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Abstract

Prime editors, novel genome-editing tools consisting of a CRISPR-Cas9 nickase and
an engineered reverse transcriptase, can induce targeted mutagenesis. Nevertheless,
much effort is required to optimize and improve the efficiency of prime-editing.
Herein, we introduce two strategies to improve the editing efficiency using proximal
dead sgRNA and chromatin-modulating peptides. We used enhanced prime-editing
to generate Igf2 mutant mice with editing frequencies of up to 47% and observed
germline transmission, no off-target effects, and a dwarf phenotype. This improved
prime-editing method can be efficiently applied to cell research and to generate
mouse models.
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Background
The CRISPR-Cas system has evolved with a variety of advanced genome-editing tools

such as nucleases, base editors, and transposases, which can efficiently generate the de-

sired target mutagenesis [1]. Especially, cytosine base editors (CBEs) and adenine base

editors (ABEs) developed based on the CRISPR system can efficiently perform C•G to

T•A and A•T to G•C substitutions, respectively [2, 3], in various organisms, including

mice [4, 5]. Recently, a C to G base editor (CGBE1) that enables C to G base transver-

sion in human cells has also been reported [6]. Nevertheless, precisely targeted muta-

genesis involving one or more nucleotide insertions, conversions, or truncations is still

challenging due to gene editing limitations resulting from the low efficiency of

homology-directed repair (HDR).

Prime editor (PE), a new conceptual genome-editing tool, comprises a fusion protein

with nickase Cas9 (H840A) and a commercial Moloney murine leukemia virus reverse

transcriptase (M-MLV RT). PE is driven by a prime-editing guide RNA (pegRNA) that

encodes the desired editing sequence [7]. This elaborate genome-editing system allows

targeted mutagenesis of base-to-base conversion, as well as small insertions and dele-

tions, without double-strand DNA breaks or donor DNA [7–10].
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In this study, we improved the prime editor using proximal dead sgRNA (dsgRNA)

and chromatin-modulating peptides (CMPs) at various target loci in mouse cell lines

and embryos. We also created Igf2 mutant mice using a PE with dsgRNA and identified

germline transmission, no off-target effects, and a dwarf phenotype. We expect that

these new improved prime-editing methods can be effectively applied to cell research

and mouse model generation.

Results and discussion
To verify the applicability of the prime-editing system in the mammalian genome, we

used the tdTomato-expressing reporter system at the AAVS1 locus in HEK293T cells. We

designed the stop codon by inserting a T nucleotide into the tdTomato sequence using

prime editor 3 (PE3) with a primer binding site (PBS) length of 8 nt and a reverse tran-

scriptase (RT) template length of 17 nt (PBS8-RT17). Moreover, prime-editing guide

RNA (pegRNA) was designed to remove the protospacer adjacent motif (PAM) sequence

on the non-target strand to inhibit editing on the edited strand. We observed that

tdTomato-negative cells represent 32% by flow cytometric analysis (Additional file 1:

Figure S1), suggesting that the PE enables the desired target mutagenesis in our system.

Next, to apply the PE to mouse model generation, we tried to design targets involving

eight transversion mutations or the insertion or deletion of one or more nucleotides.

We first induced stop codons in two mouse genes, Igf2 and Adamts20. Igf2 can induce

a dwarf phenotype caused by a mutation in the Igf2 allele inherited from the father

[11]. We inserted TA nucleotides into exon4 of the Igf2 gene to generate a stop codon

for loss of function. Besides, the nucleotide of the PAM sequence was changed from

NGG (where “N” is any nucleotide base) to NCG to prevent continuous editing on the

edited strand. Adamts20 is a gene involved in the development of melanocytes. The

premature stop codon at the E584 site of the Adamts20 locus is linked to a typical

white-belt phenotype [12]. We induced the conversion of nucleotides from CG to TT

at exon12 of the Adamts20 locus, resulting in a premature stop codon (E584*) and

PAM modification (NGG to NAG) (Additional file 1: Figure S2a and S2b). To induce

mutagenesis in the mouse targets, we used a PE3 system consisting of PE (nCas9 fused

with engineered M-MLV RT), pegRNA, and nicking sgRNA (nsgRNA); the nsgRNA

enhances the editing efficiency by promoting DNA repair activity through the cleavage

of the non-edited strand [7].

