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ABELIAN COVERS OF ALTERNATING GROUPS

DANIEL BARRANTES, NICK GILL, AND JEREMÍAS RAMÍREZ

Abstract. Let G = An, a finite alternating group. We study the commuting graph of G and establish,
for all possible values of n barring 13, 14, 17 and 19, whether or not the independence number is equal to
the clique-covering number.

1. Introduction

Throughout this paper G is a finite group.

1.1. Definitions and main result. Let Ω be a subset of the group G. A non-commuting subset of Ω is
a subset N of Ω such that

x, y ∈ N =⇒ xy 6= yx.

We define δ(Ω) to be the maximum possible cardinality of a non-commuting subset of Ω. A non-commuting
subset that has cardinality δ(Ω) will be called a maximal non-commuting subset of Ω.

An abelian cover of Ω is a set C of abelian subgroups of G whose union contains Ω. We define ∆(Ω)
to be the minimum possible cardinality of an abelian cover of Ω. An abelian cover that has cardinality
∆(Ω) will be called a minimal abelian cover of Ω.

A simple application of the pigeon-hole principle yields the following fact:

Lemma 1.1. For any finite group G and a subset Ω ⊆ G, δ(Ω) 6 ∆(Ω).

In this paper we study the case where G is a finite alternating group; we are interested in ascertaining
when δ(G) = ∆(G). Our main result gives almost complete information.

Theorem 1.2. Let An be the alternating group on n letters, with n a positive integer.

(1) If n 6 11 or n = 15, then δ(An) = ∆(An);
(2) If n = 12, 16 or 18 or n > 20, then δ(An) 6= ∆(An).

1.2. The commuting graph. The definitions just given can be recast in terms of a particular graph,
as follows. Let G be a group and Ω ⊆ G. Then the commuting graph of Ω, denoted Γ (Ω), is the graph
whose vertex set is Ω and with vertices connected if and only if they commute. Now a cover of Ω by
abelian subgroups of G corresponds to a cover of Γ (Ω) by cliques, and so ∆(Ω) is the clique-covering
number of Γ (Ω). Similarly, a non-commuting subset of Ω is an independent set in Γ (Ω), and δ(Ω) is the
independence number of the graph.

1.3. Notation. Our notation is entirely standard. The support of a permutation g ∈ Sn is the set S of
those elements j in {1, 2, 3, . . . , n} satisfying g(j) 6= j. Two permutations g, h ∈ Sn are disjoint if they
have disjoint supports. Let n1, n2, . . . , nr be positive integers such that n1 + n2 + · · · + nr 6 n. We say
that a permutation g ∈ Sn has cycle type n1−n2−···−nr if g can be written as a product of disjoint cycles
g = g1g2 · · · gr, where the cycle gi is an ni-cycle.

For g ∈ G, we write ClG(g) for the conjugacy class of g in G (we will omit the subindex G, when the
group G is clear from the context.) Also we will write CG(g) for the centralizer of g in G.

1.4. Context. The following result of Brown is a starting point for our research [Bro88, Bro91].

Theorem 1.3. Let Sn be the symmetric group on n letters, with n a positive integer.

(1) If n 6 7, n = 9 or n = 11, then δ(Sn) = ∆(Sn);
(2) If n = 8, n = 13 or n > 15, then δ(Sn) 6= ∆(Sn).
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One can view our main result, Theorem 1.2, as an analogue of Theorem 1.3 for the alternating groups.
The study of groups via their commuting graph goes back many years. Perhaps the most famous result
in this line of study concerns groups that are not finite: in 1976, B. H. Neumann answered a question of
Erdős by proving that if all non-commuting sets in a group G are finite, then |G : Z(G)| is finite [Neu76].

The question of whether or not δ(G) = ∆(G) has been studied by various authors for various groups G
(see, for instance, [AAMHZ10, AFO13, AP09, ABG]). To our knowledge, Theorem 1.2 is the first result
that asserts that δ(G) 6= ∆(G) for some finite simple group G.

1.5. Acknowledgments. None of the results presented in this paper rely on computer calculations,
however we are happy to acknowledge our use of the GAP computer package [GAP13], which was a vital
tool in the research process. In this direction, we particularly want to thank A. Hulpke for help with
coding at various stages. All three authors would also like to thank M. Josephy for valuable discussions.

2. Background

In this section we record some basic results and definitions that will be needed in the sequel. The
lemmas that we will need are little more than observations. The proof of the first is left to the reader.

Lemma 2.1. There exists an abelian cover of G of size ∆(G) and consisting entirely of maximal abelian
subgroups.

Lemma 2.2. Let g ∈ G, and suppose that CG(g) is abelian. Then

(1) CG(g) is a maximal abelian subgroup of G and it is the unique maximal abelian subgroup of G that
contains g;

(2) There exists an abelian cover of G of size ∆(G) containing CG(g).

Proof. Let A be a maximal abelian subgroup of G that contains CG(g). In particular, A contains g and
so, since A is abelian, A 6 CG(g). Thus A = CG(g) and (1) is proved. Item (2) is a consequence of
Lemma 2.1 and (1). �

Now we need a number of definitions; the ensuing lemmas will highlight their significance. Let Ca(G)
be the set of all the abelian centralizers in G, Ya(G) its union and Yb(G) the complement of Ya(G). Hence

Ca(G) = {X 6 G | X is abelian, and X = CG(g) for some g ∈ G};
Ya(G) =

⋃
X∈Ca(G)

X; Yb(G) = G \ Ya(G).

We remark that both Ya(G) and Yb(G) are unions of conjugacy classes of G.
Next, for every element X ∈ Ca(G), choose an element gX ∈ G such that CG(gX) = X. Now define

Na(G) = {gX | X ∈ Ca(G)}.
We caution that the set Na(G) is not uniquely defined, since there may be more than one choice of gX
for any given X ∈ Ca(G). In what follows we will refer to ‘a set Na(G)’, by which we will mean a set
constructed in the given way. For all of the above definitions – Ca(G), Ya(G), Yb(G), Na(G) – when the
group G is obvious from the context, we may drop the (G) from the name. Thus, for example, we will
write Ca for Ca(G).

The next two lemmas connect the above definitions; the first is immediate.

Lemma 2.3. The set Ca(G) is an abelian cover of Ya(G), and a set Na(G) is a non-commuting subset of
Ya(G). In particular, δ(Ya(G)) = ∆(Ya(G)).

Lemma 2.4. (1) There is an abelian cover of G of size ∆(G) for which Ca(G) is a subset.
(2) Let X be a set Na(G). There is a non-commuting subset of G of size δ(G) for which X is a subset.

