

Article 1

Authorizing third-party applications served through messaging 2

platforms 3

Jorge Sancho 1,*, José García 1 and Álvaro Alesanco 1 4

1 Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50009 Spain 5
* Author to whom correspondence should be addressed. 6

Abstract: The widespread adoption of smartphones and the new-generation wireless networks have 7
changed the way that people interact among themselves and with their environment. The use of 8
messaging platforms, such as WhatsApp, has become deeply ingrained in peoples’ lives, and many 9
digital services have started to be delivered using these communication channels. In this work we 10
propose a new OAuth grant type to be used when the interaction between the resource owner and 11
the client takes place through a messaging platform. This new grant type firstly allows the authori- 12
zation server to be sure that no Man-in-the-Middle risk exists between the resource owner and the 13
client before issuing an access token. Secondly, it allows the authorization server to interact with the 14
resource owner through the same user-agent already being used to interact with the client, i.e. the 15
messaging platform, which is expected to improve the overall user experience of the authorization 16
process. To verify this assumption, we have conducted a usability study in which subjects have been 17
required to perform the full authorization process using both the standard authorization code grant 18
type (through a web-browser) and the new grant type defined in this work. They have also been 19
required to fill in a small questionnaire including some demographic information and their impres- 20
sions about both authorization flows. The results suggest that the proposed grant type eases the 21
authorization process in most cases. 22

Keywords: Access control, Authorization, Messaging platforms, OAuth, Virtual Assistants 23
 24

1. Introduction 25
The way users interact among themselves and with their environment is constantly 26

changing, and the delivery of digital services continuously evolves to keep pace with these 27
changes. The use of virtual assistants has recently revolutionized the service delivery par- 28
adigm. These assistants interact with users through multiple interfaces (smart speakers, 29
messaging platforms, etc.) providing different kinds of services ranging from simple in- 30
formation enquiries (e.g. the forecast or the air pollution) to more complex operations, 31
such as route optimization or patient follow-up management [1]. As occurred with tradi- 32
tional web applications, virtual assistants might eventually need access to some private 33
information held by a third-party service provider (e.g. the real-time traffic state infor- 34
mation) to perform some operations on the user’s behalf. Service providers will require 35
users to authenticate themselves and authorize the virtual assistant to access their remote 36
accounts [2-4]. 37

Access to this information is usually provided through Web Application Programing 38
Interfaces (Web-APIs) designed for this purpose [5] while transactions with these kinds 39
of API rely on Hypertext Transfer Protocol (HTTP) for message exchange. Security of 40
Web-APIs usually relies on the Open Authorization (OAuth) 2.0 framework [6-7]. This 41
framework defines a scenario composed of four actors: the end-user, the resource server, 42
the client and the authorization server. In this scenario the end-user asks the client to per- 43
form some operation on his behalf, so that the client requires access to some user’s pro- 44
tected resource stored at the resource server to complete the requested operation. The 45

authorization server arbitrates the access to the protected resource ensuring that the end- 46
user has sufficient rights to access the requested resource and that the client has been au- 47
thorized to act on the end-user’s behalf. In this context, OAuth includes all the required 48
elements to empower the end-user, allowing him to authorize the client to act on his be- 49
half, without having to show his credentials. Among other things, it defines a protocol 50
(grant type) that allows the authorization server to directly interact with the resource 51
owner, thus verifying his identity and gathering his consent to let the client act on his 52
behalf. This grant type was designed with a concrete type of client profile in mind, that is 53
web-applications that are served by a web server and accessed by end-users using a web- 54
browser as user-agent. Thus, this grant type was conveniently designed so that the inter- 55
action between the resource owner and the authorization server could be performed 56
through the same interface (user-agent) that the resource owner was already using to ac- 57
cess the client, i.e. a web browser. 58

When communication channels other than web-browsers are used for the interaction 59
between the end-user and the client, such as messaging platforms, the underlying author- 60
ization problem is essentially the same (providing the end-user with a reliable method to 61
express his intention of authorizing the client to act on his behalf), but some considerations 62
must be taken into account. These considerations include two aspects: dealing with se- 63
curity issues and usability aspects derived from changes in the scenario. The contributions 64
of this paper are as follows: 65

• We propose a new OAuth grant type to be used when the interaction between 66
the client and the resource owner is done through a messaging platform. Unlike the stand- 67
ard OAuth authorization code grant type, it allows the authorization server to ensure that 68
no Man-in-the-Middle (MitM) risk exists between the resource owner and the client before 69
issuing the access token, so that no user’s private information is exposed to a potential 70
attacker. This new grant type has been designed to allow the authorization server to in- 71
teract with the resource owner using the same communication that he was already using 72
with the client, the messaging platform. 73

• We have conducted a usability test to verify that gathering the user consent 74
using the proposed grant type results in a better overall user experience of the authoriza- 75
tion process. 76

The rest of this paper is organized as follows. In Section 2, we describe the access 77
control background. Section 3 shows the proposed grant type. Section 4 presents a security 78
analysis while Section 5 describes the usability study. Section 6 discusses the results ob- 79
tained. Finally, the conclusions and future work can be found in Section 7. 80