First, we tested the editing efficiency of the pegRNAs with varying PBS lengths (8–14

nt) and RT template lengths (10–18 nt) to optimize the prime-editing at the Igf2 and

Adamts20 sites. We excluded the length of PBS with thymine at the 3′-end (which

could be part of the transcription termination signal) and the length of RT with cyto-

sine at the 5′-end (which can interfere with the pegRNA structure) [7]. We transfected

three plasmids encoding PE, pegRNA, and nsgRNA into NIH/3T3 cells via electropor-

ation and harvested the cells after 72 h for targeted deep-sequencing. However, the

editing efficiency with PE3 in the NIH/3T3 cells was less than 3% on the Igf2 and

Adamts20 targets (Additional file 1: Figure S2c and 2d). These results suggest that the

prime editor requires improvement for use in mouse model generation.

In one attempt to improve the editing efficiency of PE, we employed dsgRNAs based

on the idea of proxy-CRISPR [13] instead of catalytically dead endonuclease to unwind

the chromatin structure of the target sites. A dsgRNA is a 14- or 15-nt guide RNA that
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shows inactivated catalysis yet binds to the target site guiding Cas endonuclease [14].

Thus, we hypothesize that PE may play two roles: one is prime-editing at the target site

with a pegRNA and the other is modulating the chromatin neighboring the target site

with a dsgRNA. We designed proximal dsgRNAs adjacent to the Igf2 and Adamts20

target sites in the range of 7–62 nucleotide positions from the spacer of pegRNA. We

applied proximal dsgRNAs to various pegRNA lengths at the Igf2 and Adamts20 sites

to identify the editing efficiency, and interestingly, that of PE3 using proximal dsgRNA

was improved in most groups. We chose PBS9-RT14 pegRNA and PBS11-RT13

pegRNA with the highest efficiencies for the Igf2 and Adamts20 targets, respectively

(Additional file 1: Figure S2c and S2d).

Next, to select a dsgRNA with high editing efficiency, we designed and tested add-

itional proximal dsgRNAs in Igf2, Adamts20, Casp1 (4-bp deletion), Hoxd13 (G to T

conversion), Angpt1 (CGG to TGA conversion), and Ksr2 (TGAT insertion). The PE3

with a proximal dsgRNA was delivered into NIH/3T3 and C2C12 cells via electropor-

ation with plasmids encoding PE, pegRNA, nsgRNA, and each proximal dsgRNA. Tar-

geted deep-sequencing data reveals that proximal dsgRNA selectively improved the

editing efficiency in most of the targets compared to PE3 (Additional file 1: Figure S3).

Overall, the editing efficiency with dsgRNA depended on the proximal dsgRNA pos-

ition, and so a screening process for an optimal dsgRNA is required for each target and

cell type to induce effective targeted mutagenesis.

We also engineered the PE using chromatin-modulating peptides (CMPs), high-

mobility group nucleosome binding domain 1 (HN1), and histone H1 central globular

domain (H1G) [15] to increase the editing efficiency. CMP-PE-V1 consists of HN1 at

the N-terminus and H1G at the C-terminus of nCas9. CMP-PE-V2 consists of HN1 at

the N-terminus of nCas9 and H1G at the C-terminus of engineered M-MLV RT

(Fig. 1a). We delivered engineered CMP-PE3-V1 (CMP-PE-V1 with pegRNA/nsgRNA)

or CMP-PE3-V2 (CMP-PE-V2 with pegRNA/nsgRNA) into two mouse cell lines to

compare the editing efficiency with PE3 (Additional file 1: Figure S4). We observed that

CMP-PE3-V1 was significantly more efficient in all target sites compared to PE3. In

particular, the editing efficiency of CMP-PE3-V1 was up to 2.55-fold higher in the Igf2

target and up to 3.92-fold higher in the Adamts20 target than by PE3, respectively, in

NIH/3T3 (Additional file 1: Figure S4). These results suggest that engineered PEs using

CMP HN1 and H1G can improve editing efficiency.