Proof. For (1) take a cover of maximal abelian subgroups (which we can do by Lemma 2.1). Now take
a set Na(G) and observe that, by Lemma 2.2 (1), this set must be covered by Ca(G). For (2), suppose
that N is a non-commuting subset of G and let V = N ∩ Ya. Clearly |V | 6 δ(Ya(G)) = |X|, since Ya(G)
is covered by δ(Ya(G)) abelian subgroups (Lemma 2.3). Thus if we remove V from N and put X in its
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place, then N will not have diminished in size. What is more, by construction, N is still non-commuting
(since any element of X does not commute with any element outside Ya). �

Lemma 2.5. A group G has an abelian cover of size δ(G) if and only if ∆(Yb(G)) = δ(Yb(G)).

Proof. Suppose, first, that G has an abelian cover A of size δ(G). By Lemma 2.4 we can assume that Ca
is a subset of A. Let N be a non-commuting subset of G of size δ(G); then there is a subset, Na, of N of
size |Ca| whose elements lie inside elements of Ca.

Now let Nb = N \ Na, and Cb = A \ Ca. Then Nb is a non-commuting subset of Yb, Cb is an abelian
cover of Yb, and |Nb| = |Cb|, as required.

For the converse, suppose that ∆(Yb) = δ(Yb), let Nb be a maximal non-commuting subset of Yb, and
let Cb be a minimal abelian cover of Yb. Now let X be a set Na(G) and observe that X ∪Nb is a maximal
non-commuting subset of G, and that Ca ∪ Cb is a minimal abelian cover of G of size δ(G). �

We close by making an elementary remark. Suppose that G is a group for which δ(G) = ∆(G), that N
is a non-commuting subset of G of size δ(G), and that C is an abelian cover of G of size ∆(G). Then every
element of C contains a unique element of N (indeed the same is true for G replaced in our suppositions
by any subset Ω of G).

3. Results on alternating groups

We will make heavy use of the following elementary lemma, a proof of which can be found in [Bro91].

Lemma 3.1. Let σ be a product of nontrivial disjoint cycles σ1, ..., σk no two of which have the same
length. Then every element of Sn which commutes with σ is a product τρ, where τ is a product of powers
of the cycles σi, 1 6 i 6 k and ρ and σ have disjoint support.

The treatment that follows is split into three cases – when n is even, when n is odd, and when n
is small. The strategy in the first two cases is identical, and strongly resembles the method of Brown
[Bro91]. However some of the details differ and so, for clarity, the cases are written separately.

3.1. n is even. We assume here that n is even, and let

σ = (4, 5)(6, 7, 8)(9, 10, . . . , n) ∈ An.

We are interested in the set ClAn(σ), the conjugacy class of σ in An and we note first that an element of
ClAn(σ) does not have an abelian centralizer in An.

Lemma 3.2. Suppose that n = 12 or n is even and n > 16, g ∈ ClAn(σ), K is a maximal abelian
subgroup of An containing g, and h is an element of K. Then one of the following occurs:

(1) h lies in an abelian centralizer.
(2) h has cycle type 2−3−d−d−···−d︸ ︷︷ ︸

k

where 1 6 d, k 6 n− 8 and dk = n− 8.

Proof. It is sufficient to prove the result for the case g = σ = (4, 5)(6, 7, 8)(9, ..., n). Now we write
a = (4, 5), b = (6, 7, 8), c = (9, 10, ..., n) and observe that g = abc.

The restrictions on n mean that we can apply Lemma 3.1 to the element g, and conclude that every
permutation h that commutes with g will be of the form aibjckρ where 0 6 i 6 1, 0 6 j 6 2, 0 6 k 6 n−8,
and the support of ρ is a subset of {1, 2, 3}.

Observe that h will satisfy condition (2) of the lemma if and only if one of the following holds:

• i = 1, j = 1, and ρ = (1);
• i = 1, j = 2, and ρ = (1);
• i = 1, j = 0, and ρ is a 3-cycle;
• i = 0, j = 1, and ρ is a 2-cycle.

In the first column below we list a representative h of every Sn-conjugacy class that has a non-trivial
intersection with K, and does not satisfy condition (2) of the lemma. In the second column we list a
permutation f that, provided n 6= 12, has abelian centralizer, and which commutes with h.
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Permutation h Permutation f

(4, 5)(9, ..., n)k (1, 6, 2, 7, 3, 8)(9, ..., n)
(6, 7, 8)(9, ..., n)k (1, 2, 3, 4)(6, 7, 8)(9, ..., n).
(1, 2)(4, 5)(9, ..., n)k (1, 4, 2, 5)(6, 7, 8)(9, ..., n)
(1, 2, 3)(6, 7, 8)(9, ..., n)k (1, 6, 2, 7, 3, 8)(9, ..., n)
(1, 2)(4, 5)(6, 7, 8)(9, ..., n)k (1, 4, 2, 5)(6, 7, 8)(9, .., n)
(1, 2, 3)(4, 5)(6, 7, 8)(9, ..., n)k (1, 6, 2, 7, 3, 8)(9, ..., n)

We caution that not all of the permutations h listed above lie in K since, for certain values of k,
the listed permutation will not be even. However the given list certainly includes all of the required
permutations. Furthermore it is easy to check, using Lemma 3.1, that CG(f) is indeed abelian.

We must deal with the case when n = 12. Again we list a representative h of every S12-conjugacy class
that has a non-trivial intersection with K, and does not satisfy condition (2) of the lemma. Again, in the
second column we list a permutation f that has abelian centralizer, and which commutes with h.

Permutation h Permutation f
(4, 5)(9, 10, 11, 12) (1, 6, 2, 7, 3, 8)(9, 10, 11, 12)
(6, 7, 8)(9, 11)(10, 12) (1, 2, 3, 4, 5)(6, 7, 8)(9, 11)(10, 12)
(1, 2)(4, 5)(9, 11)(10, 12) (3, 6, 7, 8)(1, 9, 4, 10, 2, 11, 5, 12)
(1, 2, 3)(6, 7, 8)(9, 11)(10, 12) (1, 6, 2, 7, 3, 8)(9, 10, 11, 12)
(1, 2)(4, 5)(6, 7, 8)(9, 11)(10, 12) (6, 7, 8)(1, 4, 9, 2, 5, 11)(10, 12)
(1, 2, 3)(4, 5)(6, 7, 8)(9, 10, 11, 12) (1, 6, 2, 7, 3, 8)(9, 10, 11, 12)

A quick computation checks that the centralizer for (1, 2, 3, 4, 5)(6, 7, 8)(9, 11)(10, 12) is abelian, and by
Lemma 3.1 the rest are obviously abelian as well. �

We need an easy lemma concerning permutations that satisfy condition (2) of the previous lemma.

Lemma 3.3. Suppose that n = 12, or n is even and n > 16, and that h ∈ An has cycle type 2−3−
d−d−···−d︸ ︷︷ ︸

k

where 1 6 d, k 6 n − 8 and dk = n − 8. Then CAn(h) contains a permutation f with cycle

type 2−3−(n−8) and, moreover, CAn(f) 6 CAn(h).

