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Abstract

The issue of how endogenous borrowing constraints lead to the amplification

and persistence of aggregate shocks is revisited in this paper. Specifically, I show

that an amplification-persistence trade-off is embodied in the setting proposed

by Kiyotaki and Moore (1997). The key point is that while complex unit roots

associated with persistence of temporary shocks require the fraction of credit-

constrained firms to be small enough, large amplification relies on the opposite

condition. Incidentally, I confirm the occurrence of periodic and quasi-periodic

cycles around the determinate steady state.

Keywords: imperfect credit markets, complex unit roots, persistence and am-

plification, endogenous cycles.

Journal of Economic Literature Classification Numbers: D92, E32, E44.



3

1 Introduction

It is by now well known that endogenous borrowing constraints act to mag-

nify aggregate shocks to the economy. I show in this paper that, embodied in

such a mechanism, is an amplification-persistence trade-off. More specifically, I

consider a slightly simplified version of Kiyotaki and Moore [8] (KM thereafter).

It is proved that while the model aptly replicates any levels of amplification and

persistence of temporary shocks, it predicts a negative relationship between both

latter features. The key point is that while complex unit roots associated with

persistence require the fraction of credit-constrained firms to be small enough,

high amplification relies on the opposite condition.

I should stress that this result is directly suggested by the observation of nu-

merical simulations performed in the working paper of KM [7, Figures 3 and 4]

(see also Cordoba and Ripoll [2] for related numerical results obtained in a dif-

ferent setting). The contribution of this paper is to provide an analytical proof

of the amplification-persistence trade-off. Besides theoretical interest, the rele-

vance of such a result originates from its quantitative implications, as it shows

how larger contemporaneous amplification due to credit frictions is associated

with lower persistence in the KM’s economy. Of course, the existence of such

a trade-off does not imply that endogenous credit constraints are quantitatively

unimportant. Rather, one should interpret this result as showing that the effects
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of a temporary shock, cumulated over several periods, may originate from either

low amplification and high persistence or the opposite configuration.

In addition to KM [7] and Cordoba and Ripoll [2], a closely related paper

is Kocherlakota [9], who studies a framework with homogenous firms. A main

lesson one may draw from his analysis is that, for realistic factor shares, both am-

plification and persistence are expected to be low. This contrasts with the main

result of this paper. As one sees from numerical examples presented in Kocher-

lakota [9, p. 10], both amplification and persistence are small when the capital

share is set at realistic values, in his model of endogenous credit constraints.

Presumably, results differ in both models mainly because of firms heterogeneity,

which is present in KM [7] but absent in Kocherlakota [9].

Moreover, I show that for some parameter values, the KM’s economy possesses

complex unit roots, a feature that empirical studies claim not to be absent from

real-world data (see, e.g., Hylleberg et al. [6], Grégoir [4]) and which generates

hump-shaped impulse response functions with arbitrarily large persistence. In

Section 3, I provide some simulations of the model that illustrate this property.

In contrast, complex unit roots do not obtain either in Kocherlakota [9], Cor-

doba and Ripoll [2], or in Freixas and Rochet [3, pp. 180-3], Aghion et al. [1],

Matsuyama [10]. With the latter group of contributions, my paper shares the

result that endogenous credit constraints generate business cycles that persist in

the absence of any aggregate shocks to the economy. In particular, a byprod-
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uct of the analysis is that the steady state loses (saddle-point) stability through

a Hopf bifurcation. Therefore, I confirm the occurrence of periodic and quasi-

periodic cycles around the determinate steady state, which has been conjectured

by Kiyotaki and Moore [8].1

In Section 2, the main result is derived. Some simulations of the model are

presented in Section 3. In Section 4, I give some concluding remarks while the

final appendix collects some proofs.

2 The Kiyotaki-Moore Model without Depre-

ciation

Consider a slightly simplified version of the model - with credit-constrained

investment by heterogeneous firms - that has been proposed by KM [8, Section

III]. Let us assume that farmers grow trees that do not depreciate over time. In

KM’s notation, I set λ = 1. This peripheral assumption is adopted for the sake

of lightening the analysis. The rate of capital depreciation is bound to be close

to zero when the period is short (say, a quarter), so that the λ = 1 case is most

plausible.

