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A B S T R A C T   

Background: Methicillin resistant Staphylococcus aureus (MRSA) bacteria cause serious, often healthcare- 
associated infections and are frequently highly resistant to diverse antibiotics. Multiple MRSA clonal com-
plexes (CCs) have evolved independently and countries have different prevalent CCs. It is unclear when and why 
the dominant CC in a region may switch. 
Methods: We developed a mathematical deterministic model of MRSA CC competing for limited resource. The 
model distinguishes ‘standard MRSA’ and multidrug resistant sub-populations within each CC, allowing for 
resistance loss and transfer between same CC bacteria. We first analysed how dynamics of this system depend on 
growth-rate and resistance-potential differences between CCs, and on their resistance gene accumulation. We 
then fit the model to capture the longitudinal CC dynamics observed at a single UK hospital, which exemplified 
the UK-wide switch from mainly CC30 to mainly CC22. 
Results: We find that within a CC, gain and loss of resistance can allow for co-existence of sensitive and resistant 
sub-populations. Due to more efficient transfer of resistance at higher CC density, more drug resistance can 
accumulate in the population of a more prevalent CC. We show how this process of density dependent compe-
tition, together with prevalence disruption, could explain the relatively sudden switch from mainly CC30 to 
mainly CC22 in the UK hospital setting. Alternatively, the observed hospital dynamics could be reproduced by 
assuming that multidrug resistant CC22 evolved only around 2004. 
Conclusions: We showed how higher prevalence may advantage a CC by allowing it to acquire antimicrobial 
resistances more easily. Due to this density dependence in competition, dominance in an area can depend on 
historic contingencies; the MRSA CC that happened to be first could stay dominant because of its high prevalence 
advantage. This then could help explain the stability, despite frequent stochastic introductions across borders, of 
geographic differences in MRSA CC.   

1. Introduction 

Staphylococcus aureus are commensal organisms and opportunistic 
pathogens that can be clustered into related individual lineages or clonal 
complexes (CC) (Jensen and Lyon, 2009; Deurenberg and Stobberingh, 
2008). Some isolates have acquired SCCmec, a genetic element that 
confers methicillin resistance (MRSA). MRSA infections now cause 

significant morbidity and mortality around the globe (Grundmann et al., 
2006; van Hal et al., 2012; de Kraker et al., 2011; Cassini et al., 2019). 
MRSA clones are resistant to virtually all beta-lactamases, favoured 
antimicrobials for treatment and prophylaxis. On top of this, MRSA 
isolates often carry additional resistances, many of which are encoded 
on mobile genetic elements (MGEs) (e.g. to aminoglycosides). Resis-
tance to all antibiotic classes has been described in S. aureus, but these 
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additional resistances are variably distributed across MRSA CC. 
Additional resistance is predicted to confer a selective advantage in 

the hospital setting, where commensal organisms will be exposed to 
antibiotics, even if carriage of MGEs also incurs some small cost. The 
clonal complexes (CCs) mainly evolve their resistance independently, 
due to restriction modification systems between CCs, which prevent the 
entry of “foreign” DNA (Feil et al., 2003; Harris et al., 2010). Movement 
of resistances on MGEs within a CC is likely to be frequent: it has been 
seen in individual patients and in animal models (Moore and Lindsay, 
2001; McCarthy et al., 2012; Goerke et al., 2004; Stanczak-Mrozek et al., 
2015). Interestingly, although the CCs of methicillin susceptible 
S. aureus are widely distributed spatially, a limited number of successful 
CC clones dominate the MRSA populations of different countries 
(Grundmann et al., 2010; Cockfield et al., 2007). 

The reasons for this country level segregation in MRSA clones are 
unknown (Johnson, 2011), although inter-hospital patient transfer 
networks, linking MRSA populations within countries, likely play a role 
(Donker et al., 2010, 2017). Within countries, MRSA clonal dynamics 
are relatively stable over years to decades, although shifts in dominant 
clones have been seen, for example in Singapore and Portugal (Hsu 
et al., 2015; Aires-de-Sousa et al., 2008; Bal et al., 2016). Also in the UK, 
there has been a switch from CC30 SCCmecII isolates in the 1990s 
(EMRSA-16), to CC22 SCCmecIV in the 2000s (EMRSA-15) causing the 
majority of MRSA infections (Wyllie et al., 2011). This was uniquely 
captured in detail by a case study from a single UK hospital that 
collected incidence of infection data, CC type, antibiograms and anti-
biotic usage over the period of change. It also showed the appearance 
and loss of another MRSA sequence type (subset of a clone) ST239 be-
tween the dominant periods (Knight et al., 2012). The ST239 was re-
ported concurrently in at least one other London hospital (Edgeworth 
et al., 2007), although its role in the competition dynamics of MRSA 
populations remains unknown. In 2020, CC22 remains dominant in the 
UK (Donker et al., 2017; Coll et al., 2017). 

With the current work we wish to address, in general, possible rea-
sons for the spatial and temporal structuring of CC dominance, and in 
particular what drove the CC switch within the UK hospital described 
above, also allowing for the relative stability observed since. For this 
purpose, we developed a new mathematical model to capture the 
fundamental processes of competition between CCs. Although previous 
models of antibiotic resistant bacteria such as MRSA have included 
competing strains (e.g. D’Agata et al., 2009; Kardaś-Słoma et al., 2011)), 
our model is distinct in that it also includes the processes of loss and gain 
by horizontal gene transfer of MGEs. 

From classical ecological models we know that in general when 
competition occurs for a single resource, in a closed system, only the 
competitor who most efficiently uses this resource will in the end survive 
(Tilman, 1982; Miller et al., 2005). We therefore expect the CC with the 
optimal balance of fitness factors, such as growth-rate and antibiotic 
resistance, to out-compete all others. For this reason, modelling studies 
have often explicitly addressed the puzzle of why many different strains 
of bacteria nonetheless co-exist (Krieger and Hill, 2018; Davies et al., 
2019). Difference in usage of antibiotics may help explain the difference 
in dominant MRSA CC between countries, favouring particular CCs as 
the top-competitors locally. But what then caused the UK switch in CC 
dominance when antibiotics usage did not change? 

Intriguingly, we find that in our model the inclusion of within CC 
dynamics allows for multiple stable states of the system; competition 
between CCs may be density dependent. This factor allowed us to 
reproduce the dynamics of relative CC prevalence values observed 
within the UK hospital. 

