we consider a maximal subgroup K of G isomorphic to PSL3(3). From [16] (pages 9 and 10 and the discussion
therein on the interaction between K and the types (a), (b) and (c)), we infer that K contains a conjugate of V . In
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particular, replacing K by a suitable G-conjugate, we may assume that V ≤ K. In particular, M ∩K = NK(V ). Take
Λ := αK and observe that Λ is a K-orbit on Ω and that the stabilizer of the point α in K is NK(V ). Moreover, since K
is maximal in G, we get GΛ = K. We claim that GΛ = KΛ is strongly non-binary, from which it follows that G is not
binary by 2.3. Observe that the action of K on Λ is permutation isomorphic to the action of K on the set of right cosets
of NK(V ) in K.

Now, we consider the abstract group K0 = PSL3(3), we consider an elementary abelian 3-subgroup V0 of order 9 of K0,
we compute N0 := NK0

(V0) and we consider the action of K0 on the set Λ0 of right cosets of N0 in K0. A straightforward
computation shows that K0 is not 2-closed in this action, and hence K0 in its action on Λ0 is strongly non-binary by
Lemma 2.4.

Suppose that M ∼= (22 × F4(2)) : 2. Here we cannot invoke “The GAP character Table Library” to understand
whether F4(2) contains elements of type 5A or 5B, because the fusion of M in G is (in some cases) still unknown. As
we mentioned above, G has two conjugacy classes of elements of order 5, denoted by 5A and 5B; what is more the group
F4(2) contains a unique conjugacy class of elements of order 5. Observe that the centralizer in G of an element of type
5A (respectively 5B) has order 44352000 (respectively 6000000). Now, the centralizer in F4(2) of a element of order 5
has cardinality 3600. Since 3600 does not divide 6000000, we get that M contains only elements of type 5A; in particular
elements of type 5B do not fix any element of Ω.

Using (2.1), we conclude that if g is an element of order 5 in M , then

|FixΩ(g)| = |G|
|M |
|M : CM (g)|
|G : CG(g)|

=
|CG(g)|
|CM (g)|

=
44352000

3600× 4× 2
= 1540.

Now let V be a Sylow 5-subgroup of M and observe that V has order 52 and V \ {1} consists only of elements of
type 5A. Referring to [14, Section 6], we see that G contains only one conjugacy class of elementary-abelian groups of
order 25 for which the non-trivial elements are all of type 5A. Thus V is a representative of this G-conjugacy class. Now,
Theorem 6.4 in [14] yields NG(V ) ∼= 52 : 4S4 × S5. Appealing to (2.1) again, we conclude that

|FixΩ(V )| = |G|
|M |
|M : NM (V )|
|G : NG(V )|

=
|NG(V )|
|NM (V )|

=
28800

19200
= 15.

Now Lemma 2.6 implies that G is not binary. �

5. The Monster

In this section we prove Theorem 1.3 for the monster. Our proof will break down into several parts, and to ensure
that we cover all possibilities we will make use of a recent account of the classification of the maximal subgroups of the
sporadic simple groups in [13].

From [13, Section 3.6], we see that the classification of the maximal subgroups of the Monster G is complete except for
a few small open cases. In particular, if M is a maximal subgroup of G, then either

(a): M is in [13, Section 4], or
(b): M is almost simple with socle isomorphic to L2(8), L2(13), L2(16), U3(4) or U3(8).

From here on G will always denote the monster group, and M will be a maximal subgroup of G. We consider the action
of G on cosets of M .

5.1. The almost simple subgroups in (b). We begin by applying Test 5 to those groups in category (b). Provided
that such a group M is not isomorphic to L2(16).2, we find that, by applying Test 5 with the prime 2 or 3, we can
immediately show that G in its action on G/M is not binary.

The group M = L2(16).2 is exceptional here: for each prime p dividing |M |, there exists a permutation representation
of M of degree coprime to p satisfying the four conditions in Lemma 3.1; hence we cannot apply Test 5. We defer the
treatment of L2(16).2 to §5.2 below.

From here on we will consider those groups in category (a), as well as the deferred group L2(16).2.

5.2. Constructing a strongly non-binary subset. Our next step is to apply Lemma 2.5 to the remaining group,
L2(16).2, from category (b) and to the groups from category (a). We start with a technical lemma; this is then followed
by the statement that we need, Lemma 5.2.

Lemma 5.1. Let G be the Monster, let p ∈ {5, 7, 11} and let x ∈ G with o(x) = p. Then there exists g ∈ G with 〈x, xg〉
elementary abelian of order p2 and with xxg conjugate to x via an element of G.

Proof. When p = 11, there is nothing to prove: G has a unique conjugacy class of elements of order 11 and a Sylow
11-subgroup of G is elementary abelian of order 112.

When p ∈ {5, 7}, it is enough to read [4, page 234]: G contains two conjugacy classes of elements of order p. Moreover,
G contains two elementary abelian p-subgroups V and V ′ both of order p2, with V generated by two elements of type pA
and with V ′ generated by two elements of type pB. Moreover, NG(V ) and NG(V ′) act transitively on the non-identity
elements of V and of V ′, respectively.
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This lemma can also be easily deduced from [15]. �

Lemma 5.2. Let G be the Monster and let M be a maximal subgroup of G. If M is as in the first column of Table 2,
then the action of G on the right cosets of M in G is not binary.