1It is worth noticing that the Hopf bifurcation does not occur in the basic Lotka-Volterra

(predator-prey) model KM [8, p. 235] allude to.
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From KM’s eqs. (12) and (23)-(24), one learns that the dynamics of the econ-

omy with credit-constrained farmers are given by the following three equations.

Definition 2.1 (Dynamics of the Farming Sector)

An intertemporal equilibrium with perfect foresight is a sequence (Kt, Bt, qt) of

R3
++, t = 1, 2, . . . , such that, given some K1, B1 > 0:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Kt+1 = (1− π)Kt + π[(a+ qt+1 + φ)Kt − RBt]/[φ+ u(Kt+1)]

Bt+1 = RBt + (qt+1 + φ)(Kt+1 −Kt)− aKt

qt+1 = R[qt − u(Kt)]

(1)

where u(K) ≡ G [(K −K)/m]/R.

In the dynamical system given by eqs. (1), K is the (constant) stock of land

supply, K is the stock of farmers’ land, B is the stock of farmers’ debt, q is the

land price (per unit of fruit, the numeraire), 1 ≥ π ≥ 0 is the probability that

an investment opportunity arises, R > 1 is the gross interest rate, m > 0 is the

proportion of non-farmers, and the remaining parameters are such that a ≥ 0

and φ ≥ 0.

The last equation in (1) expresses equilibrium on the land market, while the

second and third equality in (1) summarize, respectively, the law of capital ac-

cumulation and the budget constraint. KM [8, p. 233] show that eqs. (1) have

a unique interior steady state (K∗, B∗, q∗). The steady state is independent of
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π, which turns out to be our main parameter in the foregoing analysis. The pa-

rameter π may also be interpreted as the fraction of credit-constrained farmers.

I keep KM’s assumption 2 and 3, that is, with λ = 1:

c > (1/β − 1)(a+ φ)[1− βR(1− π)]/(βRπ), and lim
s→∞

Et(R
−sqt+s) = 0, (2)

where c ≥ 0, 1 ≥ β ≥ 0. The conditions in (2) respectively ensure that invest-

ment dominates consumption and that exploding bubbles in the land price are

ruled out. However, I allow violation of KM’s assumption 5 (that is, π > 1−1/R)

by considering values of π that are small enough, which will be seen to be nec-

essary for complex unit roots to occur.

Linearizing eqs. (1) at (K∗, B∗, q∗) (see the appendix in KM [7] for some de-

tails of the derivation), one gets that R > 1 is an (unstable) eigenvalue while

the other two eigenvalues are the roots of the following polynomial:

p(x) = x2−Tx+D, with D = R(1−π)/(1+ θπ/η) and T = D+1/(1+ θπ/η),

(3)

where 1 ≥ θ ≡ a/(a + φ) ≥ 0, and η ≥ 0 is the elasticity of the residual supply

of land to the farmers with respect to the user cost, evaluated at steady state

(see KM [8, p. 225]). Notice that if the period is interpreted as being short (say,

a quarter), then R is close to one and, therefore, the unstable eigenvalue is close

to unit root. As I now show, the two roots of the above polynomial can be

either stable or unstable. In fact, the steady state of eqs. (1) undergoes a Hopf

bifurcation when π is decreased from one to zero. Note that the choice of π as
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the bifurcating parameter is unimportant and that a similar picture would be

obtained if, for instance, π was fixed and if R was increased from one.

Proposition 2.1 (Local Stability of the Steady State)

Consider the steady state (K∗, B∗, q∗) of eqs. (1) and assume that conditions

(2) are satisfied. Then the following holds:

1. the steady state is locally a saddle for 1 ≥ π > πH, where πH ≡ η(a +

φ)(R− 1)/[η(a+ φ)R+ a].

2. the steady state undergoes a Hopf bifurcation (two complex characteristic

roots cross the unit circle) at π = πH.

3. the steady state is locally a source when πH > π ≥ 0.

Proof: See Appendix A.

Note that local indeterminacy is ruled out under Proposition 2.1, as there is at

most as many stable eigenvalues (two) as the number of predetermined variables

(K and B). A major implication of the previous result is the following.

Corollary 2.1 (Complex Unit Roots)

Under the assumptions of Proposition 2.1, the dynamics of eqs. (1) near the

steady state exhibit complex unit roots when π = πH ≡ η(a + φ)(R − 1)/[η(a +
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φ)R + a], at frequency ω = arccos{[2η + θ(2 + 1/R]/(2η + 4θ)}.