2. Methods 

Model. We describe the dynamics of competing MRSA clonal com-
plexes (CCs) in the hospital as a system of differential equations (Box 1). 
These equations describe the change in densities of each CC as depen-
dent on CC characteristics and on the availability of resource. The model 
is kept simple in that the resource for which bacteria compete represents 
susceptible patients as well as all hospital and equipment surface area 
(fomites) upon which MRSA can survive, i.e. it ignores spatial barriers. 
Within each CC, we distinguish between bacteria carrying standard 
MRSA resistance only, and those with elements conferring additional 
resistance. These extra resistances can be lost, gained by gene acquisi-
tion, and transferred when isolates from the same CC meet. 

2.1. Data 

With the above model, we aim to understand the dynamic changes as 
observed within St George’s Healthcare NHS Trust hospital from 1999 to 
2009, as published previously (Knight et al., 2012). This exceptional 
study documented the relative abundance of isolates from different CCs 
over time among infected patients. Consistent with this study, we here 
consider ST239 as a CC (in origin this is a variant of CC8 (Diep and Otto, 
2008) (no other CC8 was observed)). We include only CC22, CC30 and 
ST239, since our main interest is in what caused CC22 to take over the 
dominant prevalence position from CC30, and all other CCs were found 

Box 1 
Formal description of the model. 

dmj

dt
= imj + bjmjz − (d + a)mj − grjmj + lrj − smj  

drj

dt
= irj +

(
1 − cj

)
bjrjz −

(
d + (1 − kj)a

)
rj + grjmj − lrj + smj  

z = 1 −
∑n

j=1
(mj + rj)

Here j specifies the CC (j = 1, 2, …, n, with n the total number of competing CCs). mj is the density of the standard MRSA resistant 
subpopulation, while rj is the density of the multidrug resistant sub-population of clonal complex j. z represents the density of the resource for 
which the sub-populations compete. imj and irj are the exogenous rates of inflow of the two strains respectively. We additionally define total CC 
inflow ij = imj + irj. bj is the clonal complex growth-rate, and cj a proportional cost to multidrug resistance resulting in lowered growth rate of 
the more resistant strain (cj < 1). d is the natural death or removal-rate of bacteria, which includes removal from the hospital via patient 
discharge and cleaning of fomites, a is the additional antibiotics induced death-rate, and kj the proportional decrease in the antibiotics-induced 
death rate due to resistance (kj < 1). g represents the rate of resistance transfer when the standard MRSA and the multidrug resistant strains 
meet, while l is the loss-rate of resistance. s is the rate at which the standard MRSA strain mutates to gain multidrug resistance.  
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only in small numbers (added together, other CCs made up ~8% of 
prevalence from 2006 to 2009, and ~0% before). 

2.2. Parameter values 

All parameters are tailored to the above hospital setting, and are 
shown in Table 1. Our model simplifies by having just two strain ver-
sions per CC, standard MRSA (resistant to methicillin and other peni-
cillins, fluoroquinolone and erythromycin) and multi-drug resistant (e.g. 
additionally to aminoglycosides, tetracycline, fusidic acid, chloram-
phenicol, mupirocin, trimethoprim and/or co-trimoxazole). In reality 
the number of different drug resistances carried by the bacteria is found 
to vary within the clonal complexes, with CC22 carrying fewest and 
ST239 most resistances on average (Knight et al., 2012). Our model 
captures this average difference between CCs by the kj parameters, 
which set a proportional decrease in antibiotics-induced death rate due 
to resistance. Based on the level of resistance in the data, we restrict 
k239 > k30 > k22. However, since it is poorly known how much of bac-
terial death is avoided by resistance genes, we fit kj to the prevalence 
data of the CCs (see below under model analysis). 

The growth-rate parameters bj are informed by the in vitro doubling 
time experiments which showed CC22 isolates growing faster than CC30 
isolates, and both of these growing significantly faster than ST239 
(Knight et al., 2012). The same study of the CCs in this hospital showed 
that increased resistance within a complex was associated with minimal 
cost to the growth-rate, with no detected effect for CC22 at all. As the 
above mentioned experiments were not accurate to detect small fitness 
differences however, and since carrying extra DNA should theoretically 
incur some cost, we have included a slight decrease in growth-rate of 
cj=2%, 4% and 6% respectively for the more resistant strain versions of 
CC22, CC30 and ST239 (corresponding to the average resistance levels 
of these CC). 

For the rates of resistance loss, gain by transfer, as well as gain by 
genetic mutation (l, g and s), we lack estimates, and therefore explored 
different values. For reasons of parsimony, we presumed no difference 
among the CCs in these factors. Since we expect genetic mutations 
conferring resistance to be rare in the given timeframe of 10 years, for 
our main analyses the mutation rate between levels was set to zero (s =
0). 

The mean length of patient stay decreased from about 6 to about 5 
days due to policy change in 2005 (Knight et al., 2012). The daily rate of 
bacterial removal due to patient discharge or death then was 0.17 before 
and 0.2 afterwards. Although we assume this to be the main cause for 
removal, we also allow for other causes of bacterial clearance; we let the 
total per day removal rate, d, change from 0.28 before to 0.32 from 2005 
onwards. Within hospital antibiotic usage is high (Versporten et al., 
2018), and although it is not well known in how much MRSA removal 
this results, this factor should be of significant impact within a hospital; 
we set the antibiotic induced death rate for sensitive MRSA approxi-
mately equal to the background removal rate, at a = 0.3 per day. Overall 
antibiotic use and other infection control practices were stable over this 
period, except for some increase in mupirocin decolonisation after 2006 
(Knight et al., 2012). Since mupirocin appears to have had no impact on 
competition between CCs (i.e. it occurred after the take-over in domi-
nance by CC22 which we aim to explain) we have left this factor out of 
the current analysis. 