2. Background 81
2.1. OAuth 2.0 framework 82

OAuth 2.0 is currently the standard framework for authorization. It defines a base 83
scenario composed of four actors: the end-user, the resource server, the client and the au- 84
thorization server. The end-user is an entity capable of granting access to a protected re- 85
source that is stored in the resource server. The client is an application that requires access 86
to the protected resource to perform some action on behalf of the end-user and with his 87
consent, while the authorization server arbitrates the access to the protected resource by 88
means of two endpoints: the authorize endpoint and the token endpoint. When the client 89
requires access (on behalf of the end-user) to the protected resource, it sends an authori- 90
zation request (A) to the authorize endpoint, so that the authorization server can directly 91
interact with the end-user, authenticating him and gathering his consent to authorize the 92
client to act on his behalf. If the end-user authorizes the client to act on his behalf, the 93
authorization server sends an authorization code in the authorization response to the cli- 94
ent (B). The client exchanges the code obtained for an access token at the token endpoint 95
of the authorization server, sending the code in the token request (C) and receiving the 96
access token in the body of the token response (D). Requests to the token endpoint must 97
include the client credentials whenever client authentication is required. Finally, the client 98

can use the obtained access token to access the protected resource at the resource server. 99
The standard defines a protocol based on HTTP redirections (see Fig. 1) so that the au- 100
thorization server can directly interact with the end-user. In this flow, information is 101
passed from the client to the authorization server encoded as query parameters in the URL 102
when redirecting the end-user. 103

 104
Figure 1. OAuth 2.0 Authorization code grant type. 105

2.2. TextSecure security 106
Most messaging platforms, such as Signal, WhatsApp, Facebook Messenger or 107

Skype, rely on the TextSecure protocol [8] to provide security to users’ conversations. This 108
protocol provides end-to-end encryption between communication peers, so that no eaves- 109
dropper is able to see the content of exchanged messages. To that end, it relies on a public 110
key scheme where each user-agent (i.e. application installed in the user’s device) generates 111
its own key pair (public and private keys) at the time of installation. This key pair is fur- 112
ther used to generate session keys that are used to encrypt the conversation. 113

However, there is no way for a party to be sure a priori that a given public key be- 114
longs to his communication peer. A MitM attacker would be able to modify messages 115
exchanged at the start of a conversation, tricking parties into believing that his own public 116
key (the attacker one) belongs to the other communication peer, developing the attack. 117
This is addressed by the so-called authentication ceremony, which consist in comparing 118
parties’ public keys using an out-of-band channel, thus preventing this risk. In current 119
messaging platforms it can be done by comparing a safety number (which is really a con- 120
catenation of both users’ public key fingerprint) or scanning a QR code. 121
2.3. Problem definition 122

In this work we will focus on a scenario (see Fig. 2) in which an end-user is using a 123
messaging platform to access a remote service provided by the client. The end-user re- 124
quires to authorize (in an OAuth sense) the client to access on his behalf some protected 125
resource held by the resource server. 126

 127
Figure 2. Reference scenario. End-user authorizes the client to access his resources at the resource 128
server on his behalf. 129

Currently, if the client needs to access a resource stored at the resource server, and 130
this access has been secured using the OAuth framework, the client’s best attempt to ob- 131
tain the user consent consists in sending a link to the user as a normal message in the 132
conversation pointing to the authorize endpoint of the authorization server with the re- 133
quired parameters (the same URL to which the user would be redirected if the communi- 134
cation between the user and client were through a web-browser). The user must follow 135
this link and continue the interaction through the web-browser to authorize the client to 136
access his protected resource. Once the client obtains the required access token, the client 137
will again interact with the user through the messaging platform, so that he must return 138
from the web-browser to this platform. Switching from the messaging platform to the 139
web-browser and back may hamper the usability of the system, making users reluctant to 140
use new communication channels to consume services. 141

Given the construction of the TextSecure protocol, a MitM attacker could be placed 142
between the user and the client, inevitably seeing all the private information being ex- 143
changed between both. Even worse, this attacker would be able to modify the link sent by 144
the client (to start the authorization process), so that it will point to a fake website owned 145
by the attacker pretending to be the authorization server. In such a situation the attacker 146
would be able to trick the user into introducing his private credentials at the fake site, 147
making them available to the attacker. This MitM threat could be simply prevented by the 148
authentication ceremony (as stated in Section 2.2). However, users must complete the au- 149
thentication ceremony with every single client they want to interact with, which would 150
hamper the user-experience. Studies point out that most users do not complete the au- 151
thentication ceremony even to exchange sensitive information such as credit cards num- 152
bers [9-11], and the worst part is that the authorization server, which is the custodian of 153
the users’ data privacy, has no way of ensuring that the authentication ceremony has been 154
completed between them before issuing an access token. 155

3. Proposed authorization protocol 156
In this section, we detail the proposed grant type (see Fig. 3). It has been designed to 157

be used with client profiles that use messaging platforms as user-agents to deliver ser- 158
vices. In this new grant type, the authorization server is able to interact with the end-user 159
using the same interface (user-agent) that he is already using to interact with the client, 160

i.e. the messaging platform. Messaging platforms do not support any kind of redirection 161
mechanism, which is crucial in the Authorization Code grant type defined by the OAuth 162
standard. These redirections have a double function; to allow the client to pass the re- 163
quired information to the authorization server (and the other way) and to allow the au- 164
thorization server to directly interact with the end-user (to ask them for their consent). As 165
can be seen in Figure 3, our protocol substitutes those redirections with direct HTTP com- 166
munication between the client and the authorization server (to pass the required infor- 167
mation), while the direct communication between the authorization server and the end- 168
user is enabled thanks to the inclusion of two new parameters (platform and id) at the 169
authorization request as it is explained below. 170