CMP-PE3-V1 and dsgRNA (CMP-PE3-V1 + dsgRNA) were delivered to mouse cells

to test for any synergistic effects; CMP-PE3-V1+dsgRNA achieved improvements of up

to 4.20-fold, 5.11-fold, and 3.56-fold prime-editing efficiency at the Igf2, Adamts20, and

Hoxd13 target sites, respectively, compared to PE3. However, the synergistic effect dif-

fered depending on the cell line and target (Fig. 1b–g). These results suggest that al-

though CMP-PE3 could efficiently enhance the prime-editing in all of the targets and

cell types, the efficiency of PE3+dsgRNA or CMP-PE3+dsgRNA varied depending on

the target site and cell type.

Next, we carried out targeted mutagenesis in mouse embryos via microinjection using

advanced prime-editing systems. We selected the Igf2 target site that showed relatively

low undesired mutations among the designed mouse targets. CMP-PE3-V1 and CMP-

PE3-V1+dsgRNA appeared to have significantly higher editing efficiency at the Igf2 tar-

get in mouse embryos. Notably, in the case of CMP-PE3-V1+dsgRNA, the desired
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Fig. 1 (See legend on next page.)
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mutations at the target site of the Igf2 were observed in 21 out of 22 embryos (95%),

suggesting that CMP-PE3-V1+dsgRNA has a much higher prime-editing efficiency than

PE3 and PE3+dsgRNA (Fig. 1h and Additional file 1: Table S1). We further tested using

CMP-PE-V1 and a proximal dsgRNA to verify the prime-editing efficiency at

Adamts20, Hoxd13, Angpt1, Ksr2, and Ar in mouse embryos. Targeted deep-

sequencing data revealed that CMP-PE-V1 and a proximal dsgRNA improved prime-

editing efficiency in the Adamts20, Hoxd13, and Angpt1 targets but not the Ksr2 and

Ar targets compared to PE3 (Fig. 1i–m and Additional file 1: Table S1). Taken together,

our results suggest that improved prime-editing method using a proximal dsgRNA and

chromatin-modulating peptides in mouse embryos can be efficient.

To determine whether CMP-PE-V1 and dsgRNA can improve chromatin accessibility

by unraveling the chromatin structure of the target site, we performed a DNaseI diges-

tion assay and qPCR to verify the chromatin status of each target site. In the NIH/3T3

cell line, Igf2, Adamts20, and Hoxd13 appeared as relatively closed-chromatin struc-

tures, and in C2C12, all targets except Igf2 were open chromatin (Fig. 1n and Add-

itional file 1: Figure S5). This result suggests that even when the target sequences are

the same for the two cell lines, their chromatin structure states are different. Further-

more, we analyzed whether CMP-PE-V1 or dsgRNA could alter the chromatin status at

the Igf2 target site (a representative target with a closed-chromatin structure). From the

results, we identified that unlike PE3, the closed-chromatin structure was gradually

opened by CMP-PE-V1, dsgRNA, or CMP-PE-V1+dsgRNA (Fig. 1o). These results are

direct evidence that the use of CMP-PE-V1 or dsgRNA can improve prime-editing effi-

ciency by unraveling chromatin structures and improving chromatin accessibility.

Next, we carried out targeted mutagenesis of Igf2 in mouse embryos via microinjec-

tion using PBS9-RT14 and dsgRNA +7 with a relatively low frequency of undesired

mutations. Injected mouse embryos were transplanted into surrogate mothers, and

pups were obtained with G to C transversion and TA insertion at the Igf2 locus at

prime-editing frequencies of up to 47% (2 out of 10 pups) (Fig. 2a–c). Moreover, we