In 2009 (the end of the period of interest), 2.9% of patients admitted 
to St. George’s NHS Hospital were found to be colonised with MRSA 
(Krebes et al., 2011). Information on colonisation or infection with 
MRSA at arrival of patients was not available at CC level. One expla-
nation for take-over by CC22 as dominant complex in this hospital 
would be a greater inflow of CC22 during later years. However, we avoid 
this trivial explanation by setting the inflow of CC22 and CC30 to be 
equal and constant over the considered time-period of 10 years, each at 
~0.75% of incoming patients (i30, i22 in Table 1). An outbreak of ST239 

was documented in a nearby hospital in 2003–2004 (Edgeworth et al., 
2007). We assumed ~2% of incoming patients to carry ST239 during 
these years, lowering to ~0.4% of incoming patients afterwards (i239 in 
Table 1), which enabled reproduction of the ST239 dynamics observed. 

The final factor to be quantified is the fraction of high resistance 
among incoming bacteria (irj/ij). Many of the newly admitted MRSA 
positive patients will be returning patients who were colonised during a 
previous hospitalisation. We cannot explicitly model this re-admission 
process due to lack of data. However, we do expect that additional 
resistance would be subject to a greater rate of loss outside of the hos-
pital, where it is not advantageous. We therefore calculate the fraction of 
highly resistant MRSA at inflow irj/ij as hrj/(mj + rj), where h scales how 
strongly the current hospital level of resistance determines the level 
within the inflow. In our baseline scenario we set h = 0.5, but we 
additionally explored other values for h in the full range of 0 (total loss) 
to 1 (no loss). Since the source of ST239 was likely mainly from else-
where rather than from re-admission patients, and since ST239 resis-
tance levels were found to be very high in 2003, the fraction ir239/i239 
was set to 90% during its years of high inflow-rate. 

Table 1 
Parameter values as used to reproduce the MRSA clonal complex (CC) dynamics 
as observed at St George’s Healthcare NHS Trust hospital between 1999 and 
2009.  

Description Parameter Time 
dependent 

Base value Alternative 
values 

Removal rate of 
bacteria 

d  Before 
2005 

0.28 per day    

From 2005 0.32 per day  
Additional removal 

rate due to 
antibiotics 

a   0.3 per day  

Growth-rate b30   0.62 per day   
b22   0.66 per day   
b239   0.54 per day  

Cost to resistance 
in percentile 
decrease in 
growth-rate for 
resistant bacteria 

c30   4%  
c22   2%  
c239   6%  

Rate of resistance 
transfer 

g   1 per day 0 per day 

Rate of resistance 
loss 

l   0.03 per day 0 per day 

Rate of resistance 
gain by mutation 

s   0 per day 0.003, 0.01 
per day 

Rate of bacterial 
inflow 

i30 = i22*   0.0015 per 
day   

i239*  Before 
2003 

0 per day    

2003–2004 0.004 per 
day    

From 2004 0.0008 per 
day  

Scalar of the 
dependence of 
the resistant 
fraction in inflow 
of a CC on 
current hospital 
resistance level 

h   0.5 0, 0.25, 0.75, 
0.8, 1 

Percentile decrease 
in the antibiotics 
induced 
removal-rate for 
resistant bacteria 

k30 & k22 & 
k239   

Fit to 
prevalence 
data   

* We assume a constant number of patients within the hospital, so that the 
total patient inflow rate equals the outflow rate of ~0.2 per day (as the mean 
length of stay is about five days). Then infected inflow i equals this total inflow 
rate of 0.2 multiplied by the proportion of individuals infected at hospital 
entrance, as stated per CC in the Methods section. 

A.S. de Vos et al.                                                                                                                                                                                                                               



Epidemics 37 (2021) 100511

4

2.2.1. Model analysis 
All analyses are performed in R (Team R., 2013). We examine dy-

namics over time using the function ode() from package deSolve (Soe-
taert et al., 2010), and equilibrium states, dmj/dt = drj/dt = 0, using 
function searchZeros from package nleqslv (Dennis and Schnabel, 1996). 
We also used the function uniroot.all from package rootSolve (Garrett, 
2010) to aid finding all equilibria in case of multiple stable states. 

Before attempting to fit the model to the hospital data, we examine 
the properties of the model by considering simplified settings. First, we 
consider a single CC and no MRSA inflow into the hospital, i.e. ij = 0. 
Secondly, we consider two competing CCs in a closed setting. To enable 
examination of the impact of the starting densities of both CCs, we as-
sume their initial resistance levels to be at equilibrium with their own 
starting density x, i.e. we solve (rj + drj/dt)/(rj + drj/dt + mj + dmj/

dt) = rj/(mj + rj) with mj + rj = x. Since gain and loss of resistance are 
relatively fast processes in our model, this semi-steady state like 
assumption of the more resistant population fraction is an acceptable 
approximation. In a third step, we add external inflow of the CCs (ij>0). 

2.2.2. Model fitting 
Understanding the basic model properties, we turn to representing 

the dynamic changes as observed within the UK hospital from 1999 to 
2009. To enable comparison of various modelled scenarios with the 
data, which documented the relative abundance of CCs, we recalculate 
to relative abundances of modelled CC22, CC30 and ST239, as CCj =

(mj + rj)/(m22 + r22 + m30 + r30 + m239 + r239). 
How relative MRSA CC prevalence values changed before 1999 (t=0) 

is not known. For reasons of parsimony, for our initial conditions, we set 
the model to be in equilibrium, i.e. for all CCs at t=0, dmj/dt = drj/dt =
0. Where multiple possible stable equilibria were obtained, we used 
each of these separately in the subsequent step, which was to solve the 
equations for prevalence over time. 

We consider two main hypotheses for what caused the switch in CC 
dominance at this hospital. First, with our primary model version, we 

consider whether the two known disruptions of the system together, 
namely temporary high ST239 inflow, and a permanent decrease in the 
average length of stay, could have allowed for CC22 to take-over from 
CC30. Furthermore, we aimed to differentiate importance of these dis-
ruptions. For this purpose, we used counter-factual scenarios; leaving 
out either ST239 inflow, or the change in the length of stay, we re-ran 
our main fitted scenario. 

Secondly, we considered the possibility that an additional event 
occurred, whereby CC22 went through an evolutionary change. In this 
secondary model version, we assume that CC22 gained additional 
transferrable resistances on MGEs (r-strain inception) only from 2004, 
that is we set r22(t = 0) = 0 and ir22 = 0 up to 2004, and afterwards 
ir22 = min(0.01,hr22/(m22 + r22)), i.e. at least 1% of CC22 inflow is of 
r22 type from 2004. 