 171
Figure 3. Proposed grant type to authorize third-party applications served through messaging 172
platforms. Blue arrows represent HTTP messages while orange arrows represent communications 173
through the messaging platform. 174

The proposed protocol also integrates the security related aspects as a part of the 175
protocol. The authorization server is also allowed to complete the authorization process 176
securely without relying on the authentication ceremony between the user and the client. 177
It is also able to guarantee that no MitM risk exists before letting the client obtain any 178
private information. 179

3.1. Prerequisites 180
Since the resource owner will interact with the authorization server using a messag- 181

ing platform, some prerequisites are needed before the proposed grant type can be used. 182
There are two main prerequisites: obtaining the user identifier (id) on a specific platform 183
and completing the authentication ceremony on this platform (as shown in Section 2.2). 184
This must be done using an out-of-band channel and would typically be performed at the 185
time the user registers himself at the authorization server using its web interface. Note 186
that an authorization server may support several messaging platforms. In that case, the 187
user would firstly be asked to select which platform is going to be registered. On the other 188
hand, the same user may register himself on several platforms. 189

Most messaging platforms currently support two ways of completing the authenti- 190
cation ceremony, by comparing a safety number or by scanning a QR code. We present 191
three different ways of doing this. The first way is asking the user to manually write the 192
safety number in a text box. The second way, which is appropriate when the registration 193
is being done from a different device from that where the messaging application is 194

installed (i.e. a laptop), is asking the user to show the pairing QR code to the webcam of 195
the device where the registration is taking place. The third way, which is appropriate 196
when the registration is being done from the same device that has the messaging applica- 197
tion installed (i.e. a smartphone), is asking the user to take a snapshot of the pairing QR 198
code and upload it to the authorization server. 199

3.2. Authorization request 200
When the client application requires access to a protected resource, it sends a request 201

to the authorize endpoint of the authorization server, including the following parameters 202
using the "application/x-www-form-urlencoded" format with a character encoding of 203
UTF-8 in the HTTP request entity-body: 204

 205
 platform 206
 REQUIRED. The concrete messaging platform the user is interacting 207
 with (e.g. WhatsApp, Signal). 208
 209
 id 210
 REQUIRED. The user identifier in the messaging platform (e.g. phone 211
 number). 212
 213
 key_fingerprint 214
 REQUIRED. Fingerprint of the long-term identity public key. 215
 216
 client_id 217
 REQUIRED. A string uniquely identifying the client. 218
 219
 redirect_uri 220
 OPTIONAL. A URI to redirect the user back after the authorization. 221
 222
 scope 223
 OPTIONAL. A string describing the access rights requested by the 224
 client. 225
 226
 state 227
 RECOMMENDED. An opaque value used by the client to maintain 228
 state between the request and callback. 229
 230
Among these parameters, there are some defined in the standard (client_id, redi- 231

rect_uri, scope and state) and others defined specifically for this grant type (platform, id and 232
key_fingerprint). The platform parameter is used to determine which specific messaging 233
platform the resource owner is using to interact with the client (e.g. WhatsApp, Signal) 234
and the id is the identifier of the resource owner at this platform (e.g. the user’s phone 235
number). These parameters are required to allow the authorization server to contact the 236
resource owner since his identity is a priori unknown. The key_fingerprint is the fingerprint 237
of what the client believes to be the end-user’s public key. It is included to allow the au- 238
thorization server to ensure that no MitM attack between the client and the end-user is 239
taking place before issuing the access token, even if the authentication ceremony between 240
them has not been completed. 241

3.3. Authorization request processing 242
When the authorization server receives this request, it is validated ensuring that all 243

the required parameters are present and valid. Then, the authorization server verifies that 244
the received combination of platform and id has previously been registered for any user. If 245
so, the key_fingerprint received from the client is verified to ensure that it is the same as 246
that shown to the authorization server (the fingerprint of what is currently being shown 247
to the authorization server as the end-user’s public key). They are also compared to be the 248
same as that stored as a result of the authentication ceremony performed as explained in 249
Section 3.1 (the fingerprint of the actual end-user’s public key). If everything goes as ex- 250
pected, the authorization server acknowledges the received request sending a 200 OK 251

response to the client. Otherwise, the authorization server quickly rejects the authoriza- 252
tion sending a 400 Bad Requests message, including the error response parameters (error, 253
error_description, error_uri and state) in the response body as defined in the standard. If the 254
provided combination of id and platform has not been registered previously by any user, 255
the error parameter is set to “access_denied”. If the public key fingerprint sent by the cli- 256
ent does not match the one registered in the authorization server for that combination of 257
id and platform, the authorization server returns the error parameter set as “pub- 258
lic_key_not_match”. It can be used by the client to inform the resource owner about a 259
possible MitM attack and abort the communication when considered necessary. 260