Note that the final line of the table is the remaining group from category (b), hence, once this lemma is disposed of,
we only deal with groups from category (a).

Proof. If suffices to compare |G : M | with |M | and apply Lemmas 5.1 and 2.5. For simplicity we have highlighted in the
second column of Table 2 the prime p that we are using to apply Lemma 2.5. �

Maximal Subgroup Prime
2.B 11

21+24.Co1 11
3.F i24 11

22.2E6(2).S3 11
210+16.O+

10(2) 7
22+11+22.(M24 × S3) 7

31+12.2Suz.2 7
25+10+20.(S3 × L5(2)) 7

23+6+12+18.(L3(2)× 3S6) 7
38.O−8 (3).23 7

(D10 ×HS).2 7
(32 : 2×O+

8 (3)).S4 7
32+5+10.(M11 × 2S4) 11

51+6 : 2J2 : 4 7
(A5 ×A12) : 2 7

(A5 × U3(8) : 31) : 2 7
(L3(2)× S4(4) : 2).2 7
(52 : [24]× U5(5)).S3 7

71+4 : (3× 2S7) 5
L2(16).2 5

Table 2. Primitive actions of the Monster for Lemma 5.2.

5.3. Using Test 5. We next apply Test 5 to the remaining maximal subgroups of G. The statement that we need is the
following.

Lemma 5.3. Let G be the Monster and let M be a maximal subgroup of G. If M is as in the first column of Table 3,
then the action of G on the right cosets of M in G is not binary.

Proof. Table 3 lists precisely those remaining maximal subgroups that can be excluded using Test 5, together with the
prime p that has been used. �

5.4. The remainder. By ruling out the groups listed in Tables 2 and 3, we are left with precisely five subgroups on
Wilson’s list [13]. We now deal with these one at a time and, in so doing, we complete the proof of Theorem 1.3. The
remaining groups are as follows:

S3 × Th, 33+2+6+6 : (L3(3)× SD16), (7 : 3×He) : 2, 53+3.(2× L3(5)), 52+2+4 : (S3 ×GL2(5)).

Suppose that M ∼= S3 × Th. Here we refer to [15, Section 2]. There are three conjugacy classes of elements of order
3 in the Monster G, of type 3A, 3B and 3C and, the normalizers of the cyclic subgroups generated by the elements of
type 3C are maximal subgroups of G conjugate to M . Choose x, an element of type 3C with M = NG(〈x〉). We write
M := H ×K, where H ∼= S3 and K ∼= Th. From [15, first two lines of the proof of Proposition 2.1], for every y ∈ K of
order 3, xy is an element of type 3C. From the subgroup structure of the Thompson group Th, the group K contains an
element y of order 3 with NK(〈y〉) of shape (3×G2(3)) : 2 and maximal in K. Since x and xy are in the same G-conjugacy
class, there exists g ∈ G with xg = xy. Moreover, an easy computation inside the direct product M = H × K yields
M ∩Mg = NG(〈x〉) ∩NG(〈xy〉) = NM (〈xy〉) ∼= (〈x〉 × CK(y)) : 2 has shape (3 × 3 × G2(3)) : 2. This shows that the
action of M on the right cosets of M ∩Mg is permutation isomorphic to the primitive action of Th on the right cosets
of (3 ×G2(3)) : 2. In other words, G has a suborbit inducing a primitive action of the sporadic Thompson group. From
Proposition 4.1, this action is not binary, and hence the action of G on the right cosets of M is not binary by Lemma 2.8.
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Maximal Subgroup Prime Comments
(7 : 3×He) : 2 2

(A6 ×A6 ×A6).(2× S4) 2
(52 : [24]× U3(5)).S3 2
(L2(11)×M12) : 2 2

(A7 × (A5 ×A5) : 22) : 2 2 checked 4-tuples1

54 : (3× 2L2(25)) : 2 2
72+1+2 : GL2(7) 2
M11 ×A6.2

2 2
(S5 × S5 × S5) : S3 3

(L2(11)× L2(11)) : 4 2
132 : (2L2(13).4) 2

(72 : (3× 2A4)× L2(7)).2 2
(13 : 6× L3(3)).2 2
131+2 : (3× 4S4) 2

L2(71) 2
L2(59) 5

112 : (5× 2A5) 2
L2(41) 2

L2(29) : 2 2
72 : SL2(7) 2
L2(19) : 2 2

41 : 40 2

Table 3. Primitive actions of the Monster for Lemma 5.3.

1 This action turned out to be rather problematic. Each transitive action of odd degree satisfying the conditions (1), (2), (3) in Lemma 3.1
is not binary. However, for some of these actions to witness the non-binariness we had to resort to 4-tuples, which was particularly time

consuming.