Besides examining these two main model versions, for each version 
we also considered alternative settings for several parameters, as indi-
cated above, resulting in eighteen alternative scenarios in total 
(Table 2). For each considered scenario a parameter sweep was per-
formed with step sizes of 1% for each of the resistance level parameters 
kj. We define the optimal fit per scenario as the one minimising the sum 
of squared differences between the observed relative CC prevalence data 
and model outcome. 

Dominance of CC22 in the UK MRSA population has continued since 
2009 (Donker et al., 2017; Coll et al., 2017), the end of the detailed data 
collection at St George’s Healthcare NHS Trust hospital. As a final 
extension, we use our model framework to explore what characteristics 
would enable a newly introduced CC to replace CC22 in this UK hospital. 

3. Results 

3.1. Coexistence of strains within one CC 

When a single MRSA CC is first introduced to a hospital the bacteria 
can multiply, but as free hospital surface space and un-colonised 

Table 2 
Fitted model scenarios.  

Model version Change from 
base values 

Presence of multiple stable states at t¼0 (1999) for best fit ks 
(and in what fraction of all k30 and k22 combinations)  

Best fit: 

k30  k22  k239  SSD Figure 

Primary h = 0  Yes (16.7%)  32%  15%  39%  0.022 - 
h = 0.25  Yes (6.3%)  40%  25%  53%  0.086 - 
All baseline Yes (2.6%)  61%  49%  74%  0.043 4A 
h = 0.75  Yes (0.9%)  81%  71%  94%  0.026 - 
h = 0.8  Yes (0.7%)  82%  72%  95%  0.039 - 
h = 1  Yes (0.2%)  84%  74%  96%  0.077 - 
g = 0  No (0.0%)  85%  75%  95%  0.181 App. 

A4A 
l = 0  No (0.0%)  85%  76%  96%  0.181 - 
s = 0.003  Yes (2.4%)  62%  50%  76%  0.059 - 
s = 0.01  Yes (1.9%)  71%  60%  84%  0.062 - 

Secondary (with evolutionary event, i.e. 
CC22 r-type introduced in 2004*) 

h = 0  No (0.0%)  28%  16%  33%  0.020 - 
h = 0.25  No (0.0%)  27%  15%  34%  0.017 - 
All baseline No (0.0%)  26%  17%  34%  0.015 4B 
h = 0.75  No (0.0%)  26%  20%  36%  0.013 - 
h = 0.8  No (0.0%)  26%  21%  36%  0.014 - 
h = 1  No (0.0%)  25%  22%  36%  0.013 - 
g = 0  No (0.0%)  34%  27%  37%  0.013 App. 

A4B 
l = 0  No (0.0%)  22%  17%  32%  0.012 - 

Each scenario was fit to the data by finding the k parameters, denoting the proportional decrease in the antibiotics induced removal-rate for resistant bacteria, for 
which the sum of squared differences (SSD) between model outcome and data was minimal. For examples of the fitting space, see Appendix Fig. 4. The impact of 
parameters on model fit was explored by changing one at a time; all other parameters were set at their base values (see Table 1; at baseline h = 0.5, g = 1, l = 0.03 and 
s = 0).  

* In the secondary model version with CC22 r-type introduced only from 2004, we did not run the model with alternative values for the mutation rate s, since if s ∕= 0, 
a higher resistance carrying element is obtained by CC22 from 1999, and we in effect regain our primary model setting. 
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patients become scarce, growth will balance with the removal of bac-
teria, by death (including cleaning) and by patient discharge (Fig. 1A). 
That is, equilibrium prevalence will be reached. 

In this equilibrium, isolates with standard MRSA resistance and with 
multidrug resistance level co-exist. The equilibrium proportion of the 
standard m-strain and of the multidrug resistant r-strain depends on the 
relative growth and survival of the distinct strains, but also on the bal-
ance between the loss, the transfer and the de novo gain rate of resis-
tance. For example, with all model parameters at baseline value, the 
more resistant r-strain makes up 93% of the CC population at equilib-
rium, but if we increase the loss-rate l, the percentile of r-strain bacteria 
decreases (Fig. 1B). The level of resistance in the CC population in turn 
affects the overall prevalence the CC can reach; when antibiotics usage a 
is high enough, the prevented bacterial death outweighs the cost of 
carrying the element, rendering carriage of the additional resistance a 
net advantage. In this case a lower population fraction carrying the extra 
resistance will lower the total CC prevalence (Fig. 1B, black line). 

If we assume no de novo resistance acquisition events to take place, i. 
e. s=0 (at least during a delimited time-period), there is also the possi-
bility of a steady state with only base resistance, i.e. the more highly 
resistant r-strain might simply never be introduced into the hospital 
(dotted lines Fig. 1B). 

3.2. Competition between CCs 

Next, we consider what occurs when two CC are present in a hospital. 
Generally, when competition occurs for a single resource, in a closed 
system, it is expected that in the end only the competitor who most 
efficiently uses this resource will survive. Within our model, efficiency is 
determined by a CCs growth-rate and by antibiotic resistance level. In a 
simplified version of our model, without resistance gain by horizontal 
transfer, i.e. g=0, or conversely without loss of resistance, l=0, we 
indeed see such simple competitive exclusion; if complexes are equal 
except that one grows slightly faster, i.e. b1 >b2, that complex will 
eventually replace all others (see Appendix Fig. 1). 

When we add the possibility of resistance gain and loss however, i.e. 
g>0 and l>0, the model dynamics become more complicated. Our most 
remarkable finding is that with this addition there may be density 
dependence in the outcome of competition. That is, in a closed system, 
one complex still eventually takes over the complete growth-space, but 
which one may now depend on the initial densities of the CCs (Fig. 2, 
compare the two panels). Specifically, a complex that starts at higher 
densities has an advantage, allowing it to out-compete other complexes 
even when these are advantaged in other ways. Such higher initial 

density could typically be due to earlier growth before the arrival of 
competitors. 

The explanation for this competition effect is that higher density 
facilitates resistance gain (see Appendix Fig. 2). Resistant elements are 
transferred only if bacteria of the same CC meet, and such encounters are 
more likely when there are more same-CC bacteria present. If resistance 
is a net advantage, then the resulting higher population fraction of 
resistance enhances the overall fitness of the CC. 