At this point the authorization server can already contact the resource owner at the 261
platform and id specified by the client. In this interaction, the authorization server may 262
ask the user for some extra authentication information, like a one-time password (OTP) 263
or some voice biometrics, or simply rely on the possession of the device where the mes- 264
saging application is running (i.e. the possession of the complementary private key of the 265
public key that was associated to a specific user during the authentication ceremony at 266
the time of registration). Once the user identity has been verified, the authorization server 267
evaluates the access control policies as it normally does (the specific policy evaluation 268
method lies outside the scope of the OAuth standard). If everything goes as expected, the 269
authorization server contacts the resource owner again to inform him the client applica- 270
tion is requesting access to a resource on his behalf and asks him to authorize the client to 271
complete this operation. 272

3.4. Authorization response 273
Once the authorization server has obtained the resource owner’s consent, it sends the 274

authorization response to the client endpoint specified at the time of client registration or 275
in the authorization request by the redirect_uri parameter. This response includes the fol- 276
lowing parameters in the HTTP request entity-body using the "application/x-www-form- 277
urlencoded" format with a character encoding of UTF-8. 278

 279
 code 280

REQUIRED. The authorization code generated by the authorization server. 281
 282
 state 283

REQUIRED if the “state” parameter was included in the client authorization request. The exact 284
value received from the client. 285

 286
If the resource owner’s consent cannot be obtained, the parameters included in the 287

response are those defined in the error response (error, error_description, error_uri and state) 288
setting the error parameter as “access_denied”. Independently of the result of the author- 289
ization and the parameters included in the authorization response, the client acknowl- 290
edges the reception of the authorization response sending a 200 OK response. 291

3.5. Obtaining access token 292
Finally, if the client has obtained a valid authorization code, it is exchanged for an 293

access token in the token endpoint of the authorization server using the token request and 294
token response defined in the standard, authenticating the client when required. Once the 295
client application has obtained the access token, it can obtain the required resource from 296
the resource server authorizing the operation with the access token. 297

4. Security analysis 298
In this section we analyze the security provided by the proposed authorization flow. 299

First, we show how this method allows the authorization server to prevent the existence 300
of a MitM between the end-user and any client, only requiring that the authentication 301
ceremony between the end-user and the authorization server has previously been com- 302
pleted. Secondly, we analyze the degree of security of the proposed method in the face of 303

known attacks against OAuth. Other threat models (e.g. Denial of Service or eavesdrop- 304
ping) have not been considered in this section as they are out of the scope of the manu- 305
script. 306

4.1. MitM attacker 307
All the trust in the TextSecure protocol is based on asymmetric cryptography. Each 308

participant generates its own key pair (a public key, 𝐾௫ା, and a private key, 𝐾௫ି) that is 309
used in the generation of all the subsequent cryptographic material required to encrypt 310
and sign all messages exchanged during the conversation. Thus, a MitM attacker has to 311
cheat both communication ends to make one communication end think that the attacker’s 312
public key (𝐾௘ା) actually belongs to the other communication end [12]. In the scenario 313
shown in Figure 4, the user has been cheated into thinking that the attacker’s public key 314
(𝐾௘ା) really belongs to the client. In the same way, the client has been cheated into thinking 315
that the attacker’s public key (𝐾௘ା) really belongs to the user. Finally, the user can be sure 316
that what he believes to be the authorization server’s public key (𝐾௔௦ା) belongs to the au- 317
thorization server and, in turn, the authorization server can be sure that what it believes 318
to be the user’s public key (𝐾௨ା) really belongs to the user, thanks to having completed the 319
authentication ceremony (which is a prerequisite of the proposed protocol). 320

 321
Figure 4. Man-in-the-Middle prevention showcase using the proposed grant type. 322

In such a scenario, the MitM would be able to see and modify messages exchanged 323
between the end-user and the client, while the authorization server has no way of detect- 324
ing his presence if no additional measures are applied. The use of the key_fingerprint 325
parameter in the authorization request of the proposed protocol is intended to sort out 326
this situation. When the client starts the authorization process, the fingerprint of the at- 327
tacker’s public key (𝐾௘ା) is included in the request, since the client has been cheated into 328
thinking that this public key actually belongs to the end-user. When the authorization 329
server receives the authorization request, it is able to compare the fingerprint of the re- 330
ceived public key (𝐾௘ା) with the fingerprint of the public key that it has stored for the end- 331
user (𝐾௨ା) as a result of the authentication ceremony. Any time that a MitM appears 332

between the end-user and the client, the public key fingerprints will not match, and the 333
authorization server would be able to detect its presence before issuing any access token. 334

4.2. Security against known attacks 335
In this section, we compare the security provided by the standard authorization code 336