Proof: In Proposition 2.1, the steady state is a saddle (case 1) undergoing a

Hopf bifurcation (case 2), so that the Jacobian matrix of eqs. (1) has, at steady

state, a pair of complex, conjugate eigenvalues with unit modulus when π = πH .

It follows that, in case 2, the product of both eigenvalues is equal to one, that

is, D = 1, and that the sum of both eigenvalues is equal to T = 2 cosω, where ω

is the argument of the complex eigenvalues. Using the expressions of D and T

in eqs. (3), one gets that both eigenvalues have unit modulus when π = πH and

that ω = arccos{[2η + θ(2 + 1/R)]/(2η + 4θ)}.

When the length of the period is short (say, a quarter), R is expected to be

not too far from one so that complex unit roots occur for small values of πH .

Therefore, complex unit roots occur at plausible interest rate values when the

fraction of credit-constrained farmers is small enough (or, equivalently, if the

average time interval between investment is large enough). In this sense, a suf-

ficiently large level of heterogeneity is critical for complex unit roots to occur at

realistic parameter values.

KM’s assumption 5 (that is, π > 1 − 1/R or, equivalently, R(1 − π) < 1)

ensures that case 1 of Proposition 2.1 prevails and rules out cases 2 and 3 (see

KM [7, sec. 4] for a study of the case π = 1, which brings one closer to the basic
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model of KM [8, sec. II] where the Hopf bifurcation cannot occur).

To check the stability of the Hopf closed curve, on which lie periodic and quasi-

periodic orbits, is a little demanding, as it requires computing higher-order terms

in the normal form, the expression of which appears in Appendix A (see eqs.

(8)). In Proposition 2.1, either Hopf orbits occur in case 1 and they are repelling,

or they coexist with the unstable steady state in case 3 and they are attracting.

However, even in case 1 it is important to check for the presence of unstable Hopf

cycles because they bound the basin of attraction of the steady state, the size

of which shrinks at an exponential rate when π tends to πH . In other words,

being “close” to stable unit roots (that is, when π > πH and π ≈ πH) may lead

to nonlinear dynamics that are equivalent to the linearized dynamics only in an

extremely small neighborhood. This is most important in the presence of aggre-

gate shocks, as for example those discussed by KM. In this case, if exogenous

shocks were applied to the economy, one would have to check the size of their

support to ensure that the dynamics stay in the basin of attraction of the steady

state.

I am now ready to state the main result establishing the amplification-persistence

trade-off. Persistence is defined as the modulus of the complex eigenvalues, that

is,
√
D. Alternatively, following KM, persistence is inversely measured by the

decay rate δ ≡ 1 − √D. In case 1 of Proposition 2.1, the steady state is a

saddle that possesses one unstable eigenvalue (that is, R > 1) and two, complex
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eigenvalues lying inside the unit circle. Therefore, the second assumption in

eqs. (2) ruling out exploding bubbles implies that the dynamics are restricted to

the stable manifold of the saddle, where they exhibit damped oscillations that

decay at rate δ. Then persistence is “maximal” when complex unit roots occur,

that is, when D = 1 or, equivalently, δ = 0. On the other hand, amplifica-

tion is measured by the deviation from steady state occurring after a one-period

productivity shock hits the economy, while it is at steady state. For example,

let ∆ denote the (small) initial productivity shock, in percentage terms, and

let Ŷ ≡ (Y − Y ∗)/Y ∗ define the next-period deviation of output from steady

state, where Y ∗ is steady state output. Then the output amplification is Ŷ /∆.

Analogous definitions hold for the amplification of land price, q, and of capital

K.

Theorem 2.1 (The Amplification-Persistence Trade-off)

Assume that the economy has parameter values such that case 1 of Proposition

2.1 holds. Then the dynamics of eqs. (1) near the steady state are such that

both the decay rate and the amplification of a temporary, unexpected productivity

shock on capital and output increase when π goes up from πH to one.

In other words, there exists an amplification-persistence trade-off.