Proof. Write h = abc1 where a is a 2-cycle, b is a 3-cycle, c1 is a product of k d-cycles, and a, b and c
have disjoint support. Then c1 is a power of an (n−8)-cycle, c, and f = abc ∈ CAn(h) has cycle type
2−3−(n−8).

Now the restrictions on n mean that we can apply Lemma 3.1 to the element f to conclude that any
element f1 that commutes with f will be of the form aibjckρ where 0 6 i 6 1, 0 6 j 6 2, 0 6 k 6 n− 8,
and ρ and f have disjoint supports. Now one can check directly that such an element commutes with h,
and we conclude that CAn(f) 6 CAn(h). �

Proposition 3.4. Suppose that n = 12 or n is even and n > 16. Then δ(An) 6= ∆(An).

Proof. Assume, for a contradiction, that δ(An) = ∆(An). Let E be a maximal set of non-commuting
elements in An. By Lemma 2.4, we can (and do) assume that E contains a set Na(An). Let A be a
minimal abelian cover of An. By Lemma 2.4, we can (and do) assume that A contains Ca. As before, the
set ClAn(σ) is the conjugacy class of σ = (1, 2)(3, 4, 5)(9, 10, . . . , n) in An, and every element in ClAn(σ)
has cycle type 2− 3− (n− 8).

Now let γ be a fixed (n − 8)-cycle. For g ∈ ClAn(σ), write Long(g) for the (n − 8)-cycle that forms
part of the cycle decomposition of g. Now define

Clγ := {g ∈ ClAn(σ) | Long(g) = γ};
Aγ := {A ∈ A | h ∈ A for some h ∈ Clγ};
Eγ := E ∩ Clγ .

Since δ(An) = ∆(An), every element of A contains an element of E. Let A ∈ Aγ and let h be the unique
element in A∩E. Then, since A contains Ca, Lemma 3.2 implies that h has cycle type 2−3−d− d− · · · − d︸ ︷︷ ︸

k
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where 1 6 d, k 6 n−8 and dk = n−8. Now Lemma 3.3 implies that we can replace h in E by an element
f ∈ A with cycle type 2− 3− (n− 8), and E will still be non-commuting. Hence we can (and do) assume
that, for every A ∈ Aγ the unique element in A ∩ E is of type 2− 3− (n− 8).

Since
⋃

A∈Aγ
A ⊇ Clγ we conclude that |Eγ | = |Aγ | and Eγ is precisely the set of elements in E that lie

in some element of Aγ .
Now one can check, firstly, that |Clγ | = 1120 and, secondly, that if Ω ⊂ Clγ is a set of commuting

permutations, then |Ω| 6 4. So that every element A ∈ Aγ contains at most 4 permutations of the given
type and, in consequence, |Aγ | > 1120/4 = 280. Thus |Eγ | > 280.

Now consider B, the set of groups generated by 4 disjoint cycles a, b, c, γ where a is a 2−cycle, both b
and c are 3−cycles and γ is as above. We can easily see that B is an abelian cover of Cγ . What is more
|B| = 280. Therefore |Eγ | 6 280 and so |Eγ | = 280 = |Aγ |.

Now let A ∈ Aγ . Since |Aγ | = 280 and A contains at most 4 elements of Clγ which has size 1120, we
see that A contains exactly 4 elements of Clγ . Let g be an element of Clγ and write g = abγ where a is a
2-cycle, b is a 3-cycle, and a, b and γ are disjoint. One can easily check that g lies in two maximal abelian
subgroups:

• A1 = 〈a, b, γ, ρ1〉 where ρ1 is a 2-cycle that is disjoint from a, b and γ ;
• A2 = 〈a, b, γ, ρ2〉 where ρ2 is a 3-cycle that is disjoint from a, b and γ;

Now A1 contains 2 elements of Clγ , while A2 contains 4 elements of Clγ . We conclude that A2 ∈ Aγ . It
now follows that Aγ is equal to the set B, defined in the previous paragraph.

Now observe that the following groups all lie in Aγ :

A1 := 〈(1, 2, 3), (4, 5, 6), (7, 8), γ〉; A2 := 〈(1, 2, 3), (5, 7, 8), (4, 6), γ〉;
A3 := 〈(5, 7, 8), (2, 4, 6), (1, 3), γ〉; A4 := 〈(2, 4, 6), (1, 3, 5), (7, 8), γ〉;
A5 := 〈(1, 3, 5), (6, 7, 8), (2, 4), γ〉; A6 := 〈(1, 2, 3), (4, 7, 8), (5, 6), γ〉;
A7 := 〈(4, 7, 8), (1, 5, 6), (2, 3), γ〉; A8 := 〈(2, 3, 4), (1, 5, 6), (7, 8), γ〉;
A9 := 〈(2, 3, 4), (6, 7, 8), (1, 5), γ〉.

Let ai be the unique element in Ai ∩ E for i = 1, . . . , 9. Without loss of generality, we may assume
that a1 = (1, 2, 3)(7, 8)γ. Now for a2 not to commute with a1 it must be of the form (5, 7, 8)i(4, 6)γj ,
where i = 1, 2 and j and n − 8 are coprime. Notice that the choice of i and j does not affect the set
of permutations in Clγ that commute with it. Thus, without lost of generality we may assume that
a2 = (5, 7, 8)(4, 6)γ.

Following the same logic, we may take a3 = (2, 4, 6)(1, 3)γ, a4 = (1, 3, 5)(7, 8)γ and a5 = (6, 7, 8)(2, 4)γ.
Now starting from the fact that a1 = (1, 2, 3)(7, 8)γ, and following the same logic as above, we can also
deduce that a6 = (4, 7, 8)(5, 6)γ , a7 = (1, 5, 6)(2, 3)γ and a8 = (2, 3, 4)(7, 8)γ.

Now we find that we cannot choose a9, since any element we choose will commute either with a8 =
(2, 3, 4)(7, 8)γ or a5 = (6, 7, 8)(2, 4)γ. We have the contradiction that we sought. �

3.2. n is odd. The case where n is odd will be proven in essentially the same way as the even case
but considering instead permutations of cyclic type 2−3−8−(n−16) since the permutations of cyclic type
2−3−(n−8) aren’t in An when n is odd. Let τ = (4, 5)(6, 7, 8)(9, 10, . . . , 16)(17, 18, . . . , n) ∈ An. We
consider the set ClAn(τ) and observe, as before, that an element of ClAn(τ) does not have an abelian
centralizer in An. We will have the same situation as in the even case:

Lemma 3.5. Suppose that n is odd and n > 21, g ∈ ClAn(τ), K is a maximal abelian group containing
g, and h and element of K. Then one of the following occurs:

(1) h lies in an abelian centralizer.
(2) h has cycle type 2−3−d−d−···−d︸ ︷︷ ︸

k

−e−e−···−e︸ ︷︷ ︸
j

where 1 6 d, k 6 8, 16e,j6n−16, dk = 8, and

ej = n− 16.