grant type through a web-browser as suggested in Section 2.3 (method A hereafter) with 337
the new grant type proposed in Section 3 (method B hereafter). To that end, we analyze 338
how attacks described in [13] affect these solutions or not, considering the 5 attacker mod- 339
els defined in [13] and the MitM attacker presented previously (Section 4.1). We classify 340
these attacks in three groups. The first group includes attacks that do not depend on the 341
grant type flow but are related with other architectural aspects of the OAuth framework. 342
These attacks include Access Token Leakage at the Resource Server, TLS Terminating Re- 343
verse Proxies, Refresh Token Protection and Client Impersonating Resource Owner. At- 344
tacks in this group affect both methods as they are independent of the specific grant type, 345
and its countermeasures should always be applied. The second group includes those at- 346
tacks that are exploited taking advantage of the HTTP redirection mechanism (used in the 347
original OAuth Authorization Code grant type to move the user from the client to the 348
authorization server and back) or any feature related with the web-browser (like the 349
browser history). Thus, they would affect method A but would not affect method B, at 350
least in its current form, as the proposed method does not rely on any HTTP redirection 351
nor the use of a web-browser. This group includes Credential Leakage via Referer Head- 352
ers, Credential Leakage via Browser History, Authorization Code Injection, Access Token 353
Injection, Cross Site Request Forgery, Open Redirection and Clickjacking. Finally, attacks 354
in the third group, which are the most interesting for us, affect both methods in different 355
ways and are analyzed more carefully below. These attacks are Insufficient Redirect URI 356
Validation and Mix-Up Attacks. Table 1 summarizes this information. 357

Table 1. Exposure of methods A and B to attacks defined in [13]. Attacks in the first, second and 358
third groups are written in yellow, green and red respectively. 359

Attack vector A B
4.1. Insufficient Redirect URI Validation Yes Yes*
4.2. Credential Leakage via Referer Headers Yes No
4.3. Credential Leakage via Browser History Yes No
4.4. Mix-Up Attacks Yes Yes*
4.5. Authorization Code Injection Yes No
4.6. Access Token Injection Yes No
4.7. Cross Site Request Forgery Yes No
4.8. Access Token Leakage at the Resource Server Yes Yes
4.9. Open Redirection Yes No
4.10. 307 Redirect Yes No
4.11. TLS Terminating Reverse Proxies Yes Yes
4.12. Refresh Token Protection Yes Yes
4.13. Client Impersonating Resource Owner Yes Yes
4.14. Clickjacking Yes No

 360
The Insufficient Redirect URI Validation attack, as described in [13], is conducted as 361

follows. First, the attacker needs to trick the user into opening a tampered URL in his 362
browser that launches a page under the attacker's control. This URL initiates an authori- 363
zation request with the client ID of a legitimate client to the authorization endpoint in- 364
cluding a redirect URL under the attacker’s control and matching the registered redirect 365
URL pattern for the legitimate client. The authorization request is processed and pre- 366
sented to the user. If the user does not see the redirect URI or does not recognize the attack, 367
the code is issued and immediately sent to the attacker's domain. When using method A, 368

the MitM only needs to tamper with any legitimate authorization link sent by the client, 369
so that the redirect_uri points to a domain under his control. In this case, it would be 370
difficult for the user to notice that he is being attacked, given that starting the authoriza- 371
tion by opening the link is part of the legitimate authorization using method A. On the 372
other hand, when using method B, the attacker’s best attempt would be to trick the user 373
into believing that a client under his control is actually a legitimate client (e.g. initiating a 374
new conversation with the user and stating that it is a known client application whose 375
phone number has changed recently) and to obtain the user’s consent to access his pro- 376
tected resources. Independently of the method used, this could be shortcut by strictly val- 377
idating redirect_uris (i.e. performing strict string matching instead of supporting regular 378
expressions) at authorization server. 379

Mix-Up attacks require the client to try to obtain authorization from the user using 380
an authorization server under the attacker’s control. When using method A, the MitM can 381
simply modify the user messages to trick the client into thinking that the user has selected 382
the authorization server under the attacker’s control, when he actually has not. On the 383
other hand, when using method B, this attack would only be possible if the user intention- 384
ally selects the authorization server under the attacker’s control for any reason. This attack 385
could be prevented by the client using distinct redirect URIs for each authorization serv- 386
er. 387

Finally, there is the passive MitM attack, where the MitM is placed between the client 388
and the user without modifying any message with the sole purpose of eavesdropping on 389
the user’s private information exchanged from his routine use of the client. When using 390
method A, this kind of attack can be prevented by completing the authentication cere- 391
mony between each user and each client. However, as already stated, the authorization 392
server, which is responsible for the security of the user’s resources, has no way of being 393
sure that this authentication ceremony has been performed before issuing an access token. 394
Method B prevents this attack as explained in Section 4.1. 395

5. Usability study 396
We have conducted a study to better understand how users perceive the proposed 397

authorization method and what might make them reluctant to use it. This study consists 398
of two tests, test A and test B. In both tests the subject is required to interact with a virtual 399
assistant, Alfred, using the Signal secure messaging application [14]. At a certain point of 400
the conversation, Alfred informs the user that he needs his authorization to access some 401
protected resource on his behalf. In test A subjects are requested to complete the authori- 402
zation process using the standard authorization code grant type through a web-browser, 403
as suggested in Section 2.3 (see Fig. 5a). In test B they are requested to authorize Alfred 404
using the new grant type proposed in Section 3 (see Fig. 5b). After completing both tests, 405
subjects are required to fill in a small questionnaire including some demographic infor- 406
mation and their impressions about both authorization methods. 407

 408

(a) (b)

Figure 5. (a) Example interaction in test A; (b) Example interaction in test B. 409

 410

5.1. Study recruitment, design and realization 411
The study participants were recruited from our campus and from our circle of ac- 412

quaintances in equal parts. We ensured that none of them previously knew what our work 413
consists of or the objective of the study, to avoid biased results. 414