Suppose that M ∼= 33+2+6+6 : (L3(3) × SD16). Arguing as in the previous case, we note that M contains only
elements of type 13A and no elements of type 13B. Let Q be a 13-Sylow subgroup of M and let P be a 13-Sylow subgroup
of G with Q ≤ P . Observe that P is an extraspecial group of exponent 13 of order 133 and that Q has order 13. Replacing
P by a suitable G-conjugate we may also assume that Q 6= Z(P ). (Observe that to guarantee that we may actually assume
that Q 6= Z(P ) we need to use [15, page 15], which describes how the 13-elements of type A and B are partitioned in P .
Indeed, not all 13-elements of type B are in Z(P ) and hence, if accidentally Q = Z(P ), we may replace Q with a suitable
conjugate.)

Let α ∈ Ω with Gα = M and set Λ := αP . From the previous paragraph, P acts faithfully on the set Λ and |Λ| = 132.
Now the permutation group P in its action on Λ is not 2-closed; indeed the 2-closure of P in its action on Λ is of order
1314, it is a Sylow 13-subgroup of Sym(Λ) (this follows from an easy computation or directly from [6]). Since P embeds
into GΛ, the 2-closure of GΛ contains the 2-closure of P , but since 1314 does not divide the order of |G|, GΛ is not 2-closed.
Lemmas 2.3 and 2.4 imply that the action is not binary.

Suppose that M ∼= (7 : 3×He) : 2. Observe that He has a unique conjugacy class of elements of order 5 and that its
Sylow 5-subgroups are elementary abelian of order 52. Thus, we let V := 〈g, h〉 be an elementary abelian 5-subgroup of M
and we note that g, h and gh are M -conjugate and hence G-conjugate. The group G has two conjugacy classes of elements
of order 5, denoted 5A and 5B. We claim that M contains only elements of type 5A. Indeed, a computation inside the
Held group He reveals that CM (g) contains an element of order 7 × 3 × 5 = 105 and hence G contains an element x of
order 105 with x21 = g being an element of order 5. By considering the power information on the conjugacy classes of G,
we see that g belongs to the conjugacy class of type 5A. Since all 5-elements are conjugate in M , we get that M contains
only 5-elements of type 5A.

We now calculate the number of fixed points of g and of V on Ω, making use of (2.1). Using the information on the
conjugacy classes of He and G we deduce that

|FixΩ(g)| = |G|
|M |
|M : CM (g)|
|G : CG(g)|

=
|CG(g)|
|CM (g)|

=
1365154560000000

12600
= 108345600000.

Next, since V is a Sylow 5-subgroup of M , we deduce that |NM (V )| = 50400 using the structure of the Held group.
Moreover, from [15, Section 9], we get that the normalizer of an elementary abelian 5-subgroup of the Monster consisting
only of elements of type 5A is maximal in G and is of the form (52 : 4·22×U3(5)) : S3. In particular, |NG(V )| = 302400000.
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Thus

|FixΩ(V )| = |G|
|M |
|M : NM (V )|
|G : NG(V )|

=
|NG(V )|
|NM (V )|

=
302400000

50400
= 6000.

Now Lemma 2.6 implies that G is not binary.

Suppose that M ∼= 53+3.(2 × L3(5)). Let P be a Sylow 31-subgroup of M and observe that P is also a Sylow
31-subgroup of G. Recall that G has a maximal subgroup K := C ×D, where C ∼= S3 and D ∼= Th (as usual Th denotes
the sporadic Thompson group). Now, by considering the subgroup structure of Th, we see that D contains a maximal
subgroup isomorphic to 25.L5(2) and hence D contains a Frobenius subgroup F isomorphic to 25 : 31. Replacing F by a
suitable conjugate we may assume that P ≤ F .

Comparing the subgroup structure of M and of F , we deduce M ∩ F = P . Consider Λ := αF . By construction, as
M = Gα, we get |Λ| = 32 and F acts as a 2-transitive Frobenius group of degree 32 on Λ. Since the 2-closure of a
2-transitive group of degree 32 is Sym(32) and since G has no sections isomorphic to Sym(32), we deduce from Lemma 2.4
that GΛ is strongly non-binary. Therefore G is not binary by Lemma 2.3.

Suppose that M ∼= 52+2+4 : (S3 × GL2(5)). For this last case we invoke again the help of a computer aided
computation based on Lemma 3.1, but applied in a slightly different way than what we have described in Test 5. (We
thank Tim Dokchitser for hosting the computations required for dealing with this case.) Observe that |Ω| − 1 is divisible
by 5, but not by 52.

With magma we construct all the transitive permutation representations on a set Λ of degree greater than 1 and with
|Λ| not divisible by 52 of M . (Considering that a Sylow 5-subgroup of M has index 576, this computation does require
some time but it is feasible.) Next, with a case-by-case analysis we see that none of these permutation representations
satisfies (1), (2), (3) and (4). Therefore, every transitive permutation representation of M of degree greater than 1 satisfing
(1), (2), (3) and (4) has degree divisible by 25. Now, from Lemma 3.1 applied with d := 25, we get that G in its action
on the set M of right cosets of M in G is not binary because 25 does not divide |Ω| − 1.
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