(See figure on previous page.)
Fig. 1 Improvement of prime-editing efficiency using chromatin-modulating peptides and proximal dsgRNA in
mouse cells and embryos. a Schematic diagrams of the prime editor (PE), chromatin-modulating peptide-PE-
Variant1 (CMP-PE-V1), and chromatin-modulating peptide-PE-Variant2 (CMP-PE-V2) constructs. PE consists of
nCas9 (H840A) and M-MLV RT. CMP-PE-V1 has HN1 at the N-terminus of nCas9 and H1G at the C-terminus of
nCas9 in the PE structure. CMP-PE-V2 has HN1 at the N-terminus of nCas9 and H1G at the C-terminus of M-MLV
RT in the PE structure. HN1, high-mobility group nucleosome binding domain 1; H1G, histone H1 central
globular domain. b–g Comparison of the prime-editing efficiencies of PE3, PE3+dsgRNA, CMP-PE3-V1, and
CMP-PE3-V1+dsgRNA at the Igf2 (b), Adamts20 (c), Casp1 (d), Hoxd13 (e), Angpt1 (f), and Ksr2 (g) target sites in
NIH/3T3 and C2C12 cells. Data and error bars show the mean ± standard deviation (s.d.) of five independent
biological replicates (n = 5). P-values were obtained using two-tailed Student’s t-tests. *P <0.05, **P <0.01, ***P
<0.001. h–m The components of the prime-editing system were injected into the pronucleus of the mouse
zygote and analyzed 4 days after injection. The dots indicate the frequencies of the desired mutations in Igf2
(h), Adamts20 (i), Hoxd13 (j), Angpt1 (k), Ksr2 (l), and Ar (m) from each blastocyst treated with PE3, PE3+dsgRNA,
CMP-PE3-V1, or CMP-PE3-V1+dsgRNA. The numbers above the dots in the graph represent the number of
edited embryos/total embryos. The black horizontal line denotes the mean of the frequencies of the desired
mutations. n Fractions of intact genomic DNA from the Igf2 and Adamts20 target loci were measured using
real-time qPCR after a DNase I digestion assay. The gene located at Chr 3: 71,026,628–71,026,685 (mouse
genome build mm9) was used as the negative control (closed chromatin) and Col6a1 was used as the positive
control (open chromatin). Data and error bars show the mean ± s.d. of three independent experiments (n = 3).
o After transfecting with plasmids encoding PE3, PE3+dsgRNA, CMP-PE3-V1, or CMP-PE3-V1+dsgRNA to C2C12,
fractions of intact genomic DNA from the Igf2 target locus were measured using real-time qPCR after a DNase I
digestion assay. Data and error bars show the mean ± s.d. of three independent experiments (n = 3)
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identified that 7 out of 9 pups from an F1 littermate of the Igf2 mutant mouse had

germline transmission (Additional file 1: Figure S6).

To assess the off-target effects of the prime editor, we used Cas-OFFinder [16] to

identify potential off-target sites by pegRNA and nsgRNA of the Igf2 target with up to

three nucleotide mismatches in the mouse genome. Off-target mutations were not de-

tected at the potential off-target sites compared to the wild-type (Additional file 1:

Fig. 2 Targeted mutagenesis in mice using a prime editor 3 with proximal dsgRNA. a A schematic of the mutagenesis
design at exon 4 in Igf2. b The genotypes of two mice harboring G to C conversion and TA insertion mutations
induced by PE3 with proximal dsgRNA +7 in Igf2. c Sanger-sequencing chromatograms of the two mice harboring the
desired mutations. The green arrow denotes the G to C conversion for modification of the PAM sequence, while the
red arrow denotes the TA insertion for the stop codon. dWhole-genome sequencing analysis of the Igf2 wild-type (WT)
and mutant #1 mice. The potential off-target (OT) sites of pegRNA, nsgRNA, and dsgRNA were obtained using Cas-
OFFinder. e Sequence alignment and Sanger-sequencing chromatogram of potential OT sites. f An image of the
offspring after mating an Igf2 p+/m−male (F1) with an Igf2 p+/m+ female: wild-type (left) and Igf2mutant (right). g
Bodyweight 2 weeks after birth. WT, wild-type; MUT, mutant; p, paternal allele; m, maternal allele. Error bars show the
mean ± standard deviation (s.d.)
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Figure S7). Moreover, we carried out whole-genome sequencing to identify off-target

effects in the Igf2 mutant mouse and found a single off-target site of nsgRNA. However,

we determined that this site was a false positive through Sanger sequencing with gen-

omic DNA (Fig. 2d, e). To identify the phenotype of the Igf2 mutant mice, the Igf2 p+/

m− male (F1) was mated with a wild-type female. The Igf2 p−/m+ mouse carrying the

mutation for the Igf2 gene inherited from the paternal allele exhibited the dwarf pheno-

type, which is consistent with the desired mutant genotype (Fig. 2f, g). These results

suggest that the newly improved prime-editing tools can be effectively applied to mouse

model generation.