In Fig. 3, we show the outcome of competition over the range of 
possible starting densities of two complexes, under different conditions. 
As stated above, if there is no resistance transfer (g=0), the fastest 
growing complex always wins (A), but in case of resistance transfer we 
see density dependence in competitive outcome (B). If the difference in 
growth-rates between the CC is larger, the range of starting densities for 
which the slower growing CC wins is smaller (less green in Fig. 3C 
compared to B), and for large enough difference in growth rates, this 
fitness factor will always trump the population resistance benefit 
conferred by higher density. 

The density dependent process depends strongly on the relative rates 
of gain and loss of resistance, for which estimates are lacking, and which 
might be element specific. We therefore explored different plausible 
combinations of these parameters in our model (see Appendix Fig. 3). 
The density dependence is especially strong for a medium high loss rate, 
or for high loss combined with high gain of the element, otherwise 
resistance will be either universally gained or lost for both CC pop-
ulations at any prevalence level, allowing only the faster growing CC 
(pink in figure A3) to ever win. 

3.3. Effects of continuous inflow 

In a closed setting, as analysed above, eventually only one CC re-
mains, as it will use up too much of the resource for any other CC to 
survive (Figs. 2A and B, end of timeline). The hospital we aim to model is 
clearly not a fully closed system however, as individuals can be colon-
ised at admittance. This can explain the long-term coexistence of com-
plexes seen here (together with assumed CC diversity outside of the 
hospital); when we include inflow of different CCs in our model from 
elsewhere, the model predicts their co-existence (Appendix Figs. 2C and 
1D, end of timeline). Yet if the inflow of MRSA from outside of the 
hospital is relatively little compared to the MRSA increment from 
growth within the hospital itself, the initial prevalence values can still 
determine which of the CCs dominates in the hospital subsequently, see 
also Fig. 3D; here, despite equal continuous introduction of both CC 
from elsewhere, after 10 years of competition, one of the CC 

Fig. 1. Example dynamics for a single CC. A: Prevalence over time of the basic MRSA resistant m (light-green) and higher resistant r-strain (dark-green) of a single 
CC, which has entered the hospital with low initial prevalence (m(t = 0) = 0.01 and r(t = 0) = 0.0001.) z is the density of resource available. Parameters are as at 
baseline for CC22 (Table 1) except inflow i = 0. B: Equilibrium prevalence of this CC as dependent on the loss-rate l of the resistant element (solid lines). The 
baseline loss-rate l =0.03 (used for panel A) is indicated here with a vertical dashed line. Total CC prevalence declines with increasing loss-rate, since in this setting 
(with high antibiotic induced death-rate, a) resistance is fitness enhancing (i.e. outweighs the cost to resistance in diminished growth, c). The equilibrium prevalence 
without the r-strain present is also shown (dotted lines). Note that this unstable equilibrium is lost when the mutation rate s > 0. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) . 
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Fig. 2. Dynamics for two competing CCs, exemplifying density dependence. Prevalence over time is shown for the basic MRSA resistant m and higher resistant r- 
strains of two CCs. CC2 has a 1% higher growth-rate than CC1, all other parameters are equal (and at baseline for CC22, except inflow i = 0 (see Table 1)). In A, m1 
and r1 (light- and dark-green, together making up CC1) start at double the densities of m2 and r2 respectively (light- and dark-purple). Panel B differs only in that these 
starting densities for CC1 and CC2 are reversed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.). 

Fig. 3. Eventual outcome of competition between two MRSA CCs as determined by initial densities of both CCs. Here CC2 (dominance in pink) has the growth 
advantage over CC1 (dominance in green). For each CC, we consider only starting densities below or at the equilibrium density of this CC (as achieved without other 
CCs present) (hence the unequal panel sizes). Initial resistance level within each CC is assumed at equilibrium with CC density (see Methods and Appendix Fig. 2). For 
both CCs, parameters are as at baseline for CC22 (see Table 1) except inflow i1 = i2 = 0 (for panels A, B and C) and b2 = b1 ∗ 1.01 (for panels A, B and D). For panel 
A, resistance transfer g = 0 instead of baseline g = 1. For panel C, b2 = b1 ∗ 1.03. For panel D, im1 = im2 = 0.0015. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.). 
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(determined by the initial prevalences) is ~10 to 100 times as abundant 
as the other (note: rather than the >100 times prevalence difference 
after 10 years (and eventual sole survival) which occurs without 
external inflow). 

3.4. Reproducing the prevalence dynamics as observed for St George’s 
Healthcare NHS trust 

Table 2 lists all considered scenarios with their best fit to the relative 
prevalence data of the CCs. 

With the primary model version, we can reproduce the take-over by 
CC22 from CC30 (Fig. 4A). In 2003, many patients at the modelled 
hospital became colonised with ST239 (conceivably due to the outbreak 
in a nearby hospital). Thus, fewer patients in St George’s (and less fo-
mites (due to any ST239 contamination from the infected), i.e. less 
‘resource’) were left available for CC30 and CC22. Lowered prevalence 
of these CCs then may subsequently have impacted the level of multi- 
drug resistance within their populations by hampering horizontal gene 
transfer, as explained above. When ST239 inflow dried up, CC22 more 

quickly recovered than CC30 did, given its higher growth rate. The 
relative prevalence of CC22 was further boosted by the lowered average 
length of stay (LOS); when the time during which others can be infected 
is shorter, a faster growth rate becomes relatively more advantageous. 
With the resulting higher relative prevalence of CC22, this complex then 
gained a higher population resistance level, giving it a competitive edge, 
which allowed it to remain dominant. 