We designed the study so that each subject would be provided with two similar 415
smartphones (one for each test) with a preregistered virtual assistant contact. The reason 416
behind using different smartphones for each test was that it eases the subjects’ under- 417
standing of what they are doing (authorizing the virtual assistant by two different means), 418
as we saw during the study design, providing a more reliable feedback. 419

When the participants arrived, they were firstly asked to read and sign the informed 420
consent. After that, we briefly explained the basis of the study and informed them that a 421
study coordinator would be observing their interaction and would answer any possible 422
question they might have. At this point, the study coordinator handed out the smartphone 423
prepared for test A and provided the following context information: 424

Suppose that you are using the Signal app to normally interact with your virtual assistant, 425
Alfred. You ask him when the following appointment with the physician is. The objective is to 426
complete the required steps to obtain this information from Alfred. 427

After successfully completing the first test, the subject was provided with the other 428
smartphone (prepared for test B) and instructed to repeat the task, after being warned that 429
some steps in the process would be different. After completing the task, the subject was 430
required to briefly explain to the study coordinator what he/she had done to check the 431
subject’s understanding of the technology (up to a certain point). The subject was then 432
required to complete a small summary containing some demographic questions and some 433
related with their impressions of both tests. The demographic questions include the sub- 434
ject’s gender and age. The subjects also had to select one of three options describing their 435
degree of familiarity with the technology. The three levels were “Occasional user”, “Ha- 436
bitual user” and “Advanced user”, defined as follows: 437

• Occasional user: your main use of computers is to occasionally navigate the 438
web, send/read emails or see some videos on YouTube. 439

• Habitual user: you usually rely on a computer for many tasks daily and/or part 440
of your work depends on it as a user. 441

• Advanced user: you are a computer enthusiast and/or your work involves a 442
deep level of computer understanding (programmer, computer sciences, etc.). 443

For each test, the question “What has been your impression on the usability of 444
method X?” was asked to rate the usability of the authorization method. Possible answers 445
to this question were integers from 1 to 10, where the higher score was the better. The 446
question “Do you believe the method X to be secure? Why?” was also included for each 447
test, where possible answers were “yes” and “no” along with a space to justify their an- 448
swer. Finally, the participants were requested to answer the question “Which method 449
would you prefer to use?” considering their overall experience and taking into account 450
both usability and security. A text box was also required to be filled in including some 451
“Specific comments that motivate your previous responses”. After completing the ques- 452
tionnaire, the study coordinator announced that the study had finished. 453

5.2. Demographics 454
A total of 24 participants took part in the study. One of them was a priori excluded 455

from the study given that he affirmed that he did not understand what he had done after 456
completing the test. The remaining 23 participants were categorized in accordance with 457
three parameters, their gender, their age and their degree of experience of interacting with 458
computers. 10 participants out of the 23 were male (43% of the total). The participants 459
were categorized in three age groups: under 25, between 25 and 48, and 49 and over. The 460
first group had 8 participants (35% of the total), the second group 10 (43%) and the last 461
group 5 (22%). The level of familiarity with computers was categorized in the three levels 462
defined in Section 5.1: “Occasional user”, “Habitual user” and “Advanced user”. The first 463
group had 10 participants (43%), the second group 4 (17%) while the last group had 9 (39 464
%). All this information is summarized in Table 2. 465

Table 2. Participants' demographics. 466

Individual characteristics N %
Gender
 Male 10 43
 Female 13 57
Age
 0-24 8 35
 25-48 10 43
 49+ 5 22
Tech. Level
 Occasional user 10 43
 Habitual user 4 17
 Advanced user 9 39

 467
We can see that the population is reasonably well-balanced as regards the gender of 468

the participants. Looking at their ages, the younger and mid-range groups are also well 469
balanced while the oldest subjects’ group has less members than the others. Finally, the 470
participants experience with the use of computers is skewed since only a few are habitual 471
users. This is due to the recruitment procedure. Most of the participants from our circle of 472
acquaintances are occasional users, while participants from our campus are advanced us- 473
ers. However, the occasional users and advanced users’ groups are well balanced. 474

6. Results and discussion 475
In this section we present the results obtained from the usability study both qualita- 476

tively and quantitatively. The participants’ responses to the questionnaire are 477

summarized in Table 3. The first row in the table includes the mean number of points with 478
which participants rated the usability of both methods out of a maximum of 10. The sec- 479
ond row shows the number of participants who believe each method to be secure while 480
the last row shows how many participants preferred one method over the other. 481

Table 3. Usability study overall results. 482

Question Test A Test B
Usability 7.74 8.52
Security 13 23
Pref. method 4 19

 483
There is no significant difference between the usability rates obtained by both meth- 484

ods. As many participants stated, “both methods are very simple to use”. However, the 485
method proposed in this work obtained a slightly better result. In Table 4 we can observe 486
participants comments that justify this. From the usability point-of-view, most partici- 487
pants who preferred method B said that it is simpler because they do not have to leave the 488
application to complete the process (15 participants). A smaller set of participants stated 489
that they prefer method A since the interaction is more similar to that which they currently 490
use for authorization tasks (just 3 participants). From the security perspective, 13 out of 491
the 23 participants believed the method used in test A to be secure. Many participants (16 492
out of 23) expressed their concern that they do not feel comfortable clicking the link pro- 493
vided by the client. However, some of them (6) still considered this method to be secure. 494
On the other hand, all the participants involved in the study believe the method used in 495
test B to be secure. Just one participant pointed out that he obtained a better security im- 496
pression with the method for the test A stating that “seeing the link makes me more com- 497
fortable as I get a deeper understanding about how the system works”. The conjunction 498
of all these facts explains that most participants (19 out of 23) prefer to use the method 499
proposed in this work. 500