Conclusions
The prime editor system has not yet been tested to generate novel mouse models with

the insertion or conversion of one or more nucleotides in the mouse genome. In this

study, we introduced an improved prime editor using proximal dsgRNA and CMPs in

mouse cells and embryos for efficient mutagenesis in mice. We demonstrated that the

prime editor using proximal dsgRNA or CMPs can improve editing efficiency by open-

ing the chromatin structure of the target site in mouse cell lines and embryos. How-

ever, simultaneous treatment of CMP-PE3 and proximal dsgRNA was more effective

for targets with a closed-chromatin structure. We also obtained targeted mutant mice

harboring a G to C conversion and a TA insertion simultaneously at the Igf2 locus at

frequencies of up to 47% using an improved prime-editing method and identified germ-

line transmission, no off-target effects, and the dwarf phenotype. Our results suggest

that the enhanced prime-editing method can be efficiently applied to the desired targets

for mutagenesis, such as insertion or transversion of one or more nucleotides.

Methods
Plasmid DNA construction

Additional file 1: Table S2 and S4 lists the sequences of target-specific sgRNAs and

primers for targeted deep sequencing. Using NEBuilder® HiFi DNA Assembly Master

Mix (E2621L, NEB), HN1 and H1G oligos were fused to both sides of nCas9 in pCMV-

PE2 (#132775, Addgene) to construct the chromatin-modulating peptide prime editor,

according to the manufacturer’s protocol. To prepare the pegRNA expression vectors

for specific mutagenesis on the Igf2, Adamts20, Casp1, and Hoxd13 genes, pU6-

pegRNA-GG-acceptor vector (#132777, Addgene) is used to insert a spacer, prime

binding site, and reverse transcriptase template oligos at the BsaI enzyme cut site.

nsgRNA and dsgRNA expression vectors are inserted into the pRG2-GG vector

(#104174, Addgene).

Lipofection and electroporation

tdTomato-expressing reporter system at the AAVS1 locus in HEK293T cells, NIH/3T3

(ATCC, CRL-1658), and C2C12 (ATCC, CRL-1772) were maintained in Dulbecco’s

modified Eagle’s medium (DMEM; LM001-05, Welgene) supplemented with 10% FBS

(S 001-01, Welgene) or BCS (26170-043, Gibco) in 5% CO2 and 37 °C. We transfected

2 × 104 cells with three plasmids of 0.5 μg pegRNA, 2.15 μg PE2, 0.22 μg nsgRNA, and

1 μl Lipofectamine 2000 reagent (11668019, Thermo Fisher Scientific) in 50 μl Opti-
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MEM (31985070, Gibco), according to the manufacturer’s protocol. We cultured cells

for 11 days for analysis after transfection. The number of NIH/3T3 cells and C2C12

cells used 1 × 105 cells for electroporation. Each cell line was mixed with plasmids of 3

μg PE2 or CMP-PE, 0.7 μg pegRNA, 0.3 μg nsgRNA, and 0.25 μg dsgRNA and was

transfected using the Neon™ Transfection System (MPK1096, Thermo Fisher Scientific),

according to the manufacturer’s protocol. Transfected cells were harvested 72 h post-

transfection and analyzed by targeted deep sequencing.

Flow cytometric analysis

We analyzed the editing efficiency by PE3 in the tdTomato expression reporter

HEK293T cell line 10 days post-transfection. We evaluated editing efficiency by gating

tdTomato-negative cells using flow cytometry analysis (BD FACSCanto™, BD Biosci-

ences). Additional file 1: Fig. S1 shows the results of sample gating.

Preparation of DNA amplicon

Genomic DNA from tdTomato expression reporter HEK293T, NIH/3T3, C2C12 cells,

and mouse embryos after transfection was extracted using DNeasy Blood & Tissue Kits

(69506, Qiagen). We used Phusion™ High-Fidelity DNA Polymerase (F-530XL, Thermo

Fisher Scientific) and Sungen (SG-PT02, Sun genetics) to amplify edited target sequences.