Note that in the above scenario CC22 resistance level was increased 
in the end as a result of its higher prevalence, which facilitates resistance 
transfer. Also, the good fit of this primary model version is due to the 
multiple stable states that are possible in this modelled system. When we 
remove the possibility for density dependence in competition by setting 
either the resistance gain rate g=0 or the loss rate l=0, this results in a 
quadrupling of the sum of squared differences between model and data 
(Table 2). Without the density dependent process of resistance gain and 
loss, a reasonable fit to the data would also be possible if we make an 
additional assumption, namely that CC22 took an evolutionary step 
(Fig. 4B). If the CC22 hospital population gained a resistant element 
around 2004, this could also explain its growth in prevalence relative to 

Fig. 4. Model fits to observed clonal dynamics. 
Model output (coloured lines, for CC30 (red), 
CC22 (green) and ST239 (blue)) compared to 
the relative CC prevalences observed at St 
George’s Healthcare NHS Trust (star points). As 
explained in the Methods section, the hospital 
system is assumed to be at steady state in 1999, 
meaning modelled CC levels would not change 
until another change occurred. In both sce-
narios we include two known events: an ST239 
outbreak in a nearby hospital around 2004, 
causing a short-term high inflow of this CC, and 
a drop in length of hospital stay from ~6 to ~5 
days in 2005. The timings of these events are 
indicated in the top text-bars. Panel A: Primary 
model version fit. Panel B: Secondary model 
version fit, with an additional evolutionary 
event assumed, causing the CC22 r-type to be 
introduced only in 2004, i.e. no CC22 r-type 
present before. See Table 2 for values of the fit 
parameters. (For interpretation of the refer-
ences to colour in this figure legend, the reader 
is referred to the web version of this article.).   
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CC30 at that time, this additional premise in fact giving us the closest fit 
to the data (Table 2). Note that in this secondary scenario, the gain of 
resistance by CC22 is a direct assumption rather than a model outcome. 

3.5. The relative roles of ST239 and change in mean length of stay in 
CC22 take-over 

In the primary baseline model scenario, once CC22 has reached 
higher prevalence and thereby higher population resistance level, it will 
dominate the system (Fig. 4A). The take-over by CC22 could perhaps 
also have been triggered by the prevalence disruption due to ST239, 
without the subsequent change in mean length of hospital stay. How-
ever, it probably would have taken CC22 longer to reach high levels in 
this case (alternative timeline shown in Fig. 5A). Conversely, the change 
in mean length of stay alone could have enabled relatively swift CC22 
dominance take-over in the primary model (see Fig. 5B). 

To explore the expected impact of these two system disruptions 

without the system bi-stability, we again look at scenarios without 
resistance transfer (g=0) (see Appendix Fig. 5). The temporary ST239 
disruption could not have had a lasting impact in this case, which is most 
clearly shown in Appendix Fig. 5C. With a single stable balance of CC30 
and CC22 prevalences, the system can only return to this state if ST239 
inflow stops. The decrease in mean length of stay, although it advan-
tages CC22 over CC30, is not big enough to cause by itself an increase in 
relative CC22 prevalence in the modelled hospital as large as that seen in 
the studied hospital (Appendix Fig. 5E). In the primary model, the sys-
tem disruptions need to be amplified by the density dependent property, 
which emerges from the processes of CC transfer and loss of resistance. 
In the secondary model version, with the assumed evolutionary step in 
CC22 r-type inception in 2004, leaving out ST239 and/or change in 
average length of stay has only a minimal effect; the take-over by CC22 
is here fully driven by the assumed change in CC22 alone (Appendix 
Fig. 5, right panels). 

Fig. 5. Counterfactual scenarios. Model output is shown for the same primary scenario fit as shown in Fig. 4A, but the model is re-run not including either one of the 
two known disturbance events; In panel A, the mean length of stay in hospital is kept constant (d = 0.28 also after 2005). In B, ST239 presence is not included (i239 

= 0 throughout). 
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3.6. Comparison with resistance data 

Not only relative prevalence data, but also resistance data was 
documented for St George’s NHS hospital. A number of isolates was 
available per CC per time-point, and for each isolate phenotypic resis-
tance to eighteen antibiotics was tested ((Knight et al., 2012), sum-
marised in Appendix Fig. 6A). Comparing these data to our model output 
is not straightforward however, since our model contains only two strain 
types per CC, rather than the many different strains with different 
antibiotic profiles seen in reality. We can note that in both our primary 
and in our secondary model versions, at baseline parameter values, we 
see an increase in mean CC22 resistance level after 2004, which quali-
tatively resembles the observed CC22 resistance data (Appendix Fig. 6B 
and C). Whereas in the secondary model version this increase is due 
directly from the assumption of late r22 introduction, in our primary 
simulation it is a result of the model dynamics; higher prevalence allows 
for higher gain of the resistance element. In both model versions, 
however, CC30 loses resistance as it lowers in prevalence, which is 
contrary to the observation that CC30 resistance in the hospital 
remained stable from 2004. 

3.7. What hypothetical challenger could dethrone CC22? 

As a final extension of our analysis, we asked the model what type of 
hypothetical challenger could be expected to take over dominance from 
CC22 in the future. Clearly, the high density already achieved by CC22 
at the hospital will make it hard for other CCs to get a foothold (see 
Appendix Fig. 7). Again, this is due to the density dependence in 
competition present in our primary model version. A successful chal-
lenger would need to be advantaged by a high growth-rate (parameter 
b), a considerably greater resistance to antibiotics (k), while not being 
limited by too high a resistance cost (c), or it would need to enter at 
relatively high densities. 

4. Discussion 

The aim of this work was to gain understanding of observed patterns 
of MRSA clonal complex (CC) dynamics, by developing and applying a 
new mathematical model of competing bacterial populations. Using our 
model, we show how theoretically density dependence may play a key 
role in CC competition; higher density could facilitate resistance gene 
build-up within the population of a CC, giving this CC a competitive 
edge. Furthermore, our model can reproduce the relative prevalence 
change over time of MRSA clones as seen actually in a single UK hos-
pital. Here, CC22 was present from at least the end of the 1990s, but it 
became the dominant MRSA clone only several years later. Although 
datapoints are admittedly sparse, this take-over by CC22 seems to have 
occurred rather suddenly, going from a relative prevalence of about 
forty percent in 2003 to about eighty percent in 2006. CC22 was 
advantaged from the outset by a greater growth-rate, but it had to 
overcome a fitness disadvantage, compared to the earlier dominant 
clone CC30, in being less resistant to antibiotics. With our model we 
could simulate CC22 overcoming its resistance lack in two distinct ways. 

First, CC22 could have become the dominant clone by having 
become a better competitor in a stepwise fashion (Holden et al., 2013). 
For example, if CC22 had gained a mutation, or if an element conferring 
a specific antibiotic resistance was introduced in the CC22 population 
around 2004 (modelled by appearance of a more resistant CC22 strain), 
this could have allowed CC22 to grow to dominance over the existing 
dominant clone CC30 at that time. However, no single new resistance 
type became notable in CC22 after 2003 (Knight et al., 2012). Also, 
take-over by CC22 cannot be explained by changed antibiotic usage in 
the hospital. Although an increase in mupirocin decolonisation was 
noted, this occurred in 2006, so after the change in dominant clone. 
Likewise, although nationwide increased usage of fluoroquinolones has 
been suspected to benefit CC22 (Holden et al., 2013; Horváth et al., 

2012), resistance to fluoroquinolones was already near universal in 
hospital isolates from all clones in 1999 (Knight et al., 2012). 