Table 4. Participants' commentaries. 501

Participant comments #
Test A
 It is more familiar 3
 The interaction is simpler 2
 Seeing the link gives me more security 1
Test B
 The interaction is simpler 6
 It is more secure 14
 Do not have to leave the app 15
 I do not feel comfortable clicking a link 16

 502
Figure 6 details the results showing differences between the population groups de- 503

scribed in Section 5.2. Figure 6a shows results distributed by gender, Figure 6b shows their 504
distribution by ages while Figure 6c does the same with the level of familiarity with the 505
technology. In all the subfigures, the bars are grouped in three categories: the usability 506
rate, security and the preferred method. The first group of bars represents the usability 507
rate assigned to each test (over a maximum of 100 points), the second group shows the 508
percentage of participants that believe the method to be secure while the third group 509
shows the participants’ preferences of one method over the other. The bars for the same 510
demographic group share the same color between categories, while the solid bars repre- 511
sent results for Test A and the hollow bars for Test B. 512

 513

 514
Figure 6. Usability study detailed results. 515

Figure 6a shows no significant differences in how participants of different genders 516
rated the usability, although male participants believe method A to be more secure than 517
female participants, which is also reflected in the preferred method for each of them. Fig- 518
ure 6b, which shows the results split by the age of the participants, indicates that there are 519
no significant differences among users in the 18 to 24 age group and users in the 25 to 48 520
age group in any of the three categories. However, older participants (49 and over) rated 521
the usability of method A as being worse than method B and had less confidence in the 522
security of method A. This is reflected in the fact that no user in this group preferred 523
method A over method B. 524

The most interesting results can be seen in figure 6c, which shows the results depend- 525
ing on the technical abilities of the participants. In this figure, occasional users are labeled 526
as tech. 1, habitual users as tech. 2 and advanced users as tech. 3. The more experienced 527
participants rated the usability of method A higher than others with less experience. A 528
larger number of experienced participants also trusted method A to be secure compared 529
with participants in other groups. Finally, all the participant that preferred method A over 530
method B were advanced users. Some insights derived by this study may be conditioned 531

by the limited number of participants and a study addressing this concern would be 532
needed to confirm our findings. 533

As a final comment, none of the participants involved in the study noticed that the 534
link sent by the client points to a HTTP service (see Fig. 5a), which is not using TLS to 535
secure the connection (i.e. using HTTPS instead). In a real scenario this link might be sent 536
by a MitM (trying to cheat the user) if the authentication ceremony has not been completed 537
between the user and the client. This demonstrates that most users (including some grad- 538
uates in computer sciences) are far from understanding all the security implications of 539
their decisions and actions. Thus, security methods should be designed to protect users’ 540
security on their behalf, reducing their exposure to possible threats derived from their 541
actions. 542

In this context, minimizing the number of required authentication ceremonies would 543
improve not only the system usability but also the security of the communication. Using 544
the flow proposed in this work with the OpenID Connect [15] protocol to provide feder- 545
ated identity would help with this problem. In the OpenID Connect protocol, the client 546
application wants to obtain some information about the end-user (such as their identity) 547
from an identity provider. One of the OAuth grant types is used to allow the identity 548
provider to authenticate the user and obtain their consent to share the information with 549
the client. A client application that uses the OpenID Connect protocol with the proposed 550
grant type to deal with users’ identities would not need to worry about the presence of a 551
possible MitM attacker even without completing the authentication ceremony. In this 552
case, the identity provider would seamlessly verify that the public key fingerprint in- 553
cluded in the authorization request really belongs to the user (just in the same way that 554
an authorization server does as part of a normal authorization flow) ensuring that no 555
MitM risk exists. Thus, the user is only required to complete the authentication ceremony 556
with the identity provider instead of doing so with each client. 557

In the same way, an authorization server may rely on an identity provider to deal 558
with a user’s identity. In such a situation the authorization server would act as the client 559
of the identity provider, so that only the authentication ceremony with the identity pro- 560
vider would newly be required. This is especially interesting for those scenarios where 561
users’ resources are spread across several resource servers protected by different author- 562
ization servers. 563

7. Conclusions 564
In this work we propose a new protocol to allow users to authorize third-party ap- 565

plications when the interaction with these applications is taking place through a messag- 566
ing application. This protocol has been designed as a new OAuth grant type to take ad- 567
vantage of all the elements already defined in this framework, and to provide direct access 568
to all existent APIs which are already secured using it. The proposed grant type allows 569
the authorization server to interact with the resource owner directly through the same 570
messaging platform already being used for interaction with the client. It also allows the 571
authorization server to be sure that there is no risk of an MitM between the client and the 572
user before issuing an access token. 573

Aligning the way that authentication and authorization tasks are handled with how 574
users interact to obtain the service that requires these tasks improves the overall system 575
usability. In the usability test, we have seen that most users found the proposed method 576
usable for authorizing clients through messaging platforms and preferred it to using a 577
web-browser with this same purpose. This is especially true for those users less experi- 578
enced with computers, who rated our proposed approach highly for both usability and 579
security. This is very important since users with less technical skills are the main target of 580
the new service delivery paradigm aiming to reach more population sectors. 581