In vitro transcription

Transcripts of PE2 and CMP-PE were produced using the mMESSAGE mMACHINE

T7 Ultra Kit (AM1345, Invitrogen) and were purified using the MEGAclear™ Transcrip-

tion Clean-Up Kit (AM1908, Invitrogen). According to the manufacturer’s protocol, the

transcription of pegRNA, nsgRNA, and dsgRNA was induced using T7 RNA polymer-

ase (M0251, NEB), and the RNAs were purified using ExpinTM CleanUp SV (113-150,

GeneAll). The RNAs were quantified using NanoDrop One UV-Vis (Thermo Fisher

Scientific).

Animals

Our experiments were approved by the Institutional Animal Care and Use Committee

(IACUC) of Seoul National University. C57BL/6N and ICR mice were used as embryo

donations, and surrogate mothers were bred in a specific pathogen-free laboratory.

Microinjection

HyperOva (KYD-010-EX-x5, CARD) and hCG (CG10-1vl, Sigma) were injected into

C57BL/6N female mice at 48-h intervals to induce ovarian hyperstimulation. Following

the injection of the hCG hormone, the female mice were mated with wild-type C57BL/

6N male mice. Fertilized one-cell stage embryos were obtained from ampulla and incu-

bated in M2 media (M7167, Sigma) until two pronuclei appeared. The prime-editing

mixture for microinjection was prepared with a concentration of 100 ng for PE2 or

CMP-PE mRNA, 65 ng for pegRNA, 32.5 ng for nsgRNA, and 22 ng for dsgRNA in

100 μl of Tris-EDTA (pH 7.4). Following microinjection, the embryos were cultured in

KSOM media (MR-121-D, Millipore) for 4 days in a 37 °C incubator for blastocyst
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development. A portion of the two-cell stage embryos was transplanted into the ovi-

ducts of the pseudopregnant foster mothers.

Genotyping and targeted deep sequencing

The targets were amplified by nested PCR using the primers listed in Additional file 1:

Table S4. Libraries consisting of PCR amplicons were sequenced using the iSeq™ 100

Sequencing System (Illumina, Inc.). Sequencing data were analyzed by the CRISPR

REGN Tools program (http://www.rgenome.net/) and the EUN program (https://

daeunyoon.com/).

Statistics

Data were presented as the mean and standard deviation, and three or five independent

biological replicates were performed. P-values were calculated using unpaired and two-

sided Student’s t-tests.

Whole-genome sequencing and variant calling

Genomic DNA was isolated from a mouse (C57BL/6N) ear using the DNeasy Blood &

Tissue kit (69506, Qiagen). According to the manufacturer’s instructions, genomic

DNA was sheared using a Covaris S2 ultra sonicator system and subjected to paired-

end DNA library preparation with Truseq Nano DNA sample prep kit. Deep coverage

(30x) whole-genome sequencing was carried out by 101 base paired-end sequencing on

an Illumina Novaseq 6000 platform (Illumina). Sequence reads were aligned to the

mouse reference genome GRCm38/mm10 using BWA-MEM [17]. Single nucleotide

variants and small indels were called using GATK4 HaplotypeCaller [18], and the

known variants present in dbSNP for mouse v142 (dbSNP142) were annotated with

ANNOVAR [19]. The novel variants not present in dbSNP142 were further analyzed to

identify their location at off-target sites. The putative off-target sites were compared

with the candidates from Cas-OFFinder considering mismatch up to 7-bp or 2-bp bulge

+ 5-bp mismatches. All variants were manually confirmed by visualizing read plots.

DNase I digestion assay and qPCR

We performed DNase I digestion assay following the previous studies [20–22]. After

detaching the cells, we repeated washing the cells with cold 1XPBS and spin down at

900rpm for 5min twice. Cold RSB buffer (10mM Tris-HCl, 10mM NaCl and 3mM

MgCl2) + 0.1% IGEPAL CA-630 (I8896, Sigma) wash was used to lyse the cells and we

spin down at 500g for 10min at 4deg to pellet nuclei. After removing the supernatant,

nuclei are incubated with or without DNase I (2-16U) for 20–30min at 37°C. Fifty milli-

molar EDTA was added to stop the reaction, and DNase I-digested DNA was purified

using the DNeasy Blood & Tissue kit (69506, Qiagen). Real-time qPCR was performed

using KAPA SYBR FAST qPCR Master Mix Kit (KR0389, Kapa Biosystems), and the

fraction of intact genomic DNA was measured using the comparative CT method [23].
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