Proof. Again it is sufficient to choose

g = τ = (4, 5)(6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16)(17, 18, ..., n)
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and check that every permutation that commutes with g satisfies the lemma. By Lemma 3.1 every
permutation that commutes with g will be of the form aibjckdlρ with a = (4, 5), b = (6, 7, 8), c =
(9, 10, ..., 16), d = (17, 18, ..., n) and the support of ρ is {1, 2, 3}.

As in the even case we list a representative h of every Sn-conjugacy class that has a non-trivial intersec-
tion with K, and does not satisfy condition (2) of the lemma. In the second column we list a permutation
f that, provided n 6= 19, has abelian centralizer, and which commutes with h.

Permutation h Permutation f

(4, 5)(9, 10, ..., 16)k(17, ..., n)l (1, 6, 2, 7, 3, 8)(9, 10, ..., 16)(17, ..., n)
(6, 7, 8)(9, 10, ..., 16)k(17, ..., n)l (1, 4, 2, 5)(6, 7, 8)(9, 10, ..., 16)(17, ..., n)
(1, 2)(4, 5)(9, 10, ..., 16)k(17, ..., n)l (1, 4, 2, 5)(6, 7, 8)(9, 10, ..., 16)(17, ..., n)
(1, 2, 3)(6, 7, 8)(9, 10, ..., 16)k(17, ..., n)l (1, 6, 2, 7, 3, 8)(9, 10, ..., 16)(17, ..., n)
(1, 2)(4, 5)(6, 7, 8)(9, 10, ..., 16)k(7, ..., n)l (1, 4, 2, 5)(6, 7, 8)(9, 10, ..., 16)(17, .., n)
(1, 2, 3)(4, 5)(6, 7, 8)(9, 10, ..., 16)k(17, ..., n)l (1, 6, 2, 7, 3, 8)(9, 10, ..., 16)(17, ..., n)

�

Now to deal with the permutations that satisfy condition (2) we will use the next lemma. The statement
and proof are analogous to Lemma 3.3, and so the proof is omitted.

Lemma 3.6. Suppose that n is odd and n > 21, and that h ∈ An has cycle type 2−3−d−d−···−d︸ ︷︷ ︸
k

−e−e−···−e︸ ︷︷ ︸
j

where 1 6 d, k 6 8, 1 6 e, j 6 n− 16, dk = 8, and ej = n− 16. Then CAn(h) contains a permutation f
with cycle type 2−3−8−(n−16) and, moreover, CAn(f) 6 CAn(h).

Proposition 3.7. Suppose that n is odd and n > 21. Then δ(An) 6= ∆(An).

Proof. We do essentially the same thing as in the even case. Assume δ(An) = ∆(An). Let E a non
commuting subset of size δ(An) such that Na(An) ⊂ E. Let Clγ,θ be the set of permutations of cycle
type 2−3−8−(n−16) where the 8-cycle is a given cycle γ and the (n−16)-cycle is a given cycle θ, with
the support of γ and θ disjoint from {1, 2, 3, 4, 5, 6, 7, 8}. Define

Aγ,θ := {A ∈ A | h ∈ A for some h ∈ Clγ,θ};
Eγ,θ := E ∩ Clγ,θ.

Again we see that to cover Clγ,θ we need at least 280 abelian groups, so that |Eγ,θ| = |Aγ,θ| > 280. By
Lemma 3.5 these permutations will satisfy condition (2) of said lemma. By Lemma 3.6 we can take these
elements to be of the type 2−3−8−(n−16).

Now consider B to be the set of groups generated by five disjoint cycles a, b, c, γ, θ where a is a 2-cycle,
b and c are 3-cycles, and γ, θ as above. This is a cover of Clγ,θ by 280 abelian groups and so each one
must contain exactly one element of Eγ,θ.

Now we assume that (1, 2, 3)(7, 8)γθ is in Eγ,θ and consider in order the representatives for

〈(1, 2, 3), (4, 5, 6), (7, 8), γ, θ〉; 〈(1, 2, 3), (5, 7, 8), (4, 6), γ, θ〉;
〈(5, 7, 8), (2, 4, 6), (1, 3), γ, θ〉; 〈(2, 4, 6), (1, 3, 5), (7, 8), γ, θ〉;
〈(1, 3, 5), (6, 7, 8), (2, 4), γ, θ〉; 〈(1, 2, 3), (4, 7, 8), (5, 6), γ, θ〉;
〈(4, 7, 8), (1, 5, 6), (2, 3), γ, θ〉; 〈(2, 3, 4), (1, 5, 6), (7, 8), γ, θ〉.

As before, we may assume that the following elements are in Eγ,θ:

(5, 7, 8)(4, 6)γθ; (2, 4, 6)(1, 3)γθ;
(1, 3, 5)(7, 8)γθ; (6, 7, 8)(2, 4)γθ;
(4, 7, 8)(5, 6)γθ; (1, 5, 6)(2, 3)γθ;
(2, 3, 4)(7, 8)γθ.

Now we must choose a representative for 〈(2, 3, 4), (6, 7, 8), (1, 5), γ, θ〉, but we can not do this, since any
element we choose will commute either with (2, 3, 4)(7, 8)γθ or (6, 7, 8)(2, 4)γθ both of which are already
in Eγ,θ, this contradiction implies that δ(An) 6= ∆(An). �
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3.3. Small n. To complete our understanding of the situation in alternating groups, we need to consider
the cases n 6 11 and n = 13, 14, 15, 19. We will not give full information here – to prove Theorem 1.2 it
is sufficient to prove that δ(An) = ∆(An) for n 6 11 and n = 15.

Lemma 3.8. Let n be a positive integer. Then every element of An lies in an abelian centralizer if and
only if n 6 7 or n = 10.

Moreover if n = 8 or 9, then the only elements of An that do not lie in an abelian centralizer have
cycle type 4−4. Similarly, the only elements of A11 that do not lie in an abelian centralizer have cycle
type 4−4−3.

Proof. The statements for n 6 11 can be checked by direct computation. Suppose now that n > 12. One
can check that if n is even (resp. odd), then elements of type 4−4−(n−9) (resp. 4−4−(n−8)) do not lie
in an abelian centralizer in An. �

In the notation of §2, the lemma asserts that, for n 6 7 and n = 10, we have Ya(An) = An. Now
Lemma 2.3 immediately yields the following corollary.

Corollary 3.9. If n 6 7 or n = 10, then δ(An) = ∆(An).

The following lemmas will help us deal with some of the remaining cases.