The use of new features included in some messaging application (like Telegram’s 582
embedded web-browser) may affect the usability test results, as they make the authoriza- 583
tion process smoother without forcing the user to swap between the messaging platform 584

and the system web-browser. However, some major messaging applications (i.e. Signal, 585
WhatsApp, etc.) do not support this feature yet and the problem with the MitM attacker 586
would always remain there even with the use of embedded browsers. 587

Finally, the proposed method widely reduces the number of authentication ceremo- 588
nies that must be completed. However, one authentication ceremony (with the authoriza- 589
tion server) is still required. Further research may explore the inclusion of digital certifi- 590
cates to stop relying on the completion of any authentication ceremony. On the other 591
hand, some insights derived from the usability study may be conditioned by the limited 592
number of participants (a total of 23) and a study addressing this concern would be 593
needed to confirm our findings. 594

 595
 596

Author Contributions: Conceptualization, J.S. and A.A.; Software, J.S.; Investigation, J.S.; Writing – 597
Original Draft Preparation, J.S.; Writing – Review & Editing, A.A. and J.G.; Supervision, A.A.; Pro- 598
ject Administration, J.G.; Funding Acquisition, A.A. and J.G. All authors have read and agreed to 599
the published version of the manuscript. 600

Funding: Research funded by the Ministerio de Economía, Industria y Competitividad of the Go- 601
bierno de España and the European Regional Development Fund (TIN2016-76770-R), the Gobierno 602
de Aragón and FEDER “Construyendo Europa desde Aragón” (T31_20R), and the Ministerio de 603
Educación, Cultura y Deporte of the Gobierno de España via a doctoral grant to the first author 604
(FPU15/04841). 605

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 606
study. 607

Conflicts of Interest: The authors declare no conflict of interest. 608

References 609
1. Roca, S., Sancho, J., García, J. and Alesanco, Á., 2020. Microservice chatbot architecture for chronic patient support. Journal of 610

biomedical informatics, 102, p.103305.. 611
2. Sucasas, V., Mantas, G., Althunibat, S., Oliveira, L., Antonopoulos, A., Otung, I. and Rodriguez, J., 2018. A privacy-enhanced 612

OAuth 2.0 based protocol for Smart City mobile applications. Computers & Security, 74, pp.258-274. 613
3. Lämmel, P., Tcholtchev, N. and Schieferdecker, I., 2017, December. Enhancing cloud based data platforms for smart cities with 614

authentication and authorization features. In Companion Proceedings of the10th International Conference on Utility and Cloud 615
Computing (pp. 167-172). 616

4. Cui, L., Xie, G., Qu, Y., Gao, L. and Yang, Y., 2018. Security and privacy in smart cities: Challenges and opportunities. IEEE 617
access, 6, pp.46134-46145. 618

5. Siriwardena, Prabath. Advanced API Security. Apress, 2014. 619
6. OAuth 2.0 main page. https://oauth.net/2/, last accessed on 26 February 2020. 620
7. Hardt, Dick. The OAuth 2.0 Authorization Framework (RFC 6749), 2012. 621
8. Frosch, T., Mainka, C., Bader, C., Bergsma, F., Schwenk, J., & Holz, T. (2016, March). How secure is TextSecure?. In 2016 IEEE 622

European Symposium on Security and Privacy (EuroS&P) (pp. 457-472). IEEE. 623
9. Vaziripour, E., Wu, J., O'Neill, M., Whitehead, J., Heidbrink, S., Seamons, K. and Zappala, D., 2017. Is that you, Alice? a usability 624

study of the authentication ceremony of secure messaging applications. In Thirteenth Symposium on Usable Privacy and Secu- 625
rity ({SOUPS} 2017) (pp. 29-47). 626

10. Vaziripour, E., Wu, J., O'Neill, M., Metro, D., Cockrell, J., Moffett, T., ... & Zappala, D. (2018). Action needed! helping users find 627
and complete the authentication ceremony in signal. In Fourteenth Symposium on Usable Privacy and Security ({SOUPS} 2018) 628
(pp. 47-62). 629

11. Wu, J., Gattrell, C., Howard, D., Tyler, J., Vaziripour, E., Zappala, D., & Seamons, K. (2019). " Something isn't secure, but I'm not 630
sure how that translates into a problem": Promoting autonomy by designing for understanding in Signal. In Fifteenth Sympo- 631
sium on Usable Privacy and Security ({SOUPS} 2019). 632

12. Schröder, S., Huber, M., Wind, D. and Rottermanner, C., 2016, July. When SIGNAL hits the fan: On the usability and security 633
of state-of-the-art secure mobile messaging. In European Workshop on Usable Security. IEEE. 634

13. Lodderstedt, T., Bradley, J., Labunets, A. and Fett, D., OAuth 2.0 Security Best Current Practice (draft-ietf-oauth-security-topics- 635
15), 2020. 636

14. Signal secure messaging application main page. https://signal.org, last accessed on 26 February 2020. 637
15. OpenID Connect main page https://openid.net/connect/, last accessed on 26 February 2020. 638
 639
 640