12

Proof: From the expressions in eqs. (3), one gets that the decay rate δ ≡ 1−√D

is an increasing function of π, as
√
D, or to put it differently, persistence, is a

decreasing function of π. In particular, the decay rate increases from zero to

one when π goes up from πH to one. I now show that amplification of capital

and output increases with π. In case 1 of Proposition 2.1, the steady state

is a saddle that possesses one unstable eigenvalue (that is, R > 1) and two

complex, conjugate eigenvalues lying inside the unit circle. Therefore, the second

assumption in eqs. (2) ruling out exploding bubbles implies that the dynamics

are restricted to the stable manifold of the saddle. Denote by ∆ the (small)

unexpected, one-period productivity shock, measured in percentage terms, that

hits the economy while it is at steady state. On the other hand, denote by

hatted variables, the percentage deviation from steady state. For example, q̂ ≡

(q−q∗)/q∗ denotes the current deviation of q, the land price, from its steady state

value q∗. Then linearizing eqs. (1) and restricting the analysis to the (linear)

two-dimensional, stable manifold allows one to derive the following expressions:

q̂/∆ = θ/η , K̂/∆ = πθ{1 + θR/[η(R − 1)]}/(1 + πθ/η), (4)

where 1 ≥ θ ≡ a/(a + φ) ≥ 0. Moreover, output aggregated over farmers and

non-farmers is given by Y = (a + c)K + G(K − K). At steady state, one has

Y ∗ = (a+ c−Ra)K∗ +RaK. Therefore, one has that Ŷ = K̂(a+ c−Ra)/(a+
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c−Ra+RaK/K∗) < K̂. Collecting all facts, one gets that:

Ŷ /∆ = πθ(a+ c−Ra){1+θR/[η(R−1)]}/{(1+πθ/η)(a+ c−Ra+RaK/K∗)}.

(5)

Now it is straightforward to show, by using eqs. (4) that while q̂/∆ is indepen-

dent of π, one has that d(K̂/∆)/dπ = θ{1+ θR/[η(R−1)]}/(1 + πθ/η)2 > 0. In

other words, capital amplification is an increasing function of π. Finally, noting

that both K (by assumption) and K∗ are independent of π, one concludes from

eq. (5) and the above finding that output amplification Ŷ /∆ is also an increasing

function of π. This completes the proof of the statement that there exists an

amplification-persistence trade-off, as persistence (resp. amplification) decreases

(resp. increases) when the share of credit-constrained farmers π goes up from

πH to one.

The key point behind this trade-off is that complex unit roots associated with

persistence require the fraction of credit-constrained firms to be small enough, so

that a low fraction of farmers invest in each period. However, high amplification

relies on just the opposite condition, as it occurs only when there are many

credit-constrained firms.
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3 Simulations

So as to illustrate Theorem 2.1, I now turn to numerical examples and simu-

lations. To ease comparison, suppose we adopt the values proposed in KM [8,

p. 237], based on quarterly data. That is, we set R = 1.01 (the interest rate

equals 1%), η = 0.1 (the elasticity of the residual supply of land equals 10%),

a = 1 and φ = 20. Consistently with the above analysis, we set λ = 1 (no tree

depreciation). Then one gets that θ ≈ 0.05 and πH ≈ 0.007. Moreover, from

the expressions given in the proof of Theorem 2.1, one gets that amplification of

land price and of capital are equal to, respectively, q̂/∆ ≈ 0.5 and K̂/∆ ≈ 0.015

when π = πH , that is, when complex unit roots prevail. Finally, we learn from

the proof of Theorem 2.1 that output amplification Ŷ /∆ is bounded above by

capital amplification, so that Ŷ /∆ < 0.015. As expected from the previous anal-

ysis, complex unit roots and persistence are associated with low amplification of

capital and output. Such an example is illustrated by the time series (simulated

with Matlab) of the deviations from steady state of both land price q (top

panel) and capital K (bottom panel) when π = 0.01 and ∆ = 0.01, in Figure

1. Notice that although the effect is initially small, the cumulated impact over

a long period (say, 40 quarters) is large.

Insert Figures 1 and 2 about here.
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Now suppose that π = 0.99, so that almost all farmers invest and are credit-

constrained in each period. In this case, the decay rate almost vanishes (that

is, δ ≈ 0). Then one gets that q̂/∆ ≈ 0.5 is unchanged while K̂/∆ ≈ 1.58.

Although persistence is lost, contemporaneous amplification of capital is multi-

plied by about 100. This configuration is depicted in Figure 2.