Lemma 3.10. Let n be a positive integer with n > 8, and let k and ` be positive integers such that
n − (4k + `) < min(`, 2k) and ` 6= 2k, ` 6= 4k. Let σ, τ ∈ Sn of cycle type 2k−2k−` such that στ = τσ.
Then,

(1) The `-cycle of τ is a power of the `-cycle of σ.
(2) The supports of σ and τ are equal.

Proof. For the first part, let r ∈ {1, 2, . . . , n}, we consider the orbit of r under 〈σ〉, this is Orbσ(r) =
{σi(r) : i ∈ Z}. Suppose that |Orbσ(r)| = `. We have that σiτ j(r) = τ jσi(r) for all i, j ∈ Z, and so

Orbσ(τ j(r)) = τ j (Orbσ(r)) ,

which implies that
Orbσ(τ j(r)) = Orbσ(r),

because there is only one orbit by σ of size `. We conclude that τ j(r) ∈ Orbσ(r) for all j ∈ Z, and then
Orbτ (r) ⊆ Orbσ(r).

Since τ has cycle type 2k−2k−` there are three possibilities: |Orbτ (r)| = `, |Orbτ (r)| = 1 and
|Orbτ (r)| = 2k. In the first case clearly Orbτ (r) = Orbσ(r), so that both `-cycles have the same support.
Lemma 3.1 then tells us that one `-cycle must be the power of the other.

Suppose one of the other possibilities holds: then if |Orbτ (r) = 1| we have that τ(r) = r, then
τσj(r) = σjτ(r) = σj(r), so σj(r) is fixed by τ for all j = 1, 2, 3, . . . , `, i.e. τ has ` fixed points. But this
is impossible, because n− (4k + `) < `.

This means that we must have |Orbτ (r)| = 2k for all r’s in the support of σ’s `-cycle. Since τ has cycle
type 2k−2k−` the support of σ’s `-cycle must be the same as the support for one of the 2k-cycles of σ, or
the union of the supports of the two 2k-cycles of σ. So we have only two possibilities: ` = 2k or ` = 4k,
neither one possible by hypothesis. This ends the proof of the first part.

For the second part, let r ∈ {1, 2, 3, . . . , n}, and suppose (for a contradiction) that τ(r) = r and
σ(r) 6= r. This implies that Orbσ(r) must have 2k or ` elements. But now observe that, for all i,

τσi(r) = σiτ(r) = σi(r)

and we conclude that every element in Orbσ(r) is fixed by τ . But this is impossible, because τ only fixes
n− (4k+ `) elements. We conclude that every element fixed by τ is fixed by σ. The same reasoning yields
that every element fixed by σ is fixed by τ and the result holds. �

Lemma 3.11. Let n a positive integer with n > 8, and suppose that n = 4k for some integer k. Let
Λ be the conjugacy class of elements of cycle type 2k−2k in An. Then the commutator graph Γ (Λ) is
disconnected. Furthermore if Ω is (the vertex set of) a connected component of Γ (Λ), then Ω ⊂ H < Sn,
with H ∼= Sk oK4, where K4 is the normal Klein 4-subgroup of S4.
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Proof. Let g = (1, 2, . . . , 2k)(2k + 1, 2k + 2, . . . , 4k) and consider the following partition of the set
{1, 2, . . . , n} into four subsets of size k:

{1, 3, 5, . . . , 2k − 1}, {2k + 1, 2k + 3, 2k + 5, . . . , 4k − 2},
{2, 4, 6, . . . , 2k}, {2k + 2, 2k + 4, 2k + 6, . . . , 4k}.

It is easy to see that this is the unique partition of type k−k−k−k on which g acts as a double-
transposition. What is more direct computation confirms that the same is true of any element of Λ
that commutes with g. Let Ω be the connected component of Γ (Λ) that contains g. We conclude that Ω
lies inside the subgroup generated by all elements of Λ that act as double-transpositions on Λ. All such
elements lie inside H and we are done. �

Corollary 3.12. Let n be a positive integer, n > 8, and let k, ` be positive integers such that n−(4k+`) <
min(2k, `). Let Λ be the conjugacy class of elements of cycle type 2k−2k−` in An. Then the commutator
graph Γ (Λ) is disconnected. Furthermore if Ω is (the vertex set of) a connected component of Γ (Λ), then
Ω ⊂ H < Sn with H ∼= (Sk oK4)× Z/`Z.

Proof. Let σ, τ ∈ Ω, the vertex set of a connected component of Γ (Λ). By Lemma 3.10 the `-cycle of τ is
a power of the `-cycle of σ, and their 2k−2k parts have the same support. By Lemma 3.11 Ω ⊂ H with
H ∼= (Sk oK4)× Z/`Z. �

Corollary 3.13. If n 6 11, then δ(An) = ∆(An).

Proof. By Corollary 3.9, we may (and we do) assume that n = 8, 9 or 11. By Lemma 2.5, we must prove
that δ(Yb(An)) = ∆(Yb(An)) in each case. By Lemma 3.8, Yb(An) is equal to the conjugacy class of cycle
type 4−4 for n = 8 or 9, and 4−4−3 for n = 11.

Now, by Corollary 3.12, the commutator graph of Yb(An) is disconnected and each connected component
lies inside a subgroup of Sn isomorphic to S2 oK4 for n = 8 or n = 9, and (S2 oK4) × Z/3Z for n = 11.
Let Ω be such a connected component; clearly if we can show that δ(Ω) = ∆(Ω), then we are done.

We consider first the cases n = 8 and n = 9, without loss of generality, we take Ω to be a connected
component inside “the” wreath product H = S2 o S4. Direct computation reveals that H contains 12
elements of cycle type 4− 4; they are the following elements and their inverses:

(1, 3, 2, 4)(5, 7, 6, 8), (1, 5, 2, 6)(3, 7, 4, 8), (1, 7, 2, 8)(3, 5, 4, 6),
(1, 3, 2, 4)(5, 8, 6, 7), (1, 5, 2, 6)(3, 8, 4, 7), (1, 7, 2, 8)(3, 6, 4, 5).

Now observe that the three elements in the first row form a non-commuting set, while the elements
in each column generate an abelian group. Taking Ω to be this set of 12 elements, we conclude that
δ(Ω) = ∆(Ω) = 3, and we are done.