Second, we can also recreate the take-over by CC22 in this hospital 
without the assumption of a single evolutionary step event in CC22, or 
an analogous change in antibiotic pressure around 2004. In contrast to 
the above scenario, where resistance gain explicitly had to be assumed 
for CC22, increased resistance might in fact have resulted from CC22 
reaching higher density. As illustrated by our model (e.g. Fig. 3), higher 
density facilitates resistance transfer, and this process can cause system 
bi-stability; the model shows how it may be that either CC30 or CC22 
could become and stay the most prevalent, depending on their starting 
densities. In the examined UK hospital setting, the disruption by a period 
of high ST239 inflow from outside the hospital, from which the faster 
growing CC22 recovered more quickly, or the modest change in mean 
length of stay, which is also less problematic for a faster growing CC, 
could have caused the increase in CC22 abundance. Thereafter, the 
CC22 prevalence could increase further and achieve its resulting 
dominance, as its higher density then facilitated resistance gene transfer, 
restricted to its own CC. In other words, one of these system disruptions, 
or a combination of both, may have knocked the system from the 
observed CC30 dominant state towards the CC22 dominant state. 

It seems unlikely that ST239 could have advantaged CC22 over CC30 
on the longer term without this resistance transfer caused system bi- 
stability. Without bi-stability, a dominant CC would eventually return 
to dominance after any temporary system disruption, as this would then 
be the only stable state of the system. Also, the change in mean length of 
stay from ~6 to ~5 days seems too small to have fully caused a quick 
take-over by CC22, if there were no system bi-stability, which is only 
introduced in our model by including CC-restricted resistance loss and 
transfer. 

As we focussed on the competition between CC, several other aspects 
of MRSA dynamics were treated strongly simplified in our mathematical 
model, or ignored. Barriers between hosts and wards were not modelled 
(Wang and Ruan, 2017; Bootsma et al., 2006). Within-CC-diversity in 
resistance was taken into account, but minimally so; the full range of 
actual antibiograms was simplified into a standard MRSA and a higher 
multidrug resistance level per CC only. In our model output, CC30 
resistance levels decreased somewhat after 2004, due to density decline, 
contrary to seemingly stable resistance levels in the hospital. Build-up of 
compensatory mutations, transfer to more stable plasmids or other such 
concurrent evolutionary processes (Millan et al., 2014), as well as 
greater pressure to keep mupirocin resistance after 2006, may have kept 
the CC30 resistance level up. The density dependent effect could then 
still have occurred from the prevalence effect on CC22 alone. 

Our model did not take into account how inflow of MRSA colonised 
patients changed over time. Including MRSA dynamics outside of hos-
pital would have required several additional equations, with additional 
assumptions and parameters, for which data was lacking, such as rates of 
individual carriage and patient return rates (Skov and Jensen, 2009; 
Smith et al., 2004; Cooper et al., 2004). In fact, ultimately all connected 
hospitals should be modelled. Arguably, such model expansion would 
have been necessary to correctly model absolute prevalence rates, but 
our primary focus was on the process of CC competition. As a conse-
quence, CC22 and CC30 inflow into the hospital were assumed equal and 
stable in our model, so that this factor did not spuriously explain the 
competitive dynamics between these CCs. This does not rule out the 
possibility that CC22 was actually overtaking other hospitals in the area, 
causing an increase in CC22 abundance among newly admitted patients 
at our case study hospital. Yet the main question would then have been 
shifted to how CC22 gained this advantage over CC30 in the region. 
Basically, we could then pose the same answers to this question as those 
given above for this specific hospital. 

If we were to model a wider region with our model, connected 
hospitals (i.e. patches) with either high CC22 or high CC30 might co- 
exist, if patient flow between them were not too high. The current 
model structure does not cover an explanation of why multiple CCs co- 
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exist, as other CCs would disappear from our modelled hospital without 
modelled inflow from elsewhere. Heterogeneity of patches, for example 
differences in used antibiotics, or of patient groups among hospitals or 
nursing homes, likely play a role as well in keeping the full observed 
clonal diversity (Tilman, 1982; Miller et al., 2005; Krieger and Hill, 
2018; Davies et al., 2019). Also important in this respect are the effects 
of random events. For example, the temporary ST239 outbreak in a 
nearby ICU (which could also have originated elsewhere in London) 
might have been due to one or a few superspreading locations, patients 
or devices (Edgeworth et al., 2007). If it were only random events that 
had allowed CC22 to gain high prevalence, however, then we would still 
need to explain the stability of its current, long-held dominant position 
in the UK (Coll et al., 2017). 

The simplifications in dynamics noted above gave us room to 
incorporate other complexities. Previous dynamic transmission models 
of MRSA or other antibiotic resistant bacteria have included competing 
strains or complexes (D’Agata et al., 2009; Kardaś-Słoma et al., 2011; 
Austin et al., 1999; van Kleef et al., 2017), or resistance level flux by 
transmissible elements (Baker et al., 2016; Freter et al., 1983). To our 
knowledge, this is the first MRSA model that includes both multiple 
competing CCs as well as resistance transfer among strains within these 
CCs. Importantly, due to the restriction modification system of S. aureus, 
transmission of genetic material rarely occurs between the different CCs 
(Moore and Lindsay, 2001; McCarthy et al., 2012; Goerke et al., 2004). 
This trait is relatively uncommon, but perhaps our model could also 
apply to other bacteria with clonal structure, such as Streptococcus Group 
B (Chen, 2019). It is this model addition which causes the density 
dependence in competition, since, if loss also occurs, only higher den-
sities allow for an element to be transferred often enough for it to stay 
abundant within the bacterial population of a CC. 