Comparing Figures 1 and 2 suggests that it is important to evaluate both

amplification and persistence when drawing quantitative implications. In other

words, the amplification-persistence trade-off does not imply that endogenous

credit constraints are quantitatively unimportant. Rather, one should interpret

this result as showing that the effects of a temporary shock, cumulated over sev-

eral periods, may originate from either low amplification and high persistence

or the opposite configuration. For example, one can hardly say that an output

amplification effect of 1.5 over one period (say, a quarter) is more important

than an effect of 0.5 that lasts for three periods.
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Figure 1: time series of the deviations from steady state of land price q (top

panel) and capital K (bottom panel), with large persistence and low amplifica-

tion (π = 0.01).



17

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

qt
−

q*

time

0 5 10 15 20 25
0

0.5

1

1.5

2

K
t−

K
*

time

Figure 2: time series of the deviations from steady state of land price q (top

panel) and capital K (bottom panel), with low persistence and large amplifica-

tion (π = 0.99).
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4 Conclusion

I have considered a slightly simplified version of Kiyotaki and Moore [8] to

show that, in such a setting, is embodied an amplification-persistence trade-off.

In particular, close to unit-root behavior and persistence are associated with low

amplification of temporary productivity shocks at impact. The key point behind

this trade-off is that complex unit roots associated with persistence require the

fraction of credit-constrained firms to be small enough, so that a low fraction

of farmers invest in each period. However, high amplification relies on just the

opposite condition, as it occurs only when there are many credit-constrained

firms. Of course, the existence of such a result does not imply that endogenous

credit constraints are quantitatively unimportant. Rather, one should interpret

this result as showing that the effects of a temporary shock, cumulated over sev-

eral periods, may originate from either low amplification and high persistence

or the opposite configuration. As a byproduct of the analysis, it is shown that

the steady state loses (saddle-point) stability through a Hopf bifurcation, which

creates business cycles that persist in the absence of any shock to the economy.

Though more tedious, a similar analysis could be conducted to cover the case

with tree depreciation (that is, λ < 1) and would deliver analog outcomes pro-

vided that λ is not too small. More importantly, relaxing the linearity assump-

tions regarding preferences and technology is not expected to alter the main



19

result. As a matter of fact, Cordoba and Ripoll [2] report some numerical ex-

amples confirming that the amplification-persistence trade-off remains valid in a

version of Kiyotaki and Moore [8] with concave utility and production functions.

However, endogenous movements of the interest rate are expected to alter the

conditions leading to complex unit roots, persistence and amplification. Finally,

although I conjecture it is likely to be the case, it remains to be seen if the

amplification-persistence trade-off that is underlined in this paper also holds in

alternative business-cycle model with financial market frictions.

A Proof of Proposition 2.1

In this appendix, I provide a proof of Proposition 2.1. From Kiyotaki and

Moore [7, p. 33], one gets the expression of the characteristic polynomial as-

sociated with the Jacobian of eqs. (1), that is, P (x) = (x − R)p(x), where

p(x) = x2 − Tx+D and:

D = R(1− π)/[1 + πa/(η(a+ φ))] and T = D + 1/[1 + πa/(η(a+ φ))], (6)

Therefore, R > 1 is an unstable eigenvalue, while the other two are either

stable or unstable, as the next Lemma shows.



20

Lemma A.1

Consider the steady state (K∗, B∗, q∗) of eqs. (1) and assume that conditions

(2) are satisfied. Then the following holds:

1. the steady state is locally a saddle for 1 ≥ π > πH, where πH ≡ η(a +

φ)(R− 1)/[η(a+ φ)R+ a].

2. the steady state is locally a source when π < πH .

Proof: As already noticed, the eigenvalue R > 1 is unstable, so what remains

to be shown is that the two roots of p(x) = x2 − Tx+D are both either stable

or unstable. A straightforward way to proceed is analyzing how T and D vary

when π is decreased from one to zero. That is, define:

D(π) = R(1− π)/[1 + πa/(η(a+ φ))] and T (π) = D(π) + 1/[1 + πa/(η(a+ φ))],

(7)

where a,φ, η ≥ 0 and R > 1. One easily gets that D(π) is a strictly decreasing

function of π, with D(1) = 0 and D(0) = R > 1. Therefore, there exists a unique

1 > πH > 0 such that D(πH) = 1, where πH ≡ η(a+ φ)(R− 1)/[η(a+ φ)R+ a].