For the case n = 11, we observe that H has 24 elements of cycle type 4− 4− 3 namely

(1, 3, 2, 4)(5, 7, 6, 8)(9, 10, 11), (1, 5, 2, 6)(3, 7, 4, 8)(9, 10, 11), (1, 7, 2, 8)(3, 5, 4, 6)(9, 10, 11),
(1, 3, 2, 4)(5, 8, 6, 7)(9, 10, 11), (1, 5, 2, 6)(3, 8, 4, 7)(9, 10, 11), (1, 7, 2, 8)(3, 6, 4, 5)(9, 10, 11),
(1, 3, 2, 4)(5, 7, 6, 8)(9, 11, 10), (1, 5, 2, 6)(3, 7, 4, 8)(9, 11, 10), (1, 7, 2, 8)(3, 5, 4, 6)(9, 11, 10),
(1, 3, 2, 4)(5, 8, 6, 7)(9, 11, 10), (1, 5, 2, 6)(3, 8, 4, 7)(9, 11, 10), (1, 7, 2, 8)(3, 6, 4, 5)(9, 11, 10).

and their inverses. Again, observe that the three elements in the first row form a non-commuting set,
while the elements in each column generate an abelian group. Taking Ω to be this set of 24 elements, we
conclude that δ(Ω) = ∆(Ω) = 3, and we are done. �

Lemma 3.14. δ(A15) = ∆(A15).

Proof. Direct computation shows that Yb(A15) consists of the elements of cycle type 7−4−4, 6−6−3,
6−4−2−2, and 6−3−3−2. Notice that among these classes no two elements in different classes commute.
Hence we may set Λ to be each class in turn, and show that in eacy case δ(Λ) = ∆(Λ).

Class 7−4−4: In this case Corollary 3.12 implies that Γ (Λ) is disconnected. Taking Ω to be the
maximal connected component that contains (1, 3, 2, 4)(5, 7, 6, 8)(9, 10, 11, 12, 13, 14, 15) and setting σ =
(9, 10, 11, 12, 13, 14, 15) one can check that this component has 72 elements, as follows:
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(1, 3, 2, 4)(5, 7, 6, 8)σi, (1, 5, 2, 6)(3, 7, 4, 8)σi, (1, 7, 2, 8)(3, 5, 4, 6)σi,
(1, 3, 2, 4)(5, 8, 6, 7)σi, (1, 5, 2, 6)(3, 8, 4, 7)σi, (1, 7, 2, 8)(3, 6, 4, 5)σi.

(Here i can take any value between 1 and 6, and an element is either on the list or its inverse is on the
list.)

Now the elements of each column generate an abelian group and these 3 groups cover Ω. On the other
hand, fixing i and taking the elements of any row we get a non-commuting set of size 3, as required.

Class 6−6−3: Reasoning along the lines of Corollary 3.12, we can deduce that Γ (Λ) is disconnected
in this situation, with a maximal connected component lying inside a subgroup of Sn isomorphic to
(S3 o K4) × Z/3Z × Z/3Z. Further a maximal connected component contains 432 elements, with one
example as follows:

(1, 10, 2, 11, 3, 12)(4, 8, 5, 9, 6, 7)σi, (1, 8, 3, 7, 2, 9)(4, 11, 6, 10, 5, 12)σi, (1, 4, 2, 5, 3, 6)(7, 10, 8, 11, 9, 12)σi,
(1, 10, 3, 12, 2, 11)(4, 8, 6, 7, 5, 9)σi, (1, 7, 3, 9, 2, 8)(4, 11, 6, 10, 5, 12)σi, (1, 4, 3, 6, 2, 5)(7, 11, 9, 10, 8, 12)σi,

(1, 4, 3, 6, 2, 5)(7, 10, 9, 12, 8, 11)σi, (1, 7, 2, 8, 3, 9)(4, 10, 5, 11, 6, 12)σi, (1, 11, 3, 10, 2, 12)(4, 7, 6, 9, 5, 8)σi,
(1, 5, 3, 4, 2, 6)(7, 12, 9, 11, 8, 10)σi, (1, 8, 3, 7, 2, 9)(4, 12, 6, 11, 5, 10)σi, (1, 10, 2, 11, 3, 12)(4, 9, 5, 7, 6, 8)σi,

(1, 4, 2, 5, 3, 6)(7, 12, 8, 10, 9, 11)σi, (1, 7, 3, 9, 2, 8)(4, 12, 6, 11, 5, 10)σi, (1, 10, 3, 12, 2, 11)(4, 9, 6, 8, 5, 7)σi,
(1, 11, 3, 10, 2, 12)(4, 9, 6, 8, 5, 7)σi, (1, 7, 2, 8, 3, 9)(4, 12, 5, 10, 6, 11)σi, (1, 5, 3, 4, 2, 6)(7, 10, 9, 12, 8, 11)σi,

(1, 11, 3, 10, 2, 12)(4, 8, 6, 7, 5, 9)σi, (1, 7, 2, 8, 3, 9)(4, 11, 5, 12, 6, 10)σi, (1, 4, 2, 5, 3, 6)(7, 11, 8, 12, 9, 10)σi,
(1, 10, 3, 12, 2, 11)(4, 7, 6, 9, 5, 8)σi, (1, 7, 3, 9, 2, 8)(4, 10, 6, 12, 5, 11)σi, (1, 5, 3, 4, 2, 6)(7, 11, 9, 10, 8, 12)σi,

(1, 10, 2, 11, 3, 12)(4, 7, 5, 8, 6, 9)σi, (1, 8, 3, 7, 2, 9)(4, 10, 6, 12, 5, 11)σi, (1, 4, 3, 6, 2, 5)(7, 12, 9, 11, 8, 10)σi,

(1, 5, 3, 4, 2, 6)(7, 11, 8, 12, 9, 10)σi, (1, 7, 3, 8, 2, 9)(4, 12, 6, 10, 5, 11)σi, (1, 11, 2, 10, 3, 12)(4, 9, 5, 8, 6, 7)σi,

(1, 5, 2, 6, 3, 4)(7, 11, 9, 10, 8, 12)σi, (1, 7, 2, 9, 3, 8)(4, 12, 5, 11, 6, 10)σi, (1, 10, 2, 12, 3, 11)(4, 9, 5, 8, 6, 7)σi,

(1, 4, 2, 5, 3, 6)(7, 10, 9, 12, 8, 11)σi, (1, 7, 2, 9, 3, 8)(4, 10, 5, 12, 6, 11)σi, (1, 10, 3, 11, 2, 12)(4, 9, 6, 7, 5, 8)σi,

(1, 5, 3, 4, 2, 6)(7, 12, 8, 10, 9, 11)σi, (1, 8, 2, 7, 3, 9)(4, 11, 5, 10, 6, 12)σi, (1, 11, 2, 10, 3, 12)(4, 8, 5, 7, 6, 9)σi,

(1, 5, 2, 6, 3, 4)(7, 12, 9, 11, 8, 10)σi, (1, 7, 3, 8, 2, 9)(4, 10, 6, 11, 5, 12)σi, (1, 10, 2, 12, 3, 11)(4, 8, 5, 7, 6, 9)σi,

(1, 4, 2, 5, 3, 6)(7, 12, 9, 11, 8, 10)σi, (1, 8, 2, 7, 3, 9)(4, 10, 5, 12, 6, 11)σi, (1, 10, 3, 11, 2, 12)(4, 7, 6, 8, 5, 9)σi,