The modelled resistance transfer was kept simple by allowing for 
only one transmissible element per CC (i.e. two resistance levels per CC), 
which, together with scaling of the higher resistance level for each CC, 
was sufficient for our modelling purpose. Explicitly considering transfer 
and loss of multiple elements could render the density dependent effect 
even stronger. Multiple transferrable elements may have synergistic 
effects, and to keep each individual element abundant would require 
even larger population density. The population advantage might result 
not only from transmissible mobile genetic elements (MGEs) associated 
with antibiotic resistance, but also for those connected to virulence and 
other fitness factors (Van Wamel et al., 2006). Alternatively, or addi-
tionally, the density dependent effect we describe may play a role on 
different bacterial population levels. For example, on the host level, this 
process may play a role in explaining the fact that long-term MRSA 
colonisation is usually monoclonal (Cespedes et al., 2005). 

The take-over of CC22 from CC30 was a nationwide phenomenon, 
and our theoretical model narrative for the single hospital may alter-
natively be considered representative for events on this larger scale. The 
shown importance of patient transfer networks in harmonising within- 
border MRSA dynamics also suggests a country level model applica-
tion (Donker et al., 2010, 2017). Extrapolating to the whole of the UK, 
due its faster growth, CC22 was arguably more fit than CC30 already in 
1999, but it took a disturbance of the system for CC22 to take over from 
CC30, which had the higher resistance advantage from higher preva-
lence at that time. ST239 seems to have been introduced to London 
directly from a high incidence setting in Thailand (Harris et al., 2010). 
Whether high inflow of this clone from Asia may have also caused 
disturbance in CC dynamics in other parts of the UK is unknown how-
ever, as there are few data on clonal dynamics. The decrease in mean 
length of hospital stay was nationwide (NHS hospital bed numbers, 
2020), and alone could have triggered the switch from CC30 to CC22. 
Admittedly the model finding of density-dependence hinges on uncer-
tain assumptions. However, the resulting strength of our model is that it 
could help explain why other CCs, such as those dominant in other 
countries (Grundmann et al., 2010; Cockfield et al., 2007), and those 
noted at lower prevalence at St George’s Healthcare NHS Trust (Knight 

et al., 2012), in the UK have not taken over since this switch to CC22 
dominance (Donker et al., 2017). Nor did CC22 meanwhile take over 
world-wide, so it is not simply the fittest CC of all, perhaps due to its 
lower maximum number of resistances. According to our model, CC22 
may have been stably dominant in the UK these past decades in part due 
to its advantageous high prevalence here. 

Unfortunately, we were unable to find reference to any other lon-
gitudinal hospital dataset on clone-specific MRSA prevalence levels, 
which could have allowed us to better validate our model. Although we 
could show which assumptions are compatible with the observed phe-
nomena, the sparseness of the data prevents us from positively affirming 
model correctness. Consequently, we also do not aim at any quantitative 
conclusions from our fits, as this would require greater certainty in pa-
rameters and model structure. How much of MRSA bacterial death 
otherwise induced by antibiotics is prevented by resistance genes is 
difficult to determine from hospital data, since it depends on the effec-
tiveness of each type of antibiotic therapy and the frequency of use of 
each, but also on the average time taken to adapt treatment to specific 
MRSA infections. We chose to fit the resistance level per CC to the 
relative prevalence data to circumvent this lack of data, but our fit k 
parameters are a proxy for overall CC fitness differences, and should not 
be deemed informative on the actual effectiveness of resistance genes in 
avoiding antibiotic induced bacterial death. 

We also unfortunately lacked data to parameterise convincingly the 
rates of loss and gain of transferrable MGEs in this hospital setting. As 
conceded, for the model results we obtained our assumptions on these 
parameters are crucial. For our primary scenario, we chose a loss rate 
which enabled the system bi-stability, and thereby density dependent 
competition (Appendix Fig. 3). Such a loss factor could perhaps be 
caused by the element regularly ending up in one daughter cell only at 
cell divisions (Freter et al., 1983). If the loss rate would be much smaller, 
all bacterial cells would soon carry the resistant element, even at low 
prevalence of the complex, preventing the density dependent effect. 
However, such consistently high resistance levels within the CCs was not 
seen in the hospital (Knight et al., 2012), and extensive acquisition and 
loss of MGEs was also observed in experimental S. aureus co-colonisation 
of piglets (McCarthy et al., 2014). Our demonstrated importance of 
resistance transfer and loss suggests then that future work should 
explore this heterogeneity in resistance further. For example, future 
work analysing resistance in multiple isolates from each colonised pa-
tient (as in Stanczak-Mrozek et al. (2015)) and categorising antibio-
grams of strains in hospitals over time should be used to supplement the 
sparse data analysis here. Supported by multidisciplinary work pairing 
co-culture experiments with mathematical modelling would allow for 
quantification of these important loss and gain rates. 

Although all spread of MRSA is unwanted, understanding how policy 
could affect the spread of CCs differentially is relevant in that CCs might 
differ in their resistance potential and also their virulence (van Hal et al., 
2012), and thereby in caused morbidity and mortality. Our modelling 
study suggest that differences between countries in main CC types pre-
sent may be due to historical contingencies, and subsequent spread 
mostly contained within country borders by patient transfer networks 
(Donker et al., 2010, 2017), rather than due for example only policy 
differences in antibiotic use. The CC that happened to be the first, 
locally, to incorporate an SCCmec element (Deurenberg and Stobber-
ingh, 2008), allowing it to grow in the hospitals of that country, could 
claim a competitive edge due to higher prevalence from then on. This 
may have helped such a CC to remain dominant even when otherwise 
somewhat fitter competitor CCs were introduced later – our model 
suggests that, unless introduced at high density, only a CC with sub-
stantially higher resistance and/or growth-rate could take-over. For 
instance, country level antibiotic policy change might then not be ex-
pected to drive take-over by another CC more adapted to the new 
regime; instead, the already locally established and thereby advantaged 
CC could be expected to remain and subsequently adapt. However, if 
policy effects a stronger fitness difference between CCs, such as was 
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observed in Hungary (Horváth et al., 2012; Conceição et al., 2007), our 
model does predict a switch in CC dominance, which could then affect 
MRSA morbidity. 

In conclusion, our modelling study shows how density dependence 
may impact on the competition between clonal populations of MRSA, 
this effect potentially rendering the MRSA community in a region more 
stable. Thereby, instead of country level policy differences, it might be 
that historical contingencies mostly determine which CC has local 
dominance. 
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