Moreover, one has that 0 < T (1) < 1, 0 < T (πH) < 2, T (0) = 1 + D(0) and

0 < T (π) < 1 + D(π) for all 0 < π < 1. This proves that p(x) has two stable

(resp. unstable) roots if 1 > π > πH (resp. π < πH).
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The last steps consist in showing that the steady state undergoes a Hopf bifur-

cation at π = πH and this requires appealing to the Center Manifold Theorem for

Maps and to the Hopf Bifurcation Theorem for Maps. An application of center

manifolds theory helps to reduce the dimension of the dynamics to the number of

eigenvalues crossing the unit circle - two in our case. Consider F : N×I → R3 a

family of difference equations, obtained from eqs. (1) after translating the steady

state to the origin, where N is an open set of R3 containing the origin, I is an

open interval of R containing πH , F is C
r with r ≥ 2. Define Aπ as the Jacobian

matrix of F evaluated at the steady state. From the proof of Lemma A.1, one

knows that AπH has complex eigenvalues with modulus equals to one. By a suit-

able linear change of variables, AπH can be brought into real canonical form, that

is, AπH = diag {C,U}, with C corresponding to the (two-dimensional) center

eigenspace Ec and U corresponding to the (one-dimensional) unstable eigenspace

Eu. Defining X as an element of R3, it can be written as Xc + Xu, Xc in Ec

and Xu in Eu. Therefore, analyzing the local bifurcation of F is equivalent to

studying the local behavior of the following map:⎧⎪⎪⎨⎪⎪⎩
Xc → CXc +G(Xc, Xu)

Xu → UXu +H(Xc, Xu),

(Xc, Xu) ∈ R2 ×R, (8)

where the Cr functions G and H, with r ≥ 2, vanish at the steady state, for all

π, and have zero partial derivatives at the steady state when π = πH . I can then

apply the following theorem.
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Theorem A.1 (Center Manifold Theorem) (Wiggins [11, p. 205])

There exists a Cr center manifold for (8) which can be locally represented as a

graph as follows

W c(0) = {(Xc, Xu) ∈ R2×R| Xu = h(Xc), |Xc| < δ, h(0) = 0, Dh(0) = 0} (9)

for δ sufficiently small. Moreover, the dynamics of (8) restricted to the center

manifold is, for u sufficiently small, given by the two-dimensional map

u→ Cu+G(u, h(u)), u ∈ R2. (10)

Appealing to two additional theorems (e.g. Wiggins [11, Theo. 2.1.4, 2.1.5], one

can further deduce both that the zero solution of (10) is stable (resp. unstable)

when the zero solution of (8) is stable (resp. unstable), and how to compute the

center manifold from h. Next, I state the final theorem.

Theorem A.2 (Hopf Bifurcation Theorem) (Guckenheimer and Holmes [5,

p. 162])

Let fπ : R
2 → R2 be a one-parameter family of mappings which has a smooth

family of fixed points at which the eigenvalues are complex conjugate, x(π), x(π).

Assume:

|x(π)| = 1 but xj(πH) = 1, for j = 1, 2, 3, 4. (11)

d|x(πH)|/dπ ≡ d = 0. (12)
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Then there is a smooth change of coordinates g so that the expression of gfπg
−1

in polar coordinates has the form

gfπg
−1(r, ν) = (r(1 + d(π − πH) + kr

2), ν +m+ nr2) + high-order terms (13)

If, in addition, k = 0, then there is a two-dimensional surface Σ in R2 × R

having quadratic tangency with the plane R2 × {πH} which is invariant for fπ.

If Σ ∩R2 × {πH} is larger than a point, then it is a simple closed curve.

Proof: From the proof of Lemma A.1, one can check that condition (11) is

met. That is, an eigenvalue equals to −1 is ruled out because T > 0 when

D = 1. An eigenvalue equals to 1 is ruled out because T < 2 when D = 1.

An eigenvalue equals to (1 + i
√
3)/2 is ruled out because T > 1 when D = 1.

Finally, an eigenvalue equals to i is ruled out because T > 0 when D = 1. More-

over, there exists a neighborhood N of πH and a uniquely defined, differentiable

function |xH(π)| defined on N such that |xH(πH)| = 1 and d|xH(π)|/dπ < 0.

The last inequality is obtained from the fact that |x| = √D, which implies

d|xH(π)|/dπ = 0.5[D(π)]−3/2D (π) < 0 for all π, which proves that condition

(12) holds. Finally, k = 0 is generically satisfied by our parameterized family of

maps.

This completes the proof of Proposition 2.1.
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