(1, 7, 3, 8, 2, 9)(4, 11, 6, 12, 5, 10)σi, (1, 4, 2, 5, 3, 6)(7, 11, 9, 10, 8, 12)σi, (1, 10, 3, 11, 2, 12)(4, 8, 6, 9, 5, 7)σi,

(1, 8, 2, 7, 3, 9)(4, 12, 5, 11, 6, 10)σi, (1, 5, 2, 6, 3, 4)(7, 10, 9, 12, 8, 11)σi, (1, 10, 2, 12, 3, 11)(4, 7, 5, 9, 6, 8)σi,

(1, 7, 2, 9, 3, 8)(4, 11, 5, 10, 6, 12)σi, (1, 5, 3, 4, 2, 6)(7, 10, 8, 11, 9, 12)σi, (1, 11, 2, 10, 3, 12)(4, 7, 5, 9, 6, 8)σi,

(1, 7, 2, 8, 3, 9)(4, 10, 6, 12, 5, 11)σi, (1, 10, 3, 11, 2, 12)(4, 8, 5, 7, 6, 9)σi, (1, 4, 2, 6, 3, 5)(7, 10, 8, 12, 9, 11)σi,

(1, 7, 3, 9, 2, 8)(4, 10, 5, 11, 6, 12)σi, (1, 11, 3, 12, 2, 10)(4, 8, 5, 7, 6, 9)σi, (1, 4, 3, 5, 2, 6)(7, 10, 9, 11, 8, 12)σi,

(1, 8, 3, 7, 2, 9)(4, 11, 5, 12, 6, 10)σi, (1, 11, 2, 10, 3, 12)(4, 7, 6, 8, 5, 9)σi, (1, 4, 3, 5, 2, 6)(7, 12, 9, 10, 8, 11)σi,

(1, 7, 2, 8, 3, 9)(4, 12, 6, 11, 5, 10)σi, (1, 10, 3, 11, 2, 12)(4, 9, 5, 8, 6, 7)σi, (1, 6, 3, 4, 2, 5)(7, 11, 9, 12, 8, 10)σi,

(1, 7, 3, 9, 2, 8)(4, 12, 5, 10, 6, 11)σi, (1, 11, 3, 12, 2, 10)(4, 9, 5, 8, 6, 7)σi, (1, 4, 2, 6, 3, 5)(7, 12, 8, 11, 9, 10)σi,

(1, 8, 3, 7, 2, 9)(4, 12, 5, 10, 6, 11)σi, (1, 11, 2, 10, 3, 12)(4, 9, 6, 7, 5, 8)σi, (1, 6, 3, 4, 2, 5)(7, 12, 9, 10, 8, 11)σi,

(1, 8, 3, 7, 2, 9)(4, 10, 5, 11, 6, 12)σi, (1, 11, 2, 10, 3, 12)(4, 8, 6, 9, 5, 7)σi, (1, 4, 2, 6, 3, 5)(7, 11, 8, 10, 9, 12)σi,

(1, 7, 3, 9, 2, 8)(4, 11, 5, 12, 6, 10)σi, (1, 11, 3, 12, 2, 10)(4, 7, 5, 9, 6, 8)σi, (1, 6, 3, 4, 2, 5)(7, 10, 9, 11, 8, 12)σi,

(1, 7, 2, 8, 3, 9)(4, 11, 6, 10, 5, 12)σi, (1, 10, 3, 11, 2, 12)(4, 7, 5, 9, 6, 8)σi, (1, 4, 3, 5, 2, 6)(7, 11, 9, 12, 8, 10)σi,

(1, 7, 2, 9, 3, 8)(4, 10, 6, 11, 5, 12)σi, (1, 10, 3, 12, 2, 11)(4, 9, 5, 7, 6, 8)σi, (1, 4, 2, 6, 3, 5)(7, 10, 9, 11, 8, 12)σi,

(1, 12, 3, 11, 2, 10)(4, 9, 5, 7, 6, 8)σi, (1, 7, 3, 8, 2, 9)(4, 10, 5, 12, 6, 11)σi, (1, 4, 3, 5, 2, 6)(7, 10, 8, 12, 9, 11)σi,

(1, 7, 3, 8, 2, 9)(4, 11, 5, 10, 6, 12)σi, (1, 12, 2, 10, 3, 11)(4, 9, 6, 8, 5, 7)σi, (1, 6, 3, 4, 2, 5)(7, 12, 8, 11, 9, 10)σi,

(1, 10, 3, 12, 2, 11)(4, 7, 5, 8, 6, 9)σi, (1, 9, 3, 7, 2, 8)(4, 12, 5, 11, 6, 10)σi, (1, 4, 2, 6, 3, 5)(7, 11, 9, 12, 8, 10)σi,

(1, 7, 2, 9, 3, 8)(4, 11, 6, 12, 5, 10)σi, (1, 12, 3, 11, 2, 10)(4, 7, 5, 8, 6, 9)σi, (1, 4, 3, 5, 2, 6)(7, 11, 8, 10, 9, 12)σi,

(1, 9, 3, 7, 2, 8)(4, 11, 5, 10, 6, 12)σi, (1, 12, 2, 10, 3, 11)(4, 8, 6, 7, 5, 9)σi, (1, 6, 3, 4, 2, 5)(7, 11, 8, 10, 9, 12)σi,

(1, 12, 2, 10, 3, 11)(4, 7, 6, 9, 5, 8)σi, (1, 7, 2, 9, 3, 8)(4, 12, 6, 10, 5, 11)σi, (1, 6, 3, 4, 2, 5)(7, 10, 8, 12, 9, 11)σi,

(1, 9, 3, 7, 2, 8)(4, 10, 5, 12, 6, 11)σi, (1, 12, 3, 11, 2, 10)(4, 8, 5, 9, 6, 7)σi, (1, 4, 3, 5, 2, 6)(7, 12, 8, 11, 9, 10)σi,

(1, 7, 3, 8, 2, 9)(4, 12, 5, 11, 6, 10)σi, (1, 10, 3, 12, 2, 11)(4, 8, 5, 9, 6, 7)σi, (1, 4, 2, 6, 3, 5)(7, 12, 9, 10, 8, 11)σi,

(Here i can take any value between 1 and 6, and an element is either on the list or its inverse is on the
list.)

In the list above the elements of every row generate an abelian group and so these 36 groups cover the
connected component. On the other hand, fixing i and taking the elements of the first column we get a
non-commuting set of size 36, as required.

Class 6−4−2−2: a maximal connected component in Γ (Λ) contains 72 pemutations. One example is
as follows:

(1, 2, 3, 4)(5, 8)(6, 7)σi, (1, 2, 3, 4)(5, 6)(7, 8)σi, (1, 2, 3, 4)(5, 7)(6, 8)σi,
(1, 2)(3, 4)(5, 6, 7, 8)σi, (1, 3)(2, 4)(5, 6, 7, 8)σi, (1, 4)(2, 3)(5, 6, 7, 8)σi,
(1, 2, 4, 3)(5, 6)(7, 8)σi, (1, 2, 4, 3)(5, 7)(6, 8)σi, (1, 2, 4, 3)(5, 8)(6, 7)σi,
(1, 3)(2, 4)(5, 6, 8, 7)σi, (1, 4)(2, 3)(5, 6, 8, 7)σi, (1, 2)(3, 4)(5, 6, 8, 7)σi,
(1, 3, 2, 4)(5, 7)(6, 8)σi, (1, 3, 2, 4)(5, 8)(6, 7)σi, (1, 3, 2, 4)(5, 6)(7, 8)σi,
(1, 4)(2, 3)(5, 7, 6, 8)σi, (1, 2)(3, 4)(5, 7, 6, 8)σi, (1, 3)(2, 4)(5, 7, 6, 8)σi,

(Here σ = (9, 10, 11, 12, 13, 14, 15), i can be either 1 or 5, and an element is either on the list or its inverse
is on the list.)
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In the list above the elements of every row generate an abelian group and so these 6 groups cover the
connected component. On the other hand, fixing i and taking the elements of the first column we get a
non-commuting set of size 6, as required.

Class 6−3−3−2: a maximal connected component in Γ (Λ) contains 96 pemutations. One example is
as follows:

(1, 2, 5, 6, 3, 4)(7, 8, 9)(10, 12, 11), (1, 2, 5, 6, 3, 4)(7, 8, 9)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 12, 8, 11, 9, 10), (1, 2, 5, 6, 3, 4)(7, 9, 8)(10, 11, 12),
(1, 3, 5)(2, 4, 6)(7, 11, 9, 12, 8, 10), (1, 4, 5, 2, 3, 6)(7, 8, 9)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 11, 9, 12, 8, 10), (1, 4, 5, 2, 3, 6)(7, 9, 8)(10, 11, 12),
(1, 3, 5)(2, 4, 6)(7, 11, 8, 10, 9, 12), (1, 2, 3, 4, 5, 6)(7, 8, 9)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 11, 8, 10, 9, 12), (1, 2, 3, 4, 5, 6)(7, 9, 8)(10, 11, 12),
(1, 4, 3, 2, 5, 6)(7, 8, 9)(10, 12, 11), (1, 3, 5)(2, 6, 4)(7, 11, 8, 10, 9, 12), (1, 4, 3, 2, 5, 6)(7, 9, 8)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 11, 8, 10, 9, 12),
(1, 2, 3, 6, 5, 4)(7, 8, 9)(10, 12, 11), (1, 3, 5)(2, 6, 4)(7, 11, 9, 12, 8, 10), (1, 2, 3, 6, 5, 4)(7, 9, 8)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 11, 9, 12, 8, 10),
(1, 2, 5, 4, 3, 6)(7, 8, 9)(10, 12, 11), (1, 3, 5)(2, 6, 4)(7, 12, 8, 11, 9, 10), (1, 2, 5, 4, 3, 6)(7, 9, 8)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 12, 8, 11, 9, 10),
(1, 3, 5)(2, 6, 4)(7, 10, 9, 12, 8, 11), (1, 4, 3, 2, 5, 6)(7, 8, 9)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 10, 9, 12, 8, 11), (1, 4, 3, 2, 5, 6)(7, 9, 8)(10, 12, 11),
(1, 3, 5)(2, 6, 4)(7, 12, 9, 11, 8, 10), (1, 2, 5, 4, 3, 6)(7, 8, 9)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 12, 9, 11, 8, 10), (1, 2, 5, 4, 3, 6)(7, 9, 8)(10, 12, 11),
(1, 3, 5)(2, 6, 4)(7, 12, 8, 10, 9, 11), (1, 2, 3, 6, 5, 4)(7, 8, 9)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 12, 8, 10, 9, 11), (1, 2, 3, 6, 5, 4)(7, 9, 8)(10, 12, 11),
(1, 2, 5, 6, 3, 4)(7, 8, 9)(10, 11, 12), (1, 3, 5)(2, 4, 6)(7, 10, 9, 12, 8, 11), (1, 2, 5, 6, 3, 4)(7, 9, 8)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 10, 9, 12, 8, 11),
(1, 4, 5, 2, 3, 6)(7, 8, 9)(10, 11, 12), (1, 3, 5)(2, 4, 6)(7, 12, 8, 10, 9, 11), (1, 4, 5, 2, 3, 6)(7, 9, 8)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 12, 8, 10, 9, 11),
(1, 2, 3, 4, 5, 6)(7, 8, 9)(10, 11, 12), (1, 3, 5)(2, 4, 6)(7, 12, 9, 11, 8, 10), (1, 2, 3, 4, 5, 6)(7, 9, 8)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 12, 9, 11, 8, 10).

(Here, to save space, we have omitted the cycle (13, 14) from every permutation. As always every element
is either on the list or its inverse is on the list.)

In the list above the elements of every row generate an abelian group and so these 12 groups cover the
connected component. On the other hand, taking the elements of the first column we get a non-commuting
set of size 12, as required. �

Theorem 1.2 now follows from Propositions 3.4 and 3.7, Corollary 3.13 and Lemma 3.14.

4. Further work

Note that both Theorems 1.2 and 1.3 have numbers for which information is not given. In particular,
the following groups are not covered: S10, S12, S14, A13, A14, A17 and A19.

Results from this paper can be used to study these seven groups: for instance, one can check that
Yb(S10) consists of the single conjugacy class 4−2−2. Thus Lemma 2.5 and a consideration of the abelian
groups that contain elements from this class imply that δ(S10) = ∆(S10) if and only if one can find 9450
noncommuting permutations in S10 of cycle type 4−2−2.

In [Bro88, Bro91], Brown studies the asymptotics of the sequence ∆(Sn)/δ(Sn) and, in particular,
shows that this sequence has no limit and takes on infinitely many distinct values arbitrarily close to 1. It
seems reasonable to think that the same is true of the sequence ∆(An)/δ(An), but this has not yet been
established.

Graphs analogous to the commuting graph have been studied in various contexts. In particular, in
[ABG], a graph Γc(G) is defined for any finite group G and any c ∈ Z+ ∪ {∞} as follows: vertices are
the elements of G, with two vertices a, b ∈ G joined by an edge if and only if 〈a, b〉 is nilpotent of class at
most c. Observe that the commuting graph is simply the graph Γ1(G).

A natural extension to the work in the current paper would be to establish whether or not δ(Γc(G)) =
∆(Γc(G)) for G alternating or symmetric, and c 6= 1.
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